WorldWideScience

Sample records for copper nitrates

  1. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts

    NARCIS (Netherlands)

    Munnik, P.|info:eu-repo/dai/nl/328228524; Wolters, M.|info:eu-repo/dai/nl/304829560; Gabrielsson, A.; Pollington, S.D.; Headdock, G.; Bitter, J.H.|info:eu-repo/dai/nl/160581435; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2011-01-01

    In order to obtain copper catalysts with high dispersions at high copper loadings, the gas flow rate and gas composition was varied during calcination of silica gel impregnated with copper nitrate to a loading of 18 wt % of copper. Analysis by X-ray diffraction (XRD), N2O chemisorption, and

  2. A new route to copper nitrate hydroxide microcrystals

    International Nuclear Information System (INIS)

    Niu Haixia; Yang Qing; Tang Kaibin

    2006-01-01

    A solution evaporation route has been successfully developed for the growth of copper nitrate hydroxide microcrystals using copper nitrate solution as the starting material in the absence of any surfactants or templates. The products were characterized by X-ray diffraction (XRD), infrared (IR) spectrum, scanning electron microscopy (SEM) and thermogravimetric (TG) analysis measurements. Controlled experiments suggested that the reaction temperature and solution concentration played an important role on the formation of the products. A possible formation mechanism of the products was also proposed

  3. Fabrication of Elemental Copper by Intense Pulsed Light Processing of a Copper Nitrate Hydroxide Ink.

    Science.gov (United States)

    Draper, Gabriel L; Dharmadasa, Ruvini; Staats, Meghan E; Lavery, Brandon W; Druffel, Thad

    2015-08-05

    Printed electronics and renewable energy technologies have shown a growing demand for scalable copper and copper precursor inks. An alternative copper precursor ink of copper nitrate hydroxide, Cu2(OH)3NO3, was aqueously synthesized under ambient conditions with copper nitrate and potassium hydroxide reagents. Films were deposited by screen-printing and subsequently processed with intense pulsed light. The Cu2(OH)3NO3 quickly transformed in less than 100 s using 40 (2 ms, 12.8 J cm(-2)) pulses into CuO. At higher energy densities, the sintering improved the bulk film quality. The direct formation of Cu from the Cu2(OH)3NO3 requires a reducing agent; therefore, fructose and glucose were added to the inks. Rather than oxidizing, the thermal decomposition of the sugars led to a reducing environment and direct conversion of the films into elemental copper. The chemical and physical transformations were studied with XRD, SEM, FTIR and UV-vis.

  4. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Seung Uk; Jung, Myoung Geun [Keimyung University, Daegu (Korea, Republic of)

    2012-02-15

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions.

  5. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    International Nuclear Information System (INIS)

    Paik, Seung Uk; Jung, Myoung Geun

    2012-01-01

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions

  6. Nitric acid recycling and copper nitrate recovery from effluent.

    Science.gov (United States)

    Jô, L F; Marcus, R; Marcelin, O

    2014-01-01

    The recycling of nitric acid and copper nitrate contained in an industrial effluent was studied. The experiments conducted on such a medium showed that the presence of copper nitrate significantly improves nitric acid-water separation during distillation in an azeotropic medium. At the temperature of the azeotrope, however, this metal salt starts to precipitate, making the medium pasty, thus inhibiting the nitric acid extraction process. The optimisation of parameters such as column efficiency and adding water to the boiler at the azeotrope temperature are recommended in this protocol in order to collect the various components while avoiding the formation of by-products: NOx compounds. Thus, the absence of column, along with the addition of a small volume of water at a temperature of 118 °C, significantly increases the yield, allowing 94 % nitric acid to be recovered at the end of the process, along with the residual copper nitrate. The resulting distillate, however, is sufficiently dilute to not be used as is. Rectification is required to obtain concentrated nitric acid at 15 mol·l(-1), along with a weakly acidic distillate from the distillation front. This latter is quenched using potassium hydroxide and is used as a fertiliser solution for horticulture or sheltered market gardening. This process thus allows complete recycling of all the medium's components, including that of the distillate resulting from the nitric acid rectification operation.

  7. Recovery of copper(II) and chromium(III) from nitrate medium with ...

    African Journals Online (AJOL)

    The solvent extraction of copper(II) and chromium(III) from nitrate medium with salicylideneaniline (HL) is studied as a function of various parameters: pH, concentration of salicylideneaniline, contact time and the nature of anoin (nitrate and sulfate) in aqueous phase. Chromium(III) is not extracted by salicylideneaniline ...

  8. DWPF coupled feed flowsheet material balance with batch one sludge and copper nitrate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.

    1993-09-28

    The SRTC has formally transmitted a recommendation to DWPF to replace copper formate with copper nitrate as the catalyst form during precipitate hydrolysis [1]. The SRTC was subsequently requested to formally document the technical bases for the recommendation. A memorandum was issued on August 23, 1993 detailing the activities (and responsible individuals) necessary to address the impact of this change in catalyst form on process compatibility, safety, processibility environmental impact and product glass quality [2]. One of the activities identified was the preparation of a material balance in which copper nitrate is substituted for copper formate and the identification of key comparisons between this material balance and the current Batch 1 sludge -- Late Wash material balance [3].

  9. Physicochemical analysis of cryocrystallization processes of aqueous solutions of yttrium, barium, copper nitrates and their mixtures

    International Nuclear Information System (INIS)

    Kulakov, A.B.; Mozhaev, A.P.; Tesker, A.M.; Churagulov, B.R.

    1992-01-01

    Products of fast hardening of aqueous solutions of different concentration of yttrium, barium copper nitrates and their mixtures including mixture of three nitrates with molar ratio equal to 1:2:3 used for synthesis of YBa 2 Cu 3 O 7-x HTSC by cryochemical technique, in liquid nitrogen, are studied using low-temperature, differential thermal and X-ray phase analyses. Aqueous solutions of barium, copper, yttrium nitrates are shown to belong to three different classes which differ in behaviour at fast cooling and subsequent slow heating. Cryogranulate at YBa 2 Cu 2 O 7-x synthesis using cryochemical technique represents mixture of X-ray amorphous Ba(NO 3 ) 2 , crystalline Cu(NO 3 ) 2 ·6H 2 O and ice, as well as, supercooled aqueous solution of yttrium and copper nitrates

  10. Polypyrrole Coated Cellulosic Substrate Modified by Copper Oxide as Electrode for Nitrate Electroreduction

    Science.gov (United States)

    Hamam, A.; Oukil, D.; Dib, A.; Hammache, H.; Makhloufi, L.; Saidani, B.

    2015-08-01

    The aim of this work is to synthesize polypyrrole (PPy) films on nonconducting cellulosic substrate and modified by copper oxide particles for use in the nitrate electroreduction process. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is conducted by using FeCl3 as an oxidant and pyrrole as monomer. The thickness and topography of the different PPy films obtained were estimated using a profilometer apparatus. The electrochemical reactivity of the obtained electrodes was tested by voltamperometry technique and electrochemical impedance spectroscopy. Secondly, the modification of the PPy film surface by incorporation of copper oxide particles is conducted by applying a galvanostatic procedure from a CuCl2 solution. The SEM, EDX and XRD analysis showed the presence of CuO particles in the polymer films with dimensions less than 50 nm. From cyclic voltamperometry experiments, the composite activity for the nitrate electroreduction reaction was evaluated and the peak of nitrate reduction is found to vary linearly with initial nitrate concentration.

  11. Electrical conductivity of solutions of copper(II) nitrate crystalohydrate in dimethyl sulfoxide

    Science.gov (United States)

    Mamyrbekova, Aigul K.; Mamitova, A. D.; Mamyrbekova, Aizhan K.

    2016-06-01

    Conductometry is used to investigate the electric conductivity of Cu(NO3)2 ṡ 3H2O solutions in dimethyl sulfoxide in the 0.01-2.82 M range of concentrations and at temperatures of 288-318 K. The limiting molar conductivity of the electrolyte and the mobility of Cu2+ and NO 3 - ions, the effective coefficients of diffusion of copper(II) ions and nitrate ions, and the degree and constant of electrolytic dissociation are calculated for different temperatures from the experimental results. It is established that solutions containing 0.1-0.6 M copper nitrate trihydrate in DMSO having low viscosity and high electrical conductivity can be used in electrochemical deposition.

  12. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Science.gov (United States)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-09-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  13. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    International Nuclear Information System (INIS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-01-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10 -5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  14. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Energy Technology Data Exchange (ETDEWEB)

    Chumakov, Yu. M., E-mail: chumakov.xray@phys.asm.md [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Tsapkov, V. I. [State University of Moldova (Moldova, Republic of); Jeanneau, E. [Universite Claude Bernard, Laboratoire des Multimateriaux et Interfaces (France); Bairac, N. N. [State University of Moldova (Moldova, Republic of); Bocelli, G. [National Research Council (IMEM-CNR), Institute of Materials for Electronics and Magnetism (Italy); Poirier, D.; Roy, J. [Centre Hospitalier Universitaire de Quebec (CHUQ) (Canada); Gulea, A. P. [State University of Moldova (Moldova, Republic of)

    2008-09-15

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10{sup -5} mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  15. A peroxynitrite complex of copper: formation from a copper-nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration.

    Science.gov (United States)

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D

    2009-11-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.

  16. RECOVERY OF COPPER(II AND CHROMIUM(III FROM NITRATE MEDIUM WITH SALICYLIDENEANILINE DISSOLVED IN 1-OCTANOL

    Directory of Open Access Journals (Sweden)

    A. Guerdouh

    2016-05-01

    Full Text Available The solvent extraction of copper(II and chromium(III from nitrate medium with salicylideneaniline (HL is studied as a function of various parameters: pH, concentration of salicylideneaniline, contact time and the nature of anoin (nitrate and sulfate in aqueous phase. Chromium(III is not extracted by salicylideneaniline  diluted in 1-octanol. Copper(II is only extracted by salicylideneaniline and it was found that the highest extractability achieved to 95% at pH 4.9, The stoichiometry of the extracted species was determined by using the method of slope analysis. Elemental analysis, UV–vis and IR-spectra were used to confirm the structure. It is found that the copper (II is extracted as CuL2.2H2O Their equilibrium constant, distribution coefficient, percentage extraction (%E and free energy are also calculated.

  17. Study of the electroreduction of nitrate on copper in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Reyter, David [INRS Energie, Materiaux et Telecommunications, 1650 bd. Lionel Boulet, Varennes, Qc (Canada); Departement de Chimie, Universite du Quebec a Montreal, CP 8888, Montreal, Qc (Canada); Belanger, Daniel [Departement de Chimie, Universite du Quebec a Montreal, CP 8888, Montreal, Qc (Canada); Roue, Lionel [INRS Energie, Materiaux et Telecommunications, 1650 bd. Lionel Boulet, Varennes, Qc (Canada)

    2008-08-20

    The electrocatalytic activity of a Cu electrode for the electroreduction of nitrate in alkaline medium was investigated by linear sweep voltammetry at stationary and rotating disc electrodes. Nitrate-reduction products generated upon prolonged electrolyses at different potentials were quantified. In addition, adsorption phenomena associated with the nitrate electroreduction process were characterized by electrochemical quartz crystal microbalance (EQCM) experiments. This data revealed that nitrate electroreduction process strongly depends on the applied potential. Firstly, at ca. -0.9 V vs. Hg/HgO, the electroreduction of adsorbed nitrate anions to nitrite anions was identified as the rate-determining step of the nitrate electroreduction process. Between -0.9 and -1.1 V, nitrite is reduced to hydroxylamine. However, during long-term electrolyses, hydroxylamine is not detected and presumably because it is rapidly reduced to ammonia. At potential more negative than -1.1 V, nitrite is reduced to ammonia. At ca. -1.45 V, i.e. just before the hydrogen evolution reaction, the abrupt decrease of the cathodic current is due to the electrode poisoning by adsorbed hydrogen. In addition, during the first minutes of nitrate electrolysis, a decrease of the copper electrode activity was observed at the three investigated potentials (-0.9, -1.1 and -1.4 V). From polarization and EQCM measurements, this deactivation was attributed to the adsorption of nitrate-reduction products, blocking the electrode surface and slowing down the nitrate electroreduction rate. However, it was demonstrated that the Cu electrode can be reactivated by the periodic application of a square wave potential pulse at -0.5 V, which causes the desorption of poisoning species. (author)

  18. Analytical application of solid contact ion-selective electrodes for determination of copper and nitrate in various food products and drinking water.

    Science.gov (United States)

    Wardak, Cecylia; Grabarczyk, Malgorzata

    2016-08-02

    A simple, fast and cheap method for monitoring copper and nitrate in drinking water and food products using newly developed solid contact ion-selective electrodes is proposed. Determination of copper and nitrate was performed by application of multiple standard additions technique. The reliability of the obtained results was assessed by comparing them using the anodic stripping voltammetry or spectrophotometry for the same samples. In each case, satisfactory agreement of the results was obtained, which confirms the analytical usefulness of the constructed electrodes.

  19. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates

    Science.gov (United States)

    Biswick, Timothy; Jones, William; Pacuła, Aleksandra; Serwicka, Ewa

    2006-01-01

    Anion exchange reactions of four structurally related hydroxy salts, Cu 2(OH) 3NO 3, Mg 2(OH) 3NO 3, Ni 2(OH) 3NO 3 and Zn 3(OH) 4(NO 3) 2 are compared and trends rationalised in terms of the strength of the covalent bond between the nitrate group and the matrix cation. Powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and elemental analysis are used to characterise the materials. Replacement of the nitrate anions in the zinc and copper salts with benzoate anions is possible although exchange of the zinc salt is accompanied by modification of the layer structure from one where zinc is exclusively six-fold coordinated to a structure where there is both six- and four-fold zinc coordination. Magnesium and nickel hydroxy nitrates, on the other hand, hydrolyse to their respective metal hydroxides.

  20. POLYPYRROLE COATED CELLULOSIC SUBSTRATE MODIFIED BY COPPER OXIDE AS ELECTRODE FOR NITRATE ELECTROREDUCTION

    OpenAIRE

    A. HAMAM; D. OUKIL; A. DIB; H. HAMMACHE; L. MAKHLOUFI; B. SAIDANI

    2015-01-01

    The aim of this work is to synthesize polypyrrole (PPy) films on nonconducting cellulosic substrate and modified by copper oxide particles for use in the nitrate electroreduction process. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is conducted by using FeCl3 as an oxidant and pyrrole as monomer. The thickness and topography of the different PPy films obtained were estimated using a profilometer apparatus. The electrochemical reactivity of the obtained electr...

  1. Preparation, characterization, and kinetics of thermolysis of nickel and copper nitrate complexes with 2,2 Prime -bipyridine ligand

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dinesh; Kapoor, I.P.S. [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273 009 (India); Singh, Gurdip, E-mail: gsingh4us@yahoo.com [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273 009 (India); Froehlich, Roland [Institut fuer Organische Chemie, Universitaet Muenster, D-48149 Muenster (Germany)

    2012-10-10

    Graphical abstract: Nickel and copper nitrate complexes with 2,2 Prime -bipyridine, nitrate and water ligands have been prepared and characterized by single crystal X-ray diffraction, FT-IR and CHN analyses. Thermolysis was performed by using TG, DTA and ignition delay measurements. The kinetics of thermolysis were also evaluated. Highlights: Black-Right-Pointing-Pointer Preparation and characterization of Ni and Cu nitrate complexes have been reported. Black-Right-Pointing-Pointer Thermolysis has been carried out using TG-DTA and ignition delay measurements. Black-Right-Pointing-Pointer Their thermal decomposition pathways have been proposed. Black-Right-Pointing-Pointer Oxides residues as end product of thermolysis were revealed by XRD patterns. Black-Right-Pointing-Pointer Kinetics of their isothermal decomposition was evaluated. - Abstract: Nickel and copper nitrate complexes with 2,2 Prime -bipyridine (bipy) as a N donor and nitrate and water as oxygen donor ligands of the general formula [M(NO{sub 3})(C{sub 10}H{sub 8}N{sub 2})(H{sub 2}O){sub 3}](NO{sub 3}), where M = Ni and Cu, have been obtained from the corresponding metal nitrate salts. These complexes were characterized by X-ray crystallography, FT-IR, and CHN analysis. Both the complexes have been found to be six coordinated. Their thermal decomposition behaviour was investigated by TG, DTA, and ignition delay measurements. TG-DTA examinations of these complexes revealed multistep thermal decomposition. The corresponding metal oxide residues obtained after thermolysis were identified from their X-ray diffraction patterns (XRD). Kinetics of isothermal decomposition of the complexes was established from both the model-fitting as well as isoconversional methods.

  2. Copper Nitrate Mediated Regioselective [2+2+1] Cyclization of Alkynes with Alkenes: A Cascade Approach to Δ(2)-Isoxazolines.

    Science.gov (United States)

    Gao, Mingchun; Li, Yingying; Gan, Yuansheng; Xu, Bin

    2015-07-20

    An efficient method for the regioselective synthesis of pharmacologically relevant polysubstituted Δ(2)-isoxazolines is based on the copper-mediated direct transformation of simple terminal alkynes and alkenes. The overall process involves the formation of four chemical bonds with inexpensive and readily available copper nitrate trihydrate as a novel precursor of nitrile oxides. The reaction can be easily handled and proceeds under mild conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Neutron scattering study of two-magnon states in the quantum magnet copper nitrate

    DEFF Research Database (Denmark)

    Tennant, D.A.; Broholm, C.; Reich, D.H.

    2003-01-01

    We report measurements of the two-magnon states in a dimerized antiferromagnetic chain material, copper nitrate [Cu(NO3)(2).2.5D(2)O]. Using inelastic neutron scattering we have measured the one- and two-magnon excitation spectra in a large single crystal. The data are in excellent agreement...... with a perturbative expansion of the alternating Heisenberg Hamiltonian from the strongly dimerized limit. The expansion predicts a two-magnon bound state for qsimilar to(2n+1)pid which is consistent with the neutron scattering data....

  4. Research on metal-plated cellulose nitrate flakes and their infrared / millimeter wave characteristics

    Science.gov (United States)

    Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei

    2016-10-01

    Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.

  5. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    Science.gov (United States)

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  6. Synthesis, thermogravimetric study and crystal structure of an N-rich copper(II) compound with tren ligands and nitrate counter-anions

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Toro, Inmaculada; Domínguez-Martín, Alicia [Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada (Spain); Choquesillo-Lazarte, Duane [Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Av. de las Palmeras 4, E-18100 Armilla, Granada (Spain); Vílchez-Rodríguez, Esther [Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada (Spain); Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Castiñeiras, Alfonso [Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Niclós-Gutiérrez, Juan, E-mail: jniclos@ugr.es [Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada (Spain)

    2014-10-10

    The N-rich salt [{Cu(tren)}{sub 3}(μ{sub 3}-tren)]{sub 2}(NO{sub 3}){sub 12}·3H{sub 2}O has been studied by XRD and by coupled TG and FT-IR spectroscopy of the evolved gases. After water loss, thermal decomposition of the nitrate ions and some tren ligands in the salt are overlapped. - Highlights: • A novel N-rich copper(II)-tren complex has been crystallized as a 3-hydrated nitrate salt. • Tren acts both as tripodal tetradentate and as μ{sub 3}-tren bridging ligand. • Copper(II) centers exhibit distorted trigonal bipyramidal coordination. • Coupled thermogravimetry and FT-IR spectra of evolved gases have been used. • Decomposition of nitrate anions and tren ligands occurs in an overlapped step. - Abstract: The compound [{Cu(tren)}{sub 3}(μ3-tren)]{sub 2}(NO{sub 3}){sub 12}·3H{sub 2}O has been synthesized, crystallized and characterized by single crystal X-ray diffraction, thermogravimetry (TG) coupled to FT-IR spectroscopy of the evolved gases, TG–differential scanning calorimetry (DSC) and electronic (diffuse reflectance) and FT-IR spectroscopies. The sample loses the crystallization water between room temperature and 200 °C. The decomposition of the salt begins with an overlapped decomposition of nitrate anions and some tren ligands where CO{sub 2}, H{sub 2}O, CO, NH{sub 3}, N{sub 2}O, NO and NO{sub 2} are evolved (205–235 °C). Then decomposition of additional tren ligands takes place (235–725 °C). Finally a non-pure CuO residue is obtained at 725 °C.

  7. Study of interaction of bismuth, strontium, calcium copper, lead nitrates solutions with sodium oxalate solution with the aim of HTSC synthesis

    International Nuclear Information System (INIS)

    Danilov, V.P.; Krasnobaeva, O.N.; Nosova, T.A.

    1993-01-01

    With the aim of developing a new technique for HTSC oxides synthesis on the base of combined sedimentation of hydroxy salts and their heat treatment is studied interaction of bismuth, strontium, calcium, copper and lead nitrates with alkali solution of sodium oxalate. Conditions for total sedimentation of all five metals from the solution are found. The phase composition of interaction products is determined. It is established that they are high-dispersed homogeneous mixture of three phases of variable composition: twin hydroxalate of copper-bismuth, lead hydroxalate and twin oxalate of strontium-calcium. After heat treatment of the phases are obtained the HTSC oxides

  8. Symbiotic Effect of Trichoderma atroviride on Growth Characteristics and Yield of two Cultivars of Rapeseed (Brassica napus L. in a Contaminated Soil Treated with Copper Nitrate

    Directory of Open Access Journals (Sweden)

    E TashakoriFard

    2017-06-01

    Full Text Available Introduction Accumulation of heavy metals in agricultural soils can be a threat to crop production due to plant toxicity. In the recent years, hyperaccumulator plants are cultivated to cleaning up the soils which contaminated with pollutants especially heavy metals. However, the biomass of these plants is low and metal specific. Many studies have shown that microorganisms can be used to significantly reduce the toxicity of heavy metals. Therefore, the present study aimed to determine the role of Trichoderma atroviride on the growth characteristics of tow cultivars of rapeseed in different levels on copper. Materials and Methods In this study, a pot experiment was conducted in factorial arrangement based completely randomized design with three replicates. Treatment were T. atroviride fungi at two levels of inoculated and non-inoculated plants, four levels of copper nitrate including 0, 50, 100 and 150 mg l-1 and two cultivars of rapeseed consist of Hayola 401 and Sarigol. Trichoderma atroviride was prepared from Mycology Lab of Sari Agricultural Science and Natural Resource University. PDA medium (potato extract, dextrose and agar was kept for a week at 25˚C to propagation of fungal strain. The used medium was previously sterilized in autoclave for 30 minutes. So, this fungus propagated in Wheat's bran for five days. Healthy and uniform seeds of rapeseeds were separated from rogues and infertile ones. Seeds disinfected in hypochlorite sodium 0.5% for five minute and then washed with distilled water three times. After preparing fungus spore suspension of 108 CFU per ml water, 50 g wheat' bran mixed to the soil of each pot. Twenty sterilized seeds sown in 2 cm of soil depth in 25×30 cm pot with 10 kg capacity. Copper nitrate was used to pollute treated soil. During this experiment did not used any pesticides and herbicides and all weed controlled manually. Some growth and yield related parameters such as plant height, number of secondary branches

  9. Insight into the electroreduction of nitrate ions at a copper electrode, in neutral solution, after determination of their diffusion coefficient by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Aouina, Nizar; Cachet, Hubert; Debiemme-chouvy, Catherine; Tran, Thi Tuyet Mai

    2010-01-01

    The electrochemical reduction of nitrate ions at a copper electrode in an unbuffered neutral aqueous solution is studied. Using a two compartment electrochemical cell, three stationary cathodic waves, noted P1, P2 and P3, were evidenced by cyclic voltammetry at -0.9, -1.2 and -1.3 V/SCE, respectively. By comparing the electrochemical response of nitrate and nitrite containing solutions, P1 was attributed to the reduction of nitrate to nitrite. In order to assign P2 and P3 features by determining the number of electrons involved at the corresponding potential, rotating disk electrode experiments at various rotation speeds, combined with linear sweep voltammetry, were performed. Current data analysis at a given potential was carried out using Koutecky-Levich treatment taking into account water reduction. Confident values of the diffusion coefficient D of nitrate ions were assessed by electrochemical impedance spectroscopy for nitrate concentrations of 10 -3 , 10 -2 and 10 -1 M. For a nitrate concentration of 10 -2 M, D was found to be 1.31 x 10 -5 cm 2 s -1 allowing the number of electrons to be determined as 6 for P2 and 8 for P3, in accordance with nitrate reduction into hydroxylamine and ammonia, respectively. The formation of hydroxylamine was confirmed by the observation of its reoxidation at a Pt microelectrode present at the Cu electrode/nitrate solution interface.

  10. Insight into the electroreduction of nitrate ions at a copper electrode, in neutral solution, after determination of their diffusion coefficient by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Aouina, Nizar; Cachet, Hubert [Laboratoire Interfaces et Systemes Electrochimiques - UPR15 du CNRS, Universite Pierre et Marie Curie - Paris 6, 4, place Jussieu, F-75005 Paris (France); Debiemme-chouvy, Catherine, E-mail: catherine.debiemme-chouvy@upmc.f [Laboratoire Interfaces et Systemes Electrochimiques - UPR15 du CNRS, Universite Pierre et Marie Curie - Paris 6, 4, place Jussieu, F-75005 Paris (France); Tran, Thi Tuyet Mai [Laboratoire Interfaces et Systemes Electrochimiques - UPR15 du CNRS, Universite Pierre et Marie Curie - Paris 6, 4, place Jussieu, F-75005 Paris (France)

    2010-10-01

    The electrochemical reduction of nitrate ions at a copper electrode in an unbuffered neutral aqueous solution is studied. Using a two compartment electrochemical cell, three stationary cathodic waves, noted P1, P2 and P3, were evidenced by cyclic voltammetry at -0.9, -1.2 and -1.3 V/SCE, respectively. By comparing the electrochemical response of nitrate and nitrite containing solutions, P1 was attributed to the reduction of nitrate to nitrite. In order to assign P2 and P3 features by determining the number of electrons involved at the corresponding potential, rotating disk electrode experiments at various rotation speeds, combined with linear sweep voltammetry, were performed. Current data analysis at a given potential was carried out using Koutecky-Levich treatment taking into account water reduction. Confident values of the diffusion coefficient D of nitrate ions were assessed by electrochemical impedance spectroscopy for nitrate concentrations of 10{sup -3}, 10{sup -2} and 10{sup -1} M. For a nitrate concentration of 10{sup -2} M, D was found to be 1.31 x 10{sup -5} cm{sup 2} s{sup -1} allowing the number of electrons to be determined as 6 for P2 and 8 for P3, in accordance with nitrate reduction into hydroxylamine and ammonia, respectively. The formation of hydroxylamine was confirmed by the observation of its reoxidation at a Pt microelectrode present at the Cu electrode/nitrate solution interface.

  11. Effect of Copper Oxide, Titanium Dioxide, and Lithium Fluoride on the Thermal Behavior and Decomposition Kinetics of Ammonium Nitrate

    Science.gov (United States)

    Vargeese, Anuj A.; Mija, S. J.; Muralidharan, Krishnamurthi

    2014-07-01

    Ammonium nitrate (AN) is crystallized along with copper oxide, titanium dioxide, and lithium fluoride. Thermal kinetic constants for the decomposition reaction of the samples were calculated by model-free (Friedman's differential and Vyzovkins nonlinear integral) and model-fitting (Coats-Redfern) methods. To determine the decomposition mechanisms, 12 solid-state mechanisms were tested using the Coats-Redfern method. The results of the Coats-Redfern method show that the decomposition mechanism for all samples is the contracting cylinder mechanism. The phase behavior of the obtained samples was evaluated by differential scanning calorimetry (DSC), and structural properties were determined by X-ray powder diffraction (XRPD). The results indicate that copper oxide modifies the phase transition behavior and can catalyze AN decomposition, whereas LiF inhibits AN decomposition, and TiO2 shows no influence on the rate of decomposition. Possible explanations for these results are discussed. Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Energetic Materials to view the free supplemental file.

  12. Powder of a copper oxide superconductor precursor, fabrication process and use for the preparation of superconducting oxide

    International Nuclear Information System (INIS)

    Dehaudt, P.

    1990-01-01

    The precursor powder comprises at least a copper compound (hydroxide, oxide and hydroxynitrates), at least a rare earth and/or yttrium compound (nitrates, hydroxides and hydroxynitrates) or bismuth oxide and at least an alkaline earth nitrate. It can be prepared by atomization drying of a suspension a copper precipitate or coprecipitate and other elements of the superconducting oxide in solution [fr

  13. Determination, source identification and GIS mapping for nitrate concentration in ground water from Bara aquifer

    International Nuclear Information System (INIS)

    Elfaki Taha, G. M. E.

    2010-09-01

    The study was carried-out determine the level of nitrate concentration in well water from Bara aquifer in North Kordofan State. The analysis was conducted for 69 wells from different villages within Bara basin. Physical characteristics were measured including pH, electrical conductivity and dissolved oxygen. Spectrophotometric analysis was used to determine nitrate, nitrite and ammonia. Chloride and hardness were determined telemetrically and flame photometer was used for major elements namely sodium and potassium, whereas atomic absorption spectroscopy was used for trace elements namely iron, manganese, zinc and copper. Results revealed that nitrate concentration range from 9.68 to 891 mg/1 in sampled wells with 81% exceeding the maximum permissible limits set for drinking water by WHO and SSMO. Animal waste and organic soil nitrogen were found to be the sources of nitrate in these wells as indicated by 15 N%. Majority of wells with high nitrate are located in the north and the north-east part of the study area as shown by GIS predictive map. On the average, the concentrations of sodium, potassium, calcium, magnesium, iron, manganese, zinc and copper were found to be within WHO limits for drinking water. (Author)

  14. Processes leading to yttrium-barium cuprates formation in synthesis using nitrates

    International Nuclear Information System (INIS)

    Kulakov, A.B.; Tesker, A.M.; Zalishchanskij, M.E.; Tret'yakov, Yu.D.; Gipius, A.A.

    1989-01-01

    An attempt to determine sequence and conditions for transformations occuring at heating both of mechanical mixture of copper, yttrium and barium nitrates and salt product of sublimated dehydration of quick frozen solution of nitrates in question of correlation which corresponds to YBa 2 Cu 3 O 7-σ final compounds is made. It is shown that unlike individual nitrates their thermolysis in the mixture occurs at lower temperatures with mechanism variation of decomposition separate stages. Specimens of superconducting ceramics with 4.3 g/cm 3 density phase composition and oxygen content which correspond to YBa 2 Cu 3 O 6.85±0.05 formula are obtaied

  15. Biogeochemical spatio-temporal transformation of copper in Aspergillus niger colonies grown on malachite with different inorganic nitrogen sources.

    Science.gov (United States)

    Fomina, Marina; Bowen, Andrew D; Charnock, John M; Podgorsky, Valentin S; Gadd, Geoffrey M

    2017-03-01

    This work elucidates spatio-temporal aspects of the biogeochemical transformation of copper mobilized from malachite (Cu 2 (CO 3 )(OH) 2 ) and bioaccumulated within Aspergillus niger colonies when grown on different inorganic nitrogen sources. It was shown that the use of either ammonium or nitrate determined how copper was distributed within the colony and its microenvironment and the copper oxidation state and succession of copper coordinating ligands within the biomass. Nitrate-grown colonies yielded ∼1.7× more biomass, bioaccumulated ∼7× less copper, excreted ∼1.9× more oxalate and produced ∼1.75× less water-soluble copper in the medium in contrast to ammonium-grown colonies. Microfocus X-ray absorption spectroscopy revealed that as the mycelium matured, bioaccumulated copper was transformed from less stable and more toxic Cu(I) into less toxic Cu(II) which was coordinated predominantly by phosphate/malate ligands. With time, a shift to oxalate coordination of bioaccumulated copper occurred in the central older region of ammonium-grown colonies. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Effect of Energetic Materials on Thermal Decomposition of Phase-Stabilised Ammonium Nitrate - An Eco-Friendly Oxidiser

    OpenAIRE

    Suresh Mathew; K. Krishnan; K. N. Ninan

    1999-01-01

    Phase-stabilised ammonium nitrate (PSAN) was prepared by incorporating copper (II) diamine nitrate in the ammonium nitrate (AN) crystal lattice, thereby avoiding the abrupt volume change within the useful temperature range. The effect of RDX on the thermal decomposition of PSAN has been investigated. Decomposition temperatures of PSAN and RDX are almost in the same temperature range. The synergetic effect of the interaction between PSAN and RDX resulted in a net exothermic reaction of PSAN. T...

  17. RECOVERY OF COPPER(II) AND CHROMIUM(III) FROM NITRATE ...

    African Journals Online (AJOL)

    Guerdouh A and Barkat D

    2016-05-01

    May 1, 2016 ... The ionic strength of the aqueous medium was ... phases were separated completely, concentrations of the copper(II) and chromium(III) ..... [18] Huff M M, Otu E O. Solvent Extraction and Ion Exchange, 2004, 22(4), 695-712.

  18. Removal of phosphate and nitrate from aqueous solution using ...

    African Journals Online (AJOL)

    sunny t

    water, 3.5 g of NaCl were dissolved to obtain 3.5 g/l salinity final solution. When the ... The nitrate adsorption was highly pH dependent, which affects the ... adsorption mechanism that the optimum pH for phosphate removal by .... Biosorption of copper(ii) from aqueous ... Accumulation and detoxification of toxic elements by ...

  19. XPS and GDOES Characterization of Porous Coating Enriched with Copper and Calcium Obtained on Tantalum via Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Krzysztof Rokosz

    2016-01-01

    Full Text Available XPS and GDOES characterizations of porous coatings on tantalum after Plasma Electrolytic Oxidation (PEO at 450 V for 3 minutes in electrolyte containing concentrated (85% phosphoric acid with calcium nitrate and copper (II nitrate are described. Based on the obtained data, it may be concluded that the PEO coating consists of tantalum (Ta5+, calcium (Ca2+, copper (Cu2+  and Cu+, and phosphates (PO43-. It has to be pointed out that copper and calcium are distributed throughout the volume. The authors also propose a new model of PEO, based on the derivative of GDOES signals with sputtering time.

  20. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    However, the effects of potassium nitrate were higher than sodium nitrate, which was due to the positive effects of potassium on the enzyme activity, sugars transport, water and nutrient transport, protein synthesis and carbohydrate metabolism. In conclusion, potassium nitrate has better effect on the nitrate assimilatory ...

  1. Electrothermal atomic absorption spectrometric determination of copper in nickel-base alloys with various chemical modifiers*1

    Science.gov (United States)

    Tsai, Suh-Jen Jane; Shiue, Chia-Chann; Chang, Shiow-Ing

    1997-07-01

    The analytical characteristics of copper in nickel-base alloys have been investigated with electrothermal atomic absorption spectrometry. Deuterium background correction was employed. The effects of various chemical modifiers on the analysis of copper were investigated. Organic modifiers which included 2-(5-bromo-2-pyridylazo)-5-(diethylamino-phenol) (Br-PADAP), ammonium citrate, 1-(2-pyridylazo)-naphthol, 4-(2-pyridylazo)resorcinol, ethylenediaminetetraacetic acid and Triton X-100 were studied. Inorganic modifiers palladium nitrate, magnesium nitrate, aluminum chloride, ammonium dihydrogen phosphate, hydrogen peroxide and potassium nitrate were also applied in this work. In addition, zirconium hydroxide and ammonium hydroxide precipitation methods have also been studied. Interference effects were effectively reduced with Br-PADAP modifier. Aqueous standards were used to construct the calibration curves. The detection limit was 1.9 pg. Standard reference materials of nickel-base alloys were used to evaluate the accuracy of the proposed method. The copper contents determined with the proposed method agreed closely with the certified values of the reference materials. The recoveries were within the range 90-100% with relative standard deviation of less than 10%. Good precision was obtained.

  2. Facile Synthesis of Long, Straight and Uniform Copper Nanowires via a Solvothermal Method

    Institute of Scientific and Technical Information of China (English)

    Chunfu Lin; Hong Lin; Ning Wang; Xing Zhang; Jun Yang; Jianbo Li; Xiaozhan Yang

    2006-01-01

    Copper nanowires were facilely prepared via a solvothermal method. In this method, cetyltrimethylammonium bromide (CTAB) was used as a soft template, copper nitrate was an inorganic precursor, and absolute ethanol served as a reducing agent as well as a solvent. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the as-prepared copper nanowires. The as-prepared copper nanowires are fairly uniform and long. The majority of them are longer than 100 μm and some even longer than 200 μm. Furthermore, most nanowires are quite straight. In addition,The mechanism of the growth process of copper nanowires was discussed.

  3. Catalytic membrane in reduction of aqueous nitrates: operational principles and catalytic performance

    NARCIS (Netherlands)

    Ilinitch, O.M.; Cuperus, F.P.; Nosova, L.V.; Gribov, E.N.

    2000-01-01

    The catalytic membrane with palladium-copper active component supported over the macroporous ceramic membrane, and a series of γ-Al 2O 3 supported Pd-Cu catalysts were prepared and investigated. In reduction of nitrate ions by hydrogen in water at ambient temperature, pronounced internal diffusion

  4. Composition and particle size of electrolytic copper powders prepared in water-containing dimethyl sulfoxide electrolytes

    Science.gov (United States)

    Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan

    2017-07-01

    The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.

  5. Performance of nanoscale zero-valent iron in nitrate reduction from water using a laboratory-scale continuous-flow system.

    Science.gov (United States)

    Khalil, Ahmed M E; Eljamal, Osama; Saha, Bidyut Baran; Matsunaga, Nobuhiro

    2018-04-01

    Nanoscale zero-valent iron (nZVI) is a versatile treatment reagent that should be utilized in an effective application for nitrate remediation in water. For this purpose, a laboratory-scale continuous-flow system (LSCFS) was developed to evaluate nZVI performance in removal of nitrate in different contaminated-water bodies. The equipment design (reactor, settler, and polisher) and operational parameters of the LSCFS were determined based on nZVI characterization and nitrate reduction kinetics. Ten experimental runs were conducted at different dosages (6, 10 and 20 g) of nZVI-based reagents (nZVI, bimetallic nZVI-Cu, CuCl 2 -added nZVI). Effluent concentrations of nitrogen and iron compounds were measured, and pH and ORP values were monitored. The major role exhibited by the recirculation process of unreacted nZVI from the settler to the reactor succeeded in achieving overall nitrate removal efficiency (RE) of >90%. The similar performance of both nZVI and copper-ions-modified nZVI in contaminated distilled water was an indication of LSCFS reliability in completely utilizing iron nanoparticles. In case of treating contaminated river water and simulated groundwater, the nitrate reduction process was sensitive towards the presence of interfering substances that dropped the overall RE drastically. However, the addition of copper ions during the treatment counteracted the retardation effect and greatly enhanced the nitrate RE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Ammonium nitrate-potassium nitrate system

    Energy Technology Data Exchange (ETDEWEB)

    Cady, H.H.

    1981-01-01

    A portion of the binary phase diagram for the system ammonium nitrate-potassium nitrate has been determined from -55/sup 0/C to 185/sup 0/C. Results are presented for the ammonium-nitrate-rich end of the system up to 30 wt% potassium nitrate.

  7. Cell Wall Composition of Neurospora crassa Under Conditions of Copper Toxicity

    OpenAIRE

    Subramanyam, C.; Venkateswerlu, G.; Rao, S. L. N.

    1983-01-01

    The mycelia of Neurospora crassa grown in the presence of high concentrations of copper were blue in color, but only on a medium containing inorganic nitrate and phosphate as the nitrogen and phosphate sources, respectively. The cell wall isolate of the blue mycelia contained large amounts (12%) of copper and higher amounts of chitosan, phosphate, and amino groups, with a 42% decrease in the chitin content. Although all the glucosamine of the cell wall of control cultures could be released wi...

  8. Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN solutions

    Directory of Open Access Journals (Sweden)

    Kai Seng Koh

    2013-09-01

    Full Text Available Decomposition of hydroxylammonium nitrate (HAN solution with electrolytic decomposition method has attracted much attention in recent years due to its efficiencies and practicability. However, the phenomenon has not been well-studied till now. By utilizing mathematical model currently available, the effect of water content and power used for decomposition was studied. Experiment data shows that sacrificial material such as copper or aluminum outperforms inert electrodes in the decomposition of HAN solution. In the case of using copper wire to electrolyse HAN solutions, approximately 10 seconds is required to reach 100 °C regardless of concentration of HAN. In term of power consumption, 100 W–300 W was found to be the range in which decomposition could be triggered effectively using copper wire as electrodes.

  9. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions

    NARCIS (Netherlands)

    Dima, G.E.; Vooys, de A.C.A.; Koper, M.T.M.

    2003-01-01

    A comparative study was performed to determine the reactivity of nitrate ions at 0.1 M on eight different polycrystalline electrodes (platinum, palladium, rhodium, ruthenium, iridium, copper, silver and gold) in acidic solution using cyclic voltammetry (CV), chronoamperometry and differential

  10. Synthesis of YBa2Cu3O7-y from nitrate solutions with urea additions

    International Nuclear Information System (INIS)

    Pershin, V.I.; Naumov, V.S.; Mozhaev, A.P.; Lyashchenko, A.K.; Pobedina, A.B.; Khajlova, E.G.

    1994-01-01

    Solubility of bariun nitrate is studied in the Y(NO 3 ) 3 -Ba(NO 3 ) 2 -Cu(NO 3 )-CO(NH 2 ) 2 -H 2 O system at the ratio Y:B:Cu-1:2:3 and variable concentration of urea in the solution. Mentioned aqua-salt compositions are used in cryochemical synthesis of HTSC. Solutions of yttrium, barium and copper nitrates with urea additions were demonstrated to be recommended to improvements in the process during development of alternative synthesis from aqua-salt compositions. 15 refs., 3 figs., 2 tabs

  11. Aminoethyl nitrate – the novel super nitrate?

    Science.gov (United States)

    Bauersachs, Johann

    2009-01-01

    Long-term use of most organic nitrates is limited by development of tolerance, induction of oxidative stress and endothelial dysfunction. In this issue of the BJP, Schuhmacher et al. characterized a novel class of organic nitrates with amino moieties (aminoalkyl nitrates). Aminoethyl nitrate was identified as a novel organic mononitrate with high potency but devoid of induction of mitochondrial oxidative stress. Cross-tolerance to nitroglycerin or the endothelium-dependent agonist acetylcholine after in vivo treatment was not observed. Like all nitrates, aminoethyl nitrate induced vasorelaxation by activation of soluble guanylate cyclase. Thus, in contrast to the prevailing view, high potency in an organic nitrate is not necessarily accompanied by induction of oxidative stress or endothelial dysfunction. This work from Daiber's group is an important step forward in the understanding of nitrate bioactivation, tolerance phenomena and towards the development of better organic nitrates for clinical use. PMID:19732062

  12. Impact of copper toxicity on stone-head cabbage (Brassica oleracea var. capitata) in hydroponics.

    Science.gov (United States)

    Ali, Sajid; Shahbaz, Muhammad; Shahzad, Ahmad Naeem; Khan, Hafiz Azhar Ali; Anees, Moazzam; Haider, Muhammad Saleem; Fatima, Ammara

    2015-01-01

    Arable soils are frequently subjected to contamination with copper as the consequence of imbalanced fertilization with manure and organic fertilizers and/or extensive use of copper-containing fungicides. In the present study, the exposure of stone-head cabbage (Brassica oleracea var. capitata) to elevated Cu(2+) levels resulted in leaf chlorosis and lesser biomass yield at ≥2 µ M. Root nitrate content was not statistically affected by Cu(2+) levels, although it was substantially decreased at ≥5 µ M Cu(2+) in the shoot. The decrease in nitrate contents can be related to lower nitrate uptake rates because of growth inhibition by Cu-toxicity. Shoot sulfate content increased strongly at ≥2 µ M Cu(2+) indicating an increase in demand for sulfur under Cu stress. Furthermore, at ≥2 µM concentration, concentration of water-soluble non-protein thiol increased markedly in the roots and to a smaller level in the shoot. When exposed to elevated concentrations of Cu(2+) the improved sulfate and water-soluble non-protein thiols need further studies for the evaluation of their direct relation with the synthesis of metal-chelating compounds (i.e., phytochelatins).

  13. Impact of copper toxicity on stone-head cabbage (Brassica oleracea var. capitata in hydroponics

    Directory of Open Access Journals (Sweden)

    Sajid Ali

    2015-08-01

    Full Text Available Arable soils are frequently subjected to contamination with copper as the consequence of imbalanced fertilization with manure and organic fertilizers and/or extensive use of copper-containing fungicides. In the present study, the exposure of stone-head cabbage (Brassica oleracea var. capitata to elevated Cu2+ levels resulted in leaf chlorosis and lesser biomass yield at ≥2 µ M. Root nitrate content was not statistically affected by Cu2+ levels, although it was substantially decreased at ≥5 µ M Cu2+ in the shoot. The decrease in nitrate contents can be related to lower nitrate uptake rates because of growth inhibition by Cu-toxicity. Shoot sulfate content increased strongly at ≥2 µ M Cu2+ indicating an increase in demand for sulfur under Cu stress. Furthermore, at ≥2 µM concentration, concentration of water-soluble non-protein thiol increased markedly in the roots and to a smaller level in the shoot. When exposed to elevated concentrations of Cu2+ the improved sulfate and water-soluble non-protein thiols need further studies for the evaluation of their direct relation with the synthesis of metal-chelating compounds (i.e., phytochelatins.

  14. Elimination of nitrate in secondary effluent of wastewater treatment plants by Fe0 and Pd-Cu/diatomite

    Directory of Open Access Journals (Sweden)

    Yupan Yun

    2018-03-01

    Full Text Available Because total nitrogen (TN, in which nitrate (NO3– is dominant in the effluent of most wastewater treatment plants, cannot meet the requirement of Chinese wastewater discharge standard (<15 mg/L, NO3– elimination has attracted considerable attention. In this research, the novel diatomite-supported palladium-copper catalyst (Pd-Cu/diatomite with zero-valent iron (Fe0 was tried to use for catalytic reduction of nitrate in wastewater. Firstly, specific operational conditions (such as mass ratio of Pd:Cu, catalyst amounts, reaction time and pH of solution were optimized for nitrate reduction in artificial solution. Secondly, the selected optimal conditions were further employed for nitrate elimination of real effluent of a wastewater treatment plant in Beijing, China. Results showed that 67% of nitrate removal and 62% of N2 selectivity could be obtained under the following conditions: 5 g/L Fe0, 3:1 mass ratio (Pd:Cu, 4 g/L catalyst, 2 h reaction time and pH 4.3. Finally, the mechanism of catalytic nitrate reduction was also proposed.

  15. Synthesis of carbon-supported copper catalyst and its catalytic performance in methanol dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Shelepova, Ekaterina V. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk, 634050 (Russian Federation); Vedyagin, Aleksey A., E-mail: vedyagin@catalysis.ru [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk, 634050 (Russian Federation); Ilina, Ludmila Yu.; Nizovskii, Alexander I. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); Tsyrulnikov, Pavel G. [Institute of Hydrocarbon Processing SB RAS, Neftezavodskaya st., 54, Omsk, 644040 (Russian Federation)

    2017-07-01

    Highlights: • Carbon-supported copper catalyst was studied in dehydrogenation of methanol. • Reduction temperature affected size of Cu particles and Cu{sup 0}/Cu{sup 2+} ratio. • Reduction at 400 °C was required to obtain high methyl formate yield. - Abstract: Carbon-supported copper catalyst was prepared by incipient wetness impregnation of Sibunit with an aqueous solution of copper nitrate. Copper loading was 5 wt.%. Temperature of reductive pretreatment was varied within a range of 200–400 °C. The samples were characterized by transmission electron microscopy, X-ray diffraction analysis, X-ray photoelectron and X-ray absorption spectroscopies. Catalytic activity of the samples was studied in a reaction of methanol dehydrogenation. Silica-based catalyst with similar copper loading was used as a reference. It was found that copper is distributed over the surface of support in the form of metallic and partially oxidized particles of about 12–17 nm in size. Diminished interaction of copper with support was supposed to be responsible for high catalytic activity.

  16. Development of Novel Methodologies for the Electrodeposition of Polypyrrole-based Films in Controlled Morphologies with Potential Application in Nitrate Sensing.

    OpenAIRE

    McCarthy, Conor P.

    2013-01-01

    In this thesis the novel electrochemical deposition of poly[N-(2-cyanoethyl)pyrrole] (PPyEtCN) into nanowire and microtube morphologies is reported. Cyclic and pulsed electrochemical techniques were employed to electrodeposit copper micro and nano particles at PPyEtCN and polypyrrole (PPy) surfaces. A PPy nanowire/copper modified electrode was investigated for its effectiveness as an electrochemical sensor for the detection of the nitrate ion. To produce PPyEtCN in a nanowir...

  17. Phase extraction equilibria in systems rare earth (3) nitrates-ammonium nitrate-water-trialkylmethylammonium nitrate

    International Nuclear Information System (INIS)

    Pyartman, A.K.; Kopyrin, A.A.; Puzikov, E.A.

    1995-01-01

    The distribution of rare earth metals (3) between aqueous and organic phases in the systems rare earth metal (3) (praseodymium-lutetium (3), yttrium (3)) nitrate-ammonium nitrate-water-trialkylmethylammonium (kerosene diluent nitrate has been studied. It is shown that in organic phase di- and trisolvates of metals (3) with tralkylmethylammonium nitrate are formed. The influence of concentration of rare earth metal (3) nitrate and ammonium nitrate on the values of extraction concentrational constants has been ascertained: they decrease with increase in the ordinal number of lanthanide (3). 11 refs., 4 figs. 1 tab

  18. Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN) solutions

    OpenAIRE

    Koh, Kai Seng; Chin, Jitkai; Wahida Ku Chik, Tengku F.

    2013-01-01

    Decomposition of hydroxylammonium nitrate (HAN) solution with electrolytic decomposition method has attracted much attention in recent years due to its efficiencies and practicability. However, the phenomenon has not been well-studied till now. By utilizing mathematical model currently available, the effect of water content and power used for decomposition was studied. Experiment data shows that sacrificial material such as copper or aluminum outperforms inert electrodes in the decomposition ...

  19. Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness

    Science.gov (United States)

    Barthwal, Sumit; Lim, Si-Hyung

    2015-02-01

    We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.

  20. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources of...

  1. Systems of cerium(3) nitrate-dimethyl amine nitrate-water and cerium(3) nitrate-dimethyl amine nitrate-water

    International Nuclear Information System (INIS)

    Mininkov, N.E.; Zhuravlev, E.F.

    1976-01-01

    Solubility of solid phases in the systems cerium(3)nitrate-water-dimethyl amine nitrate and cerium(3)nitrate-water-dimethyl amine nitrate has been st ed by the method of isothermal sections at 25 and 50 deo. C. It has been shown that one anhydrous compound is formed in each system with a ratio of cerium(3) nitrate to amine nitrate 1:5. The compounds formed in the systems have been separated from the corresponding solutions and studied by microcrystalloscopic, X-ray phase, thermal and infrared spectroscopic methods. On the basis of spectroscopic studies the following formula has been assigned to the compound: [(CH 3 ) 2 NH 2 + ] 5 x[Ce(NO 3 ) 8 ]. The thermal analysis of the compound has shown that its melting point is 106 deg C. The solubility isotherms in the system Ce(NO 3 ) 3 -H 2 O-(C 2 H 5 ) 2 NHxHNO 3 consist of three branches which intersect in two eutonic points

  2. Mg-Cu-Al layered double hydroxides based catalysts for the reduction of nitrates in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Vulić Tatjana J.

    2010-01-01

    Full Text Available The secondary waste and bacterial contamination in physico-chemical and biological separation processes used today for nitrate removal from ground water make novel catalytic technologies that convert nitrates to unharmful gaseous nitrogen, very attractive for scientific research. The Mg-Cu-Al layered double hydroxide (LDH based catalysts with different Mg/Al ratio were investigated in water denitrification reaction in the presence of hydrogen and with solely copper as an active phase. Since LDHs have ion exchange properties and their derived mixed oxides possess memory effect (restoration of layered structure after thermal decomposition, their adsorption capacity for nitrates was also measured in the same model system. All studied samples showed nitrate removal from 23% to 62% following the decrease in Al content, as well as the substantial adsorption capacity ranging from 18% to 38%. These results underlie the necessity to take into account the effects of the adsorption in all future investigations.

  3. Colorimetric determination of nitrate plus nitrite in water by enzymatic reduction, automated discrete analyzer methods

    Science.gov (United States)

    Patton, Charles J.; Kryskalla, Jennifer R.

    2011-01-01

    This report documents work at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) to validate enzymatic reduction, colorimetric determinative methods for nitrate + nitrite in filtered water by automated discrete analysis. In these standard- and low-level methods (USGS I-2547-11 and I-2548-11), nitrate is reduced to nitrite with nontoxic, soluble nitrate reductase rather than toxic, granular, copperized cadmium used in the longstanding USGS automated continuous-flow analyzer methods I-2545-90 (NWQL laboratory code 1975) and I-2546-91 (NWQL laboratory code 1979). Colorimetric reagents used to determine resulting nitrite in aforementioned enzymatic- and cadmium-reduction methods are identical. The enzyme used in these discrete analyzer methods, designated AtNaR2 by its manufacturer, is produced by recombinant expression of the nitrate reductase gene from wall cress (Arabidopsis thaliana) in the yeast Pichia pastoris. Unlike other commercially available nitrate reductases we evaluated, AtNaR2 maintains high activity at 37°C and is not inhibited by high-phenolic-content humic acids at reaction temperatures in the range of 20°C to 37°C. These previously unrecognized AtNaR2 characteristics are essential for successful performance of discrete analyzer nitrate + nitrite assays (henceforth, DA-AtNaR2) described here.

  4. Nitrate biosensors and biological methods for nitrate determination.

    Science.gov (United States)

    Sohail, Manzar; Adeloju, Samuel B

    2016-06-01

    The inorganic nitrate (NO3‾) anion is present under a variety of both natural and artificial environmental conditions. Nitrate is ubiquitous within the environment, food, industrial and physiological systems and is mostly present as hydrated anion of a corresponding dissolved salt. Due to the significant environmental and toxicological effects of nitrate, its determination and monitoring in environmental and industrial waters are often necessary. A wide range of analytical techniques are available for nitrate determination in various sample matrices. This review discusses biosensors available for nitrate determination using the enzyme nitrate reductase (NaR). We conclude that nitrate determination using biosensors is an excellent non-toxic alternative to all other available analytical methods. Over the last fifteen years biosensing technology for nitrate analysis has progressed very well, however, there is a need to expedite the development of nitrate biosensors as a suitable alternative to non-enzymatic techniques through the use of different polymers, nanostructures, mediators and strategies to overcome oxygen interference. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Determination of nitrite, nitrate and total nitrogen in vegetable samples

    Directory of Open Access Journals (Sweden)

    Manas Kanti Deb

    2007-04-01

    Full Text Available Yellow diazonium cation formed by reaction of nitrite with 6-amino-1-naphthol-3-sulphonic acid is coupled with β-naphthol in strong alkaline medium to yield a pink coloured azo dye. The azo-dyes shows absorption maximum at 510 nm with molar absorptivity of 2.5 ×104 M-1 cm-1. The dye product obeys Beer's law (correlation coefficient = 0.997, in terms of nitrite concentration, up to 2.7 μg NO2 mL-1. The above colour reaction system has been applied successfully for the determination of nitrite, nitrate and total nitrogen in vegetable samples. Unreduced samples give direct measure for nitrite whilst reduction of samples by copperized-cadmium column gives total nitrogen content and their difference shows nitrate content in the samples. Variety of vegetables have been tested for their N-content (NO2-/NO3-/total-N with % RSD ranging between 1.5 to 2.5 % for nitrite determination. The effects of foreign ions in the determination of the nitrite, nitrate, and total nitrogen have been studied. Statistical comparison of the results with those of reported method shows good agreement and indicates no significant difference in precision.

  6. Method For Creating Corrosion Resistant Surface On An Aluminum Copper Alloy

    Science.gov (United States)

    Mansfeld, Florian B.; Wang, You; Lin, Simon H.

    1997-06-03

    A method for treating the surface of aluminum alloys hang a relatively high copper content is provided which includes the steps of removing substantially all of the copper from the surface, contacting the surface with a first solution containing cerium, electrically charging the surface while contacting the surface in an aqueous molybdate solution, and contacting the surface with a second solution containing cerium. The copper is substantially removed from the surface in the first step either by (i) contacting the surface with an acidic chromate solution or by (ii) contacting the surface with an acidic nitrate solution while subjecting the surface to an electric potential. The corrosion-resistant surface resulting from the invention is excellent, consistent and uniform throughout the surface. Surfaces treated by the invention may often be certified for use in salt-water services.

  7. Cloning and nitrate induction of nitrate reductase mRNA

    OpenAIRE

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase p...

  8. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    International Nuclear Information System (INIS)

    Chung, Wan-Ho; Hwang, Hyun-Jun; Kim, Hak-Sung

    2015-01-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved

  9. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Wan-Ho; Hwang, Hyun-Jun [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved.

  10. Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by Iron, Copper and Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiang, E-mail: huxiang@mail.buct.edu.cn [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Research Centre for Environmental Pollution Control and Resource Reuse Engineering of Beijing City, Beijing 100029 (China); Zhang, Hua [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Research Centre for Environmental Pollution Control and Resource Reuse Engineering of Beijing City, Beijing 100029 (China); Sun, Zhirong, E-mail: zrsun@bjut.edu.cn [College of Environmental & Energy Engineering, Beijing University of Technology, Beijing 100124 (China)

    2017-01-15

    Graphical abstract: The graphic abstract describes the research that we used modified activated carbons impregnated with iron nitrate, copper nitrate and aluminium nitrate to adsorb ceftazidime from aqueous solution. The surface functional groups of the modified activated carbons were different, and thus resulted in the big difference in the adsorption performance of the modified activated carbons. The theory and the experiments both showed the preferable adsorption of ceftazidime could be achieved on modified activated carbons. - Highlights: • Three modified activated carbons were prepared by impregnating metal nitrate. • Characteristics of the modified activated carbons were analyzed. • Adsorption capacity of ceftazidime on modified activated carbons was improved. • The adsorption behavior of ceftazidime on modified activated carbons were revealed. • The nature of ceftazidime adsorption on modified activated carbons was elucidated. - Abstract: In this paper, three impregnated activated carbon IAC (AC-Cu, AC-Fe, and AC-Al) promoted by Iron, Copper and Aluminum were used for adsorption of ceftazidime. Iron(III), Copper(II) and Aluminum(III) nitrate were used as an impregnant. The IACs were characterized by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS).The influence of factors, such as ion strength, pH, temperature, initial concentration, and concentration of natural organic matter organic matter on the adsorption process were studied. The adsorption kinetics and isotherms of ceftazidime were studied for the three IACs. The results showed that the adsorption was accurately represented by pseudo-second order model. Under different temperature, the maximum adsorption quantity of ceftazidime on AC-Cu calculated by pseudo-second order kinetic model were 200.0 mg g{sup −1} (298 K), 196.1 mg g{sup −1} (303 K) and 185.2 mg g

  11. Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by Iron, Copper and Aluminum

    International Nuclear Information System (INIS)

    Hu, Xiang; Zhang, Hua; Sun, Zhirong

    2017-01-01

    Graphical abstract: The graphic abstract describes the research that we used modified activated carbons impregnated with iron nitrate, copper nitrate and aluminium nitrate to adsorb ceftazidime from aqueous solution. The surface functional groups of the modified activated carbons were different, and thus resulted in the big difference in the adsorption performance of the modified activated carbons. The theory and the experiments both showed the preferable adsorption of ceftazidime could be achieved on modified activated carbons. - Highlights: • Three modified activated carbons were prepared by impregnating metal nitrate. • Characteristics of the modified activated carbons were analyzed. • Adsorption capacity of ceftazidime on modified activated carbons was improved. • The adsorption behavior of ceftazidime on modified activated carbons were revealed. • The nature of ceftazidime adsorption on modified activated carbons was elucidated. - Abstract: In this paper, three impregnated activated carbon IAC (AC-Cu, AC-Fe, and AC-Al) promoted by Iron, Copper and Aluminum were used for adsorption of ceftazidime. Iron(III), Copper(II) and Aluminum(III) nitrate were used as an impregnant. The IACs were characterized by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS).The influence of factors, such as ion strength, pH, temperature, initial concentration, and concentration of natural organic matter organic matter on the adsorption process were studied. The adsorption kinetics and isotherms of ceftazidime were studied for the three IACs. The results showed that the adsorption was accurately represented by pseudo-second order model. Under different temperature, the maximum adsorption quantity of ceftazidime on AC-Cu calculated by pseudo-second order kinetic model were 200.0 mg g"−"1 (298 K), 196.1 mg g"−"1 (303 K) and 185.2 mg g"−"1 (308 K

  12. Density and electrical conductivity of molten salts. Comparative study of binary mixtures of alkali nitrates with silver nitrate and with thallium nitrate; Densite et conductibilite de sels fondus. Etude comparative des melanges binaires nitrates alcalins-nitrate d'argent et nitrates alcalins-nitrate de thallium

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, S [Commissariat a l' Energie Atomique Saclay (France). Centre d' Etudes Nucleaires

    1967-10-01

    The choice of methods and the number of measurements made enable us to give results on the density and electrical conductivity of molten binary mixtures, alkali nitrate and silver nitrate, and alkali nitrate and thallium nitrate, in the form of equations. The deviations from linearity of the volume and the molar conductivity are determined by calculating the corresponding excess values whose variations are analyzed as a function of the Tobolsky parameter. The absence of any relationship in the sign of the entropy and the excess volume is justified. It is shown that the silver and thallium nitrates, in contrast to the thermodynamic properties, behave as the alkali nitrates in so far as the excess conductivity is concerned. This result is confirmed by the study of changes in the activation enthalpy for the partial molar conductivity; this study also shows the particular behaviour of lithium nitrate. (author) [French] Le choix des methodes et le nombre de mesures effectuees nous permettent de donner les resultats de densite et de conductibilite electrique des melanges fondus binaires nitrate alcalin-nitrate d'argent et nitrate alcalin-nitrate de thallium sous forme d'equations. Les ecarts a la linearite des isothermes de volume et de conductibilite molaire sont precises en calculant les grandeurs d'exces correspondantes dont les variations sont analysees en fonction du parametre de Tobolsky. Nous justifions l'absence de relation de signe entre l'entropie et le volume d'exces. Nous montrons que les nitrates d'argent et de thallium, vis-a-vis de la conductibilite d'exces, contrairement aux proprietes thermodynamiques, se conduisent comme les nitrates alcalins. Ce resultat est confirme par l'etude des variations des enthalpies d'activation de conductibilite partielle molaire qui met d'autre part en evidence le comportement particulier du nitrate de lithium. (auteur)

  13. The chemical transformation of copper in aluminium oxide during heating

    International Nuclear Information System (INIS)

    Wei, Y-L; Wang, H-C; Yang, Y-W; Lee, J-F

    2004-01-01

    Thermal treatment has recently been emerging as a promising environmental technology to stabilize heavy metal-containing industrial sludge. This study used x-ray absorption spectroscopy (XAS) to identify the species of copper contaminant contained in aluminium oxide that is one of the main compositions of sludge and soil. Results indicate that the originally loaded copper nitrate was transformed into Cu(OH) 2 after its dissolution in the aluminium oxide slurry. Extended x-ray absorption fine structure (EXAFS) fitting indicates that the main copper species in the 105 deg. C dried Cu(NO 3 ) 2 -loaded aluminium oxide is Cu(OH) 2 which accounts for ca. 75% of the loaded copper. After thermal treatment at 500 deg. C for 1 h, both x-ray absorption near-edge structure (XANES) and EXAFS fitting results show that CuO became the prevailing copper species (about 85%); the rest of the copper consisted of ∼ 15% Cu(OH) 2 and a negligible amount of Cu(NO 3 ) 2 . It was found that most Cu(OH) 2 and Cu(NO 3 ) 2 decomposed into CuO at 500 deg. C. Further increase of the heating temperature from 500 to 900 deg. C resulted in more decomposition of Cu(OH) 2 and Cu(NO 3 ) 2 ; therefore CuO remained as the main copper species. However, it was suggested that about 15% of the loaded copper formed CuAl 2 O 4 through the chemical reaction between CuO and Al 2 O 3 at 900 deg. C

  14. Flow-injection analysis of nitrate by reduction to nitrite and gas-phase molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, B.; Tavassoli, A. [Dept. of Chemistry, Inst. for Advanced Studies in Basic Sciences, Zanjan (Iran)

    2001-12-01

    Two flow-injection manifolds have been investigated for the determination of nitrate. These manifolds are based on the reduction of nitrate to nitrite and determination of nitrite by gas-phase molecular absorption spectrophotometry. Nitrate sample solution (300 {mu}L) which is injected to the flow line, is reduced to nitrite by reaction with hydrazine or passage through the on-line copperized cadmium (Cd-Cu) reduction column. The nitrite produced reacts with a stream of hydrochloric acid and the evolved gases are purged into the stream of O{sub 2}carrier gas. The gaseous phase is separated from the liquid phase using a gas-liquid separator and then swept into a flow-through cell which has been positioned in the cell compartment of an UV-visible spectrophotometer. The absorbance of the gaseous phase is measured at 204.7 nm. A linear relationship was obtained between the intensity of absorption signals and concentration of nitrate when Cd-Cu reduction method was used, but a logarithmic relationship was obtained when the hydrazine reduction method was used. By use of the Cd-Cu reduction method, up to 330 {mu}g of nitrate was determined. The limit of detection was 2.97 {mu}g nitrate and the relative standard deviations for the determination of 12.0, 30.0 and 150 {mu}g nitrate were 3.32, 3.87 and 3.6%, respectively. Maximum sampling rate was approximately 30 samples per hour. The Cd-Cu reduction method was applied to the determination of nitrate and the simultaneous determination of nitrate and nitrite in meat products, vegetables, urine, and a water sample. (orig.)

  15. Determination of 15N nitrates in water samples using mass spectrometry

    International Nuclear Information System (INIS)

    Moya, P.; Aguirre, E.; Gallardo, P.

    2000-01-01

    The nitrogen element (Z = 7) has two stable isotopes, whose relative quantities are 99.64% for 14 N and 0.36% for 15 N. Nitrogen is part of many processes and reactions that are important to life and that affect the quality of the water. Within the nitrogen cycle there are kinetic and thermodynamic fractionation processes, which are potentially important for tracing its sources and demands. Water contamination due to nitrates is a serious problem that is affecting large parts of the biosphere. Surface water contamination can be remedied by prevention and control measures, but the problem becomes acute when the contamination penetrates to groundwater water. Contaminated groundwater can remain in the aquifers for centuries, even milleniums, and decontamination is very difficult, if not impossible. Isotopic techniques can help to evaluate how vulnerable the groundwater is to contamination from the surface when its displacement speed and extra load area are determined. Then the sources of surface contamination (natural, industrial, agricultural, domestic) can be identified. Isotopic techniques can also describe an incipient contamination, and they can provide an early alert when chemical or biological indicators do not reveal any signs for concern. The isotopic fractionation of several nitrogen compounds provide the basis for using 15 N as a hydrological isotope tool. There are three main sources of nitrogen contamination in water, these are: organic nitrogen in the soil, nitrogenized fertilizers, domestic, industrial and animal wastes. The following technical procedure describes the method for determining the isotopic ration 15 N/ 14 N in nitrates in water. The nitrate is separated from the water using ion exchange columns through a resin, which is eluded with HCI and with the addition of silver oxide becomes silver nitrate. This solution is freeze-dried and submitted to combustion at 850 in a sealed quartz tube, using copper/copper oxide for the nitrogen reduction

  16. The systems lanthanum (cerium, samarium) nitrate-tetramethyl-ammonium nitrate-water

    International Nuclear Information System (INIS)

    Zhuravlev, E.F.; Khisaeva, D.A.; Semenova, Eh.B.

    1984-01-01

    The method of cross sections at 25 and 50 deg C has been applied to study solubility in the systems lanthanum nitrate-tetramethyl ammonium nitrate-water (1), cesium (3) nitrate-tetramethyl ammonium nitrate-water (2) and samarium nitrate-tetramethyl ammonium nitrate-water (3). Crystallization fields of congruently dissolving compounds with 1:3 ratio of salt components (in system 1) and 1:2 ratio (in systems 2 and 3) are found in the systems. New solid phases are separated preparatively and subjected to chemical, differential thermal and IR spectroscopic analyses. Compositions of formed compounds are compared with the compositions known for nitrates of other representatives of light lanthanides

  17. The ytterbium nitrate-quinoline (piperidine) nitrate-water system

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Boeva, M.K.; Zhuravlev, E.F.

    1985-01-01

    Using the method of cross sections the solubility of solid phases in the ytterbium nitrate-quinoline nitrate - water (1) and ytterbium nitrate-piperidine nitrate-water (2) systems is studied at 25 and 50 deg C. It is established, that in system 1 congruently melting compound of the composition Yb(NO 3 ) 3 x2C 9 H 7 NxHNO 3 x3H 2 O is formed. The new solid phase has been isolated as a preparation and subjected to chemical X-ray diffraction, differential thermal and IR spectroscopic analyses. Isotherms of system 2 in the studied range of concentrations and temperatures consist of two branches, corresponding to crystallization of tetruaqueous ytterbi um nitrate and nitric acid piperidine

  18. Lanthanum (samarium) nitrate-4-aminoantipyrine nitrate-water systems

    International Nuclear Information System (INIS)

    Starikova, L.I.; Zhuravlev, E.F.

    1985-01-01

    Using the isothermal method of cross-sections at 50 deg C systems lanthanum nitrate-4-aminoantipyrine nitrate-water (1), samarium nitrate-4-aminoantipyrine nitrate-water (2), are studied. Isotherms of system 1 consist of two crystallization branches of initial salt components. In system 2 formation of congruently soluble compounds of the composition Sm(No) 3 ) 3 xC 11 H 13 ON 3 xHNO 3 is established. Analytical, X-ray phase and thermogravimetric analysis of the isolated binary salt are carried out

  19. Neodymium nitrate-tetraethylammonium nitrate-water system

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Boeva, M.K.

    1987-01-01

    Method of isothermal cross sections at 25 and 50 deg C is used to study solid phase solubility in the neodymium nitrate-tetraethylammonium nitrate-water system. Crystallization fields of congruently soluble compounds, the salt component ratio being 1:1:4H 2 O and 1:3:2H 2 O are detected. New solid phases are preparatively obtained and subjected to chemical, differential thermal, IR spectroscopic and X-ray diffraction analyses. The obtained compounds are acido-complexes in which nitrate groups enter into the first coordination sphere

  20. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers

    International Nuclear Information System (INIS)

    Quirós, Jennifer; Borges, João P.; Boltes, Karina; Rodea-Palomares, Ismael; Rosal, Roberto

    2015-01-01

    Highlights: • Electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc. • Antimicrobial effect for the bacteria Staphylococcus aureus and Escherichia coli. • Silver strongly reduced colony forming units and bacterial viability. • Silver, copper, and zinc led to a significant increase of non-viable cells on mats. - Abstract: The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals.

  1. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Quirós, Jennifer [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Borges, João P. [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Boltes, Karina [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares, Madrid (Spain); Rodea-Palomares, Ismael [Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Rosal, Roberto [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares, Madrid (Spain)

    2015-12-15

    Highlights: • Electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc. • Antimicrobial effect for the bacteria Staphylococcus aureus and Escherichia coli. • Silver strongly reduced colony forming units and bacterial viability. • Silver, copper, and zinc led to a significant increase of non-viable cells on mats. - Abstract: The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals.

  2. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications.

    Science.gov (United States)

    Zain, N Mat; Stapley, A G F; Shama, G

    2014-11-04

    Silver and copper nanoparticles were produced by chemical reduction of their respective nitrates by ascorbic acid in the presence of chitosan using microwave heating. Particle size was shown to increase by increasing the concentration of nitrate and reducing the chitosan concentration. Surface zeta potentials were positive for all nanoparticles produced and these varied from 27.8 to 33.8 mV. Antibacterial activities of Ag, Cu, mixtures of Ag and Cu, and Ag/Cu bimetallic nanoparticles were tested using Bacillus subtilis and Escherichia coli. Of the two, B. subtilis proved more susceptible under all conditions investigated. Silver nanoparticles displayed higher activity than copper nanoparticles and mixtures of nanoparticles of the same mean particle size. However when compared on an equal concentration basis Cu nanoparticles proved more lethal to the bacteria due to a higher surface area. The highest antibacterial activity was obtained with bimetallic Ag/Cu nanoparticles with minimum inhibitory concentrations (MIC) of 0.054 and 0.076 mg/L against B. subtilis and E. coli, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Formation of copper nanoparticles in mordenite s with variable SiO{sub 2}/Al{sub 2}O{sub 3} molar ratios under redox treatments

    Energy Technology Data Exchange (ETDEWEB)

    Petranovskii, V.; Avalos, M. [UNAM, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, 22800 Ensenada, Baja California (Mexico); Stoyanov, E. [University of California, Department of Chemistry, Riverside, 92521 California (United States); Gurin, V. [Belarusian State University, Research Institute for Physical Chemical Problems, Minsk 220080 (Belarus); Katada, N. [Tottori University, Department of Chemistry and Biotechnology, Tottori 680-8552 (Japan); Hernandez, M. A. [Benemerita Universidad Autonoma de Puebla, Departamento de Investigacion en Zeolitas, Ciudad Universitaria, Puebla (Mexico); Pestryakov, A. [Tomsk Polytechnic University, Tomsk 634050 (Russian Federation); Chavez R, F.; Zamorano U, R. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Zacatenco, 07738 Mexico D. F. (Mexico); Portillo, R., E-mail: vitalii@cnyn.unam.mx [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, Ciudad Universitaria, Puebla (Mexico)

    2013-05-01

    A series of protonated copper-containing mordenite s with different SiO{sub 2}/Al{sub 2}O{sub 3} molar ratios (MR) in the range of 10{<=}MR{<=}206 was prepared by ion exchange in copper nitrate aqueous solution. The electron paramagnetic resonance of hydrated copper Mordenite s series testifies of several Cu{sup 2+} ion sites. Hydrogen reduction of copper ions incorporated into the mordenite s was shown to lead to different reduced copper species including small metallic particles inter alia. The structural properties and acidity of mordenite s were characterized. The optical appearance of the copper particles showed strong but nonmonotonic dependence on the MR value, in line with the variation in acidity of this series of mordenite s. Correlations between mordenite properties and the formation of different reduced copper species are discussed. (Author)

  4. The systems cerium(3) (samarium) nitrate-quinoline nitrate-water

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Zhuravlev, E.F.; Semenova, Eh.B.

    1982-01-01

    Using the method of cross sections at 25 and 50 deg C the solubility in the systems cerium (3) nitrate-quinoline nitrate-water and samarium nitrate-quinoline nitrate-water has been studied. It is established that in the systems during chemical interaction of components congruently melting compounds of the composition: Ce(NO 3 ) 2 x2[C 9 H 7 NxHNO 3 ]x6H 2 O and Sm(NO 3 ) 3 x2[C 9 H 7 NxHNO 3 ]x2H 2 O are formed. New solid phases are separated preparatively and are subjected to chemical, differential thermal and IR spectroscopic analyses. The investigation results are compared with similar ones for nitrates of other representatives of lanthanide group

  5. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly......, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations....... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...

  6. Plasma nitrate and nitrite are increased by a high nitrate supplement, but not by high nitrate foods in older adults

    Science.gov (United States)

    Miller, Gary D.; Marsh, Anthony P.; Dove, Robin W.; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S. Bruce; Kim-Shapiro, Daniel

    2012-01-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/NO (nitric oxide) cycle in older adults. We examined the effect of a 3-day control diet vs. high nitrate diet, with and without a high nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics, and blood pressure using a randomized four period cross-over controlled design. We hypothesized that the high nitrate diet would show higher levels of plasma nitrate/nitrite and blood pressure compared to the control diet, which would be potentiated by the supplement. Participants were eight normotensive older men and women (5 female, 3 male, 72.5±4.7 yrs) with no overt disease or medications that affect NO metabolism. Plasma nitrate and nitrite levels and blood pressure were measured prior to and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet+supplement (pnitrate and nitrite, respectively) and high nitrate diet+supplement (p=0.001 and 0.002), but not for control diet (p=0.713 and 0.741) or high nitrate diet (p=0.852 and 0.500). Blood pressure decreased from the morning baseline measure to the three 2 hr post-meal follow-up time-points for all treatments, but there was no main effect for treatment. In healthy older adults, a high nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction. PMID:22464802

  7. A novel asymmetric chair-like hydroxyl-bridged tetra-copper compound: Synthesis, supramolecular structure and magnetic property

    Science.gov (United States)

    Wang, Xiao-Feng; Du, Ke-Jie; Wang, Hong-Qing; Zhang, Xue-Li; Nie, Chang-Ming

    2017-06-01

    A new polynuclear Cu(II) compound, [Cu4(bpy)4(OH)4(H2O)(BTC)]NO3·8H2O (1), was prepared by self-assembly from the solution of copper(II) nitrate and two kinds of ligands, 2,2‧-bipyridine (bpy) and benzene-tricarboxylic acid (H3BTC). Single crystal structure analysis reveals that 1 features a rare asymmetric chair-like hydroxyl-bridged tetra-copper cluster: [Cu4(OH)4] core along with one H2O and one BTC3- occupied each terminal coordinated site. In addition, the magnetic property has been investigated.

  8. Nitrates of rare earths

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Pushkina, L.Ya.

    1984-01-01

    The systematization of experimental data with account of the last achievements in the field of studying the RE nitrate properties is realized. The methods of production, solubility in aqueous solutions structure, thermodynamic characteristics and thermal stability of nitrate hydrates, RE anhydrous and basic nitrates are considered. The data on RE nirtrate complexing in aqueous solutions are given. Binary nitrates, nitrate solvates and RE nitrate adducts with organic compounds are described. The use of RE nitrates in the course of RE production, in the processes of separation and fine cleaning of RE preparations is considered

  9. Challenges with nitrate therapy and nitrate tolerance: prevalence, prevention, and clinical relevance.

    Science.gov (United States)

    Thadani, Udho

    2014-08-01

    Nitrate therapy has been an effective treatment for ischemic heart disease for over 100 years. The anti-ischemic and exercise-promoting benefits of sublingually administered nitrates are well established. Nitroglycerin is indicated for the relief of an established attack of angina and for prophylactic use, but its effects are short lived. In an effort to increase the duration of beneficial effects, long-acting orally administered and topical applications of nitrates have been developed; however, following their continued or frequent daily use, patients soon develop tolerance to these long-acting nitrate preparations. Once tolerance develops, patients begin losing the protective effects of the long-acting nitrate therapy. By providing a nitrate-free interval, or declining nitrate levels at night, one can overcome or reduce the development of tolerance, but cannot provide 24-h anti-anginal and anti-ischemic protection. In addition, patients may be vulnerable to occurrence of rebound angina and myocardial ischemia during periods of absent nitrate levels at night and early hours of the morning, and worsening of exercise capacity prior to the morning dose of the medication. This has been a concern with nitroglycerin patches but not with oral formulations of isosorbide-5 mononitrates, and has not been adequately studied with isosorbide dinitrate. This paper describes problems associated with nitrate tolerance, reviews mechanisms by which nitrate tolerance and loss of efficacy develop, and presents strategies to avoid nitrate tolerance and maintain efficacy when using long-acting nitrate formulations.

  10. Data on nitrate and nitrate of Taham dam in Zanjan (Iran

    Directory of Open Access Journals (Sweden)

    Mohammadreza Massoudinejad

    2018-04-01

    Full Text Available In recent years, contamination of water resources, with pollutants such as nitrate and nitrite, has significantly increased. These compounds can have harmful effects on human health, especially children such as methemoglobinemia. The main objective of this study was to measure the concentration of nitrate and nitrite and its health-risk assessment in the rivers entering Taham dam in Zanjan. USEPA Method was used to assess the health-risk of nitrate and nitrite. According to the obtained results, the concentration of nitrate and nitrite was in the range of 0.51–14.93 mg/l and 0.001–0.061 mg/l, respectively. According to the results, the mean of the CDI for nitrate and nitrite was 9.52*10−2 and 3.63*10−4 mg/kg/day, respectively. Furthermore, the mean HI for nitrate and nitrite was 5.97*10−2 and 3.63*10−3, respectively. The concentration of nitrate and nitrite in rivers was lower than the WHO and Iran guidelines. Based on the results, the HI value in all samples was less than 1 which indicating the non-carcinogenic effects of nitrate and nitrite in these rivers. Keywords: Nitrate, Nitrite, Water quality, Dam

  11. Do nitrates differ?

    Science.gov (United States)

    Fung, H.-L.

    1992-01-01

    1 The organic nitrates all share a common biochemical and physiological mechanism of action. 2 The organic nitrates differ substantially in their pharmacologic potency and pharmacokinetics. In vitro potency differences appear larger than the corresponding in vivo activities. 3 The duration of action of organic nitrates, after a single immediate-release dose, is governed by the pharmacokinetics of the drug. However, the duration of action of available sustained-release preparations, whatever the nitrate or formulation, is limited to about 12 h, due to the development of pharmacologic tolerance. 4 Nitrates do not appear to differ in their production of undesirable effects. PMID:1633079

  12. The effect of soot on ammonium nitrate species and NO2 selective catalytic reduction over Cu-zeolite catalyst-coated particulate filter.

    Science.gov (United States)

    Mihai, Oana; Tamm, Stefanie; Stenfeldt, Marie; Olsson, Louise

    2016-02-28

    A selective catalytic reduction (SCR)-coated particulate filter was evaluated by means of dynamic tests performed using NH3, NO2, O2 and H2O. The reactions were examined both prior to and after soot removal in order to study the effect of soot on ammonium nitrate formation and decomposition, ammonia storage and NO2 SCR. A slightly larger ammonia storage capacity was observed when soot was present in the sample, which indicated that small amounts of ammonia can adsorb on the soot. Feeding of NO2 and NH3 in the presence of O2 and H2O at low temperature (150, 175 and 200°C) leads to a large formation of ammonium nitrate species and during the subsequent temperature ramp using H2O and argon, a production of nitrous oxides was observed. The N2O formation is often related to ammonium nitrate decomposition, and our results showed that the N2O formation was clearly decreased by the presence of soot. We therefore propose that in the presence of soot, there are fewer ammonium nitrate species on the surface due to the interactions with the soot. Indeed, we do observe CO2 production during the reaction conditions also at 150°C, which shows that there is a reaction with these species and soot. In addition, the conversion of NOx due to NO2 SCR was significantly enhanced in the presence of soot; we attribute this to the smaller amount of ammonium nitrate species present in the experiments where soot is available since it is well known that ammonium nitrate formation is a major problem at low temperature due to the blocking of the catalytic sites. Further, a scanning electron microscopy analysis of the soot particles shows that they are about 30-40 nm and are therefore too large to enter the pores of the zeolites. There are likely CuxOy or other copper species available on the outside of the zeolite crystallites, which could have been enhanced due to the hydrothermal treatment at 850°C of the SCR-coated filter prior to the soot loading. We therefore propose that soot is

  13. Nitrate glass

    International Nuclear Information System (INIS)

    Kirilenko, I.A.; Vinogradov, E.E.

    1977-01-01

    Experimental evidence on behaviour of nitrate glasses is reviewed in terms of relationships between the presence of water in vitrescent nitrate systems and the properties of the systems. The glasses considered belong to systems of Mg(NO 3 ) 2 - Nd(NO 3 ) 3 ; Hg(NO 3 ) 2 -Nd(NO 3 ) 3 ; NaNO 3 -Mg(NO 3 ) 2 -Nd(NO 3 ) 3 ; M-Zn(NO 3 ) 3 , where M is a mixture of 20% mass NaNO 3 and 80% mass Mg(NO 3 ) 2 , and Zn is a rare earth ion. Nitrate glass is shown to be a product of dehydration. Vitrification may be regarded as a resusl of formation of molecular complexes in the chain due to hydrogen bonds of two types, i.e. water-water, or water-nicrate group. Chain formation, along with low melting points of the nitrates, hinder crystallization of nitrate melts. Provided there is enough water, this results in vitrification

  14. Preparation of acid deficient solutions of uranyl nitrate and thorium nitrate by steam denitration

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Takahashi, Yoshihisa

    1996-01-01

    Acid deficient heavy metal (HM) nitrate solutions are often required in the internal gelation processes for nuclear fuel fabrication. The stoichiometric HM-nitrate solutions are needed in a sol-gel process for fuel fabrication. A method for preparing such nitrate solutions with a controlled molar ratio of nitrate/metal by denitration of acid-excess nitrate solutions was developed. The denitration was conducted by bubbling a nitrate solution with a mixture of steam+Ar. It was found that steam was more effective for the denitration than Ar. The acid deficient uranyl nitrate solution with nitrate/U=1.55 was yielded by steam bubbling, while not by only Ar bubbling. As for thorium nitrate, acid deficient solutions of nitrate/Th≥3.1 were obtained by steam bubbling. (author)

  15. Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori and optical, mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Hwan [School of Materials Science and Engineering, University of Yonsei, Seoul (Korea, Republic of); Choi, Yu-ri; Kim, Kwang-Mahn [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, University of Yonsei, Seoul (Korea, Republic of); Choi, Se-Young, E-mail: sychoi@yonsei.ac.kr [School of Materials Science and Engineering, University of Yonsei, Seoul (Korea, Republic of)

    2012-02-01

    Antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori of copper ion was researched. Also, additional effects of copper ion coating on optical and mechanical properties were researched as well. Copper ion was coated on glass substrate as a thin film to prevent bacteria from growing. Cupric nitrate was used as precursors for copper ion. The copper ion contained sol was deposited by spin coating process on glass substrate. Then, the deposited substrates were heat treated at the temperature range between 200 Degree-Sign C and 250 Degree-Sign C. The thickness of deposited copper layer on the surface was 63 nm. The antibacterial effect of copper ion coated glass on P. aeruginosa, S. typhimurium and H. pylori demonstrated excellent effect compared with parent glass. Copper ion contained layer on glass showed a similar value of transmittance compared with value of parent glass. The 3-point bending strength and Vickers hardness were 209.2 MPa, 540.9 kg/mm{sup 2} which were about 1.5% and 1.3% higher than the value of parent glass. From these findings, it is clear that copper ion coating on glass substrate showed outstanding effect not only in antibacterial activity but also in optical and mechanical properties as well.

  16. Effects of zinc pyrithione and copper pyrithione on microbial community function and structure in sediments

    DEFF Research Database (Denmark)

    Petersen, DG; Dahllof, I.; Nielsen, LP

    2004-01-01

    The effects of the new antifouling biocides, zinc pyrithione (ZPT) and copper pyrithione (CPT), on microbial communities in estuarine sediments were studied in microcosms. As functional endpoints, fluxes of nutrients (NO3-, NH4+, HPO42-, Si(OH)(4)) and protein synthesis ([C-14] leucine incorporat......The effects of the new antifouling biocides, zinc pyrithione (ZPT) and copper pyrithione (CPT), on microbial communities in estuarine sediments were studied in microcosms. As functional endpoints, fluxes of nutrients (NO3-, NH4+, HPO42-, Si(OH)(4)) and protein synthesis ([C-14] leucine...... DNA content, whereas the LOEC for CPT was 0.1 nmol/g dry sediment for the nitrate flux and total DNA content. Nitrate fluxes increased significantly following additions of both ZPT and CPT, whereas ammonium fluxes decreased significantly after ZPT addition, suggesting changes in the nitrification...... and denitrification processes. The total DNA content decreased significantly following addition of both ZPT and CPT, but at the highest addition of ZPT (10 nmol ZPT/g dry sediment), an increase in total DNA content was found. Increased protein synthesis and bacterial diversity were also observed at this concentration...

  17. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition.

    Science.gov (United States)

    Wang, Y H; Garvin, D F; Kochian, L V

    2001-09-01

    A subtractive tomato (Lycopersicon esculentum) root cDNA library enriched in genes up-regulated by changes in plant mineral status was screened with labeled mRNA from roots of both nitrate-induced and mineral nutrient-deficient (-nitrogen [N], -phosphorus, -potassium [K], -sulfur, -magnesium, -calcium, -iron, -zinc, and -copper) tomato plants. A subset of cDNAs was selected from this library based on mineral nutrient-related changes in expression. Additional cDNAs were selected from a second mineral-deficient tomato root library based on sequence homology to known genes. These selection processes yielded a set of 1,280 mineral nutrition-related cDNAs that were arrayed on nylon membranes for further analysis. These high-density arrays were hybridized with mRNA from tomato plants exposed to nitrate at different time points after N was withheld for 48 h, for plants that were grown on nitrate/ammonium for 5 weeks prior to the withholding of N. One hundred-fifteen genes were found to be up-regulated by nitrate resupply. Among these genes were several previously identified as nitrate responsive, including nitrate transporters, nitrate and nitrite reductase, and metabolic enzymes such as transaldolase, transketolase, malate dehydrogenase, asparagine synthetase, and histidine decarboxylase. We also identified 14 novel nitrate-inducible genes, including: (a) water channels, (b) root phosphate and K(+) transporters, (c) genes potentially involved in transcriptional regulation, (d) stress response genes, and (e) ribosomal protein genes. In addition, both families of nitrate transporters were also found to be inducible by phosphate, K, and iron deficiencies. The identification of these novel nitrate-inducible genes is providing avenues of research that will yield new insights into the molecular basis of plant N nutrition, as well as possible networking between the regulation of N, phosphorus, and K nutrition.

  18. Copper based anodes for bio-ethanol fueled low-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kondakindi, R.R.; Karan, K. [Queen' s Univ., Kingston, ON (Canada)

    2003-07-01

    Laboratory studies have been conducted to develop a low-temperature solid oxide fuel cell (SOFC) fueled by bio-ethanol. SOFCs are considered to be a potential source for clean and efficient electricity. The use of bio-ethanol to power the SOFC contributes even further to reducing CO{sub 2} emissions. The main barrier towards the development of the proposed SOFC is the identification of a suitable anode catalyst that prevents coking during electro-oxidation of ethanol while yielding good electrical performance. Copper was selected as the catalyst for this study. Composite anodes consisting of copper catalysts and gadolinium-doped ceria (GDC) electrolytes were prepared using screen printing of GDC and copper oxide on dense GDC electrolytes and by wet impregnation of copper nitrate in porous GDC electrolytes followed by calcination and sintering. The electrical conductivity of the prepared anodes was characterized to determine the percolation threshold. Temperature-programmed reduction and the Brunner Emmett Teller (BET) methods were used to quantify the catalyst dispersion and surface area. Electrochemical performance of the single-cell SOFC with a hydrogen-air system was used to assess the catalytic activities. Electrochemical Impedance Spectroscopy was used to probe the electrode kinetics.

  19. Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(-)-myrtenol nitrate.

    Science.gov (United States)

    Bew, Sean P; Hiatt-Gipson, Glyn D; Mills, Graham P; Reeves, Claire E

    2016-01-01

    Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a 'halide for nitrate' substitution. Employing readily available starting materials, reagents and Horner-Wadsworth-Emmons chemistry the synthesis of easily separable, synthetically versatile 'key building blocks' (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, 'off the shelf' materials. Exploiting their reactivity we have studied their ability to undergo an 'allylic halide for allylic nitrate' substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates ('isoprene nitrates') in 66-80% overall yields. Using NOESY experiments the elucidation of the carbon-carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our 'halide for nitrate' substitution chemistry we outline the straightforward transformation of (1R,2S)-(-)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(-)-myrtenol nitrate.

  20. Solubility isotherms in ternary systems of samarium nitrate, water and nitrates of amidopyrine, benzotriazole

    International Nuclear Information System (INIS)

    Starikova, L.I.

    1991-01-01

    Solubility in the system of samarium nitrate-amidopyrine nitrate-water at 25 and 50 deg C was studied. Solubility isotherms consist of three branches, corresponding to crystallization of samarium nitrate tetrahydrate, amidopyrine nitrate and congruently soluble compounds of Sm(NO 3 ) 3 · 2C 13 H 17 ON 3 ·HNO 3 composition. Its thermal behaviour was studied. The system of samarium nitrate-benzotriazole nitrate-water is referred to eutonic type

  1. Nitration of naphthalene and remarks on the mechanism of electrophilic aromatic nitration*

    Science.gov (United States)

    Olah, George A.; Narang, Subhash C.; Olah, Judith A.

    1981-01-01

    Naphthalene was nitrated with a variety of nitrating agents. Comparison of data with Perrin's electrochemical nitration [Perrin, C. L. (1977) J. Am. Chem. Soc. 99, 5516-5518] shows that nitration of naphthalene gives an α-nitronaphthalene to β-nitronaphthalene ratio that varies between 9 and 29 and is thus not constant. Perrin's data, therefore, are considered to be inconclusive evidence for the proposed one-electron transfer mechanism for the nitration of naphthalene and other reactive aromatics. Moodie and Schoefield [Hoggett, J. G., Moodie, R. B., Penton, J. R. & Schoefield, K. (1971) Nitration and Aromatic Reactivity (Cambridge Univ. Press, London)], as well as Perrin, independently concluded that, in the general scheme of nitration of reactive aromatics, there is the necessity to introduce into the classical Ingold mechanism an additional step involving a distinct intermediate preceding the formation of the Wheland intermediate (σ complexes). This view coincides with our two-step mechanistic picture [Kuhn, S. J. & Olah, G. A. (1961) J. Am. Chem. Soc. 83, 4564-4571] of the nitronium salt nitration of aromatic hydrocarbons (including benzene and toluene), in which low substrate selectivity but high positional selectivity was found, indicating the independence of substrate from positional selectivity. PMID:16593026

  2. Nitration of naphthalene and remarks on the mechanism of electrophilic aromatic nitration.

    Science.gov (United States)

    Olah, G A; Narang, S C; Olah, J A

    1981-06-01

    Naphthalene was nitrated with a variety of nitrating agents. Comparison of data with Perrin's electrochemical nitration [Perrin, C. L. (1977) J. Am. Chem. Soc. 99, 5516-5518] shows that nitration of naphthalene gives an alpha-nitronaphthalene to beta-nitronaphthalene ratio that varies between 9 and 29 and is thus not constant. Perrin's data, therefore, are considered to be inconclusive evidence for the proposed one-electron transfer mechanism for the nitration of naphthalene and other reactive aromatics. Moodie and Schoefield [Hoggett, J. G., Moodie, R. B., Penton, J. R. & Schoefield, K. (1971) Nitration and Aromatic Reactivity (Cambridge Univ. Press, London)], as well as Perrin, independently concluded that, in the general scheme of nitration of reactive aromatics, there is the necessity to introduce into the classical Ingold mechanism an additional step involving a distinct intermediate preceding the formation of the Wheland intermediate (sigma complexes). This view coincides with our two-step mechanistic picture [Kuhn, S. J. & Olah, G. A. (1961) J. Am. Chem. Soc. 83, 4564-4571] of the nitronium salt nitration of aromatic hydrocarbons (including benzene and toluene), in which low substrate selectivity but high positional selectivity was found, indicating the independence of substrate from positional selectivity.

  3. MITIGASI PELINDIAN NITRAT PADA TANAH INCEPTISOL MELALUI PEMANFAATAN BAHAN NITRAT INHIBITOR ALAMI

    Directory of Open Access Journals (Sweden)

    Joko Pramono

    2012-05-01

    Full Text Available Mitigation of Nitrate Leaching in Inceptisol Soil Through the Use of Natural Nitrate Inhibitor ABSTRAK Pelindian NO3- merupakan salah satu mekanisme kehilangan N dalam aktivitas pertanian, yang dapat berdampak terhadap pencemaran lingkungan. Tujuan dari penelitian adalah untuk mengetahui penggunaan bahan alami sebagai nitrat inhibitor terhadap pelindian nitrat pada tanah Inceptisol. Pada penelitian ini diuji tiga jenis bahan nitrat inhibitor (NI alami yang berasal dari; serbuk biji Mimba (SBM, serbuk kulit kayu bakau (SKKB, dan serbuk daun kopi (SDK,yang dikombinasikan dengan tiga taraf dosis NI, yaitu: 20 %, 30 % dan 40 % dari urea yang diberikan, dan ditambah satu perlakuan kontrol tanpa NI. Bahan nitrat inhibitor diberikan bersama urea pada permukaan tanah dalam pot percobaan yang telah dibasahi dengan air suling. Hasil penelitian menunjukkan bahwa bahan NI yang berbeda memberikan respon terhadap penghambatan nitrifi kasi yang berbeda. Bahan NI yang berasal dari serbuk biji mimba memberikan tingkat penghambatan tertinggi sebesar (25,6 %, serbuk kulit kayu bakau sebesar (19,1 %, dan serbuk daun kopi sebesar 11,8 %. Bahan NI alami mampu menghambat nitrifi kasi melalui penghambatan pertumbuhan bakteri nitrifi kasi (pengoksida ammonium yang bersifat sementara pada kisaran 7-14 hari setelah aplikasi. Perlakuan berbagai bahan dan dosis NI mampu menekan pelindian nitrat rata-rata pada kisaran antara 56,6 sampai 62,8 % dan berbeda sangat nyata terhadap perlakuan kontrol tanpa NI. Bahan NI yang mampu menurunkan rata-rata pelindian nitrat pada pengamatan 14 hari setelah aplikasi tertinggi adalah SBM sebesar 74,15 %. Dosis optimal dua bahan NI terpilih yang menunjukkan kinerja penghambatan nitrifi kasi terbaik (SBM dan SKKB pada 7 hsa, masing-masing 18,30 % (R2 = 0,694 dan 21,67 % (R2=0.691 dari dosis urea yang diberikan. Kata kunci: Nitrifi kasi, nitrat inhibitor, pelindian nitrat ABSTRACT NO3 - leaching is one mechanism of N reduction in agricultural

  4. Nitrate pollution of groundwater

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1986-01-01

    Concern about the possible health risks associated with the consumption of nitrate has led many countries, including South Africa, to propose that 10mg of nitrogen (as nitrate or nitrite) per liter should be the maximum allowable limit for domestic water supplies. Groundwater in certain parts of South Africa and Namibia contains nitrate in concentrations which exceed this limit. The CSIR's Natural Isotope Division has been studying the nitrogen isotope composition of the nitrate as an aid to investigation into the sources of this nitrate contamination

  5. Impact of Sulfide on Nitrate Conversion in Eutrophic Nitrate-Rich Marine Sludge

    DEFF Research Database (Denmark)

    Schwermer, Carsten U.; Krieger, Bärbel; Lavik, Gaute

    2006-01-01

    IMPACT OF SULFIDE ON NITRATE CONVERSION IN EUTROPHIC NITRATE-RICH MARINE SLUDGE C.U. Schwermer 1, B.U. Krieger 2, G. Lavik 1, A. Schramm 3, J. van Rijn 4, D. de Beer 1, D. Minz 5, E. Cytryn 4, M. Kuypers 1, A. Gieseke 1 1 Max Planck Institute for Marine Microbiology, Bremen, Germany; 2 Dept...... nitrate conversion from denitrification to dissimilatory nitrate-reduction to ammonium (DNRA). In situ microsensor profiling in stagnant sludge revealed the typical stratification of nitrate reduction on top of sulfate reduction. Increasing the bulk nitrate concentration lead to a downward shift....... Our results show that the presence of sulfide generally decreased growth rates but increased N2O production. We conclude that sulfide plays a key role in causing incomplete denitrification, presumably by inhibiting the N2O reductase, and enhancing DNRA compared to denitrification.  ...

  6. Method of accurate thickness measurement of boron carbide coating on copper foil

    Science.gov (United States)

    Lacy, Jeffrey L.; Regmi, Murari

    2017-11-07

    A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.

  7. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  8. Ternary systems, consist of erbium nitrates, water and nitrates of pyridines, quinolines

    International Nuclear Information System (INIS)

    Starikova, L.I.; Zhuravlev, E.F.; Khalfina, L.R.

    1979-01-01

    At 25 and 50 deg C investigated is solubility of solid phases in ternary water salt systems: erbium nitrate-pyridine nitrate-water; erbium nitrate-quinoline nitrate-water. Formation of congruently soluble compounds of the Er(NO 3 ) 3 x2C 5 H 5 NxHNO 3 , Er(NO 3 ) 3 x2C 9 H 7 NxHNO 3 x4H 2 O composition is established. X-ray phase and thermogravimetric analyses have been carried out

  9. Density and electrical conductivity of molten salts. Comparative study of binary mixtures of alkali nitrates with silver nitrate and with thallium nitrate

    International Nuclear Information System (INIS)

    Brillant, S.

    1968-01-01

    The choice of methods and the number of measurements made enable us to give results on the density and electrical conductivity of molten binary mixtures, alkali nitrate and silver nitrate, and alkali nitrate and thallium nitrate, in the form of equations. The deviations from linearity of the volume and the molar conductivity are determined by calculating the corresponding excess values whose variations are analyzed as a function of the Tobolsky parameter. The absence of any relationship in the sign of the entropy and the excess volume is justified. It is shown that the silver and thallium nitrates, in contrast to the thermodynamic properties, behave as the alkali nitrates in so far as the excess conductivity is concerned. This result is confirmed by the study of changes in the activation enthalpy for the partial molar conductivity; this study also shows the particular behaviour of lithium nitrate. (author) [fr

  10. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed with...

  11. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress.

    Science.gov (United States)

    Daiber, Andreas; Münzel, Thomas

    2015-10-10

    Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.

  12. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress

    Science.gov (United States)

    2015-01-01

    Abstract Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3′,-5′-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed. Antioxid. Redox Signal. 23, 899–942. PMID:26261901

  13. Efficiency of nitrate uptake in spinach : impact of external nitrate concentration and relative growth rate on nitrate influx and efflux

    NARCIS (Netherlands)

    Ter Steege, MW; Stulen, [No Value; Wiersema, PK; Posthumus, F; Vaalburg, W

    1999-01-01

    Regulation of nitrate influx and efflux in spinach (Spinacia oleracea L., cv. Subito), was studied in short-term label experiments with N-13- and N-15-nitrate. Nitrate fluxes were examined in relation to the N demand for growth, defined as relative growth rate (RGR) times plant N concentration.

  14. Nitrates and nitrites intoxications’ management

    Directory of Open Access Journals (Sweden)

    Alexandra Trif

    2007-12-01

    Full Text Available The study pointed out the major sources for clinical and subclinical intoxications with nitrates/nitrites (drinking water and nitrates containing fertilizers, circumstances that determine fertilizers to became sources of intoxication (excessive fertilization/consecutive high level of nitrates in fodders, free access of animals to the fertilizers, administration into the diet instead of natrium chloride, factors that determine high nitrates accumulation in fodders despite optimal fertilization (factors related to the plants, soil, clime, harvest methods, storage, agrotechnical measures, nitrates/nitrites toxicity (over 45 ppm nitrates in drinking water, over 0.5 g nitrate/100 g D.M fodder/diet, the factors that influence nitrates/nitrites toxicity ( species, age, rate of feeding, diet balance especially energetically, pathological effects and symptoms (irritation and congestions on digestive tract, resulting diarrhoea, transformation of hemoglobin into methemoglobin determining severe respiratory insufficiency, vascular collapse, low blood pressure inthe acute nitrates intoxication; hypotiroidism, hypovitaminosis A, reproductive disturbances(abortion, low rate of fertility, dead born offspring, diarrhoea and/or respiratory insufficiency in new born e.g. calves, immunosuppression, decrease of milk production in chronic intoxication. There were presented some suggestions concerning management practices to limit nitrate intoxication (analyze of nitrates/nitrites in water and fodders, good management of the situation of risk ,e .g. dilution of the diet with low nitrate content fodders, feeding with balanced diet in energy, protein, minerals and vitamins, accommodation to high nitrate level diet, avoid grazing one week after a frost period, avoid feeding chop green fodders stored a couple of days, monitoring of health status of animals fed with fodders containing nitrates at risk level, a.o..

  15. Sodium nitrate-cerium nitrate-water ternary system at 25 deg C

    International Nuclear Information System (INIS)

    Fedorenko, T.P.; Onishchenko, M.K.

    1978-01-01

    Solubility isotherm of sodium nitrate-cerium nitrate-water system at 25 deg C consists of three crystallization branches of initial salts and double compound of the composition 2NaNO 3 xCe(NO 3 ) 3 x2H 2 O. Sodium nitrate introduced in the solution strengthens complexing. Physico-chemical characteristics are in a good agreement with solubility curve

  16. Formation, Evaporation, and Hydrolysis of Organic Nitrates from Nitrate Radical Oxidation of Monoterpenes

    Science.gov (United States)

    Ng, N. L.; Takeuchi, M.; Eris, G.; Berkemeier, T.; Boyd, C.; Nah, T.; Xu, L.

    2017-12-01

    Organic nitrates play an important role in the cycling of NOx and secondary organic aerosol (SOA) formation, yet their formation mechanisms and fates remain highly uncertain. The interactions of biogenic VOCs with NO3 radicals represent a direct way for positively linking anthropogenic and biogenic emissions. Results from ambient studies suggest that organic nitrates have a relatively short lifetime, though corresponding laboratory data are limited. SOA and organic nitrates produced at night may evaporate the following morning due to increasing temperatures or dilution of semi-volatile compounds. Once formed, organic nitrates can also undergo hydrolysis in the presence of particle water. In this work, we investigate the formation, evaporation, and hydrolysis of organic nitrates generated from the nitrate radical oxidation of a-pinene, b-pinene, and limonene. Experiments are conducted in the Georgia Environmental Chamber facility (GTEC) under dry and humid conditions and different temperatures. Experiments are also designed to probe different peroxy radical pathways (RO2+HO2 vs RO2+NO3). Speciated gas-phase and particle-phase organic nitrates are continuously monitored by a Filter Inlet for Gases and AEROsols High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (FIGAERO-HR-ToF-CIMS). Bulk aerosol composition is measured by a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). A large suite of highly oxygenated gas- and particle-phase organic nitrates are formed rapidly. We find a resistance to aerosol evaporation when it is heated. The extent of organic nitrate hydrolysis in the humid experiments is evaluated. The dynamics of the speciated organic nitrates over the course of the experiments will also be discussed. Results from this chamber study provide fundamental data for understanding the dynamics of organic nitrate aerosols over its atmospheric lifetime.

  17. The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community

    NARCIS (Netherlands)

    Nijburg, J.W.; Laanbroek, H.J.

    1997-01-01

    The influence of nitrate addition and the presence of Glyceria maxima (reed sweetgrass) on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community was investigated. Anoxic freshwater sediment was incubated in pots with or without G. maxima and with or

  18. The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community

    NARCIS (Netherlands)

    Nijburg, J.W.; Laanbroek, H.J.

    1997-01-01

    The influence of nitrate addition and the presence of Glyceria maxima (reed sweetgrass) on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community was investigated. Anoxic freshwater sediment was incubated in pots with or without G. maxima and with or without

  19. Layered copper hydroxide n-alkylsulfonate salts: synthesis, characterization, and magnetic behaviors in relation to the basal spacing.

    Science.gov (United States)

    Park, Seong-Hun; Lee, Cheol Eui

    2005-01-27

    A series of hybrid inorganic-organic copper(II) hydroxy n-alkylsulfonate with a triangular lattice, Cu(2)(OH)(3)(C(n)H(2)(n)(+1)SO(3)) (n = 6, 8, 10), are prepared by anion exchange, starting from copper hydroxy nitrate Cu(2)(OH)(3)NO(3). These compounds show a layered structure as determined by X-ray diffraction, with interlayer distances of 14.3-34.8 A in alternation with interdigitated bilayer packing. Magnetic properties have been investigated by means of dc and ac measurements. All the compounds show similar metamagnet behaviors, with a Neel temperature of about 11 K. A subtle difference in the ac magnetic susceptibility among the compounds is understood by the existence of hydrogen bonding between the sulfonate headgroup and the hydroxide anion. A detailed molecular structure of the alkyl chains incorporated to the inorganic copper hydroxide layer is also discussed from the FTIR data.

  20. Preparation of Some Novel Copper(I) Complexes and their Molar Conductances in Organic Solvents

    Science.gov (United States)

    Gill, Dip Singh; Rana, Dilbag

    2009-04-01

    Attempts have been made to prepare some novel copper(I) nitrate, sulfate, and perchlorate complexes. Molar conductances of these complexes have been measured in organic solvents like acetonitrile (AN), acetone (AC), methanol (MeOH), N,N-dimethylformamide (DMF), N,Ndimethylacetamide (DMA), and dimethylsulfoxide (DMSO) at 298 K. The molar conductance data have been analyzed to obtain limiting molar conductances (λ0) and ion association constants (KA) of the electrolytes. The results showed that all these complexes are strong electrolytes in all organic solvents. The limiting ionic molar conductances (λo± ) for various ions have been calculated using Bu4NBPh4 as reference electrolyte. The actual radii for copper(I) complex ions are very large and different in different solvents and indicate some solvation effects in each solvent system

  1. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Science.gov (United States)

    2010-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more than...

  2. Respiration of Nitrate and Nitrite.

    Science.gov (United States)

    Cole, Jeffrey A; Richardson, David J

    2008-09-01

    Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. Escherichia coli and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in E. coli and, where relevant detail is available, also in Salmonella and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of E. coli and Salmonella in which oxygen is limited but nitrate is available to support respiration. In E. coli, nitrate reduction in the periplasm involves the products of two seven-gene operons, napFDAGHBC, encoding the periplasmic nitrate reductase, and nrfABCDEFG, encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.

  3. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  4. Interaction in triple systems of neodymium nitrate, water and nitrates of trimethylammonium and tetramethylammonium

    International Nuclear Information System (INIS)

    Boeva, M.K.; Zhuravlev, E.F.

    1977-01-01

    At 20 and 40 deg C the mutual solubility is studied in systems neodymium nitrate-water-trimethylamine nitrate and neodymium nitrate-water-tetramethylammonium nitrate. It has been established that the above systems belong to those with chemical interaction of the components. The compounds have been isolated preparatively, their composition has been confirmed analytically, and their thermal behaviour studied

  5. Nitrate accumulation in spinach

    NARCIS (Netherlands)

    Steingröver, Eveliene Geertruda

    1986-01-01

    Leafy vegetables, like spinach, may contain high concentrations of nitrate. In the Netherlands, about 75% of mean daily intake of nitrate orginates from the consumption of vegatables. Hazards to human health are associated with the reduction of nitrate to nitrite. Acute nitrite poisoning causes

  6. Comparison of Chemical Modifiers for Simultaneous Determination of Different Selenium-Compounds in Serum and Urine by Zeeman-Effect Electrothermal Atomic-Absorption Spectrometry

    DEFF Research Database (Denmark)

    Johannessen, J.K.; Gammelgaard, Bente; Jons, O.

    1993-01-01

    The thermal stability of selenite, selenate, selenomethionine and trimethylselenonium was studied using different chemical modifiers in various amounts. The normally recommended amounts of nickel nitrate, magnesium nitrate, copper nitrate, copper nitrate mixed with magnesium nitrate, palladium ni...

  7. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  8. Preparation of a calcium-substituted copper-rich yttrium barium copper oxide superconductor from a spray-dried nitrate precursor

    International Nuclear Information System (INIS)

    Gyurov, G.; Khristova, I.; Peshev, P.; Abrashev, M.V.

    1993-01-01

    A calcium-substituted YBa 2 Cu 4 O 8 (1-2-4) high-temperature superconductor is synthesized from a precursor obtained by spray-drying of a nitrate solution containing the corresponding metals in a stoichiometric ratio. The synthesis takes place during one-stage heat-treatment of the precursor at 800 C in an oxygen flow under a pressure of 1 atm within a relatively short period of time, additives as well as intermediate grinding and pressing of the products being not needed. Measurements of the a.c. susceptibility have revealed a very sharp superconducting transition which is comparable with that of samples prepared under a high pressure. The transition in Ca-substituted YBa 2 Cu 4 O 8 occurs at a temperature by about 8 K higher than T c of the Ca-free phase. Raman spectra suggest that during the substitution calcium does not occupy barium positions in the YBa 2 Cu 4 O 8 lattice

  9. The effect of peroxynitrite decomposition catalyst MnTBAP on aldehyde dehydrogenase-2 nitration by organic nitrates: role in nitrate tolerance.

    Science.gov (United States)

    Mollace, Vincenzo; Muscoli, Carolina; Dagostino, Concetta; Giancotti, Luigino Antonio; Gliozzi, Micaela; Sacco, Iolanda; Visalli, Valeria; Gratteri, Santo; Palma, Ernesto; Malara, Natalia; Musolino, Vincenzo; Carresi, Cristina; Muscoli, Saverio; Vitale, Cristiana; Salvemini, Daniela; Romeo, Francesco

    2014-11-01

    Bioconversion of glyceryl trinitrate (GTN) into nitric oxide (NO) by aldehyde dehydrogenase-2 (ALDH-2) is a crucial mechanism which drives vasodilatory and antiplatelet effect of organic nitrates in vitro and in vivo. Oxidative stress generated by overproduction of free radical species, mostly superoxide anions and NO-derived peroxynitrite, has been suggested to play a pivotal role in the development of nitrate tolerance, though the mechanism still remains unclear. Here we studied the free radical-dependent impairment of ALDH-2 in platelets as well as vascular tissues undergoing organic nitrate ester tolerance and potential benefit when using the selective peroxynitrite decomposition catalyst Mn(III) tetrakis (4-Benzoic acid) porphyrin (MnTBAP). Washed human platelets were made tolerant to nitrates via incubation with GTN for 4h. This was expressed by attenuation of platelet aggregation induced by thrombin (40U/mL), an effect accompanied by GTN-related induction of cGMP levels in platelets undergoing thrombin-induced aggregation. Both effects were associated to attenuated GTN-induced nitrite formation in platelets supernatants and to prominent nitration of ALDH-2, the GTN to NO metabolizing enzyme, suggesting that GTN tolerance was associated to reduced NO formation via impairment of ALDH-2. These effects were all antagonized by co-incubation of platelets with MnTBAP, which restored GTN-induced responses in tolerant platelets. Comparable effect was found under in in vivo settings. Indeed, MnTBAP (10mg/kg, i.p.) significantly restored the hypotensive effect of bolus injection of GTN in rats made tolerants to organic nitrates via chronic administration of isosorbide-5-mononitrate (IS-5-MN), thus confirming the role of peroxynitrite overproduction in the development of tolerance to vascular responses induced by organic nitrates. In conclusion, oxidative stress subsequent to prolonged use of organic nitrates, which occurs via nitration of ALDH-2, represents a key event

  10. Nitrate radical oxidation of γ-terpinene: hydroxy nitrate, total organic nitrate, and secondary organic aerosol yields

    Science.gov (United States)

    Slade, Jonathan H.; de Perre, Chloé; Lee, Linda; Shepson, Paul B.

    2017-07-01

    Polyolefinic monoterpenes represent a potentially important but understudied source of organic nitrates (ONs) and secondary organic aerosol (SOA) following oxidation due to their high reactivity and propensity for multi-stage chemistry. Recent modeling work suggests that the oxidation of polyolefinic γ-terpinene can be the dominant source of nighttime ON in a mixed forest environment. However, the ON yields, aerosol partitioning behavior, and SOA yields from γ-terpinene oxidation by the nitrate radical (NO3), an important nighttime oxidant, have not been determined experimentally. In this work, we present a comprehensive experimental investigation of the total (gas + particle) ON, hydroxy nitrate, and SOA yields following γ-terpinene oxidation by NO3. Under dry conditions, the hydroxy nitrate yield = 4(+1/-3) %, total ON yield = 14(+3/-2) %, and SOA yield ≤ 10 % under atmospherically relevant particle mass loadings, similar to those for α-pinene + NO3. Using a chemical box model, we show that the measured concentrations of NO2 and γ-terpinene hydroxy nitrates can be reliably simulated from α-pinene + NO3 chemistry. This suggests that NO3 addition to either of the two internal double bonds of γ-terpinene primarily decomposes forming a relatively volatile keto-aldehyde, reconciling the small SOA yield observed here and for other internal olefinic terpenes. Based on aerosol partitioning analysis and identification of speciated particle-phase ON applying high-resolution liquid chromatography-mass spectrometry, we estimate that a significant fraction of the particle-phase ON has the hydroxy nitrate moiety. This work greatly contributes to our understanding of ON and SOA formation from polyolefin monoterpene oxidation, which could be important in the northern continental US and the Midwest, where polyolefinic monoterpene emissions are greatest.

  11. High temperature interaction studies on equimolar nitrate mixture of uranyl nitrate hexahydrate and gadolinium nitrate hexahydrate

    International Nuclear Information System (INIS)

    Kalekar, Bhupesh B.; Raje, Naina; Reddy, A.V.R.

    2015-01-01

    Rare earths including gadolinium form a sizeable fraction of the fission products in the nuclear fission of fissile material in the reactor. These fission products can interact with uranium dioxide fuel and can form various compounds which can alter the thermal behavior of the fuel. The mixed oxide formed due to the high temperature interactions of mixture of uranyl nitrate hexahydrate (UNH) and gadolinium nitrate hexahydrate (GdNH) has been studied using thermal and X- ray diffraction techniques. The equimolar mixture of UNH and GdNH was prepared by mixing the weighed amount of individual nitrates and grinding gently with mortar and pestle. Thermogravimetry (TG) measurements were carried out by separately heating 100 mg of mixture and individual nitrates at heating rate of 10°C min -1 using Netzsch thermal analyzer (Model No.: STA 409 PC Luxx) in high purity nitrogen atmosphere with a flow rate of 120 mL min -1 . The XRD measurement was carried out on a Philips X-ray diffractometer (Model PW1710) using nickel-filtered Cu-Kα radiation

  12. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode

    Energy Technology Data Exchange (ETDEWEB)

    Can, Faruk; Korkut Ozoner, Seyda; Ergenekon, Pinar; Erhan, Elif, E-mail: e.erhan@gyte.edu.tr

    2012-01-01

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44-1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N = 3) with a relative standard deviation (RSD) of 5.4% (n = 7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 {mu}g/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday. - Highlights: Black-Right-Pointing-Pointer K{sub 3}Fe(CN){sub 6} has been used for the first time as mediator for nitrate reductase. Black-Right-Pointing-Pointer Better performance was obtained in comparison to other nitrate biosensor studies operated with various mediators. Black-Right-Pointing-Pointer Analytical parameters were better than standard nitrate analysis methods.

  13. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode

    International Nuclear Information System (INIS)

    Can, Faruk; Korkut Ozoner, Seyda; Ergenekon, Pinar; Erhan, Elif

    2012-01-01

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44–1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N = 3) with a relative standard deviation (RSD) of 5.4% (n = 7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 μg/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday. - Highlights: ► K 3 Fe(CN) 6 has been used for the first time as mediator for nitrate reductase. ► Better performance was obtained in comparison to other nitrate biosensor studies operated with various mediators. ► Analytical parameters were better than standard nitrate analysis methods.

  14. Crystal structures of nitrato-(2-[2-(1-pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) aquacopper and chloro-(2-[2-phenyl(pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) copper

    Energy Technology Data Exchange (ETDEWEB)

    Chumakov, Yu. M. [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Paholnitcaia, A. Yu. [State University of Moldova (Moldova, Republic of); Petrenko, P. A. [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Tsapkov, V. I., E-mail: vtsapkov@gmail.com [State University of Moldova (Moldova, Republic of); Poirier, D. [Centre Hospitalier Universitaire de Quebec (Canada); Gulea, A. P. [State University of Moldova (Moldova, Republic of)

    2015-01-15

    Two crystal modifications of nitrato-(2-[2-(1-pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) aquacopper (I and II) and two modifications of chloro-(2-[2-phenyl(pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) copper (III and IV) have been synthesized and studied by X-ray diffraction. In structures I and II, the copper atoms coordinate a monodeprotonated molecule of the organic ligand, nitrate ions, and a water molecule. In crystals of I, the complexes are monomeric, whereas complexes II are linked via nitrate ions to form polymeric chains. In both structures the coordination polyhedron of the copper atom can be described as a distorted tetragonal bipyramid—(4 + 1 + 1) in I and (4 + 2) in II. These coordination polyherdra have different compositions. In structures III and IV, the metal atoms coordinate a monodeprotonated (2-[2-phenyl(pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazole molecule and chloride ions. In III the complex-forming ion has square-planar coordination geometry, whereas structure IV consists of centrosymmetric dimers with two bridging chlorine atoms. It was found that nitrato-(2-[2-(1-pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) aquacopper possesses antitumor activity.

  15. Purification of alkali metal nitrates

    Science.gov (United States)

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  16. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  17. Thermochemical nitrate reduction

    International Nuclear Information System (INIS)

    Cox, J.L.; Lilga, M.A.; Hallen, R.T.

    1992-09-01

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with ∼3 wt% NO 3 - solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200 degrees C to 350 degrees C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia ∼ methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics

  18. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  19. Waterproofing Materials for Ammonium Nitrate

    OpenAIRE

    R.S. Damse

    2004-01-01

    This study explores the possibility of overcoming the problem of hygroscopicity of ammonium nitrate by coating the particles with selected waterproofing materials. Gravimetric analysis ofthe samples of ammonium nitrate coated with eight different waterproofing materials, vis-a-vis, uncoated ammonium nitrate, were conducted at different relative humidity and exposuretime. The results indicate that mineral jelly is the promising waterproofing material for ammonium nitrate among the materials te...

  20. Using Nitrate Isotopes to Distinguish Pathways along which Unprocessed Atmospheric Nitrate is Transported through Forests to Streams

    Science.gov (United States)

    Sebestyen, S. D.

    2013-12-01

    Evaluation of natural abundance oxygen and nitrogen isotopes in nitrate has revealed that atmospheric deposition of nitrate to forests sometimes has direct effects on the timing and magnitude of stream nitrate concentrations. Large amounts of unprocessed atmospheric nitrate have sometimes been found in streams during snowmelt and stormflow events. Despite increasing evidence that unprocessed atmospheric nitrate may be transported without biological processing to streams at various times and multiple locations, little has been reported about specific hydrological processes. I synthesized research findings from a number of studies in which nitrate isotopes have been measured over the past decade. Unprocessed nitrate may predominate in surficial soil waters after rainfall and snowmelt events relative to nitrate that originated from nitrification. Although transport to deep groundwater may be important in the most nitrogen saturated catchments, the transport of unprocessed atmospheric nitrate along shallow subsurface flowpaths is likely more important in many moderately N-polluted ecosystems, which predominate in the northeastern USA where most of my study sites are located. The presence of unprocessed atmospheric nitrate in surficial soils was linked to stream nitrate concentrations when large amounts of unprocessed nitrate were occasionally routed along lateral, shallow subsurface flowpaths during stormflow events. During these events, water tables rose to saturate shallow-depth soils. When catchments were drying or dryer, atmospheric nitrate was completely consumed by biological processing as flowpaths shifted from lateral to vertical transport through soils. The source areas of unprocessed atmospheric nitrate were usually limited to soils that were adjacent to streams, with little to no near-surface saturation and transport of unprocessed nitrate from more distal hillslope positions. The occasional large amounts of unprocessed atmospheric nitrate in soil water

  1. Criticality parameters for uranyl nitrate or plutonium nitrate systems in tributyl phosphate/kerosine and water

    International Nuclear Information System (INIS)

    Weber, W.

    1985-01-01

    This report presents the calculated values of smallest critical masses and volumina and neutron physical parameters for uranyl nitrate (3, 4, 5% U-235) or plutonium nitrate (5% Pu-240), each in a 30 per cent solution of tributyl phosphate (TBP)/kerosine. For the corresponding nitrate-water solutions, newly calculated results are presented together with a revised solution density model. A comparison of the data shows to what extent the criticality of nitrate-TBP/kerosine systems can be assessed on the basis of nitrate-water parameters, revealing that such data can be applied to uranyl nitrate/water systems, taking into account that the smallest critical mass of uranyl nitrate-TBP/kerosine systems, up to a 5 p.c. U-235 enrichment, is by 4.5 p.c. at the most smaller than that of UNH-water solutions. Plutonium nitrate (5% Pu-240) in the TBP/kerosine solution will have a smallest critical mass of up to 7 p.c. smaller, as compared with the water data. The suitability of the computing methods and cross-sections used is verified by recalculating experiments carried out to determine the lowest critical enrichment of uranyl nitrate. The calculated results are well in agreement with experimental data. The lowest critical enrichment is calculated to be 2.10 p.c. in the isotope U-235. (orig.) [de

  2. The synthesis, spectroscopy and X-ray single crystal structure of catena-[(μ-anacardato)-copper(II)bipyridine][Cu2{(μ-O2CC6H3(o-OH)(o-C15H31)}4(NC5H5)2].

    Science.gov (United States)

    Malik, Mohammad Azad; O'Brien, Paul; Tuna, Floriana; Pritchard, Robin; Buchweishaija, Joseph; Kimambo, Elianaso; Mubofu, Egid B

    2013-10-28

    Hydrogenation of crude anacardic acid gave a transparent crystalline product on recrystallization. When reacted with copper nitrate in the presence of pyridine it produced green crystals of a pyridine adduct of a dimeric copper(II) anacardate with the copper acetate structure. The X-ray single crystal structures of both anacardic acid and the copper complex were determined. Magnetic studies have confirmed strong antiferromagnetic coupling between copper(II) centre in the dimer. The exchange coupling constant was determined to be J = -324 cm(-1). The EPR spectra of the polycrystalline product are consistent with spin S = 1. The zero-field splitting parameter and g tensor values are |D| = 0.36 cm(-1), g(||) = 2.36 and g(⊥) = 2.06.

  3. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  4. Nitrate-Rich Vegetables Increase Plasma Nitrate and Nitrite Concentrations and Lower Blood Pressure in Healthy Adults.

    Science.gov (United States)

    Jonvik, Kristin L; Nyakayiru, Jean; Pinckaers, Philippe Jm; Senden, Joan Mg; van Loon, Luc Jc; Verdijk, Lex B

    2016-05-01

    Dietary nitrate is receiving increased attention due to its reported ergogenic and cardioprotective properties. The extent to which ingestion of various nitrate-rich vegetables increases postprandial plasma nitrate and nitrite concentrations and lowers blood pressure is currently unknown. We aimed to assess the impact of ingesting different nitrate-rich vegetables on subsequent plasma nitrate and nitrite concentrations and resting blood pressure in healthy normotensive individuals. With the use of a semirandomized crossover design, 11 men and 7 women [mean ± SEM age: 28 ± 1 y; mean ± SEM body mass index (BMI, in kg/m(2)): 23 ± 1; exercise: 1-10 h/wk] ingested 4 different beverages, each containing 800 mg (∼12.9 mmol) nitrate: sodium nitrate (NaNO3), concentrated beetroot juice, a rocket salad beverage, and a spinach beverage. Plasma nitrate and nitrite concentrations and blood pressure were determined before and up to 300 min after beverage ingestion. Data were analyzed using repeated-measures ANOVA. Plasma nitrate and nitrite concentrations increased after ingestion of all 4 beverages (P nitrate concentrations were similar for all treatments (all values presented as means ± SEMs: NaNO3: 583 ± 29 μmol/L; beetroot juice: 597 ± 23 μmol/L; rocket salad beverage: 584 ± 24 μmol/L; spinach beverage: 584 ± 23 μmol/L). Peak plasma nitrite concentrations were different between treatments (NaNO3: 580 ± 58 nmol/L; beetroot juice: 557 ± 57 nmol/L; rocket salad beverage: 643 ± 63 nmol/L; spinach beverage: 980 ± 160 nmol/L; P = 0.016). When compared with baseline, systolic blood pressure declined 150 min after ingestion of beetroot juice (from 118 ± 2 to 113 ± 2 mm Hg; P nitrate-rich beetroot juice, rocket salad beverage, and spinach beverage effectively increases plasma nitrate and nitrite concentrations and lowers blood pressure to a greater extent than sodium nitrate. These findings show that nitrate-rich vegetables can be used as dietary nitrate

  5. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.

    OpenAIRE

    Samuelsson, M O

    1985-01-01

    The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sod...

  6. Nitrate leaching index

    Science.gov (United States)

    The Nitrate Leaching Index is a rapid assessment tool that evaluates nitrate (NO3) leaching potential based on basic soil and climate information. It is the basis for many nutrient management planning efforts, but it has considerable limitations because of : 1) an oversimplification of the processes...

  7. The nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zone.

    Science.gov (United States)

    Wang, L; Butcher, A S; Stuart, M E; Gooddy, D C; Bloomfield, J P

    2013-10-01

    Nitrate pollution in groundwater, which is mainly from agricultural activities, remains an international problem. It threatens the environment, economics and human health. There is a rising trend in nitrate concentrations in many UK groundwater bodies. Research has shown it can take decades for leached nitrate from the soil to discharge into groundwater and surface water due to the 'store' of nitrate and its potentially long travel time in the unsaturated and saturated zones. However, this time lag is rarely considered in current water nitrate management and policy development. The aim of this study was to develop a catchment-scale integrated numerical method to investigate the nitrate lag time in the groundwater system, and the Eden Valley, UK, was selected as a case study area. The method involves three models, namely the nitrate time bomb-a process-based model to simulate the nitrate transport in the unsaturated zone (USZ), GISGroundwater--a GISGroundwater flow model, and N-FM--a model to simulate the nitrate transport in the saturated zone. This study answers the scientific questions of when the nitrate currently in the groundwater was loaded into the unsaturated zones and eventually reached the water table; is the rising groundwater nitrate concentration in the study area caused by historic nitrate load; what caused the uneven distribution of groundwater nitrate concentration in the study area; and whether the historic peak nitrate loading has reached the water table in the area. The groundwater nitrate in the area was mainly from the 1980s to 2000s, whilst the groundwater nitrate in most of the source protection zones leached into the system during 1940s-1970s; the large and spatially variable thickness of the USZ is one of the major reasons for unevenly distributed groundwater nitrate concentrations in the study area; the peak nitrate loading around 1983 has affected most of the study area. For areas around the Bowscar, Beacon Edge, Low Plains, Nord Vue

  8. Co-effects of pyrene and nitrate on the activity and abundance of soil denitrifiers under anaerobic condition.

    Science.gov (United States)

    Zhou, Zhi-Feng; Yao, Yan-Hong; Wang, Ming-Xia; Zuo, Xiao-Hu

    2017-10-01

    It has previously been confirmed that polycyclic aromatic hydrocarbons (PAHs) could be degraded by soil microbes coupling with denitrification, but the relationships among soil denitrifiers, PAHs, and nitrate under obligate anaerobic condition are still unclear. Here, co-effects of pyrene and nitrate on the activity and abundance of soil denitrifiers were investigated through a 45-day incubation experiment. Two groups of soil treatments with (N 30 ) and without (N 0 ) nitrate (30 mg kg -1 dry soil) amendment were conducted, and each group contained three treatments with different pyrene concentrations (0, 30, and 60 mg kg -1 dry soil denoted as P 0 , P 30 , and P 60 , respectively). The pyrene content, abundances of denitrification concerning genes (narG, periplasmic nitrate reductase gene; nirS, cd 1 -nitrite reductase gene; nirK, copper-containing nitrite reductase gene), and productions of N 2 O and CO 2 were measured at day 3, 14, 28, and 45, and the bacterial community structures in four represented treatments (N 0 P 0 , N 0 P 60 , N 30 P 0 , and N 30 P 60 ) were analyzed at day 45. The results indicated that the treatments with higher pyrene concentration had higher final pyrene removal rates than the treatments with lower pyrene concentration. Additionally, intensive emission of N 2 O was detected in all treatments only at day 3, but a continuous production of CO 2 was measured in each treatment during the incubation. Nitrate amendment could enhance the activity of soil denitrifiers, and be helpful for soil microbes to sustain their activity. While pyrene seemed had no influence on the productions of N 2 O and CO 2 , and amendment with pyrene or nitrate both had no obvious effect on abundances of denitrification concerning genes. Furthermore, it was nitrate but not pyrene had an obvious influence on the community structure of soil bacteria. These results revealed that, under anaerobic condition, the activity and abundance of soil denitrifiers both were

  9. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species.

    Science.gov (United States)

    Poonnachit, U; Darnell, R

    2004-04-01

    Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.

  10. Agricultural nitrate pollution

    DEFF Research Database (Denmark)

    Anker, Helle Tegner

    2015-01-01

    Despite the passing of almost 25 years since the adoption of the EU Nitrates Directive, agricultural nitrate pollution remains a major concern in most EU Member States. This is also the case in Denmark, although a fairly strict regulatory regime has resulted in almost a 50 per cent reduction...

  11. Negative feedback loops leading to nitrate homeostasis and oscillatory nitrate assimilation in plants and fungi.

    OpenAIRE

    Huang, Yongshun

    2011-01-01

    Master's thesis in Biological Chemistry Nitrate is an important nutrient for plants and fungi. For plants it has been shown that cytosolic nitrate levels are under homeostatic control. Here we describe two networks that can obtain robust, i.e. perturbation independent, homeostatic behavior in cytosolic nitrate concentration. One of the networks, a member in the family of outflow controllers, is based on a negative feedback loop containing a nitrate-induced activation of a controller molecu...

  12. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  13. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport.

    Science.gov (United States)

    Lin, Shan-Hua; Kuo, Hui-Fen; Canivenc, Geneviève; Lin, Choun-Sea; Lepetit, Marc; Hsu, Po-Kai; Tillard, Pascal; Lin, Huey-Ling; Wang, Ya-Yun; Tsai, Chyn-Bey; Gojon, Alain; Tsay, Yi-Fang

    2008-09-01

    Little is known about the molecular and regulatory mechanisms of long-distance nitrate transport in higher plants. NRT1.5 is one of the 53 Arabidopsis thaliana nitrate transporter NRT1 (Peptide Transporter PTR) genes, of which two members, NRT1.1 (CHL1 for Chlorate resistant 1) and NRT1.2, have been shown to be involved in nitrate uptake. Functional analysis of cRNA-injected Xenopus laevis oocytes showed that NRT1.5 is a low-affinity, pH-dependent bidirectional nitrate transporter. Subcellular localization in plant protoplasts and in planta promoter-beta-glucuronidase analysis, as well as in situ hybridization, showed that NRT1.5 is located in the plasma membrane and is expressed in root pericycle cells close to the xylem. Knockdown or knockout mutations of NRT1.5 reduced the amount of nitrate transported from the root to the shoot, suggesting that NRT1.5 participates in root xylem loading of nitrate. However, root-to-shoot nitrate transport was not completely eliminated in the NRT1.5 knockout mutant, and reduction of NRT1.5 in the nrt1.1 background did not affect root-to-shoot nitrate transport. These data suggest that, in addition to that involving NRT1.5, another mechanism is responsible for xylem loading of nitrate. Further analyses of the nrt1.5 mutants revealed a regulatory loop between nitrate and potassium at the xylem transport step.

  14. Identification of nitrate sources and discharge-depending nitrate dynamics in a mesoscale catchment

    Science.gov (United States)

    Mueller, Christin; Strachauer, Ulrike; Brauns, Mario; Musolff, Andreas; Kunz, Julia Vanessa; Brase, Lisa; Tarasova, Larisa; Merz, Ralf; Knöller, Kay

    2017-04-01

    During the last decades, nitrate concentrations in surface and groundwater have increased due to land use change and accompanying application of fertilizer in agriculture as well as increased atmospheric deposition. To mitigate nutrient impacts on downstream aquatic ecosystems, it is important to quantify potential nitrate sources, instream nitrate processing and its controls in a river system. The objective of this project is to characterize and quantify (regional) scale dynamics and trends in water and nitrogen fluxes of the entire Holtemme river catchment in central Germany making use of isotopic fingerprinting methods. Here we compare two key date sampling campaigns in 2014 and 2015, with spatially highly resolved measurements of discharge at 23 sampling locations including 11 major tributaries and 12 locations at the main river. Additionally, we have data from continuous runoff measurements at 10 locations operated by the local water authorities. Two waste water treatment plants contribute nitrogen to the Holtemme stream. This contribution impacts nitrate loads and nitrate isotopic signatures depending on the prevailing hydrological conditions. Nitrogen isotopic signatures in the catchment are mainly controlled by different sources (nitrified soil nitrogen in the headwater and manure/ effluents from WWTPs in the lowlands) and increase with raising nitrate concentrations along the main river. Nitrate loads at the outlet of the catchment are extremely different between both sampling campaigns (2014: NO3- = 97 t a-1, 2015: NO3- = 5 t a-1) which is associated with various runoff (2014: 0.8 m3 s-1, 2015: 0.2 m3 s-1). In 2015, the inflow from WWTP's raises the NO3- loads and enriches δ18O-NO3 values. Generally, oxygen isotope signatures from nitrate are more variable and are controlled by biogeochemical processes in concert with the oxygen isotopic composition of the ambient water. Elevated δ18O-NO3 in 2015 are most likely due to higher temperatures and lower

  15. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    Science.gov (United States)

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  17. Catalyzed reduction of nitrate in aqueous solutions

    International Nuclear Information System (INIS)

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH 3 , hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250 degree C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs 3 or NH 4 NO 3 is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO 3 to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions

  18. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  19. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    Science.gov (United States)

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  20. Evaluation of nitrate destruction methods

    International Nuclear Information System (INIS)

    Taylor, P.A.; Kurath, D.E.; Guenther, R.

    1993-01-01

    A wide variety of high nitrate-concentration aqueous mixed [radioactive and Resource Conservation and Recovery Act (RCRA) hazardous] wastes are stored at various US Department of Energy (DOE) facilities. These wastes will ultimately be solidified for final disposal, although the waste acceptance criteria for the final waste form is still being determined. Because the nitrates in the wastes will normally increase the volume or reduce the integrity of all of the waste forms under consideration for final disposal, nitrate destruction before solidification of the waste will generally be beneficial. This report describes and evaluates various technologies that could be used to destroy the nitrates in the stored wastes. This work was funded by the Department of Energy's Office of Technology Development, through the Chemical/Physical Technology Support Group of the Mixed Waste Integrated Program. All the nitrate destruction technologies will require further development work before a facility could be designed and built to treat the majority of the stored wastes. Several of the technologies have particularly attractive features: the nitrate to ammonia and ceramic (NAC) process produces an insoluble waste form with a significant volume reduction, electrochemical reduction destroys nitrates without any chemical addition, and the hydrothermal process can simultaneously treat nitrates and organics in both acidic and alkaline wastes. These three technologies have been tested using lab-scale equipment and surrogate solutions. At their current state of development, it is not possible to predict which process will be the most beneficial for a particular waste stream

  1. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    Science.gov (United States)

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  2. The influence of nitrate concentrations and acidity on the electrocatalytic reduction of nitrate on platinum

    NARCIS (Netherlands)

    Groot, de M.T.; Koper, M.T.M.

    2004-01-01

    A study was performed to determine the influence of nitrate concentration and acidity on the reaction rate and selectivity of the electrocatalytic nitrate reduction on platinum. There are two different nitrate reduction mechanisms on platinum: a direct mechanism (0.4–0.1 V vs. SHE) and an indirect

  3. Mortality of nitrate fertiliser workers.

    Science.gov (United States)

    Al-Dabbagh, S; Forman, D; Bryson, D; Stratton, I; Doll, R

    1986-01-01

    An epidemiological cohort study was conducted to investigate the mortality patterns among a group of workers engaged in the production of nitrate based fertilisers. This study was designed to test the hypothesis that individuals exposed to high concentrations of nitrates might be at increased risk of developing cancers, particularly gastric cancer. A total of 1327 male workers who had been employed in the production of fertilisers between 1946 and 1981 and who had been occupationally exposed to nitrates for at least one year were followed up until 1 March 1981. In total, 304 deaths were observed in this group and these were compared with expected numbers calculated from mortality rates in the northern region of England, where the factory was located. Analysis was also carried out separately for a subgroup of the cohort who had been heavily exposed to nitrates--that is, working in an environment likely to contain more than 10 mg nitrate/m3 for a year or longer. In neither the entire cohort nor the subgroup was any significant excess observed for all causes of mortality or for mortality from any of five broad categories of cause or from four specific types of cancer. A small excess of lung cancer was noted more than 20 years after first exposure in men heavily exposed for more than 10 years. That men were exposed to high concentrations of nitrate was confirmed by comparing concentrations of nitrates in the saliva of a sample of currently employed men with control men, employed at the same factory but not in fertiliser production. The men exposed to nitrate had substantially raised concentrations of nitrate in their saliva compared with both controls within the industry and with men in the general population and resident nearby. The results of this study therefore weight against the idea that exposure to nitrates in the environment leads to the formation in vivo of material amounts of carcinogens. PMID:3015194

  4. Native copper as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1989-12-01

    This paper discusses the occurrence of native copper as found in geological formations as a stability analogue of copper canisters that are planned to be used for the disposal of spent nuclear fuel in the Finnish bedrock. A summary of several publications on native copper occurrences is presented. The present geochemical and geohydrological conditions in which copper is met with in its metallic state show that metallic copper is stable in a wide range of temperatures. At low temperatures native copper is found to be stable where groundwater has moderate pH (about 7), low Eh (< +100 mV), and low total dissolved solids, especially chloride. Microscopical and microanalytical studies were carried out on a dozen of rock samples containing native copper. The results reveal that the metal shows no significant alteration. Only the surface of copper grains is locally coated. In the oldest samples there exist small corrosion cracks; the age of the oldest samples is over 1,000 million years. A review of several Finnish groundwater studies suggests that there are places in Finland where the geohydrological conditions are favourable for native copper stability. (orig.)

  5. Derivation of an empirical formula for determining water content of mixed uranyl nitrate-thorium nitrate solutions

    International Nuclear Information System (INIS)

    Min, Duck Kee; Choi, Byung Il; Ro, Seung Gy; Eom, Tae Yoon; Kim, Zong Goo

    1986-01-01

    Densities of a large number of mixed uranyl nitrate-thorium nitrate solutions were measured with pycnometer. By the least squares analysis of the experimental result, an empirical formula for determining water content of mixed uranyl nitrate-thorium nitrate solutions as functions of uranium concentration, thorium concentration and nitric acid normality is derived; W=1.0-0.3580 C u -0.4538 C Th -0.0307H + where W, C u , C Th , and H + stand for water content(g/cc), uranium concentration (g/cc), thorium concentration(g/cc), and nitric acid normality, respectively. Water contents of the mixed uranyl nitrate-thorium nitrate solutions are calculated by using the empirical formular, and compared with the values calculated by Bouly's equation in which an additional data, solution density, is required. The two results show good agreements within 2.7%. (Author)

  6. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development

    Science.gov (United States)

    Li, Yuge; Ouyang, Jie; Wang, Ya-Yun; Hu, Rui; Xia, Kuaifei; Duan, Jun; Wang, Yaqin; Tsay, Yi-Fang; Zhang, Mingyong

    2015-01-01

    Plants have evolved to express some members of the nitrate transporter 1/peptide transporter family (NPF) to uptake and transport nitrate. However, little is known of the physiological and functional roles of this family in rice (Oryza sativa L.). Here, we characterized the vascular specific transporter OsNPF2.2. Functional analysis using cDNA-injected Xenopus laevis oocytes revealed that OsNPF2.2 is a low-affinity, pH-dependent nitrate transporter. Use of a green fluorescent protein tagged OsNPF2.2 showed that the transporter is located in the plasma membrane in the rice protoplast. Expression analysis showed that OsNPF2.2 is nitrate inducible and is mainly expressed in parenchyma cells around the xylem. Disruption of OsNPF2.2 increased nitrate concentration in the shoot xylem exudate when nitrate was supplied after a deprivation period; this result suggests that OsNPF2.2 may participate in unloading nitrate from the xylem. Under steady-state nitrate supply, the osnpf2.2 mutants maintained high levels of nitrate in the roots and low shoot:root nitrate ratios; this observation suggests that OsNPF2.2 is involved in root-to-shoot nitrate transport. Mutation of OsNPF2.2 also caused abnormal vasculature and retarded plant growth and development. Our findings demonstrate that OsNPF2.2 can unload nitrate from the xylem to affect the root-to-shoot nitrate transport and plant development. PMID:25923512

  7. Vasodilator Therapy: Nitrates and Nicorandil.

    Science.gov (United States)

    Tarkin, Jason M; Kaski, Juan Carlos

    2016-08-01

    Nitrates have been used to treat symptoms of chronic stable angina for over 135 years. These drugs are known to activate nitric oxide (NO)-cyclic guanosine-3',-5'-monophasphate (cGMP) signaling pathways underlying vascular smooth muscle cell relaxation, albeit many questions relating to how nitrates work at the cellular level remain unanswered. Physiologically, the anti-angina effects of nitrates are mostly due to peripheral venous dilatation leading to reduction in preload and therefore left ventricular wall stress, and, to a lesser extent, epicardial coronary artery dilatation and lowering of systemic blood pressure. By counteracting ischemic mechanisms, short-acting nitrates offer rapid relief following an angina attack. Long-acting nitrates, used commonly for angina prophylaxis are recommended second-line, after beta-blockers and calcium channel antagonists. Nicorandil is a balanced vasodilator that acts as both NO donor and arterial K(+) ATP channel opener. Nicorandil might also exhibit cardioprotective properties via mitochondrial ischemic preconditioning. While nitrates and nicorandil are effective pharmacological agents for prevention of angina symptoms, when prescribing these drugs it is important to consider that unwanted and poorly tolerated hemodynamic side-effects such as headache and orthostatic hypotension can often occur owing to systemic vasodilatation. It is also necessary to ensure that a dosing regime is followed that avoids nitrate tolerance, which not only results in loss of drug efficacy, but might also cause endothelial dysfunction and increase long-term cardiovascular risk. Here we provide an update on the pharmacological management of chronic stable angina using nitrates and nicorandil.

  8. Electrochemical determination of nitrate with nitrate reductase-immobilized electrodes under ambient air.

    Science.gov (United States)

    Quan, De; Shim, Jun Ho; Kim, Jong Dae; Park, Hyung Soo; Cha, Geun Sig; Nam, Hakhyun

    2005-07-15

    Nitrate monitoring biosensors were prepared by immobilizing nitrate reductase derived from yeast on a glassy carbon electrode (GCE, d = 3 mm) or screen-printed carbon paste electrode (SPCE, d = 3 mm) using a polymer (poly(vinyl alcohol)) entrapment method. The sensor could directly determine the nitrate in an unpurged aqueous solution with the aid of an appropriate oxygen scavenger: the nitrate reduction reaction driven by the enzyme and an electron-transfer mediator, methyl viologen, at -0.85 V (GCE vs Ag/AgCl) or at -0.90 V (SPCE vs Ag/AgCl) exhibited no oxygen interference in a sulfite-added solution. The electroanalytical properties of optimized biosensors were measured: the sensitivity, linear response range, and detection limit of the sensors based on GCE were 7.3 nA/microM, 15-300 microM (r2 = 0.995), and 4.1 microM (S/N = 3), respectively, and those of SPCE were 5.5 nA/microM, 15-250 microM (r2 = 0.996), and 5.5 microM (S/N = 3), respectively. The disposable SPCE-based biosensor with a built-in well- or capillary-type sample cell provided high sensor-to-sensor reproducibility (RSD sensor system was demonstrated by determining nitrate in real samples.

  9. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  10. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  11. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species.

    Science.gov (United States)

    Levy, Jacqueline L; Angel, Brad M; Stauber, Jennifer L; Poon, Wing L; Simpson, Stuart L; Cheng, Shuk Han; Jolley, Dianne F

    2008-08-29

    Although it has been well established that different species of marine algae have different sensitivities to metals, our understanding of the physiological and biochemical basis for these differences is limited. This study investigated copper adsorption and internalisation in three algal species with differing sensitivities to copper. The diatom Phaeodactylum tricornutum was particularly sensitive to copper, with a 72-h IC50 (concentration of copper to inhibit growth rate by 50%) of 8.0 microg Cu L(-1), compared to the green algae Tetraselmis sp. (72-h IC50 47 microg Cu L(-1)) and Dunaliella tertiolecta (72-h IC50 530 microg Cu L(-1)). At these IC50 concentrations, Tetraselmis sp. had much higher intracellular copper (1.97+/-0.01 x 10(-13)g Cu cell(-1)) than P. tricornutum (0.23+/-0.19 x 10(-13)g Cu cell(-1)) and D. tertiolecta (0.59+/-0.05 x 10(-13)g Cu cell(-1)), suggesting that Tetraselmis sp. effectively detoxifies copper within the cell. By contrast, at the same external copper concentration (50 microg L(-1)), D. tertiolecta appears to better exclude copper than Tetraselmis sp. by having a slower copper internalisation rate and lower internal copper concentrations at equivalent extracellular concentrations. The results suggest that the use of internal copper concentrations and net uptake rates alone cannot explain differences in species-sensitivity for different algal species. Model prediction of copper toxicity to marine biota and understanding fundamental differences in species-sensitivity will require, not just an understanding of water quality parameters and copper-cell binding, but also further knowledge of cellular detoxification mechanisms.

  12. Nitration Study of Cyclic Ladder Polyphenylsilsesquioxane

    Directory of Open Access Journals (Sweden)

    LIANG Jia-xiang

    2017-05-01

    Full Text Available Several nitration reagents including fuming nitric acid, HNO3-H2SO4, KNO3-H2SO4, HNO3-KNO3, CH3COOH-KNO3, (CH3CO2O-HNO3 were used to nitrate cyclic ladder polyphenylsilsesquioxane (CL-PPSQ in different conditions in order to enhance the compatibility of the CL-PPSQ in polymers, the NO2-PPSQ was obtained. FTIR, element analysis, GPC, TGA and 1H NMR were used to characterize the structures of the nitrated products. The results show that the nitrating abilities of the fuming nitric acid, HNO3-H2SO4 and KNO3-H2SO4 are very strong. Many nitro groups can be linked with phenyl groups in CL-PPSQ, but with low molecular mass, fracture occurs in siloxane segment. However, the Mn of the product NO2-PPSQ sharply drops by 50% compared with that of CL-PPSQ, so the nitration reagents can break the cyclic structure of CL-PPSQ. The nitrating reagents of HNO3-KNO3 and CH3COOH-KNO3 have no nitration effects on CL-PPSQ. At last, NO2-CL-PPSQ was prepared using (CH3CO2O-HNO3 because of the moderate nitration process and ability. The cyclic structure of PPSQ is remained, although the number of —NO2 group is not too much. At the same time, the nitration mechanism using different nitration reagents was analyzed. A certain amount of NO2+, which is a kind of activator owning strong nitration ability, can be found in the fuming nitric acid and H2SO4-HNO3(KNO3 systems. As to the (CH3CO2O-HNO3 system, the main activator is CH3COONO2.

  13. Nitrate removal from alkaline high nitrate effluent by in situ generation of hydrogen using zinc dust

    International Nuclear Information System (INIS)

    Rajagopal, S.; Chitra, S.; Paul, Biplob

    2016-01-01

    Alkaline radioactive low level waste generated in Nuclear Fuel Cycle contains substantial amount of nitrate and needs to be treated to meet Central Pollution Control Board discharge limits of 90 mg/L in marine coastal area. Several denitrification methods like chemical treatment, electrochemical reduction, biological denitrification, ion exchange, reverse osmosis, photochemical reduction etc are followed for removal of nitrate. In effluent treatment plants where chemical treatment is carried out, chemical denitrification can be easily adapted without any additional set up. Reducing agents like zinc and aluminum are suitable for reducing nitrate in alkaline solution. Study on denitrification with zinc dust was taken up in this work. Not much work has been done with zinc dust on reduction of nitrate to nitrogen in alkaline waste with high nitrate content. In the present work, nitrate is reduced by nascent hydrogen generated in situ, caused by reaction between zinc dust and sodium hydroxide

  14. Continuous flow nitration in miniaturized devices

    Directory of Open Access Journals (Sweden)

    Amol A. Kulkarni

    2014-02-01

    Full Text Available This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed.

  15. Nitrate photolysis in salty snow

    Science.gov (United States)

    Donaldson, D. J.; Morenz, K.; Shi, Q.; Murphy, J. G.

    2016-12-01

    Nitrate photolysis from snow can have a significant impact on the oxidative capacity of the local atmosphere, but the factors affecting the release of gas phase products are not well understood. Here, we report the first systematic study of the amounts of NO, NO2, and total nitrogen oxides (NOy) emitted from illuminated snow samples as a function of both nitrate and total salt (NaCl and Instant Ocean) concentration. We show that the release of nitrogen oxides to the gas phase is directly related to the expected nitrate concentration in the brine at the surface of the snow crystals, increasing to a plateau value with increasing nitrate, and generally decreasing with increasing NaCl or Instant Ocean (I.O.). In frozen mixed nitrate (25 mM) - salt (0-500 mM) solutions, there is an increase in gas phase NO2 seen at low added salt amounts: NO2 production is enhanced by 35% at low prefreezing [NaCl] and by 70% at similar prefreezing [I.O.]. Raman microscopy of frozen nitrate-salt solutions shows evidence of stronger nitrate exclusion to the air interface in the presence of I.O. than with added NaCl. The enhancement in nitrogen oxides emission in the presence of salts may prove to be important to the atmospheric oxidative capacity in polar regions.

  16. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.

    Science.gov (United States)

    Samuelsson, M O

    1985-10-01

    The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sodium thioglycolate. When grown on tryptic soy broth, the production of nitrous oxide paralleled growth. In the same medium, but with sodium thioglycolate, nitrous oxide was first produced during growth and then consumed. Acetylene caused the nitrous oxide to accumulate. These results and the mass balance calculations for different nitrogen components indicate that P. putrefaciens has the capacity to dissimilate nitrate to ammonium as well as to dinitrogen gas and nitrous oxide (denitrification). The dissimilatory pathway to ammonium dominates except when sodium thioglycolate is added to the medium.

  17. Application of infrared spectroscopy for study of chemical bonds in complexes of rare earth nitrates with alkylammonium nitrates

    International Nuclear Information System (INIS)

    Klimov, V.D.; Chudinov, Eh.G.

    1974-01-01

    The IR absorption spectra for the tri-n-octylamine, methyl-di-n-octylamine, their nitrates and complexes with the rare element nitrates are obtained. The IR spectra analysis of the complexes has suggested that the degree of covalent character bond of a nitrate with a metal grows with the atomic number of the element. Based on the comparison of the obtained data with those available in literature for various rare-earth complexes a conclusion is made that the bond character of a metal with nitrate groups is influenced by all ligands constituting the inner coordinating sphere. As the donor capacity of a ligand grows the covalent character of the metal-nitrate bond is enhanced. The replacement of the outer-sphere cations (trioctylammonium or methyldioctylammonium) only slightly affects the bond character of a metal with the nitrate group. The distribution coefficients in the rare-earth series are shown to decrease as the electrostatic part in the metal-nitrate declines. The phenomenon is attributed to the competition between nitrate and water for the metal bond as concurrently with the intensification of metal-nitrate covalent bond in the organic phase the strength of metal hydrates in aqueous phase grows much faster. (author)

  18. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    Science.gov (United States)

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  19. Nitrate analogs as attractants for soybean cyst nematode.

    Science.gov (United States)

    Hosoi, Akito; Katsuyama, Tsutomu; Sasaki, Yasuyuki; Kondo, Tatsuhiko; Yajima, Shunsuke; Ito, Shinsaku

    2017-08-01

    Soybean cyst nematode (SCN) Heterodera glycines Ichinohe, a plant parasite, is one of the most serious pests of soybean. In this paper, we report that SCN is attracted to nitrate and its analogs. We performed attraction assays to screen for novel attractants for SCN and found that nitrates were attractants for SCN and SCN recognized nitrate gradients. However, attraction of SCN to nitrates was not observed on agar containing nitrate. To further elucidate the attraction mechanism in SCN, we performed attraction assays using nitrate analogs ([Formula: see text], [Formula: see text], [Formula: see text]). SCN was attracted to all nitrate analogs; however, attraction of SCN to nitrate analogs was not observed on agar containing nitrate. In contrast, SCN was attracted to azuki root, irrespective of presence or absence of nitrate in agar media. Our results suggest that the attraction mechanisms differ between plant-derived attractant and nitrate.

  20. Glucose Elevates NITRATE TRANSPORTER2.1 Protein Levels and Nitrate Transport Activity Independently of Its HEXOKINASE1-Mediated Stimulation of NITRATE TRANSPORTER2.1 Expression1[W][OPEN

    Science.gov (United States)

    de Jong, Femke; Thodey, Kate; Lejay, Laurence V.; Bevan, Michael W.

    2014-01-01

    Mineral nutrient uptake and assimilation is closely coordinated with the production of photosynthate to supply nutrients for growth. In Arabidopsis (Arabidopsis thaliana), nitrate uptake from the soil is mediated by genes encoding high- and low-affinity transporters that are transcriptionally regulated by both nitrate and photosynthate availability. In this study, we have studied the interactions of nitrate and glucose (Glc) on gene expression, nitrate transport, and growth using glucose-insensitive2-1 (gin2-1), which is defective in sugar responses. We confirm and extend previous work by showing that HEXOKINASE1-mediated oxidative pentose phosphate pathway (OPPP) metabolism is required for Glc-mediated NITRATE TRANSPORTER2.1 (NRT2.1) expression. Treatment with pyruvate and shikimate, two products derived from intermediates of the OPPP that are destined for amino acid production, restores wild-type levels of NRT2.1 expression, suggesting that metabolites derived from OPPP metabolism can, together with Glc, directly stimulate high levels of NRT2.1 expression. Nitrate-mediated NRT2.1 expression is not influenced by gin2-1, showing that Glc does not influence NRT2.1 expression through nitrate-mediated mechanisms. We also show that Glc stimulates NRT2.1 protein levels and transport activity independently of its HEXOKINASE1-mediated stimulation of NRT2.1 expression, demonstrating another possible posttranscriptional mechanism influencing nitrate uptake. In gin2-1 plants, nitrate-responsive biomass growth was strongly reduced, showing that the supply of OPPP metabolites is essential for assimilating nitrate for growth. PMID:24272701

  1. Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data.

    Science.gov (United States)

    Durairaj, Poornima; Sarangi, Ranjit Kumar; Ramalingam, Shanthi; Thirunavukarassu, Thangaradjou; Chauhan, Prakash

    2015-04-01

    In situ datasets of nitrate, sea surface temperature (SST), and chlorophyll a (chl a) collected during the monthly coastal samplings and organized cruises along the Tamilnadu and Andhra Pradesh coast between 2009 and 2013 were used to develop seasonal nitrate algorithms. The nitrate algorithms have been built up based on the three-dimensional regressions between SST, chl a, and nitrate in situ data using linear, Gaussian, Lorentzian, and paraboloid function fittings. Among these four functions, paraboloid was found to be better with the highest co-efficient of determination (postmonsoon: R2=0.711, n=357; summer: R2=0.635, n=302; premonsoon: R2=0.829, n=249; and monsoon: R2=0.692, n=272) for all seasons. Based on these fittings, seasonal nitrate images were generated using the concurrent satellite data of SST from Moderate Resolution Imaging Spectroradiometer (MODIS) and chlorophyll (chl) from Ocean Color Monitor (OCM-2) and MODIS. The best retrieval of modeled nitrate (R2=0.527, root mean square error (RMSE)=3.72, and mean normalized bias (MNB)=0.821) was observed for the postmonsoon season due to the better retrieval of both SST MODIS (28 February 2012, R2=0.651, RMSE=2.037, and MNB=0.068) and chl OCM-2 (R2=0.534, RMSE=0.317, and MNB=0.27). Present results confirm that the chl OCM-2 and SST MODIS retrieve nitrate well than the MODIS-derived chl and SST largely due to the better retrieval of chl by OCM-2 than MODIS.

  2. (E)-3-(2-Alkyl-10H-phenothiazin-3-yl)-1-arylprop-2-en-1-ones: Preparative, IR, NMR and DFT study on their substituent-dependent reactivity in hydrazinolysis and sonication-assisted oxidation with copper(II)nitrate.

    Science.gov (United States)

    Găină, Luiza; Csámpai, Antal; Túrós, György; Lovász, Tamás; Zsoldos-Mády, Virág; Silberg, Ioan A; Sohár, Pál

    2006-12-07

    A series of novel 3(5)-aryl/ferrocenyl-5(3)-phenothiazinylpyrazoles and pyrazolines were obtained by substituent-dependent regioselective condensation of the corresponding (E)-3-(2-alkyl-10H-phenothiazin-3-yl)-1-aryl/ferrocenylprop-2-en-1-one with hydrazine or methylhydrazine in acetic acid. The different propensity of the primary formed beta-hydrazino adducts to undergo competitive retro-Mannich reaction was interpreted in terms of tautomerisation equilibrium constants calculated by DFT using a solvent model. The regioselectivity of the cyclisation reactions with methylhydrazine and the substituent-dependent redox properties of pyrazolines were also rationalized by comparative DFT calculations performed for simplified model molecules. On the effect of ultrasound-promoted oxidation with copper(II)nitrate phenothiazine-containing pyrazolines, enones and oxo-compounds were selectively transformed into sulfoxides. Only one sulfoxide enone was partially converted into an oxirane derivative. The structure of the novel products was determined by IR and NMR spectroscopy including COSY, HSQC, HMBC and DNOE measurements.

  3. Bio nitrate Project: a new technology for water nitrate elimination by means of ionic exchange resins

    International Nuclear Information System (INIS)

    Arellano Ortiz, J.

    2009-01-01

    The use of ion exchange resins for nitrate elimination from water generates a waste containing a sodium chloride mixture plus the retained nitrates. this waste must be correctly disposed. In this project, the resin ionic form is modified to be regenerated with other compounds, different from the common salt, which are interesting because of the presence of mineral nutrition. So, with Bio nitrate Project, nitrates are recovered and the regeneration waste is apt to be use as fertilizer, for agricultural uses, or as complementary contribution of nutrients in biological water treatment. (Author) 27 refs.

  4. Preparation of CuAlO2 Thin Films by Sol-Gel Method Using Nitrate Solution Dip-Coating

    Directory of Open Access Journals (Sweden)

    Ehara Takashi

    2016-01-01

    Full Text Available CuAlO2 thin films are prepared by sol-gel dip-coating followed by annealing in nitrogen atmosphere using copper nitrate and aluminum nitrate as metal source materials. X-ray diffraction (XRD patterns show (003, (006 and (009 oriented peaks of CuAlO2 at annealing temperature of 800 – 1000°C. This result indicates that the CuAlO2 films prepared in the present work are c-axis oriented. XRD peak intensity increase with annealing temperature and becomes maximum at 850°C. The CuAlO2 XRD peak decreased at annealing temperature of 900°C with appearance of a peak of CuO, and then increased again with annealing temperature until 1000 °C. The films have bandgap of 3.4 eV at annealing temperature of 850°C in which the transparency becomes the highest. At the annealing temperature of 850°C, scanning electron microscope (SEM observation reveals that the films are consist of amorphous fraction and microcrystalline CuAlO2 fraction.

  5. Electrical conduction in composites containing copper core-copper

    Indian Academy of Sciences (India)

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles ...

  6. Impact of ammonium nitrate and sodium nitrate on tadpoles of Alytes obstetricans.

    Science.gov (United States)

    Garriga, Núria; Montori, A; Llorente, G A

    2017-07-01

    The presence of pesticides, herbicides and fertilisers negatively affect aquatic communities in general, and particularly amphibians in their larval phase, even though sensitivity to pollutants is highly variable among species. The Llobregat Delta (Barcelona, Spain) has experienced a decline of amphibian populations, possibly related to the reduction in water quality due to the high levels of farming activity, but also to habitat loss and alteration. We studied the effects of increasing ammonium nitrate and sodium nitrate levels on the survival and growth rate of Alytes obstetricans tadpoles under experimental conditions. We exposed larvae to increasing concentrations of nitrate and ammonium for 14 days and then exposed them to water without pollutants for a further 14 days. Only the higher concentrations of ammonium (>33.75 mg/L) caused larval mortality. The growth rate of larvae was reduced at ≥22.5 mg/L NH 4 + , although individuals recovered and even increased their growth rate once exposure to the pollutant ended. The effect of nitrate on growth rate was detected at ≥80 mg/L concentrations, and the growth rate reduction in tadpoles was even observed during the post-exposure phase. The concentrations of ammonium with adverse effects on larvae are within the range levels found in the study area, while the nitrate concentrations with some adverse effect are close to the upper range limit of current concentrations in the study area. Therefore, only the presence of ammonium in the study area is likely to be considered of concern for the population of this species, even though the presence of nitrate could cause some sublethal effects. These negative effects could have an impact on population dynamics, which in this species is highly sensitive to larval mortality due to its small clutch size and prolonged larval period compared to other anuran amphibians.

  7. Reagent conditions of the flotation of copper, copper - molybdenum and copper -zinc ores in foreing countries

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1983-01-01

    Reagents-collectors and frothers, used abroad in reagent regimes of flotation of copper, copper-molybdenum and copper zinc ores, have been considered. Xanthogenates, aerofloats, xanthogenformiates, thionocarbamates are mainly used as reagents-collectors. Methylizobutylcarbinol and Daufros are used as reagents-frothers

  8. Characterization of copper-zinc mixed oxide system in relation to different precursor structure and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Porta, P; De Rossi, S; Ferraris, G [Centro del CNR su ' Struttura e Attivia Catalitica di Sistemi di Ossidi' (SACSO), Rome (Italy); Pompa, F [ENEA, TIB Scienza dei Materiali, Rome (Italy)

    1991-03-01

    Hydroxycarbonate and hydroxynitrate precursors of CuO-ZnO catalysts (Cu/Zn atomic ratio=67/33) have been prepared by two different methods; the precursor obtained by precipitation at 333 K and constant pH=8 from mixed nitrate solution with excess of sodium bicarbonate consisted of zincian malachite and aurichalcite, while that obtained by addition of sodium carbonate solution to Cu-Zn nitrate solution is essentially copper hydroxynitrate plus some amount of aurichalcite. By thermal decomposition at 623 K both types of precursor gave a mixture of CuO and ZnO. The mixed oxides were then treated at 873, 1073 and 1273 K in air. X-ray diffraction, diffuse reflectance spectroscopy, scanning electron microscopy and surface area determination were used to characterize the mixed oxide systems. The precursor containing zincian malachite plus aurichalcite, after calcination at 623 K gave rise to well dispersed and much smaller particles of CuO and ZnO than the precursor containing copper hydroxynitrate plus aurichalcite. No Cu{sup 2+} in solid solution in the ZnO zincite structure Zn{sup 2+} in the CuO tenorite lattice were detected by reflectance spectroscopy up to 873 K; the presence of tetrahedral copper (Cu{sub x}Zn{sub 1-x}O solid solution formation at least at the surface) was evident only in samples calcined at temperatures higher than 1073 K. X-ray diffraction analysis for lattice parameter determination showed that only for samples treated at 1273 K both Cu{sub x}Zn{sub 1-x}O and Zn{sub y}Cu{sub 1-y}O solid solution formations are detectable. An unexpected volume decrease of Zn{sub y}Cu{sub 1-y}O with respect to pure CuO was revealed; the introduction of zinc in the tenorite structure probably changes the local metal symmetry from nearly square planar towards octahedral, producing an overall less distorted and more compact structure. (orig.).

  9. Sustainable nitrate-contaminated water treatment using multi cycle ion-exchange/bioregeneration of nitrate selective resin.

    Science.gov (United States)

    Ebrahimi, Shelir; Roberts, Deborah J

    2013-11-15

    The sustainability of ion-exchange treatment processes using high capacity single use resins to remove nitrate from contaminated drinking water can be achieved by regenerating the exhausted resin and reusing it multiple times. In this study, multi cycle loading and bioregeneration of tributylamine strong base anion (SBA) exchange resin was studied. After each cycle of exhaustion, biological regeneration of the resin was performed using a salt-tolerant, nitrate-perchlorate-reducing culture for 48 h. The resin was enclosed in a membrane to avoid direct contact of the resin with the culture. The results show that the culture was capable of regenerating the resin and allowing the resin to be used in multiple cycles. The concentrations of nitrate in the samples reached a peak in first 0.5-1h after placing the resin in medium because of desorption of nitrate from resin with desorption rate of 0.099 ± 0.003 hr(-1). After this time, since microorganisms began to degrade the nitrate in the aqueous phase, the nitrate concentration was generally non-detectable after 10h. The average of calculated specific degradation rate of nitrate was -0.015 mg NO3(-)/mg VSS h. Applying 6 cycles of resin exhaustion/regeneration shows resin can be used for 4 cycles without a loss of capacity, after 6 cycles only 6% of the capacity was lost. This is the first published research to examine the direct regeneration of a resin enclosed in a membrane, to allow reuse without any disinfection or cleaning procedures. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  11. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway.

    Science.gov (United States)

    Lidder, Satnam; Webb, Andrew J

    2013-03-01

    The discovery that dietary (inorganic) nitrate has important vascular effects came from the relatively recent realization of the 'nitrate-nitrite-nitric oxide (NO) pathway'. Dietary nitrate has been demonstrated to have a range of beneficial vascular effects, including reducing blood pressure, inhibiting platelet aggregation, preserving or improving endothelial dysfunction, enhancing exercise performance in healthy individuals and patients with peripheral arterial disease. Pre-clinical studies with nitrate or nitrite also show the potential to protect against ischaemia-reperfusion injury and reduce arterial stiffness, inflammation and intimal thickness. However, there is a need for good evidence for hard endpoints beyond epidemiological studies. Whilst these suggest reduction in cardiovascular risk with diets high in nitrate-rich vegetables (such as a Mediterranean diet), others have suggested possible small positive and negative associations with dietary nitrate and cancer, but these remain unproven. Interactions with other nutrients, such as vitamin C, polyphenols and fatty acids may enhance or inhibit these effects. In order to provide simple guidance on nitrate intake from different vegetables, we have developed the Nitrate 'Veg-Table' with 'Nitrate Units' [each unit being 1 mmol of nitrate (62 mg)] to achieve a nitrate intake that is likely to be sufficient to derive benefit, but also to minimize the risk of potential side effects from excessive ingestion, given the current available evidence. The lack of data concerning the long term effects of dietary nitrate is a limitation, and this will need to be addressed in future trials. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  12. Nitrate contamination of groundwater and its countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, Hisayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The inevitable increases of food production and energy consumption with an increase in world population become main causes of an increase of nitrate load to the environment. Although nitrogen is essential for the growth of animal and plant as a constituent element of protein, excessive nitrate load to the environment contaminates groundwater resources used as drinking water and leads to seriously adverse effects on the health of man and livestock. In order to clarify the problem of nitrate contamination of groundwater and search a new trend of technology development from the viewpoint of environment remediation and protection, the present paper has reviewed adverse effects of nitrate on human health, the actual state of nitrogen cycle, several kinds of nitrate sources, measures for reducing nitrate level, etc. (author)

  13. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color...

  14. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and...

  15. The effect of natural and anthropogenic factors on sorption of copper in chernozem

    Science.gov (United States)

    Bauer, Tatiana; Minkina, Tatiana; Mandzhieva, Saglara; Pinskii, David; Linnik, Vitaly; Sushkova, Svetlana

    2016-04-01

    The aim of this work was to study the effect of the attendant anions and particle-size distribution on the adsorption of copper by ordinary chernozem. Solutions of HM nitrates, acetates, chlorides, and sulfates were used to study the effect of the chemical composition of added copper salts on the adsorption of copper by an ordinary chernozem. Samples of the soil sieved through a 1-mm sieve in the natural ionic form and soil fraction with different particle size (clay - the particle with size chernozem from acetate solutions is described by the Langmuir equation: Cads = C∞ÊLC / (1 + ÊLC), (3) where Cadsis the content of the adsorbed cations, mM/kg soil;C∞ is the maximum adsorption of the HM, mM/kg soil; ÊL is the affinity constant, L/mM; C is the concentration of the HM in the equilibrium solution, mM/L. According to the values of KH, the binding strength of the copper cations adsorbed from different salt solutions decreases in the series: Cu(Ac)2(1880,5± 76,2) > CuCl2(1442,8±113,5) > Cu(NO3)2(911,4 ± 31,1) >> CuSO4(165,3 ± 12,9). Thus, copper is most strongly adsorbed from the acetate solution and least strongly from the sulfate solution. The adsorption of copper by clay and physical clay fractions from the ordinary chernozem was of limited character and followed the (3) equation. In the particle-size fractions separated from the soils, the concentrations of copper decreased with the decreasing particle size. The values of ÊL and C∞characterizing the HM adsorption by the chernozem and its particle-size fractions formed the following sequence: clay (80,20±20,29 and 28,45±0,46 > physical clay (58,20±14,54 and 22,15±1,22) > entire soil (38,80±12,33 and 17,58±3,038). This work was supported by the Russian Ministry of Education and Science, project no. 5.885.2014/K, Russian Foundation for Basic Research, projects no. 14-05-00586 À

  16. The nitrate time bomb : a numerical way to investigate nitrate storage and lag time in the unsaturated zone

    OpenAIRE

    Wang, L.; Butcher, A.S.; Stuart, M.E.; Gooddy, D.C.; Bloomfield, J.P.

    2013-01-01

    Nitrate pollution in groundwater, which is mainly from agricultural activities, remains an international problem. It threatens the environment, economics and human health. There is a rising trend in nitrate concentrations in many UK groundwater bodies. Research has shown it can take decades for leached nitrate from the soil to discharge into groundwater and surface water due to the ‘store’ of nitrate and its potentially long travel time in the unsaturated and satura...

  17. A comparison of organic and inorganic nitrates/nitrites.

    Science.gov (United States)

    Omar, Sami A; Artime, Esther; Webb, Andrew J

    2012-05-15

    Although both organic and inorganic nitrates/nitrites mediate their principal effects via nitric oxide, there are many important differences. Inorganic nitrate and nitrite have simple ionic structures and are produced endogenously and are present in the diet, whereas their organic counterparts are far more complex, and, with the exception of ethyl nitrite, are all medicinally synthesised products. These chemical differences underlie the differences in pharmacokinetic properties allowing for different modalities of administration, particularly of organic nitrates, due to the differences in their bioavailability and metabolic profiles. Whilst the enterosalivary circulation is a key pathway for orally ingested inorganic nitrate, preventing an abrupt effect or toxic levels of nitrite and prolonging the effects, this is not used by organic nitrates. The pharmacodynamic differences are even greater; while organic nitrates have potent acute effects causing vasodilation, inorganic nitrite's effects are more subtle and dependent on certain conditions. However, in chronic use, organic nitrates are considerably limited by the development of tolerance and endothelial dysfunction, whereas inorganic nitrate/nitrite may compensate for diminished endothelial function, and tolerance has not been reported. Also, while inorganic nitrate/nitrite has important cytoprotective effects against ischaemia-reperfusion injury, continuous use of organic nitrates may increase injury. While there are concerns that inorganic nitrate/nitrite may induce carcinogenesis, direct evidence of this in humans is lacking. While organic nitrates may continue to dominate the therapeutic arena, this may well change with the increasing recognition of their limitations, and ongoing discovery of beneficial effects and specific advantages of inorganic nitrate/nitrite. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. 21 CFR 172.160 - Potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a curing...

  19. Genetic basis for nitrate resistance in Desulfovibrio strains

    Directory of Open Access Journals (Sweden)

    Hannah eKorte

    2014-04-01

    Full Text Available Nitrate is an inhibitor of sulfate-reducing bacteria (SRB. In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702, as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605 that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance.

  20. Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region

    International Nuclear Information System (INIS)

    Blasco, D.; MacIsaac, J.J.; Packard, T.T.; Dugdale, R.C.

    1984-01-01

    Nitrate reductase (NR) activity and 15 NO 3 - uptake in phytoplankton were compared under different environmental conditions on two cruises in the upwelling region off Peru. The NR activity and NO 3 - uptake rates responded differently to light and nutrients and the differences led to variations in the uptake: reductase ratio. Analysis of these variations suggests that the re-equilibration time of the two processes in response to environmental perturbation is an important source of variability. The nitrate uptake system responds faster than the nitrate reductase system. Considering these differences in response time the basic differences in the two processes, and the differences in their measurement, the authors conclude that the Nr activity measures the current nitrate-reducing potential, which reflects NO 3 - assimilation before the sampling time, while 15 NO 3 - uptake measures NO 3 - assimilation in the 6-h period following sampling

  1. Nitrate Removal from Ground Water: A Review

    Directory of Open Access Journals (Sweden)

    Archna

    2012-01-01

    Full Text Available Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion exchange. This paper reviews the developments in the field of nitrate removal processes which can be effectively used for denitrifying ground water as well as industrial water.

  2. The Nitrate/(Per)Chlorate Relationship on Mars

    Science.gov (United States)

    Stern, Jennifer C.; Sutter, Brad; Jackson, W. Andrew; Navarro-Gonzalez, Rafael; McKay, Christopher P.; Ming, Douglas W.; Archer, P. Douglas; Mahaffy, Paul R.

    2017-01-01

    Nitrate was recently detected in Gale Crater sediments on Mars at abundances up to approximately 600 mg/kg, confirming predictions of its presence at abundances consistent with models based on impact-generated nitrate and other sources of fixed nitrogen. Terrestrial Mars analogs, Mars meteorites, and other solar system materials help establish a context for interpreting in situ nitrate measurements on Mars, particularly in relation to other cooccuring salts. We compare the relative abundance of nitrates to oxychlorine (chlorate and/or perchlorate, hereafter (per)chlorate) salts on Mars and Earth. The nitrate/(per)chlorate ratio on Mars is greater than 1, significantly lower than on Earth (nitrate/(per)chlorate greater than 10(exp.3)), suggesting not only the absence of biological activity but also different (per)chlorate formation mechanisms on Mars than on Earth.

  3. Photo-induced changes in nano-copper oxide for optoelectronic applications

    Science.gov (United States)

    Hendi, A. A.; Rashad, M.

    2018-06-01

    Copper oxide (CuO) nanoparticles (NPs) have been prepared using microwave irradiation. A mother material was copper nitrate in distilled water. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for characterizing the NPs powders. Thermal Gravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) were measured for as-prepared CuO NPs. The obtained oxides NPs were confirmed produced during chemical precipitation by these characterizions. These NPs were dropped on top of glass substrate for measuring the optical characterizions. Both linear and nonlinear optical properties of the as-prepared CuO NP films were studied. The optical energy gap of the as-prepared CuO NP films is equal to 3.98 eV, which is higher than that of the bulk material. The effect of ultraviolet (UV) light irradiation on the CuO NP films was investigated at 2 and 5 h for study the photo-induced effect. The optical properties of CuO NP films were measured as a function of these UV irradiation time. The optical constants for as-prepared and irradiated CuO NP films were calculated which reflect the affect of UV irradiation time. As observed from these optical results, a highly forced for optoelectronic applications.

  4. Dietary nitrates, nitrites, and cardiovascular disease.

    Science.gov (United States)

    Hord, Norman G

    2011-12-01

    Dietary nitrate (NO(3)), nitrite (NO(2)), and arginine can serve as sources for production of NO(x) (a diverse group of metabolites including nitric oxide, nitrosothiols, and nitroalkenes) via ultraviolet light exposure to skin, mammalian nitrate/nitrite reductases in tissues, and nitric oxide synthase enzymes, respectively. NO(x) are responsible for the hypotensive, antiplatelet, and cytoprotective effects of dietary nitrates and nitrites. Current regulatory limits on nitrate intakes, based on concerns regarding potential risk of carcinogenicity and methemoglobinemia, are exceeded by normal daily intakes of single foods, such as soya milk and spinach, as well as by some recommended dietary patterns such as the Dietary Approaches to Stop Hypertension diet. This review includes a call for regulatory bodies to consider all available data on the beneficial physiologic roles of nitrate and nitrite in order to derive rational bases for dietary recommendations.

  5. Open-Source Photometric System for Enzymatic Nitrate Quantification.

    Science.gov (United States)

    Wittbrodt, B T; Squires, D A; Walbeck, J; Campbell, E; Campbell, W H; Pearce, J M

    2015-01-01

    Nitrate, the most oxidized form of nitrogen, is regulated to protect people and animals from harmful levels as there is a large over abundance due to anthropogenic factors. Widespread field testing for nitrate could begin to address the nitrate pollution problem, however, the Cadmium Reduction Method, the leading certified method to detect and quantify nitrate, demands the use of a toxic heavy metal. An alternative, the recently proposed Environmental Protection Agency Nitrate Reductase Nitrate-Nitrogen Analysis Method, eliminates this problem but requires an expensive proprietary spectrophotometer. The development of an inexpensive portable, handheld photometer will greatly expedite field nitrate analysis to combat pollution. To accomplish this goal, a methodology for the design, development, and technical validation of an improved open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis Method. This approach is evaluated for its potential to i) eliminate the need for toxic chemicals in water testing for nitrate and nitrite, ii) reduce the cost of equipment to perform this method for measurement for water quality, and iii) make the method easier to carryout in the field. The device is able to perform as well as commercial proprietary systems for less than 15% of the cost for materials. This allows for greater access to the technology and the new, safer nitrate testing technique.

  6. Comparative evaluation of nitrate removal technologies

    International Nuclear Information System (INIS)

    Darbi, A.; Viraraghavan, T.; Butler, R.; Corkal, D.

    2002-01-01

    Due to the extensive application of artificial nitrogen-based fertilizers and animal manure on land, many water agencies face problems of increasing concentrations of nitrate in groundwater. The contamination of groundwater by nitrate may pose a significant public health problem. The threat of methemoglobinemia is well documented and reflected in the U.S. drinking water standard of 10 mg/L as nitrate-nitrogen. Approximately 45% of Saskatchewan's population use groundwater for drinking purposes, out of which, approximately 23% (230,000) are rural residents. The water used is made available from over 48,000 privately owned wells in regions where there is an extensive application of chemical fertilizers. Biological denitrification, ion exchange and reveres osmosis (RO) processes were selected for further study. Field studies were conducted on these processes. The sulfur/limestone autotrophic denitrification (SLAD) process was selected to achieve biological removal of nitrate from groundwater. The feasibility of the system was evaluated under anaerobic conditions. An ion exchange study was conducted using Ionac A554 which is strong anion exchange resins. In the case of groundwater containing low sulfate concentrations, A554 offered high nitrate removal. However, the disposal of regenerant brine can be a problem. A reverse osmosis unit with Filmtec membrane elements (FT30-Element Family) was used in the study on nitrate removal. The unit effluent average nitrate concentration was less than the maximum allowable concentration. (author)

  7. Determination of the total nitrate content of thorium nitrate solution with a selective electrode

    International Nuclear Information System (INIS)

    Wirkner, F.M.

    1979-01-01

    The nitrate content of thorium nitrate solutions is determined with a liquid membrane nitrate selective electrode utilizing the known addition method in 0.1 M potassium fluoride medium as ionic strength adjustor. It is studied the influence of pH and the presence of chloride, sulphate, phosphate, meta-silicate, thorium, rare earths, iron, titanium, uranium and zirconium at the same concentrations as for the aqueous feed solutions in the thorium purification process. The method is tested in synthetic samples and in samples proceeding from nitric dissolutions of thorium hidroxide and thorium oxicarbonate utilized as thorium concentrates to be purified [pt

  8. Nitrate Removal from Ground Water: A Review

    OpenAIRE

    Archna; Sharma, Surinder K.; Sobti, Ranbir Chander

    2012-01-01

    Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion ex...

  9. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  10. Nitrat i drikkevandet og vores sundhed

    DEFF Research Database (Denmark)

    Hansen, Birgitte; Schullehner, Jörg; Sigsgaard, Torben

    2014-01-01

    Nitrat i drikkevandet er uønsket, da det kan påvirke vores sundhed negativt. Den øvre grænse for hvor meget nitrat der tillades i drikkevandet er fastsat i forhold til risikoen for akut forgiftning med nitrit og blå børn-syndromet. Men nitrat i drikkevandet mistænkes også for at være medvirkende...

  11. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects.

    Science.gov (United States)

    Batthyány, Carlos; Bartesaghi, Silvina; Mastrogiovanni, Mauricio; Lima, Analía; Demicheli, Verónica; Radi, Rafael

    2017-03-01

    "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a "tour de force" for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313-328.

  12. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    International Nuclear Information System (INIS)

    Spencer, B.B.

    1995-08-01

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660±0.092 at 25 C, and extraction enthalpy is -5. 46±0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 x 10 6 ±3.56 x 10 4 at 25 C; reaction enthalpy was -9.610±0.594 kcal/mol. Nitration complexation constant is 8.412±0.579, with an enthalpy of -10.72±1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured

  13. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.B.

    1995-08-01

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660{plus_minus}0.092 at 25 C, and extraction enthalpy is -5. 46{plus_minus}0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 {times} 10{sup 6}{plus_minus}3.56 {times} 10{sup 4} at 25 C; reaction enthalpy was -9.610{plus_minus}0.594 kcal/mol. Nitration complexation constant is 8.412{plus_minus}0.579, with an enthalpy of -10.72{plus_minus}1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured.

  14. Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water?

    Science.gov (United States)

    van Grinsven, Hans JM; Ward, Mary H; Benjamin, Nigel; de Kok, Theo M

    2006-01-01

    Several authors have suggested that it is safe to raise the health standard for nitrate in drinking water, and save money on measures associated with nitrate pollution of drinking water resources. The major argument has been that the epidemiologic evidence for acute and chronic health effects related to drinking water nitrate at concentrations near the health standard is inconclusive. With respect to the chronic effects, the argument was motivated by the absence of evidence for adverse health effects related to ingestion of nitrate from dietary sources. An interdisciplinary discussion of these arguments led to three important observations. First, there have been only a few well-designed epidemiologic studies that evaluated ingestion of nitrate in drinking water and risk of specific cancers or adverse reproductive outcomes among potentially susceptible subgroups likely to have elevated endogenous nitrosation. Positive associations have been observed for some but not all health outcomes evaluated. Second, the epidemiologic studies of cancer do not support an association between ingestion of dietary nitrate (vegetables) and an increased risk of cancer, because intake of dietary nitrate is associated with intake of antioxidants and other beneficial phytochemicals. Third, 2–3 % of the population in Western Europe and the US could be exposed to nitrate levels in drinking water exceeding the WHO standard of 50 mg/l nitrate, particularly those living in rural areas. The health losses due to this exposure cannot be estimated. Therefore, we conclude that it is not possible to weigh the costs and benefits from changing the nitrate standard for drinking water and groundwater resources by considering the potential consequences for human health and by considering the potential savings due to reduced costs for nitrate removal and prevention of nitrate pollution. PMID:16989661

  15. Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water?

    Science.gov (United States)

    van Grinsven, Hans J M; Ward, Mary H; Benjamin, Nigel; de Kok, Theo M

    2006-09-21

    Several authors have suggested that it is safe to raise the health standard for nitrate in drinking water, and save money on measures associated with nitrate pollution of drinking water resources. The major argument has been that the epidemiologic evidence for acute and chronic health effects related to drinking water nitrate at concentrations near the health standard is inconclusive. With respect to the chronic effects, the argument was motivated by the absence of evidence for adverse health effects related to ingestion of nitrate from dietary sources. An interdisciplinary discussion of these arguments led to three important observations. First, there have been only a few well-designed epidemiologic studies that evaluated ingestion of nitrate in drinking water and risk of specific cancers or adverse reproductive outcomes among potentially susceptible subgroups likely to have elevated endogenous nitrosation. Positive associations have been observed for some but not all health outcomes evaluated. Second, the epidemiologic studies of cancer do not support an association between ingestion of dietary nitrate (vegetables) and an increased risk of cancer, because intake of dietary nitrate is associated with intake of antioxidants and other beneficial phytochemicals. Third, 2-3 % of the population in Western Europe and the US could be exposed to nitrate levels in drinking water exceeding the WHO standard of 50 mg/l nitrate, particularly those living in rural areas. The health losses due to this exposure cannot be estimated. Therefore, we conclude that it is not possible to weigh the costs and benefits from changing the nitrate standard for drinking water and groundwater resources by considering the potential consequences for human health and by considering the potential savings due to reduced costs for nitrate removal and prevention of nitrate pollution.

  16. Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water?

    Directory of Open Access Journals (Sweden)

    Benjamin Nigel

    2006-09-01

    Full Text Available Abstract Several authors have suggested that it is safe to raise the health standard for nitrate in drinking water, and save money on measures associated with nitrate pollution of drinking water resources. The major argument has been that the epidemiologic evidence for acute and chronic health effects related to drinking water nitrate at concentrations near the health standard is inconclusive. With respect to the chronic effects, the argument was motivated by the absence of evidence for adverse health effects related to ingestion of nitrate from dietary sources. An interdisciplinary discussion of these arguments led to three important observations. First, there have been only a few well-designed epidemiologic studies that evaluated ingestion of nitrate in drinking water and risk of specific cancers or adverse reproductive outcomes among potentially susceptible subgroups likely to have elevated endogenous nitrosation. Positive associations have been observed for some but not all health outcomes evaluated. Second, the epidemiologic studies of cancer do not support an association between ingestion of dietary nitrate (vegetables and an increased risk of cancer, because intake of dietary nitrate is associated with intake of antioxidants and other beneficial phytochemicals. Third, 2–3 % of the population in Western Europe and the US could be exposed to nitrate levels in drinking water exceeding the WHO standard of 50 mg/l nitrate, particularly those living in rural areas. The health losses due to this exposure cannot be estimated. Therefore, we conclude that it is not possible to weigh the costs and benefits from changing the nitrate standard for drinking water and groundwater resources by considering the potential consequences for human health and by considering the potential savings due to reduced costs for nitrate removal and prevention of nitrate pollution.

  17. Management of Nitrate m Groundwater: A Simulation Study

    Directory of Open Access Journals (Sweden)

    M. Ahmed

    2001-01-01

    Full Text Available Agriculture may cause nitrate and other chemicals to enter into groundwater systems. Nitrate in drinking water is considered a health hazard. A study was conducted to assess the extent of nitrate pollution of groundwater caused by agriculture and to evaluate the possibility of using the LEACHN model to manage nitrate entry into groundwater of agricultural areas of Al-Batinah, which is the most important agricultural region of Oman. Groundwater samples were collected and analyzed to assess the problem and to detect possible trends. Soil sampling and analyses were done to demonstrate the difference in the nitrate concentration in agricultural and non-agricultural soils. A questionnaire survey was conducted to gather information on agricultural practices, fertilizer input, and other possible sources of nitrate pollution. Results from the study show that 23% of groundwater samples have a concentration of nitrate-N concentration of 10 mg/l and 34% samples exceed 8 mg/l. Agricultural soils have higher levels of nitrate compared to non- agricultural soils. Results also demonstrate that nitrate levels in groundwater in Al-Batinah are rising. Application of the ‘LEACHN’ model demonstrated its suitability for use as a management tool to reduce nitrate leaching to groundwater by controlling fertilizer and water input.

  18. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  19. Adsorption site of ammonia on copper-exchanged Y-type zeolite under coexisting water vapor. Temperature-programed desorption and infrared adsorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kasaoka, S.; Sasaoka, E.; Shiraga, T.; Ono, Y.

    1978-03-01

    Sodium Y zeolites were copper-exchanged with cupric nitrate in water, in aqueous ammonia, and in aqueous ammonia/ammonium chloride, and calcined at 500/sup 0/C. Temperature-programed desorption and IR spectroscopy showed three types of adsorption sites for 0.1-1.0% ammonia gas from nitrogen containing 0-12% water vapor: physisorption, adsorption as tetraamminocopper(II) on copper(II) sites (type 2 site), and adsorption as ammonium ion on hydroxyl sites (type 3 site). Adsorption on type 2 sites occurred only at high ammonia concentration; desorption occurred around 175/sup 0/C. Type 3 sites consisted of Cu(OH)/sup +/ and Al(OH)/sup +/, adsorbed ammonia from low concentrations, and at temperatures above 200/sup 0/C, were probably the active sites for the reduction of nitric oxide by ammonia.

  20. High dose potassium-nitrate chemical dosimeter

    International Nuclear Information System (INIS)

    Dorda de Cancio, E.M.; Munoz, S.S.

    1982-01-01

    This dosimeter is used to control 10 kGY-order doses (1 Mrad). Nitrate suffers a radiolitic reduction phenomena, which is related to the given dose. The method to use potassium nitrate as dosimeter is described, as well as effects of the temperature of irradiation, pH, nitrate concentration and post-irradiation stability. Nitrate powder was irradiated at a Semi-Industrial Plant, at Centro Atomico Ezeiza, and also in a Gammacell-220 irradiator. The dose rates used were 2,60 and 1,80 KGY/hour, and the given doses varied between 1,0 and 150 KGY. The uncertainty was +-3% in all the range. (author) [es

  1. The Effect of Nitrate Levels and Harvest Times on Fe, Zn, Cu, and K, Concentrations and Nitrate Reductase Activity in Lettuce and Spinach

    Directory of Open Access Journals (Sweden)

    Z. Gheshlaghi

    2015-09-01

    Full Text Available Leafy vegetables are considered as the main sources of nitrate in the human diet. In order to investigate the effect of nitrate levels and harvest times on nitrate accumulation, nitrate reductase activity, concentrations of Fe, Zn, Cu and K in Lettuce and Spinach and their relation to nitrate accumulation in these leafy vegetables, two harvest times (29 and 46 days after transplanting, two vegetable species of lettuce and spinach and two concentrations of nitrate (10 and 20 mM were used in a hydroponics greenhouse experiment with a completely randomized design and 3 replications. Modified Hoagland and Arnon nutrient solutions were used for the experiment. The results indicated that by increasing nitrate concentration of solution, nitrate accumulation in roots and shoots of lettuce and spinach increased significantly (P ≤ 0.05, and the same trend was observed for the nitrate reductase activity in the shoots of the two species. Increasing the nitrate concentrations of solution, reduced the shoot dry weight and the concentration of Fe and Cu in both species, where as it increased the K and Zn concentrations in the shoots of the two species in each both harvest times, the nitrate accumulation increased, but the nitrate reductase activity decreased in the shoots of the two species over the course of the growth. The Concentration of Fe, Cu and K decreased in the shoots of lettuce and the spinach with the time, despite the increase in Zn concentration in the shoots. The results also indicated that increasing nitrate concentrations of solution to the levels greater than the plant capacity for reduction and net uptake of nitrate, leads to the nitrate accumulation in the plants. Nitrate accumulation in plant tissue led to decreases in fresh shoot yield and Fe and Cu concentrations and nitrate reductase activities in both lettuce and spinach.

  2. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column

    Directory of Open Access Journals (Sweden)

    Swarup Biswas

    2016-01-01

    Full Text Available The performance of a laboratory scale upflow anaerobic sludge blanket (UASB reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%, biochemical oxygen demand (BODT (93.98%, chemical oxygen demand (COD (95.59%, total suspended solid (TSS (95.98%, ammonia (80.68%, nitrite (79.71%, nitrate (71.16%, phosphorous (44.77%, total coliform (TC (99.9%, and fecal coliform (FC (99.9% was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM, X-ray fluorescence spectrum (XRF, and Fourier transforms infrared spectroscopy (FTIR. Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.

  3. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column.

    Science.gov (United States)

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater.

  4. Speciation and leachability of copper in mine tailings from porphyry copper mining

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Yianatos, Juan B; Ottosen, Lisbeth M.

    2005-01-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150mgkg^-^1 dry...... matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212@mm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order...... to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles...

  5. Tribological properties of copper-based composites with copper coated NbSe2 and CNT

    International Nuclear Information System (INIS)

    Chen, Beibei; Yang, Jin; Zhang, Qing; Huang, Hong; Li, Hongping; Tang, Hua; Li, Changsheng

    2015-01-01

    Graphical abstract: Morphology of copper coated NbSe 2 and CNT; friction coefficient and wear rate of copper-based composites. - Highlights: • NbSe 2 and CNT were coated with copper layers by the means of electroless plating. • The mechanical and tribological properties of copper composites were studied. • The enhancement mechanisms of copper coated NbSe 2 and CNT were proposed. • Copper–copper coated (12 wt.%NbSe 2 –3 wt.%CNT) composite had the best wear resistance. - Abstract: Copper-based composites with copper coated NbSe 2 and/or CNT were fabricated by the powder metallurgy technique. The morphology and phase composition of copper coated NbSe 2 and carbon nanotube (CNT) were observed using high solution transmission electronic microscope (HRTEM), scanning electronic microscope (SEM equipped with EDS) and X-ray diffraction (XRD). The density, hardness, and bending strength of as-prepared copper-based composites were measured, and their tribological properties were investigated using UMT-2 tester. Results indicated that all copper-based composites showed decreased density and bending strength, but increased hardness in comparison with copper matrix. Besides, the incorporation of copper coated NbSe 2 improved the friction-reducing and anti-wear properties of copper matrix. Addition of copper coated CNT greatly enhanced the mechanical and tribological properties. In particular, when the content of copper coated CNT was 3 wt.%, the corresponding composite exhibited the best tribological properties. This was because NbSe 2 was distributed chaotically in matrix, which greatly improved the friction-reducing property of copper, while CNT with superior mechanical strength enhanced the wear resistance by increasing the load-carrying capacity. More importantly, copper layers coated on NbSe 2 and CNT favored the good interfacial combination between fillers and copper matrix showing beneficial effect for the stresses transferring from matrix to fillers

  6. Nitrate leaching from short-hydroperiod floodplain soils

    Directory of Open Access Journals (Sweden)

    B. Huber

    2012-11-01

    Full Text Available Numerous studies have shown the importance of riparian zones to reduce nitrate (NO3 contamination coming from adjacent agricultural land. Much less is known about nitrogen (N transformations and nitrate fluxes in riparian soils with short hydroperiods (1–3 days of inundation and there is no study that could show whether these soils are a N sink or source. Within a restored section of the Thur River in NE Switzerland, we measured nitrate concentrations in soil solutions as an indicator of the net nitrate production. Samples were collected along a quasi-successional gradient from frequently inundated gravel bars to an alluvial forest, at three different depths (10, 50 and 100 cm over a one-year period. Along this gradient we quantified N input (atmospheric deposition and sedimentation and N output (leaching to create a nitrogen balance and assess the risk of nitrate leaching from the unsaturated soil to the groundwater. Overall, the main factor explaining the differences in nitrate concentrations was the field capacity (FC. In subsoils with high FCs and VWC near FC, high nitrate concentrations were observed, often exceeding the Swiss and EU groundwater quality criterions of 400 and 800 μmol L−1, respectively. High sedimentation rates of river-derived nitrogen led to apparent N retention up to 200 kg N ha−1 yr−1 in the frequently inundated zones. By contrast, in the mature alluvial forest, nitrate leaching exceeded total N input most of the time. As a result of the large soil N pools, high amounts of nitrate were produced by nitrification and up to 94 kg N-NO3 ha−1 yr−1 were leached into the groundwater. Thus, during flooding when water fluxes are high, nitrate from soils can contribute up to 11% to the total nitrate load in groundwater.

  7. Copper and Anesthesia: Clinical Relevance and Management of Copper Related Disorders

    OpenAIRE

    Langley, Adrian; Dameron, Charles T.

    2013-01-01

    Recent research has implicated abnormal copper homeostasis in the underlying pathophysiology of several clinically important disorders, some of which may be encountered by the anesthetist in daily clinical practice. The purpose of this narrative review is to summarize the physiology and pharmacology of copper, the clinical implications of abnormal copper metabolism, and the subsequent influence of altered copper homeostasis on anesthetic management.

  8. CARBON-BASED REACTIVE BARRIER FOR NITRATE ...

    Science.gov (United States)

    Nitrate (NO3-) is a common ground water contaminant related to agricultural activity, waste water disposal, leachate from landfills, septic systems, and industrial processes. This study reports on the performance of a carbon-based permeable reactive barrier (PRB) that was constructed for in-situ bioremediation of a ground water nitrate plume caused by leakage from a swine CAFO (concentrated animal feeding operation) lagoon. The swine CAFO, located in Logan County, Oklahoma, was in operation from 1992-1999. The overall site remediation strategy includes an ammonia recovery trench to intercept ammonia-contaminated ground water and a hay straw PRB which is used to intercept a nitrate plume caused by nitrification of sorbed ammonia. The PRB extends approximately 260 m to intercept the nitrate plume. The depth of the trench averages 6 m and corresponds to the thickness of the surficial saturated zone; the width of the trench is 1.2 m. Detailed quarterly monitoring of the PRB began in March, 2004, about 1 year after construction activities ended. Nitrate concentrations hydraulically upgradient of the PRB have ranged from 23 to 77 mg/L N, from 0 to 3.2 mg/L N in the PRB, and from 0 to 65 mg/L N hydraulically downgradient of the PRB. Nitrate concentrations have generally decreased in downgradient locations with successive monitoring events. Mass balance considerations indicate that nitrate attenuation is dominantly from denitrification but with some component of

  9. Effect of proquinazid and copper hydroxide on homeostasis of anions in winter wheat plants in generative phase of development

    Directory of Open Access Journals (Sweden)

    M. E. Riazanova

    2015-03-01

    nitrate form occur in the period of maximum activity of plants during grain maturation, that is why the increase of free nitrates concentration in all trial series may indicate the remobilization of nitrogen from vegetative organs to caryopsis. Analysis of wheat ear of the 1st trial shows increase in concentrations of free nitrates and phosphates in all trial series which may be explained by intensification of metabolic processes that occur in the ear during grain maturation. Comparison of results of 1st and 2nd trials shows the decrease of Cl concentration in plants of the 2nd trial which can be associated with extension of photosynthetic activity of leaves and participation of element in oxidative phosphorylation, as well as its binding with polypeptides belonging to photolysis complex of water of photosystem II. Thus, application of proquinazid and copper hydroxide at tillering stage increases the productive tillering capacity and enhances the pools of N, P, S free anions in winter wheat plants. These changes can be explained by the effect of fungicides on plant metabolic processes associated with remobilization and transport of elements from flag leaves to the ears during grain maturation. Autumn application of fungicides provides an excellent protection level against powdery mildew of winter wheat plants and creates optimal conditions for plants’ development and wintering. Treatment of plants in spring is highly effective against powdery mildew at tillering-booting stage.

  10. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  11. Evaluating Ecosystem Services for Reducing Groundwater Nitrate Contamination: Nitrate Attenuation in the Unsaturated and Saturated Zones

    Science.gov (United States)

    Wang, J.

    2013-12-01

    Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only

  12. Ion dynamics in moltmolti melkaltal nitrates

    International Nuclear Information System (INIS)

    Kamiyama, Takashi; Nakamura, Yoshio; Shibata, Kaoru; Suzuki, Kenji.

    1993-01-01

    Quasielastic neutron scattering experiments have been performed on simple molten alkali metal nitrates, RbNO 3 and LiNO 3 . The experiments were carried out by the medium resolution inverted geometry spectrometer LAM-40 at KENS neutron scattering facility in Japan. The measured spectra are composed of narrow and broad quasielastic spectra. We assigned that the broad component corresponds to the fast intra-ionic motions in a nitrate ion. From momentum dependence of integrated intensity for this component it is found that the motion of nitrate ions in RbNO 3 melt is mainly the librational one centered C 3 axis on the ion. On the other hand the intra-ionic motion in LiNo 3 is the librational motion cnetered C 3 axis on the nitrate ion which amplitude is smaller than in RbNO 3 melt. This fact shows that the motion of nitrate ions in LiNO 3 is restricted strongly by surrounding cations. (author)

  13. The UK Nitrate Time Bomb (Invited)

    Science.gov (United States)

    Ward, R.; Wang, L.; Stuart, M.; Bloomfield, J.; Gooddy, D.; Lewis, M.; McKenzie, A.

    2013-12-01

    The developed world has benefitted enormously from the intensification of agriculture and the increased availability and use of synthetic fertilizers during the last century. However there has also been unintended adverse impact on the natural environment (water and ecosystems) with nitrate the most significant cause of water pollution and ecosystem damage . Many countries have introduced controls on nitrate, e.g. the European Union's Water Framework and Nitrate Directives, but despite this are continuing to see a serious decline in water quality. The purpose of our research is to investigate and quantify the importance of the unsaturated (vadose) zone pathway and groundwater in contributing to the decline. Understanding nutrient behaviour in the sub-surface environment and, in particular, the time lag between action and improvement is critical to effective management and remediation of nutrient pollution. A readily-transferable process-based model has been used to predict temporal loading of nitrate at the water table across the UK. A time-varying nitrate input function has been developed based on nitrate usage since 1925. Depth to the water table has been calculated from groundwater levels based on regional-scale observations in-filled by interpolated river base levels and vertical unsaturated zone velocities estimated from hydrogeological properties and mapping. The model has been validated using the results of more than 300 unsaturated zone nitrate profiles. Results show that for about 60% of the Chalk - the principal aquifer in the UK - peak nitrate input has yet to reach the water table and concentrations will continue to rise over the next 60 years. The implications are hugely significant especially where environmental objectives must be achieved in much shorter timescales. Current environmental and regulatory management strategies rarely take lag times into account and as a result will be poorly informed, leading to inappropriate controls and conflicts

  14. Knock-down of a tonoplast localized low-affinity nitrate transporter OsNPF7.2 affects rice growth under high nitrate ssupply

    Directory of Open Access Journals (Sweden)

    Rui Hu

    2016-10-01

    Full Text Available The large nitrate transporter 1/peptide transporter family (NPF has been shown to transport diverse substrates, including nitrate, amino acids, peptides, phytohormones, and glucosinolates. However, the rice (Oryza sativa root-specific expressed member OsNPF7.2 has not been characterized. Here, our data show that OsNPF7.2 is a tonoplast localized low-affinity nitrate transporter, and affects rice growth under high nitrate supply. The expression analysis showed that OsNPF7.2 was mainly expressed in the elongation and maturation zones of roots, especially in the root sclerenchyma, cortex and stele. It was also induced by high concentrations of nitrate. Subcellular localization analysis showed that OsNPF7.2 was localized on the tonoplast of large and small vacuoles. Heterogenous expression in Xenopus laevis oocytes suggested that OsNPF7.2 was a low-affinity nitrate transporter. Knock-down of OsNPF7.2 retarded rice growth under high concentrations of nitrate. Therefore, we deduce that OsNPF7.2 plays a role in intracellular allocation of nitrate in roots, and thus influences rice growth under high nitrate supply.

  15. High-nitrate vegetable diet increases plasma nitrate and nitrite concentrations and reduces blood pressure in healthy women.

    Science.gov (United States)

    Ashworth, Ann; Mitchell, Klaus; Blackwell, Jamie R; Vanhatalo, Anni; Jones, Andrew M

    2015-10-01

    Epidemiological studies suggest that green leafy vegetables, which are high in dietary nitrate, are protective against CVD such as stroke. High blood pressure (BP) is a major risk factor for stroke and inorganic nitrate has been shown to reduce BP. The objective of the present study was to test the hypothesis that diets containing high-nitrate (HN) vegetables would increase plasma nitrate and nitrite concentrations and reduce BP in healthy women. A randomized, crossover trial, where participants received HN vegetables (HN diet) or avoided HN vegetables (Control diet) for 1 week. Before and after each intervention, resting BP and plasma nitrate and nitrite concentrations were measured. University of Exeter, UK. Nineteen healthy women (mean age 20 (sd 2) years; mean BMI 22·5 (sd 3·8) kg/m2). The HN diet significantly increased plasma nitrate concentration (before HN diet: mean 24·4 (sd 5·6) µmol/l; after HN diet: mean 61·0 (sd 44·1) µmol/l, Pdiet: mean 98 (sd 91) nmol/l; after HN diet: mean 185 (sd 34) nmol/l, Pdiet. The HN diet significantly reduced resting systolic BP (before HN diet: mean 107 (sd 9) mmHg; after HN diet: mean 103 (sd 6) mmHg, Pdiet (before Control diet: mean 106 (sd 8) mmHg; after Control diet: mean 106 (sd 8) mmHg). Consumption of HN vegetables significantly increased plasma nitrate and nitrite concentrations and reduced BP in normotensive women.

  16. Evidence for a plasma-membrane-bound nitrate reductase involved in nitrate uptake of Chlorella sorokiniana

    Science.gov (United States)

    Tischner, R.; Ward, M. R.; Huffaker, R. C.

    1989-01-01

    Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrate uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.

  17. Ammonium nitrate with 15 wt % potassium nitrate-ethylenediamine dinitrate-nitroguanidine system

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W.; Cady, H.H.

    1981-01-01

    The phase diagram for the ternary system ammonium nitrate(AN) with 15 wt % potassium nitrate(AN:15KN)-ethylenediamine dinitrate(EDD)-nitroguanidine(NQ) has been determined from room temperature to the melting point. The ternary eutectic temperature, measured for a mixture containing 67.24, 25.30, and 7.46 mole % of AN:15KN, EDD, and NQ, respectively, was found to be 98.9/sup 0/C. The binary phase diagrams for the systems AN:15KN-EDD, AN:15KN-NQ, and EDD-NQ were also determined.

  18. Quantifying an aquifer nitrate budget and future nitrate discharge using field data from streambeds and well nests

    Science.gov (United States)

    Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip; Farrell, Kathleen M.; Mitasova, Helena

    2016-11-01

    Novel groundwater sampling (age, flux, and nitrate) carried out beneath a streambed and in wells was used to estimate (1) the current rate of change of nitrate storage, dSNO3/dt, in a contaminated unconfined aquifer, and (2) future [NO3-]FWM (the flow-weighted mean nitrate concentration in groundwater discharge) and fNO3 (the nitrate flux from aquifer to stream). Estimates of dSNO3/dt suggested that at the time of sampling (2013) the nitrate storage in the aquifer was decreasing at an annual rate (mean = -9 mmol/m2yr) equal to about one-tenth the rate of nitrate input by recharge. This is consistent with data showing a slow decrease in the [NO3-] of groundwater recharge in recent years. Regarding future [NO3-]FWM and fNO3, predictions based on well data show an immediate decrease that becomes more rapid after ˜5 years before leveling out in the early 2040s. Predictions based on streambed data generally show an increase in future [NO3-]FWM and fNO3 until the late 2020s, followed by a decrease before leveling out in the 2040s. Differences show the potential value of using information directly from the groundwater—surface water interface to quantify the future impact of groundwater nitrate on surface water quality. The choice of denitrification kinetics was similarly important; compared to zero-order kinetics, a first-order rate law levels out estimates of future [NO3-]FWM and fNO3 (lower peak, higher minimum) as legacy nitrate is flushed from the aquifer. Major fundamental questions about nonpoint-source aquifer contamination can be answered without a complex numerical model or long-term monitoring program.

  19. An updated model for nitrate uptake modelling in plants. I. Functional component: cross-combination of flow–force interpretation of nitrate uptake isotherms, and environmental and in planta regulation of nitrate influx

    Science.gov (United States)

    Le Deunff, Erwan; Malagoli, Philippe

    2014-01-01

    Background and Aims In spite of major breakthroughs in the last three decades in the identification of root nitrate uptake transporters in plants and the associated regulation of nitrate transport activities, a simplified and operational modelling approach for nitrate uptake is still lacking. This is due mainly to the difficulty in linking the various regulations of nitrate transport that act at different levels of time and on different spatial scales. Methods A cross-combination of a Flow–Force approach applied to nitrate influx isotherms and experimentally determined environmental and in planta regulation is used to model nitrate in oilseed rape, Brassica napus. In contrast to ‘Enzyme–Substrate’ interpretations, a Flow–Force modelling approach considers the root as a single catalytic structure and does not infer hypothetical cellular processes among nitrate transporter activities across cellular layers in the mature roots. In addition, this approach accounts for the driving force on ion transport based on the gradient of electrochemical potential, which is more appropriate from a thermodynamic viewpoint. Key Results and Conclusions Use of a Flow–Force formalism on nitrate influx isotherms leads to the development of a new conceptual mechanistic basis to model more accurately N uptake by a winter oilseed rape crop under field conditions during the whole growth cycle. This forms the functional component of a proposed new structure–function mechanistic model of N uptake. PMID:24638820

  20. Copper economy in Chlamydomonas: Prioritized allocation and reallocation of copper to respiration vs. photosynthesis

    Science.gov (United States)

    Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.

    2015-01-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  1. Alpha autoradiography by cellulose nitrate layer

    International Nuclear Information System (INIS)

    Simonovic, J.; Vukovic, J.; Antanasijevic, R.

    1977-01-01

    From domestic cellulose nitrate bulk material thin layers for α-particle autoradiography were prepared. An artificial test specimen of a uniformly alpha labelled grid source was used. The efficiency of autoradiography by cellulose nitrate was calculated comparing with data from an Ilford K2 nuclear emulsion exposed under the same conditions as the cellulose nitrate film. The resolution was determined as the distance from grid pitch edge at which the track density fell considerably. (Auth.)

  2. Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region

    International Nuclear Information System (INIS)

    Blasco, D.; MacIsaac, J.J.; Packard, T.T.; Dugdale, R.C.

    1984-01-01

    Nitrate reductase (NR) activity and 15 NO 3 - uptake in phytoplankton were compared under different environmental conditions on two cruises in the upwelling region off Peru. The NR activity and NO 3 - uptake rates responded differently to light and nutrients and the differences led to variations in the uptake:reductase ratio. Analysis of these variations suggests that the re-equilibration time of the two processes in response to environmental perturbation is an important source of variability. The nitrate uptake system responds faster than the nitrate reductase system. Considering these differences in response time, the basic differences in the two processes, and the differences in their measurement, the authors conclude that the NR activity measures the current nitrate-reducing potential, which relfects NO 3 - assimilation before the sampling time, while 15 NO 3 - uptake measures NO 3 - assimilation in the 6-h period following sampling. Thus, considering the sampling time as a point of reference, the former is a measure of the past and the latter is a measure of the future

  3. Canine Copper-Associated Hepatitis

    NARCIS (Netherlands)

    Dirksen, Karen; Fieten, Hille

    2017-01-01

    Copper-associated hepatitis is recognized with increasing frequency in dogs. The disease is characterized by centrolobular hepatic copper accumulation, leading to hepatitis and eventually cirrhosis. The only way to establish the diagnosis is by histologic assessment of copper distribution and copper

  4. Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits

    Science.gov (United States)

    Kesler, Stephen E.; Wilkinson, Bruce H.

    2008-03-01

    Improved estimates of global mineral endowments are relevantto issues ranging from strategic planning to global geochemicalcycling. We have used a time-space model for the tectonic migrationof porphyry copper deposits vertically through the crust tocalculate Earth's endowment of copper in mineral deposits. Themodel relies only on knowledge of numbers and ages of porphyrycopper deposits, Earth's most widespread and important sourceof copper, in order to estimate numbers of eroded and preserveddeposits in the crust. Model results indicate that 125,895 porphyrycopper deposits were formed during Phanerozoic time, that only47,789 of these remain at various crustal depths, and that thesecontain 1.7 x 1011 tonnes (t) of copper. Assuming that othertypes of copper deposits behave similarly in the crust and haveabundances proportional to their current global production yieldsan estimate of 3 x 1011 t for total global copper resourcesat all levels in Earth's crust. Thus, 0.25% of the copper inthe crust has been concentrated into deposits through Phanerozoictime, and about two-thirds of this has been recycled by upliftand erosion. The amount of copper in deposits above 3.3 km,a likely limit of future mining, could supply current worldmine production for 5500 yr, thus quantifying the highly unusualand nonrenewable nature of mineral deposits.

  5. Decomposition of metal nitrate solutions

    International Nuclear Information System (INIS)

    Haas, P.A.; Stines, W.B.

    1982-01-01

    Oxides in powder form are obtained from aqueous solutions of one or more heavy metal nitrates (e.g. U, Pu, Th, Ce) by thermal decomposition at 300 to 800 deg C in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal. (author)

  6. Protein Tyrosine Nitration : Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins

    NARCIS (Netherlands)

    Abello, Nicolas; Kerstjens, Huib A. M.; Postma, Dirkje S.; Bischoff, Rainer

    Protein tyrosine nitration (PTN) is a post-translational modification occurring under the action of a nitrating agent. Tyrosine is modified in the 3-position of the phenolic ring through the addition of a nitro group (NO(2)). In the present article, we review the main nitration reactions and

  7. Supercritical fluid extraction of uranium and neodymium nitrates

    International Nuclear Information System (INIS)

    Sujatha, K.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2011-01-01

    Supercritical fluid extraction (SFE) of uranyl nitrate and neodymium nitrate salts from a mixture was investigated in the present study using Sc-CO 2 modified with various ligands such as organophosphorous compounds, amides, and diketones. Preferential extraction of uranyl nitrate over neodymium nitrate was demonstrated using Sc-CO 2 modified with amide, di-(2ethylhexyl) isobutyramide (D2EHIBA). (author)

  8. The Effect of Nitrate Levels and Harvest Times on Fe, Zn, Cu, and K, Concentrations and Nitrate Reductase Activity in Lettuce and Spinach

    OpenAIRE

    Z. Gheshlaghi; R. Khorassani; G.H. Haghnia; M. Kafi

    2015-01-01

    Leafy vegetables are considered as the main sources of nitrate in the human diet. In order to investigate the effect of nitrate levels and harvest times on nitrate accumulation, nitrate reductase activity, concentrations of Fe, Zn, Cu and K in Lettuce and Spinach and their relation to nitrate accumulation in these leafy vegetables, two harvest times (29 and 46 days after transplanting), two vegetable species of lettuce and spinach and two concentrations of nitrate (10 and 20 mM) were used in ...

  9. Alpha autoradiography by cellulose nitrate layer

    International Nuclear Information System (INIS)

    Simonovic, J.; Vukovic, J.; Antanasijevic, R.

    1976-01-01

    From domestic cellulose nitrate bulk material thin layers for α-particle autoradiography were prepared. An artifical test specimen of a uniformly alpha labelled grid source was used. The efficiency of autoradiographs by cellulose nitrate was calculated comparing with data from an Ilford K2 nuclear emulsion exposed under the same conditions as the cellulose nitrate film. The resolution was determined as the distance from grid pitch edge at which the track density fell considerably. (orig.) [de

  10. Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake.

    Science.gov (United States)

    Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N

    2017-08-01

    The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Indirect potentiometric titration of ascorbic acid in pharmaceutical preparations using copper based mercury film electrode.

    Science.gov (United States)

    Abdul Kamal Nazer, Meeran Mohideen; Hameed, Abdul Rahman Shahul; Riyazuddin, Patel

    2004-01-01

    A simple and rapid potentiometric method for the estimation of ascorbic acid in pharmaceutical dosage forms has been developed. The method is based on treating ascorbic acid with iodine and titration of the iodide produced equivalent to ascorbic acid with silver nitrate using Copper Based Mercury Film Electrode (CBMFE) as an indicator electrode. Interference study was carried to check possible interference of usual excipients and other vitamins. The precision and accuracy of the method was assessed by the application of lack-of-fit test and other statistical methods. The results of the proposed method and British Pharmacopoeia method were compared using F and t-statistical tests of significance.

  12. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  13. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, van den G.J.; de Goeij, J.J.M.; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendriks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (<1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  14. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  15. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    International Nuclear Information System (INIS)

    McCormick, Stephen F.

    2016-01-01

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/

  16. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

    2016-03-25

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  17. The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L., E-mail: lei.wang@bgs.ac.uk [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Stuart, M.E.; Lewis, M.A. [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Ward, R.S. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Skirvin, D. [ADAS UK Ltd., Pendeford House, Pendeford Business Park, Wobaston Road, Wolverhampton WV9 5AP (United Kingdom); Naden, P.S. [Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Collins, A.L. [Sustainable Soils and Grassland Systems Department, Rothamsted Research, North Wyke, Okehampton EX20 2SB (United Kingdom); Ascott, M.J. [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom)

    2016-01-15

    Nitrate is necessary for agricultural productivity, but can cause considerable problems if released into aquatic systems. Agricultural land is the major source of nitrates in UK groundwater. Due to the long time-lag in the groundwater system, it could take decades for leached nitrate from the soil to discharge into freshwaters. However, this nitrate time-lag has rarely been considered in environmental water management. Against this background, this paper presents an approach to modelling groundwater nitrate at the national scale, to simulate the impacts of historical nitrate loading from agricultural land on the evolution of groundwater nitrate concentrations. An additional process-based component was constructed for the saturated zone of significant aquifers in England and Wales. This uses a simple flow model which requires modelled recharge values, together with published aquifer properties and thickness data. A spatially distributed and temporally variable nitrate input function was also introduced. The sensitivity of parameters was analysed using Monte Carlo simulations. The model was calibrated using national nitrate monitoring data. Time series of annual average nitrate concentrations along with annual spatially distributed nitrate concentration maps from 1925 to 2150 were generated for 28 selected aquifer zones. The results show that 16 aquifer zones have an increasing trend in nitrate concentration, while average nitrate concentrations in the remaining 12 are declining. The results are also indicative of the trend in the flux of groundwater nitrate entering rivers through baseflow. The model thus enables the magnitude and timescale of groundwater nitrate response to be factored into source apportionment tools and to be taken into account alongside current planning of land-management options for reducing nitrate losses. - Highlights: • An approach to modelling groundwater nitrate at the national scale is presented. • The long time-lag for nitrate in the

  18. The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150

    International Nuclear Information System (INIS)

    Wang, L.; Stuart, M.E.; Lewis, M.A.; Ward, R.S.; Skirvin, D.; Naden, P.S.; Collins, A.L.; Ascott, M.J.

    2016-01-01

    Nitrate is necessary for agricultural productivity, but can cause considerable problems if released into aquatic systems. Agricultural land is the major source of nitrates in UK groundwater. Due to the long time-lag in the groundwater system, it could take decades for leached nitrate from the soil to discharge into freshwaters. However, this nitrate time-lag has rarely been considered in environmental water management. Against this background, this paper presents an approach to modelling groundwater nitrate at the national scale, to simulate the impacts of historical nitrate loading from agricultural land on the evolution of groundwater nitrate concentrations. An additional process-based component was constructed for the saturated zone of significant aquifers in England and Wales. This uses a simple flow model which requires modelled recharge values, together with published aquifer properties and thickness data. A spatially distributed and temporally variable nitrate input function was also introduced. The sensitivity of parameters was analysed using Monte Carlo simulations. The model was calibrated using national nitrate monitoring data. Time series of annual average nitrate concentrations along with annual spatially distributed nitrate concentration maps from 1925 to 2150 were generated for 28 selected aquifer zones. The results show that 16 aquifer zones have an increasing trend in nitrate concentration, while average nitrate concentrations in the remaining 12 are declining. The results are also indicative of the trend in the flux of groundwater nitrate entering rivers through baseflow. The model thus enables the magnitude and timescale of groundwater nitrate response to be factored into source apportionment tools and to be taken into account alongside current planning of land-management options for reducing nitrate losses. - Highlights: • An approach to modelling groundwater nitrate at the national scale is presented. • The long time-lag for nitrate in the

  19. Protein tyrosine nitration in the cell cycle

    International Nuclear Information System (INIS)

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-01-01

    Highlights: → Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. → Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. → Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  20. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  1. Nearly 60% Copper Rod & Wire Companies Neutral about Future Copper Price

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>How about the trend of copper price recently? According to the survey result of Shanghai Metals Market, amongst 21 domestic copper rod & wire companies, 57% of the companies are neutral about the future copper price, while 14% and 19% of the companies consider that

  2. Synthesis of a new energetic nitrate ester

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E [Los Alamos National Laboratory

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  3. Radiation-induced nitration of organic compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L.; Moisy, P.

    2012-01-01

    Radiolysis in aqueous nitrate and acetic acid solutions and nitrate/nitric acid and phenol was studied. The radiolysis of these solutes occurs with circle NO 2 radical, which is the active nitrating agent. Accumulation of nitromethane and nitrite was determined during γ-irradiation of aqueous solutions containing acetic and nitrate solutions. Irradiation of aqueous phenol-nitrate/nitric acid solutions results in the formation of 2- and 4-nitrophenols.

  4. Radiation-induced nitration of organic compounds in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L. [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Inst. of Physical Chemistry and Electrochemistry; Moisy, P. [CEA, Bagnols sur Ceze (France). Nuclear Energy Div.

    2012-07-01

    Radiolysis in aqueous nitrate and acetic acid solutions and nitrate/nitric acid and phenol was studied. The radiolysis of these solutes occurs with {sup circle} NO{sup 2} radical, which is the active nitrating agent. Accumulation of nitromethane and nitrite was determined during {gamma}-irradiation of aqueous solutions containing acetic and nitrate solutions. Irradiation of aqueous phenol-nitrate/nitric acid solutions results in the formation of 2- and 4-nitrophenols.

  5. Nitrate removal by electro-bioremediation technology in Korean soil

    International Nuclear Information System (INIS)

    Choi, Jeong-Hee; Maruthamuthu, Sundaram; Lee, Hyun-Goo; Ha, Tae-Hyun; Bae, Jeong-Hyo

    2009-01-01

    The nitrate concentration of surface has become a serious concern in agricultural industry through out the world. In the present study, nitrate was removed in the soil by employing electro-bioremediation, a hybrid technology of bioremediation and electrokinetics. The abundance of Bacillus spp. as nitrate reducing bacteria were isolated and identified from the soil sample collected from a greenhouse at Jinju City of Gyengsangnamdo, South Korea. The nitrate reducing bacterial species were identified by 16 s RNA sequencing technique. The efficiency of bacterial isolates on nitrate removal in broth was tested. The experiment was conducted in an electrokinetic (EK) cell by applying 20 V across the electrodes. The nitrate reducing bacteria (Bacillus spp.) were inoculated in the soil for nitrate removal process by the addition of necessary nutrient. The influence of nitrate reducers on electrokinetic process was also studied. The concentration of nitrate at anodic area of soil was higher when compared to cathode in electrokinetic system, while adding bacteria in EK (EK + bio) system, the nitrate concentration was almost nil in all the area of soil. The bacteria supplies electron from organic degradation (humic substances) and enhances NO 3 - reduction (denitrification). Experimental results showed that the electro-bio kinetic process viz. electroosmosis and physiological activity of bacteria reduced nitrate in soil environment effectively. Involvement of Bacillus spp. on nitrification was controlled by electrokinetics at cathode area by reduction of ammonium ions to nitrogen gas. The excellence of the combined electro-bio kinetics technology on nitrate removal is discussed.

  6. Fabrication of mesoporous iron (Fe) doped copper sulfide (CuS) nanocomposite in the presence of a cationic surfactant via mild hydrothermal method for supercapacitors

    Science.gov (United States)

    Brown, J. William; Ramesh, P. S.; Geetha, D.

    2018-02-01

    We report fabrication of mesoporous Fe doped CuS nanocomposites with uniform mesoporous spherical structures via a mild hydrothermal method employing copper nitrate trihydrate (Cu (NO3).3H2O), Thiourea (Tu,Sc(NH2)2 and Iron tri nitrate (Fe(No3)3) as initial materials with cationic surfactant cetyltrimethylamoniame bromide (CTAB) as stabilizer/size controller and Ethylene glycol as solvent at 130 °C temperature. The products were characterized by XRD, SEM/EDX, TEM, FTIR and UV analysis. X-ray diffraction (XRD) spectra confirmed the Fe doped CuS nanocomposites which are crystalline in nature. EDX and XRD pattern confirmed that the product is hexagonal CuS phase. Fe doped spherical structure of CuS with grain size of 21 nm was confirmed by XRD pattern. Fe doping was identified by energy dispersive spectrometry (EDS). The Fourier-transform infrared (FTIR) spectroscopy results revealed the occurrence of active functional groups required for the reduction of copper ions. Studies showed that after a definite time relining on the chosen copper source, the obtained Fe-CuS nanocomposite shows a tendency towards self-assembly and creating mesoporous like nano and submicro structures by TEM/SAED. The achievable mechanism of producing this nanocomposite was primarily discussed. The electrochemical study confirms the pseudocapacitive nature of the CuS and Fe-CuS electrodes. The CuS and Fe-CuS electrode shows a specific capacitance of about 328.26 and 516.39 Fg-1 at a scan rate of 5 mVs-1. As the electrode in a supercapacitor, the mesoporous nanostructured Fe-CuS shows excellent capacitance characteristics.

  7. Nitrate reduction in an unconfined sandy aquifer

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Boesen, Carsten; Kristiansen, Henning

    1991-01-01

    of total dissolved ions in the NO3- free anoxic zone indicates the downward migration of contaminants and that active nitrate reduction is taking place. Nitrate is apparently reduced to N2 because both nitrite and ammonia are absent or found at very low concentrations. Possible electron donors......Nitrate distribution and reduction processes were investigated in an unconfined sandy aquifer of Quaternary age. Groundwater chemistry was studied in a series of eight multilevel samplers along a flow line, deriving water from both arable and forested land. Results show that plumes of nitrate...... processes of O2 and NO3- occur at rates that are fast compared to the rate of downward water transport. Nitrate-contaminated groundwater contains total contents of dissolved ions that are two to four times higher than in groundwater derived from the forested area. The persistence of the high content...

  8. Growing patterns to produce 'nitrate-free' lettuce (Lactuca sativa).

    Science.gov (United States)

    Croitoru, Mircea Dumitru; Muntean, Daniela-Lucia; Fülöp, Ibolya; Modroiu, Adriana

    2015-01-01

    Vegetables can contain significant amounts of nitrate and, therefore, may pose health hazards to consumers by exceeding the accepted daily intake for nitrate. Different hydroponic growing patterns were examined in this work in order to obtain 'nitrate-free lettuces'. Growing lettuces on low nitrate content nutrient solution resulted in a significant decrease in lettuces' nitrate concentrations (1741 versus 39 mg kg(-1)), however the beneficial effect was cancelled out by an increase in the ambient temperature. Nitrate replacement with ammonium was associated with an important decrease of the lettuces' nitrate concentration (from 1896 to 14 mg kg(-1)) and survival rate. An economically feasible method to reduce nitrate concentrations was the removal of all inorganic nitrogen from the nutrient solution before the exponential growth phase. This method led to lettuces almost devoid of nitrate (10 mg kg(-1)). The dried mass and calcinated mass of lettuces, used as markers of lettuces' quality, were not influenced by this treatment, but a small reduction (18%, p < 0.05) in the fresh mass was recorded. The concentrations of nitrite in the lettuces and their modifications are also discussed in the paper. It is possible to obtain 'nitrate-free' lettuces in an economically feasible way.

  9. Chronic nitrate exposure alters reproductive physiology in fathead minnows.

    Science.gov (United States)

    Kellock, Kristen A; Moore, Adrian P; Bringolf, Robert B

    2018-01-01

    Nitrate is a ubiquitous aquatic pollutant that is commonly associated with eutrophication and dead zones in estuaries around the world. At high concentrations nitrate is toxic to aquatic life but at environmental concentrations it has also been purported as an endocrine disruptor in fish. To investigate the potential for nitrate to cause endocrine disruption in fish, we conducted a lifecycle study with fathead minnows (Pimephales promelas) exposed to nitrate (0, 11.3, and 56.5 mg/L (total nitrate-nitrogen (NO 3 -N)) from nitrate-exposed males both 11-KT and vitellogenin were significantly induced when compared with controls. No significant differences occurred for body mass, condition factor, or GSI among males and intersex was not observed in any of the nitrate treatments. Nitrate-exposed females also had significant increases in vitellogenin compared to controls but no significant differences for mass, condition factor, or GSI were observed in nitrate exposed groups. Estradiol was used as a positive control for vitellogenin induction. Our findings suggest that environmentally relevant nitrate levels may disrupt steroid hormone synthesis and/or metabolism in male and female fish and may have implications for fish reproduction, watershed management, and regulation of nutrient pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Nitrate-Inducible NAC Transcription Factor TaNAC2-5A Controls Nitrate Response and Increases Wheat Yield1[OPEN

    Science.gov (United States)

    He, Xue; Qu, Baoyuan; Li, Wenjing; Zhao, Xueqiang; Teng, Wan; Ma, Wenying; Ren, Yongzhe; Li, Bin; Li, Zhensheng; Tong, Yiping

    2015-01-01

    Nitrate is a major nitrogen resource for cereal crops; thus, understanding nitrate signaling in cereal crops is valuable for engineering crops with improved nitrogen use efficiency. Although several regulators have been identified in nitrate sensing and signaling in Arabidopsis (Arabidopsis thaliana), the equivalent information in cereals is missing. Here, we isolated a nitrate-inducible and cereal-specific NAM, ATAF, and CUC (NAC) transcription factor, TaNAC2-5A, from wheat (Triticum aestivum). A chromatin immunoprecipitation assay showed that TaNAC2-5A could directly bind to the promoter regions of the genes encoding nitrate transporter and glutamine synthetase. Overexpression of TaNAC2-5A in wheat enhanced root growth and nitrate influx rate and, hence, increased the root’s ability to acquire nitrogen. Furthermore, we found that TaNAC2-5A-overexpressing transgenic wheat lines had higher grain yield and higher nitrogen accumulation in aerial parts and allocated more nitrogen in grains in a field experiment. These results suggest that TaNAC2-5A is involved in nitrate signaling and show that it is an exciting gene resource for breeding crops with more efficient use of fertilizer. PMID:26371233

  11. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.

    Science.gov (United States)

    Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal

    2018-02-01

    Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 10 4 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of

  12. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    International Nuclear Information System (INIS)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload

  13. Oxygen regulation of nitrate uptake in denitrifying Pseudomonas aeruginosa.

    OpenAIRE

    Hernandez, D; Rowe, J J

    1987-01-01

    Oxygen had an immediate and reversible inhibitory effect on nitrate respiration by denitrifying cultures of Pseudomonas aeruginosa. Inhibition of nitrate utilization by oxygen appeared to be at the level of nitrate uptake, since nitrate reduction to nitrite in cell extracts was not affected by oxygen. The degree of oxygen inhibition was dependent on the concentration of oxygen, and increasing nitrate concentrations could not overcome the inhibition. The inhibitory effect of oxygen was maximal...

  14. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  15. Photodegradation of Paracetamol in Nitrate Solution

    Science.gov (United States)

    Meng, Cui; Qu, Ruijuan; Liang, Jinyan; Yang, Xi

    2010-11-01

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  16. Photodegradation of Paracetamol in Nitrate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Meng; Ruijuan, Qu; Jinyan, Liang; Xi, Yang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China)

    2010-11-24

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  17. Photodegradation of Paracetamol in Nitrate Solution

    International Nuclear Information System (INIS)

    Meng Cui; Qu Ruijuan; Liang Jinyan; Yang Xi

    2010-01-01

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  18. Is nitrate an endocrine active compound in fish?

    DEFF Research Database (Denmark)

    Mose, M. P.; Kinnberg, Karin Lund; Bjerregaard, Poul

    Nitrate and nitrite taken up into fish may be reduced to NO which is known to be a signalling compound in the organism contributing to the regulation of i.e. steroid synthesis. Exposure of male rats to nitrate and nitrite results in reduced plasma concentrations of testosterone (also nitrate...... concentrations around or below the limits for drinking water). Nitrate concentrations in streams may be elevated due to releases from agricultural practices. The effects of nitrate and nitrite on endocrine relevant endpoints were investigated in zebrafish (Danio rerio) and brown trout (Salmo trutta). Zebrafish...... were exposed to nitrate and nitrite from hatch to sexual maturation (60 d) and sex ratio and vitellogenin concentrations were determined. Juvenile brown trout were exposed in a short-term experiment and the concentrations of vitellogenin were determined. The sex ratio in zebrafish was not affected...

  19. Method of producing thin cellulose nitrate film

    International Nuclear Information System (INIS)

    Lupica, S.B.

    1975-01-01

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent

  20. COGEMA Experience in Uranous Nitrate Preparation

    International Nuclear Information System (INIS)

    Tison, E.; Bretault, Ph.

    2006-01-01

    Separation and purification of plutonium by PUREX process is based on a sequence of extraction and back extraction which requires reducing plutonium Pu IV (extractable form) into Pu III (inextractable form) Different reducers can be used to reduce Pu IV into Pu III. Early plants such as that for Magnox fuel at Sellafield used ferrous sulfamate while UP 1 at Marcoule used uranous sulfamate. These reducers are efficient and easy to prepare but generates ferric and/or sulphate ions and so complicates management of the wastes from the plutonium purification cycle. Recent plants such as UP3 and UP2 800 at La Hague, THORP at Sellafield, and RRP at Rokkasho Mura (currently under tests) use uranous nitrate (U IV) stabilized by hydrazinium nitrate (N 2 H 5 NO 3 ) and hydroxyl ammonium nitrate (HAN). In the French plants, uranous nitrate is used in U-Pu separation and alpha barrier and HAN is used in Pu purification. Compared to sulfamate, U IV does not generate extraneous chemical species and uranyl nitrate (U VI) generated by reducing Pu IV follows the main uranium stream. More over uranous nitrate is prepared from reprocessed purified uranyl nitrate taken at the outlet of the reprocessing plant. Hydrazine and HAN offer the advantage to be salt-free reagents. Uranous nitrate can be generated either by electrolysis or by catalytic hydrogenation process. Electrolytic process has been implemented in early plant UP 1 at Marcoule (when changing reducer from uranous sulfamate to uranous nitrate) and was used again in UP2 plant at La Hague. However, the electrolytic process presented several disadvantages such as a low conversion rate and problems associated with the use of mercury. Electrolysis cells with no mercury were developed for the Eurochemic plant in Belgium and then implemented in the first Japanese reprocessing plant in Tokai-Mura. But finally, in 1975, the electrolytic process was abandoned in favor of the catalytic hydrogenation process developed at La Hague. The

  1. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  2. Properties and thermal decomposition of the double salts of uranyl nitrate-ammonium nitrate

    International Nuclear Information System (INIS)

    Notz, K.J.; Haas, R.A.

    1989-01-01

    The formation of ammonium nitrate-uranyl nitrate double salts has important effects on the thermal denitration process for the preparation of UO 3 and on the physical properties of the resulting product. Analyses were performed, and properties and decomposition behavior were determined for three double salts: NH 4 UO 2 (NO 3 ) 3 , (NH 4 ) 2 UO 2 (NO 3 ) 4 , and (NH 4 ) 2 UO 2 (NO 3 ) 4 ·2H 2 O. The tinitrate salt decomposes without melting at 270-300 C to give a γ-UO 3 powder of ∼3-μm average size, with good ceramic properties for fabrication into UO 2 nuclear fuel pellets. The tetranitrate dihydrate melts at 48 C; it also dehydrates to the anhydrous salt. The anhydrous tetranitrate decomposes exothermically, without melting, at 170-270 C by losing one mole of ammonium nitrate to form the trinitrate salt

  3. Nitrate reduction in geologically heterogeneous catchments

    DEFF Research Database (Denmark)

    Refsgaard, Jens Christian; Auken, Esben; Bamberg, Charlotte A.

    2014-01-01

    In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface...... conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root...... the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface...

  4. Use of nitrates in ischemic heart disease.

    Science.gov (United States)

    Giuseppe, Cocco; Paul, Jerie; Hans-Ulrich, Iselin

    2015-01-01

    Short-acting nitrates are beneficial in acute myocardial ischemia. However, many unresolved questions remain about the use of long-acting nitrates in stable ischemic heart disease. The use of long-acting nitrates is weakened by the development of endothelial dysfunction and tolerance. Also, we currently ignore whether lower doses of transdermal nitroglycerin would be better than those presently used. Multivariate analysis data from large nonrandomized studies suggested that long-acting nitrates increase the incidence of acute coronary syndromes, while data from another multivariate study indicate that they have positive effects. Because of methodological differences and open questions, the two studies cannot be compared. A study in Japanese patients with vasospastic angina has shown that, when compared with calcium antagonists, long-acting nitrates do not improve long-term prognosis and that the risk for cardiac adverse events increases with the combined therapy. We have many unanswered questions.

  5. Reactivity of Metal Nitrates.

    Science.gov (United States)

    1982-07-20

    02NOCuOH Any mechanism suggested for the nitration of aromatic systems by titanium(IV) nitrate must take into account the observed similarity, in...occurs. -26- References 1. For recent reviews see (a) R. B. Moodie and K. Schofield, Accounts Chem. Res., 1976, 9, 287; (b) G. A. Olah and S. J. Kuhn...Ithaca, N.Y., 1969, Chapter VI; L. M. Stock, Prog. Phys. Org. Chem., 1976, 12, 21; J. G. Hoggett , R. B. Moodie, J. R. Penton, and K. Schofield

  6. Automated analysis for nitrate by hydrazine reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kamphake, L J; Hannah, S A; Cohen, J M

    1967-01-01

    An automated procedure for the simultaneous determinations of nitrate and nitrite in water is presented. Nitrite initially present in the sample is determined by a conventional diazotization-coupling reaction. Nitrate in another portion of sample is quantitatively reduced with hydrazine sulfate to nitrite which is then determined by the same diazotization-coupling reaction. Subtracting the nitrite initially present in the sample from that after reduction yields nitrite equivalent to nitrate initially in the sample. The rate of analysis is 20 samples/hr. Applicable range of the described method is 0.05-10 mg/l nitrite or nitrate nitrogen; however, increased sensitivity can be obtained by suitable modifications.

  7. Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.

    Science.gov (United States)

    Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger

    2014-01-01

    This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.

  8. Coupled jump rotational dynamics in aqueous nitrate solutions.

    Science.gov (United States)

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2016-12-21

    A nitrate ion (NO 3 - ) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO 3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO 3 - is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the

  9. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  10. Investigation of complexing of trivalent lanthanoids in aqueous nitrate solutions

    International Nuclear Information System (INIS)

    Kopyrin, A.A.; Proyaev, V.V.; Edinakova, V.

    1985-01-01

    Complexing of trivalent lanthanoids (Ce, Eu) with nitrate-ions in concentrated solutions of lithium and sodium nitrates has been studied in a wide range of ionic forces (1.0-7.0), using the extractional, densimetric and solubility methods. Nitrate complexes registered by the extraction and solubility methods mainly are of second sphere character. During rare earth extraction from concentrated nitrate solutions in the range of nitrate-ion concentrations <= 5 mol/l second sphere neutral nitrate complexes take part in distribution, at higher values of nitrate-ion concentration formation of intrasphere monoligand complexes of lanthanoids should be taken into account

  11. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    Science.gov (United States)

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  12. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  13. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study.

    OpenAIRE

    Midander, Klara; Cronholm, Pontus; Karlsson, Hanna L.; Elihn, Karine; Moller, Lennart; Leygraf, Christofer; Wallinder, Inger Odnevall

    2009-01-01

    An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano- and micrometer-sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer-sized Cu, release more copper in serum-containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate-buffered ...

  14. An accurate and stable nitrate-selective electrode for the in situ determination of nitrate in agricultural drainage waters.

    Science.gov (United States)

    Le Goff, Thierry; Braven, Jim; Ebdon, Les; Chilcottt, Neil P; Scholefield, David; Wood, John W

    2002-04-01

    A field evaluation of a novel nitrate-ion selective electrode (ISE) was undertaken by continuous immersion over a period of 5 months in agricultural drainage weirs. The nitrate sensor N,N,N-triallyl leucine betaine was covalently attached to polystyrene-block-polybutadiene-block-polystyrene (SBS) using a free radical initiated co-polymerisation, to produce a rubbery membrane which was incorporated into a commercially available electrode body. A measurement unit was constructed comprising the nitrate-ISEs, a reference electrode and a temperature probe connected through a pre-amplifier to a data-logger and battery supply. A temperature correction algorithm was developed to accomodate the temperature changes encountered in the drainage weirs. The nitrate results obtained with the ISEs at hourly intervals compared very favourably (R2 = 0.99) with those obtained with laboratory automated chemical determinations made on contemporaneous samples of drainage in a concentration range 0.47-16 ppm nitrate-N. The ISEs did not require re-calibration and no deterioration in performance or fouling of the membrane surface was observed over four months of deployment.

  15. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  16. An 15N study of the effects of nitrate, ammonium, and nitrate + ammonium nutrition on nitrogen assimilation in Zea mays L

    International Nuclear Information System (INIS)

    Murphy, A.T.

    1984-10-01

    A brief review of the literature on the effects of nitrate and ammonium nitrogen sources on plant growth, and the assimilation of those nitrogen sources, has been presented. It was concluded that ammonium nutrition produces optimum growth, with nitrate + ammonium being a better nitrogen source than only nitrate. Leaf blade nitrate reductase activity exceeded that of the root in nitrate-fed plants, suggesting that the shoot is the major region of nitrate assimilation. This is further supported by the results of xylem exudate analysis, where 93% of the newly-absorbed nitrogen exported by the roots was detected as nitrate. Evidence in support of this hypothesis was also obtained by studying the distribution of 15 N in the various nitrogenous compounds. The effects of nitrogen source on plant growth, organic nitrogen and inorganic nitrogen contents, and the rates of incorporation into nitrogenous compounds were studied. The observed differences were explained with reference to the effects of the various nitrogen sources on the physiology of the plants. The experimental techniques included assays of the enzymes nitrate reductase and glutamine synthetase, whole plant growth studies, and the analysis of nitrogenous compounds of xylem exudate and those extracted from the leaf blade, leaf base, and root regions of maize plants after feeding with a nutrient solution containing nitrogen as 15 N

  17. Nitrate decreases ruminal methane production with slight changes to ruminal methanogen composition of nitrate-adapted steers.

    Science.gov (United States)

    Zhao, Liping; Meng, Qingxiang; Li, Yan; Wu, Hao; Huo, Yunlong; Zhang, Xinzhuang; Zhou, Zhenming

    2018-03-20

    This study was conducted to examine effects of nitrate on ruminal methane production, methanogen abundance, and composition. Six rumen-fistulated Limousin×Jinnan steers were fed diets supplemented with either 0% (0NR), 1% (1NR), or 2% (2NR) nitrate (dry matter basis) regimens in succession. Rumen fluid was taken after two-week adaptation for evaluation of in vitro methane production, methanogen abundance, and composition measurements. Results showed that nitrate significantly decreased in vitro ruminal methane production at 6 h, 12 h, and 24 h (P methane reduction was significantly related to Methanobrevibacter and Methanoplanus abundance, and negatively correlated with Methanosphaera and Methanimicrococcus abundance.

  18. Immobilization of nitrate reductase onto epoxy affixed silver nanoparticles for determination of soil nitrates.

    Science.gov (United States)

    Sachdeva, Veena; Hooda, Vinita

    2015-08-01

    Epoxy glued silver nanoparticles were used as immobilization support for nitrate reductase (NR). The resulting epoxy/AgNPs/NR conjugates were characterized at successive stages of fabrication by scanning electron microscopy and fourier transform infrared spectroscopy. The immobilized enzyme system exhibited reasonably high conjugation yield (37.6±0.01 μg/cm(2)), with 93.54±0.88% retention of specific activity. Most favorable working conditions of pH, temperature and substrate concentration were ascertained to optimize the performance of epoxy/AgNPs/NR conjugates for soil nitrate quantification. The analytical results for soil nitrate determination were consistent, reliable and reproducible. Minimum detection limit of the method was 0.05 mM with linearity from 0.1 to 11.0 mM. The % recoveries of added nitrates (0.1 and 0.2 mM) were<95.0% and within-day and between-day coefficients of variations were 0.556% and 1.63% respectively. The method showed good correlation (R(2)=0.998) with the popular Griess reaction method. Epoxy/AgNPs bound NR had a half-life of 18 days at 4 °C and retained 50% activity after 15 reuses. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Removal of nitrate by zero-valent iron and pillared bentonite

    International Nuclear Information System (INIS)

    Li Jianfa; Li Yimin; Meng Qingling

    2010-01-01

    The pillared bentonite prepared by intercalating poly(hydroxo Al(III)) cations into bentonite interlayers was used together with Fe(0) for removing nitrate in column experiments. The obvious synergetic effect on nitrate removal was exhibited through uniformly mixing the pillared bentonite with Fe(0). In such a mixing manner, the nitrate was 100% removed, and the removal efficiency was much higher than the simple summation of adsorption by the pillared bentonite and reduction by Fe(0). The influencing factors such as bentonite type, amount of the pillared bentonite and initial pH of nitrate solutions were investigated. In this uniform mixture, the pillared bentonite could adsorb nitrate ions, and facilitated the mass transfer of nitrate onto Fe(0) surface, then accelerated the nitrate reduction. The pillared bentonite could also act as the proton-donor, and helped to keep the complete nitrate removal for at least 10 h even when the nitrate solution was fed at nearly neutral pH.

  20. Copper Leaching from Copper-ethanolamine Treated Wood: Comparison of Field Test Studies and Laboratory Standard Procedures

    OpenAIRE

    Nejc Thaler; Miha Humar

    2014-01-01

    Copper-based compounds are some of the most important biocides for the protection of wood in heavy duty applications. In the past, copper was combined with chromium compounds to reduce copper leaching, but a recent generation of copper-based preservatives uses ethanolamine as a fixative. To elucidate the leaching of copper biocides from wood, Norway spruce (Picea abies) wood was treated with a commercial copper-ethanolamine solution with two different copper concentrations (cCu = 0.125% and 0...

  1. Evaluation of nickel and copper catalysts in biogas reforming for hydrogen production in SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo Alves; Martins, Andre Rosa; Rangel, Maria do Carmo, E-mail: mcarmov@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Grupo de Estudos em Cinetica e Catalise; Ballarini, Adriana; Maina, Silvia [Instituto de Investigaciones en Catalisis Y Petroquimica Ing. Jose Miguel Parera (INCAPE), Santa Fe (Argentina)

    2017-01-15

    The solid oxide fuel cells (SOFC) enable the efficient generation of clean energy, fitting the current requirements of the growing demand for electricity and for the environment preservation. When powered with biogas (from digesters of municipal wastes), the SOFCs also contribute to reduce the environmental impact of these wastes. The most suitable route to produce hydrogen inside SOFC from biogas is through dry reforming but the catalyst is easily deactivated by coke, because of the high amounts of carbon in the stream. A promising way to overcome this drawback is by adding a second metal to nickel-based catalysts. Aiming to obtain active, selective and stable catalysts for biogas dry reforming, solids based on nickel (15%) and copper (5%) supported on aluminum and magnesium oxide were studied in this work. Samples were prepared by impregnating the support with nickel and copper nitrate, followed by calcination at 500, 600 and 800 deg C. It was noted that all solids were made of nickel oxide, nickel aluminate and magnesium aluminate but no copper compound was found. The specific surface areas did not changed with calcination temperature but the nickel oxide average particles size increased. The solids reducibility decreased with increasing temperature. All catalysts were active in methane dry reforming, leading to similar conversions but different selectivities to hydrogen and different activities in water gas shift reaction (WGSR). This behavior was assigned to different interactions between nickel and copper, at different calcination temperatures. All catalysts were active in WGSR, decreasing the hydrogen to carbon monoxide molar ratio and producing water. The catalyst calcined at 500 deg C was the most promising one, leading to the highest hydrogen yield, besides the advantage of being produced at the lowest calcination temperature, requiring less energy in its preparation. (author)

  2. Evaluation of nickel and copper catalysts in biogas reforming for hydrogen production in SOFC

    International Nuclear Information System (INIS)

    Silva, Leonardo Alves; Martins, Andre Rosa; Rangel, Maria do Carmo

    2017-01-01

    The solid oxide fuel cells (SOFC) enable the efficient generation of clean energy, fitting the current requirements of the growing demand for electricity and for the environment preservation. When powered with biogas (from digesters of municipal wastes), the SOFCs also contribute to reduce the environmental impact of these wastes. The most suitable route to produce hydrogen inside SOFC from biogas is through dry reforming but the catalyst is easily deactivated by coke, because of the high amounts of carbon in the stream. A promising way to overcome this drawback is by adding a second metal to nickel-based catalysts. Aiming to obtain active, selective and stable catalysts for biogas dry reforming, solids based on nickel (15%) and copper (5%) supported on aluminum and magnesium oxide were studied in this work. Samples were prepared by impregnating the support with nickel and copper nitrate, followed by calcination at 500, 600 and 800 deg C. It was noted that all solids were made of nickel oxide, nickel aluminate and magnesium aluminate but no copper compound was found. The specific surface areas did not changed with calcination temperature but the nickel oxide average particles size increased. The solids reducibility decreased with increasing temperature. All catalysts were active in methane dry reforming, leading to similar conversions but different selectivities to hydrogen and different activities in water gas shift reaction (WGSR). This behavior was assigned to different interactions between nickel and copper, at different calcination temperatures. All catalysts were active in WGSR, decreasing the hydrogen to carbon monoxide molar ratio and producing water. The catalyst calcined at 500 deg C was the most promising one, leading to the highest hydrogen yield, besides the advantage of being produced at the lowest calcination temperature, requiring less energy in its preparation. (author)

  3. Copper metabolism: a multicompartmental model of copper kinetics in the rat

    International Nuclear Information System (INIS)

    Dunn, M.A.

    1985-01-01

    A qualitative multicompartmental model was developed that describes the whole-body kinetics of copper metabolism in the adult rat. The model was developed from radiocopper percent dose vs. time data measured over a three day period in plasma, liver, skin, skeletal muscle, bile and feces after the intravenous injection of 10 μg copper labeled with 64 Cu. Plasma radiocopper was separated into ceruloplasmin (Cp) and nonceruloplasmin (NCp) fractions. Liver cytosolic radiocopper was fractionated into void volume superoxide dismutase (SOD) containing and metallothionein fractions by gel filtration. Liver particulate fractions were isolated by differential centrifugation. The SAAM and CONSAM modeling programs were used to develop the model. The sizes of compartments, fractional rate constants and mass transfer rates between compartments were evaluated. The intracellular metabolism of copper was similar in hepatic and extrahepatic tissues being comprised of a faster turning over compartment (FTC) exchanging copper with NCp and a slower turning over compartment (STC) with input from Cp. Output from the STC was into the FTC. In the liver the STC was postulated to represent SOD copper which unlike the extrahepatic tissues received much of its input from the FTC. A small amount of biliary copper (9%) was postulated to return to plasma NCp by enterohepatic recycling. The model developed was contrasted and compared with two previous models of copper metabolism

  4. Nitrate Adsorption on Clay Kaolin: Batch Tests

    Directory of Open Access Journals (Sweden)

    Morteza Mohsenipour

    2015-01-01

    Full Text Available Soils possessing kaolin, gibbsite, goethite, and hematite particles have been found to have a natural capacity to attenuate pollution in aqueous phase. On the other hand, the hydroxyl group in soil increases anion exchange capacity under a low pH condition. The main objective of this paper was to evaluate effects of kaolin on nitrate reduction under acidic condition. In order to analyze the kaolin adsorption behaviour under various conditions, four different concentrations of nitrate, 45, 112.5, 225, and 450 mgNO3-/L, with a constant pH equal to 2, constant temperature equal to 25°C, and exposure period varying from 0 to 150 minutes were considered. The capacity of nitrate adsorption on kaolin has also been studied involving two well-known adsorption isotherm models, namely, Freundlich and Longmuir. The results revealed that approximately 25% of the nitrate present in the solution was adsorbed on clay kaolin. The laboratory experimental data revealed that Freundlich adsorption isotherm model was more accurate than Longmuir adsorption model in predicting of nitrate adsorption. Furthermore, the retardation factor of nitrate pollution in saturated zone has been found to be approximately 4 in presence of kaolin, which indicated that kaolin can be used for natural scavenger of pollution in the environment.

  5. Plutonium purification cycle in centrifugal extractors: comparative study of flowsheets using uranous nitrate and hydroxylamine nitrate

    International Nuclear Information System (INIS)

    Baron, P.; Dinh, B.; Mauborgne, B.; Drain, F.; Gillet, B.

    1998-01-01

    The extension of the UP2 plant at La Hague includes a new plutonium purification cycle using multi-stage centrifugal extractors, to replace the present cycle which uses mixer/settler banks. The advantage of this type of extractor is basically the compactness of the equipment and the short residence time, which limits solvent degradation, particularly when reprocessing fuel containing a high proportion of plutonium 238. Two types of reducing agents have been considered for the plutonium stripping operation, uranous nitrate and hydroxylamine nitrate. Uranous nitrate displays a very fast reduction kinetics, ideal for the very short residence time of the phases in the centrifugal extractors. However, its extractability in the organic phase exacerbates the undesirable re-oxidation of plutonium, which is present in high concentration in this stage of the process. The short residence time of the centrifugal extractors is an advantage in as much as it could conceivably be adequate to obtain a sufficient reduction efficiency, while minimizing undesirable re-oxidation mechanisms. Hydroxylamine nitrate helps to minimize undesirable re-oxidation and is the normal choice for this type of operation. However, the plutonium (IV) reduction kinetics obtained is slower than with uranous nitrate, making it necessary to check whether its use is compatible with the very short residence times of centrifugal extractors.This article discusses the feasibility studies employing these two reducing agents. (author)

  6. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O

    2011-12-01

    This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.

  7. Sustainability of natural attenuation of nitrate in agricultural aquifers

    Science.gov (United States)

    Green, Christopher T.; Bekins, Barbara A.

    2010-01-01

    Increased concentrations of nitrate in groundwater in agricultural areas, coinciding with increased use of chemical and organic fertilizers, have raised concern because of risks to environmental and human health. At some sites, these problems are mitigated by natural attenuation of nitrate as a result of microbially mediated reactions. Results from U.S. Geological Survey (USGS) research under the National Water-Quality Assessment (NAWQA) program show that reactions of dissolved nitrate with solid aquifer minerals and organic carbon help lower nitrate concentrations in groundwater beneath agricultural fields. However, increased fluxes of nitrate cause ongoing depletion of the finite pool of solid reactants. Consumption of the solid reactants diminishes the capacity of the aquifer to remove nitrate, calling into question the long-term sustainability of these natural attenuation processes.

  8. Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth.

    Science.gov (United States)

    Hsu, Po-Kai; Tsay, Yi-Fang

    2013-10-01

    This study of the Arabidopsis (Arabidopsis thaliana) nitrate transporters NRT1.11 and NRT1.12 reveals how the interplay between xylem and phloem transport of nitrate ensures optimal nitrate distribution in leaves for plant growth. Functional analysis in Xenopus laevis oocytes showed that both NRT1.11 and NRT1.12 are low-affinity nitrate transporters. Quantitative reverse transcription-polymerase chain reaction and immunoblot analysis showed higher expression of these two genes in larger expanded leaves. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.11 and NRT1.12 are plasma membrane transporters expressed in the companion cells of the major vein. In nrt1.11 nrt1.12 double mutants, more root-fed (15)NO3(-) was translocated to mature and larger expanded leaves but less to the youngest tissues, suggesting that NRT1.11 and NRT1.12 are required for transferring root-derived nitrate into phloem in the major veins of mature and larger expanded leaves for redistributing to the youngest tissues. Distinct from the wild type, nrt1.11 nrt1.12 double mutants show no increase of plant growth at high nitrate supply. These data suggested that NRT1.11 and NRT1.12 are involved in xylem-to-phloem transfer for redistributing nitrate into developing leaves, and such nitrate redistribution is a critical step for optimal plant growth enhanced by increasing external nitrate.

  9. Effect of high oral doses of nitrate on salivary recirculation of nitrates and nitrites and on bacterial diversity in the saliva of young pigs.

    Science.gov (United States)

    Trevisi, P; Casini, L; Nisi, I; Messori, S; Bosi, P

    2011-04-01

    Ingested nitrate is absorbed in the small intestine, recirculated into the saliva and reduced to nitrite by oral bacteria. In pigs receiving a moderate dietary addition of nitrate, the recirculation into the saliva is modest, so we aimed to assess the effect of higher nitrate doses to find out how the animal reacts to this new situation and to evaluate if a higher nitrate level could enhance the nitrate reduction process, improving the nitrite production Trial 1. Six piglets received 100 g of a commercial diet with 2.45% KNO(3) . In relation to baseline values, nitrate in blood serum and saliva increased 15 times, and declined after 6 h vs. 2 h. Salivary nitrite increased seven times after the addition and declined after 6 h vs. 2 h. Trial 2. Six piglets were fed a diet with or without 1.22% KNO(3) for 2 weeks. Salivary nitrate and nitrite increased with the addition of KNO3: nitrate increased from d0 to the end of the trial, nitrite increased 15 times after 1 week, but decreased after 2 weeks to 4.5-fold the control. After 2 weeks, nitrate reduced Shan diversity index of salivary microbiota. The present results indicate that the long exposure to high quantities of nitrates impairs the oral reduction of nitrate to nitrite and engenders a reduction of the mouth's microbiota diversity. © 2010 Blackwell Verlag GmbH.

  10. Chemical and electrochemical behaviour of halides in nitrate melts

    International Nuclear Information System (INIS)

    Tkalenko, D.A.; Kudrya, S.A.; Delimarskij, Yu.K.; Antropov, L.I.

    1978-01-01

    The possibility of improving the positive electrode characteristics of medium temperature lithium-nitrate element by means of adding alkali metal halogenides into nitrate melt is considered. The experiments have been made at the temperature of 150 deg C in (K, Na, Li) NO 3 melts of eutectic composition. It has been found that only at temperatures higher than 250 deg C in nitrate melts containing Li + and Na + cations, an interaction of nitrate ions with the added iodides is possible. The interaction does not take place in case of chloride, bromide, and fluoride additions. The waves of halogenide oxidation and reduction of the corresponding halogens have been identified. The analysis of the obtained experimental data shows that halogenide addition into nitrate melt does not result in speed increase of cathodic reduction of nitrate ions or in formation of a new cathode process at more positive potentials. A conclusion is made that halogenide addition into electrolyte of lithium-nitrate current source is inexpedient

  11. Renal cortex copper concentration in acute copper poisoning in calves

    Directory of Open Access Journals (Sweden)

    Luis E. Fazzio

    2012-01-01

    Full Text Available The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu concentration in clinical cases of acute copper poisoning (ACP. A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.

  12. Isotopic evidence for the diverse origins of nitrate minerals

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1987-01-01

    Nitrate minerals are rare and, apart from their occasional value as economic deposits of fertilizer, not of general importance in geology. The mechanisms by which they are formed, however, are still the subject of considerable debate. This brief discussion indicates that the study of the 15 N/ 14 N ratios of nitrate minerals can yield useful information on their origins. The low 15 N/ 14 N ratios for nitrate in desert environments indicate that soil or animal waste sources of nitrogen are unlikely. Derivation from atmospheric precipitation is consistent with the presently limited knowledge of the isotopic characteristics of atmospheric compounds, but can only be confirmed when data for these compounds in desert areas become available. For nitrates in wetter environments the 15 N/ 14 N ratios indicate that atmospheric sources are not important, and that the formation of nitrate from gaseous ammonia emanating from animal waste is probably not a significant mechanism. The nitrate appears to be chiefly derived either by direct solution of animal waste nitrate (Lydenburg cave and Prieskapoort) or from soil-derived nitrate brought in by groundwater (Autana and possibly Abjaterskop caves). In the case of Sveite special conditions involving bacterial processes are also implied

  13. Combination Therapy with Losartan and Pioglitazone Additively Reduces Renal Oxidative and Nitrative Stress Induced by Chronic High Fat, Sucrose, and Sodium Intake

    Directory of Open Access Journals (Sweden)

    Xiang Kong

    2012-01-01

    Full Text Available We recently showed that combination therapy with losartan and pioglitazone provided synergistic effects compared with monotherapy in improving lesions of renal structure and function in Sprague-Dawley rats fed with a high-fat, high-sodium diet and 20% sucrose solution. This study was designed to explore the underlying mechanisms of additive renoprotection provided by combination therapy. Losartan, pioglitazone, and their combination were orally administered for 8 weeks. The increased level of renal malondialdehyde and expression of nicotinamide adenine dinucleotide phosphate oxidase subunit p47phox and nitrotyrosine as well as the decreased total superoxide dismutase activity and copper, zinc-superoxide dismutase expression were tangible evidence for the presence of oxidative and nitrative stress in the kidney of model rats. Treatment with both drugs, individually and in combination, improved these abnormal changes. Combination therapy showed synergistic effects in reducing malondialdehyde level, p47phox, and nitrotyrosine expression to almost the normal level compared with monotherapy. All these results suggest that the additive renoprotection provided by combination therapy might be attributed to a further reduction of oxidative and nitrative stress.

  14. A nitrate sensitive planar optode; performance and interferences

    DEFF Research Database (Denmark)

    Pedersen, Lasse; Dechesne, Arnaud; Smets, Barth F.

    2015-01-01

    We present a newly developed nitrate sensitive planar optode. It exhibits a linear response to nitrate from 1 to 50 mM at pH 8.0, a fast response time below 10 s and a good lifetime, allowing for fast two dimensional nitrate measurements over long periods of time. Interference from nitrite...

  15. Nitrate bioreduction in redox-variable low permeability sediments

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Sen [China University of Geosciences, Wuhan 430074 (China); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Liu, Chongxuan, E-mail: chongxuan.liu@pnnl.gov [China University of Geosciences, Wuhan 430074 (China); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Shi, Liang; Shang, Jianying [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Shan, Huimei [China University of Geosciences, Wuhan 430074 (China); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Zachara, John; Fredrickson, Jim; Kennedy, David; Resch, Charles T.; Thompson, Christopher; Fansler, Sarah [Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2016-01-01

    Low permeability zone (LPZ) can play an important role as a sink or secondary source in contaminant transport in groundwater system. This study investigated the rate and end product of nitrate bioreduction in LPZ sediments. The sediments were from the U.S. Department of Energy's Hanford Site, where nitrate is a groundwater contaminant as a by-product of radionuclide waste discharges. The LPZ at the Hanford site consists of two layers with an oxidized layer on top and reduced layer below. The oxidized layer is directly in contact with the overlying contaminated aquifer, while the reduced layer is in contact with an uncontaminated aquifer below. The experimental results showed that nitrate bioreduction rate and end-product differed significantly in the sediments. The bioreduction rate in the oxidized sediment was significantly faster than that in the reduced one. A significant amount of N{sub 2}O was accumulated in the reduced sediment; while in the oxidized sediment, N{sub 2}O was further reduced to N{sub 2}. RT-PCR analysis revealed that nosZ, the gene that codes for N{sub 2}O reductase, was below detection limit in the reduced sediment. Batch experiments and kinetic modeling were performed to provide insights into the role of organic carbon bioavailability, biomass growth, and competition between nitrate and its reducing products for electrons from electron donors. The results revealed that it is important to consider sediment redox conditions and functional genes in understanding and modeling nitrate bioreduction in subsurface sediments. The results also implied that LPZ sediments can be important sink of nitrate and a potential secondary source of N{sub 2}O as a nitrate bioreduction product in groundwater. - Highlights: • Low permeability zones (LPZ) can microbially remove nitrate in groundwater. • The rate and end product of nitrate bioreduction vary within LPZ. • Greenhouse gas N{sub 2}O can be the end product of nitrate bioreduction in LPZ.

  16. Assessing bottled water nitrate concentrations to evaluate total drinking water nitrate exposure and risk of birth defects.

    Science.gov (United States)

    Weyer, Peter J; Brender, Jean D; Romitti, Paul A; Kantamneni, Jiji R; Crawford, David; Sharkey, Joseph R; Shinde, Mayura; Horel, Scott A; Vuong, Ann M; Langlois, Peter H

    2014-12-01

    Previous epidemiologic studies of maternal exposure to drinking water nitrate did not account for bottled water consumption. The objective of this National Birth Defects Prevention Study (NBDPS) (USA) analysis was to assess the impact of bottled water use on the relation between maternal exposure to drinking water nitrate and selected birth defects in infants born during 1997-2005. Prenatal residences of 1,410 mothers reporting exclusive bottled water use were geocoded and mapped; 326 bottled water samples were collected and analyzed using Environmental Protection Agency Method 300.0. Median bottled water nitrate concentrations were assigned by community; mothers' overall intake of nitrate in mg/day from drinking water was calculated. Odds ratios for neural tube defects, limb deficiencies, oral cleft defects, and heart defects were estimated using mixed-effects models for logistic regression. Odds ratios (95% CIs) for the highest exposure group in offspring of mothers reporting exclusive use of bottled water were: neural tube defects [1.42 (0.51, 3.99)], limb deficiencies [1.86 (0.51, 6.80)], oral clefts [1.43 (0.61, 3.31)], and heart defects [2.13, (0.87, 5.17)]. Bottled water nitrate had no appreciable impact on risk for birth defects in the NBDPS.

  17. Yttrium Nitrate mediated Nitration of Phenols at room temperature in ...

    Indian Academy of Sciences (India)

    The described method is selective for phenols. ... the significant cause of post translational modification that can ... decades, significant attention was paid on nitration of phenols to .... Progress of the reaction can be noted visually. Yttrium.

  18. Preparation of copper and silicon/copper powders by a gas ...

    Indian Academy of Sciences (India)

    Administrator

    aCentre for Materials Research, Department of Imaging and Applied Physics, ... Copper powder; Si/Cu composite particle; gas evaporation–condensation method; characteriza- tion. .... from the liquid metal surface, the mixed vapour of copper.

  19. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level.

  20. Thermal denitration of high concentration nitrate salts waste water

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Latge, C.

    2003-01-01

    This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at 250 .deg. C and 730 . deg. C, respectively. Sodium nitrate could be decomposed at 450 .deg. C in the case of adding alumina for converting unstable Na 2 O into stable Na 2 O.Al 2 O 3 . The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation

  1. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a component of articles intended for use in producing...

  2. Headspace Analysis of Ammonium Nitrate

    Science.gov (United States)

    2017-01-25

    explosive ammonium nitrate produces ammonia and nitric acid in the gaseous headspace above bulk solids, but the concentrations of the products have been...and NO2-, a product of nitrate fragmentation (Figure 7). Brief spikes in the background and dips in oxalic acid signal were observed at the time of...either filtered air or experimental nitric acid vapor sources so that analyte signal could be measured directly opposite background. With oxalic

  3. RECYCLING OF SCRAP AND WASTE OF COPPER AND COPPER ALLOYS IN BELARUS

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2017-01-01

    Full Text Available The construction of a new casting and mechanical shop of unitary enterprise «Tsvetmet» in December 2015 has allowed to solve the complex problem of processing and utilization of scrap and wastes of copper and copper alloys in the Republic of Belarus. The technological processes of fire refinement of copper and manufacturing of copper rod from scrap and production of brass rod by hot pressing (extrusion of the continuously casted round billet have been mastered for the first time in the Republic of Belarus.

  4. Comparison of plasma generated nitrogen fertilizer to conventional fertilizers ammonium nitrate and sodium nitrate for pre-emergent and seedling growth

    Science.gov (United States)

    Andhavarapu, A.; King, W.; Lindsay, A.; Byrns, B.; Knappe, D.; Fonteno, W.; Shannon, S.

    2014-10-01

    Plasma source generated nitrogen fertilizer is compared to conventional nitrogen fertilizers in water for plant growth. Root, shoot sizes, and weights are used to examine differences between plant treatment groups. With a simple coaxial structure creating a large-volume atmospheric glow discharge, a 162 MHz generator drives the air plasma. The VHF plasma source emits a steady state glow; the high drive frequency is believed to inhibit the glow-to-arc transition for non-thermal discharge generation. To create the plasma activated water (PAW) solutions used for plant treatment, the discharge is held over distilled water until a 100 ppm nitrate aqueous concentration is achieved. The discharge is used to incorporate nitrogen species into aqueous solution, which is used to fertilize radishes, marigolds, and tomatoes. In a four week experiment, these plants are watered with four different solutions: tap water, dissolved ammonium nitrate DI water, dissolved sodium nitrate DI water, and PAW. Ammonium nitrate solution has the same amount of total nitrogen as PAW; sodium nitrate solution has the same amount of nitrate as PAW. T-tests are used to determine statistical significance in plant group growth differences. PAW fertilization chemical mechanisms are presented.

  5. Intermittent rainstorms cause pulses of nitrogen, phosphorus, and copper in leachate from compost in bioretention systems

    Energy Technology Data Exchange (ETDEWEB)

    Mullane, Jessica M. [Department of Crop and Soil Sciences, Washington State University, Puyallup, WA 98371, Pullman, WA 99164 (United States); Flury, Markus, E-mail: flury@wsu.edu [Department of Crop and Soil Sciences, Washington State University, Puyallup, WA 98371, Pullman, WA 99164 (United States); Iqbal, Hamid [Department of Crop and Soil Sciences, Washington State University, Puyallup, WA 98371, Pullman, WA 99164 (United States); Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Sector H-12, Islamabad (Pakistan); Freeze, Patrick M. [Department of Crop and Soil Sciences, Washington State University, Puyallup, WA 98371, Pullman, WA 99164 (United States); Hinman, Curtis [Natural Resources Program Extension, Washington State University, Puyallup, WA 98371 (United States); Cogger, Craig G.; Shi, Zhenqing [Department of Crop and Soil Sciences, Washington State University, Puyallup, WA 98371, Pullman, WA 99164 (United States)

    2015-12-15

    Bioretention systems rely on vegetation and mixtures of soil, sand, and compost to filter stormwater runoff. However, bioretention systems can also leach metals and nutrients, and compost may be a major contributor to this leaching. To safely implement bioretention systems, it is crucial to determine the composition of compost leachate. We characterized and quantified the leachate composition of compost following intermittent, simulated storm events. Columns of municipal compost were irrigated to simulate 6-month, 24-hour rain storms in the Seattle–Tacoma region. Outflow was analyzed for pH, electrical conductivity (EC), particulate concentration, surface tension, dissolved organic carbon (DOC), nitrogen, phosphorus, and copper. Results indicate a decrease of chemical concentrations over the course of individual storms and following repeated storms, but each new storm released another peak of constituents. The decrease in phosphorus, copper, and DOC concentrations with repeated storms was slower than for nitrate and EC. Nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) showed that the DOC consisted mainly of aliphatic and aromatic components typical of fulvic and humic acids. Less than 3% of the original copper content from the compost leached out even after nine storm events. Nonetheless, copper concentrations in the leachate exceeded regulatory discharge standards. Our results show that compost can serve as a sustained source of leaching of nutrients and metals. - Highlights: • Intermittent rainstorms release N, P, and Cu from compost in bioretention systems. • Leaching of Cu is sustained over several years of rainfall. • Leaching of Cu is correlated with DOC concentrations. • Compost in bioretention systems can be a source of pollution.

  6. Intermittent rainstorms cause pulses of nitrogen, phosphorus, and copper in leachate from compost in bioretention systems

    International Nuclear Information System (INIS)

    Mullane, Jessica M.; Flury, Markus; Iqbal, Hamid; Freeze, Patrick M.; Hinman, Curtis; Cogger, Craig G.; Shi, Zhenqing

    2015-01-01

    Bioretention systems rely on vegetation and mixtures of soil, sand, and compost to filter stormwater runoff. However, bioretention systems can also leach metals and nutrients, and compost may be a major contributor to this leaching. To safely implement bioretention systems, it is crucial to determine the composition of compost leachate. We characterized and quantified the leachate composition of compost following intermittent, simulated storm events. Columns of municipal compost were irrigated to simulate 6-month, 24-hour rain storms in the Seattle–Tacoma region. Outflow was analyzed for pH, electrical conductivity (EC), particulate concentration, surface tension, dissolved organic carbon (DOC), nitrogen, phosphorus, and copper. Results indicate a decrease of chemical concentrations over the course of individual storms and following repeated storms, but each new storm released another peak of constituents. The decrease in phosphorus, copper, and DOC concentrations with repeated storms was slower than for nitrate and EC. Nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) showed that the DOC consisted mainly of aliphatic and aromatic components typical of fulvic and humic acids. Less than 3% of the original copper content from the compost leached out even after nine storm events. Nonetheless, copper concentrations in the leachate exceeded regulatory discharge standards. Our results show that compost can serve as a sustained source of leaching of nutrients and metals. - Highlights: • Intermittent rainstorms release N, P, and Cu from compost in bioretention systems. • Leaching of Cu is sustained over several years of rainfall. • Leaching of Cu is correlated with DOC concentrations. • Compost in bioretention systems can be a source of pollution.

  7. Liquid-liquid extraction kinetics of uranyl nitrate and actinides (III)-lanthanides nitrates by extractants with amide function

    International Nuclear Information System (INIS)

    Toulemonde, V.

    1995-01-01

    Nowadays, the most important part of electric power is generated by fission energy. But spent fuels have then to be reprocessed. The production of these reprocessed materials separately and with a high purity level is done according to a liquid-liquid extraction process (Purex process) with the use of tributyl phosphate as solvent. Optimization studies concerning the extracting agent have been undertaken. This work gives the results obtained for the uranyl nitrate and the actinides (III)-lanthanides (III) nitrates extraction by extractants with amide function (monoamide for U(VI) and diamide for actinides (III) and lanthanides (III)). The extraction kinetics have been studied in the case of a metallic specie transfer from the aqueous phase towards the organic phase. The experiments show that the nitrates extraction kinetics is limited by the complexation chemical reaction of the species at the interface between the two liquids. An adsorption-desorption interfacial reactional mechanism (Langmuir theory) is proposed for the uranyl nitrate. (O.M.)

  8. Demystifying Controlling Copper Corrosion

    Science.gov (United States)

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  9. Copper Bioleaching in Chile

    OpenAIRE

    Juan Carlos Gentina; Fernando Acevedo

    2016-01-01

    Chile has a great tradition of producing and exporting copper. Over the last several decades, it has become the first producer on an international level. Its copper reserves are also the most important on the planet. However, after years of mineral exploitation, the ease of extracting copper oxides and ore copper content has diminished. To keep the production level high, the introduction of new technologies has become necessary. One that has been successful is bioleaching. Chile had the first...

  10. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    Directory of Open Access Journals (Sweden)

    Melike eBalk

    2015-03-01

    Full Text Available Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests.The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden under the nitrate-limited conditions of most mangrove forest soils.

  11. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  12. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike

    2015-03-02

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  13. The copper-transporting ATPase pump and its potential role in copper-tolerance

    Science.gov (United States)

    Katie Ohno; C.A. Clausen; Frederick Green; G. Stanosz

    2016-01-01

    Copper-tolerant brown-rot decay fungi exploit intricate mechanisms to neutralize the efficacy of copper-containing preservative formulations. The production and accumulation oxalate is the most widely recognized theory regarding the mechanism of copper-tolerance in these fungi. The role of oxalate, however, may be only one part of a series of necessary components...

  14. Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles

    DEFF Research Database (Denmark)

    Jørgensen, BB; Gallardo, VA

    1999-01-01

    communities of large Thioploca species live along the Pacific coast of South America and in other upwelling areas of high organic matter sedimentation with bottom waters poor in oxygen and rich in nitrate. Each cell of these thioplocas harbors a large liquid vacuole which is used as a storage for nitrate...... with a concentration of lip to 506 mM. The nitrate is used as an electron acceptor for sulfide oxidation and the bacteria may grow autotrophically or mixotrophically using acetate or other organic molecules as carbon source. The filaments stretch up into the overlying seawater, from which they take up nitrate...

  15. The reaction of hydrazine nitrate with nitric acid

    International Nuclear Information System (INIS)

    Kida, Takashi; Sugikawa, Susumu

    2004-03-01

    It is known that hydrazine nitrate used in nuclear fuel reprocessing plants is an unstable substance thermochemically like hydroxylamine nitrate. In order to take the basic data regarding the reaction of hydrazine nitrate with nitric acid, initiation temperatures and heats of this reaction, effect of impurity on initiation temperature and self-accelerating reaction when it holds at constant temperature for a long time were measured by the pressure vessel type reaction calorimeter etc. In this paper, the experimental data and evaluation of the safe handling of hydrazine nitrate in nuclear fuel reprocessing plants are described. (author)

  16. Distribution and Sources of Nitrate-Nitrogen in Kansas Groundwater

    Directory of Open Access Journals (Sweden)

    Margaret A. Townsend

    2001-01-01

    Full Text Available Kansas is primarily an agricultural state. Irrigation water and fertilizer use data show long- term increasing trends. Similarly, nitrate-N concentrations in groundwater show long-term increases and exceed the drinking-water standard of 10 mg/l in many areas. A statistical analysis of nitrate-N data collected for local and regional studies in Kansas from 1990 to 1998 (747 samples found significant relationships between nitrate-N concentration with depth, age, and geographic location of wells. Sources of nitrate-N have been identified for 297 water samples by using nitrogen stable isotopes. Of these samples, 48% showed fertilizer sources (+2 to +8 and 34% showed either animal waste sources (+10 to +15 with nitrate-N greater than 10 mg/l or indication that enrichment processes had occurred (+10 or above with variable nitrate-N or both. Ultimate sources for nitrate include nonpoint sources associated with past farming and fertilization practices, and point sources such as animal feed lots, septic systems, and commercial fertilizer storage units. Detection of nitrate from various sources in aquifers of different depths in geographically varied areas of the state indicates that nonpoint and point sources currently impact and will continue to impact groundwater under current land uses.

  17. Nitrate contamination of groundwater: A conceptual management framework

    International Nuclear Information System (INIS)

    Almasri, Mohammad N.

    2007-01-01

    In many countries, public concern over the deterioration of groundwater quality from nitrate contamination has grown significantly in recent years. This concern has focused increasingly on anthropogenic sources as the potential cause of the problem. Evidence indicates that the nitrate (NO 3 ) levels routinely exceed the maximum contaminant level (MCL) of 10 mg/l NO 3 -N in many aquifer systems that underlie agriculture-dominated watersheds. Degradation of groundwater quality due to nitrate pollution along with the increasing demand for potable water has motivated the adoption of restoration actions of the contaminated aquifers. Restoration efforts have intensified the dire need for developing protection alternatives and management options such that the ultimate nitrate concentrations at the critical receptors are below the MCL. This paper presents a general conceptual framework for the management of groundwater contamination from nitrate. The management framework utilizes models of nitrate fate and transport in the unsaturated and saturated zones to simulate nitrate concentration at the critical receptors. To study the impact of different management options considering both environmental and economic aspects, the proposed framework incorporates a component of a multi-criteria decision analysis. To enhance spatiality in model development along with the management options, the utilization of a land use map is depicted for the allocation and computation of on-ground nitrogen loadings from the different sources

  18. Use of copper radioisotopes in investigating disorders of copper metabolism

    International Nuclear Information System (INIS)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M.; Smith, S.; Mercer, J.

    1998-01-01

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes 64 Cu (t 1/2 = 12.8 hr) and 67 Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  19. Recovery of Copper from Copper Slag by Hydrometallurgy Method, from Iraqi Factories Waste

    Directory of Open Access Journals (Sweden)

    Bahaa Sami Mahdi

    2018-05-01

    Full Text Available   In this research, the recovery of copper from copper slag is investigated using hydrometallurgy method. Slag samples were taken from Al-Shaheed State Company. The results of the chemical analysis showed that the slag contained 11.4% of copper. The recovery process included two stages; the first stage is leaching using diluted sulfuric acid. The most important variables that effect on the leaching process was studied, such as acid concentration, hydrogen peroxide adding, particle size, liquid to solid, stirring speed and leaching time by changing the condition and the stabilizing of other factors at room temperature.               The second stage is precipitation of copper from leaching solution by zinc powder with different weights and times, at room temperature and 1.5 PH value. The results of the first stage manifested that about 99.7% of the copper have been dissolved at the following operational conditions: 50% acid concentration, 5 ml hydrogen peroxide adding, particle size (-75+53 micron, 1:10 liquid to solid, 500 rpm stirring speed and 25 min of leaching time. The highest percentage of copper precipitation in the second stage was 99.8% when added 3gm zinc powder at 20 min. The XRD result revealed that the predominant phase was pure copper. The results of EDS exhibited that a few percentage of oxygen appeared with copper powder. The final of copper recovery ratio was 99.3% with 99.2% purity.

  20. Importance of biogenic precursors to the budget of organic nitrates: observations of multifunctional organic nitrates by CIMS and TD-LIF during BEARPEX 2009

    Directory of Open Access Journals (Sweden)

    M. R. Beaver

    2012-07-01

    Full Text Available Alkyl and multifunctional organic nitrates, molecules of the chemical form RONO2, are products of chain terminating reactions in the tropospheric HOx and NOx catalytic cycles and thereby impact ozone formation locally. Many of the molecules in the class have lifetimes that are long enough that they can be transported over large distances. If the RONO2 then decompose to deliver NOx to remote regions they affect ozone production rates in locations distant from the original NOx source. While measurements of total RONO2 (ΣANs and small straight chain alkyl nitrates are routine, measurements of the specific multifunctional RONO2 molecules that are believed to dominate the total have rarely been reported and never reported in coincidence with ambient ΣANs measurements. Here we describe observations obtained during the BEARPEX 2009 experiment including ΣANs and a suite of multifunctional nitrates including isoprene derived hydroxynitrates, oxidation products of those nitrates, 2-methyl-3-buten-2-ol (MBO derived hydroxynitrates, and monoterpene nitrates. At the BEARPEX field site, the sum of the individual biogenically derived nitrates account for two-thirds of the ΣANs, confirming predictions of the importance of biogenic nitrates to the NOy budget. Isoprene derived nitrates, transported to the site, are a much larger fraction of the ΣANs at the site than the nitrates derived from the locally emitted MBO. Evidence for additional nitrates, possibly from nocturnal chemistry of isoprene and α-pinene, is presented.

  1. Bacterial Killing by Dry Metallic Copper Surfaces▿

    OpenAIRE

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2010-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important fir...

  2. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Bortolon, Leandro; Lambais, Márcio R; Camargo, Flávio A O

    2012-04-01

    Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4

  3. Kinetic of liquid-liquid extraction for uranyl nitrate and actinides (III) and lanthanides (III) nitrates by amide extractants

    International Nuclear Information System (INIS)

    Toulemonde, V.; CEA Centre d'Etudes de la Vallee du Rhone, 30 -Marcoule

    1995-01-01

    The kinetics of liquid-liquid extraction by amide extractants have been investigated for uranyl nitrate (monoamide extractants), actinides (III) and lanthanides (III) nitrates (diamide extractants). The transfer of the metallic species from the aqueous phase to the organic phase was studied using two experimental devices: ARMOLLEX (Argonne Modified Lewis cell for Liquid Liquid Extraction) and RSC (Rotating Stabilized Cell). The main conclusions are: for the extraction of uranyl nitrate by DEHDMBA monoamide, the rate-controlling step is the complexation of the species at the interface of the two liquids. Thus, an absorption-desorption (according to Langmuir theory) reaction mechanism was proposed; for the extraction of actinides (III) and lanthanides (III) nitrates in nitric acid media by DMDBTDMA diamide, the kinetic is also limited by interfacial reactions. The behavior of Americium and Europium is very similar as fare as their reaction kinetics are concerned. (author)

  4. The crystal structure of urea nitrate

    NARCIS (Netherlands)

    Harkema, Sybolt; Feil, D.

    1969-01-01

    The structure of urea nitrate has been solved, by the use of three-dimensional X-ray data. Data were collected using Cu Ke and Mo K0~ radiations. The structure consists of layers with urea and nitrate groups held together by hydrogen bonds. The positions of all hydrogen atoms were found. The final R

  5. Quantification of naphazoline nitrate by UV-spectrophoto-metry

    Directory of Open Access Journals (Sweden)

    O. I. Panasenko

    2013-12-01

    Full Text Available One of the main tasks of pharmaceutical chemistry – medical drugs study. Spectrophotometry is widely used in studying of the structure and composition (complexes, dyes, analytical reagents, etc. of various compounds. It widely used for qualitative and quantitative determination of substances (determination of elements traces in metals, alloys, technical facilities. The dependence between substance structure and its electronic spectrum is being studied by many researchers till nowadays. The aim of this work was to highlight the issues of naphazoline quantify definition techniques by the UV-spectrophotometry. According to the existing methods of quality control (MQC, naphazoline nitrate is a substance quantitatively determined by acid-base titration among a mixture of anhydrous acetic acid and acetic anhydride. Titration is carried out with a solution of 0,1 M perchloric acid (indicator - crystal violet. To check the quality of nasal drops nafazoline nitrate MQC is recommended UV-spectrophotometry: drug is dissolved in boric acid solution (20 g/l as the reference solution used solution pharmacopoeia standard sample substance nafazoline nitrate. The character of UV-spectra of the nafazoline nitrate in solvents of different polarity (water, 95% ethanol, 0,1 M NaOH, 0,1 M HCl, 5M H2SO4, was defined and studied. Standard sample of nafazoline nitrate was obtained from the State Enterprise "Scientific and Expert Pharmacopoeia Centre Ukraine". In order to study UV-spectra nafazoline nitrate spectrophotometer SPECORD 200-222U214 (Germany was used. UV-spectrum of nafazoline nitrate in water and 95% ethanol are characterized by two maxima at 270 and 280 nm. Absorption band of nafazoline nitrate in 0, 1 M sodium hydroxide has two maxima at 271 and 280 nm, and in 0, 1 M solution of hydrochloric acid and 5 M solution of sulfuric acid maxima coincide with the maxima spectrum of the drug in water, 95% ethanol. In order to avoid errors associated with

  6. The oral bioavailability of nitrate from vegetables investigated in healthy volunteers

    OpenAIRE

    Lambers AC; Kortboyer JM; Schothorst RC; Sips AJAM; Cleven RFMJ; Meulenbelt J; VIC; LBM; ARO; LAC

    2000-01-01

    The major source of human nitrate exposure comes from vegetables. Several studies were performed to estimate the total daily dietary nitrate intake based on the nitrate contents of food and drinking water. However, only nitrate that is absorbed from the gastro-intestinal tract may contribute to the toxicity of nitrate in the body. At present no data are available on the bioavailability of nitrate from vegetables. Therefore the present study was performed to evaluate the oral bioavailability o...

  7. Intermittent Nitrate Use and Risk of Hip Fracture

    Science.gov (United States)

    Misra, Devyani; Peloquin, Christine; Kiel, Douglas P.; Neogi, Tuhina; Lu, Na; Zhang, Yuqing

    2016-01-01

    Purpose Nitrates, commonly used anti-anginal medications, also have beneficial effect on bone remodeling and bone density, particularly with intermittent use. However, their effect on fracture risk is not clear. We examined the relation of short-acting nitrate use (proxy for intermittent use) to the risk of hip fracture in a large cohort of older adults with ischemic heart disease. Materials and Methods Participants ≥ 60 years old with ischemic heart disease and without history of hip fracture from The Health Improvement Network (THIN), an electronic medical records database in the UK, were included. The association of incident (new) use of short-acting nitrate formulations (nitroglycerin sublingual/spray/ointment or ISDN injection/sprays) with incident (new-onset) hip fracture risk was examined by plotting Kaplan-Maier curves and calculating Hazard ratios (HR) using Cox proportional hazards regression models. Competing risk by death was analyzed in separate analyses. Results Among 14, 451 pairs of matched nitrate users and non-users (mean age 72±7.6, 41% women for each cohort), 573 fractures occurred during follow up (257 nitrate users; 316 non-users). Hip fracture risk was 33% lower among short-acting nitrate users compared with non-users (HR=0.67, 95% CI 0.53–0.85, p=0.0008). Competing risk analysis by death did not change effect estimates. Conclusion In this large population-based cohort of older adults with ischemic heart disease, we found significant reduction in hip fracture risk with use of short-acting nitrates (intermittent use). Future studies are warranted given the potential for nitrates to be potent, inexpensive and readily available anti-osteoporotic agents. PMID:27720852

  8. REMEDIATION OF NITRATE-CONTAMINATED GROUNDWATER USING A BIOBARRIER

    International Nuclear Information System (INIS)

    STrietelmeir, B.

    2000-01-01

    A biobarrier system has been developed for use in remediating shallow alluvial groundwater. This barrier is made from highly porous materials that are relatively long-lasting, carbon-based (to supply a limiting nutrient in nitrate destruction, in most cases), and extremely inexpensive and easy to emplace. In a series of laboratory studies, we have determined the effectiveness of this barrier at destroying nitrate and perchlorate in groundwater from Mortandad Canyon at Los Alamos National Laboratory (LANL). This groundwater was obtained from a monitoring well, MCO-5, which is located in the flowpath of the discharge waters from the LANL Radioactive Liquid Waste Treatment Facility (RLWTF). Water with elevated nitrate levels has been discharged from this plant for many years, until recently when the nitrate levels have been brought under the discharge limits. However, the historical discharge has resulted in a nitrate plume in the alluvial groundwater in this canyon. The LANL Multi-Barrier project was initiated this past year to develop a system of barriers that would prevent the transport of radionuclides, metals, colloids and other contaminants, including nitrate and perchlorate, further down the canyon in order to protect populations down-gradient. The biobarrier. will be part of this Multi-Barrier system. We have demonstrated the destruction of nitrate at levels up to 6.5-9.7 mhl nitrate (400-600 mg/L), and that of perchlorate at levels of about 4.3 microM perchlorate (350 ppb). We have quantified the populations of microorganisms present in the biofilm that develops on the biobarrier. The results of this research will be discussed along with other potential applications of this system

  9. Nitrates in surface waters, inputs and seasonality: Phase 2

    OpenAIRE

    Casey, H.; Clarke, R.T.; Smith, S.

    1988-01-01

    Changes in management practices and agricultural productivity over the past twenty years have lead to nitrate pollution and eutrophication of lakes and rivers. Information on nitrate concentrations and discharge has been collected on the River Frome at East Stoke since 1965, using the same analytical nitrate method so that the results are comparable. These records of weekly spot values of nitrate concentration and daily mean discharges have been analysed for trends and seasonal patterns in bo...

  10. Current trends in copper theft prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mastrofrancesco, A. [Electrical Safety Authority, ON (Canada)

    2009-07-01

    Copper is used in electrical wiring, water and gas piping, currency, and in household items. An increase in the price and demand for copper has made copper theft a profitable venture for some thieves. Copper consumed in North America is typically supplied by recycling. Scrap dealers may pay near-market prices for pure copper wires. However, copper theft poses a serious threat to the safety of utility workers and the public. Power outages caused by copper theft are now affecting grid reliability. This paper examined technologies and techniques used to prevent copper theft as part of a security strategy for utilities. Attempts to steal copper can leave utility substations unsecured and accessible to children. The theft of neutral grounds will cause the local distribution company (LDC) to malfunction and may cause power surges in homes as well as appliance fires. Utilities are now looking at using a hybrid steel and copper alternative to prevent copper theft. Asset identification techniques are also being used to identify the original owners of the copper and more easily prosecute thieves. Automated monitoring techniques are also being used to increase substation security. Utilities are also partnering with law enforcement agencies and pressuring governments to require scrap dealers to record who they buy from. It was concluded that strategies to prevent copper theft should be considered as part of an overall security strategy for utilities. tabs., figs.

  11. Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation

    Science.gov (United States)

    Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei

    2017-09-01

    A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.

  12. Preparation of graphite dispersed copper composite on copper plate with CO2 laser

    Science.gov (United States)

    Yokoyama, S.; Ishikawa, Y.; Muizz, M. N. A.; Hisyamudin, M. N. N.; Nishiyama, K.; Sasano, J.; Izaki, M.

    2018-01-01

    It was tried in this work to prepare the graphite dispersed copper composite locally on a copper plate with a CO2 laser. The objectives of this study were to clear whether copper graphite composite was prepared on a copper plate and how the composite was prepared. The carbon content at the laser spot decreased with the laser irradiation time. This mainly resulted from the elimination by the laser trapping. The carbon content at the outside of the laser spot increased with time. Both the laser ablation and the laser trapping did not act on the graphite particles at the outside of the laser spot. Because the copper at the outside of the laser spot melted by the heat conduction from the laser spot, the particles were fixed by the wetting. However, the graphite particles were half-floated on the copper plate. The Vickers hardness decreased with an increase with laser irradiation time because of annealing.

  13. Laboratory study of nitrate photolysis in Antarctic snow

    DEFF Research Database (Denmark)

    Berhanu, Tesfaye A.; Meusinger, Carl; Erbland, Joseph

    2014-01-01

    in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate (15N, 17O, and 18O) provide...... additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters....... The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ 15N, δ 18O, and Δ 17O). From these measurements an average photolytic isotopic fractionation of 15ε = (- 15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation...

  14. Method of processing nitrate-containing radioactive liquid wastes

    International Nuclear Information System (INIS)

    Ogawa, Norito; Nagase, Kiyoharu; Otsuka, Katsuyuki; Ouchi, Jin.

    1983-01-01

    Purpose: To efficiently concentrate nitrate-containing low level radioactive liquid wastes by electrolytically dialyzing radioactive liquid wastes to decompose the nitrate salt by using an electrolytic cell comprising three chambers having ion exchange membranes and anodes made of special materials. Method: Nitrate-containing low level radioactive liquid wastes are supplied to and electrolytically dialyzed in a central chamber of an electrolytic cell comprising three chambers having cationic exchange membranes and anionic exchange membranes made of flouro-polymer as partition membranes, whereby the nitrate is decomposed to form nitric acid in the anode chamber and alkali hydroxide compound or ammonium hydroxide in the cathode chamber, as well as concentrate the radioactive substance in the central chamber. Coated metals of at least one type of platinum metal is used as the anode for the electrolytic cell. This enables efficient industrial concentration of nitrate-containing low level radioactive liquid wastes. (Yoshihara, H.)

  15. Development of technology for ammonium nitrate dissociation process

    International Nuclear Information System (INIS)

    Zakharkin, B.S.; Varykhanov, V.P.; Kucherenko, V.S.; Solov'yeva, L.N.; Revyakin, V.V.

    2000-01-01

    Ammonia and ammonium carbonate are frequently used as reagents in fuel production and processing of liquid radioactive wastes. In particular, liquid radioactive wastes that contain ammonium nitrate are generated during operations of metal precipitation. In closed vessels at elevated temperature, for example in evaporators or deposits in tubing, ammonium nitrate may explode due to generation of gaseous nitrogen oxides [2]. In this connection, steps have to be taken to rule out conditions that result in explosion. To do that, ammonium nitrate should be removed even prior to the initial stage of its formation. This report gives results of development of a method of dissociating ammonium nitrate

  16. Nitrate concentrations in drainage water in marine clay areas : exploratory research of the causes of increased nitrate concentrations

    NARCIS (Netherlands)

    Boekel, van E.M.P.M.; Roelsma, J.; Massop, H.T.L.; Hendriks, R.F.A.; Goedhart, P.W.; Jansen, P.C.

    2013-01-01

    The nitrate concentrations measured in drainage water and groundwater at LMM farms (farms participating in the National Manure Policy Effects Measurement Network (LLM)) in marine clay areas have decreased with 50% since the mid-nineties. The nitrate concentrations in marine clay areas are on average

  17. Anaerobic columnar denitrification of high nitrate wastewater

    International Nuclear Information System (INIS)

    Francis, C.W.; Malone, C.D.

    1975-01-01

    Anaerobic columns were used to test the effectiveness of biological denitrification of nitrate solutions ranging in concentration from 1 to 10 kg NO 3 /m 3 . Several sources of nitrate (Ca(CNO 3 ) 2 , NaNO 3 , NH 4 NO 3 , and actual nitrate wastes from a UO 2 fuel fabrication plant) were evaluated as well as two packing media. The packing media were anthracite coal particles, whose effective diameter size ranged between 2 and 3 mm, and polypropylene Raschig rings 1.6 x 1.6 diameter. The anthracite coal proved to be the better packing media as excessive hydraulic short circuiting occurred in a 120 x 15 cm diameter glass column packed with the polypropylene rings after 40 days operation. With anthracite coal, floatation of the bed occurred at flow rates greater than 0.80 cm 3 /s. Tapered columns packed with anthracite coal eliminated the floatation problem, even at flow rates as high as 5 cm 3 /s. Under optimum operating conditions the anthracite coal behaved as a fluidized bed. Maximum denitrification rates were 1.0--1.4 g NO 3 /m 3 /s based on initial bed volume. Denitrification kinetics indicated that rates of denitrification became substrate inhibited at nitrate concentrations greater than 6.5 kg NO 3 /m 3 Anaerobic columns packed with anthracite coal appear to be an effective method of nitrate disposal for nitrate rich wastewater generated at UO 2 fuel fabrication plants and fuel reprocessing facilities. (U.S.)

  18. Understanding organic nitrates – a vein hope?

    Science.gov (United States)

    Miller, Mark R; Wadsworth, Roger M

    2009-01-01

    The organic nitrate drugs, such as glyceryl trinitrate (GTN; nitroglycerin), are clinically effective in angina because of their dilator profile in veins and arteries. The exact mechanism of intracellular delivery of nitric oxide (NO), or another NO-containing species, from these compounds is not understood. However, mitochondrial aldehyde dehydrogenase (mtALDH) has recently been identified as an organic nitrate bioactivation enzyme. Nitrate tolerance, the loss of effect of organic nitrates over time, is caused by reduced bioactivation and/or generation of NO-scavenging oxygen-free radicals. In a recent issue of the British Journal of Pharmacology, Wenzl et al. show that guinea-pigs, deficient in ascorbate, also have impaired responsiveness to GTN, but nitrate tolerance was not due to ascorbate deficiency that exhibited divergent changes in mtALDH activity. Thus, the complex function of mtALDH appears to be the key to activation of GTN, the active NO species formed and the induction of tolerance that can limit clinical effectiveness of organic nitrate drugs. British Journal of Pharmacology (2009) 157, 565–567; doi:10.1111/j.1476-5381.2009.00193.x This article is part of a themed section on Endothelium in Pharmacology. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 The paper by Wenzl et al. is available from http://www3.interscience.wiley.com/cgi-bin/fulltext/122221718/PDFSTART PMID:19630835

  19. Assessment of nitrate export from a high elevation watershed

    International Nuclear Information System (INIS)

    Williams, E.M.; Nodvin, S.C.

    1991-01-01

    Nitrate leaching from forest soils can be detrimental to both the forest ecosystems and stream water quality. Nitrate moving through the soil transports plant nutrients and acidifying agents, hydrogen and aluminum, and can export them to streams. In the high elevation spruce-fir forests in the Great Smoky Mountains National Park (GRSM) nitrate has been found to be leaching from the rooting zone. Streams associated with these ecosystems are poorly buffered. Therefore rapid export of nitrate from the soils to the streams could lead to episodic acidification. The purpose of the Noland Divide watershed study is to assess the levels of nitrate export from the watershed to the streams and the potential impacts of the export to the ecosystem

  20. Antimicrobial Properties of Copper Nanoparticles and Amino Acid Chelated Copper Nanoparticles Produced by Using a Soya Extract

    Science.gov (United States)

    DeAlba-Montero, I.; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene

    2017-01-01

    This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used. PMID:28286459

  1. Light-induced protein nitration and degradation with HONO emission

    Science.gov (United States)

    Meusel, Hannah; Elshorbany, Yasin; Kuhn, Uwe; Bartels-Rausch, Thorsten; Reinmuth-Selzle, Kathrin; Kampf, Christopher J.; Li, Guo; Wang, Xiaoxiang; Lelieveld, Jos; Pöschl, Ulrich; Hoffmann, Thorsten; Su, Hang; Ammann, Markus; Cheng, Yafang

    2017-10-01

    Proteins can be nitrated by air pollutants (NO2), enhancing their allergenic potential. This work provides insight into protein nitration and subsequent decomposition in the presence of solar radiation. We also investigated light-induced formation of nitrous acid (HONO) from protein surfaces that were nitrated either online with instantaneous gas-phase exposure to NO2 or offline by an efficient nitration agent (tetranitromethane, TNM). Bovine serum albumin (BSA) and ovalbumin (OVA) were used as model substances for proteins. Nitration degrees of about 1 % were derived applying NO2 concentrations of 100 ppb under VIS/UV illuminated conditions, while simultaneous decomposition of (nitrated) proteins was also found during long-term (20 h) irradiation exposure. Measurements of gas exchange on TNM-nitrated proteins revealed that HONO can be formed and released even without contribution of instantaneous heterogeneous NO2 conversion. NO2 exposure was found to increase HONO emissions substantially. In particular, a strong dependence of HONO emissions on light intensity, relative humidity, NO2 concentrations and the applied coating thickness was found. The 20 h long-term studies revealed sustained HONO formation, even when concentrations of the intact (nitrated) proteins were too low to be detected after the gas exchange measurements. A reaction mechanism for the NO2 conversion based on the Langmuir-Hinshelwood kinetics is proposed.

  2. Uranyl citrate dimers as guests in a copper-bipyridine framework: a novel hetero-metallic inorganic-organic hybrid compound

    International Nuclear Information System (INIS)

    Thuery, P.

    2007-01-01

    Reaction of uranyl nitrate with citric acid (H 4 cit) in the presence of copper(II) bis(tri-fluoro-methane-sulfonate) and 4,4'-bipyridine (bipy) under hydrothermal conditions gave the mixed complex[Cu(bipy) 2 (H 2 O) 2 ][UO 2 (Hcit)(H 2 O)] 2 .5H 2 O, in which di-anionic uranyl citrate dimers are incorporated in the interlayer spaces of the [Cu(bipy) 2 (H 2 O) 2 ] n 2n+ square grid assemblage. An extended hydrogen bonding network links the uranyl complex units together and also to the grid framework, resulting in the formation of a 3-D assemblage held by weak interactions. (author)

  3. Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields

    Directory of Open Access Journals (Sweden)

    A. W. Rollins

    2009-09-01

    Full Text Available Alkyl nitrates and secondary organic aerosol (SOA produced during the oxidation of isoprene by nitrate radicals has been observed in the SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber chamber. A 16 h dark experiment was conducted with temperatures at 289–301 K, and maximum concentrations of 11 ppb isoprene, 62.4 ppb O3 and 31.1 ppb NOx. We find the yield of nitrates is 70±8% from the isoprene + NO3 reaction, and the yield for secondary dinitrates produced in the reaction of primary isoprene nitrates with NO3 is 40±20%. We find an effective rate constant for reaction of NO3 with the group of first generation oxidation products to be 7×10−14 molecule−1 cm3 s−1. At the low total organic aerosol concentration in the chamber (max=0.52 μg m−3 we observed a mass yield (ΔSOA mass/Δisoprene mass of 2% for the entire 16 h experiment. However a comparison of the timing of the observed SOA production to a box model simulation of first and second generation oxidation products shows that the yield from the first generation products was <0.7% while the further oxidation of the initial products leads to a yield of 14% (defined as ΔSOA/Δisoprene2x where Δisoprene2x is the mass of isoprene which reacted twice with NO3. The SOA yield of 14% is consistent with equilibrium partitioning of highly functionalized C5 products of isoprene oxidation.

  4. 4-Methoxy-N,N′-diphenylbenzamidinium nitrate

    Directory of Open Access Journals (Sweden)

    Renata S. Silva

    2016-09-01

    Full Text Available The asymmetric unit of the title salt N,N′-diphenyl-4-methoxybenzamidinium nitrate, C20H19N2O+·NO3−, comprises two independent N,N′-diphenyl-4-methoxybenzamidinium cations and two nitrate anions. The crystal structure features N—H...O hydrogen bonds and C—H...O contacts responsible for the packing.

  5. The Hyrkkoelae native copper mineralization as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1996-10-01

    The Hyrkkoelae U-Cu mineralization is located in southwestern Finland, near the Palmottu analogue site. The age of the mineralization is estimated to be between 1.8 and 1.7 Ga. Petrological and mineralogical studies have demonstrated that this mineralization has many geological features that parallel those of the sites being considered for nuclear waste disposal in Finland. A particular feature is the existence of native copper and copper sulfides in open fractures in the near-surface zone. This allows us to study the native copper corrosion process in analogous conditions as expected to dominate in the nuclear fuel waste repository. The occurrence of uranyl compounds at these fractures permits also considerations about the sorption properties of the engineered barrier material (metallic copper) and its corrosion products. From the study of mineral assemblages or paragenesis, it appears that the formation of copper sulfide (djurleite, Cu 1.934 ) after native copper (Cu 0 ) under anoxic (reducing) conditions is enhanced by the availability of dissolved HS - in the groundwater circulating in open fractures in the near-surface zone. The minimum concentration of HS - in the groundwater is estimated to be of the order of 10 -5 M (∼ 10 -4 g/l) and the minimum pH value not lower than about 7.8 as indicated by the presence of calcite crystals in the same fracture. The present study is the first one that has been performed on findings of native copper in reducing, neutral to slightly alkaline groundwaters. Thus, the data obtained is of most relevance in improving models of anoxic corrosion of copper canisters. (orig.)

  6. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    can replace light in eliciting an increase of nitrate reductase mRNA accumulation in dark-adapted green Arabidopsis plants. We show further that sucrose alone is sufficient for the full expression of nitrate reductase genes in etiolated Arabidopsis plants. Finally, using a reporter gene, we show......Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression....... Located in the cytosol, nitrate reductase obtains its reductant not from photosynthesis but from carbohydrate catabolism. This relationship prompted us to investigate the indirect role that light might play, via photosynthesis, in the regulation of nitrate reductase gene expression. We show that sucrose...

  7. CO2 enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants.

    Science.gov (United States)

    Bloom, Arnold J; Asensio, Jose Salvador Rubaio; Randall, Lesley; Rachmilevitch, Shimon; Cousins, Asaph B; Carlisle, Eli A

    2012-02-01

    The CO2 concentration in Earth's atmosphere may double during this century. Plant responses to such an increase depend strongly on their nitrogen status, but the reasons have been uncertain. Here, we assessed shoot nitrate assimilation into amino acids via the shift in shoot CO2 and O2 fluxes when plants received nitrate instead of ammonium as a nitrogen source (deltaAQ). Shoot nitrate assimilation became negligible with increasing CO2 in a taxonomically diverse group of eight C3 plant species, was relatively insensitive to CO2 in three C4 species, and showed an intermediate sensitivity in two C3-C4 intermediate species. We then examined the influence of CO2 level and ammonium vs. nitrate nutrition on growth, assessed in terms of changes in fresh mass, of several C3 species and a Crassulacean acid metabolism (CAM) species. Elevated CO2 (720 micromol CO2/mol of all gases present) stimulated growth or had no effect in the five C3 species tested when they received ammonium as a nitrogen source but inhibited growth or had no effect if they received nitrate. Under nitrate, two C3 species grew faster at sub-ambient (approximately 310 micromol/mol) than elevated CO2. A CAM species grew faster at ambient than elevated or sub-ambient CO2 under either ammonium or nitrate nutrition. This study establishes that CO2 enrichment inhibits shoot nitrate assimilation in a wide variety of C3 plants and that this phenomenon can have a profound effect on their growth. This indicates that shoot nitrate assimilation provides an important contribution to the nitrate assimilation of an entire C3 plant. Thus, rising CO2 and its effects on shoot nitrate assimilation may influence the distribution of C3 plant species.

  8. Effects of feed consumption rate of beef cattle offered a diet supplemented with nitrate ad libitum or restrictively on potential toxicity of nitrate.

    Science.gov (United States)

    Lee, C; Araujo, R C; Koenig, K M; Beauchemin, K A

    2015-10-01

    The objective of the study was to investigate the effects of feed consumption rate on potential toxicity, rumen fermentation, and eating behavior when beef heifers were fed a diet supplemented with nitrate (NI). Twelve ruminally cannulated heifers (827 ± 65.5 kg BW) were used in a randomized complete block design. The experiment consisted of 10-d adaptation, 8-d urea-feeding, and 3-d nitrate-feeding periods. All heifers were fed a diet supplemented with urea (UR) during the adaptation and urea-feeding periods, whereas the NI diet (1.09% NO in dietary DM) was fed during the nitrate-feeding period. After adaptation, heifers were randomly assigned to ad libitum or restrictive feeding (about 80% of ad libitum intake) for the urea- and nitrate-feeding periods. Ad libitum DMI decreased (14.1 vs. 15.1 kg/d; nitrate feeding changed the consumption pattern (a more even distribution of feed intake over the day). The increased feed consumption from 0 to 3 h after feeding the NI diet restrictively vs. ad libitum numerically decreased ( = 0.11) rumen pH and numerically or significantly increased ( = 0.01 to 0.28) rumen ammonia, NO, and NO; blood methemoglobin; and plasma NO and NO at 3 h. Regression analysis indicated that increased feed consumption (0 to 3 h) exponentially elevated ( nitrate-feeding period, the nitrate content of orts on d 2 and 3 was greater ( = 0.02) than that on d 1. In conclusion, the increased consumption rate of a diet supplemented with nitrate was an important factor influencing risk of nitrate toxicity based on blood methemoglobin and plasma NO. In addition, the pattern of daily feed consumption was altered by nitrate (creating a "nibbling" pattern of eating) in beef heifers.

  9. Spectrographic determination of impurities in copper and copper oxide

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1990-11-01

    An emission spectrographic method for the determination of Al, Bi, Ca, Cd, Cr, Fe, Ge, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn and Zn in copper and copper oxide is described. Two mixtures (Graphite and ZnO: graphite and GeO sub(2)) were used as buffers. The standard deviation lies around 10%. (author)

  10. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria

    DEFF Research Database (Denmark)

    Elguindi, J; Moffitt, S; Hasman, Henrik

    2010-01-01

    of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper...... on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells, which contributed directly to bacterial killing....

  11. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

    Directory of Open Access Journals (Sweden)

    Rebeca Ortega-Amaya

    2016-07-01

    Full Text Available This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs on the surface of a copper foil supporting graphene oxide (GO at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure.

  12. Observations on particulate organic nitrates and unidentified components of NOy

    DEFF Research Database (Denmark)

    Nielsen, T.; Egeløv, A.H.; Granby, K.

    1995-01-01

    A method to determine the total content of particulate organic nitrates (PON) has been developed and ambient air measurements of PON, NO, NO2, HNO3, peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), gas NOy and particulate inorganic nitrate have been performed in the spring and early...... summer al an agricultural site in Denmark and compared with measurements of ozone, H2O2, SO2, formic acid, acetic acid and methane sulphonic acid. The gas NOy detector determines the sum NO + NO2 + HNO2 + HNO3 + PAN + PPN + gas phase organic nitrates + 2 x N2O5 + NO3. The content of residual gas NOy...... = gas NOy + particulate inorganic nitrate). Residual gas NOy was much higher than the particulate fraction of organic nitrates (PON). PON was only 0.25 +/- 0.11% of concentrations of photochemical oxidants in connection with high-pressure systems suggesting atmospheric processes being the major source...

  13. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis

    NARCIS (Netherlands)

    Fedoseienko, Alina; Bartuzi, Paulina; van de Sluis, Bart

    2014-01-01

    Copper is an important cofactor in numerous biological processes in all living organisms. However, excessive copper can be extremely toxic, so it is vital that the copper level within a cell is tightly regulated. The damaging effect of copper is seen in several hereditary forms of copper toxicity in

  14. Concentration of Nitrate in Bottled Drinking Water in Qom, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Saberi Bidgoli

    2013-11-01

    Full Text Available Background & Aims of the Study: The global consumption of bottled water is growing with substantial growth in sales volumes on every continent. The highest growth rates are occurring in Asia and South America. Biological and chemical monitoring of these waters is necessary. The aim of current study was determination of nitrate concentration in bottled drinking water in Qom, Iran in 2012. Materials & Methods: A cross-sectional study carried out in Qom, Iran. First of all, 18 most frequent brands of bottled drinking waters were purchased in June 2012 randomly. Then concentration of nitrate was measured according to the spectrophotometric method. In next step, experiment data were analyzed by Excel Software and P value was obtained by statistical calculations. Finally data were comprised with written nitrate concentration on labels and recommended permissible values . Results: The median nitrate concentration was 2.1 mg/L with the minimum 0.8 mg/L and maximum 8.1 mg/L. In 66.7 % of the samples, the measured nitrate concentrations were less than the written nitrate concentrations and in 33.3% of samples, the nitrate concentration was higher. The statistical calculation proved the significant difference between the median of written nitrate concentration on the label and investigated nitrate concentration (P value > 0.05. Conclusions: It be concluded that the measured nitrate concentration in all of the water samples is below the recommended permissible level.

  15. Total salivary nitrates and nitrites in oral health and periodontal disease.

    Science.gov (United States)

    Sánchez, Gabriel A; Miozza, Valeria A; Delgado, Alejandra; Busch, Lucila

    2014-01-30

    It is well known that nitrites are increased in saliva from patients with periodontal disease. In the oral cavity, nitrites may derive partly from the reduction of nitrates by oral bacteria. Nitrates have been reported as a defence-related mechanism. Thus, the aim of the present study was to determine the salivary levels of total nitrate and nitrite and their relationship, in unstimulated and stimulated saliva from periodontal healthy subjects, and from patients with chronic periodontal disease. Nitrates and nitrites were determined in saliva from thirty healthy subjects and forty-four patients with periodontal disease. A significant increase in salivary nitrates and nitrites was observed. Nitrates and nitrites concentration was related to clinical attachment level (CAL). A positive and significant Pearson's correlation was found between salivary total nitrates and nitrites. Periodontal treatment induced clinical improvement and decreased nitrates and nitrites. It is concluded that salivary nitrates and nitrites increase, in patients with periodontal disease, could be related to defence mechanisms. The possibility that the salivary glands respond to oral infectious diseases by increasing nitrate secretion should be explored further. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Dielectric properties of a potassium nitrate–ammonium nitrate system

    OpenAIRE

    Alexey Yu. Milinskiy; Anton A. Antonov

    2015-01-01

    Potassium nitrate has a rectangular hysteresis loop and is thought to be a promising material for non-volatile ferroelectric memory. However, its polar phase is observed in a narrow temperature range. This paper deals with an effect of ammonium nitrate NH4NO3 on the dielectric properties of potassium nitrate. Thermal dependencies of the linear dielectric permittivity ε and the third-harmonic coefficient g3 for potassium nitrate and polycrystalline binary (KNO3)1–x(NH4NO3)x system (x = 0.025, ...

  17. Extraction with tributyl phosphate (TBP) from ferric nitrate solutions

    International Nuclear Information System (INIS)

    Kolarik, Z.; Grudpan, K.

    1985-01-01

    Ferric nitrate acts as a strong salting-out agent in the extraction of thorium(IV), uranyl, europium(III), samarium(III) and zirconium(IV) nitrates as well as of nitric acid with tributyl phosphate in dodecane. Nitric acid, if present in the extraction system together with large amounts of ferric nitrate, markedly suppresses the extraction of thorium(IV) and lanthanides(III) but significantly supports the extraction of zirconium(IV). Separation factors of different metal pairs are presented as functions of the concentrations of ferric nitrate and nitric acid

  18. Kinetic of liquid-liquid extraction for uranyl nitrate and actinides (III) and lanthanides (III) nitrates by amide extractants; Cinetique d`extraction liquide-liquide du nitrate d`uranyle et des nitrates d`actinides (III) et de lanthanides (III) par des extractants a fonction amide

    Energy Technology Data Exchange (ETDEWEB)

    Toulemonde, V [CEA Centre d` Etudes Nucleaires de Saclay, 91 -Gif-sur-Yvette (France); [CEA Centre d` Etudes de la Vallee du Rhone, 30 -Marcoule (France). Dept. d` Exploitation du Retraitement et de Demantelement

    1995-12-20

    The kinetics of liquid-liquid extraction by amide extractants have been investigated for uranyl nitrate (monoamide extractants), actinides (III) and lanthanides (III) nitrates (diamide extractants). The transfer of the metallic species from the aqueous phase to the organic phase was studied using two experimental devices: ARMOLLEX (Argonne Modified Lewis cell for Liquid Liquid Extraction) and RSC (Rotating Stabilized Cell). The main conclusions are: for the extraction of uranyl nitrate by DEHDMBA monoamide, the rate-controlling step is the complexation of the species at the interface of the two liquids. Thus, an absorption-desorption (according to Langmuir theory) reaction mechanism was proposed; for the extraction of actinides (III) and lanthanides (III) nitrates in nitric acid media by DMDBTDMA diamide, the kinetic is also limited by interfacial reactions. The behavior of Americium and Europium is very similar as fare as their reaction kinetics are concerned. (author). 89 refs.

  19. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  20. Organic Nitrates and Nitrate Resistance in Diabetes: The Role of Vascular Dysfunction and Oxidative Stress with Emphasis on Antioxidant Properties of Pentaerithrityl Tetranitrate

    Directory of Open Access Journals (Sweden)

    Matthias Oelze

    2010-01-01

    Full Text Available Organic nitrates represent a class of drugs which are clinically used for treatment of ischemic symptoms of angina as well as for congestive heart failure based on the idea to overcome the impaired NO bioavailability by “NO” replacement therapy. The present paper is focused on parallels between diabetes mellitus and nitrate tolerance, and aims to discuss the mechanisms underlying nitrate resistance in the setting of diabetes. Since oxidative stress was identified as an important factor in the development of tolerance to organic nitrates, but also represents a hallmark of diabetic complications, this may represent a common principle for both disorders where therapeutic intervention should start. This paper examines the evidence supporting the hypothesis that pentaerithrityl tetranitrate may represent a nitrate for treatment of ischemia in diabetic patients. This evidence is based on the considerations of parallels between diabetes mellitus and nitrate tolerance as well as on preliminary data from experimental diabetes studies.

  1. Organic Nitrates and Nitrate Resistance in Diabetes: The Role of Vascular Dysfunction and Oxidative Stress with Emphasis on Antioxidant Properties of Pentaerithrityl Tetranitrate

    Science.gov (United States)

    Oelze, Matthias; Schuhmacher, Swenja; Daiber, Andreas

    2010-01-01

    Organic nitrates represent a class of drugs which are clinically used for treatment of ischemic symptoms of angina as well as for congestive heart failure based on the idea to overcome the impaired NO bioavailability by “NO” replacement therapy. The present paper is focused on parallels between diabetes mellitus and nitrate tolerance, and aims to discuss the mechanisms underlying nitrate resistance in the setting of diabetes. Since oxidative stress was identified as an important factor in the development of tolerance to organic nitrates, but also represents a hallmark of diabetic complications, this may represent a common principle for both disorders where therapeutic intervention should start. This paper examines the evidence supporting the hypothesis that pentaerithrityl tetranitrate may represent a nitrate for treatment of ischemia in diabetic patients. This evidence is based on the considerations of parallels between diabetes mellitus and nitrate tolerance as well as on preliminary data from experimental diabetes studies. PMID:21234399

  2. Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives

    Science.gov (United States)

    Carol A. Clausen; Frederick Green

    2003-01-01

    Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...

  3. Copper complexes as 'radiation recovery' agents

    International Nuclear Information System (INIS)

    Sorenson, J.R.J.

    1989-01-01

    Copper and its compounds have been used for their remedial effects since the beginning of recorded history. As early as 3000 BC the Egyptians used copper as an antiseptic for healing wounds and to sterilise drinking water; and later, ca 1550 BC, the Ebers Papyrus reports the use of copper acetate, copper sulphate and pulverised metallic copper for the treatment of eye infections. These historical uses of copper and its compounds are particularly interesting in the light of modern evidence concerning the use of certain copper complexes for the treatment of radiation sickness and more recently as an adjunct to radiotherapy for cancer patients. (author)

  4. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression. ...

  5. [Nitrate concentrations in tap water in Spain].

    Science.gov (United States)

    Vitoria, Isidro; Maraver, Francisco; Sánchez-Valverde, Félix; Armijo, Francisco

    2015-01-01

    To determine nitrate concentrations in drinking water in a sample of Spanish cities. We used ion chromatography to analyze the nitrate concentrations of public drinking water in 108 Spanish municipalities with more than 50,000 inhabitants (supplying 21,290,707 potential individuals). The samples were collected between January and April 2012. The total number of samples tested was 324. The median nitrate concentration was 3.47 mg/L (range: 0.38-66.76; interquartile range: 4.51). The water from 94% of the municipalities contained less than 15 mg/L. The concentration was higher than 25mg/L in only 3 municipalities and was greater than 50mg/L in one. Nitrate levels in most public drinking water supplies in municipalities inhabited by almost half of the Spanish population are below 15 mg/L. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  6. Removal of Nitrate From Aqueous Solution Using Rice Chaff

    Directory of Open Access Journals (Sweden)

    Dehghani

    2015-09-01

    Full Text Available Background Nitrate is largely dissolved in the surface and ground water, due to its high solubility. Continual uptake of nitrite through drinking water can lead to problems and diseases (such as blue baby for humans, especially children. Objectives The aim of this study was to develop a new and inexpensive method for the removal of nitrate from water. In this regard, the possibility of using chaff for removal of nitrate from aqueous solutions was studied and the optimum operating conditions of nitrate removal was determined. Materials and Methods This is a cross-sectional study conducted in laboratory scale. The UV spectrophotometer at a wavelength of maximum absorbance (220 nm was used to determine the nitrate concentration. The effect of pH, amount of chaff, temperature, and contact time were investigated. Results The result of this study revealed that chaff as an absorbent could remove nitrate from solutions, and the efficiency of adsorption increased as contact time increased from 5 to 30 minutes, amount of chaff increased from 1 to 3 g, temperature increased in a range of 300 - 400°C and the amount of pH decreased from 10 to 3. The maximum adsorption rate was around pH 3 (53.14%. Conclusions It was shown that the removal efficiency of nitrate was directly proportional to the amount of chaff, temperature, and contact time but inversely to the pH. This study showed that nitrate removal by chaff is a promising technique.

  7. Source Areas of Water and Nitrate in a Peatland Catchment, Minnesota, USA

    Science.gov (United States)

    Sebestyen, S. D.

    2017-12-01

    In nitrogen polluted forests, stream nitrate concentrations increase and some unprocessed atmospheric nitrate may be transported to streams during stormflow events. This understanding has emerged from forests with upland mineral soils. In contrast, catchments with northern peatlands may have both upland soils and lowlands with deep organic soils, each with unique effects on nitrate transport and processing. While annual budgets show nitrate yields to be relatively lower from peatland than upland-dominated catchments, little is known about particular runoff events when stream nitrate concentrations have been higher (despite long periods with little or no nitrate in outlet streams) or the reasons why. I used site knowledge and expansive/extensive monitoring at the Marcell Experimental Forest in Minnesota, along with a targeted 2-year study to determine landscape areas, water sources, and nitrate sources that affected stream nitrate variation in a peatland catchment. I combined streamflow, upland runoff, snow amount, and frost depth data from long-term monitoring with nitrate concentration, yield, and isotopic data to show that up to 65% of stream nitrate during snowmelt of 2009 and 2010 was unprocessed atmospheric nitrate. Up to 46% of subsurface runoff from upland soils during 2009 was unprocessed atmospheric nitrate, which shows the uplands to be a stream nitrate source during 2009, but not during 2010 when upland runoff concentrations were below the detection limit. Differences are attributable to variations in water and nitrate sources. Little snow (a nitrate source), less upland runoff relative to peatland runoff, and deeper soil frost in the peatland caused a relatively larger input of nitrate from the uplands to the stream during 2009 and the peatland to the stream during 2010. Despite the near-absence of stream nitrate during much of rest of the year, these findings show an important time when nitrate transport affected downstream aquatic ecosystems, reasons

  8. Copper: From neurotransmission to neuroproteostasis

    Directory of Open Access Journals (Sweden)

    Carlos M Opazo

    2014-07-01

    Full Text Available Copper is critical for the Central Nervous System (CNS development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of AMPA receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (neuroproteostasis in the CNS with focus in the Ubiquitin Proteasome System, which is particularly relevant to neurological disorders such Alzheimer’s disease (AD where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.

  9. Spatial assessment of animal manure spreading and groundwater nitrate pollution

    Directory of Open Access Journals (Sweden)

    Roberta Infascelli

    2009-11-01

    Full Text Available Nitrate concentration in groundwater has frequently been linked to non-point pollution. At the same time the existence of intensive agriculture and extremely intensive livestock activity increases the potential for nitrate pollution in shallow groundwater. Nitrate used in agriculture could cause adverse effects on human and animal health. In order to evaluate the groundwater nitrate pollution, and how it might evolve in time, it is essential to develop control systems and to improve policies and incentives aimed at controlling the amount of nitrate entering downstream water systems. The province of Caserta in southern Italy is characterized by high levels of animal manure loading. A comparison between manure nitrogen production and nitrate concentration in groundwater was carried out in this area, using geostatistical tools and spatial statistics. The results show a discrepancy between modelling of nitrate leaching and monitoring of the groundwater and, moreover, no spatial correlation between nitrogen production in livestock farms and nitrate concentration in groundwater, suggesting that producers are not following the regulatory procedures for the agronomic use of manure. The methodology developed in this paper could be applied also in other regions in which European Union fertilization plans are not adequately followed.

  10. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems.

    Science.gov (United States)

    Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte

    2017-03-09

    Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers' taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies.

  11. Use of tensiometer for in situ measurement of nitrate leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Reddy, M.R.

    1999-07-01

    In order to monitor nitrate leaching from non-point source pollution, this study used tensiometers to measure in situ nitrate concentration and soil-moisture potential. Instead of filling the tensiometers with pure water, the study filled the tensiometers with nitrate ionic strength adjuster (ISA, 1 M (NH{sub 4}){sub 2}SO{sub 4}). After the installation of the tensiometers at various depths along soil profiles, a portable pressure transducer was used to measure the soil moisture potential, and a nitrate electrode attached to an ion analyzer was used to measure the nitrate concentration in situ. The measurement was continuous and non-destructive. To test this method in the laboratory, eight bottles filled with pure sand were treated with known nitrate solutions, and a tensiometer was placed in each bottle. Measurements were taken every day for 30 days. Laboratory test showed a linear relationship between the known nitrate concentration and the tensiometer readings (R{sup 2} = 0.9990). Then a field test was conducted in a watermelon field with green manure mulch. Field data indicated a potential of nitrate leaching below the soil depth of 100 cm when crop uptake of nutrients was low.

  12. Carbon-coated copper nanoparticles prepared by detonation method and their thermocatalysis on ammonium perchlorate

    Science.gov (United States)

    An, Chongwei; Ding, Penghui; Ye, Baoyun; Geng, Xiaoheng; Wang, Jingyu

    2017-03-01

    Carbon-coated copper nanoparticles (CCNPs) were prepared by initiating a high-density charge pressed with a mixture of microcrystalline wax, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and copper nitrate hydrate (Cu(NO3)2.3H2O) in an explosion vessel filled with nitrogen gas. The detonation products were characterized by transmission electron microcopy (TEM), high resolution transmission electron microcopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Raman spectroscopy. The effects of CCNPs on thermal decomposition of ammonium perchlorate (AP) were also investigated by differential scanning calorimeter (DSC). Results indicated that the detonation products were spherical, 25-40 nm in size, and had an apparent core-shell structure. In this structure, the carbon shell was 3-5 nm thick and mainly composed of graphite, C8 (a kind of carbyne), and amorphous carbon. When 5 wt.% CCNPs was mixed with 95 wt.% AP, the high-temperature decomposition peak of AP decreased by 95.97, 96.99, and 96.69 °Cat heating rates of 5, 10, and 20 °C/min, respectively. Moreover, CCNPs decreased the activation energy of AP as calculated through Kissinger's method by 25%, which indicated outstanding catalysis for the thermal decomposition of AP.

  13. Carbon-coated copper nanoparticles prepared by detonation method and their thermocatalysis on ammonium perchlorate

    Directory of Open Access Journals (Sweden)

    Chongwei An

    2017-03-01

    Full Text Available Carbon-coated copper nanoparticles (CCNPs were prepared by initiating a high-density charge pressed with a mixture of microcrystalline wax, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, and copper nitrate hydrate (Cu(NO32·3H2O in an explosion vessel filled with nitrogen gas. The detonation products were characterized by transmission electron microcopy (TEM, high resolution transmission electron microcopy (HRTEM, energy dispersive X-ray spectroscopy (EDX, X-ray diffraction (XRD, and Raman spectroscopy. The effects of CCNPs on thermal decomposition of ammonium perchlorate (AP were also investigated by differential scanning calorimeter (DSC. Results indicated that the detonation products were spherical, 25-40 nm in size, and had an apparent core-shell structure. In this structure, the carbon shell was 3-5 nm thick and mainly composed of graphite, C8 (a kind of carbyne, and amorphous carbon. When 5 wt.% CCNPs was mixed with 95 wt.% AP, the high-temperature decomposition peak of AP decreased by 95.97, 96.99, and 96.69 °Cat heating rates of 5, 10, and 20 °C/min, respectively. Moreover, CCNPs decreased the activation energy of AP as calculated through Kissinger’s method by 25%, which indicated outstanding catalysis for the thermal decomposition of AP.

  14. Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size.

    Science.gov (United States)

    Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M

    2005-09-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.

  15. Headache characteristics during the development of tolerance to nitrates

    DEFF Research Database (Denmark)

    Christiansen, I; Iversen, Helle Klingenberg; Olesen, J

    2000-01-01

    Recent studies suggest that nitric oxide (NO) plays an important role in nitrate-induced headache and in spontaneous migraine attacks. Organic nitrates act as prodrugs for NO and headache is a predominant adverse effect of nitrates but often disappears during continuous treatment. Insight...... into tolerance to headache could lead to insight into vascular headache mechanisms in general. The specific aim of the present study was therefore to characterize the headache and accompanying symptoms during continuous nitrate administration until a state of tolerance to headache had developed. 5-isosorbide...

  16. Complexes of pentavalent plutonium in lithium nitrate solutions

    International Nuclear Information System (INIS)

    Mekhail, F.M.; Zaki, M.R.

    1977-01-01

    Pu 0 2 ion can form nitrate complexes in concentrated solution of lithium nitrate of PH 3.5. Spectrophotometric and ion exchange studies revealed the existence of two complexes, presumably the mono-and the dinitro. The rate of adsorption of the dinitrato complex, formed in 4 to 6 M-lithium nitrate solutions, on De-Acidite FF has been investigated and suggested to be diffusion controlled. The adsorption isotherm found to obey satisfactorily Freundlich equation

  17. The effects of organic nitrates on osteoporosis: a systematic review.

    Science.gov (United States)

    Jamal, S A; Reid, L S; Hamilton, C J

    2013-03-01

    Current treatments for osteoporosis are limited by lack of effect on cortical bone, side effects, and, in some cases, cost. Organic nitrates, which act as nitric oxide donors, may be a potential alternative. This systematic review summarizes the clinical data that reports on the effects of organic nitrates and bone. Organic nitrates, which act as nitric oxide donors, are novel agents that have several advantages over the currently available treatments for osteoporosis. This systematic review summarizes the clinical data that reports on the effects of organic nitrates on bone. We searched Medline (1966 to November 2012), EMBASE (1980 to November 2012), and the Cochrane Central Register of Controlled Trials (Issue 11, 2012). Keywords included nitrates, osteoporosis, bone mineral density (BMD), and fractures. We identified 200 citations. Of these, a total of 29 were retrieved for more detailed evaluation and we excluded 19 manuscripts: 15 because they did not present original data and four because they did not provide data on the intervention or outcome of interest. As such, we included ten studies in literature review. Of these ten studies two were observational cohort studies reporting nitrate use was associated with increased BMD; two were case control studies reporting that use of nitrates were associated with lower risk of hip fracture; two were randomized controlled trials (RCT) comparing alendronate to organic nitrates for treatment of postmenopausal women and demonstrating that both agents increased lumbar spine BMD. The two largest RCT with the longest follow-up, both of which compared effects of organic nitrates to placebo on BMD in women without osteoporosis, reported conflicting results. Headaches were the most common adverse event among women taking nitrates. No studies have reported on fracture efficacy. Further research is needed before recommending organic nitrates for the treatment of postmenopausal osteoporosis.

  18. NITRATE CONTAMINATION OF GROUND WATER (GW-761)

    Science.gov (United States)

    The occurrence of nitrate and related compounds in ground water is discussed from the perspectives of its natural as well as anthropogenic origins. A brief explanation of the nitrogen cycle touches on the production as well as utilization of ammonia, nitrite, nitrate, and nitrog...

  19. Hepatic copper content, urinary copper excretion, and serum ceruloplasmin in liver disease. [Activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ritland, S; Skrede, S [Rikshospitalet, Oslo (Norway); Steinnes, E [Institutt for Atomenergi, Kjeller (Norway)

    1977-01-01

    Liver copper content, urinary copper output and plasma ceruloplasmin have been evaluated in a variety of liver disorders. An activation analysis procedure for the determination of liver copper content is described. Dried biopsy samples were irradiated for two days at a thermal neutron flux of 1.5x10/sup 13/ ncm/sup -2/sec/sup -1/. After one day's delay the samples were dissolved in an acid mixture with copper carrier, and separated on an anion exchange column. The /sup 64/Cu activity in the separated fractions was recorded by gamma spectrometry using a Ge(Li) solid detector. The urinary copper excretion and the serum ceruloplasmin were determined by conventional laboratory methods.

  20. Modeling groundwater nitrate concentrations in private wells in Iowa

    Science.gov (United States)

    Wheeler, David C.; Nolan, Bernard T.; Flory, Abigail R.; DellaValle, Curt T.; Ward, Mary H.

    2015-01-01

    Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square = 0.77) and was acceptable in the testing set (r-square = 0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort.

  1. Modeling groundwater nitrate concentrations in private wells in Iowa.

    Science.gov (United States)

    Wheeler, David C; Nolan, Bernard T; Flory, Abigail R; DellaValle, Curt T; Ward, Mary H

    2015-12-01

    Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square=0.77) and was acceptable in the testing set (r-square=0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Circuit Design for Sensor Detection Signal Conditioner Nitrate Content

    Directory of Open Access Journals (Sweden)

    Robeth Manurung

    2011-09-01

    Full Text Available Nitrate is one of macro nutrients very important for agriculture. The availability of nitrate in soil is limited because it is very easy to leaching by rain, therefore nitrate could be contaminated ground water by  over-process of fertilizer. This process could also produce inefficiency in agriculture if it happened continuesly without pre-analysis of farm field. The answer those problems, it is need to develop the ion sensor system to measure concentrations of nitrat in soil. The system is consist of nitrate ion sensor device, signal conditioning and data acquisition circuit. The design and fabrications of signal conditioning circuit which integrated into ion nitrate sensor system and will apply for agriculture. This sensor has been used amperometric with three electrodes configuration: working, reference  and auxiliarry; the ion senstive membrane has use conductive polymer. The screen printing technique has been choosen to fabricate electrodes and deposition technique for ion sensitive membrane is electropolymerization. The characterization of sensor has been conducted using nitrate standard solution with range of concentration between 1 µM–1 mM. The characterization has shown that sensor has a good response with cureent output between 2.8–4.71 µA, liniearity factor is 99.65% and time response 250 second.

  3. Synthesis, spectral characterization and structural studies of a novel O, N, O donor semicarbazone and its binuclear copper complex with hydrogen bond stabilized lattice

    Science.gov (United States)

    Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.

    2018-04-01

    A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.

  4. Controls of oxygen isotope ratios of nitrate formed during nitrification in soils

    International Nuclear Information System (INIS)

    Mayer, B.; Bollwerk, S.M.; Vorhoff, B.; Mansfeldt, T.; Veizer, J.

    1999-01-01

    The isotopic composition of nitrate is increasingly used to determine sources and transformations of nitrogen in terrestrial and aquatic ecosystems. Oxygen isotope ratios of nitrate appear to be particularly useful, since they allow the differentiation between nitrate from atmospheric deposition (δ 18 O nitrate between +25 and +70 per mille), nitrate from fertilizers (δ 18 O nitrate +23 per mille), and nitrate derived from nitrification processes in soils (δ 18 O nitrate 3 molecule derive from H 2 O (with negative δ 18 O values dependent upon location) and one oxygen derives from atmospheric O 2 (δ 18 O = +23.5 per mille).. The objective of this study was to experimentally determine the extent to which water oxygen controls the δ 18 O value of nitrate, which is formed during nitrification in soils

  5. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake

    NARCIS (Netherlands)

    Berghe, van den P.V.E; Folmer, D.E.; Malingré, H.E.M.; Beurden, van E.; Klomp, A.E.M.; Sluis, van de B.; Merkx, M.; Berger, R.J.; Klomp, L.W.J.

    2007-01-01

    High-affinity cellular copper uptake is mediated by the CTR (copper transporter) 1 family of proteins. The highly homologous hCTR (human CTR) 2 protein has been identified, but its function in copper uptake is currently unknown. To characterize the role of hCTR2 in copper homoeostasis,

  6. 9 CFR 319.2 - Products and nitrates and nitrites.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Products and nitrates and nitrites... and nitrates and nitrites. Any product, such as frankfurters and corned beef, for which there is a standard in this part and to which nitrate or nitrite is permitted or required to be added, may be prepared...

  7. The dehydration of uranyl nitrate hexahydrate

    International Nuclear Information System (INIS)

    Badalov, A.; Kamalov, D.D.; Khamidov, B.O.; Mirsaidov, I.U.; Eshbekov, N.R.

    2010-01-01

    Present article is devoted to study of dehydration process of uranyl nitrate hexahydrate. The dehydration process of uranyl nitrate hexahydrate was studied by means of tensimeter method with membrane zero-manometer. The research was carried out under equilibrium conditions. It was defined that in studied temperature ranges (300-450 K) the dehydration process of UO_2(NO_3)_2 has a three stage character.

  8. Physiology and interaction of nitrate and nitrite reduction in Staphylococcus carnosus.

    OpenAIRE

    Neubauer, H; Götz, F

    1996-01-01

    Staphylococcus carnosus reduces nitrate to ammonia in two steps. (i) Nitrate was taken up and reduced to nitrite, and nitrite was subsequently excreted. (ii) After depletion of nitrate, the accumulated nitrite was imported and reduced to ammonia, which again accumulated in the medium. The localization, energy gain, and induction of the nitrate and nitrite reductases in S. carnosus were characterized. Nitrate reductase seems to be a membrane-bound enzyme involved in respiratory energy conserva...

  9. Study on removing nitrate from uranium solution by ion-exchange method

    International Nuclear Information System (INIS)

    Zhou Genmao

    2004-01-01

    Nitrate of low concentration can interfere with adsorption of uranyl sulfate anion on anion-exchange resins because the anion-exchange resins have a stronger affinity for nitrate in uranium solution. Nitrate can be adsorbed with a high efficiency resin, then desorbed by sodium hydroxide. The nitrate concentration is about 60 g/L in eluate. The research results show that nitrate can be recovered from uranium solution with N-3 anion-exchange resin

  10. Nitrate metabolism in the gromiid microbial universe

    DEFF Research Database (Denmark)

    Høgslund, Signe; Risgaard-Petersen, Nils; Cedhagen, Tomas

    enclose and regulate a small biogeochemical universe within their cell. Their transparent proteinaceous cell wall surrounds a complex matrix consisting of sediment, bacteria and nitrate which is concentrated to hundreds of mM in the gromiid cell. The nitrate is respired to dinitrogen, but in contrast...

  11. Spectrophotometric Determination of Nitrate in Vegetables Using ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    ABSTRACT: A rapid and sensitive spectrophotometric method for the determination of nitrate in vegetables is described. The method is based on the measurement of the absorbance of yellow sodium nitrophenoxide formed via the reaction of phenol with the vegetable-based nitrate in presence of sulphuric acid.

  12. The oral bioavailability of nitrate from vegetables investigated in healthy volunteers

    NARCIS (Netherlands)

    Lambers AC; Kortboyer JM; Schothorst RC; Sips AJAM; Cleven RFMJ; Meulenbelt J; VIC; LBM; ARO; LAC

    2000-01-01

    The major source of human nitrate exposure comes from vegetables. Several studies were performed to estimate the total daily dietary nitrate intake based on the nitrate contents of food and drinking water. However, only nitrate that is absorbed from the gastro-intestinal tract may contribute to

  13. Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Liu, Zhanfei; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Yu, Chendi; Wang, Rong; Jiang, Xiaofen

    2016-01-01

    Intertidal marshes are alternately exposed and submerged due to periodic ebb and flood tides. The tidal cycle is important in controlling the biogeochemical processes of these ecosystems. Intertidal sediments are important hotspots of dissimilatory nitrate reduction and interacting nitrogen cycling microorganisms, but the effect of tides on dissimilatory nitrate reduction, including denitrification, anaerobic ammonium oxidation and dissimilatory nitrate reduction to ammonium, remains unexplored in these habitats. Here, we use isotope-tracing and molecular approaches simultaneously to show that both nitrate-reduction activities and associated functional bacterial abundances are enhanced at the sediment-tidal water interface and at the tide-induced groundwater fluctuating layer. This pattern suggests that tidal pumping may sustain dissimilatory nitrate reduction in intertidal zones. The tidal effect is supported further by nutrient profiles, fluctuations in nitrogen components over flood-ebb tidal cycles, and tidal simulation experiments. This study demonstrates the importance of tides in regulating the dynamics of dissimilatory nitrate-reducing pathways and thus provides new insights into the biogeochemical cycles of nitrogen and other elements in intertidal marshes. PMID:26883983

  14. Cu,Zn-superoxide dismutase is lower and copper chaperone CCS is higher in erythrocytes of copper-deficient rats and mice.

    Science.gov (United States)

    West, Elizabeth C; Prohaska, Joseph R

    2004-09-01

    Discovery of a sensitive blood biochemical marker of copper status would be valuable for assessing marginal copper intakes. Rodent models were used to investigate whether erythrocyte concentrations of copper,zinc-superoxide dismutase (SOD), and the copper metallochaperone for SOD (CCS) were sensitive to dietary copper changes. Several models of copper deficiency were studied in postweanling male Holtzman rats, male Swiss Webster mice offspring, and both rat and mouse dams. Treatment resulted in variable but significantly altered copper status as evaluated by the presence of anemia, and lower liver copper and higher liver iron concentrations in copper-deficient compared with copper-adequate animals. Associated with this copper deficiency were consistent reductions in immunoreactive SOD and robust enhancements in CCS. In most cases, the ratio of CCS:SOD was several-fold higher in red blood cell extracts from copper-deficient compared with copper-adequate rodents. Determination of red cell CCS:SOD may be useful for assessing copper status of humans.

  15. Synergistic Extraction of Copper from Nitrate Solutions Using β-Hydroxy-Naphthaldoxime and Organophosphorus Compounds into Carbon-Tetrachloride

    Science.gov (United States)

    Dey, Pulak; Basu, Sukalyan

    2011-12-01

    The extraction behavior of Cu(II) from an aqueous nitrate medium employing β-hydroxy-naphthaldoxime in carbon tetrachloride has been investigated in the presence of several organophosphorus donors like tri-octyl phosphine oxide, tri-butyl phosphine oxide, and tri-butyl phosphate at pH 1.5. The concentration of the metal was measured by atomic absorption spectrophotometry. Synergism was observed when neutral donor was added because of the formation of the adduct [Cu(L)2.(S)] in CCl4 (S denotes neutral donor). The equilibrium constants of the binary system using β-hydroxy-naphthaldoxime and the ternary system involving another addition of an organophosphorus compound were calculated from the extraction date obtained. Furthermore, the temperature dependence of the equilibrium constants was also investigated to evaluate standard enthalpy (Δ H°), entropy (Δ S°), and free energy (Δ G°) of the reactions proposed.

  16. Gibbs energy calculation of electrolytic plasma channel with inclusions of copper and copper oxide with Al-base

    Science.gov (United States)

    Posuvailo, V. M.; Klapkiv, M. D.; Student, M. M.; Sirak, Y. Y.; Pokhmurska, H. V.

    2017-03-01

    The oxide ceramic coating with copper inclusions was synthesized by the method of plasma electrolytic oxidation (PEO). Calculations of the Gibbs energies of reactions between the plasma channel elements with inclusions of copper and copper oxide were carried out. Two methods of forming the oxide-ceramic coatings on aluminum base in electrolytic plasma with copper inclusions were established. The first method - consist in the introduction of copper into the aluminum matrix, the second - copper oxide. During the synthesis of oxide ceramic coatings plasma channel does not react with copper and copper oxide-ceramic included in the coating. In the second case is reduction of copper oxide in interaction with elements of the plasma channel. The content of oxide-ceramic layer was investigated by X-ray and X-ray microelement analysis. The inclusions of copper, CuAl2, Cu9Al4 in the oxide-ceramic coatings were found. It was established that in the spark plasma channels alongside with the oxidation reaction occurs also the reaction aluminothermic reduction of the metal that allows us to dope the oxide-ceramic coating by metal the isobaric-isothermal potential oxidation of which is less negative than the potential of the aluminum oxide.

  17. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  18. Real-time continuous nitrate monitoring in Illinois in 2013

    Science.gov (United States)

    Warner, Kelly L.; Terrio, Paul J.; Straub, Timothy D.; Roseboom, Donald; Johnson, Gary P.

    2013-01-01

    Many sources contribute to the nitrogen found in surface water in Illinois. Illinois is located in the most productive agricultural area in the country, and nitrogen fertilizer is commonly used to maximize corn production in this area. Additionally, septic/wastewater systems, industrial emissions, and lawn fertilizer are common sources of nitrogen in urban areas of Illinois. In agricultural areas, the use of fertilizer has increased grain production to meet the needs of a growing population, but also has resulted in increases in nitrogen concentrations in many streams and aquifers (Dubrovsky and others, 2010). The urban sources can increase nitrogen concentrations, too. The Federal limit for nitrate nitrogen in water that is safe to drink is 10 milligrams per liter (mg/L) (http://water.epa.gov/drink/contaminants/basicinformation/nitrate.cfm, accessed on May 24, 2013). In addition to the concern with nitrate nitrogen in drinking water, nitrogen, along with phosphorus, is an aquatic concern because it feeds the intensive growth of algae that are responsible for the hypoxic zone in the Gulf of Mexico. The largest nitrogen flux to the waters feeding the Gulf of Mexico is from Illinois (Alexander and others, 2008). Most studies of nitrogen in surface water and groundwater include samples for nitrate nitrogen collected weekly or monthly, but nitrate concentrations can change rapidly and these discrete samples may not capture rapid changes in nitrate concentrations that can affect human and aquatic health. Continuous monitoring for nitrate could inform scientists and water-resource managers of these changes and provide information on the transport of nitrate in surface water and groundwater.

  19. [Can nitrates lead to indirect toxicity?].

    Science.gov (United States)

    Hamon, M

    2007-09-01

    For many years, nitrates have been used, at low dosages, as an additive in salted food. New laws have been promulgated to limit their concentration in water due to increased levels found in soils, rivers and even the aquifer. Although nitrate ions themselves have not toxic properties, bacterial reduction into nitrite ions (occurring even in aqueous medium) can lead to nitrous anhydride, which in turn generates nitrosonium ions. Nitrosium ions react with secondary amine to give nitrosamines, many of which are cancer-inducing agents at very low doses. Opinions on this toxicity are clear-cut and difficult to reconcile. In fact, increased levels are due, in a large part, to the use of nitrates as fertiliéers but also to bacterial transformation of human and animal nitrogenous wastes such as urea.

  20. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  1. Lewis Acid Assisted Nitrate Reduction with Biomimetic Molybdenum Oxotransferase Complex.

    Science.gov (United States)

    Elrod, Lee Taylor; Kim, Eunsuk

    2018-03-05

    The reduction of nitrate (NO 3 - ) to nitrite (NO 2 - ) is of significant biological and environmental importance. While Mo IV (O) and Mo VI (O) 2 complexes that mimic the active site structure of nitrate reducing enzymes are prevalent, few of these model complexes can reduce nitrate to nitrite through oxygen atom transfer (OAT) chemistry. We present a novel strategy to induce nitrate reduction chemistry of a previously known catalyst Mo IV (O)(SN) 2 (2), where SN = bis(4- tert-butylphenyl)-2-pyridylmethanethiolate, that is otherwise incapable of achieving OAT with nitrate. Addition of nitrate with the Lewis acid Sc(OTf) 3 (OTf = trifluoromethanesulfonate) to 2 results in an immediate and clean conversion of 2 to Mo VI (O) 2 (SN) 2 (1). The Lewis acid additive further reacts with the OAT product, nitrite, to form N 2 O and O 2 . This work highlights the ability of Sc 3+ additives to expand the reactivity scope of an existing Mo IV (O) complex together with which Sc 3+ can convert nitrate to stable gaseous molecules.

  2. Determination of nitrate in effluents from Uranium Extraction Plant

    International Nuclear Information System (INIS)

    Dudwadkar, Ayushi; Kumar, Sangita D.; Reddy, A.V.R.

    2014-01-01

    Determination of nitrate concentration in the effluent samples from Uranium Extraction Plant is required before its safe discharge. As the different streams are diluted with sea water these samples contain high concentration of chloride. The large concentration of chloride poses a challenge in the determination of nitrate; hence, matrix elimination is accomplished by adopting a sample pretreatment technique. The present study was carried out to develop a simple, accurate and rapid analytical methodology for the determination of nitrate in the above matrices. The quantitative determination of nitrate was accomplished using anion exchange chromatography with conductometric detection. (author)

  3. Decomposition of ammonium nitrate in homogeneous and catalytic denitration

    International Nuclear Information System (INIS)

    Anan'ev, A. V.; Tananaev, I. G.; Shilov, V. P.

    2005-01-01

    Ammonium nitrate is one of potentially explosive by-products of spent fuel reprocessing. Decomposition of ammonium nitrate in the HNO 3 -HCOOH system was studied in the presence or absence of Pt/SiO 2 catalyst. It was found that decomposition of ammonium nitrate is due to homogeneous noncatalytic oxidation of ammonium ion with nitrous acid generated in the HNO 3 -HCOOH system during denitration. The platinum catalyst initiates the reaction of HNO 3 with HCOOH to form HNO 2 . The regular trends were revealed and the optimal conditions of decomposition of ammonium nitrate in nitric acid solutions were found [ru

  4. Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films

    Science.gov (United States)

    Fredj, Narjes; Burleigh, T. David; New Mexico Tech Team

    2014-03-01

    This investigation describes an electrochemical technique for growing adhesive copper oxide films on copper with attractive colors ranging from gold-brown to pearl with intermediate colors from red violet to gold green. The technique consists of anodically dissolving copper at transpassive potentials in hot sodium hydroxide, and then depositing brilliant color films of Cu2O onto the surface of copper after the anodic potential has been turned off. The color of the copper oxide film depends on the temperature, the anodic potential, the time t1 of polarization, and the time t2, which is the time of immersion after potential has been turned off. The brilliant colored films were characterized using glancing angle x-ray diffraction, and the film was found to be primarily Cu2O. Cyclic voltammetry, chronopotentiometry, scanning electron microscopy, and x-ray photoelectron spectroscopy were also used to characterize these films.

  5. Thermal conductivity of glass copper-composite

    International Nuclear Information System (INIS)

    Kinoshita, Makoto; Terai, Ryohei; Haidai, Haruki

    1980-01-01

    Glass-metal composites are to be one of the answers for promoting thermal conduction in the glassy solids containing high-level radioactive wastes. In order to investigate the effect of metal addition on thermal conductivity of glasses, glass-copper composites were selected, and the conductivities of the composites were measured and discussed in regards to copper content and microstructure. Fully densified composites were successfully prepared by pressure sintering of the powder mixtures of glass and copper at temperatures above the yield points of the constituent glasses if the copper content was not so much. The conductivity was measured by means of a comparative method, in which the thermal gradient of the specimen was compared with that of quartz glass as standard under thermally steady state. Measurements were carried out at around 50 0 C. The thermal conductivity increased with increasing content of copper depending on the kind of copper powder used. The conductivities of the composites of the same copper content differed considerably each another. Fine copper powder was effective on increasing conductivity, and the conductivity became about threefold of that of glass by mixing the fine copper powder about 10 vol%. For the composites containing the fine copper powder less than 5 vol%, the conductivity obeyed so-called logarithmic rule, one of the mixture rules of conductivity, whereas for composites containing more than 5 vol%, the conductivity remarkably increased apart from the rule. This fact suggests that copper becomes continuous in the composite when the copper content increased beyond 5 vol%. For the composites containing coarse copper powder, the conductivity was increased not significantly, and obeyed an equation derived from the model in which conductive material dispersed in less conductive one. (author)

  6. Effects of organic matters coming from Chinese tea on soluble copper release from copper teapot

    International Nuclear Information System (INIS)

    Ni Lixiao; Li Shiyin

    2008-01-01

    The morphology and elemental composition of the corrosion products of copper teapot's inner-surface were characterized by the scanning electron microscopy and energy dispersive X-ray surface analysis (SEM/EDS), X-ray powder diffraction (XRD) and X-ray photon spectroscopy (XPS) analysis. It was revealed that Cu, Fe, Ca, P, Si and Al were the main elements of corrosion by-products, and the α-SiO 2 , Cu 2 O and CaCO 3 as the main mineral components on the inner-surface of copper teapot. The effects of organic matters coming from Chinese tea on soluble copper release from copper teapots in tap water were also investigated. The results showed that the doses of organic matter (as TOC), temperate and stagnation time have significant effects on the concentration of soluble copper released from copper teapots in tap water

  7. Evaluating the source of streamwater nitrate using d15N and d18O in nitrate in two watersheds in New Hampshire, USA

    Science.gov (United States)

    Linda H. Pardo; Carol Kendall; Jennifer Pett-Ridge; Cecily C.Y. Chang; Cecily C.Y. Chang

    2004-01-01

    The natural abundance of nitrogen and oxygen isotopes in nitrate can be a powerful tool for identifying the source of nitrate in streamwater in forested watersheds, because the two main sources of nitrate, atmospheric deposition and microbial nitrification, have distinct d18O values. Using a simple mixing model, we estimated the relative fractions in streamwater...

  8. Nitrate in groundwater of the United States, 1991-2003

    Science.gov (United States)

    Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.

    2010-01-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  9. Nitrate and nitrite in biology, nutrition and therapeutics

    Science.gov (United States)

    Lundberg, Jon O.; Gladwin, Mark T.; Ahluwalia, Amrita; Benjamin, Nigel; Bryan, Nathan S.; Butler, Anthony; Cabrales, Pedro; Fago, Angela; Feelisch, Martin; Ford, Peter C.; Freeman, Bruce A.; Frenneau, Michael; Friedman, Joel; Kelm, Malte; Kevil, Christopher G.; Kim-Shapiro, Daniel B.; Kozlov, Andrey V.; Lancaster, Jack R.; Lefer, David J.; McColl, Kenneth; McCurry, Kenneth; Patel, Rakesh; Petersson, Joel; Rassaf, Tienush; Reutov, Valentin P.; Richter-Addo, George B.; Schechter, Alan; Shiva, Sruti; Tsuchiya, Koichiro; van Faassen, Ernst E.; Webb, Andrew J.; Zuckerbraun, Brian S.; Zweier, Jay L.; Weitzberg, Eddie

    2014-01-01

    Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia. The latest advances in our understanding of the biochemistry, physiology and therapeutics of nitrate, nitrite and NO were discussed during a recent two-day meeting at the Nobel Forum, Karolinska Institutet in Stockholm. PMID:19915529

  10. Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120.

    Science.gov (United States)

    Frías, José E; Flores, Enrique

    2015-07-01

    Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria

  11. Thermodynamic data for copper. Implications for the corrosion of copper under repository conditions

    International Nuclear Information System (INIS)

    Puigdomenech, I.; Taxen, C.

    2000-08-01

    The stability of copper canisters has a central role in the safety concept for the planned nuclear spent fuel repository in Sweden. The corrosion of copper canisters will be influenced by the chemical and physical environment in the near-field of the repository, and thermodynamic equilibrium calculations provide the basis for understanding this system. Thermodynamic data have been selected in this work for solids and aqueous species in the system: Cu - H 2 O - H + - H 2 - F - - Cl - - S 2- - SO 4 2- - NO 3 - - NO 2 - - NH 4 + PO 4 3- - CO 3 2+ . For some reactions and compounds, for which no experimental information on temperature effects was available, entropy and heat capacity values have been estimated. The compiled data were used to calculate thermodynamic equilibria for copper systems up to 100 deg C. The stability of copper in contact with granitic groundwaters has been illustrated using chemical equilibrium diagrams, with he following main conclusions: Dissolved sulphide and O 2 in groundwater are the most damaging components for copper corrosion. If available, HS - will react quantitatively with copper to form a variety of sulphides. However, sulphide concentrations in natural waters are usually low, because it forms sparingly soluble solids with transition metals, including Fe(II), which is wide-spread in reducing environments. Chloride can affect negatively copper corrosion. High concentrations (e.g., [Cl - ]TOT > 60 g/l) may be unfavourable for the general corrosion of copper in combination with in the following circumstances: Low pH ( + . The negative effects of Cl - are emphasised at higher temperatures. The chloride-enhancement of general corrosion may be beneficial for localised corrosion: pitting and stress corrosion cracking. The concept of redox potential, E H , has been found to be inadequate to describe copper corrosion in a nuclear repository. The available amounts of oxidants/reductants, and the stoichiometry of the corrosion reactions are

  12. Real time in situ detection of organic nitrates in atmospheric aerosols.

    Science.gov (United States)

    Rollins, Andrew W; Smith, Jared D; Wilson, Kevin R; Cohen, Ronald C

    2010-07-15

    A novel instrument is described that quantifies total particle-phase organic nitrates in real time with a detection limit of 0.11 microg m(-3) min(-1), 45 ppt min(-1) (-ONO(2)). Aerosol nitrates are separated from gas-phase nitrates with a short residence time activated carbon denuder. Detection of organic molecules containing -ONO(2) subunits is accomplished using thermal dissociation coupled to laser induced fluorescence detection of NO(2). This instrument is capable of high time resolution (seconds) measurements of particle-phase organic nitrates, without interference from inorganic nitrate. Here we use it to quantify organic nitrates in secondary organic aerosol generated from high-NO(x) photooxidation of limonene, alpha-pinene, Delta-3-carene, and tridecane. In these experiments the organic nitrate moiety is observed to be 6-15% of the total SOA mass.

  13. Formation kinetics and abundance of organic nitrates in α-pinene ozonolysis

    Science.gov (United States)

    Berkemeier, Thomas; Ammann, Markus; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-04-01

    Formation of organic nitrates affects the total atmospheric budget of oxidized nitrogen (NOy) and alters the total aerosol mass yield from secondary sources. We investigated the formation of organic nitrate species during ozonolysis of α-pinene and subsequent formation of secondary organic aerosols (SOA) using the short-lived radioactive tracer 13N inside an aerosol flow reactor (Ammann et al., 2001). The results represent direct measurements of the organic nitrate content of α-pinene secondary aerosol and give insight into the kinetics of organic nitrate formation. Organic nitrates constituted up to 40 % of aerosol mass with a pronounced influence during the initial period of particle growth. Kinetic modelling, as well as additional experiments using OH scavengers and UV irradiation, suggests that organic peroxy radicals (RO2) from the reaction of α-pinene with secondarily produced OH are important intermediates in the organic nitrate formation process. Direct oxidation of α-pinene by NO3 was found to be a less efficient pathway for formation of particle phase nitrate. The organic nitrate content decreased very slightly with an increase of relative humidity on the experimental time scale. The experiments show a tight correlation between organic nitrate content and SOA number concentrations, implying that organic nitrates play an important role in nucleation and growth of nanoparticles. Since present in large amounts in organic aerosol, organic nitrates deposited in the lung might have implications for human health as they release nitric acid upon hydrolysis, especially in regions influenced by urban pollution and large sources of monoterpene SOA precursors. References Ammann et al. (2001) Radiochimica Acta 89, 831.

  14. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    2008-01-01

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  15. Tracing the Atmospheric Source of Desert Nitrates Using Δ 17O

    Science.gov (United States)

    Michalski, G. M.; Holve, M.; Feldmeier, J.; Bao, H.; Reheis, M.; Bockheim, J. G.; Thiemens, M. H.

    2001-05-01

    Mineral, caliche, and soil nitrates are found throughout the worlds deserts, including the cold dry Wright Valley of Antarctica, the Atacama desert in Chile and the Mojave desert in the southwest United States. Several authors have suggested biologic sources of these nitrates while others have postulated atmospheric deposition. A recent study utilizing 18O indicated that 30%, and perhaps 100%, of nitrates found in the Atacama and Mojave were of atmospheric origin [1]. A more quantitative assessment of the source strength of atmospheric nitrates was impossible because of the high variability of δ 18 18O of atmospheric nitrates and uncertainties in conditions of biologic production. Mass independently fractionated (MIF) processes are defined and quantified by the equation Δ 17O = δ 17O - .52x δ 18O. MIF processes are associated with the photochemistry of trace gases in the atmosphere and have been found in O3, N2O, CO, and sulfate aerosols . A large MIF (Δ 17O ~ 28 ‰ ) in nitrate aerosols collected in polluted regions was recently reported [2]. Here we extend measurements of MIF in nitrate to the dry deposition of nitrate in less polluted areas (Mojave desert). In addition we trace the MIF signal as it accumulates in the regolith as nitrate salts and minerals and is mixed with biologically produced nitrate (nitrification). Also examined were the isotopic composition of soil nitrates from Antarctic dry valleys. Dust samples were collected as part of the NADP program and soils were collected throughout the Mojave and Death Valley regions of California. Isotope analysis was done in addition to soluble ion content (Cl, NO3, SO4). Dust samples collected by dry deposition samplers showed a large MIF > 20‰ approaching values measured in urban nitrate aerosol. Soils collected throughout the region showed large variations in Δ 17O from ~ 0 to 18 ‰ . The low Δ 17O values are nitrates dominated by biologic nitrification and higher values are nitrates derived by

  16. Distinguishing summertime atmospheric production of nitrate across the East Antarctic Ice Sheet

    Science.gov (United States)

    Shi, G.; Buffen, A. M.; Ma, H.; Hu, Z.; Sun, B.; Li, C.; Yu, J.; Ma, T.; An, C.; Jiang, S.; Li, Y.; Hastings, M. G.

    2018-06-01

    Surface snow and atmospheric samples collected along a traverse from the coast to the ice sheet summit (Dome A) are used to investigate summertime atmospheric production of nitrate (NO3-) across East Antarctica. The strong relationship observed between δ15N and δ18O of nitrate in the surface snow suggests a large (lesser) extent of nitrate photolysis in the interior (coastal) region. A linear correlation between the oxygen isotopes of nitrate (δ18O and Δ17O) indicates mixing of various oxidants that react with NOx (NOx = NO + NO2) to produce atmospheric nitrate. On the plateau, the isotopes of snow nitrate are best explained by local reoxidation chemistry of NOx, possibly occurring in both condensed and gas phases. Nitrate photolysis results in redistribution of snow nitrate, and the plateau snow is a net exporter of nitrate and its precursors. Our results suggest that while snow-sourced NOx from the plateau due to photolysis is a significant input to the nitrate budget in coastal snow (up to ∼35%), tropospheric transport from mid-low latitudes dominates (∼65%) coastal snow nitrate. The linear relationship of δ18O vs. Δ17O of the snow nitrate suggests a predominant role of hydroxyl radical (OH) and ozone (O3) in nitrate production, although a high Δ17O(O3) is required to explain the observations. Across Antarctica the oxygen isotope composition of OH appears to be dominated by exchange with water vapor, despite the very dry environment. One of the largest uncertainties in quantifying nitrate production pathways is the limited knowledge of atmospheric oxidant isotopic compositions.

  17. Interaction of copper with dinitrogen tetroxide in 1-butyl-3-methylimidazolium-based ionic liquids.

    Science.gov (United States)

    Morozov, I V; Deeva, E B; Glazunova, T Yu; Troyanov, S I; Guseinov, F I; Kustov, L M

    2017-03-27

    Ionic liquids that are stable toward oxidation and nitration and are based on the 1-n-butyl-3-methylimidazolium cation (BMIm + ) can be used as solvents and reaction media for copper dissolution in liquid dinitrogen tetraoxide N 2 O 4 . The ionic liquid not only favors the dissociation of N 2 O 4 into NO + and NO 3 - , but also takes part in the formation of different crystalline products. Thus, NO[BF 4 ], NO[Cu(NO 3 ) 3 ] and (BMIm) 2 [Cu 2 (CF 3 COO) 6 ] were prepared using (BMIm)A, A - = [BF 4 ] - , (CF 3 SO 2 ) 2 N - , CF 3 COO - , respectively. The formation of a certain product is determined by the nature of the anion A - and the relative solubility of the reaction products in the ionic liquid. Crystals of NO[BF 4 ] were also prepared directly from a mixture of N 2 O 4 and BMImBF 4 . According to XRD single-crystal structure analysis, the structure of NO[BF 4 ] consists of tetrahedral [BF 4 ] - anions and nitrosonium NO + cations; the formation of these ions prove the heterolytic dissociation of N 2 O 4 dissolved in the ionic liquid. The crystal structure of the earlier unknown binuclear copper trifluoroacetate (BMIm) 2 [Cu 2 (CF 3 COO) 6 ] were determined by X-ray diffraction. The peculiarity of this dimer compared to the majority of known dimeric copper(ii) carboxylates is the unusually long CuCu distance (3.15 Å), with Cu(ii) ions demonstrating an atypical coordination of a distorted trigonal bipyramid formed by five O atoms of five trifluoroacetate groups.

  18. The contribution of bnnrt1 and bnnrt2 to nitrate accumulation varied ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... stronger ability to assimilate absorbed nitrate in SYM than the low accumulator, HGQGC. Key words: ... studied the mechanism of nitrate accumulation in plant ..... Elevated carbon dioxide increases nitrate uptake and nitrate.

  19. Thermal decomposition of nitrate salts liquid waste for the lagoon sludge treatment

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Kim, Y. K.; Lee, K. Y.; Choi, Y. D.; Hwang, S. T.; Park, J. H.

    2004-01-01

    This study investigated the thermal decomposition property of nitrate salts liquid waste which is produced in a series of the processes for the sludge treatment. Thermal decomposition property was analyzed by TG/DTA and XRD. Most ammonium nitrate in the nitrate salts liquid waste was decomposed at 250 .deg. C and calcium nitrate was decomposed and converted into calcium oxide at 550 .deg. C. Sodium nitrate was decomposed at 700 .deg. C and converted into sodium oxide which reacts with water easily. But sodium oxide was able to convert into a stable compound by adding alumina. Therefore, nitrate salts liquid waste can be treated by two steps as follows. First, ammonium nitrate is decomposed at 250 .deg. C. Second, alumina is added in residual solid sodium nitrate and calcium nitrate and these are decomposed at 900 .deg. C. Final residue consists of calcium oxide and Na 2 O.Al 2 O 3 and can be stored stably

  20. Dietary nitrate supplementation improves reaction time in type 2 diabetes: development and application of a novel nitrate-depleted beetroot juice placebo.

    Science.gov (United States)

    Gilchrist, Mark; Winyard, Paul G; Fulford, Jon; Anning, Christine; Shore, Angela C; Benjamin, Nigel

    2014-08-31

    In this substudy of the effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes, we report the development of a novel nitrate depleted beetroot juice for use clinical trials and determine if dietary nitrate supplementation improved cognitive function in patients with type 2 diabetes mellitus. Beetroot juice was treated with the anion exchange resin Purolite A520e. UV-vis-spectrophotometry, and a blind taste test were performed along with determination of sugar content, measurement of ascorbate and dehydroascorbate, the ionic composition of juice and Proton NMR. Subsequently, 27 patients, age 67.2±4.9 years, (18 male) were recruited for a double blind, randomised, placebo-controlled crossover trial. Participants were randomised to begin in either order beetroot juice (nitrate content 7.5 mmol per 250 ml) or placebo (nitrate depleted beetroot juice nitrate content 0.002 mmol per 250 ml). At the end of each 2 week supplementation period cognitive function was assessed using E-prime, E-Studio software with 5 separate tests being performed. The tests utilised in the present study have been adapted from the Cambridge Neuropsychological Test Automated Battery (CANTAB). The differences in the UV-vis spectra were comparable to the natural variation found in differing cultivars. There were no discernable differences in taste, sugar content, or Proton NMR. Ascorbate and dehydroascorbate were undetectable in either juice. After 2 weeks of beetroot juice simple reaction time was significantly quicker in the active arm at 327±40 ms versus 341.8±52.7 ms in the placebo arm, mean difference 13.9±25.6 ms (95% CI 3.8-24.0 ms), p=0.009. No other measures of cognitive function differed between treatment arms. We have developed an effective placebo beetroot juice for use in trials of supplementation of dietary nitrate. Two weeks supplementation of the diet with 7.5 mmol of nitrate per day caused a significant improvement in

  1. Studies of Some Lanthanide(III Nitrate Complexes of Schiff Base Ligands

    Directory of Open Access Journals (Sweden)

    Kishor Arora Mukesh Sharma

    2009-01-01

    Full Text Available The studies of 16 new lanthanide(III nitrate complexes of Schiff base ligands are discussed. Schiff bases were obtained by the condensation of 2–methyl–4–N,N–bis–2' –cyanoethyl aminobenzaldehyde with aniline and 3 different substituted anilines. Lanthanide(III nitrates, viz. gadolinium(III nitrate, lanthanum(III nitrate, samarium(III nitrate and cerium(III nitrate were chosen to synthesize new complexes. The complexes were characterized on the basis of physicochemical studies viz. elemental analysis, spectral, viz. IR and electronic spectral and magnetic studies. TGA studies of some of the representative complexes were also done. Some of the representative complexes were also screened for the anti microbial studies.

  2. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site.

    Science.gov (United States)

    Fetherolf, Morgan M; Boyd, Stefanie D; Taylor, Alexander B; Kim, Hee Jong; Wohlschlegel, James A; Blackburn, Ninian J; Hart, P John; Winge, Dennis R; Winkler, Duane D

    2017-07-21

    Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Revitalising Silver Nitrate for Caries Management

    Directory of Open Access Journals (Sweden)

    Sherry Shiqian Gao

    2018-01-01

    Full Text Available Silver nitrate has been adopted for medical use as a disinfectant for eye disease and burned wounds. In dentistry, it is an active ingredient of Howe’s solution used to prevent and arrest dental caries. While medical use of silver nitrate as a disinfectant became subsidiary with the discovery of antibiotics, its use in caries treatment also diminished with the use of fluoride in caries prevention. Since then, fluoride agents, particularly sodium fluoride, have gained popularity in caries prevention. However, caries is an infection caused by cariogenic bacteria, which demineralise enamel and dentine. Caries can progress and cause pulpal infection, but its progression can be halted through remineralisation. Sodium fluoride promotes remineralisation and silver nitrate has a profound antimicrobial effect. Hence, silver nitrate solution has been reintroduced for use with sodium fluoride varnish to arrest caries as a medical model strategy of caries management. Although the treatment permanently stains caries lesions black, this treatment protocol is simple, painless, non-invasive, and low-cost. It is well accepted by many clinicians and patients and therefore appears to be a promising strategy for caries control, particularly for young children, the elderly, and patients with severe caries risk or special needs.

  4. Thermal characterization of aminium nitrate nanoparticles.

    Science.gov (United States)

    Salo, Kent; Westerlund, Jonathan; Andersson, Patrik U; Nielsen, Claus; D'Anna, Barbara; Hallquist, Mattias

    2011-10-27

    Amines are widely used and originate from both anthropogenic and natural sources. Recently, there is, in addition, a raised concern about emissions of small amines formed as degradation products of the more complex amines used in CO(2) capture and storage systems. Amines are bases and can readily contribute to aerosol mass and number concentration via acid-base reactions but are also subject to gas phase oxidation forming secondary organic aerosols. To provide more insight into the atmospheric fate of the amines, this paper addresses the volatility properties of aminium nitrates suggested to be produced in the atmosphere from acid-base reactions of amines with nitric acid. The enthalpy of vaporization has been determined for the aminium nitrates of mono-, di-, trimethylamine, ethylamine, and monoethanolamine. The enthalpy of vaporization was determined from volatility measurements of laboratory generated aerosol nanoparticles using a volatility tandem differential mobility analyzer set up. The determined enthalpy of vaporization for aminium nitrates range from 54 up to 74 kJ mol(-1), and the calculated vapor pressures at 298 K are around 10(-4) Pa. These values indicate that aminium nitrates can take part in gas-to-particle partitioning at ambient conditions and have the potential to nucleate under high NO(x) conditions, e.g., in combustion plumes.

  5. Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model?

    Science.gov (United States)

    Liang, Hao; Qi, Zhiming; Hu, Kelin; Prasher, Shiv O; Zhang, Yuanpei

    2016-10-01

    Nitrate contamination of groundwater is an environmental concern in intensively cultivated desert oases where this polluted groundwater is in turn used as a major irrigation water resource. However, nitrate fluxes from root zone to groundwater are difficult to monitor in this complex system. The objectives of this study were to validate and apply the WHCNS (soil Water Heat Carbon Nitrogen Simulator) model to simulate water drainage and nitrate leaching under different irrigation and nitrogen (N) management practices, and to assess the utilization of groundwater nitrate as an approach to remediate nitrate contaminated groundwater while maintain crop yield. A two-year field experiment was conducted in a corn field irrigated with high nitrate groundwater (20 mg N L(-1)) in Alxa, Inner Mongolia, China. The experiment consisted of two irrigation treatments (Istd, standard, 750 mm per season; Icsv, conservation, 570 mm per season) factorially combined with two N fertilization treatments (Nstd, standard, 138 kg ha(-1); Ncsv, conservation, 92 kg ha(-1)). The validated results showed that the WHCNS model simulated values of crop dry matter, yield, soil water content and soil N concentration in soil profile all agreed well with the observed values. Compared to the standard water management (Istd), the simulated drainage and nitrate leaching decreased about 65% and 59%, respectively, under the conservation water management (Icsv). Nearly 55% of input N was lost by leaching under the IstdNstd and IstdNcsv treatments, compared to only 26% under the IcsvNstd and IcsvNcsv treatments. Simulations with more than 240 scenarios combing different levels of irrigation and fertilization indicated that irrigation was the main reason leading to the high risk of nitrate leaching, and the nitrate in irrigation groundwater can be best utilized without corn yield loss when the total irrigation was reduced from the current 750 mm to 491 mm. This reduced irrigation rate facilitated

  6. A Review of Nitrate and Nitrite Toxicity in Foods

    Directory of Open Access Journals (Sweden)

    Mir-Jamal Hosseini

    2016-03-01

    Full Text Available Agricultural advancement and population growth have prompted increases in food supplies, and higher crop yields have been made possible through the application of fertilizers. Large quantities of livestock and poultry on farms, along with the accumulation of biomass and agricultural residues, can cause contamination of ground water resources and other water sanitation concerns in both developing and developed countries. Nitrate is mainly used as a fertilizer in agriculture, and because of its high solubility in water, it can create biological problems in the environment. High usage of nitrite in the food industry as a preservative, flavor enhancer, antioxidant, and color stabilizing agent can cause human exposure to this toxic compound. Nitrite is 10 times as toxic as nitrate in humans. Nitrate is converted to nitrite and nitrosamine compounds in the human stomach, which can lead to bladder cancer. In this review, sources of nitrate and nitrite exposure were investigated. Furthermore, the review evaluates standard levels of nitrate and nitrite in different foods, and acceptable daily doses of these compounds in various countries. Finally, we discuss valid methods of nitrate and nitrite identification and removal in foods.

  7. Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage

    International Nuclear Information System (INIS)

    Xiao, X.; Zhang, P.; Li, M.

    2013-01-01

    Highlights: • The addition of expanded graphite improved apparent thermal conductivity significantly. • The quadratic parallel model was used to predict the effective thermal conductivity. • The melting/freezing temperatures of mixture PCMs shifted slightly with adding of EG. - Abstract: Solar energy storage has become more attractive in recent years. In particular, latent thermal energy storage (LTES) with large energy storage density and isothermal heat storage/retrieval characteristics is a hot research topic. In the present study, sodium nitrate, potassium nitrate and their mixture were used as the base materials, and expanded graphite (EG) with high thermal conductivity and thermo-chemical stability was used as an additive to enhance the thermal conductivity. EG with various mass fractions was added to the base materials to form mixture phase change materials (PCMs), and the thermal characteristics of the mixtures were studied extensively. The transient hot-wire tests showed that the addition of EG enhanced the apparent thermal conductivity significantly, e.g. the apparent thermal conductivity of the nitrates/10 wt.% EG mixture PCM was increased by about 30–40%. The test results showed good agreement with theoretical calculations of the quadratic parallel model. Tests with differential scanning calorimeter (DSC) revealed that the melting/freezing temperatures of the mixture PCMs shifted slightly, compared with those of pure nitrates

  8. Organic nitrates: past, present and future.

    Science.gov (United States)

    França-Silva, Maria S; Balarini, Camille M; Cruz, Josiane C; Khan, Barkat A; Rampelotto, Pabulo H; Braga, Valdir A

    2014-09-24

    Nitric oxide (NO) is one of the most important vasodilator molecules produced by the endothelium. It has already been established that NO/cGMP signaling pathway deficiencies are involved in the pathophysiological mechanisms of many cardiovascular diseases. In this context, the development of NO-releasing drugs for therapeutic use appears to be an effective alternative to replace the deficient endogenous NO and mimic the role of this molecule in the body. Organic nitrates represent the oldest class of NO donors that have been clinically used. Considering that tolerance can occur when these drugs are applied chronically, the search for new compounds of this class with lower tolerance potential is increasing. Here, we briefly discuss the mechanisms involved in nitrate tolerance and highlight some achievements from our group in the development of new organic nitrates and their preclinical application in cardiovascular disorders.

  9. Monitoring nitrite and nitrate residues in frankfurters during processing and storage.

    Science.gov (United States)

    Pérez-Rodríguez, M L; Bosch-Bosch, N; Garciá-Mata, M

    1996-09-01

    Frankfurter-type sausages were prepared in a pilot plant with different concentrations of NaNO(2) (75, 125 or 250 ppm) combined or not with 200 ppm KNO(3). A meat system, free of curing agents, was also used as control. Nitrite and nitrate levels were tested in various processing steps and over 120 days storage at 3 °C of the vacuum-packaged frankfurters. Little influence of the originally added nitrite level on the amount of nitrate formed was observed. Important losses of nitrite and nitrate were due to cooking. Thereafter about 50% of the nitrite added initially remained in this form in all samples (39, 59 and 146 ppm, respectively) and between 10 and 15% as nitrate. When only nitrate was initially added, formation of nitrite after cooking was observed (maximum level 43 ppm NaNO(2)). Formulations prepared with both nitrate and nitrite showed no significant differences (p nitrite or nitrate counterparts. A good correlation among nitrite and nitrate levels and storage time was showed by multiple linear regression analysis. It is concluded that the use of nitrate in combination with nitrite in cooked meat products seems to have little technological significance and adds to the total body burden of nitrite.

  10. REMOVAL OF ADDED NITRATE IN COTTON BURR COMPOST, MULCH COMPOST, AND PEAT: MECHANISMS AND POTENTIAL USE FOR GROUNDWATER NITRATE REMEDIATION

    Science.gov (United States)

    We conducted batch tests on the nature and kinetics of removal of added nitrate in cotton burr compost, mulch compost, and sphagnum peat that may be potentially used in a permeable reactive barrier (PRB) for groundwater nitrate remediation. A rigorous steam autoclaving protocol (...

  11. Nitrate Determination of Vegetables in Varzeghan City, North-western Iran

    Directory of Open Access Journals (Sweden)

    Parviz Nowrouz

    2012-12-01

    Full Text Available Background: Vegetables play an important role in human nutrition. Nitrate content is a signifi-cant quality criterion to determine characteristic of vegetables. About 80% of nitrate intake in human is from vegetables and fruits. High dietary intake of nitrate is seen as an undesirable be-cause of its association with gastric cancer and infantile methemoglobinemia. Varzeghan, North-western Iran is one of the cities with high Age-standardized incidence rates (ASR of gastric can-cer in Iran. Currently, in Varzeghan there is no available and accurate information describing ni-trate concentration as one of the important risk factors of vegetables for human consumption.Methods: In this cross sectional study totally 11 types of vegetables (cabbage, lettuce, spinach, parsley, coriander, dill, leek, fenugreek, tarragon, fumitory and mint from several different green-grocery of Varzeghan were collected in spring (April and autumn (November and December 2011 and their nitrate contents were analyzed.Results: Mean nitrate contents at the above noted fresh vegetables were 161, 781, 83, 707, 441,501, 1702, 684, 805, 772 and 191 mg NO3-kg-1 respectively. In none of the 11 fresh vegetablesnitrate content were not more than established limitations.Conclusion: Nitrate concentrations were below of others reported at different countries. The mean concentration of nitrate at all vegetables in autumn was higher than in spring significantly.

  12. Aluminum nitrate recrystallization and recovery from liquid extraction raffinates

    International Nuclear Information System (INIS)

    Griffith, W.L.; Compere, A.L.; Googin, J.M.; Huxtable, W.P.

    1991-09-01

    The solid sludges resulting form biodenitrification of discarded aluminum nitrate are the largest Y-12 Plant process solid waste. Aluminum nitrate feedstocks also represent a major plant materials cost. The chemical constraints on aluminum nitrate recycle were investigated to determine the feasibility of increasing recycle while maintaining acceptable aluminum nitrate purity. Reported phase behavior of analogous systems, together with bench research, indicated that it would be possible to raise the recycle rate from 35% to between 70 and 90% by successive concentration and recrystallization of the mother liquor. A full scale pilot test successfully confirmed the ability to obtain 70% recycle in existing process equipment

  13. 21 CFR 73.1647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper. It...

  14. Atomic structure of nitrate-binding protein crucial for photosynthetic productivity

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole M.; Pakrasi, Himadri B.; Smith, Thomas J.

    2006-06-27

    Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of all aquatic food chains by fixing carbon and nitrogen into cellular biomass. The single most important nutrient for photosynthesis and growth is nitrate, which is severely limiting in many aquatic environments particularly the open ocean (1, 2). It is therefore not surprising that NrtA, the solute-binding component of the high-affinity nitrate ABC transporter, is the single-most abundant protein in the plasma membrane of these bacteria (3). Here we describe the first structure of a nitratespecific receptor, NrtA from Synechocystis sp. PCC 6803, complexed with nitrate and determined to a resolution of 1.5Å. NrtA is significantly larger than other oxyanionbinding proteins, representing a new class of transport proteins. From sequence alignments, the only other solute-binding protein in this class is CmpA, a bicarbonatebinding protein. Therefore, these organisms created a novel solute-binding protein for two of the most important nutrients; inorganic nitrogen and carbon. The electrostatic charge distribution of NrtA appears to force the protein off of the membrane while the flexible tether facilitates the delivery of nitrate to the membrane pore. The structure not only details the determinants for nitrate selectivity in NrtA, but also the bicarbonate specificity in CmpA. Nitrate and bicarbonate transport are regulated by the cytoplasmic proteins NrtC and CmpC, respectively. Interestingly, the residues lining the ligand binding pockets suggest that they both bind nitrate. This implies that the nitrogen and carbon uptake pathways are synchronized by intracellular nitrate and nitrite.3 The nitrate ABC transporter of cyanobacteria is composed of four polypeptides (Figure 1): a high-affinity periplasmic solute-binding lipoprotein (NrtA), an integral membrane permease (NrtB), a cytoplasmic ATPase (NrtD), and a unique ATPase/solute-binding fusion protein (Nrt

  15. Nitrate intake and the risk of thyroid cancer and thyroid disease.

    Science.gov (United States)

    Ward, Mary H; Kilfoy, Briseis A; Weyer, Peter J; Anderson, Kristin E; Folsom, Aaron R; Cerhan, James R

    2010-05-01

    Nitrate is a contaminant of drinking water in agricultural areas and is found at high levels in some vegetables. Nitrate competes with uptake of iodide by the thyroid, thus potentially affecting thyroid function. We investigated the association of nitrate intake from public water supplies and diet with the risk of thyroid cancer and self-reported hypothyroidism and hyperthyroidism in a cohort of 21,977 older women in Iowa who were enrolled in 1986 and who had used the same water supply for >10 years. We estimated nitrate ingestion from drinking water using a public database of nitrate measurements (1955-1988). Dietary nitrate intake was estimated using a food frequency questionnaire and levels from the published literature. Cancer incidence was determined through 2004. We found an increased risk of thyroid cancer with higher average nitrate levels in public water supplies and with longer consumption of water exceeding 5 mg/L nitrate-N (for >or=5 years at >5 mg/L, relative risk [RR] = 2.6 [95% confidence interval (CI) = 1.1-6.2]). We observed no association with prevalence of hypothyroidism or hyperthyroidism. Increasing intake of dietary nitrate was associated with an increased risk of thyroid cancer (highest vs. lowest quartile, RR = 2.9 [1.0-8.1]; P for trend = 0.046) and with the prevalence of hypothyroidism (odds ratio = 1.2 [95% CI = 1.1-1.4]), but not hyperthyroidism. Nitrate may play a role in the etiology of thyroid cancer and warrants further study.

  16. The unintended energy impacts of increased nitrate contamination from biofuels production.

    Science.gov (United States)

    Twomey, Kelly M; Stillwell, Ashlynn S; Webber, Michael E

    2010-01-01

    Increases in corn cultivation for biofuels production, due to the Energy Independence and Security Act of 2007, are likely to lead to increases in nitrate concentrations in both surface and groundwater resources in the United States. These increases might trigger the requirement for additional energy consumption for water treatment to remove the nitrates. While these increasing concentrations of nitrate might pose a human health concern, most water resources were found to be within current maximum contaminant level (MCL) limits of 10 mg L(-1) NO(3)-N. When water resources exceed this MCL, energy-intensive drinking water treatment is required to reduce nitrate levels below 10 mg L(-1). Based on prior estimates of water supplies currently exceeding the nitrate MCL, we calculate that advanced drinking water treatment might require an additional 2360 million kWh annually (for nitrate affected areas only)--a 2100% increase in energy requirements for water treatment in those same areas--to mitigate nitrate contamination and meet the MCL requirement. We predict that projected increases in nitrate contamination in water may impact the energy consumed in the water treatment sector, because of the convergence of several related trends: (1) increasing cornstarch-based ethanol production, (2) increasing nutrient loading in surface water and groundwater resources as a consequence of increased corn-based ethanol production, (3) additional drinking water sources that exceed the MCL for nitrate, and (4) potentially more stringent drinking water standards for nitrate.

  17. Induction of ceruloplasmin synthesis by interleukin-1 in copper deficient and copper sufficient rats

    International Nuclear Information System (INIS)

    Barber, E.F.; Cousins, R.J.

    1986-01-01

    Ceruloplasmin (Cp) is a copper-containing plasma protein important in the body's acute phase defense system. In copper sufficient rats given two injections of interleukin-1 (IL-1) at 0 and 8 h, ceruloplasmin activity began to significantly increase within 6 h, but did not peak until at least 24 h. The 24 h stimulated activity was 84 +/- 2 umole p-phenylene diamine (pPD) oxidized x min -1 x L -1 compared to a control of 43 +/- 5. These rats were injected with 100uCi 3 H-leucine (ip) 2 h before sacrifice to label newly synthesized proteins. When the 3 H immunoprecipitated by rabbit anti-rat Cp serum is expressed as a percent of the 3 H precipitated by trichloroacetic acid (TCA), the basal Cp synthesis rate was 3% of the total serum protein synthesis. The rate of Cp synthesis peaked 12 h after IL-1 injection at 7% of total serum protein synthesis and by 24 h was back to the basal rate. In copper deficient rats, IL-1 given with copper induced pPD oxidase activity, while IL-1 given alone did not stimulate activity. The basal Cp synthesis rate in these rats was 3%, the same as in the copper sufficient rats. In copper deficient rats, the Cp synthesis rate was induced by IL-1 with or without an injection of copper. Therefore, if dietary copper is in short supply, then although Cp synthesis is induced by this mediator of host defense mechanisms, Cp cannot carry out its functions

  18. Leach-SX-EW copper revalorization from overburden of abandoned copper mine Cerovo, Eastern Serbia

    Directory of Open Access Journals (Sweden)

    Stevanović Z.

    2009-01-01

    Full Text Available Hydrometallurgical processes for copper revalorization from overburden of abandoned mine Cerovo in Eastern Serbia were studied. Paper contain results of percolation leaching tests, performed with acidic mine waters accumulated in the bottom of the former open pit, followed by solvent extraction (SX and electrowinning (EW processes on achieved copper pregnant leach solutions. Usage of accumulated waste waters was objected to minimizing the environmental hazard due to uncontrolled leaking of these waters in nearby creeks and rivers. Chemical composition of acidic mine waters used for leaching tests was: (g/dm3: Cu - 0.201; Fe - 0.095; Mn - 0.041; Zn - 0.026; Ni - 0.0004; pH value - 3.3. Copper content in overburden sample used for leaching tests was 0.21% from which 64% were oxide copper minerals. In scope of leaching tests were examined influence of leaching solution pH values and iron (III concentration on copper recovery. It was established that for 120 hours of leaching on pH=1.5 without oxidant agents, copper concentration in pregnant leach solutions enriched up to 1.08g/dm3 which was enough for copper extraction from solution with SX-EW treatment. As extraction reagent in SX circuit was used LIX-984N in a kerosene diluent. Cathode current density in electrowinning cell was 220Am-2 while electrolyte temperature was kept on 50±2oC. Produced cathode copper at the end of SX-EW process has purity of 99.95% Cu.

  19. Surface films and corrosion of copper

    International Nuclear Information System (INIS)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M.

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  20. Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John F. Stolz

    2011-06-15

    A major challenge for the bioremediation of radionuclides (i.e., uranium, technetium) and metals (i.e., Cr(VI), Hg) is the co-occurrence of nitrate as it can inhibit metal transformation. Denitrification (nitrate reduction to dinitrogen gas) is considered the most important ecological process. For many metal and metalloid reducing bacteria, however, ammonia is the end product through respiratory nitrate reduction (RNRA). The focus of this work was to determine how RNRA impacts Cr(VI) transformation. The goal was to elucidate the specific mechanism(s) that limits Cr(VI) reduction in the presence of nitrate and to use this information to develop strategies that enhance Cr(VI) reduction (and thus detoxification). Our central hypothesis is that nitrate impacts the biotransformation of metals and metalloids in three ways 1) as a competitive alternative electron acceptor (inhibiting transformation), 2) as a co-metabolite (i.e., concomitant reduction, stimulating transformation), and 3) as an inducer of specific proteins and pathways involved in oxidation/reduction reactions (stimulating transformation). We have identified three model organisms, Geobacter metallireducens (mechanism 1), Sulfurospirillum barnesii, (mechasism 2), and Desulfovibrio desulfuricans (mechanisms 3). Our specific aims were to 1) investigate the role of Cr(VI) concentration on the kinetics of both growth and reduction of nitrate, nitrite, and Cr(VI) in these three organisms; 2) develop a profile of bacterial enzymes involved in nitrate transformation (e.g., oxidoreductases) using a proteomic approach; 3) investigate the function of periplasmic nitrite reductase (Nrf) as a chromate reductase; and 4) develop a strategy to maximize microbial chromium reduction in the presence of nitrate. We found that growth on nitrate by G. metallireducens was inhibited by Cr(VI). Over 240 proteins were identified by LC/MS-MS. Redox active proteins, outer membrane heavy metal efflux proteins, and chemotaxis sensory

  1. Nitrates for acute heart failure syndromes.

    Science.gov (United States)

    Wakai, Abel; McCabe, Aileen; Kidney, Rachel; Brooks, Steven C; Seupaul, Rawle A; Diercks, Deborah B; Salter, Nigel; Fermann, Gregory J; Pospisil, Caroline

    2013-08-06

    Current drug therapy for acute heart failure syndromes (AHFS) consists mainly of diuretics supplemented by vasodilators or inotropes. Nitrates have been used as vasodilators in AHFS for many years and have been shown to improve some aspects of AHFS in some small studies. The aim of this review was to determine the clinical efficacy and safety of nitrate vasodilators in AHFS. To quantify the effect of different nitrate preparations (isosorbide dinitrate and nitroglycerin) and the effect of route of administration of nitrates on clinical outcome, and to evaluate the safety and tolerability of nitrates in the management of AHFS. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 3), MEDLINE (1950 to July week 2 2011) and EMBASE (1980 to week 28 2011). We searched the Current Controlled Trials MetaRegister of Clinical Trials (compiled by Current Science) (July 2011). We checked the reference lists of trials and contacted trial authors. We imposed no language restriction. Randomised controlled trials comparing nitrates (isosorbide dinitrate and nitroglycerin) with alternative interventions (frusemide and morphine, frusemide alone, hydralazine, prenalterol, intravenous nesiritide and placebo) in the management of AHFS in adults aged 18 and over. Two authors independently performed data extraction. Two authors performed trial quality assessment. We used mean difference (MD), odds ratio (OR) and 95% confidence intervals (CI) to measure effect sizes. Two authors independently assessed and rated the methodological quality of each trial using the Cochrane Collaboration tool for assessing risk of bias. Four studies (634 participants) met the inclusion criteria. Two of the included studies included only patients with AHFS following acute myocardial infarction (AMI); one study excluded patients with overt AMI; and one study included participants with AHFS with and without acute coronary syndromes.Based on a single study

  2. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    NARCIS (Netherlands)

    Balk, M.; Laverman, A.M.; Keuskamp, J.A.; Laanbroek, H.J.

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought

  3. Toxic effects of lead and nickel nitrate on rat liver chromatin components.

    Science.gov (United States)

    Rabbani-Chadegani Iii, Azra; Fani, Nesa; Abdossamadi, Sayeh; Shahmir, Nosrat

    2011-01-01

    The biological activity of heavy metals is related to their physicochemical interaction with biological receptors. In the present study, the effect of low concentrations of nickel nitrate and lead nitrate (lead nitrate to chromatin compared to nickel nitrate. Also, the binding affinity of lead nitrate to histone proteins free in solution was higher than nickel. On the basis of the results, it is concluded that lead reacts with chromatin components even at very low concentrations and induce chromatin aggregation through histone-DNA cross-links. Whereas, nickel nitrate is less effective on chromatin at low concentrations, suggesting higher toxicity of lead nitrate on chromatin compared to nickel. Copyright © 2010 Wiley Periodicals, Inc.

  4. Nitrate Leaching Management

    Science.gov (United States)

    Nitrate (NO3) leaching is a significant nitrogen (N) loss process for agriculture that must be managed to minimize NO3 enrichment of groundwater and surface waters. Managing NO3 leaching should involve the application of basic principles of understanding the site’s hydrologic cycle, avoiding excess ...

  5. Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Samreen; Goddard, Russell H.; Bielmyer-Fraser, Gretchen K., E-mail: gkbielmyer@valdosta.edu

    2015-03-15

    Highlights: • Differences between CuO NP and CuCl{sub 2} exposure were characterized. • Copper accumulation in E. pallida was concentration-dependent. • E. pallida exposed to CuCl{sub 2} accumulated higher copper tissue burdens. • The oxidative stress response was greater in E. pallida exposed to CuO NP. • Both forms of copper inhibited CA activity in E. pallida. - Abstract: Increasing use of metal oxide nanoparticles (NP) by various industries has resulted in substantial output of these NP into aquatic systems. At elevated concentrations, NP may interact with and potentially affect aquatic organisms. Environmental implications of increased NP use are largely unknown, particularly in marine systems. This research investigated and compared the effects of copper oxide (CuO) NP and dissolved copper, as copper chloride (CuCl{sub 2}), on the sea anemone, Exaiptasia pallida. Sea anemones were collected over 21 days and tissue copper accumulation and activities of the enzymes: catalase, glutathione peroxidase, glutathione reductase, and carbonic anhydrase were quantified. The size and shape of CuO NP were observed using a ecanning electron microscope (SEM) and the presence of copper was confirmed by using Oxford energy dispersive spectroscopy systems (EDS/EDX). E. pallida accumulated copper in their tissues in a concentration- and time-dependent manner, with the animals exposed to CuCl{sub 2} accumulating higher tissue copper burdens than those exposed to CuO NP. As a consequence of increased copper exposure, as CuO NP or CuCl{sub 2}, anemones increased activities of all of the antioxidant enzymes measured to some degree, and decreased the activity of carbonic anhydrase. Anemones exposed to CuO NP generally had higher anti-oxidant enzyme activities than those exposed to the same concentrations of CuCl{sub 2}. This study is useful in discerning differences between CuO NP and dissolved copper exposure and the findings have implications for exposure of aquatic

  6. Inorganic nitrite and nitrate in cardiovascular therapy: A better alternative to organic nitrates as nitric oxide donors?

    Science.gov (United States)

    Münzel, Thomas; Daiber, Andreas

    2018-03-01

    In 1867 the organic nitrite, amyl nitrite, was introduced as a therapeutic agent in the treatment of angina pectoris and was later substituted by the organic nitrate nitroglycerin (NTG). Despite having a highly potent vasodilator capacity in veins>coronary arteries>arterioles, the vasodilator effects NTG are rapidly attenuated by the development of nitrate tolerance. We and others established that NTG treatment stimulates the production of reactive oxygen species such as superoxide and peroxynitrite with subsequent marked attenuation of the NTG vasodilator potency. The nitrite anion (NO 2 - ) has more recently been characterized to possess novel pharmacotherapeutic actions such as modulation of vasodilation under hypoxic conditions, thereby providing protection in ischemia-reperfusion injury. Administration of NO 2 - /NO 3 - has also been shown to improve myocardial function in heart failure and to lower blood pressure. Despite these positive aspects there is still a great need to study inorganic nitrate and nitrite therapy in various cardiovascular diseases in prospective outcome directed studies. In case being successful, this kind of therapy would indeed represent a cheap, therefore affordable, effective cardiovascular therapy without major side effects as observed in response to therapy with organic nitrates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Ruthenium release from thermally overheated nitric acid solution containing ruthenium nitrosyl nitrate and sodium nitrate to solidify

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Kayo; Ueda, Yasuyuki; Enokida, Youichi [Nuclear Chemical Engineering Laboratory, Nagoya University, Nagoya 4648603 (Japan)

    2016-07-01

    Radioactive ruthenium (Ru) is one of the dominant elemental species released into the environment from a fuel reprocessing plant in a hypothetical design accident due to its relatively higher fission yield and longer half-life. After the hypothetical accident assuming the loss of all electric power and cooling functions, high-level liquid waste (HLLW) may be overheated by the energetic decays of many fission products in it, and Ru may be oxidized to the volatile tetroxide, RuO{sub 4}, which is released through the off-gas pathway. At a reprocessing plant in Japan, alkaline solution from the solvent scrubbing stream is sometimes mixed with the HLLW followed by vitrification, which can be influenced by the addition of sodium nitrate to a simulated HLLW containing ruthenium nitrosyl nitrate that was experimentally evaluated on a small scale using the overheated nitric acid solution of 2 mol/dm{sup 3}, which was kept at 180 Celsius degrees in a glass evaporator placed in a thermostatic bath. The release fraction of Ru increased by approximately 30% by the addition of sodium nitrate. This may be partially explained by the existence of relatively highly concentrated nitrate ions in the liquid phase that oxidize the ruthenium species to RuO{sub 4} during the drying process. (authors)

  8. Trend Analyses of Nitrate in Danish Groundwater

    DEFF Research Database (Denmark)

    Hansen, B.; Thorling, L.; Dalgaard, Tommy

    2012-01-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribut......This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis...... of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first...... two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded...

  9. Chemistry of the copper silicon interface

    International Nuclear Information System (INIS)

    Ford, M.J.; Sashin, V.A.; Nixon, K.

    2002-01-01

    Full text: Copper and silicon readily interdiffuse, even at room temperature, to form an interface which can be several nanometers thick. Over the years considerable effort has gone into investigating the diffusion process and chemical nature of the interface formed. Photoemission measurements give evidence for the formation of a stable suicide with a definite stoichiometry, Cu 3 Si. This is evidenced by splitting of the Si LVV Auger line and slight shifts and change in shape of the copper valence band density of states as measured by ultra-violet photoemission. In this paper we present calculations of the electronic structure of copper suicide, bulk copper and silicon, and preliminary measurements of the interface by electron momentum spectroscopy. Densities of states for copper and copper suicide are dominated by the copper 3d bands, and difference between the two compounds are relatively small. By contrast, the full band structures are quite distinct. Hence, experimental measurements of the full band structure of the copper on silicon interface, for example by EMS, have the potential to reveal the chemistry of the interface in a detailed way

  10. dl-Asparaginium nitrate

    Science.gov (United States)

    Moussa Slimane, Nabila; Cherouana, Aouatef; Bendjeddou, Lamia; Dahaoui, Slimane; Lecomte, Claude

    2009-01-01

    In the title compound, C4H9N2O3 +·NO3 −, alternatively called (1RS)-2-carbamoyl-1-carboxy­ethanaminium nitrate, the asymmetric unit comprises one asparaginium cation and one nitrate anion. The strongest cation–cation O—H⋯O hydrogen bond in the structure, together with other strong cation–cation N—H⋯O hydrogen bonds, generates a succession of infinite chains of R 2 2(8) rings along the b axis. Additional cation–cation C—H⋯O hydrogen bonds link these chains into two-dimensional layers formed by alternating R 4 4(24) and R 4 2(12) rings. Connections between these layers are provided by the strong cation–anion N—H⋯O hydrogen bonds, as well as by one weak C—H⋯O inter­action, thus forming a three-dimensional network. Some of the cation–anion N—H⋯O hydrogen bonds are bifurcated of the type D—H⋯(A 1,A 2). PMID:21577586

  11. Regulation by nitrate of protein synthesis and translation of RNA in maize roots

    International Nuclear Information System (INIS)

    McClure, P.R.; Bouthyette, P.Y.

    1986-01-01

    Roots of maize seedlings were exposed to 35 S-methionine in the presence or absence of nitrate. Using SDS-PAGE, nitrate-induced changes in labeled polypeptides were noted in the soluble (at 92, 63 and 21kD) and organellar(at 14kD) fractions, as well as in a membrane fraction of putative tonoplast origin (at 31kD). No nitrate-induced changes were noted in a plasmamembrane-enriched fraction or in a membrane fraction of mixed origin. Total RNA from nitrate-treated and control roots was translated in a rabbit reticulocyte system. Five translation products (94, 63, 41, 39 and 21kD) were identified as nitrate-inducible by comparative gel electrophoresis. Changes in protein synthesis and translation of mRNA were apparent within 2-3 h after introduction of nitrate. Within 4-6 h after removal of nitrate, the level of nitrate-inducible translation products diminished to that of control roots. In contrast, the 31kD tonoplast polypeptide was still labeled 26 h after removal of external nitrate and 35 S-methionine. The results will be discussed in relation to the nitrate induction of nitrate reductase, nitrite reductase, and the nitrate uptake system

  12. Accumulation and hyperaccumulation of copper in plants

    Science.gov (United States)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  13. Theoretical study on the nitration of methane by acyl nitrate catalyzed by H-ZSM5 zeolite.

    Science.gov (United States)

    Silva, Alexander Martins; Nascimento, Marco Antonio Chaer

    2008-09-25

    A theoretical study on the nitration of methane by acyl nitrate catalyzed by HZSM-5 zeolite is reported. The zeolite was represented by a "double ring" 20T cluster. The calculations were performed at the DFT/X3LYP/6-31G** and MP2/6-31G** levels. The first step of the mechanism involves the protonation of the acyl nitrate by the zeolite and the formation of a nitronium-like ion. The reaction proceeds through a concerted step with the attack of the methane molecule by the nitronium-like ion and the simultaneous transfer of a proton from the methane molecule to the zeolite, thus reconstructing the acidic site. The activation energies for the first and second steps of this reaction are, respectively, 14.09 and 10.14 kcal/mol at X3LYP/6-31G** level and 16.68 and 13.85 kcal/mol at the MP2/6-31G**.

  14. System of ytterbium nitrate-hydrazine(mono-)dinitrate-water

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Katamanov, V.L.

    1986-01-01

    Solubility in ternary systems ytterbium nitrate-hydrazine monohydrate-water and ytterbium nitrate-hydrazine dinitrate-water is studied at 25 and 50 deg C. Salt components of both systems do not form with each other double addition compounds in the chosen temperature range. Initial salts are equilibrium solid phases of saturated solutions. Correlation of the range of primary crystallization of nitrate acydocomplexes of lanthanides formed in similar systems with their atomic number is considered. It is shown that hydrazine dinitrate can be used for separation of rare earth elements of cerium group

  15. A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR

    Science.gov (United States)

    Stanojlović, Rodoljub D.; Sokolović, Jovica M.

    2014-10-01

    In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated. By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag. The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.

  16. Unraveling the Amycolatopsis tucumanensis copper-resistome.

    Science.gov (United States)

    Dávila Costa, José Sebastián; Kothe, Erika; Abate, Carlos Mauricio; Amoroso, María Julia

    2012-10-01

    Heavy metal pollution is widespread causing serious ecological problems in many parts of the world; especially in developing countries where a budget for remediation technology is not affordable. Therefore, screening for microbes with high accumulation capacities and studying their stable resistance characteristics is advisable to define cost-effective any remediation strategies. Herein, the copper-resistome of the novel copper-resistant strain Amycolatopsis tucumanensis was studied using several approaches. Two dimensional gel electrophoresis revealed that proteins of the central metabolism, energy production, transcriptional regulators, two-component system, antioxidants and protective metabolites increased their abundance upon copper-stress conditions. Transcriptome analysis revealed that in presence of copper, superoxide dismutase, alkyl hydroperoxide reductase and mycothiol reductase genes were markedly induced in expression. The oxidative damage of protein and lipid from A. tucumanensis was negligible compared with that observed in the copper-sensitive strain Amycolatopsis eurytherma. Thus, we provide evidence that A. tucumamensis shows a high adaptation towards copper, the sum of which is proposed as the copper-resistome. This adaptation allows the strain to accumulate copper and survive this stress; besides, it constitutes the first report in which the copper-resistome of a strain of the genus Amycolatopsis with bioremediation potential has been evaluated.

  17. Food sources of nitrates and nitrites: the physiologic context for potential health benefits.

    Science.gov (United States)

    Hord, Norman G; Tang, Yaoping; Bryan, Nathan S

    2009-07-01

    The presence of nitrates and nitrites in food is associated with an increased risk of gastrointestinal cancer and, in infants, methemoglobinemia. Despite the physiologic roles for nitrate and nitrite in vascular and immune function, consideration of food sources of nitrates and nitrites as healthful dietary components has received little attention. Approximately 80% of dietary nitrates are derived from vegetable consumption; sources of nitrites include vegetables, fruit, and processed meats. Nitrites are produced endogenously through the oxidation of nitric oxide and through a reduction of nitrate by commensal bacteria in the mouth and gastrointestinal tract. As such, the dietary provision of nitrates and nitrites from vegetables and fruit may contribute to the blood pressure-lowering effects of the Dietary Approaches to Stop Hypertension (DASH) diet. We quantified nitrate and nitrite concentrations by HPLC in a convenience sample of foods. Incorporating these values into 2 hypothetical dietary patterns that emphasize high-nitrate or low-nitrate vegetable and fruit choices based on the DASH diet, we found that nitrate concentrations in these 2 patterns vary from 174 to 1222 mg. The hypothetical high-nitrate DASH diet pattern exceeds the World Health Organization's Acceptable Daily Intake for nitrate by 550% for a 60-kg adult. These data call into question the rationale for recommendations to limit nitrate and nitrite consumption from plant foods; a comprehensive reevaluation of the health effects of food sources of nitrates and nitrites is appropriate. The strength of the evidence linking the consumption of nitrate- and nitrite-containing plant foods to beneficial health effects supports the consideration of these compounds as nutrients.

  18. Failure Analysis Techniques for the Evaluation of Electrical and Electronic Components in Aircraft Accident Investigations

    Science.gov (United States)

    1990-08-01

    Buffering agent Cupric sulfate CuSO4 Stain (Copper Subsulfate) Cupric nitrate Cu(NO 3 ) 2 Constituent preferential (Copper Nitrate) silicon etch...hypophosphite Sodium potassium NaKC4 H4 O 6 . H Z 0 Buffer used in silicon tartrate crystal studies Sodium silicate Na 2 SiO3 9H2 0 Etchant; coater Sodium

  19. Anoxic Activated Sludge Monitoring with Combined Nitrate and Titrimetric Measurements

    DEFF Research Database (Denmark)

    Petersen, B.; Gernaey, Krist; Vanrolleghem, P.A.

    2002-01-01

    was with the carbon source in excess, since excess nitrate provoked nitrite build-up thereby complicating the data interpretation. A conceptual model could quantitatively describe the experimental observations and thus link the experimentally measured proton production with the consumption of electron acceptor......An experimental procedure for anoxic activated sludge monitoring with combined nitrate and titrimetric measurements is proposed and evaluated successfully with two known carbon sources, (-)acetate and dextrose. For nitrate measurements an ion-selective nitrate electrode is applied to allow...... for frequent measurements, and thereby the possibility for detailed determination of the denitrification biokinetics. An internal nitrate electrode calibration is implemented in the experiments to avoid the often-encountered electrode drift problem. It was observed that the best experimental design...

  20. Ginger-supplemented diet ameliorates ammonium nitrate-induced ...

    African Journals Online (AJOL)

    The present study was designed to evaluate the capacity of ginger to repair the oxidative stress induced by ammonium nitrate. 50 male rats were divided into 5 groups; they underwent an oral treatment of ammonium nitrate and/or ginger (N mg/kg body weight + G% in diet) during 30 days. Group I served as control (C); ...

  1. Development of a reference database for assessing dietary nitrate in vegetables.

    Science.gov (United States)

    Blekkenhorst, Lauren C; Prince, Richard L; Ward, Natalie C; Croft, Kevin D; Lewis, Joshua R; Devine, Amanda; Shinde, Sujata; Woodman, Richard J; Hodgson, Jonathan M; Bondonno, Catherine P

    2017-08-01

    Nitrate from vegetables improves vascular health with short-term intake. Whether this translates into improved long-term health outcomes has yet to be investigated. To enable reliable analysis of nitrate intake from food records, there is a strong need for a comprehensive nitrate content of vegetables database. A systematic literature search (1980-2016) was performed using Medline, Agricola and Commonwealth Agricultural Bureaux abstracts databases. The nitrate content of vegetables database contains 4237 records from 255 publications with data on 178 vegetables and 22 herbs and spices. The nitrate content of individual vegetables ranged from Chinese flat cabbage (median; range: 4240; 3004-6310 mg/kg FW) to corn (median; range: 12; 5-1091 mg/kg FW). The database was applied to estimate vegetable nitrate intake using 24-h dietary recalls (24-HDRs) and food frequency questionnaires (FFQs). Significant correlations were observed between urinary nitrate excretion and 24-HDR (r = 0.4, P = 0.013), between 24-HDR and 12 month FFQs (r = 0.5, P vegetables. It can be applied to dietary records to explore the associations between nitrate intake and health outcomes in human studies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthese und Charakterisierung wasserfreier Seltenerdmetall-Nitrate, -Acetate und -Oxyacetate

    OpenAIRE

    Heinrichs, Christina

    2013-01-01

    Durch thermische Entwässerung der Seltenerdmetall(SE)-Nitrat-Hydrate und der SE-Acetat-Hydrate im Argon-Strom/Vakuum konnten wasserfreie SE-Nitrate und SE-Nitrat-Monohydrate bzw. wasserfreie SE-Acetate erhalten werden. Es gelang zudem, SE-Oxyacetate durch thermische Zersetzung der SE-Acetate darzustellen. Des Weiteren wurde beim Erhitzen von Praseodym-Carbonat-Hydrat ein Pr-Carbonat-Hydroxid erhalten. Die Verbindungen wurden mittels Röntgenpulverdiffraktometrie und an ausgewählten Beispielen ...

  3. Interesting properties of some iron(II), copper(I) and copper(II ...

    Indian Academy of Sciences (India)

    Administrator

    Tridendate ligands with nitrogen centers, generally well-known as the tripod ligands, have been of considerable interest to inorganic chemists dealing with the preparation of model compounds for hemocyanin, tyrosinase etc. We have found that such ligands when complexed with iron(II) and copper(II) and copper(I) ions ...

  4. Studies in Aromatic and Amine Nitration.

    Science.gov (United States)

    1980-05-20

    of Commerce, May 1978. 4. J. Hoggett , R. Moodie, F. Penton, and K. Schofield, Nitration and Aromatic Reactivity (Cambridge University Press, 1971). 5...Moodie, K. Schofield, and G. Tobin, J. Chem. Soc., Chem. Comm., 180 (1978); (b) J. Hoggett , R. Moodie, and K. Schofield, Chem. Comm. 605 (1969). 10. (a) S...Lawrence Livermore Laboratories (Received, 5th Februaty 1980; Com. 124.) 42 ’(a) J. Hoggett , R. B. Moodie, J. R. Penton, and K. Schofield, in ’Nitration

  5. Copper Powder and Chemicals: edited proceedings of a seminar

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Various papers are presented covering the following topics: Status of Copper Chemical Industry in India, Copper Powder from Industrial Wastes, Manufacture of Copper Hydroxide and High Grade Cement Copper from Low Grade Copper Ore, Manufacture of Copper Sulphate as a By-Product, Hydrometallurgical Treatments of Copper Converter and Smelter Slage for Recovering Copper and other Non-Ferrous Metals, Recovery of Copper from Dilute Solutions, Use of Copper Compounds as Fungicides in India, Copper in Animal Husbandry, and Use of Copper Powder and Chemicals for Marine Applications. The keynote paper given at the Seminar was on Conservation of Copper for Better Use.

  6. In situ biodenitrification of nitrate surface water

    International Nuclear Information System (INIS)

    Schmidt, G.C.; Ballew, M.B.

    1995-01-01

    The US Department of Energy's Weldon Spring Site Remedial Action Project has successfully operated a full-scale in situ biodenitrification system to treat water with elevated nitrate levels in abandoned raffinate pits. Bench- and pilot-scale studies were conducted to evaluate the feasibility of the process and to support its full-scale design and application. Bench testing evaluated variables that would influence development of an active denitrifying biological culture. The variables were carbon source, phosphate source, presence and absence of raffinate sludge, addition of a commercially available denitrifying microbial culture, and the use of a microbial growth medium. Nitrate levels were reduced from 750 mg/L NO 3 -N to below 10 mg/L NO 3 -N within 17 days. Pilot testing simulated the full-scale process to determine if nitrate levels could be reduced to less than 10 mg/L NO 3 -N when high levels are present below the sludge surface. Four separate test systems were examined along with two control systems. Nitrates were reduced from 1,200 mg/L NO 3 -N to below 2 mg/L NO 3 -N within 21 days. Full-scale operation has been initiated to denitrify 900,000-gal batches alternating between two 1-acre ponds. The process used commercially available calcium acetate solution and monosodium/disodium phosphate solution as a nutrient source for indigenous microorganisms to convert nitrates to molecular nitrogen and water

  7. Determination of U(IV) and hydrazine nitrate by volumetry

    International Nuclear Information System (INIS)

    Cao Xi; Wang Nanjie; Zhang Tao; Wang Lin; Guo Yuhua

    2006-01-01

    To be determined U(IV) and hydrazine nitrate in exist together, chromium (VI) and 1,10-phenanthroline is used individually as oxidation titrator and indicator for U(IV), and N-bromineimino and methyl red is used individually as oxidation titrator and indicator for hydrazine nitrate, U(IV) and hydrazine nitrate in the same sample is determined sequentially in the nitric acid by adjusting concentration of nitric acid. Results show that the precision is better than 2.0% when the mass concentration of U(IV) is ranged over 5.5-205 mg/mL; and the precision is better than 2.0% when the concentration of hydrazine nitrate is ranged over 0.05-1.0 mol/L. (authors)

  8. Electrochemical processing of nitrate waste solutions

    International Nuclear Information System (INIS)

    Genders, D.; Weinberg, N.; Hartsough, D.

    1992-01-01

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F - ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions

  9. Thermodynamic data for copper. Implications for the corrosion of copper under repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Puigdomenech, I. [Royal Inst. of Tech., Stockholm (Sweden); Taxen, C. [Swedish Corrosion Inst., Stockholm (Sweden)

    2000-08-01

    The stability of copper canisters has a central role in the safety concept for the planned nuclear spent fuel repository in Sweden. The corrosion of copper canisters will be influenced by the chemical and physical environment in the near-field of the repository, and thermodynamic equilibrium calculations provide the basis for understanding this system. Thermodynamic data have been selected in this work for solids and aqueous species in the system: Cu - H{sub 2}O - H{sup +} - H{sub 2} - F{sup -} - Cl{sup -} - S{sup 2-} - SO{sub 4}{sup 2-} - NO{sub 3}{sup -} - NO{sub 2}{sup -} - NH{sub 4}{sup +} PO{sub 4}{sup 3-} - CO{sub 3}{sup 2+} . For some reactions and compounds, for which no experimental information on temperature effects was available, entropy and heat capacity values have been estimated. The compiled data were used to calculate thermodynamic equilibria for copper systems up to 100 deg C. The stability of copper in contact with granitic groundwaters has been illustrated using chemical equilibrium diagrams, with he following main conclusions: Dissolved sulphide and O{sub 2} in groundwater are the most damaging components for copper corrosion. If available, HS{sup -} will react quantitatively with copper to form a variety of sulphides. However, sulphide concentrations in natural waters are usually low, because it forms sparingly soluble solids with transition metals, including Fe(II), which is wide-spread in reducing environments. Chloride can affect negatively copper corrosion. High concentrations (e.g., [Cl{sup -}]TOT > 60 g/l) may be unfavourable for the general corrosion of copper in combination with in the following circumstances: Low pH (< 4 at 25 deg C, or < 5 at 100 deg C). The presence of other oxidants than H{sup +}. The negative effects of Cl{sup -} are emphasised at higher temperatures. The chloride-enhancement of general corrosion may be beneficial for localised corrosion: pitting and stress corrosion cracking. The concept of redox potential, E

  10. Identifying nitrate sources and transformations in surface water by combining dual isotopes of nitrate and stable isotope mixing model in a watershed with different land uses and multi-tributaries

    Science.gov (United States)

    Wang, Meng; Lu, Baohong

    2017-04-01

    Nitrate is essential for the growth and survival of plants, animals and humans. However, excess nitrate in drinking water is regarded as a health hazard as it is linked to infant methemoglobinemia and esophageal cancer. Revealing nitrate characteristics and identifying its sources are fundamental for making effective water management strategies, but nitrate sources in multi-tributaries and mixed land covered watersheds remain unclear. It is difficult to determine the predominant NO3- sources using conventional water quality monitoring techniques. In our study, based on 20 surface water sampling sites for more than two years' monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3- and δ18O-NO3-) were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, East China. The results demonstrated that nitrate content in surface water was relatively low in the downstream (nitrate was observed at the source of the river in one of the sub-watersheds, which exhibited an exponential decline along the stream due to dilution, absorption by aquatic plants, and high forest cover. Although dramatically decline of nitrate occurred along the stream, denitrification was not found in surface water by analyzing δ15N-NO3- and δ18O-NO3- relationship. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage; soil nitrogen; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall) were estimated using a Bayesian isotope mixing model. Model results indicated nitrate sources varied significantly among different rainfall conditions, land use types, as well as anthropologic activities. In summary, coupling dual isotopes of nitrate (δ15N-NO3- and δ18O-NO3-, simultaneously) with a Bayesian isotope mixing model offers a useful and practical way to qualitatively analyze nitrate sources and transformations as well as

  11. The future of copper in China--A perspective based on analysis of copper flows and stocks.

    Science.gov (United States)

    Zhang, Ling; Cai, Zhijian; Yang, Jiameng; Yuan, Zengwei; Chen, Yan

    2015-12-01

    This study attempts to speculate on the future of copper metabolism in China based on dynamic substance flow analysis. Based on tremendous growth of copper consumption over the past 63 years, China will depict a substantially increasing trend of copper in-use stocks for the next 30 years. The highest peak will be possibly achieved in 2050, with the maximum ranging between 163 Mt and 171 Mt. After that, total stocks are expected to slowly decline 147-154 Mt by the year 2080. Owing to the increasing demand of in-use stocks, China will continue to have a profound impact on global copper consumption with its high import dependence until around 2020, and the peak demand for imported copper are expected to approach 5.5 Mt/year. Thereafter, old scrap generated by domestic society will occupy an increasingly important role in copper supply. In around 2060, approximately 80% of copper resources could come from domestic recycling of old scrap, implying a major shift from primary production to secondary production. With regard to the effect of lifetime distribution uncertainties in different end-use sectors of copper stocks on the predict results, uncertainty evaluation was performed and found the model was relatively robust to these changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. 21 CFR 184.1261 - Copper sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a...

  13. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    Science.gov (United States)

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively.

  14. Biological nitrate removal processes from drinking water supply-a review.

    Science.gov (United States)

    Mohseni-Bandpi, Anoushiravan; Elliott, David Jack; Zazouli, Mohammad Ali

    2013-12-19

    This paper reviews both heterotrophic and autotrophic processes for the removal of nitrate from water supplies. The most commonly used carbon sources in heterotrophic denitrification are methanol, ethanol and acetic acid. Process performance for each feed stock is compared with particular reference nitrate and nitrite residual and to toxicity potential. Autotrophic nitrate removal has the advantages of not requiring an organic carbon source; however the slow growth rate of autotrophic bacteria and low nitrate removal rate have contributed to the fact that relatively few full scale plants are in operation at the present time.

  15. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1

    Czech Academy of Sciences Publication Activity Database

    Bouguyon, E.; Brun, F.; Meynard, D.; Kubeš, Martin; Pervent, M.; Leran, S.; Lacombe, B.; Krouk, G.; Guiderdoni, E.; Zažímalová, Eva; Hoyerová, Klára; Nacry, P.; Gojon, A.

    2015-01-01

    Roč. 1, March (2015), s. 15015 ISSN 2055-026X R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional support: RVO:61389030 Keywords : nitrate transceptor * Arabidopsis * lateral root development Subject RIV: EB - Genetics ; Molecular Biology

  16. Aquatic Life Criteria - Copper

    Science.gov (United States)

    Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.

  17. Global Patterns of Legacy Nitrate Storage in the Vadose Zone

    Science.gov (United States)

    Ascott, M.; Gooddy, D.; Wang, L.; Stuart, M.; Lewis, M.; Ward, R.; Binley, A. M.

    2017-12-01

    Global-scale nitrogen (N) budgets have been developed to quantify the impact of man's influence on the nitrogen cycle. However, these budgets often do not consider legacy effects such as accumulation of nitrate in the deep vadose zone. In this presentation we show that the vadose zone is an important store of nitrate which should be considered in future nitrogen budgets for effective policymaking. Using estimates of depth to groundwater and nitrate leaching for 1900-2000, we quantify for the first time the peak global storage of nitrate in the vadose zone, estimated as 605 - 1814 Teragrams (Tg). Estimates of nitrate storage are validated using previous national and basin scale estimates of N storage and observed groundwater nitrate data for North America and Europe. Nitrate accumulation per unit area is greatest in North America, China and Central and Eastern Europe where thick vadose zones are present and there is an extensive history of agriculture. In these areas the long solute travel time in the vadose zone means that the anticipated impact of changes in agricultural practices on groundwater quality may be substantially delayed. We argue that in these areas use of conventional nitrogen budget approaches is inappropriate and their continued use will lead to significant errors.

  18. Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes.

    Science.gov (United States)

    Meng, Sitong; Wu, Hang; Wang, Lei; Zhang, Buchang; Bai, Linquan

    2017-07-01

    Nitrate is necessary for primary and secondary metabolism of actinomycetes and stimulates the production of a few antibiotics, such as lincomycin and rifamycin. However, the mechanism of this nitrate-stimulating effect was not fully understood. Two putative ABC-type nitrate transporters were identified in Streptomyces lincolnensis NRRL2936 and verified to be involved in lincomycin biosynthesis. With nitrate supplementation, the transcription of nitrogen assimilation genes, nitrate-specific ABC1 transporter genes, and lincomycin exporter gene lmrA was found to be enhanced and positively regulated by the global regulator GlnR, whose expression was also improved. Moreover, heterologous expression of ABC2 transporter genes in Streptomyces coelicolor M145 resulted in an increased actinorhodin production. Further incorporation of a nitrite-specific transporter gene nirC, as in nirC-ABC2 cassette, led to an even higher actinorhodin production. Similarly, the titers of salinomycin, ansamitocin, lincomycin, and geldanamycin were increased with the integration of this cassette to Streptomyces albus BK3-25, Actinosynnema pretiosum ATCC31280, S. lincolnensis LC-G, and Streptomyces hygroscopicus XM201, respectively. Our work expanded the nitrate-stimulating effect to many antibiotic producers by utilizing the nirC-ABC2 cassette for enhanced nitrate utilization, which could become a general tool for titer increase of antibiotics in actinomycetes.

  19. Native copper in Permian Mudstones from South Devon: A natural analogue of copper canisters for high-level radioactive waste

    International Nuclear Information System (INIS)

    Milodowski, A.E.; Styles, M.T.; Werme, L.; Oversby, V.M.

    2001-01-01

    Native copper (>99.9% Cu) sheets associated with complex uraniferous and vanadiferous concretions in Upper Permian Mudstones from south Devon (United Kingdom) have been studied as a 'natural analogue' for copper canisters designed to be used in the isolation of spent fuel and high-level radioactive wastes (HLW) for deep geological disposal. Detailed analysis demonstrates that the copper formed before the mudstones were compacted. The copper displays complex corrosion and alteration. The earliest alteration was to copper oxides, followed sequentially by the formation of copper arsenides, nickel arsenide and copper sulphide, and finally nickel arsenide accompanied by nickel-copper arsenide, copper arsenide and uranium silicates. Petrographic observations demonstrate that these alteration products also formed prior to compaction. Consideration of the published history for the region indicates that maximum compaction of the rocks will have occurred by at least the Lower Jurassic (i.e. over 176 Ma ago). Since that time the copper sheets have remained isolated by the compacted mudstones and were unaffected by further corrosion until uplift and exposure to present-day surface weathering

  20. Reactivity test between beryllium and copper

    International Nuclear Information System (INIS)

    Kawamura, H.; Kato, M.

    1995-01-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700 degrees C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper)