WorldWideScience

Sample records for copper isotopic alloys

  1. Online determination of copper in aluminum alloy by microchip solvent extraction using isotope dilution ICP-MS method.

    Science.gov (United States)

    Kagawa, Tsuyoshi; Ohno, Masashi; Seki, Tatsuya; Chikama, Katsumi

    2009-09-15

    Isotope dilution mass spectroscopy (IDMS)/ICP-MS combined with microchip solvent extraction was successfully applied for the online determination of copper in an aluminum alloy. The microchip solvent extraction was developed for the separation of Cu from major element, and optimal pH range was wider than that of the batchwise extraction method. The dimensions of the microchip were 30 mm x 70 mm and that of micro-channel on the microchip was 180 microm wide and 40 microm deep. The copper complex with 8-hydroxyquinoline was extracted into o-xylene at pH 5.5 and back extracted with 0.1 mol l(-1) nitric acid at flow rate of 20 microl min(-1). The total extraction efficiency (water/organic solvent/nitric acid) was around 40%. IDMS/ICP-MS was coupled with solvent extraction for precise determination of Cu. The extraction and back-extraction on the microchip took about 1s and the total measurement time for the IDMS/ICP-MS was about 40s/sample. The blank value of this method was 0.1 ng g(-1). The proposed method was used for the determination of Cu in Al standard materials (JSAC 0121-C, The Japan Society for Analytical Chemistry and 7074 Al alloy, Nippon Light Metal Co. Ltd.). The obtained analytical results are in good agreement with the certified values.

  2. Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

  3. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  4. Radiation resistance of copper alloys at high exposure levels

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A. (Pacific Northwest Lab., Richland, WA (USA)); Zinkle, S.J. (Oak Ridge National Lab., TN (USA))

    1990-08-01

    Copper alloys are currently being considered for high heat flux applications in fusion power devices. A review is presented of the results of two separate series of experiments on the radiation response of copper and copper alloys. One of these involved pure copper and boron-doped copper in the ORR mixed spectrum reactor. The other series included pure copper and a wide array of copper alloys irradiated in the FFTF fast reactor 16 refs., 13 figs.

  5. Microstructure and Service Properties of Copper Alloys

    OpenAIRE

    Polok-Rubiniec M.; Konieczny J.; Labisz K.; Włodarczyk-Fligier A.

    2016-01-01

    This elaboration shows the effect of combined heat treatment and cold working on the structure and utility properties of alloyed copper. As the test material, alloyed copper CuTi4 was employed. The samples were subjected to treatment according to the following schema: 1st variant – supersaturation and ageing, 2nd variant – supersaturation, cold rolling and ageing. The paper presents the results of microstructure, hardness, and abrasion resistance. The analysis of the wipe profile geometry was...

  6. High Copper Amalgam Alloys in Dentistry

    Directory of Open Access Journals (Sweden)

    Gaurav Solanki

    2012-07-01

    Full Text Available Amalgam Restoration is an example of the material giving its name to the process. Amalgam fillings are made up of mercury, powdered silver and tin. They are mixed and packed into cavities in teeth where it hardens slowly and replaces the missing tooth substance. The high copper have become material of choice as compared to low copper alloys nowadays because of their improved mechanical properties, corrosion resistance, better marginal integrity and improved performance in clinical trial. The high copper amalgam was used as a restorative material. The application of high copper amalgam was found to be much more useful than low copper amalgam. High copper had much more strength, corrosion resistance, durability and resistance to tarnish as compared to low copper amalgams. No marked expansion or condensation was noted in the amalgam restoration after its setting after 24 hrs. By using the high copper alloy, the chances of creep were also minimized in the restored tooth. No discomfort or any kind of odd sensation in the tooth was noted after few days of amalgam restoration in the tooth.

  7. Copper isotope fractionation by desert shrubs

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete, Jesica U., E-mail: jnavarrete2@miners.utep.edu [University of Texas at El Paso, Department of Geological Sciences, 500 W. University Ave, El Paso, TX 79968 (United States); Viveros, Marian; Ellzey, Joanne T. [University of Texas at El Paso, Department of Biological Sciences, El Paso, TX 79968 (United States); Borrok, David M. [University of Texas at El Paso, Department of Geological Sciences, 500 W. University Ave, El Paso, TX 79968 (United States)

    2011-06-15

    Copper has two naturally occurring stable isotopes of masses 63 and 65 which can undergo mass dependent fractionation during various biotic and abiotic chemical reactions. These interactions and their resulting Cu isotope fractionations can be used to determine the mechanisms involved in the cycling of Cu in natural systems. In this study, Cu isotope changes were investigated at the organismal level in the metal-accumulating desert plant, Prosopis pubescens. Initial results suggest that the lighter Cu isotope was preferentially incorporated into the leaves of the plant, which may suggest that Cu was actively transported via intracellular proteins. The roots and stems show a smaller degree of Cu isotope fractionation and the direction and magnitude of the fractionations was dependent upon the levels of Cu exposure. Based on this and previous work with bacteria and yeast, a trend is emerging that suggests the lighter Cu isotope is preferentially incorporated into biological components, while the heavier Cu isotope tends to become enriched in aqueous solutions. In bacteria, plants and animals, intracellular Cu concentrations are strictly regulated via dozens of enzymes that can bind, transport, and store Cu. Many of these enzymes reduce Cu(II) to Cu(I). These initial results seem to fit into a broader picture of Cu isotope cycling in natural systems where oxidation/reduction reactions are fundamental in controlling the distributions of Cu isotopes.

  8. Hydrogen ingress into copper-nickel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pound, B.G. (SRI International, Menlo Park, CA (United States). Materials Research Center)

    1994-04-01

    Hydrogen (H) ingress into two copper (Cu)-nickel (Ni) alloys -- a commercial 77% Cu-15% Ni alloy (aged) and alloy K-500 (UNS N05500, aged and unaged) --- was studied using a technique referred to as hydrogen ingress analysis by potentiostatic pulsing (HIAPP). Anodic current transients obtained for these alloys in an acetate buffer (1 mol/L acetic acid + 1 mol/L sodium acetate [NaAc]) were analyzed using a diffusion-trapping model to determine trapping constants and H entry fluxes. A small increase was observed in the irreversible trapping constant for alloy K-500 with aging. Trapping constants of the aged alloys were similar within the limits of uncertainty, but H entry flux for the 77% Cu alloy was lower than that for aged or unaged alloy K-500. The lower flux may have accounted at least partly, for the Cu alloy's higher resistance to H embrittlement. Trap densities were consistent qualitatively with levels of sulfur (S) and phosphorus (P) in the two alloys. This finding supported an assumption that S and P provided the primary irreversible traps.

  9. Zirconium modified nickel-copper alloy

    Science.gov (United States)

    Whittenberger, J. D. (Inventor)

    1977-01-01

    An improved material for use in a catalytic reactor which reduces nitrogen oxide from internal combustion engines is in the form of a zirconium-modified, precipitation-strengthened nickel-copper alloy. This material has a nominal composition of Ni-30 Cu-0.2 Zr and is characterized by improved high temperature mechanical properties.

  10. Microstructure and Service Properties of Copper Alloys

    Directory of Open Access Journals (Sweden)

    Polok-Rubiniec M.

    2016-09-01

    Full Text Available This elaboration shows the effect of combined heat treatment and cold working on the structure and utility properties of alloyed copper. As the test material, alloyed copper CuTi4 was employed. The samples were subjected to treatment according to the following schema: 1st variant – supersaturation and ageing, 2nd variant – supersaturation, cold rolling and ageing. The paper presents the results of microstructure, hardness, and abrasion resistance. The analysis of the wipe profile geometry was realized using a Zeiss LSM 5 Exciter confocal microscope. Cold working of the supersaturated solid solution affects significantly its hardness but the cold plastic deformation causes deterioration of the wear resistance of the finally aged CuTi4 alloy.

  11. Irradiation creep of dispersion strengthened copper alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A. [and others

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  12. Electrochemical nucleation and growth of copper and copper alloys

    Science.gov (United States)

    Shao, Wenbo

    This dissertation aims to contribute to a fundamental understanding of the physicochemical processes occurring in electrochemical nucleation and growth. To this end, the effects of various anions (chloride (Cl-), sulfate (SO42-) and sulfamate (NH2SO 3-)) on the electrochemical kinetics and the mechanism of copper reduction, as well as on the microstructure of the resulting films, were studied. On the basis of this work, the deposition of copper alloys (Cu-Ag with positive heat of mixing, Cu-Au with negative heat of mixing) was investigated with the main objective to achieve an insight on the role of solid state thermodynamics on the electrocrystallization process. Chloride ions cause two competing effects: at low chloride concentration the formation of an adsorbed chloride layer introduces an additional reaction pathway, resulting in an overall depolarization of the reduction process with no significant change of the Tafel slope. At high chloride concentration, complexation phenomena induce a cathodic polarization of the deposition process and a decrease in the Tafel slope. Chlorides cause a decrease in the density and an increased size of copper nuclei. Sulfamate depolarizes copper reduction the most and results in the largest nucleus density. Chloride promotes the faceting, and dendritic growth of copper deposits along direction by introducing interfacial anisotropy. Addition of Ag in the solution or in the electrode substrate enhances copper deposition and results in an additional reduction peak. Codeposition of Cu-Ag increases nucleus density and decreases nucleus size. Such enhancement of copper deposition, the increase in nucleus density and the decrease in nucleus size by Ag could be due to the continued formation of a surface alloy of Cu-Ag and the fast interface dynamics of Ag deposition. Cu can be underpotentially codeposited in the Cu-Au alloy. Homogeneous solid solutions are grown under conditions of underpotential deposition of Cu, while precipitation

  13. Development of Lead-Free Copper Alloy-Graphite Castings

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, P.K. [Univ. of Wisconsin-Milwaukee (US)

    1999-10-01

    In this project, graphite is used as a substitute for lead in order to maintain the machinability of plumbing components at the level of leaded brass. Graphite dispersed in Cu alloy was observed to impart good machinability and reduce the sizes of chips during machining of plumbing components in a manner similar to lead. Copper alloys containing dispersed graphite particles could be successfully cast in several plumbing fixtures which exhibited acceptable corrosion rate, solderability, platability, and pressure tightness. The power consumption for machining of composites was also lower than that of the matrix alloy. In addition, centrifugally cast copper alloy cylinders containing graphite particles were successfully made. These cylinders can therefore be used for bearing applications, as substitutes for lead-containing copper alloys. The results indicate that copper graphite alloys developed under this DOE project have a great potential to substitute for lead copper alloys in both plumbing and bearing applications.

  14. Discontinuous precipitation in copper base alloys

    Indian Academy of Sciences (India)

    K T Kashyap

    2009-08-01

    Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, , has been calculated and predicted that if 100 > ± 0.1, DP is observed. This criterion points to diffusional coherency strain theory to be the operative mechanism for DP.

  15. A new acid pickling process for copper alloys

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The cleaning process of removing oxides on the surface of copper alloy sheets was investigated systematically. Through optimizing, a perfect process was selected that is fit for removing oxides on the surface. By acid pickling, all kinds of copper oxides are removed completely, furthermore, no poisonous gases are given out and a smooth and clean surface of copper alloys is obtained. At present, the process is applied successfully in the copper-processing industry.

  16. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    Energy Technology Data Exchange (ETDEWEB)

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  17. Comparison of the Oxidation Rates of Some New Copper Alloys

    Science.gov (United States)

    Ogbuji, Linus U. J. Thomas; Humphrey, Donald L.

    2002-01-01

    Copper alloys were studied for oxidation resistance and mechanisms between 550 and 700 C, in reduced-oxygen environments expected in rocket engines, and their oxidation behaviors compared to that of pure copper. They included two dispersion-strengthened alloys (precipitation-strengthened and oxide-dispersion strengthened, respectively) and one solution-strengthened alloy. In all cases the main reaction was oxidation of Cu into Cu2O and CuO. The dispersion-strengthened alloys were superior to both Cu and the solution-strengthened alloy in oxidation resistance. However, factors retarding oxidation rates seemed to be different for the two dispersion-strengthened alloys.

  18. Rapid iodometric determination of copper in some copper-base alloys

    NARCIS (Netherlands)

    Agterdenbos, J.; Eelberse, P.A.

    1966-01-01

    Copper-base alloys, especially those containing tin, are readily dissolved in a mixture of hydrofluoric and nitric acids. In the resulting solution copper can be titrated iodometrically in the conventional manner.

  19. Testing Corrosion Inhibitors for the Conservation of Archaeological Copper and Copper Alloys

    Directory of Open Access Journals (Sweden)

    Robert B. Faltermeier

    1997-11-01

    Full Text Available This is a synopsis of the Ph.D. research undertaken at the Institute of Archaeology, University College London. The aim was to evaluate corrosion inhibitors for use in the conservation of copper and copper alloy archaeological artefacts. The objective of this work was to acquire an insight into the performance of copper corrosion inhibitors, when applied to archaeological copper.

  20. Corrosion of copper alloys in sulphide containing district heting systems

    DEFF Research Database (Denmark)

    Thorarinsdottir, R.I.; Maahn, Ernst Emanuel

    1999-01-01

    Copper and some copper alloys are prone to corrosion in sulphide containing geothermal water analogous to corrosion observed in district heating systems containing sulphide due to sulphate reducing bacteria. In order to study the corrosion of copper alloys under practical conditions a test...... was carried out at four sites in the Reykjavik District Heating System. The geothermal water chemistry is different at each site. The corrosion rate and the amount and chemical composition of deposits on weight loss coupons of six different copper alloys are described after exposure of 12 and 18 months...

  1. Discovery of Chromium, Manganese, Nickel, and Copper Isotopes

    CERN Document Server

    Garofali, K; Thoennessen, M

    2010-01-01

    Twenty-seven chromium, twenty-five manganese, thirty-one nickel and twenty-six copper isotopes have so far been observed and the discovery of these isotopes is discussed. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  2. Explosive compact-coating of tungsten–copper alloy to a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong

    2017-03-01

    This study proposed a new method for coating tungsten–copper alloy to copper surface. First, the tungsten–copper alloy powder was pre-compacted to the copper surface. Then, the powder in the hydrogen atmosphere was sintered, and the pre-compacted powder was compacted by explosive compact-coating. Finally, diffusion sintering was conducted to improve the density of the coating layer. The theoretical density of the coating reached 99.3%. Microstructure characteristics indicated that tungsten and copper powders were well mixed. Tungsten particles were larger than copper particles. Scanning electron microscope (SEM) fracture surface analysis was different from the traditional fracture of metals. Coating and substrate joint surfaces, which were analyzed by SEM, indicated that the tungsten–copper alloy was sintered on the copper surface. The hardness of the coating layer was 197.6–245.2 HV, and the hardness of the substrate was approximately 55 HV.

  3. Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica.

    Science.gov (United States)

    Zhu, Libin; Elguindi, Jutta; Rensing, Christopher; Ravishankar, Sadhana

    2012-05-01

    Copper has shown antibacterial effects against foodborne pathogens. The objective of this study was to evaluate the antibacterial activity of copper surfaces on copper resistant and sensitive strains of Salmonella enterica. Six different copper alloy coupons (60-99.9% copper) were tested along with stainless steel as the control. The coupons were surface inoculated with either S. Enteritidis or one of the 3 copper resistant strains, S. Typhimurium S9, S19 and S20; stored under various incubation conditions at room temperature; and sampled at various times up to 2 h. The results showed that under dry incubation conditions, Salmonella only survived 10-15 min on high copper content alloys. Salmonella on low copper content alloys showed 3-4 log reductions. Under moist incubation conditions, no survivors were detected after 30 min-2 h on high copper content alloys, while the cell counts decreased 2-4 logs on low copper content coupons. Although the copper resistant strains survived better than S. Enteritidis, they were either completely inactivated or survival was decreased. Copper coupons showed better antimicrobial efficacy in the absence of organic compounds. These results clearly show the antibacterial effects of copper and its potential as an alternative to stainless steel for selected food contact surfaces.

  4. Effect of fission neutron irradiation on the tensile and electrical properties of copper and copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fabritsiev, S.A. [D.V. Efremov Institute, St. Petersburg (Russian Federation); Zinkle, S.J.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States)] [and others

    1995-04-01

    The objective of this study is to evaluate the properties of several copper alloys following fission reactor irradiation at ITER-relevant temperatures of 80 to 200{degrees}C. This study provides some of the data needed for the ITER research and development Task T213. These low temperature irradiations caused significant radiation hardening and a dramatic decrease in the work hardening ability of copper and copper alloys. The uniform elongation was higher at 200{degree}C compared to 100{degree}C, but still remained below 1% for most of the copper alloys.

  5. Coper Isotope Fractionation in Porphyry Copper Deposits: A Controlled Experiment

    Science.gov (United States)

    Ruiz, J.; Mathur, R.; Uhrie, J. L.; Hiskey, B.

    2001-12-01

    Previous studies have shown that copper is fractionated in the environment. However, the mechanisms for isotope fractionation and the role of organic and inorganic processes in the fractionation are not well understood. Here we used the well controlled experiments used by Phelps Dodge Corporation aimed at leaching copper from their ore deposits to constrain the mechanism of copper isotope fractionation in natural systems. The isotope data were collected on a Micromass Isoprobe. High temperature copper sulfides from ore deposits in Chile and Arizona yield delta 65Cu near 0 permil. The reproducibility of the data is better that 0.1 permil. Controlled experiments consisting of large columns of rocks were fed solutions containing bacteria such as Thiobacillus ferroxidans and Leptospirrilium ferroxidan. Solutions fom the columns were sampled for sixty days and analyzed for copper concentrations, oxidation potential, ferrous/ferric ratios and pH. The results indicate that the bacterially aided dissolution of copper fractionated copper. Preliminary experiments of copper dissolution not using bacteria show no isotope fractionation The original rock in the experiment has a delta 65Cu of -2.1. The first solutions that were collected from the columns had a delta 65Cu of -5.0 per mil. The liquid changed its isotopic composition from -50 to -10 during the sixty days of sampling. The greatest shift in the isotope ratios occurred the first 30 days when the copper recovered was less than 40% and the ferrous/ferric ratios were somewhat constant. At approximately 35 days after the start of the experiments, the copper recovery increases the ferrousferric ratio decreased and the copper isotope ratio of the fluids remained fairly constant. The data suggest that the bacteria are required to effectively fractionate copper isotopes in natural systems and that the mechanisms of bacterial aided copper dissolution may include a direct dissolution of the sulfides by the bacteria. Experiments

  6. Impact Properties of Copper-Alloyed and Nickel-Copper Alloyed ADI

    Science.gov (United States)

    Batra, Uma; Ray, Subrata; Prabhakar, S. R.

    2007-08-01

    The influence of austenitization and austempering parameters on the impact properties of copper-alloyed and nickel-copper-alloyed austempered ductile irons (ADIs) has been studied. The austenitization temperature of 850 and 900 °C have been used in the present study for which austempering time periods of 120 and 60 min were optimized in an earlier work. The austempering process was carried out for 60 min for three austempering temperatures of 270, 330, and 380 °C to study the effect of austempering temperature. The influence of the austempering time on impact properties has been studied for austempering temperature of 330 °C for time periods of 30-150 min. The variation in impact strength with the austenitization and austempering parameters has been correlated to the morphology, size and amount of austenite and bainitic ferrite in the austempered structure. The fracture surface of ADI failed under impact has been studied using SEM.

  7. Nanostructured Alloys as an Alternative to Copper-Beryllium

    Science.gov (United States)

    2014-11-19

    bushing applications;  2) Nanometal/composite for high specific strength/stiffness components; and  3) Nanometal cobalt / copper enabled...performance of Integran’s Nanovate cobalt -based and nickel- cobalt metals is superior to copper beryllium (peak hardness); Mechanical Property Summary...Nanostructured Cobalt Alloy 285 ksi (1967 MPa) 225 ksi (1550 MPa) 290 ksi (2000 MPa) 18855 ksi (130 GPa) Copper Beryllium (C17200-TH04) 142 ksi

  8. Alloyed copper chalcogenide nanoplatelets via partial cation exchange reactions.

    Science.gov (United States)

    Lesnyak, Vladimir; George, Chandramohan; Genovese, Alessandro; Prato, Mirko; Casu, Alberto; Ayyappan, S; Scarpellini, Alice; Manna, Liberato

    2014-08-26

    We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide-sulfide (CZSeS), copper tin selenide-sulfide (CTSeS), and copper zinc tin selenide-sulfide (CZTSeS) nanoplatelets (NPLs) (∼20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide-sulfide (Cu2-xSeyS1-y) platelet shaped nanocrystals via the colloidal route, followed by an in situ cation exchange reaction. During the latter step, the cation exchange proceeded through a partial replacement of copper ions by zinc or/and tin cations, yielding homogeneously alloyed nanocrystals with platelet shape. Overall, the chemical composition of the alloyed nanocrystals can easily be controlled by the amount of precursors that contain cations of interest (e.g., Zn, Sn) to be incorporated/alloyed. We have also optimized the reaction conditions that allow a complete preservation of the size, morphology, and crystal structure as that of the starting Cu2-xSeyS1-y NPLs. The alloyed NPLs were characterized by optical spectroscopy (UV-vis-NIR) and cyclic voltammetry (CV), which demonstrated tunability of their light absorption characteristics as well as their electrochemical band gaps.

  9. Evaluation of Microscopic Degradation of Copper and Copper Alloy by Electrical Resistivity Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chung Seok [Hanyang University, Seoul (Korea, Republic of); Nahm, Seung Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Hyun, Chang Young [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2010-10-15

    In the present study, the microscopic degradation of copper and copper and alloy subjected to cyclic deformation has been evaluated by the electrical resistivity measurement using the DC four terminal potential method. The copper (Cu) and copper alloy (Cu-35Zn), whose stacking fault energy is much different each other, were cyclically deformed to investigate the response of the electrical resistivity to different dislocation substructures. Dislocation cell substructure was developed in the Cu, while the planar array of dislocation structure was developed in the Cu-35Zn alloy increasing dislocation density with fatigue cycles. The electrical resistivity increased rapidly in the initial stage of fatigue deformation in both materials. Moreover, after the fatigue test it increased by about 7 % for the Cu and 6.5 % for the Cu-35Zn alloy, respectively. From these consistent results, it may be concluded that the dislocation cell structure responds to the electrical resistivity more sensitively than the planar array dislocation structure evolved during cyclic fatigue

  10. Localized corrosion of copper alloys in China seawater for 16 years

    Institute of Scientific and Technical Information of China (English)

    赵月红; 林乐耘; 崔大为

    2004-01-01

    The regulation of localized corrosion of 2 kinds of copper and 17 kinds of copper alloys exposed in seawater of Qingdao, Zhoushan, Yulin and Xiamen for 16 years has been studied. Results show that during immersion copper alloys suffer from pitting corrosion due to high temperature and marine living adhesion at Yulin, and to the higher velocity of seawater containing sand at Zhoushan. However, the seawater of Xiamen inhibits the pitting corrosion of copper alloys. No pitting corrosion is observed on copper alloy plates tested there. The copper alloys suffer from more serious pitting corrosion in the tide zone than that in the immersion zone at Qingdao after long time exposure.

  11. Copper isotope signatures in modern marine sediments

    Science.gov (United States)

    Little, Susan H.; Vance, Derek; McManus, James; Severmann, Silke; Lyons, Timothy W.

    2017-09-01

    The development of metal stable isotopes as tools in paleoceanography requires a thorough understanding of their modern marine cycling. To date, no Cu isotope data has been published for modern sediments deposited under low oxygen conditions. We present data encompassing a broad spectrum of hydrographic and redox regimes, including continental margin and euxinic (sulphide-containing) settings. Taken together with previously published data from oxic settings, these data indicate that the modern oceanic sink for Cu has a surprisingly homogeneous isotopic composition of about +0.3‰ (δ65Cu, relative to NIST SRM976). We suggest that this signature reflects one of two specific water-column processes: (1) an equilibrium isotope fractionation between soluble, isotopically heavy, Cu complexed to strong organic ligands and an isotopically light pool sorbed to particles that deliver Cu to the sediment, or (2) an equilibrium isotope fractionation between the same isotopically heavy ligand-bound pool and the particle reactive free Cu2+ species, with the latter being scavenged by particulates and thereby delivered to the sediment. An output flux of about +0.3‰ into sediments is isotopically light relative to the known inputs to the ocean (at around +0.6‰) and the seawater value of +0.6 to +0.9‰, suggesting the presence of an as yet unidentified isotopically light source of Cu to the oceans. We hypothesize that this source may be hydrothermal, or may result from the partial dissolution of continentally derived particles.

  12. Fatigue behavior of copper and selected copper alloys for high heat flux applications

    Energy Technology Data Exchange (ETDEWEB)

    Leedy, K.D.; Stubbins, J.F.; Singh, B.N.; Garner, F.A.

    1996-04-01

    The room temperature fatigue behavior of standard and subsize specimens was examined for five copper alloys: OFHC Cu, two CuNiBe alloys, a CuCrZr alloy, and a Cu-Al{sub 2}O{sub 3} alloy. Fatigue tests were run in strain control to failure. In addition to establishing failure lives, the stress amplitudes were monitored as a function of numbers of accrued cycles. The results indicate that the alloys with high initial yield strengths provide the best fatigue response over the range of failure lives examined in the present study: N{sub f} = 10{sup 3} to 10{sup 6}. In fact, the fatigue performance of the best alloys is dominated by the elastic portion of the strain range, as would be expected from the correlation of performance with yield properties. The alumina strengthened alloy and the two CuNiBe alloys show the best overall performance of the group examined here.

  13. Friction stir welding of copper alloys

    Institute of Scientific and Technical Information of China (English)

    Liu Shuhua; Liu Meng; Wang Deqing; Xu Zhenyue

    2007-01-01

    Copper plates,brass plates and copper/brass plates were friction stir welded with various parameters. Experimental results show that the microstructure of the weld is characterized by its much finer grains as contrasted with the coarse grains of parent materials and the heat-affected zones are very narrow. The microhardness of the copper weld is a little higher than that of parent plate. The microhardness of brass weld is about 25% higher than that of parent material. The tensile strength of copper joints increases with increasing welding speed in the test range. The range of parameters to obtain good welds for copper is much wider than that for brass. When different materials were welded, the position of copper plate before welding affected the quality of FSW joints. If the copper plate was put on the advancing side of weld, the good quality of weld could be got under proper parameters.

  14. Collinear resonant ionization spectroscopy for neutron rich copper isotopes

    CERN Multimedia

    This proposal aims to study the spins, magnetic moments and quadrupole moments of copper isotopes A=76-78. The information obtained from this experiment will provide an independent and more precise measurement of the magnetic moment of $^{77}$Cu and values for the spins and magnetic moments of $^{76,78}$Cu as well as the quadrupole moments of $^{76-78}$Cu.

  15. Copper isotopes as monitors of redox processes in hydrothermal mineralization

    Science.gov (United States)

    Markl, Gregor; Lahaye, Yann; Schwinn, Gregor

    2006-08-01

    The stable copper isotope composition of 79 samples of primary and secondary copper minerals from hydrothermal veins in the Schwarzwald mining district, South Germany, shows a wide variation in δ65Cu ranging from -2.92 to 2.41‰. We investigated primary chalcopyrite, various kinds of fahlores and emplectite, as well as supergene native copper, malachite, azurite, cuprite, tenorite, olivenite, pseudomalachite and chrysocolla. Fresh primary Cu(I) ores have at most localities copper isotope ratios ( δ65Cu values) of 0 ± 0.5‰ despite the fact that the samples come from mineralogically different types of deposits covering an area of about 100 by 50 km and that they formed during three different mineralization events spanning the last 300 Ma. Relics of the primary ores in oxidized samples (i.e., chalcopyrite relics in an iron oxide matrix with an outer malachite coating) display low isotope ratios down to -2.92‰. Secondary Cu(I) minerals such as cuprite have high δ65Cu values between 0.4 and 1.65‰, whereas secondary Cu(II) minerals such as malachite show a range of values between -1.55 and 2.41‰, but typically have values above +0.5‰. Within single samples, supergene oxidation of fresh chalcopyrite with a δ value of 0‰ causes significant fractionation on the scale of a centimetre between malachite (up to 1.49‰) and relict chalcopyrite (down to -2.92‰). The results show that—with only two notable exceptions—high-temperature hydrothermal processes did not lead to significant and correlatable variations in copper isotope ratios within a large mining district mineralized over a long period of time. Conversely, low-temperature redox processes seriously affect the copper isotope compositions of hydrothermal copper ores. While details of the redox processes are not yet understood, we interpret the range in compositions found in both primary Cu(I) and secondary Cu(II) minerals as a result of two competing controls on the isotope fractionation process

  16. Isotopic constraints on biogeochemical cycling of copper in the ocean.

    Science.gov (United States)

    Takano, Shotaro; Tanimizu, Masaharu; Hirata, Takafumi; Sohrin, Yoshiki

    2014-12-05

    Trace elements and their isotopes are being actively studied as powerful tracers in the modern ocean and as proxies for the palaeocean. Although distributions and fractionations have been reported for stable isotopes of dissolved Fe, Cu, Zn and Cd in the ocean, the data remain limited and only preliminary explanations have been given. Copper is of great interest because it is either essential or toxic to organisms and because its distribution reflects both biological recycling and scavenging. Here we present new isotopic composition data for dissolved Cu (δ(65)Cu) in seawater and rainwater. The Cu isotopic composition in surface seawater can be explained by the mixing of rain, river and deep seawater. In deep seawater, δ(65)Cu becomes heavier with oceanic circulation because of preferential scavenging of the lighter isotope ((63)Cu). In addition, we constrain the marine biogeochemical cycling of Cu using a new box model based on Cu concentrations and δ(65)Cu.

  17. Isotropic copper-invar alloys for microelectronics packaging

    Science.gov (United States)

    Cottle, Rand Duprez

    The recent trend in microelectronics packaging toward surface mounted devices (SMD) has created a need for new types of materials that possess low thermal expansion and high electrical and thermal conductivity. Laminates that combine the high thermal and electrical conductivity of copper with the low thermal expansion of Invar, know as CuInvarCu or CIC, are widely use as core constraining materials in printed wire boards where SMDs are to be employed. CIC is highly anisotropic, and there are potential problems resulting from its anisotropy. An isotropic CuInvar alloy would be of great interest for a variety of applications. In suitable Cu-Fe-Ni alloys, a copper-rich solid solution equilibrates with an Invar-rich solid solution; casting such alloys invariably produces Invar-rich dendrites in a copper-rich solid solution. Casting followed by suitable heat treatments can produce two-phase alloys that combine the properties of copper and Invar. The overall composition controls the relative fractions of Invar and copper and the resulting trade-off between low thermal expansivity and electrical conductivity. Measured thermal expansivities (CTE) of CuInvar alloys follow very closely a linear rule of mixing. Electrical conductivities of as-cast specimens are quite poor due to iron and nickel contamination. Theoretical phase diagrams indicate that nearly pure copper equilibrates with an Invar-rich phase at temperatures below, roughly, 500°C. However, equilibrium compositions have been shown to take extremely, long to form, due to the very sluggish kinetics in the system. Long-term annealing was shown to improve conductivity significantly, but much greater improvements are needed to make CuInvar viable as an electrical conductive material.

  18. Copper-Silicon-Magnesium Alloys for Latent Heat Storage

    Science.gov (United States)

    Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.

    2016-12-01

    The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. Two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

  19. Corrosion of dental copper, nickel, and gold alloys in artificial saliva and saline solutions.

    Science.gov (United States)

    Johansson, B I; Lemons, J E; Hao, S Q

    1989-09-01

    The purpose of this investigation was to study the tarnish and corrosion of three commercial copper alloys, three experimental copper alloys, two nickel alloys, and one high-gold alloy by exposing the specimens for four weeks to artificial saliva and saline solutions. Half of the specimens were brushed, and the solutions were changed regularly. The copper-based and the beryllium-containing nickel alloys exhibited significant surface alterations after exposure to either solution. The potential of elevated release of ions to the oral cavity and to the target organs by some of the investigated alloys should be considered if dental usage of these alloys is to be extended.

  20. Pattern formation during electrodeposition of copper-antimony alloys

    Directory of Open Access Journals (Sweden)

    Vasil S. Kostov

    2016-04-01

    Full Text Available Aim of the present study is to establish the conditions of the electrolysis for the preparation of structured and unstressed purple-pink coatings of copper-antimony alloys, including their phase characterization. Also the task of the present investigation is, by changing drastically the metal content in the methanesulfonic electrolyte to find out the conditions of electrolysis where the self-organization of the different phases is expressed by higher-order structures - not only waves but also spirals and targets. The possibility to obtain copper-antimony alloy with up to 80 wt. % Sb from methanesulfonic acid is shown. The deposition rate, morphology and the phase composition of the obtained coatings are established. The phenomena of formation of spatio-temporal structures in this alloy are described.It is determined that the observed structures consist of Cu2Sb and Cu11Sb3 intermetallic phases.

  1. Measuring the stability of three copper alloys

    Science.gov (United States)

    Doiron, Theodore D.; Stoup, John R.; Snoots, Patricia; Chaconas, Grace

    1990-11-01

    In this paper we report measurements of the dimensional stability of samples of brass, beryllium copper, and tellurium copper taken over an 18 month time span. Of the materials, brass was the most stable, decreasing slightly in length at the rate of 1 part per million per year (ppm/y) with an uncertainty (3a) of about 1 ppm/y. Tellurium copper shrank at an average rate of 2.Li ppm/y and beryllium copper, the least stable, at the rate of 5.8 ppm/y. To measure the instrumental uncertainty 4 samples of each material were measured, and the measurement scheme was designed to detect and correct for thermal drift ,during measurements. The experiment design problems associated with these measurements and the associated uncertainties are discussed.

  2. Determining Prehistoric Mining Practices in Southeastern Europe Using Copper Isotopes

    Science.gov (United States)

    Powell, Wayne; Mathur, Ryan; Bankoff, H. Arthur; Bulatović, Aleksandar; Filipović, Vojislav

    2017-04-01

    Copper was first smelted from malachite at 5000 BCE in Serbia. There the Eneolithic (Copper Age) began with the production of small jewelry pieces and progressed to the casting of massive copper tools near its end, approximately 2000 years later. However, copper metallurgy in southeastern Europe ceased or significantly decreased in the later third millennium, several centuries before the Bronze Age began. Whether this metallurgical hiatus was the result a cultural shift or depletion of natural resources remains an ongoing subject of debate. It has been speculated that the marked reduction in metal production at the Eneolithic-Bronze Age transition was due to the exhaustion of surficial weathered oxide ores and the technical inability to smelt the underlying sulfide minerals. The behavior of copper isotopes in near-surface environments allows us to differentiate highly weathered oxide ores that occur at Earth's surface from non-weathered sulfide ores that occur at greater depth. The oxidation of copper generates fluids and associated minerals that are enriched in the 65Cu isotope. Thus, oxidative weathering of sulfide ores leads to the development of three stratified isotopic reservoirs for copper: 1) oxides above the water table that are enriched in 65Cu; 2) residual weathered sulfides minerals at the water table that are depleted in 65Cu; and 3) non-fractionated, non-weathered sulfide ore below the water table. And so, the transformative shift to sulfide-based metallurgy will be delineated by a significant decrease in δ65Cu in copper artifacts corresponding to the first use of 65Cu-depleted residual ore. The degree of variability of primary ore composition from numerable ore deposits would likely result in the overlap of copper isotope composition between populations of artifacts. Therefore, shifts in the mean copper isotope values and associated standard deviations would best reflect changes in ores use. A baseline value of -0.2‰ ±0.5 (1) was determined

  3. Investigation on a Roman copper alloy artefact from Pompeii (Italy).

    Science.gov (United States)

    Baraldi, Pietro; Baraldi, Cecilia; Ferrari, Giorgia; Foca, Giorgia; Marchetti, Andrea; Tassi, Lorenzo

    2006-01-01

    A selection of samples, obtained from a particular copper-alloy domestic artefact of Roman style from Pompeii, has been analysed by using different techniques (IR, Raman, SEM-EDX, FAAS), in order to investigate the chemical nature and composition of the metals utilised for such manufacturing pieces. The surface analysis of the bright red metallic microfragments conducted by different analytical techniques, emphasises the presence of pure unalloyed copper and confirms the absence of other metallic species on the upper layers. On the contrary, the mapping analysis of the section of the laminar metal of the investigated sample shows a consistent enrichment in tin content. Finally, destructive analysis by FAAS confirms that the artefact looks like a bronze metal alloy, with a medium Sn content of about 6.5%.

  4. Friction and wear of titanium alloys and copper alloys sliding against titanium 6-percent-aluminum - 4-percent-vanadium alloy in air at 430 C

    Science.gov (United States)

    Wisander, D. W.

    1976-01-01

    Experiments were conducted to determine the friction and wear characteristics of aluminum bronzes and copper-tin, titanium-tin, and copper-silver alloys sliding against a titanium-6% aluminum-4% vanadium alloy (Ti-6Al-4V). Hemispherically tipped riders of aluminum bronze and the titanium and copper alloys were run against Ti-6Al-4V disks in air at 430 C. The sliding velocity was 13 cm/sec, and the load was 250 g. Results revealed that high tin content titanium and copper alloys underwent significantly less wear and galling than commonly used aluminum bronzes. Also friction force was less erratic than with the aluminum bronzes.

  5. Effect of Copper Addition on Crystallization and Properties of Hafnium Containing HITPERM Alloys

    Science.gov (United States)

    2010-05-01

    AFRL-RZ-WP-TP-2010-2190 EFFECT OF COPPER ADDITION ON CRYSTALLIZATION AND PROPERTIES OF HAFNIUM CONTAINING HITPERM ALLOYS (POSTPRINT) L...SUBTITLE EFFECT OF COPPER ADDITION ON CRYSTALLIZATION AND PROPERTIES OF HAFNIUM CONTAINING HITPERM ALLOYS (POSTPRINT) 5a. CONTRACT NUMBER In-house...8-98) Prescribed by ANSI Std. Z39-18 Effect of copper addition on crystallization and properties of hafnium containing HITPERM alloys „invited

  6. Graphite/copper alloy interfacial energies determined using the sessile drop method

    Science.gov (United States)

    Devincent, Sandra M.; Ellis, David L.; Michal, Gary M.

    1991-01-01

    Graphite surfaces are not wet by pure copper. This lack of wetting is responsible for a debonding phenomenon that was found in continuous graphite fiber/copper matrix composites materials subjected to elevated temperatures. By suitably alloying copper, its capability to wet graphite surfaces can be enhanced. In situ measurements of graphite/copper alloy wetting angles were made using the sessile drop method. Interfacial energy values were calculated based upon these measurements.

  7. Environmental Durability of Coated GRCop-84 Copper Alloys

    Science.gov (United States)

    Raj, Sai V.; Robinson, C.; Barrett, C.; Humphrey, D.

    2005-01-01

    An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as liners in combustor chambers and nozzle ramps in NASA s future generations of reusable launch vehicles (RLVs). However, past experience has shown that unprotected copper alloys undergo an environmental attack called "blanching" in rocket engines using liquid hydrogen as fuel and liquid oxygen as the oxidizer. Potential for sulfidation attack of the liners in hydrocarbon-fueled engines is also of concern. As a result, protective overlay coatings alloys are being developed for GRCop-84. The oxidation behavior of several new coating alloys has been evaluated. GRCop-84 specimens were coated with several copper and nickel-based coatings, where the coatings were deposited by either vacuum plasma spraying or cold spraying techniques. Coated and uncoated specimens were thermally cycled in a furnace at different temperatures in order to evaluate the performance of the coatings. Additional studies were conducted in a high pressure burner rig using a hydrocarbon fuel and subjected to a high heat flux hydrogen-oxygen combustion flame in NASA s Quick Access Rocket Exhaust (QARE) rig. The performance of these coatings are discussed.

  8. Synergistic effects of additives to benzotriazole solutions applied as corrosion inhibitors to archaeological copper and copper alloy artefacts.

    OpenAIRE

    Golfomitsou, S.

    2006-01-01

    Benzotriazole (BTA) is a corrosion inhibitor extensively used for the stabilisation of active corrosion of archaeological copper and copper alloys. However, BTA often fails to effectively retard corrosion when applied on heavily corroded artefacts. Although there are numerous studies about its mode of action on clean copper, there is no comprehensive understanding about the way it is bonded to corroded copper. This thesis aimed to understand and compare BTA and its mode of action on clean and...

  9. 铜及铜合金着色%Coloring of copper and copper alloys

    Institute of Scientific and Technical Information of China (English)

    程沪生

    2011-01-01

    简述了铜及铜合金着色的原理.总结了铜及铜合金着黑色、褐色、绿色、蓝色的工艺配方及操作条件,介绍了手工点涂铜绿(铜锈)、双色点蚀(先着黑色再点蚀铜绿)、套色、着土黄铜绿色等多种特殊的着色工艺.%The principle of coloring of copper and copper alloys was described. The process formulations and operation conditions for obtaining black, brown, green, and blue colors on copper and copper alloys were summarized. Some special coloring processes were introduced, such as spot coating to form patina (green corrosion products of copper), black coloring followed by spot corrosion to form two tones, covering with another color on a previously colored workpiece, and successive coloring with khaki and green.

  10. Isotope geology of the bakircay porphyry copper prospect, northern turkey

    Science.gov (United States)

    Taylor, R. P.

    1981-10-01

    Isotopic data for the Bakircay granodiorite porphyry, MediaObjects/126_2005_BF01798964_f1.tif give a Late Eocene age for the development of the porphyry copper system. They suggest a close temporal and genetic relationship between igneous and hydrothermal activity, and indicate that magmatic-hydrothermal fluids produced potassic alteration and that meteoric fluids enriched in radiogenic87Sr were responsible for propylitic alteration. The granodiorite porphyry is petrologically similar to porphyry copper-related intrusions from island arc and continental margin settings, which form a group with initial87Sr/86Sr ratios of less than 0. 7043, representing magmas produced in tectonic environments lacking any important component of old (i. e. Precambrian) continental material.

  11. $\\beta$-NMR of copper isotopes in ionic liquids

    CERN Multimedia

    We propose to test the feasibility of spin-polarization and $\\beta$-NMR studies on several short-lived copper isotopes, $^{58}$ Cu, $^{74}$Cu and $^{75}$Cu in crystals and liquids. The motivation is given by biological studies of Cu with $\\beta$-NMR in liquid samples, since Cu is present in a large number of enzymes involved in electron transfer and activation of oxygen. The technique is based on spin-polarization via optical pumping in the new VITO beamline. We will use the existing lasers, NMR magnet and NMR chambers and we will prepare a new optical pumping system. The studies will be devoted to tests of achieved $\\beta$-asymmetry in solid hosts, the behaviour of asymmetry when increasing vacuum, and finally NMR scans in ionic liquids. The achieved spin polarization will be also relevant for the plans to measure with high precision the magnetic moments of neutron-rich Cu isotopes.

  12. Impedance and XPS study of benzotriazole films formed on copper, copper-zinc alloys and zinc in chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Kosec, Tadeja; Merl, Darja Kek [Jozef Stefan Institute, Department of Physical and Organic Chemistry, Jamova 39, 1000 Ljubljana (Slovenia); Milosev, Ingrid [Jozef Stefan Institute, Department of Physical and Organic Chemistry, Jamova 39, 1000 Ljubljana (Slovenia); Orthopaedic Hospital Valdoltra, Jadranska c. 31, 6280 Ankaran (Slovenia)], E-mail: ingrid.milosev@ijs.si

    2008-07-15

    The formation of protective layers on copper, zinc and copper-zinc (Cu-10Zn and Cu-40Zn) alloys at open circuit potential in aerated, near neutral 0.5 M NaCl solution containing benzotriazole was studied using electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). Benzotriazole (BTAH), generally known as an inhibitor of copper corrosion, also proved to be an efficient inhibitor for copper-zinc alloys and zinc metal. The surface layers formed on alloys in BTAH-inhibited solution comprised both polymer and oxide components, namely Cu(I)BTA and Zn(II)BTA polymers and Cu{sub 2}O and ZnO oxides, as proved by the in-depth profiling of the layers formed. A tentative structural model describing the improved corrosion resistance of Cu, Cu-xZn alloys and Zn in BTAH containing chloride solution is proposed.

  13. Evaluation of copper alloys for fusion reactor divertor and first wall components

    DEFF Research Database (Denmark)

    Fabritsiev, S.A.; Zinkle, S.J.; Singh, B.N.

    1996-01-01

    This paper presents a critical analysis of the main factors of radiation damage limiting the possibility to use copper alloys in the ITER divertor and first wall structure. In copper alloys the most significant types of radiation damage in the proposed temperature-dose operation range are swellin...

  14. Influence of composition, heat treatment and neutron irradiation on the electrical conductivity of copper alloys

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, B.N.

    1998-01-01

    The electrical conductivity of three different types of copper alloys, viz. CuNiBe, CuCrZr and Cu-Al(2)O(3) as well as of pure copper are reported. The alloys have undergone different pre-irradiation heat treatments and have been fission-neutron irradiated up to 0.3 dpa. In some cases post...

  15. Evaluation of copper alloys for fusion reactor divertor and first wall components

    DEFF Research Database (Denmark)

    Fabritsiev, S.A.; Zinkle, S.J.; Singh, B.N.

    1996-01-01

    This paper presents a critical analysis of the main factors of radiation damage limiting the possibility to use copper alloys in the ITER divertor and first wall structure. In copper alloys the most significant types of radiation damage in the proposed temperature-dose operation range are swellin...

  16. Oxidation Behavior of GRCop-84 Copper Alloy Assessed

    Science.gov (United States)

    Thomas-Ogbuji, Linus U.

    2002-01-01

    NASA's goal of safe, affordable space transportation calls for increased reliability and lifetimes of launch vehicles, and significant reductions of launch costs. The areas targeted for enhanced performance in the next generation of reusable launch vehicles include combustion chambers and nozzle ramps; therefore, the search is on for suitable liner materials for these components. GRCop-84 (Cu-8Cr-4Nb), an advanced copper alloy developed at the NASA Glenn Research Center in conjunction with Case Western Reserve University, is a candidate. The current liner of the Space Shuttle Main Engine is another copper alloy, NARloy-Z (Cu-3Ag-0.1Zr). It provides a benchmark against which to compare the properties of candidate successors. The thermomechanical properties of GRCop-84 have been shown to be superior, and its physical properties comparable, to those of NARloy-Z. However, environmental durability issues control longevity in this application: because copper oxide scales are not highly protective, most copper alloys are quickly consumed in oxygen environments at elevated temperatures. In consequence, NARloy-Z and most other copper alloys are prone to blanching, a degradation process that occurs through cycles of oxidation-reduction as the oxide is repeatedly formed and removed because of microscale fluctuations in the oxygen-hydrogen fuel systems of rocket engines. The Space Shuttle Main Engine lining typically degraded by blanching-induced hot spots that lead to surface roughening, pore formation, and coolant leakage. Therefore, resistance to oxidation and blanching are key requirements for second-generation reusable launch vehicle liners. The rocket engine ambient includes H2 (fuel) and H2O (combustion product) and is, hence, under reduced oxygen partial pressures. Accordingly, our studies were expanded to include oxygen partial pressures as low as 322 parts per million (ppm) at the temperatures likely to be experienced in service. A comparison of 10-hr weight gains of

  17. Influence of alloying and secondary annealing on anneal hardening effect at sintered copper alloys

    Indian Academy of Sciences (India)

    Svetlana Nestorovic

    2005-08-01

    This paper reports results of investigation carried out on sintered copper alloys (Cu, 8 at%; Zn, Ni, Al and Cu–Au with 4 at%Au). The alloys were subjected to cold rolling (30, 50 and 70%) and annealed isochronally up to recrystallization temperature. Changes in hardness and electrical conductivity were followed in order to investigate the anneal hardening effect. This effect was observed after secondary annealing also. Au and Al have been found to be more effective in inducing anneal hardening effect.

  18. Oxidation of Copper Alloy Candidates for Rocket Engine Applications

    Science.gov (United States)

    Ogbuji, Linus U. Thomas; Humphrey, Donald L.

    2002-01-01

    The gateway to affordable and reliable space transportation in the near future remains long-lived rocket-based propulsion systems; and because of their high conductivities, copper alloys remain the best materials for lining rocket engines and dissipating their enormous thermal loads. However, Cu and its alloys are prone to oxidative degradation -- especially via the ratcheting phenomenon of blanching, which occurs in situations where the local ambient can oscillate between oxidation and reduction, as it does in a H2/02- fuelled rocket engine. Accordingly, resistance to blanching degradation is one of the key requirements for the next generation of reusable launch vehicle (RLV) liner materials. Candidate copper alloys have been studied with a view to comparing their oxidation behavior, and hence resistance to blanching, in ambients corresponding to conditions expected in rocket engine service. These candidate materials include GRCop-84 and GRCop-42 (Cu - Cr-8 - Nb-4 and Cu - Cr-4 - Nb-2 respectively); NARloy-Z (Cu-3%Ag-0.5%Y), and GlidCop (Cu-O.l5%Al2O3 ODS alloy); they represent different approaches to improving the mechanical properties of Cu without incurring a large drop in thermal conductivity. Pure Cu (OFHC-Cu) was included in the study to provide a baseline for comparison. The samples were exposed for 10 hours in the TGA to oxygen partial pressures ranging from 322 ppm to 1.0 atmosphere and at temperatures of up to 700 C, and examined by SEM-EDS and other techniques of metallography. This paper will summarize the results obtained.

  19. The effect of neutron spectrum on the mechanical and physical properties of pure copper and copper alloys

    DEFF Research Database (Denmark)

    Fabritsiev, S.A.; Pokrovsky, A.S.; Zinkle, S.J.

    1996-01-01

    was independent of displacement dose. The saturation value for Delta rho(rd) was similar to 1.2 n Omega m for pure copper and similar to 1.6 n Omega m for the DS copper alloys irradiated at 100 degrees C in positions with a fast-to-thermal neutron flux ratio of 5, Considerable radiation hardening was observed...

  20. Final report on characterization of physical and mechanical properties of copper and copper alloys before and after irradiation

    DEFF Research Database (Denmark)

    Singh, B.N.; Tähtinen, S.

    2002-01-01

    The present report summarizes and highlights the main results of the work carried out during the last 5-6 years on effects of neutron irradiation on physical and mechanical properties of copper and copper alloys. The work was an European contribution toITER Research and Development programme...... amount of further effort is needed to find a realistic and optimum solution....

  1. Electrochemical and Spectroscopic Study of Benzotriazole Films Formed on Copper, Copper-zinc Alloys and Zinc in Chloride Solution

    OpenAIRE

    Milošev, I.; Kosec, T.

    2009-01-01

    The formation of protective layers on copper, zinc and copper-zinc (Cu-10Zn and Cu-40Zn) alloys at open circuit potential in aerated, near neutral 0.5 M NaCl solution containing benzotriazole (BTA) was studied using potentiodynamic measurements, electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The addition of benzotriazole affects the dissolution of the materials investigated. Benzotriazole, generally known as an inhibitor of copper corrosion, is als...

  2. Corrosion of copper base alloys in a geothermal brine. SPE Paper No. 7881

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.

    1979-01-01

    The geothermal environment and the experimental procedures and schedules for corrosion tests of copper-base alloys are described. Corrosive attack on these materials was mostly uniform. Some selective leaching of alloying elements was observed, as was crevice corrosion, but the extent of these forms of corrosion was minor. The results of these tests show a trend toward higher corrosion rates with increasing copper content, for the brass alloys. Commercially pure copper, however, showed corrosion rates 20 to 30% of that suggested by the trend in the data. One copper--nickel alloy was tested to verify earlier test data; this alloy showed a corrosion rate about six times that of a brass of similar copper content. The primary agent of the corrosive attack was hydrogen sulfide, present in the water in trace amounts. The primary conclusion from these tests is that copper--zinc alloys are the most economical materials for boiler and preheater construction. The recommendation is made that materials be selected from these brasses: naval brass, yellow brass, admiralty brass, and copper, in this order of decreasing desirability. Aluminum brass and red brass are marginally acceptable. Copper--nickel alloys are unacceptable for boiler and preheater heat exchangers.

  3. Blanch Resistant and Thermal Barrier NiAl Coating Systems for Advanced Copper Alloys

    Science.gov (United States)

    Raj, Sai V. (Inventor)

    2005-01-01

    A method of forming an environmental resistant thermal barrier coating on a copper alloy is disclosed. The steps include cleansing a surface of a copper alloy, depositing a bond coat on the cleansed surface of the copper alloy, depositing a NiAl top coat on the bond coat and consolidating the bond coat and the NiAl top coat to form the thermal barrier coating. The bond coat may be a nickel layer or a layer composed of at least one of copper and chromium-copper alloy and either the bond coat or the NiAl top coat or both may be deposited using a low pressure or vacuum plasma spray.

  4. Mechanism of Bainite Nucleation in Steel, Iron and Copper Alloys

    Institute of Scientific and Technical Information of China (English)

    Mokuang KANG; Ming ZHU; Mingxing ZHANG

    2005-01-01

    During the incubation period of isothermal treatment(or aging) within the bainitic transformation temperature range in a salt bath (or quenching in water) immediately after solution treatment, not only are the defects formed at high temperatures maintained, but new defects can also be generated in alloys, iron alloys and steels. Due to the segregation of the solute atoms near defects through diffusion, this leads to non-uniform distributions of solute atoms in the parent phase with distinct regions of both solute enrichment and solute depletion. It is proposed that when the Ms temperature at the solute depleted regions is equal to or higher than the isothermal (or aged) temperature,nucleation of bainite occurs within these solute depleted regions in the manner of martensitic shear. Therefore it is considered that, at least in steel, iron and copper alloy systems, bainite is formed through a shear mechanism within solute depleted regions, which is controlled and formed by the solute atoms diffusion in the parent phase.

  5. Antimicrobial copper alloy surfaces are effective against vegetative but not sporulated cells of gram-positive Bacillus subtilis

    OpenAIRE

    San, Kaungmyat; Long, Janet; Michels, Corinne A.; Gadura, Nidhi

    2015-01-01

    This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a de...

  6. Microstructures of ancient and modern cast silver–copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Northover, S.M., E-mail: s.m.northover@open.ac.uk [Materials Engineering, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Northover, J.P., E-mail: peter.northover@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Rd, Oxford OX1 3PH,UK (United Kingdom)

    2014-04-01

    The microstructures of modern cast Sterling silver and of cast silver objects about 2500 years old have been compared using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray microanalysis (EDX) and electron backscatter diffraction (EBSD). Microstructures of both ancient and modern alloys were typified by silver-rich dendrites with a few pools of eutectic and occasional cuprite particles with an oxidised rim on the outer surface. EBSD showed the dendrites to have a complex internal structure, often involving extensive twinning. There was copious intragranular precipitation within the dendrites, in the form of very fine copper-rich rods which TEM, X-ray diffraction (XRD), SEM and STEM suggest to be of a metastable face-centred-cubic (FCC) phase with a cube–cube orientation relationship to the silver-rich matrix but a higher silver content than the copper-rich β in the eutectic. Samples from ancient objects displayed a wider range of microstructures including a fine scale interpenetration of the adjoining grains not seen in the modern material. Although this study found no unambiguous evidence that this resulted from microstructural change produced over archaeological time, the copper supersaturation remaining after intragranular precipitation suggests that such changes, previously proposed for wrought and annealed material, may indeed occur in ancient silver castings. - Highlights: • Similar twinned structures and oxidised surfaces seen in ancient and modern cast silver • General precipitation of fine Cu-rich rods apparently formed by discontinuous precipitation is characteristic of as-cast silver. • The fine rods are cube-cube related to the matrix in contrast with the eutectic. • The silver-rich phase remains supersaturated with copper. • Possibly age-related grain boundary features seen in ancient cast silver.

  7. Electrodeposition of a protective copper/nickel deposit on the magnesium alloy (AZ31)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.A. [Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan (China)], E-mail: gfehu@mail.cgu.edu.tw; Wang, T.H. [Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan (China); Weirich, T. [Gemeinschaeftslabor fuer Elektronenmikroskopie, RWTH Aachen (Germany); Neubert, V. [Zentrum fuer Funktionswerkstoe GmbH, Clausthal-Zellerfeld (Germany)

    2008-05-15

    An environmental-friendly Cu electrodeposition process was proposed for the Magnesium alloy (AZ 31). Experimental results show that a good bonding between Cu deposit and Mg alloy surface can be achieved with a pretreatment of galvanostatic etching and then copper electrodeposition in the alkaline copper-sulfate plating bath. Microstructures between Cu deposit and Mg alloy substrate were examined with scanning electron and energy-filtering transmission electron microscopes (SEM and EF-TEM). The Cu-deposited Mg alloy can be further electroplated in acidic Cu and Ni plating baths to acquire a protective Cu/Ni deposit.

  8. Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli.

    Science.gov (United States)

    Hong, Robert; Kang, Tae Y; Michels, Corinne A; Gadura, Nidhi

    2012-03-01

    Copper alloy surfaces are passive antimicrobial sanitizing agents that kill bacteria, fungi, and some viruses. Studies of the mechanism of contact killing in Escherichia coli implicate the membrane as the target, yet the specific component and underlying biochemistry remain unknown. This study explores the hypothesis that nonenzymatic peroxidation of membrane phospholipids is responsible for copper alloy-mediated surface killing. Lipid peroxidation was monitored with the thiobarbituric acid-reactive substances (TBARS) assay. Survival, TBARS levels, and DNA degradation were followed in cells exposed to copper alloy surfaces containing 60 to 99.90% copper or in medium containing CuSO(4). In all cases, TBARS levels increased with copper exposure levels. Cells exposed to the highest copper content alloys, C11000 and C24000, exhibited novel characteristics. TBARS increased immediately at a very rapid rate but peaked at about 30 min. This peak was associated with the period of most rapid killing, loss in membrane integrity, and DNA degradation. DNA degradation is not the primary cause of copper-mediated surface killing. Cells exposed to the 60% copper alloy for 60 min had fully intact genomic DNA but no viable cells. In a fabR mutant strain with increased levels of unsaturated fatty acids, sensitivity to copper alloy surface-mediated killing increased, TBARS levels peaked earlier, and genomic DNA degradation occurred sooner than in the isogenic parental strain. Taken together, these results suggest that copper alloy surface-mediated killing of E. coli is triggered by nonenzymatic oxidative damage of membrane phospholipids that ultimately results in the loss of membrane integrity and cell death.

  9. Effects of zinc on static and dynamic mechanical properties of copper-zinc alloy

    Institute of Scientific and Technical Information of China (English)

    马志超; 赵宏伟; 鲁帅; 程虹丙

    2015-01-01

    The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37% (mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.

  10. Influence of degree of deformation in rolling on anneal hardening effect of a cast copper alloy

    Indian Academy of Sciences (India)

    Svetlana Nestorovic; Desimir Markovic; Ljubica Ivanic

    2003-10-01

    This paper reports results of investigations carried out on a cast copper alloy containing 8 at.% Al. The alloy, and pure copper for the sake of comparison, were subjected to cold rolling with a final reduction of 30, 50 or 70%. The cold rolled copper and copper alloy samples were isochronally and isothermally annealed up to the recrystallization temperature. The hardness, strength and electrical conductivity were measured and X-ray and DSC analyses performed. Anneal hardening effect was observed in the alloy in the temperature range 180–300°C, followed by an increase in the electrical conductivity. The amount of strengthening increases with increasing degree of prior cold work. The X-ray analysis shows a change in the lattice parameter during annealing when anneal hardening effect was observed. The DSC analysis shows the exothermic character of this effect.

  11. Laser cladding of Ni-based alloy on copper substrate

    Institute of Scientific and Technical Information of China (English)

    Fang Liu; Changsheng Liu; Xingqi Tao; Suiyuan Chen

    2006-01-01

    The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray diffraction (XRD). The average microhardness of the cladding coating was Hv 280, which was almost three times of that of the Cu substrate (Hv 85). OM and SEM observations showed that the obtained coating had a smooth and uniform surface, as well as a metallurgical combination with the Cu substrate without cracks and pores at the interface. With the addition of copper into the nickel-based alloy, the differences of thermal expansion coefficient and melting point between the interlayer and cladding were reduced, which resulted in low stresses during rapid cooling. Moreover, large amount of (Cu, Ni) solid solution formed a metallurgical bonding between the cladding coating and the substrate, which also relaxed the stresses, leading to the reduction of interfacial cracks and pores after laser cladding.

  12. Membrane Lipid Peroxidation in Copper Alloy-Mediated Contact Killing of Escherichia coli

    OpenAIRE

    Hong,Robert; Kang, Tae Y.; Michels, Corinne A.; Gadura, Nidhi

    2012-01-01

    Copper alloy surfaces are passive antimicrobial sanitizing agents that kill bacteria, fungi, and some viruses. Studies of the mechanism of contact killing in Escherichia coli implicate the membrane as the target, yet the specific component and underlying biochemistry remain unknown. This study explores the hypothesis that nonenzymatic peroxidation of membrane phospholipids is responsible for copper alloy-mediated surface killing. Lipid peroxidation was monitored with the thiobarbituric acid-r...

  13. Density Of The Copper-Rich Cu-Pb-Fe Alloys

    Directory of Open Access Journals (Sweden)

    Sak T.

    2015-09-01

    Full Text Available Density of the copper-rich corner of the ternary Cu-Pb-Fe alloys was determined with the dilatometric method. Investigated alloys had constant copper content equal to 0.9, 0.8 and 0.7 mole fraction, and varied iron concentration up to 0.1 mole fraction. A model predicting the density of ternary solution from knowledge of density of pure component and the excess of molar volume for limiting binaries is proposed.

  14. Fracture toughness of copper-base alloys for ITER applications: A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.J.; Zinkle, S.J.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Oxide-dispersion strengthened copper alloys and a precipitation-hardened copper-nickel-beryllium alloy showed a significant reduction in toughness at elevated temperature (250{degrees}C). This decrease in toughness was much larger than would be expected from the relatively modest changes in the tensile properties over the same temperature range. However, a copper-chromium-zirconium alloy strengthened by precipitation showed only a small decrease in toughness at the higher temperatures. The embrittled alloys showed a transition in fracture mode, from transgranular microvoid coalescence at room temperature to intergranular with localized ductility at high temperatures. The Cu-Cr-Zr alloy maintained the ductile microvoid coalescence failure mode at all test temperatures.

  15. Evolution of Microstructures During Austempering of Ductile Irons Alloyed with Manganese and Copper

    Science.gov (United States)

    Dasgupta, Ranjan Kumar; Mondal, Dipak Kumar; Chakrabarti, Ajit Kumar

    2013-03-01

    The influences of relatively high manganese (0.45 through 1.0 wt pct) and copper (0.56 through 1.13 wt pct) contents on microstructure development and phase transformation in three austempered ductile irons have been studied. The experimental ductile irons alloyed with copper and manganese are found to be practically free from intercellular manganese segregation. This suggests that the positive segregation of manganese is largely neutralized by the negative segregation of copper when these alloying elements are added in appropriate proportions. The drop in unreacted austenite volume (UAV) with increasing austempering temperature and time is quite significant in irons alloyed with copper and manganese. The ausferrite morphology also undergoes a transition from lenticular to feathery appearance of increasing coarseness with the increasing austempering temperature and time. SEM micrographs of the austempered samples from the base alloy containing manganese only, as well as copper plus manganese-alloyed irons, clearly reveal the presence of some martensite along with retained austenite and ferrite. X-ray diffraction analysis also confirms the presence of these phases. SEM examination further reveals the presence of twinned martensite in the copper plus manganese-alloyed samples. The possibility of strain-induced transformation of austenite to martensite during austempering heat treatment is suggested.

  16. Defect microstructure in copper alloys irradiated with 750 MeV protons

    DEFF Research Database (Denmark)

    Zinkle, S.J.; Horsewell, A.; Singh, B.N.

    1994-01-01

    Transmission electron microscopy (TEM) disks of pure copper and solid solution copper alloys containing 5 at% of Al, Mn, or Ni were irradiated with 750 MeV protons to damage levels between 0.4 and 2 displacements per atom (dpa) at irradiation temperatures between 60 and 200 degrees C. The defect ...

  17. Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Babcsányi, Izabella; Chabaux, François; Granet, Mathieu; Meite, Fatima; Payraudeau, Sylvain; Duplay, Joëlle; Imfeld, Gwenaël, E-mail: imfeld@unistra.fr

    2016-07-01

    Understanding the fate of copper (Cu) fungicides in vineyard soils and catchments is a prerequisite to limit the off-site impact of Cu. Using Cu stable isotopes, Cu retention in soils and runoff transport was investigated in relation to the use of Cu fungicides and the hydrological conditions in a vineyard catchment (Rouffach, Haut-Rhin, France; mean slope: 15%). The δ{sup 65}Cu values of the bulk vineyard soil varied moderately through the depth of the soil profiles (− 0.12 to 0.24‰ ± 0.08‰). The values were in the range of those of the fungicides (− 0.21 to 0.11‰) and included the geogenic δ{sup 65}Cu value of the untreated soil (0.08‰). However, δ{sup 65}Cu values significantly differed between particle-size soil fractions (− 0.37 ± 0.10‰ in fine clays and 0.23 ± 0.07‰ in silt). Together with the soil mineralogy, the results suggested Cu isotope fractionation primarily associated with the clay and fine clay fractions that include both SOM and mineral phases. The vegetation did not affect the Cu isotope patterns in the vineyard soils. Cu export by runoff from the catchment accounted for 1% of the applied Cu mass from 11th May to 20{sup th} July 2011, covering most of the Cu use period. 84% of the exported Cu mass was Cu bound to suspended particulate matter (SPM). The runoff displayed δ{sup 65}Cu values from 0.52 to 1.35‰ in the dissolved phase (< 0.45 μm) compared to − 0.34 to − 0.02‰ in the SPM phase, indicating that clay and fine clay fractions were the main vectors of SPM-bound Cu in runoff. Overall, this study shows that Cu stable isotopes may allow identifying the Cu distribution in the soil fractions and their contribution to Cu export in runoff from Cu-contaminated catchments. - Highlights: • We investigated Cu sorption processes in vineyard soils and runoff transport. • Cu export by runoff from the catchment accounted for 1% of the applied Cu mass. • δ{sup 65}Cu values differed between the particle-size soil

  18. Electrochemical studies of copper, nickel and a Cu55/Ni45 alloy in aqueous sodium acetate

    Directory of Open Access Journals (Sweden)

    Gonçalves Reinaldo Simões

    2001-01-01

    Full Text Available This paper discusses the electrochemical behavior of copper, nickel and a copper/nickel alloy in aerated aqueous 0.10 and 1.0 mol L-1 sodium acetate. The data obtained from different electrochemical techniques were analyzed to determine the influence of Ni and Cu on the electrochemical processes of the alloy electrode. The shapes of the potentiodynamic I(E curves of the alloy were found to be quite similar to those of the Ni voltamograms. Although the anodic current densities of Ni and the alloy increased with greater concentrations of acetate, the opposite effect occurred in Cu. The impedance measurements taken at the open circuit potential revealed that the polarization resistance (R P of the electrodes decreased in the following order: Ni > Alloy > Cu. With increasing concentrations of acetate, the R P of the alloy and the Cu increased while that of the Ni electrode decreased.

  19. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    Science.gov (United States)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  20. Simulation analysis of minimum bending radius for lead frame copper alloys

    OpenAIRE

    Su, Juanhua; Shuguo, Jia; Fengzhang, Ren

    2013-01-01

    Copper alloy has a lot of excellent properties, so it becomes an important alloy for lead frame materials for the integrated circuit. The minimum bending radius of three different copper alloys (Cu-Fe-P, Cu-Ni-Si, Cu-Cr-Sn-Zn) for lead frame materials was analyzed by using finite element. Tensile tests for the three kinds of materials were done to obtain yield stress, ultimate strength and other parameters. The strain-hardening exponent n and normal anisotropy index r of the materials were ob...

  1. Copper, Aluminum and Nickel: A New Monocrystalline Orthodontic Alloy

    Science.gov (United States)

    Wierenga, Mark

    Introduction: This study was designed to evaluate, via tensile and bend testing, the mechanical properties of a newly-developed monocrystalline orthodontic archwire comprised of a blend of copper, aluminum, and nickel (CuAlNi). Methods: The sample was comprised of three shape memory alloys; CuAlNi, copper nickel titanium (CuNiTi), and nickel titanium (NiTi); from various orthodontic manufacturers in both 0.018" round and 0.019" x 0.025" rectangular dimensions. Additional data was gathered for similarly sized stainless steel and beta-titanium archwires as a point of reference for drawing conclusions about the relative properties of the archwires. Measurements of loading and unloading forces were recorded in both tension and deflection testing. Repeated-measure ANOVA (alpha= 0.05) was used to compare loading and unloading forces across wires and one-way ANOVA (alpha= 0.05) was used to compare elastic moduli and hysteresis. To identify significant differences, Tukey post-hoc comparisons were performed. Results: The modulus of elasticity, deflection forces, and hysteresis profiles of CuAlNi were significantly different than the other superelastic wires tested. In all tests, CuAlNi had a statistically significant lower modulus of elasticity compared to the CuNiTi and NiTi wires (P <0.0001). The CuAlNi wire exhibited significantly lower loading and unloading forces than any other wire tested. In round wire tensile tests, loading force at all deflections was significantly lower for CuAlNi than CuNiTi or NiTi (P <0.0001). In tensile testing, the CuAlNi alloy was able to recover from a 7 mm extension (10% elongation) without permanent deformation and with little to no loss in force output. In large-deflection bend tests at 4, 5, and 6 mm deflection, CuAlNi showed the significantly lowest loading forces across the three wire materials (P <0.0001). The NiTi wires showed up to 12 times the amount of energy loss due to hysteresis compared to CuAlNi. CuAlNi showed a hysteresis

  2. Electrochemical formation of holmium-copper alloys on copper cathode in molten KCl-HoCl3

    Institute of Scientific and Technical Information of China (English)

    SU Yu-zhi; YANG Qi-qin; LIU Guan-kun

    2006-01-01

    Cyclic voltammetry, open circuit potential-time curve after potentiostatic electrolysis and potential step chronoamperometry were used to investigate the electrochemical formation processes of holmium-copper alloys on copper cathode in molten HoCl3-KCl. Intermetallic compounds HoCu5, HoCu4, HoCu2 and HoCu are formed in sequence and then the metallic Ho is deposited when Ho3+ is reduced on copper electrode in molten KCl-HoCl3 at 1 066 K. The first charge-transfer reaction is reversible. The structure of holmium-copper alloy film deposited on copper electrode by potentiostatic electrolysis was characterized by X-ray diffraction. The standard free energies of formation for the intermetallic compounds HoCu5, HoCu4, HoCu2 and HoCu are -95.5, -92.6, -73.8 and -44.0 kJ/mol, respectively. The diffusion coefficient and diffusion activation energy of Ho atom in the alloy are estimated to be 10-10-10-11 cm2/s and 75.35 kJ/mol, respectively, from the chronoamperometry data.

  3. Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes.

    Science.gov (United States)

    Babcsányi, Izabella; Chabaux, François; Granet, Mathieu; Meite, Fatima; Payraudeau, Sylvain; Duplay, Joëlle; Imfeld, Gwenaël

    2016-07-01

    Understanding the fate of copper (Cu) fungicides in vineyard soils and catchments is a prerequisite to limit the off-site impact of Cu. Using Cu stable isotopes, Cu retention in soils and runoff transport was investigated in relation to the use of Cu fungicides and the hydrological conditions in a vineyard catchment (Rouffach, Haut-Rhin, France; mean slope: 15%). The δ(65)Cu values of the bulk vineyard soil varied moderately through the depth of the soil profiles (-0.12 to 0.24‰±0.08‰). The values were in the range of those of the fungicides (-0.21 to 0.11‰) and included the geogenic δ(65)Cu value of the untreated soil (0.08‰). However, δ(65)Cu values significantly differed between particle-size soil fractions (-0.37±0.10‰ in fine clays and 0.23±0.07‰ in silt). Together with the soil mineralogy, the results suggested Cu isotope fractionation primarily associated with the clay and fine clay fractions that include both SOM and mineral phases. The vegetation did not affect the Cu isotope patterns in the vineyard soils. Cu export by runoff from the catchment accounted for 1% of the applied Cu mass from 11th May to 20(th) July 2011, covering most of the Cu use period. 84% of the exported Cu mass was Cu bound to suspended particulate matter (SPM). The runoff displayed δ(65)Cu values from 0.52 to 1.35‰ in the dissolved phase (<0.45μm) compared to -0.34 to -0.02‰ in the SPM phase, indicating that clay and fine clay fractions were the main vectors of SPM-bound Cu in runoff. Overall, this study shows that Cu stable isotopes may allow identifying the Cu distribution in the soil fractions and their contribution to Cu export in runoff from Cu-contaminated catchments.

  4. Effect of laser treatment on the surface of copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garbacz, Halina, E-mail: hgarbacz@inmat.pw.edu.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw (Poland); Fortuna-Zalesna, Elzbieta [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw (Poland); Marczak, Jan [Military University of Technology, Institute of Optoelectronics, Gen. S. Kaliskiego 2, 00-908 Warsaw (Poland); Koss, Andrzej; Zatorska, Anna [Academy of Fine Arts in Warsaw, Inter-Academy Institute for Conservation and Restoration of Works of Art, Wybrzeze Kosciuszkowskie 37, 00-379 Warsaw (Poland); Zukowska, Grazyna Z. [Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw (Poland); Onyszczuk, Tomasz; Kurzydlowski, Krzysztof J. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw (Poland)

    2011-06-15

    The paper presents the results of laser cleaning of the archaeological metal objects using two time widths of pulsed laser radiation, which are around 150 {mu}s and around 120 ns. Two archaeological objects made of copper alloys were studied: a bow and a ring. Both objects came from a cemetery which is located in the garden complex of Wilanow Palace in Warsaw and are dated from XII to XIII century. The bow and bronze ring had ornamental longitudinal grooving and were part of burial jewellery. The materials of which these artefacts were made of, as well as corrosion products on these objects, were studied by using a variety of analytical techniques. The phase composition of the corrosion layers was determined by using Raman spectroscopy. The surface topography as well as the chemical composition of the deposits and cleaned surfaces were investigated. The samples were examined using scanning electron microscopes equipped with EDS. The investigations included observations in SE and BSE modes and point analyses of the chemical composition by EDS.

  5. Brazing development and interfacial metallurgy study of tungsten and copper joints with eutectic gold copper brazing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Easton, David, E-mail: david.easton@strath.ac.uk [University of Strathclyde, Department of Mechanical Engineering, Glasgow G1 1XJ (United Kingdom); Zhang, Yuxuan; Wood, James; Galloway, Alexander; Robbie, Mikael Olsson [University of Strathclyde, Department of Mechanical Engineering, Glasgow G1 1XJ (United Kingdom); Hardie, Christopher [Culham Centre for Fusion Energy CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • A eutectic gold–copper brazing alloy has been successfully used to produce a highly wetted brazed joint between tungsten and copper. • Relevant materials for fusion applications. • Mechanical testing of W–AuCu–Cu soon to be performed. - Abstract: Current proposals for the divertor component of a thermonuclear fusion reactor include tungsten and copper as potentially suitable materials. This paper presents the procedures developed for the successful brazing of tungsten to oxygen free high conductivity (OFHC) copper using a fusion appropriate gold based brazing alloy, Orobraze 890 (Au80Cu20). The objectives were to develop preparation techniques and brazing procedures in order to produce a repeatable, defect free butt joint for tungsten to copper. Multiple brazing methods were utilised and brazing parameters altered to achieve the best joint possible. Successful and unsuccessful brazed specimens were sectioned and analysed using optical and scanning electron microscopy, EDX analysis and ultrasonic evaluation. It has been determined that brazing with Au80Cu20 has the potential to be a suitable joining method for a tungsten to copper joint.

  6. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiangyu; Huang Xiaobo; Jiang Li; Ma Yong; Fan Ailan [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Tang Bin, E-mail: tangbin@tyut.edu.cn [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2011-12-01

    Bacterial adhesion to stainless steel surfaces is one of the major reason causing the cross-contamination and infection in many practical applications. An approach to solve this problem is to enhance the antibacterial properties on the surface of stainless steel. In this paper, novel antibacterial stainless steel surfaces with different copper content have been prepared by a plasma surface alloying technique at various gas pressures. The microstructure of the alloyed surfaces was investigated using glow discharge optical emission spectroscopy (GDOES) and scanning electron microscopy (SEM). The viability of bacteria attached to the antibacterial surfaces was tested using the spread plate method. The antibacterial mechanism of the alloyed surfaces was studied by X-ray photoelectron spectroscopy (XPS). The results indicate that gas pressure has a great influence on the surface elements concentration and the depth of the alloyed layer. The maximum copper concentration in the alloyed surface obtained at the gas pressure of 60 Pa is about 7.1 wt.%. This alloyed surface exhibited very strong antibacterial ability, and an effective reduction of 98% of Escherichia coli (E. coli) within 1 h was achieved by contact with the alloyed surface. The maximum thickness of the copper alloyed layer obtained at 45 Pa is about 6.5 {mu}m. Although the rate of reduction for E. coli of this alloyed surface was slower than that of the alloyed surface with the copper content about 7.1 wt.% over the first 3 h, few were able to survive more than 12 h and the reduction reached over 99.9%. The XPS analysis results indicated that the copper ions were released when the copper alloyed stainless steel in contact with bacterial solution, which is an important factor for killing bacteria. Based on an overall consideration of bacterial killing rate and durability, the alloyed surface with the copper content of 2.5 wt.% and the thickness of about 6.5 {mu}m obtained at the gas pressure of 45 Pa is

  7. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel

    Science.gov (United States)

    Zhang, Xiangyu; Huang, Xiaobo; Jiang, Li; Ma, Yong; Fan, Ailan; Tang, Bin

    2011-12-01

    Bacterial adhesion to stainless steel surfaces is one of the major reason causing the cross-contamination and infection in many practical applications. An approach to solve this problem is to enhance the antibacterial properties on the surface of stainless steel. In this paper, novel antibacterial stainless steel surfaces with different copper content have been prepared by a plasma surface alloying technique at various gas pressures. The microstructure of the alloyed surfaces was investigated using glow discharge optical emission spectroscopy (GDOES) and scanning electron microscopy (SEM). The viability of bacteria attached to the antibacterial surfaces was tested using the spread plate method. The antibacterial mechanism of the alloyed surfaces was studied by X-ray photoelectron spectroscopy (XPS). The results indicate that gas pressure has a great influence on the surface elements concentration and the depth of the alloyed layer. The maximum copper concentration in the alloyed surface obtained at the gas pressure of 60 Pa is about 7.1 wt.%. This alloyed surface exhibited very strong antibacterial ability, and an effective reduction of 98% of Escherichia coli (E. coli) within 1 h was achieved by contact with the alloyed surface. The maximum thickness of the copper alloyed layer obtained at 45 Pa is about 6.5 μm. Although the rate of reduction for E. coli of this alloyed surface was slower than that of the alloyed surface with the copper content about 7.1 wt.% over the first 3 h, few were able to survive more than 12 h and the reduction reached over 99.9%. The XPS analysis results indicated that the copper ions were released when the copper alloyed stainless steel in contact with bacterial solution, which is an important factor for killing bacteria. Based on an overall consideration of bacterial killing rate and durability, the alloyed surface with the copper content of 2.5 wt.% and the thickness of about 6.5 μm obtained at the gas pressure of 45 Pa is expected

  8. Perfect cubic texture, structure, and mechanical properties of nonmagnetic copper-based alloy ribbon substrates

    Science.gov (United States)

    Khlebnikova, Yu. V.; Rodionov, D. P.; Gervas'eva, I. V.; Egorova, L. Yu.; Suaridze, T. R.

    2015-03-01

    A sharp cubic texture is formed in a number of copper alloys subjected to cold deformation by rolling by 98.6-99% followed by recrystallization annealing, which opens up fresh opportunities for long thin ribbons made of these alloys to be used as substrates in the production of second-generation high- T c superconductor (2G HTSC) cables. The possibility of creating ternary alloys based on a binary Cu-30 at % Ni alloy with additional elements that harden its fcc matrix (iron, chromium) is shown. The measurements of the mechanical properties of textured ribbons made of these alloys demonstrate that their yield strength is higher than that of a textured ribbon made of pure copper by a factor of 2.5-4.5.

  9. Odontologic use of copper/aluminum alloys: mitochondrial respiration as sensitive parameter of biocompatibility

    Directory of Open Access Journals (Sweden)

    Rodrigues Luiz Erlon A.

    2003-01-01

    Full Text Available Copper/aluminum alloys are largely utilized in odontological restorations because they are less expensive than gold or platinum. However, tarnishing and important corrosion in intrabuccal prostheses made with copper/aluminum alloys after 28 days of use have been reported. Several kinds of food and beverage may attack and corrode these alloys. Copper is an essential component of several important enzymes directly involved in mitochondrial respiratory metabolism. Aluminum, in contrast, is very toxic and, when absorbed, plasma values as small as 1.65 to 21.55 mg/dl can cause severe lesions to the nervous system, kidneys, and bone marrow. Because mitochondria are extremely sensitive to minimal variation of cellular physiology, the direct relationship between the mitocondrial respiratory chain and cell lesions has been used as a sensitive parameter to evaluate cellular aggression by external agents. This work consisted in the polarographic study of mitochondrial respiratory metabolism of livers and kidneys of rabbits with femoral implants of titanium or copper/aluminum alloy screws. The experimental results obtained did not show physiological modifications of hepatic or renal mitochondria isolated from animals of the three experimental groups, which indicate good biocompatibility of copper/aluminum alloys and suggest their odontological use.

  10. A solvent extraction technique for the isotopic measurement of dissolved copper in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Claire M., E-mail: claire.thompson@anu.edu.au; Ellwood, Michael J., E-mail: michael.ellwood@anu.edu.au; Wille, Martin, E-mail: martin.wille@uni-tuebingen.de

    2013-05-02

    Graphical abstract: -- Highlights: •A new sample preparation method for seawater copper isotopic analysis (δ{sup 65}Cu). •Solvent-extraction was used to pre-concentrate metals from seawater samples. •Anion-exchange was used to purify copper from the metal-rich extract. •δ{sup 65}Cu was measured in the north Tasman Sea. •Seawater δ{sup 65}Cu may be linked to marine biological activity. -- Abstract: Stable copper (Cu) isotope geochemistry provides a new perspective for investigating and understanding Cu speciation and biogeochemical Cu cycling in seawater. In this work, sample preparation for isotopic analysis employed solvent-extraction with amino pyrollidine dithiocarbamate/diethyl dithiocarbamate (APDC/DDC), coupled with a nitric acid back-extraction, to concentrate Cu from seawater. This was followed by Cu-purification using anion-exchange. This straightforward technique is high yielding and fractionation free for Cu and allows precise measurement of the seawater Cu isotopic composition using multi-collector inductively coupled plasma mass-spectrometry. A deep-sea profile measured in the oligotrophic north Tasman Sea shows fractionation in the Cu isotopic signature in the photic zone but is relatively homogenised at depth. A minima in the Cu isotopic profile correlates with the chlorophyll a maximum at the site. These results indicate that a range of processes are likely to fractionate stable Cu isotopes in seawater.

  11. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients

    Science.gov (United States)

    Balter, Vincent; Nogueira da Costa, Andre; Paky Bondanese, Victor; Jaouen, Klervia; Lamboux, Aline; Sangrajrang, Suleeporn; Vincent, Nicolas; Fourel, François; Télouk, Philippe; Gigou, Michelle; Lécuyer, Christophe; Srivatanakul, Petcharin; Bréchot, Christian; Albarède, Francis; Hainaut, Pierre

    2015-01-01

    The widespread hypoxic conditions of the tumor microenvironment can impair the metabolism of bioessential elements such as copper and sulfur, notably by changing their redox state and, as a consequence, their ability to bind specific molecules. Because competing redox state is known to drive isotopic fractionation, we have used here the stable isotope compositions of copper (65Cu/63Cu) and sulfur (34S/32S) in the blood of patients with hepatocellular carcinoma (HCC) as a tool to explore the cancer-driven copper and sulfur imbalances. We report that copper is 63Cu-enriched by ∼0.4‰ and sulfur is 32S-enriched by ∼1.5‰ in the blood of patients compared with that of control subjects. As expected, HCC patients have more copper in red blood cells and serum compared with control subjects. However, the isotopic signature of this blood extra copper burden is not in favor of a dietary origin but rather suggests a reallocation in the body of copper bound to cysteine-rich proteins such as metallothioneins. The magnitude of the sulfur isotope effect is similar in red blood cells and serum of HCC patients, implying that sulfur fractionation is systemic. The 32S-enrichment of sulfur in the blood of HCC patients is compatible with the notion that sulfur partly originates from tumor-derived sulfides. The measurement of natural variations of stable isotope compositions, using techniques developed in the field of Earth sciences, can provide new means to detect and quantify cancer metabolic changes and provide insights into underlying mechanisms.

  12. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients.

    Science.gov (United States)

    Balter, Vincent; Nogueira da Costa, Andre; Bondanese, Victor Paky; Jaouen, Klervia; Lamboux, Aline; Sangrajrang, Suleeporn; Vincent, Nicolas; Fourel, François; Télouk, Philippe; Gigou, Michelle; Lécuyer, Christophe; Srivatanakul, Petcharin; Bréchot, Christian; Albarède, Francis; Hainaut, Pierre

    2015-01-27

    The widespread hypoxic conditions of the tumor microenvironment can impair the metabolism of bioessential elements such as copper and sulfur, notably by changing their redox state and, as a consequence, their ability to bind specific molecules. Because competing redox state is known to drive isotopic fractionation, we have used here the stable isotope compositions of copper ((65)Cu/(63)Cu) and sulfur ((34)S/(32)S) in the blood of patients with hepatocellular carcinoma (HCC) as a tool to explore the cancer-driven copper and sulfur imbalances. We report that copper is (63)Cu-enriched by ∼0.4‰ and sulfur is (32)S-enriched by ∼1.5‰ in the blood of patients compared with that of control subjects. As expected, HCC patients have more copper in red blood cells and serum compared with control subjects. However, the isotopic signature of this blood extra copper burden is not in favor of a dietary origin but rather suggests a reallocation in the body of copper bound to cysteine-rich proteins such as metallothioneins. The magnitude of the sulfur isotope effect is similar in red blood cells and serum of HCC patients, implying that sulfur fractionation is systemic. The (32)S-enrichment of sulfur in the blood of HCC patients is compatible with the notion that sulfur partly originates from tumor-derived sulfides. The measurement of natural variations of stable isotope compositions, using techniques developed in the field of Earth sciences, can provide new means to detect and quantify cancer metabolic changes and provide insights into underlying mechanisms.

  13. Use of a stable copper isotope (65Cu) in the differential diagnosis of Wilson's disease.

    Science.gov (United States)

    Lyon, T D; Fell, G S; Gaffney, D; McGaw, B A; Russell, R I; Park, R H; Beattie, A D; Curry, G; Crofton, R J; Gunn, I

    1995-06-01

    1. 65Cu/63Cu stable-isotope ratios have been measured in blood serum after oral administration of the stable isotope 65Cu. The incorporation of the isotope into the plasma protein pool was followed at various times for up to 3 days. The resulting patterns of enrichment in healthy control subjects, in Wilson's disease patients and in heterozygotes for the Wilson's disease gene, were similar in appearance to those found by others using copper radioactive isotopes. After an initially high enrichment at 2 h after dosage, the Wilson's disease cases, in contrast to the control subjects, did not show a secondary rise in isotope enrichment of the plasma pool after 72 h, demonstrating a failure to incorporate copper into caeruloplasmin. The Wilson's disease heterozygotes had variable degrees of impairment of isotope incorporation, not always distinguished from those of control subjects. 2. The stability of the isotope also permits the copper tracer to be followed for a longer period. Ten healthy subjects were studied for over 40 days, allowing the biological half-time of an oral dose of copper to be determined (median 18.5 days, 95% confidence interval 14-26 days). Known heterozygotes for the Wilson's disease gene were found to have a significantly increased biological half-time for removal of copper from the plasma pool (median 43 days, 95% confidence interval 32-77 days). 3. The incorporation of 65 Cu in patients with diseases of the liver (other than Wilson's disease) was found to be similar to that in control subjects, aiding differential diagnosis.

  14. A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property.

    Science.gov (United States)

    Zhang, Erlin; Li, Fangbing; Wang, Hongying; Liu, Jie; Wang, Chunmin; Li, Muqin; Yang, Ke

    2013-10-01

    Copper element was added in pure titanium by a powder metallurgy to produce a new antibacterial titanium-copper alloy (Ti-Cu alloy). This paper reported the very early stage results, emphasizing on the preparation, mechanical property and antibacterial activity. The phase constitution was analyzed by XRD and the microstructure was observed under SEM equipped with EDS. The hardness, the compressive strength and the corrosion resistance of Ti-Cu alloy were tested in comparison with cp-Ti. The antibacterial property of the Ti-Cu alloy was assessed by two methods: agar diffusion assay and plate-count method, in which Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were used. XRD and SEM results showed that Ti2Cu phase and Cu-rich phase were synthesized in the Ti-Cu sintered alloy, which significantly increases the hardness and the compressive strength compared with cp-Ti and slightly improves the corrosion resistance. No antibacterial activity was detected by the agar diffusion assay on the Ti-Cu alloy, but the plate-count results indicated that the Ti-Cu alloy exhibited strong antibacterial property against both bacteria even after three polishing treatments, which demonstrates strongly that the whole alloy is of antibacterial activity. The antibacterial mechanism was thought to be in associated with the Cu ion released from the Ti-Cu alloy. © 2013.

  15. Stability and structure of nanowires grown from silver, copper and their alloys by laser ablation into superfluid helium.

    Science.gov (United States)

    Gordon, Eugene; Karabulin, Alexander; Matyushenko, Vladimir; Sizov, Vyacheslav; Khodos, Igor

    2014-12-14

    Nanowires with 5 nm diameter made of silver, copper, and their alloys were grown in superfluid helium. The silver nanowires being heated to 300 K disintegrated into individual clusters. In contrast, copper nanowires were stable at room temperature, and nanowires made of alloys were also stable despite their low melting temperature.

  16. The behaviour of copper isotopes during igneous processes

    Science.gov (United States)

    Savage, P. S.; Moynier, F.; Harvey, J.; Burton, K. W.

    2015-12-01

    Application of Cu isotopes to high temperature systems has recently gained momentum and has the potential for probing sulphide fractionation during planetary differentiation [1]. This requires robust estimates for planetary reservoirs, and a fundamental understanding of how igneous processes affect Cu isotopes; this study aims to tackle the latter. Cogenetic suites affected by both fractionation crystallisation and cumulate formation were analysed to study such effects on Cu isotopes. In S-undersatured systems, Cu behaves incompatibly during melt evolution and the Cu isotope composition of such melt is invariant over the differentiation sequence. In contrast, S-saturated systems show resolvable Cu isotope variations relative to primitive melt. Such variations are minor but imply a slightly heavy Cu isotope composition for continental crust compared to BSE, consistent with granite data [2]. Although olivine accumulation does not affect Cu isotopes, spinel-hosted Cu is isotopically light relative to the bulk. Analysis of variably melt-depleted cratonic peridotites shows that partial melting can affect Cu isotope composition in restite, with the depleted samples isotopically light compared to BSE. This could be due to residual spinel and/or incongruent melting of sulphides - individual sulphides picked from a single xenolith reveal a range of Cu isotope compositions, dependent on composition. Although partial melting may fractionate Cu isotopes, models suggest most mantle-derived melt will have δ65Cu ≈ BSE, as most source Cu will be transferred to the melt. Small degree melts such as ocean island basalts are predicted to be isotopically heavier than MORB, if derived from a primitive mantle source. OIBs have a range of Cu isotope compositions: some are heavier than MORB as predicted; however, some have much lighter compositions. Since Cu isotopes can be significantly fractionated in the surface environment [e.g. 3] OIB Cu isotopic variations may be linked to

  17. The interfacial structure of plated copper alloy resistance spot welded joint

    Science.gov (United States)

    Wu, Jingwei; Zhai, Guofu; Chen, Qing; Wang, Jianqi; Ren, Gang

    2008-09-01

    Plated copper alloys are widely used in electron industry. The plating lay caused the farther decreasing of the welding property of copper alloys, whose intrinsic weldability was poor. In this paper, the bronze and brass specimens with nickel-tin double plating layer were joined by resistance spot welding method. The microstructure and peel strength of the joints were investigated. The experiment results show that a sandwich-like structure was obtained in the faying surface after welding, and the nickel plating layer thickness had severe effect on the reliability of the joints.

  18. The interfacial structure of plated copper alloy resistance spot welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jingwei [Xiamen Hongfa Electroacoustic Co., Ltd, 361021 Xiamen (China); Harbin Institute of Technology, 150001 Harbin (China)], E-mail: jingweiwu.hit@gmail.com; Zhai Guofu [Harbin Institute of Technology, 150001 Harbin (China); Chen Qing; Wang Jianqi; Ren Gang [Xiamen Hongfa Electroacoustic Co., Ltd, 361021 Xiamen (China)

    2008-09-15

    Plated copper alloys are widely used in electron industry. The plating lay caused the farther decreasing of the welding property of copper alloys, whose intrinsic weldability was poor. In this paper, the bronze and brass specimens with nickel-tin double plating layer were joined by resistance spot welding method. The microstructure and peel strength of the joints were investigated. The experiment results show that a sandwich-like structure was obtained in the faying surface after welding, and the nickel plating layer thickness had severe effect on the reliability of the joints.

  19. Beryllium and copper-beryllium alloys; Beryllium und Kupfer-Beryllium-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Nikolaus [Materion Brush GmbH, Stuttgart (Germany). Operation and Quality/EH and S

    2017-02-15

    The light metal beryllium is a comparatively rare element, which today is primarily derived from bertrandite. It is mainly used as pure metal or in the form of copper-beryllium alloys, e.g., in automotive industry, aerospace, and electrical components. The wide range of applications is mainly attributed to the extremely high rigidity/density ratio. An overview of the history of the metal, its production, and recycling as well as the properties of CuBe alloys are given.

  20. EXPERIMENTAL INVESTIGATION ON ELECTRICAL DISCHARGE MACHINING OF TITANIUM ALLOY USING COPPER, BRASS AND ALUMINUM ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. DHANABALAN

    2015-01-01

    Full Text Available In the present study, an evaluation has been done on Material Removal Rate (MRR, Surface Roughness (SR and Electrode Wear Rate (EWR during Electrical Discharge Machining (EDM of titanium alloy using copper, brass and aluminum electrodes. Analyzing previous work in this field, it is found that electrode wear and material removal rate increases with an increase current. It is also found that the electrode wear ratio increases with an increase in current. The higher wear ratio is found during machining of titanium alloy using a brass electrode. An attempt has been made to correlate the thermal conductivity and melting point of electrode with the MRR and electrode wear. The MRR is found to be high while machining titanium alloy using brass electrode. During machining of titanium alloy using copper electrodes, a comparatively smaller quantity of heat is absorbed by the work material due to low thermal conductivity. Due to the above reason, the MRR becomes very low. Duringmachining of titanium alloy using aluminium electrodes, the material removal rate and electrode wear rate are only average value while machining of titanium alloy using brass and copper electrodes.

  1. Ultrafine-Grained Precipitation Hardened Copper Alloys by Swaging or Accumulative Roll Bonding

    Directory of Open Access Journals (Sweden)

    Igor Altenberger

    2015-05-01

    Full Text Available There is an increasing demand in the industry for conductive high strength copper alloys. Traditionally, alloy systems capable of precipitation hardening have been the first choice for electromechanical connector materials. Recently, ultrafine-grained materials have gained enormous attention in the materials science community as well as in first industrial applications (see, for instance, proceedings of NANO SPD conferences. In this study the potential of precipitation hardened ultra-fine grained copper alloys is outlined and discussed. For this purpose, swaging or accumulative roll-bonding is applied to typical precipitation hardened high-strength copper alloys such as Corson alloys. A detailed description of the microstructure is given by means of EBSD, Electron Channeling Imaging (ECCI methods and consequences for mechanical properties (tensile strength as well as fatigue and electrical conductivity are discussed. Finally the role of precipitates for thermal stability is investigated and promising concepts (e.g. tailoring of stacking fault energy for grain size reduction and alloy systems for the future are proposed and discussed. The relation between electrical conductivity and strength is reported.

  2. Removal of brownish-black tarnish on silver–copper alloy objects with sodium glycinate

    Energy Technology Data Exchange (ETDEWEB)

    Cura D’Ars de Figueiredo, João, E-mail: joaoc@ufmg.br; Asevedo, Samara Santos, E-mail: samaranix@hotmail.com; Barbosa, João Henrique Ribeiro, E-mail: joaohrb@yahoo.com.br

    2014-10-30

    Highlights: • The use of glycinate to remove brownish-black tarnish on silver–copper alloy objects is studied. • The method is easy to use and harmless. It is based in the coordination of Ag and Cu in tarnish with glycinate. • The surface of corroded silver objects and products of reaction were studied and glycinate showed to be very selective for Ag(I) and Cu(II). The selectivity for Ag(I) was studied by means of quantum chemical calculations. - Abstract: This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver–copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver–copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver–copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver–copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver–copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver–copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish

  3. Theoretical calculation of equilibrium copper (I) isotope fractionations in ore-forming fluid

    Science.gov (United States)

    Seo, J.; Lee, I.; Lee, S.

    2006-05-01

    Equilibrium isotope fractionation of Cu (I) complexes in hydrothermal ore-forming fluid is calculated. Ab-initio quantum calculation of molecular structures and vibrational frequencies is conducted by Density Functional Theory (DFT) and Hartree-Fock Self Consistent Field (HF-SCF) method. Cu isotope (65Cu, 63Cu) exchange is expressed as reduced partition function ratios, 103·ln(β65-63), for liquid phase complexes (copper chlorides, copper hydrosulfides), and vapor phase complexes (hydrated copper chloride). Isodensity Polarizable Continuum Model (IPCM) is applied to the liquid complexes, whereas the vapor complexes are calculated in vacuo. Large fractionation (more than 2‰ at 25°C) is predicted between coexisting phases without changing oxidation state. CuCl(H2O)2 (vapor phase) is enriched in 65Cu better than any other studied complexes, whereas [CuCl3]2- (liquid phase) is mostly depleted. Heavy copper isotope is favor to partition into vapor phase complexes than coexisting liquid phase complexes. In the sea-floor hydrothermal system, after separation of phases into vapor and brine, vapor phase (CuCl(H2O)2) and chlorine-rich brine ([CuCl3]2-) will show +0.418‰ and -0.688‰ deviation from [CuCl2]1- at 150°C, respectively. However, most of the dominant copper-bearing species in hydrothermal condition, [CuCl2]1- and [Cu(HS)2]1-, fractionate at almost the same degree. Possible ranges of copper isotope ratio, δ65Cu, can be constrained from the calculated equilibrium isotope fractionation. Changes of oxidation state in low-temperature (e.g. supergene formation) have been thought to trigger most copper isotope fractionations, so far. However, measurable Cu isotope fractionation (1.106‰ at 150°C and 0.615‰ at 300°C) in hydrothermal ore-forming fluid is predicted within +1 valence state by theoretical study. Molecular structures and vibrational frequencies are compared with measured data. However, there is no experimental or theoretical work of some molecules

  4. Choice of copper-based alloys for ribbon substrates with a sharp cube texture

    Science.gov (United States)

    Khlebnikova, Yu. V.; Rodionov, D. P.; Gervas'eva, I. V.; Suaridze, T. R.; Akshentsev, Yu. N.; Kazantsev, V. A.

    2014-12-01

    It has been shown that, in some copper-based alloys subjected to cold deformation by rolling to 98.6-99% followed by recrystallization annealing, a sharp cube texture can be produced. Optimum conditions of annealing have been determined, which make it possible to produce a sharp biaxial texture in Cu-Ni, Cu-Fe, and Cu-Cr alloys with the fraction of cube grains of more than 95%; this opens a possibility of using thin ribbons made of these alloys as substrates for multilayer film compositions, in particular when developing second-generation high-temperature superconductors.

  5. Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology

    Science.gov (United States)

    Fujii, Toshiyuki; Moynier, Frédéric; Abe, Minori; Nemoto, Keisuke; Albarède, Francis

    2013-06-01

    Isotope fractionation between the common Cu species present in solution (Cu+, Cu2+, hydroxide, chloride, sulfide, carbonate, oxalate, and ascorbate) has been investigated using both ab initio methods and experimental solvent extraction techniques. In order to establish unambiguously the existence of equilibrium isotope fractionation (as opposed to kinetic isotope fractionation), we first performed laboratory-scale liquid-liquid distribution experiments. Upon exchange between HCl medium and a macrocyclic complex, the 65Cu/63Cu ratio fractionated by -1.06‰ to -0.39‰. The acidity dependence of the fractionation was appropriately explained by ligand exchange reactions between hydrated H2O and Cl- via intramolecular vibrations. The magnitude of the Cu isotope fractionation among important Cu ligands was also estimated by ab initio methods. The magnitude of the nuclear field shift effect to the Cu isotope fractionation represents only ˜3% of the mass-dependent fractionation. The theoretical estimation was expanded to chlorides, hydroxides, sulfides, sulfates, and carbonates under different conditions of pH. Copper isotope fractionation of up to 2‰ is expected for different forms of Cu present in seawater and for different sediments (carbonates, hydroxides, and sulfides). We found that Cu in dissolved carbonates and sulfates is isotopically much heavier (+0.6‰) than free Cu. Isotope fractionation of Cu in hydroxide is minimal. The relevance of these new results to the understanding of metabolic processes was also discussed. Copper is an essential element used by a large number of proteins for electron transfer. Further theoretical estimates of δ65Cu in hydrated Cu(I) and Cu(II) ions, Cu(II) ascorbates, and Cu(II) oxalate predict Cu isotope fractionation during the breakdown of ascorbate into oxalate and account for the isotopically heavy Cu found in animal kidneys.

  6. The Effects of Test Temperature, Temper, and Alloyed Copper on the Hydrogen-Controlled Crack Growth Rate of an Al-Zn-Mg-(Cu) Alloy

    Energy Technology Data Exchange (ETDEWEB)

    G.A. Young, Jr.; J.R. Scully

    2000-09-17

    The hydrogen embrittlement controlled stage II crack growth rate of AA 7050 (6.09 wt.% Zn, 2.14 wt% Mg, 2.19 wt.% Cu) was investigated as a function of temper and alloyed copper level in a humid air environment at various temperatures. Three tempers representing the underaged, peak aged, and overaged conditions were tested in 90% relative humidity (RH) air at temperatures between 25 and 90 C. At all test temperatures, an increased degree of aging (from underaged to overaged) produced slower stage II crack growth rates. The stage II crack growth rate of each alloy and temper displayed Arrhenius-type temperature dependence with activation energies between 58 and 99 kJ/mol. For both the normal copper and low copper alloys, the fracture path was predominantly intergranular at all test temperatures (25-90 C) in each temper investigated. Comparison of the stage II crack growth rates for normal (2.19 wt.%) and low (0.06 wt.%) copper alloys in the peak aged and overaged tempers showed the beneficial effect of copper additions on stage II crack growth rate in humid air. In the 2.19 wt.% copper alloy, the significant decrease ({approx} 10 times at 25 C) in stage II crack growth rate upon overaging is attributed to an increase in the apparent activation energy for crack growth. IN the 0.06 wt.% copper alloy, overaging did not increase the activation energy for crack growth but did lower the pre-exponential factor, {nu}{sub 0}, resulting in a modest ({approx} 2.5 times at 25 C) decrease in crack growth rate. These results indicate that alloyed copper and thermal aging affect the kinetic factors that govern stage II crack growth rate. Overaged, copper bearing alloys are not intrinsically immune to hydrogen environment assisted cracking but are more resistant due to an increased apparent activation energy for stage II crack growth.

  7. Spin-density-wave magnetism in dilute copper-manganese alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lamelas, F.J. [Marquette Univ., Milwaukee, WI (United States). Dept. of Physics; Werner, S.A. [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Shapiro, S.M. [Brookhaven National Lab., Upton, NY (United States); Mydosh, J.A. [Kammerlingh Onnes Lab., Leiden (Netherlands)

    1995-02-01

    Elastic neutron-scattering measurements on two samples of Cu alloyed with 1.3% Mn and 0.55% Mn show that the spin-density-wave (SDW) features found in more concentrated alloys persist in the limit of very dilute alloys. These features consist of temperature-dependent incommensurate peaks in magnetic neutron scattering, with positions and strengths which are fully consistent with those in the concentrated alloys. The implications of these measurements are twofold. First, it is clear from this data that SDW magnetic ordering occurs across the entire range of CuMn alloys which have typically been interpreted as spin glasses. Second, the more fundamental significance of this work is the suggestion via extrapolation that a peak in the magnetic susceptibility x(q) occurs in pure copper, at a value of q given by the Fermi-surface diameter 2k{sub F}.

  8. Protection of Advanced Copper Alloys With Lean Cu-Cr Coatings

    Science.gov (United States)

    Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.

    2003-01-01

    Advanced copper alloys are used as liners of rocket thrusters and nozzle ramps to ensure dissipation of the high thermal load generated during launch, and Cr-lean coatings are preferred for the protection of these liners from the aggressive ambient environment. It is shown that adequate protection can be achieved with thin Cu-Cr coatings containing as little as 17 percent Cr.

  9. Recent results for bonding S-65C grade Be to copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dombrowski, D.W. [Brush Wellman Inc., Cleveland, OH (United States)

    1995-09-01

    Novel processes for bonding beryllium to copper alloys without the use of a silver bonding aid have been developed at Brush Wellman. Tensile strength results will be presented at room temperature and elevated temperatures. A comparison will be made between bond strengths derived from rectangular tensile specimens and reduced section tensile specimens. Failure modes of the specimens at various temperatures will be shown.

  10. Polyol Synthesis of Cobalt–Copper Alloy Catalysts for Higher Alcohol Synthesis from Syngas

    DEFF Research Database (Denmark)

    Mendes, Laiza V.P.; Snider, Jonathan L.; Fleischman, Samuel D.

    2017-01-01

    Novel catalysts for the selective production of higher alcohols from syngas could offer improved pathways towards synthetic fuels and chemicals. Cobalt–copper alloy catalysts have shown promising results for this reaction. To improve control over particle properties, a liquid phase nanoparticle s...

  11. Laser forming of structures of zinc oxide on a surface of products from copper alloys

    Science.gov (United States)

    Abramov, D. V.; Gorudko, T. N.; Koblov, A. N.; Nogtev, D. S.; Novikova, O. A.

    Laser formation of a protective zinc oxide layer on a surface of products from copper alloys is present. This layer is formed with using of carbon nanotubes. Destructions of the basic material are avoided or minimized at laser nanostructuring of product surfaces. Such laser processing can be made repeatedly. Offered covering have self-clearing and water-repellent properties.

  12. The Corrosion Behavior of Stainless Steels and Copper Alloys Exposed to Natural Seawater

    Science.gov (United States)

    1991-01-01

    significant changes of the corrosion potential (Ecw) or surface properties. Rotating cylinder experiments indicated that both E., and corrosion rates for...and inorganic chloride corrosion layer that contained alloying elements; a biof ilm; and crystalline, spherical phosphate-rich deposits. All copper...nichtrostendem Stahl und bacteria and diatoms that did not cause significant changes of the Titan entstehenden dfinnen Biofilme bestanden aus

  13. Study of Titanizing the Surface of Copper Substrates by the Double Glow Discharge Plasma Surface Alloying Technique

    Institute of Scientific and Technical Information of China (English)

    Zhang Yuefei; Chen Fei; Lü Junxia; Su Yongan; Xu Zhong

    2005-01-01

    This paper discusses a study in which Ti surface alloying has been performed on copper substrates by means of a double glow discharge plasma surface alloying technique. The micro-structure, the phase structure, the micro-hardness and the distribution of Ti concentration of alloying layer were investigated in detail by XRD, SEM and so on. The effect of process parameters on the alloying layer was studied. The experimental results show that a Ti solid solution with the precipitation Cu4Ti alloying layer has been formed on the copper surface. The thickness of the alloying layer is about 120μm and the surface titanium concentration gradually decreases from w (Ti) = 87% to w (Ti) = 4%. The micro-hardness of the alloying layer is between 300 HV ~ 800 HV. Source sputtering, surface absorption, ion bombarding and high temperature diffusion are the major factors that affect the alloying layer.

  14. Laser cladding of stainless steel with a copper-silver alloy to generate surfaces of high antimicrobial activity

    Science.gov (United States)

    Hans, Michael; Támara, Juan Carlos; Mathews, Salima; Bax, Benjamin; Hegetschweiler, Andreas; Kautenburger, Ralf; Solioz, Marc; Mücklich, Frank

    2014-11-01

    Copper and silver are used as antimicrobial agents in the healthcare sector in an effort to curb infections caused by bacteria resistant to multiple antibiotics. While the bactericidal potential of copper and silver alone are well documented, not much is known about the antimicrobial properties of copper-silver alloys. This study focuses on the antibacterial activity and material aspects of a copper-silver model alloy with 10 wt% Ag. The alloy was generated as a coating with controlled intermixing of copper and silver on stainless steel by a laser cladding process. The microstructure of the clad was found to be two-phased and in thermal equilibrium with minor Cu2O inclusions. Ion release and killing of Escherichia coli under wet conditions were assessed with the alloy, pure silver, pure copper and stainless steel. It was found that the copper-silver alloy, compared to the pure elements, exhibited enhanced killing of E. coli, which correlated with an up to 28-fold increased release of copper ions. The results show that laser cladding with copper and silver allows the generation of surfaces with enhanced antimicrobial properties. The process is particularly attractive since it can be applied to existing surfaces.

  15. Inhibition effects of PMA/SbBr3 complex inhibitor on copper and copper-nickel alloy in LiBr solutions

    Institute of Scientific and Technical Information of China (English)

    HU Xian-qi; LIANG Cheng-hao; HUANG Nai-bao

    2005-01-01

    The effects of PMA/SbBr3 inhibitor on copper and copper-nickel alloy in 55%LiBr solution were investigated by chemical immersion and electrochemical measurements. The results indicate that in boiling 55% LiBr solution containing PMA/SbBr3 inhibitor, corrosion rates of copper and copper-nickel alloy are 67.48 μm/a and 38. 14μm/a, respectively. Since both anodic and cathodic electrochemical reactions can be inhibited, PMA/SbBr3 belongs to complex inhibitor. PMA has the effect of inhibiting hydrogen evolution and [PMo12 O40]3- , the anion of PMA,has a strong oxidizing effect. Sb3+ also shows an oxidizing effect. It may exist in LiBr solutions stably with PMA.Because of the synergistic effect of PMA and Sb3+ , a protective film, comprising CuO, Cu2O and Sb, formed on copper and copper-nickel alloy surface may prevent Br- from diffusing to the surface of metals. As a result, the anticorrosion performance of copper and copper-nickel alloy may be improved.

  16. Dealloying of gold–copper alloy nanowires: From hillocks to ring-shaped nanopores

    Directory of Open Access Journals (Sweden)

    Adrien Chauvin

    2016-09-01

    Full Text Available We report on a novel fabrication approach of metal nanowires with complex surface. Taking advantage of nodular growth triggered by the presence of surface defects created intentionally on the substrate as well as the high tilt angle between the magnetron source axis and the normal to the substrate, metal nanowires containing hillocks emerging out of the surface can be created. The approach is demonstrated for several metals and alloys including gold, copper, silver, gold–copper and gold–silver. We demonstrate that applying an electrochemical dealloying process to the gold–copper alloy nanowire arrays allows for transforming the hillocks into ring-like shaped nanopores. The resulting porous gold nanowires exhibit a very high roughness and high specific surface making of them a promising candidate for the development of SERS-based sensors.

  17. Recovery of Pb-Sn Alloy and Copper from Photovoltaic Ribbon in Spent Solar Module

    Science.gov (United States)

    Lee, Jin-Seok; Ahn, Young-Soo; Kang, Gi-Hwan; Wang, Jei-Pil

    2017-09-01

    This research was attempted to recover metal alloy and copper from photovoltaic ribbon (PV ribbon) of spent solar module by means of thermal treatment. In this study, thermal method newly proposed was applied to remove coating layer composed of tin and lead and separate copper substrate. Using thermal treatment under reductive gas atmosphere with CH4 gas coating layer was easily melted down at the range of temperature of 700 °C to 800 °C. In the long run, metal alloy and copper substrate were successfully obtained and their chemical compositions were examined by inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM) and energy dispersive x-ray Spectroscopy (EDS).

  18. A promising structure for fabricating high strength and high electrical conductivity copper alloys.

    Science.gov (United States)

    Li, Rengeng; Kang, Huijun; Chen, Zongning; Fan, Guohua; Zou, Cunlei; Wang, Wei; Zhang, Shaojian; Lu, Yiping; Jie, Jinchuan; Cao, Zhiqiang; Li, Tingju; Wang, Tongmin

    2016-02-09

    To address the trade-off between strength and electrical conductivity, we propose a strategy: introducing precipitated particles into a structure composed of deformation twins. A Cu-0.3%Zr alloy was designed to verify our strategy. Zirconium was dissolved into a copper matrix by solution treatment prior to cryorolling and precipitated in the form of Cu5Zr from copper matrix via a subsequent aging treatment. The microstructure evolutions of the processed samples were investigated by transmission electron microscopy and X-ray diffraction analysis, and the mechanical and physical behaviours were evaluated through tensile and electrical conductivity tests. The results demonstrated that superior tensile strength (602.04 MPa) and electrical conductivity (81.4% IACS) was achieved. This strategy provides a new route for balancing the strength and electrical conductivity of copper alloys, which can be developed for large-scale industrial application.

  19. Copper isotope effect in serum of cancer patients. A pilot study.

    Science.gov (United States)

    Télouk, Philippe; Puisieux, Alain; Fujii, Toshiyuki; Balter, Vincent; Bondanese, Victor P; Morel, Anne-Pierre; Clapisson, Gilles; Lamboux, Aline; Albarede, Francis

    2015-02-01

    The isotope effect describes mass-dependent variations of natural isotope abundances for a particular element. In this pilot study, we measured the (65)Cu/(63)Cu ratios in the serums of 20 breast and 8 colorectal cancer patients, which correspond to, respectively, 90 and 49 samples taken at different times with molecular biomarker documentation. Copper isotope compositions were determined by multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). When compared with the literature data from a control group of 50 healthy blood donors, abundances of Cu isotopes predict mortality in the colorectal cancer group with a probability p = 0.018. For the breast cancer patients and the group of control women the probability goes down to p = 0.0006 and the AUC under the ROC curve is 0.75. Most patients considered in this preliminary study and with serum δ(65)Cu lower than the threshold value of -0.35‰ (per mil) did not survive. As a marker, a drop in δ(65)Cu precedes molecular biomarkers by several months. The observed decrease of δ(65)Cu in the serum of cancer patients is assigned to the extensive oxidative chelation of copper by cytosolic lactate. The potential of Cu isotope variability as a new diagnostic tool for breast and colorectal cancer seems strong. Shifts in Cu isotope compositions fingerprint cytosolic Cu chelation by lactate mono- and bidentates. This simple scheme provides a straightforward explanation for isotopically light Cu in the serum and isotopically heavy Cu in cancer cells: Cu(+) escaping chelation by lactate and excreted into the blood stream is isotopically light. Low δ(65)Cu values in serum therefore reveal the strength of lactate production by the Warburg effect.

  20. Specification of properties and design allowables for copper alloys used in HHF components of ITER

    DEFF Research Database (Denmark)

    Kalinin, G.M.; Fabritziev, S.A.; Singh, B.N.;

    2002-01-01

    Two types of copper alloys, precipitation hardened (PH) Cu (CuCrZr-IG) and dispersion strengthened (DS) Cu (CuAl25-IG), are proposed as heat sink materials for the high heat flux (HHF) components of ITER. However, copper alloys are not included in any national codes, and properties of both Cu......CrZr and CuAl25 are not yet fully characterised. The performed R&D gives a basis for the specification of physical and mechanical properties required for the design analysis in accordance with the ITER Structural Design Criteria for In-vessel Components (SDC-IC). For both CuCrZr-IG and CuAl25-IG alloys...

  1. GRCop-84: A High-Temperature Copper Alloy for High-Heat-Flux Applications

    Science.gov (United States)

    Ellis, David L.

    2005-01-01

    GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) is a new high-temperature copper-based alloy. It possesses excellent high-temperature strength, creep resistance and low-cycle fatigue up to 700 C (1292 F) along with low thermal expansion and good conductivity. GRCop-84 can be processed and joined by a variety of methods such as extrusion, rolling, bending, stamping, brazing, friction stir welding, and electron beam welding. Considerable mechanical property data has been generated for as-produced material and following simulated braze cycles. The data shows that the alloy is extremely stable during thermal exposures. This paper reviews the major GRCop-84 mechanical and thermophysical properties and compares them to literature values for a variety of other high-temperature copper-based alloys.

  2. EFFECT OF COPPER ON PASSIVITY AND CORROSION BEHAVIOR OF FE-XC-5CU ALLOY

    Directory of Open Access Journals (Sweden)

    M. Ferhat

    2014-06-01

    Full Text Available The correlation between corrosion behavior rate of annealed Fe-xC-5Cu alloys and their microstructure and phase composition is presented. The metallurgical analyses, including, X-Ray diffraction (XRD, the scanning electron microscopy (SEM with energy dispersive analysis (EDX, and induction hardening characterization are conducted to study the Fe-C-Cu alloys. Corrosion parameters in H2SO4 1N solution have been established by carrying out electrochemical studies such as potentiodynamic (Tafel polarization and linear polarization, LP and electrochemical impedance spectroscopy (EIS. The coupled effect copper/microstructure is discussed. Alloying Cu showed a beneficial effect on hypoeutectoid steel and harmful effect on hypereutectoid steel. The improved corrosion resistance is related to cementite morphology and by a copper dissolution/re-deposition process.

  3. EFFECT OF COPPER ON PASSIVITY AND CORROSION BEHAVIOR OF FE-XC-5CU ALLOY

    Directory of Open Access Journals (Sweden)

    M. Ferhat

    2015-07-01

    Full Text Available The correlation between corrosion behavior rate of annealed Fe-xC-5Cu alloys and their microstructure and phase composition is presented. The metallurgical analyses, including, X-Ray diffraction (XRD, the scanning electron microscopy (SEM with energy dispersive analysis (EDX, and induction hardening characterization are conducted to study the Fe-C-Cu alloys. Corrosion parameters in H2SO4 1N solution have been established by carrying out electrochemical studies such as potentiodynamic (Tafel polarization and linear polarization, LP and electrochemical impedance spectroscopy (EIS. The coupled effect copper/microstructure is discussed. Alloying Cu showed a beneficial effect on hypoeutectoid steel and harmful effect on hypereutectoid steel. The improved corrosion resistance is related to cementite morphology and by a copper dissolution/re-deposition process.

  4. Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms.

    Science.gov (United States)

    Ryan, Brooke M; Kirby, Jason K; Degryse, Fien; Harris, Hugh; McLaughlin, Mike J; Scheiderich, Kathleen

    2013-07-01

    The fractionation of stable copper (Cu) isotopes during uptake into plant roots and translocation to shoots can provide information on Cu acquisition mechanisms. Isotope fractionation ((65) Cu/(63) Cu) and intact tissue speciation techniques (X-ray absorption spectroscopy, XAS) were used to examine the uptake, translocation and speciation of Cu in strategy I (tomato-Solanum lycopersicum) and strategy II (oat-Avena sativa) plant species. Plants were grown in controlled solution cultures, under varied iron (Fe) conditions, to test whether the stimulation of Fe-acquiring mechanisms can affect Cu uptake in plants. Isotopically light Cu was preferentially incorporated into tomatoes (Δ(65) Cu(whole plant-solution ) = c. -1‰), whereas oats showed minimal isotopic fractionation, with no effect of Fe supply in either species. The heavier isotope was preferentially translocated to shoots in tomato, whereas oat plants showed no significant fractionation during translocation. The majority of Cu in the roots and leaves of both species existed as sulfur-coordinated Cu(I) species resembling glutathione/cysteine-rich proteins. The presence of isotopically light Cu in tomatoes is attributed to a reductive uptake mechanism, and the isotopic shifts within various tissues are attributed to redox cycling during translocation. The lack of isotopic discrimination in oat plants suggests that Cu uptake and translocation are not redox selective.

  5. Modeling the diffusion of solid copper into liquid solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rizvi, M.J. [School of Computing and Mathematical Sciences, University of Greenwich, 30 Park Row, London, SE10 9LS (United Kingdom)], E-mail: rm77@gre.ac.uk; Lu, H.; Bailey, C. [School of Computing and Mathematical Sciences, University of Greenwich, 30 Park Row, London, SE10 9LS (United Kingdom)

    2009-01-01

    During the soldering process, the copper atoms diffuse into liquid solders. The diffusion process determines integrity and the reworking possibility of a solder joint. In order to capture the diffusion scenarios of solid copper into liquid Sn-Pb and Sn-Cu solders, a computer modeling has been performed for 10 s. An analytical model has also been proposed for calculating the diffusion coefficient of copper into liquid solders. It is found that the diffusion coefficient for Sn-Pb solder is 2.74 x 10{sup -10} m{sup 2}/s and for Sn-Cu solder is 6.44 x 10{sup -9} m{sup 2}/s. The modeling results reveal that the diffusion coefficient is one of the major factors that govern the rate at which solid Cu dissolve in the molten solder. The predicted dissolved amounts of copper into solders have been validated with the help of scanning electron microscopic analysis.

  6. Nuclear Spectroscopy with Copper Isotopes of Extreme N/Z Ratios

    CERN Multimedia

    La commara, M; Roeckl, E; Van duppen, P L E; Schmidt, K A; Lettry, J

    2002-01-01

    The collaboration aims to obtain detailed nuclear spectroscopy information on isotopes close to the magic proton number Z=28 Very neutron-rich and neutron-deficient copper isotopes are ionized with the ISOLDE resonance ionization laser ion source (RILIS) to provide beams with low cross contamination.\\\\ \\\\On the neutron-deficient side the high $Q_\\beta$-values of $^{56}$Cu (15~MeV) and $^{57}$Cu (8.8~MeV) allow to study levels at high excitation energies in the doubly magic nucleus $^{56}$Ni and the neighbouring $^{57}$Ni. On the neutron-rich side the spectroscopy with separated copper isotopes allows presently the closest approach to the doubly magic $^{78}$Ni at an ISOL facility. Up to now no suitable target material with a rapid release was found for nickel itself. A slow release behaviour has to be assumed also for the chemically similar elements iron and cobalt.\\\\ \\\\Using a narrow-bandwidth dye laser and tuning of the laser frequency allows to scan the hyperfine splittings of the copper isotopes and isome...

  7. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hankin, G.L. [Loughborough Univ. (United Kingdom); Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1997-04-01

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appm over 7 dpa appears to have little effect on the mechanical properties of the alloys.

  8. BEHAVIOUR OF COPPER AND ALUMINIUM ELECTRODES ON EDM OF EN-8 ALLOY STEEL

    Directory of Open Access Journals (Sweden)

    DHANANJAY PRADHAN

    2011-07-01

    Full Text Available Electrical discharge machining (EDM has been recognized as an efficient production method for precision machining of electrically conducting hardened materials. Copper and aluminium are used as electrode materials in this process with Kerosene oil as the dielectric medium. In this work, the behavior of copper and aluminium electrodes on electric discharge machining of EN-8 alloy steel had been studied. Keeping all other machining parameters same, the hardened work material was machined with the two electrodes at different values of peak current, pulse-on time & duty factor according to 23 full factorial design. It has been found that copper shows better results than aluminium in term of surface finish (μm in same dielectric media. Therefore, copper is recommended as a good electrode material.

  9. Electrical conductivity in directionally solidified lead-9 and -20 wt pct copper alloys

    Science.gov (United States)

    Kim, Shinwoo; Flanagan, W. F.; Lichter, B. D.; Grugel, R. N.

    1993-01-01

    Composites consisting of aligned copper dendrites in a lead matrix have been produced by directional solidification processing for potential application as grids in lead-acid batteries. To promote a uniform composite of aligned copper dendrites in a protective lead matrix, two alloy compositions, Pb-9 and -20 wt pct Cu, have been directionally solidified through a temperature gradient of 4.5 K/mm at constant growth velocities which ranged from 1 to 100 micron/s. With slow growth rates (below about 10 microns/s), the copper dendrites were generally columnar and continuous along the sample length; at higher velocities (above 60 microns/s), they assumed an intricate and equiaxed morphology. In accordance with copper content and growth rate, the electrical conductivity of the directionally solidified composites was found to be as much as a 2.5 times that of pure lead. The results are compared with that predicted by a model based on a geometrical dendrite.

  10. A Simplified Test for Blanching Susceptibility of Copper Alloys

    Science.gov (United States)

    Thomas-Ogbuji, Linus U.; Humphrey, Donald; Setlock, John

    2003-01-01

    GRCop-84 (Cu-8Cr-4Nb) is a dispersion-strengthened alloy developed for space-launch rocket engine applications, as a liner for the combustion chamber and nozzle ramp. Its main advantage over rival alloys, particularly NARloy-Z (Cu-Ag-Zr), the current liner alloy, is in high temperature mechanical properties. Further validation required that the two alloys be compared with respect to service performance and durability. This has been done, under conditions resembling those expected in reusable launch engine applications. GRCop-84 was found to have a superior resistance to static and cyclic oxidation up to approx. 700 C. In order to improve its performance above 700 C, Cu-Cr coatings have also been developed and evaluated. The major oxidative issue with Cu alloys is blanching, a mode of degradation induced by oxidation-reduction fluctuations in hydrogen-fueled engines. That fluctuation cannot be addressed with conventional static or cyclic oxidation testing. Hence, a further evaluation of the alloy substrates and Cu-Cr coating material necessitated our devising a test protocol that involves oxidaton-reduction cycles. This paper describes the test protocols used and the results obtained.

  11. Synthesis of Corrosion-resistant Nanocrystalline Nickle-copper Alloy Coatings by Pulse-plating Technique

    Directory of Open Access Journals (Sweden)

    S.K. Ghosh

    2005-01-01

    Full Text Available Bright and smooth nanocrystalline Monel-type Ni-Cu alloy gets deposited from complex citrate electrolyte by pulse electrolysis. Transmission electron microscopy studies have revealedthat the deposited Ni-Cu alloy was nanocrystalline in nature and it comprised a two-phase (fcc+Ll, mixture. The presence of twins could be seen in the nanocrystals. The Ni-Cu alloysprepared by pulse electrolysis were finer grained (- 2.5-28.5 nm than those deposited by direct current method. Nelson-Riley function has been used to calculate the lattice parameters for both the pulse current-plated and direct current-plated alloys from x-ray diffraction analysis. The microhardness values for pulse current-plated alloys were higher than for the direct currentplated alloys. The internal stresses of both the pulse current-deposited and the direct currentdeposited alloys have also been measured; the values were lower for pulse current-plated alloys. Potentiodynamic polarisation studies were carried out in aerated and deaerated neutral 3.0 Wt per cent NaCl solution and instantaneous corrosion current density of the plated alloy was determined and compared with the Monel-400 alloy. It was found that nanocrystalline pulse current-N,-35 8 Wt p;r cent copper alloy uxh~bitedlo wer instantaneous value of corros~onc urrent densirv than that of soeclrnens with direct current method and Monel-400 allov The d~ssolut~on ~ ~~~~-~ behaviour ofthe deposited nanocrystalline material was found to be more like general corrosion rather than localised corrosion as in the case of Monel-400 alloy.

  12. Intermetallic compounds, copper and palladium alloys in Au-Pd ore of the Skaergaard pluton, Greenland

    Science.gov (United States)

    Rudashevsky, N. S.; Rudashevsky, V. N.; Nielsen, T. F. D.

    2015-12-01

    Copper-palladium intermetallic compounds and alloys (2314 grains) from the Au-Pd ore of the Skaergaard layered gabbroic pluton have been studied. Skaergaardite PdCu, nielsenite PdCu3, (Cu,Pd)β, (Cu,Pd)α, (Pd,Cu,Au,Pt) alloys, and native palladium have been identified as a result of 1680 microprobe analyses. The average compositions and various chemical varieties of these minerals are characterized, as well as vertical and lateral zoning in distribution of noble metals. The primary Pd-Cu alloys were formed within a wide temperature interval broadly synchronously with cooling and crystallization of host gabbro and in close association with separation of Fe-Cu sulfide liquid. In the course of crystallization of residual gabbroic melt enriched in iron, noble and heavy metals and saturated with the supercritical aqueous fluid, PGE and Au are selectively concentrated in the Fe-Cu sulfide phase as Pd-Cu and Cu-Au alloys.

  13. Growth of a Copper-Gold Alloy Phase by Bulk Copper Electrodeposition on Gold Investigated by In Situ STM

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per

    1995-01-01

    Simultaneous in situ scanning tunneling microscopy measurements and recordings of voltammograms were used to study in real time the initial cycles of potentiostatic copper electrodeposition and subsequent dissolution on a clean gold polycrystalline electrode. The cycles were carried out by sweeping...... the potential in the double-layer charging region from 500 to -100 mV and back to 500 mV at a sweep rate of 1 mV/s in an acidified copper sulfate electrolyte (0.01M H2SO4, 0.01M CuSO4, and Millipore water). After completion of the first cycle the gold surface had recrystallized and nuclei of an alloy phase were...... formed. After completion of subsequent cycles the distribution of crystallite dimensions and the shape of the crystallites changed and the growth was compared with features of concomitant voltammograms. Relations between charge densities and potentials were deduced from data of the voltammograms. A shift...

  14. Diffusion Bonding of Tungsten to Copper and Its Alloy with Ti Foil and Ti/Ni/Ti Multiple Interlayers

    Institute of Scientific and Technical Information of China (English)

    Guisheng ZOU; Jun YANG; Aaiping WU; Genghua HUANG; Deku ZHANG; Jialie REN; Qing WANG

    2003-01-01

    Ti foil and Ti/Ni/Ti multiple interlayers were selected for the bonding of tungsten to copper and CuCrZr alloy. Theeffects of processing conditions on the microstructures and shear strength of the joints were investigated.

  15. Understanding H isotope adsorption and absorption of Al-alloys using modeling and experiments (LDRD: #165724)

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Donald K. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Zhou, Xiaowang [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Karnesky, Richard A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Kolasinski, Robert [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Foster, Michael E. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Thurmer, Konrad [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Chao, Paul [Carnegie Mellon University, Pittsburgh, PA (United States); Epperly, Ethan Nicholas [Livermore Valley Charter Preparatory High School, Livermore, CA (United States); Zimmerman, Jonathan A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Wong, Bryan M. [Univ. of California, Riverside, CA (United States); Sills, Ryan B. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    Current austenitic stainless steel storage reservoirs for hydrogen isotopes (e.g. deuterium and tritium) have performance and operational life-limiting interactions (e.g. embrittlement) with H-isotopes. Aluminum alloys (e.g.AA2219), alternatively, have very low H-isotope solubilities, suggesting high resistance towards aging vulnerabilities. This report summarizes the work performed during the life of the Lab Directed Research and Development in the Nuclear Weapons investment area (165724), and provides invaluable modeling and experimental insights into the interactions of H isotopes with surfaces and bulk AlCu-alloys. The modeling work establishes and builds a multi-scale framework which includes: a density functional theory informed bond-order potential for classical molecular dynamics (MD), and subsequent use of MD simulations to inform defect level dislocation dynamics models. Furthermore, low energy ion scattering and thermal desorption spectroscopy experiments are performed to validate these models and add greater physical understanding to them.

  16. Isotopic tracing of ore-forming source materials for Dexing porphyry copper deposit of Jiangxi, China

    Institute of Scientific and Technical Information of China (English)

    Peng QIAN; Jianjun LU

    2008-01-01

    Dexing copper deposit is the biggest porphyry copper deposit in China. By researching isotopes of C,Si and Cu from the samples of Tongchang and Fujiawu ore-field, the authors found that δ13CPDB values of siderite were close to the δ13CPDB value of original magma; δ30Si values of the samples at the ore-forming stage were close to the δ30Si value range of magma, δ30Si values of partial samples were far away from it; Cu isotopic compositions of massive chalcopyrite formed at the early ore-forming stage are higher than that of veinal chalcopyrite formed at the later ore-forming stage. The results show that ore-forming materials were mainly derived from the porphyry body, and part of them were from wall rock materials.

  17. Microstructures of erbium modified aluminum-copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berghof-Hasselbaecher, Ellen; Schmidt, Gerald; Galetz, Mathias; Schuetze, Michael [DECHEMA-Forschungsinstitut, Frankfurt am Main (Germany); Masset, Patrick J. [Fraunhofer UMSICHT-ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany); Zhang, Ligang [Technische Univ. Bergakademie Freiberg (Germany). ZIK Virtuhcon; Liu, Libin; Jin, Zhanpeng [Central South Univ., Changsha, Hunan (China)

    2012-07-01

    Alloying with rare earth metals improves to the mechanical properties and corrosion resistance of aluminium base alloys at high temperatures. The rare earth metal erbium may be used for grain refinement. Within a project of computer-aided alloy development based on the CALPHAD (CALculation of PHAse Diagrams) method various alloys were melted on the Al-rich side of the ternary system Al-Cu-Er under argon atmosphere and their microstructures were characterized in the as-cast state or after long-term isothermal annealing (400 C/960 h) by means of different investigation techniques. As a result, the phases fcc (Al), {tau}{sub 1}-Al{sub 8}Cu{sub 4}Er, {theta}-CuAl{sub 2}, {eta}-CuAl, and Al{sub 3}Er were identified, their compositions and fractions were quantified, and their hardnesses were determined. The experimental obtained microstructures agree very well with the calculated solidification behaviors of the cast alloys. The knowledge gained from this work about the phase compositions and microstructures can also be utilized for the fine optimization of the phase diagram. (orig.)

  18. Furfural Hydrogenation on Alloyed Copper Catalysts With Additives of Ferrosilicium

    Directory of Open Access Journals (Sweden)

    T. K. Akilov

    2015-12-01

    Full Text Available The present work is dedicated to the study of influence of ferrosilicium additives [FA*-ferroalloy containing (% mass: 46.8 Si, ~53,0 Fe, other are (C, P, S impurities] on the activity of alloyed Gu-Al = 50-50 catalyst in the reaction of furfural hydrogenation under hydrogen pressure. Components content varied (% mass: Cu- 40...49, aluminum- 50, FA* -1.0...10.0. The catalysts were prepared from 1g alloys by leaching it with 20% of aqueous solution of caustic soda in boiling water-bath during 1 hour. The phase composition and structure of alloys were investigated by means of roentgenographic and X-ray spectrum methods.

  19. Synthesis, Characterization and Cold Workability of Cast Copper-Magnesium-Tin Alloys

    Science.gov (United States)

    Bravo Bénard, Agustín Eduardo; Martínez Hernández, David; González Reyes, José Gonzalo; Ortiz Prado, Armando; Schouwenaars Franssens, Rafael

    2014-02-01

    The use of Mg as an alloying element in copper alloys has largely been overlooked in scientific literature and technological applications. Its supposed tribological compatibility with iron makes it an interesting option to replace Pb in tribological alloys. This work describes the casting process of high-quality thin slabs of Cu-Mg-Sn alloys with different compositions by means of conventional methods. The resulting phases were analyzed using X-ray diffraction, scanning electron microscopy, optical microscopy, and energy dispersive X-ray spectroscopy techniques. Typical dendritic α-Cu, eutectic Cu2Mg(Sn) and eutectoid non-equilibrium microstructures were found. Tensile tests and Vickers microhardness show the excellent hardening capability of Mg as compared to other copper alloys in the as-cast condition. For some of the slabs and compositions, cold rolling reductions of over 95 pct have been easily achieved. Other compositions and slabs have failed during the deformation process. Failure analysis after cold rolling reveals that one cause for brittleness is the presence of casting defects such as microshrinkage and inclusions, which can be eliminated. However, for high Mg contents, a high volume fraction of the intermetallic phase provides a contiguous path for crack propagation through the connected interdendritic regions.

  20. Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy

    Science.gov (United States)

    Wang, Zidong; Wang, Xuewen; Wang, Qiangsong; Shih, I.; Xu, J. J.

    2009-02-01

    In situ iron nanoparticle reinforced Cu-3Sn-8Zn-6Pb alloy has been fabricated by centrifugal casting in a vacuum chamber with a medium frequency electrical furnace. The microstructure of this alloy was analyzed with a scanning electron microscope (SEM) and a high-resolution transmission electron microscope (HRTEM), and the results show that the grains of Cu-3Sn-8Zn-6Pb alloy without iron have a typical dendrite structure with dimensions from 500 to 1500 µm, and the grains of the alloy with the addition of 1% iron are small and equiaxed, with dimensions from 20 to 60 µm. Then, the relatively uniform dispersed particles in the copper matrix were identified with the HRTEM to be pure iron with dimensions in the order of 2-20 nm. The mechanical properties of the alloys were measured and the results show a significant increase in the tensile strength of the alloy with iron nanoparticles and a slight increase of the elongation compared to that without iron. The mechanism of formation of the iron nanoparticles was analyzed by thermodynamic and dynamic theories, and the results indicate that the in situ iron nanoparticles of Cu-3Sn-8Zn-6Pb alloy can reasonably form during solidification in the centrifugal casting technique.

  1. Study on improved tribological properties by alloying copper to CP-Ti and Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Ma, Zheng [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Song, Jian [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Yang, Ke [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti–5Cu and Ti–6Al–4V–5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO{sub 2} counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti{sub 2}Cu intermetallic compounds appeared in both Ti–5Cu and Ti–6Al–4V–5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti–5Cu and Ti–6Al–4V–5Cu alloys due to the precipitation of Ti{sub 2}Cu. The results also indicated that both CP-Ti and Ti–5Cu behaved better wear resistance than Ti–6Al–4V and Ti–6Al–4V–5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti–5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti–6Al–4V and Ti–6Al–4V–5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types. - Highlights: • Ti–5Cu and Ti–6Al–4V–5Cu alloys were fabricated with Cu additive. • Precipitations of Ti{sub 2}Cu intermetallic compounds appeared after alloying Cu. • The precipitation of Ti{sub 2}Cu improved both friction and wear resistance. • Plowing was the dominant material removal force with severe plowing phenomenon. • Different dominant and secondary wear mechanisms appeared with different hardness.

  2. Undercooling and demixing of copper-based alloys

    DEFF Research Database (Denmark)

    Kolbe, M.; Brillo, J.; Egry, I.

    2006-01-01

    Since the beginning of materials science research under microgravity conditions immiscible alloys have been an interesting subject. New possibilities to investigate such systems are offered by containerless processing techniques. Of particular interest is the ternary system Cu-Fe-Co, and its limi...

  3. Hardness analysis and morphological characterization of copper-zinc alloys produced in pyrophosphate-based electrolytes

    Directory of Open Access Journals (Sweden)

    Lilian Ferreira de Senna

    2005-09-01

    Full Text Available In this work, copper-zinc alloy coatings on mild steel substrates were obtained in nontoxic pyrophosphate-based electrolytes, at room temperature and under continuous current. The effects of bath composition and current density on the hardness of the coatings, as well as on their morphologies, were evaluated. The results showed that the electrolyte composition, and the use of stress relieving additives strongly influence the hardness of the coatings, while the current density directly affect their morphology. Hence, for a current density of 116 A/m², copper-zinc alloy deposits with no pores or cracks were produced in a pyrophosphate-based electrolyte, especially when allyl alcohol was added to the solution.

  4. Effect of combined deformation on the structure and properties of copper and titanium alloys

    Science.gov (United States)

    Stolyarov, V. V.; Pashinskaya, E. G.; Beigel'Zimer, Ya. E.

    2010-10-01

    The effect of a combination scheme of severe plastic deformation and subsequent cold rolling or electroplastic rolling on the deformability, microstructural evolution, and mechanical properties of copper, titanium of various purities, and a titanium alloy of an equiatomic composition is studied. The combined deformation method is shown to create a number of new nanostructured and ultrafine-grained states with a high strength and ductility.

  5. Selective separation of copper over solder alloy from waste printed circuit boards leach solution.

    Science.gov (United States)

    Kavousi, Maryam; Sattari, Anahita; Alamdari, Eskandar Keshavarz; Firozi, Sadegh

    2017-02-01

    The printed circuit boards (PCBs) from electronic waste are important resource, since the PCBs contain precious metals such as gold, copper, tin, silver, platinum and so forth. In addition to the economic point of view, the presence of lead turns this scrap into dangerous to environment. This study was conducted as part of the development of a novel process for selective recovery of copper over tin and lead from printed circuit boards by HBF4 leaching. In previous study, Copper with solder alloy was associated, simultaneously were leached in HBF4 solution using hydrogen peroxide as an oxidant at room temperature. The objective of this study is the separation of copper from tin and lead from Fluoroborate media using CP-150 as an extractant. The influence of organic solvent's concentration, pH, temperature and A/O phase ratio was investigated. The possible extraction mechanism and the composition of the extracted species have been determined. The separation factors for these metals using this agent are reported, while efficient methods for separation of Cu (II) from other metal ions are proposed. The treatment of leach liquor for solvent extraction of copper with CP-150 revealed that 20% CP-150 in kerosene, a 30min period of contact time, and a pH of 3 were sufficient for the extraction of Cu(II) and 99.99% copper was recovered from the leached solution.

  6. Chemical and isotopic provenance tracers in ancient copper and bronze artifacts: a geochemical database of copper mines

    Science.gov (United States)

    Giunti, I.; Artioli, G.; Giussani, B.; Marelli, M.; Recchia, S.; Angelini, I.; Baumgarten, B.; Omenetto, P.; Villa, I. M.

    2009-04-01

    The provenance of ore minerals used in prehistoric and historic times for copper smelting and extraction is one of the basic questions that archaeologists pose to modern analytical archaeometry [1]. To aid metal provenancing studies, a database of fully characterized Alpine copper mineralisations is being developed as the fundamental reference frame for metal extraction and diffusion in the past. In the early stages of the project, some of the most well known copper deposits in the Western Alps were selected and compared with very different minerogenetic deposits from the French Queyras (Saint Veran) and the Ligurian Apennines (Libiola, Monte Loreto). The fully characterized samples were then analysed by ICP-QMS (inductively coupled plasma-quadrupolar mass spectrometry). The abundances of about 60 minor and trace elements, including most transition metals and chalcophile elements, and the rare earths were measured in all samples. Furthermore, the feasibility of the routine reliable measurement of the 65Cu/63Cu isotope ratio [2] and its eventual use as a possible ore tracer was tested. Multicollector ICP-Mass Spectrometry was used to determine precise Pb isotopic ratios (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) and is being used for 65Cu/63Cu ratios as well. Advanced strategies based on multivariate analysis were then used to discriminate the ore mineral provenance. Data were treated with the chemometric software "The Unscrambler Version 9.5" (CAMO AS, Trondheim, Norway). Data pre-treatment, PCA [3] and PLS-DA [4,5] models were performed as implemented in the software. The availability of such unprecedented and complete amount of data of Alpine copper deposits also yields information relevant for the geochemical and minerogenetic intepretation of the deposits themselves. Application of PCA and PLS-DA to the geochemical and isotopic database proved to be a very powerful tool to discriminate the ore source areas with very little ambiguity. The applications to

  7. GRCop-84: A High Temperature Copper-based Alloy For High Heat Flux Applications

    Science.gov (United States)

    Ellis, David L.

    2005-01-01

    While designed for rocket engine main combustion chamber liners, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) offers potential for high heat flux applications in industrial applications requiring a temperature capability up to approximately 700 C (1292 F). GRCop-84 is a copper-based alloy with excellent elevated temperature strength, good creep resistance, long LCF lives and enhanced oxidation resistance. It also has a lower thermal expansion than copper and many other low alloy copper-based alloys. GRCop-84 can be manufactured into a variety of shapes such as tubing, bar, plate and sheet using standard production techniques and requires no special production techniques. GRCop-84 forms well, so conventional fabrication methods including stamping and bending can be used. GRCop-84 has demonstrated an ability to be friction stir welded, brazed, inertia welded, diffusion bonded and electron beam welded for joining to itself and other materials. Potential applications include plastic injection molds, resistance welding electrodes and holders, permanent metal casting molds, vacuum plasma spray nozzles and high temperature heat exchanger applications.

  8. Grain refinement of permanent mold cast copper base alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sadayappan, M.; Thomson, J. P.; Elboujdaini, M.; Gu, G. Ping; Sahoo, M.

    2004-04-29

    Grain refinement behavior of copper alloys cast in permanent molds was investigated. This is one of the least studied subjects in copper alloy castings. Grain refinement is not widely practiced for leaded copper alloys cast in sand molds. Aluminum bronzes and high strength yellow brasses, cast in sand and permanent molds, were usually fine grained due to the presence of more than 2% iron. Grain refinement of the most common permanent mold casting alloys, leaded yellow brass and its lead-free replacement EnviroBrass III, is not universally accepted due to the perceived problem of hard spots in finished castings and for the same reason these alloys contain very low amounts of iron. The yellow brasses and Cu-Si alloys are gaining popularity in North America due to their low lead content and amenability for permanent mold casting. These alloys are prone to hot tearing in permanent mold casting. Grain refinement is one of the solutions for reducing this problem. However, to use this technique it is necessary to understand the mechanism of grain refinement and other issues involved in the process. The following issues were studied during this three year project funded by the US Department of Energy and the copper casting industry: (1) Effect of alloying additions on the grain size of Cu-Zn alloys and their interaction with grain refiners; (2) Effect of two grain refining elements, boron and zirconium, on the grain size of four copper alloys, yellow brass, EnviroBrass II, silicon brass and silicon bronze and the duration of their effect (fading); (3) Prediction of grain refinement using cooling curve analysis and use of this method as an on-line quality control tool; (4) Hard spot formation in yellow brass and EnviroBrass due to grain refinement; (5) Corrosion resistance of the grain refined alloys; (6) Transfer the technology to permanent mold casting foundries; It was found that alloying elements such as tin and zinc do not change the grain size of Cu-Zn alloys

  9. Structure and Properties of Cast Near-Congruent Copper-Manganese Alloys

    Science.gov (United States)

    Chaput, Kevin; Trumble, Kevin P.

    2014-10-01

    Microstructure development in the casting of copper-manganese alloys based on the congruent point at 34.6 wt pct Mn and 1146 K (873 °C) has been studied. The alloys were prepared by induction melting of electrolytic Cu and Mn in clay-graphite crucibles in open air. Under conventional casting conditions, the alloys exhibit fine cellular (non-dendritic) solidification morphology with a distinct absence of solidification shrinkage microporosity, and they maintain these attributes over a composition range of approximately 3 wt pct Mn about the congruent point. The high Mn concentration in the alloy admits carbon into solution in the melt, resulting in formation of manganese carbide Mn7C3 particles having two different forms (globular and angular) in the cast microstructure. The Mn carbide was eliminated or controlled to low levels by melting in an alumina or a silicon carbide crucible, or in a clay-graphite crucible at lower temperatures. Microstructure development in casting the alloy was analyzed in terms of the available phase diagrams and thermochemical data. Hardness and tensile testing indicated a potent solid solution strengthening effect of Mn and high ductility in the as-cast condition, with additional hardness (strength) when the alloy contains the Mn carbide phase.

  10. Simulation of aging process of lead frame copper alloy by an artificial neural network

    Institute of Scientific and Technical Information of China (English)

    苏娟华; 董企铭; 刘平; 李贺军; 康布熙

    2003-01-01

    The aging hardening process makes it possible to get higher hardness and electrical conductivity of lead frame copper alloy.The process has only been studied empirically by trial-and-error method so far.The use of a supervised artificial neural network(ANN)was proposed to model the non-linear relationship between parameters of aging process with respect to hardness and conductivity properties of Cu-Cr-Zr alloy.The improved model was developed by the Levenberg-Marquardt training algorithm.A basic repository on the domain knowledge of aging process was established via sufficient data mining by the network.The results show that the ANN system is effective and successful for predicting and analyzing the properties of Cu-Cr-Zr alloy.

  11. Hydrogen-environment-assisted cracking of an aluminum-zinc-magnesium(copper) alloy

    Science.gov (United States)

    Young, George Aloysius, Jr.

    There is strong evidence to indicate that hydrogen embrittlement plays a significant, if not controlling, role in the environmentally assisted cracking of 7XXX series aluminum alloys. In order to better understand hydrogen environment assisted cracking (HEAC), crack growth rate tests in the K-independent stage II crack growth regime were conducted on fracture mechanics specimens of an Al-6.09Zn-2.14Mg-2.19Cu alloy (AA 7050) and a low copper variant (Al-6.87Zn-2.65Mg-0.06Cu). Crack growth rate tests were performed in 90% relative humidity (RH) air between 25 and 90°C to assure hydrogen embrittlement control. The underaged, peak aged, and overaged tempers were investigated. Hydrogen uptake in humid air, hydrogen diffusion, and hydrogen trapping were investigated for each temper. Lastly, near crack tip hydrogen concentration depth profiles were analyzed via nuclear reaction analysis (NRA) and secondary ion mass spectroscopy (SIMS) using a liquid gallium, focused ion beam sputtering source (FIB/SIMS). The results of this study help explain and quantify empirically known trends concerning HEAC resistance and also establish new findings. In the copper bearing alloy, overaged tempers are more resistant but not immune to HEAC. Humid air is an aggressive environment for Al-Zn-Mg alloys because water vapor reacts with bare aluminum to produce high surface concentrations of hydrogen. This occurs in all tempers. Hydrogen diffuses from the near surface region to the high triaxial stress region ahead of the crack tip and collects at the high angle grain boundaries. The combination of tensile stress and high hydrogen concentration at the grain boundaries then causes intergranular fracture. Crack extension bares fresh metal and the process of hydrogen production, uptake, diffusion to the stressed grain boundary, and crack extension repeats. One reason increased degree of aging improves HEAC resistance in copper bearing 7XXX series alloys is that volume lattice and effective

  12. Copper and lead isotopic and metallic pollution record in soils from the Kombat mining area, Namibia

    Science.gov (United States)

    Mihaljevic, Martin; Ettler, Vojtech; Vanek, Ales; Chrastny, Vladislav; Kribek, Bohdan; Penizek, Vit; Sracek, Ondrej

    2013-04-01

    Copper (Cu) and lead (Pb) concentration, isotopic composition (206Pb/207Pb, 65Cu/63Cu) and speciation were studied in soils from the Kombat mining area. The Cu and Pb concentrations in the studied soils ranged between 21 mg/kg - 757 mg/kg, and 19 mg/kg - 815 mg/kg respectively. In the sequential extractions, the largest part of soil Cu appeared in the residual and reducible fractions and Pb was predominantly bound in reducible and residual fractions and was more mobile compared to Cu. Copper and Pb concentration are higher in soils close to the slime deposit. Concentration of both metals increased with increasing soil depth in irrigated and cultivated soils. In soils not contaminated by dust eroded from the slime deposit, Cu and Pb contents are not dependent on the soil depth. The Pb isotopic signatures (206Pb/207Pb) ranged between 1.15 - 1.21 in soils from the Kombat area. In most of soil samples, surface horizons exhibited lower 206Pb/207Pb ratio, which originates from the slime dust pollution (206Pb/207Pb ~ 1.15) compared to deeper soil horizons, with lithogenic Pb signatures (206Pb/207Pb > 1.2). Isotopic composition of Cu differs on contaminated and uncontaminated sites and cultivated and non-cultivated sites. The δ65Cu in the studied soil horizon ranged between -0.373 ‰ and 0.561 ‰. The most pronounced variations occurred in contaminated non cultivated and non-irrigated soils (0.529 ‰). The contaminated top horizons are enriched in isotopically heavier Cu (tailing materials), and δ65Cu decreased with depth. Irrigated (cultivated) and contaminated soils exhibited heavier Cu in the surface horizons (originated from tailing dust δ65Cu = 0.260), decrease of δ65Cu in Bt horizons (biological uptake of light isotope by crop, and their incorporation in this horizons) and increase of δ65Cu in Bc horizons. The Bc horizons of cultivated and irrigated Phaeozems are enriched in Mn nodules (0.2 - 1.5 cm diameter, prevailing Mn phase pyrochroite Mn(OH)2) which

  13. Atomic and magnetic correlations in a copper - 5% manganese alloy

    Energy Technology Data Exchange (ETDEWEB)

    Murani, A.P.; Schaerpf, O.; Andersen, K. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Raphel, R. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France)

    1997-04-01

    Interest in magnetism of Cu-Mn alloys has been revived and sustained by a number of very interesting neutron investigations on single-crystal samples which show `spin-density wave` (SDW) peaks at incommensurate wave-vectors. Recently such peaks have been observed even in very dilute samples with Mn concentration as low as {approx} 0.5 at.%. The proposed interpretation by the authors that these peaks represent incommensurate antiferromagnetic ordering, therefore, questions the widely-held view that at low enough temperatures the solute spins in this and similar alloys freeze with random or quasi-random orientations, forming a spin-glass state. Atomic and magnetic correlations have been investigated in a single crystal of Cu-5 at.% Mn within the first Brillouin zone using polarised neutrons and making use of the multi-angle three-dimensional polarisation analysis capability of the D7 spectrometer as a firs step in our aim to shed further light on the phenomenon. (author). 6 refs.

  14. Computer Advisory System in the Domain of Copper Alloys Manufacturing

    Directory of Open Access Journals (Sweden)

    Wilk-Kołodziejczyk D.

    2015-09-01

    Full Text Available The main scope of the article is the development of a computer system, which should give advices at problem of cooper alloys manufacturing. This problem relates with choosing of an appropriate type of bronze (e.g. the BA 1044 bronze with possible modification (e.g. calcium carbide modifications: Ca + C or CaC2 and possible heat treatment operations (quenching, tempering in order to obtain desired mechanical properties of manufactured material described by tensile strength - Rm, yield strength - Rp0.2 and elongation - A5. By construction of the computer system being the goal of presented here work Case-based Reasoning is proposed to be used. Case-based Reasoning is the methodology within Artificial Intelligence techniques, which enables solving new problems basing on experiences that are solutions obtained in the past. Case-based Reasoning also enables incremental learning, because every new experience is retained each time in order to be available for future processes of problem solving. Proposed by the developed system solution can be used by a technologist as a rough solution for cooper alloys manufacturing problem, which requires further tests in order to confirm it correctness.

  15. High-performance copper alloy films for barrierless metallization

    Science.gov (United States)

    Lin, C. H.; Leau, W. K.; Wu, C. H.

    2010-11-01

    In this study, we observe useful properties of V1.1- and V0.8N0.4-bearing copper (Cu) films deposited on barrierless silicon (Si) substrates by a cosputtering process. The Cu98.8(V0.8N0.4), or Cu(VNx) for brevity, films exhibit low resistivity (2.9 μΩ cm) and minimal leakage current after annealing at temperatures up to 700 °C for 1 h; no detectable reaction occurs at the Cu/Si interface. These observations confirm the high thermal stability of Cu(VNx) films. Furthermore, since these films have good adhesion features, they can be used for barrierless Cu metallization.

  16. Friction stir welding (FSW process of copper alloys

    Directory of Open Access Journals (Sweden)

    M. Miličić

    2016-01-01

    Full Text Available The present paper analyzes the structure of the weld joint of technically pure copper, which is realized using friction stir welding (FSW. The mechanism of thermo-mechanical processes of the FSW method has been identified and a correlation between the weld zone and its microstructure established. Parameters of the FSW welding technology influencing the zone of the seam material and the mechanical properties of the resulting joint were analyzed. The physical joining consists of intense mixing the base material along the joint line in the “doughy” phase. Substantial plastic deformations immediately beneath the frontal surface of tool provide fine-grained structure and a good quality joint. The optimum shape of the tool and the optimum welding regime (pressure force, rotation speed and the traverse speed of the tool in the heat affected zone enable the achievement of the same mechanical properties as those of the basic material, which justifies its use in welding reliable structures.

  17. Effect of cold rolling on properties and microstructures of dispersion strengthened copper alloys

    Institute of Scientific and Technical Information of China (English)

    GUO Ming-xing; WANG Ming-pu; SHEN Kun; CAO Ling-fei; LEI Ruo-shan; LI Shu-mei

    2008-01-01

    Mechanical properties and microstructures of unidirectionally and tandem rolled alumina dispersion strengthened copper(ADSC) alloys under different conditions were investigated by tensile test, optical microscopy(OM), transmission electron microscopy(TEM) and scanning electron microscopy(SEM). For unidirectionally rolled ADSC alloys, their strengths and elongations in the longitudinal direction are higher than those in the transverse direction under both cold rolling and annealing conditions. Once fracture appears in their longitudinal stress-strain curves, sudden reduction of overall stress level before complete fracture can be observed in the transverse tensile curves. The anisotropy of mechanical properties for the ADSC alloy can be greatly improved by tandem cold rolling. And no sudden reduction of overall stress level appears in the stress-strain curves for tandem rolled ADSC alloys. The differences of their microstructures and tensile fractures were analyzed. In order to compare the differences of tensile fracture mechanism in different directions, longitudinal and transverse fracture models for unidirectionally rolled ADSC alloys were also introduced.

  18. Copper alloys with improved properties: standard ingot metallurgy vs. powder metallurgy

    Directory of Open Access Journals (Sweden)

    Milan T. Jovanović

    2014-09-01

    Full Text Available Three copper-based alloys: two composites reinforced with Al2O3 particles and processed through powder metallurgy (P/M route, i.e. by internal oxidation (Cu-2.5Al composite and by mechanical alloying (Cu-4.7Al2O3 and Cu-0.4Cr-0.08Zr alloy produced by ingot metallurgy (vacuum melting and casting were the object of this investigation. Light microscope and scanning electron microscope (SEM equipped with electron X-ray spectrometer (EDS were used for microstructural characterization. Microhardness and electrical conductivity were also measured. Compared to composite materials, Cu-0.4Cr-0.08Zr alloy possesses highest electrical conductivity in the range from 20 to 800 ℃, whereas the lowest conductivity shows composite Cu-2.5Al processed by internal oxidation. In spite to somewhat lower electrical conductivity (probably due to inadequate density, Cu-2.5Al composite exhibits thermal stability enabling its application at much higher temperatures than materials processed by mechanical alloying or by vacuum melting and casting.

  19. An austempering study of ductile iron alloyed with copper

    Directory of Open Access Journals (Sweden)

    OLIVERA ERIC

    2005-07-01

    Full Text Available Austempered ductile iron (ADI has proved to be an excellent material as it possesses attractive properties: high strength, ductility and toughness are combined with good wear resistance and machinability. These properties can be achieved upon adequate heat treatment which yields the optimum microstructure for a given chemical composition. In this paper the results of an investigation the austempering of ADI alloyed with 0.45 % Cu for a range of times and temperatures are reported. The microstructure and fracture mode developed throughout these treatments have been identified by means of light and scanning electron microscopy and X-ray diffraction analysis. It was shown that the strength, elongation and impact energy strongly depend on the amounts of bainitic ferrite and retained austenite. Based on these results, and optimal processing window was established.

  20. Development of Beryllium-Copper Alloy Ignition Capsules

    Science.gov (United States)

    Cooley, Jason; Alexander, David; Thoma, Daniel; Field, Robert; Day, Robert; Cameron, Bernard; Nobile, Arthur; Rivera, Gerald; Kelly, Ann; Papin, Pallas; Schulze, Roland; Dauelsberg, Lawrence; Alexander, Neil; Galix, Remy

    2004-11-01

    Cu-doped Be capsules are being developed for ignition on the National Ignition Facility (NIF). Our fabrication approach is based on bonding of cylindrical parts containing precision machined hemispherical cavities, followed by machining an external spherical contour to produce a spherical shell. While we have demonstrated this approach, there are several key issues that need to be resolved before a shell meeting NIF specifications can be produced. These issues are synthesis of high purity small grain size Be0.9at%Cu alloy, formation of a strong hemishell bond that will allow the capsule to contain its 400 atm fill gas at room temperature, precision machining and polishing of the capsule to meet stringent specifications for surface finish and spherical quality, and filling with DT. In this paper we report on the progress that has been made in resolving these key issues.

  1. Tensile and electrical properties of high-strength high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    Electrical conductivity and tensile properties have been measured on an extruded and annealed CuCrNb dispersion strengthened copper alloy which has been developed for demanding aerospace high heat flux applications. The properties of this alloy are somewhat inferior to GlidCop dispersion strengthened copper and prime-aged CuCrZr over the temperature range of 20--500 C. However, if the property degradation in CuCrZr due to joining operations and the anisotropic properties of GlidCop in the short transverse direction are taken into consideration, CuCrNb may be a suitable alternative material for high heat flux structural applications in fusion energy devices. The electrical conductivity and tensile properties of CuCrZr that was solution annealed and then simultaneously aged and diffusion bonded are also summarized. A severe reduction in tensile elongation is observed in the diffusion bonded joint, particularly if a thin copper shim is not placed in the diffusion bondline.

  2. Nucleation, wetting and agglomeration of copper and copper-alloy thin films on metal liner surfaces

    Science.gov (United States)

    LaBarbera, Stephanie Florence

    One of the key challenges in fabricating narrower and higher aspect ratio interconnects using damascene technology has been achieving an ultra-thin (˜2 nm) and continuous Cu seed coverage on trench sidewalls. The thin seed is prone to agglomeration because of poor Cu wetting on the Ta liner. Using in-situ conductance measurements, the effect of lowering the substrate temperature during Cu seed deposition has been studied on tantalum (Ta) and ruthenium (Ru) liner surfaces. On a Ta surface, it was found that lowering the deposition temperature to --65°C increases the nucleation rate of the Cu thin film, and reduces the minimum coalescing thickness for Cu on Ta liner from ˜4.5 nm (at room temperature) to ˜2 nm. On a Ru surface, Cu coalesces at wetting angle, coalescing thickness, and agglomeration resistance of thin Cu-3% Au, Cu-3% Mn, and Cu-3% Al layers on a Ta liner surface have been studied. It was found that the alloying increases the wetting angle of Cu on Ta at high temperature, as a result of either reduction in Cu alloy surface energy, solute surface segregation, or solute-liner interactions. In addition, the Cu alloys were found to be less agglomeration resistive as compared to pure Cu; their smaller grain size, interaction with the liner surface, and tendency to oxidize were found to accelerate their agglomeration. The coalescing thickness of the Cu alloys was found to be reduced from that of Cu (˜4.5 nm) to ˜2 nm.

  3. Model kekuatan geser dan kekuatan tarik perlekatan copper alloy dengan resin akrilik setelah tin plating (Tensile strength and shear strength models bonds in between copper alloy and acrylic resin after tin plating

    Directory of Open Access Journals (Sweden)

    Endanus Harijanto

    2005-09-01

    Full Text Available Tooth crown restoration was made in a complex system consisting of several elements, namely tensile strength and shear strength bond between copper alloy and acrylic resin after tin plating. The aim of this exemination was to find a model representing connection between tensile strength and shear strength in between copper alloy with acrylic resin in statistic method. In conclusion, this exemination utilizing a strength model = 0.645 + 1.237 × tensile strength resulted shear strength exemination. On the other hand, the utilization of a strength = –0.506 + 0.808 × shear strength resulted tensile strength exemination.

  4. Microstructural Evolution and Mechanical Property Development of Selective Laser Melted Copper Alloys

    Science.gov (United States)

    Ventura, Anthony Patrick

    Selective Laser Melting (SLM) is an additive manufacturing technology that utilizes a high-power laser to melt metal powder and form a part layer-by-layer. Over the last 25 years, the technology has progressed from prototyping polymer parts to full scale production of metal component. SLM offers several advantages over traditional manufacturing techniques; however, the current alloy systems that are researched and utilized for SLM do not address applications requiring high electrical and thermal conductivity. This work presents a characterization of the microstructural evolution and mechanical property development of two copper alloys fabricated via SLM and post-process heat treated to address this gap in knowledge. Tensile testing, conductivity measurement, and detailed microstructural characterization was carried out on samples in the as-printed and heat treated conditions. A single phase solid solution strengthened binary alloy, Cu-4.3Sn, was the first alloy studied. Components were selectively laser melted from pre-alloyed Cu-4.3Sn powder and heat treated at 873 K (600 °C) and 1173 K (900 °C) for 1 hour. As-printed samples were around 97 percent dense with a yield strength of 274 MPa, an electrical conductivity of 24.1 %IACS, and an elongation of 5.6%. Heat treatment resulted in lower yield strength with significant increases in ductility due to recrystallization and a decrease in dislocation density. Tensile sample geometry and surface finish also showed a significant effect on measured yield strength but a negligible change in measured ductility. Microstructural characterization indicated that grains primarily grow epitaxially with a sub-micron cellular solidification sub-structure. Nanometer scale tin dioxide particles identified via XRD were found throughout the structure in the tin-rich intercellular regions. The second alloy studied was a high-performance precipitation hardening Cu-Ni-Si alloy, C70250. Pre-alloyed powder was selectively laser melted to

  5. Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys.

    Science.gov (United States)

    Abdullayev, Elshad; Abbasov, Vagif; Tursunbayeva, Asel; Portnov, Vasiliy; Ibrahimov, Hikmat; Mukhtarova, Gulbaniz; Lvov, Yuri

    2013-05-22

    Halloysite clay nanotubes loaded with corrosion inhibitors benzotriazole (BTA), 2-mercaptobenzimidazole (MBI), and 2-mercaptobenzothiazole (MBT) were used as additives in self-healing composite paint coating of copper. These inhibitors form protective films on the metal surface and mitigate corrosion. Mechanisms involved in the film formation have been studied with optical and electron microscopy, UV-vis spectrometry, and adhesivity tests. Efficiency of the halloysite lumen loading ascended in the order of BTA paint layer for a long time and release was enhanced in the coating defects exposed to humid media with 20-50 h, sufficient for formation of protective layer. Anticorrosive performance of the halloysite-based composite acrylic and polyurethane coatings have been demonstrated for 110-copper alloy strips exposed to 0.5 M aqueous NaCl for 6 months.

  6. Increasing the life of molds for casting copper and its alloys

    Science.gov (United States)

    Smirnov, A. N.; Spiridonov, D. V.

    2010-12-01

    The work of the molds intended for casting copper and copper alloys in semicontinuous casters for producing flat billets is considered. It is shown that, to increase the resistance of mold plates, the inner space of the mold should have a taper shape toward the casting direction and take into account the shrinkage of the linear dimensions of the ingot during its motion in the mold. The taper shape increases the intensity and uniformity of heat removal due to close contact between the ingot and the mold inner surface. Testing of new design molds under industrial conditions demonstrates that their resistance increases by a factor of 4.0-4.5. The taper effect of the mold plates is much more pronounced in their narrow faces.

  7. Tensile and electrical properties of copper alloys irradiated in a fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fabritsiev, S.A. [D.V. Efremov Inst., St. Petersburg (Russian Federation); Pokrovsky, A.S. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Zinkle, S.J.; Rowcliffe, A.F. [Oak Ridge National Laboratory, TN (United States)] [and others

    1996-04-01

    Postirradiation electrical sensitivity and tensile measurements have been completed on pure copper and copper alloy sheet tensile specimens irradiated in the SM-2 reactor to doses of {approx}0.5 to 5 dpa and temperatures between {approx}80 and 400{degrees}C. Considerable radiation hardening and accompanying embrittlement was observed in all of the specimens at irradiation temperature below 200{degrees}C. The radiation-induced electrical conductivity degradation consisted of two main components: solid transmutation effects and radiation damage (defect cluster and particle dissolution) effects. The radiation damage component was nearly constant for the doses in this study, with a value of {approx}1.2n{Omega}m for pure copper and {approx}1.6n{Omega}m for dispersion strengthened copper irradiated at {approx}100{degrees}C. The solid transmutation component was proportional to the thermal neutron flux, and became larger than the radiation damage component for fluences larger than {approx}5 10{sup 24} n.m{sup 2}. The radiation hardening and electrical conductivity degradation decreased with increasing irradiation temperature, and became negligible for temperatures above {approx}300{degrees}C.

  8. Room temperature creep-fatigue response of selected copper alloys for high heat flux applications

    DEFF Research Database (Denmark)

    Li, M.; Singh, B.N.; Stubbins, J.F.

    2004-01-01

    Two copper alloys, dispersion-strengthened CuAl25 and precipitation-hardened CuCrZr, were examined under fatigue and fatigue with hold time loading conditions. Tests were carried out at room temperature and hold times were imposed at maximum tensile and maximum compressive strains. It was found...... times. The influence of hold times on fatigue life in the low cycle fatigue, short life regime (i.e., at high strain amplitudes) was minimal. When hold time effects were observed, fatigue lives were reduced with hold times as short as two seconds. Appreciable stress relaxation was observed during...... the hold period at all applied strain levels in both tension and compression. In all cases, stresses relaxed quickly within the first few seconds of the hold period and much more gradually thereafter. The CuAl25 alloy showed a larger effect of hold time on reduction of high cycle fatigue life than did...

  9. Fretting Behavior of SPR Joining Dissimilar Sheets of Titanium and Copper Alloys

    Directory of Open Access Journals (Sweden)

    Xiaocong He

    2016-12-01

    Full Text Available The fretting performance of self-piercing riveting joining dissimilar sheets in TA1 titanium alloy and H62 copper alloy was studied in this paper. Load-controlled cyclic fatigue tests were carried out using a sine waveform and in tension-tension mode. Scanning electron microscopy and energy-dispersive X-ray techniques were employed to analyze the fretting failure mechanisms of the joints. The experimental results showed that there was extremely severe fretting at the contact interfaces of rivet and sheet materials for the joints at relatively high loads levels. Moreover, the severe fretting in the region on the locked sheet in contact with the rivet was the major cause of the broken locked sheet for the joints at low load level.

  10. Tensile properties of copper alloyed austempered ductile iron: Effect of austempering parameters

    Science.gov (United States)

    Batra, U.; Ray, S.; Prabhakar, S. R.

    2004-10-01

    A ductile iron containing 0.6% copper as the main alloying element was austenitized at 850 °C for 120 min and was subsequently austempered for 60 min at austempering temperatures of 270, 330, and 380 °C. The samples were also austempered at 330 °C for austempering times of 30 150 min. The structural parameters for the austempered alloy austenite (X γ ), average carbon content (C γ ), the product X γ C γ , and the size of the bainitic ferrite needle (d α ) were determined using x-ray diffraction. The effect of austempering temperature and time has been studied with respect to tensile properties such as 0.2% proof stress, ultimate tensile strength (UTS), percentage of elongation, and quality index. These properties have been correlated with the structural parameters of the austempered ductile iron microstructure. Fracture studies have been carried out on the tensile fracture surfaces of the austempered ductile iron (ADI).

  11. Interaction of ions in water system containing copper-zinc alloy for boiler energy saving

    Institute of Scientific and Technical Information of China (English)

    MING Xing; LIANG Jinsheng; OU Xiuqin; TANG Qingguo; DING Yan

    2006-01-01

    Copper-zinc alloy element for boiler energy saving was put in the intake of simulated boiler system to investigate the interaction and transfer of ions in water system both theoretically and experimentally. The fouling was analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray detector (EDX). The results show that the transfer of calcium and magnesium ions in heat-transfer-surface-water system is affected by zinc ions dissolved from the alloy because of primary battery reaction. Some calcium ions of calcium carbonate crystal are replaced by zinc ions, the growth of aragonite crystal nucleus is retarded, and the transition of calcium carbonate from aragonite to calcite is hampered.

  12. Structural and electrical properties of copper-nickel-aluminum alloys obtained by conventional powder metallurgy method

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Waldemar A.; Carrio, Juan A.G.; Silveira, C.R. da; Pertile, H.K.S., E-mail: fisica.cch@mackenzie.br [Universidade Presbiteriana Mackenzie (UPM/CCH), Sao Paulo, SP (Brazil). Centro de Ciencias e Humanidades. Dept. de Fisica; Silva, L.C.E. da; Buso, S.J., E-mail: jgcarrio@mackenzie.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    This work looked for to search out systematically, in scale of laboratory, copper-nickel-aluminum alloys (Cu-Ni-Al) with conventional powder metallurgy processing, in view of the maintenance of the electric and mechanical properties with the intention of getting electric connectors of high performance or high mechanical damping. After cold uniaxial pressing (1000 kPa), sintering (780 deg C) and convenient homogenization treatments (500 deg C for different times) under vacuum (powder metallurgy), the obtained Cu-Ni-Al alloys were characterized by optical microscopy, electrical conductivity, Vickers hardness. X rays powder diffraction data were collected for the sintered samples in order to a structural and microstructural analysis. The comparative analysis is based on the sintered density, hardness, macrostructures and microstructures of the samples. (author)

  13. Plastic Deformation of Copper-Based Alloy Reinforced with Incoherent Nanoparticles

    Science.gov (United States)

    Matvienko, O. V.; Daneiko, O. I.; Kovalevskaya, T. A.

    2017-06-01

    The paper deals with research carried out into plastic deformation of a heavy-wall pipe made of nanoparticle reinforced copper-based alloy. We present an original approach which combines methods of crystal plasticity and deformable solid mechanics, thereby allowing to study the stress-strain state of the heavy-wall pipe strengthened with incoherent nanoparticles using a homogeneous internal pressure. Dependences are constructed for the yielding area and the pressure, the limit of elasto-plastic resistance is obtained for the heavy-wall pipe and its deformation degree is described. It is shown that the particle size has an effect on strength properties of the material.

  14. Mechanical Properties and Friction/Wear Behavior of Copper Alloyed Powder Composites

    Institute of Scientific and Technical Information of China (English)

    DENG Chen-hong; CHEN Guang-zhi; GE Qi-lu

    2005-01-01

    Copper alloyed powder composites containing nanoparticles were developed by hot pressing. Effects of nanoscale activated sintering aid and fine ceramic particles Al2O3 on hardness, working quality, and behaviors of friction and wear of the composites have been studied, compared with the composites including microscale activated sintering aid and microscale ceramic particles. The microstructures of the samples were analyzed by SEM. The results show that the materials with nanoscale sintering aid and fine ceramic particles have better mechanical properties and abrasive resistance than the materials with microscale activated sintering aid and microceramic particles. Moreover, element mutual transfer occurs between samples (strip) and abrasive wheel (ring).

  15. —Part I. Interaction of Calcium and Copper-Calcium Alloy with Electrolyte

    Science.gov (United States)

    Zaikov, Yurii P.; Batukhtin, Victor P.; Shurov, Nikolay I.; Ivanovskii, Leonid E.; Suzdaltsev, Andrey V.

    2014-06-01

    This paper describes the interaction between calcium and molten CaCl2 and the solubility of calcium in this melt, depending on the calcium content in the copper-calcium alloy that comes in contact with the molten CaCl2. The negative influence of the dissolved calcium on the current efficiency was verified. The negative effects of moisture and CaO impurities on the calcium current efficiency were demonstrated. The dependence of the current efficiency and the purity of the metal obtained by the electrolysis conditions were studied in a laboratory electrolyzer (20 to 80 A).

  16. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    Science.gov (United States)

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  17. Experience with the use of copper alloys in seawater systems in the Norwegian sector of the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Roy [Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)

    2004-07-01

    Offshore oil and gas has been produced on the Norwegian Continental Shelf (NCS) for nearly 30 years. Seawater has been used extensively as cooling medium and firewater. Copper alloys have been an alternative material both for piping and equipment like pumps, valves, heat exchangers and screens. In this presentation the experience from the use from different oil companies will be presented. The paper will also contain a discussion about the future for copper alloys in seawater systems. This part will be based on input and discussions with senior corrosion specialists in oil companies. (authors)

  18. Effect of Na2CO3 Addition on Carbothermic Reduction of Copper Smelting Slag to Prepare Crude Fe-Cu Alloy

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Yao, Weijie; Xu, Wuqi; Chen, Jinan

    2017-09-01

    Copper smelting slag is a useful secondary resource containing high iron and copper, which can be utilized to prepare crude Fe-Cu alloy by a direct reduction-magnetic separation process for making weathering-resistant steel. However, it is difficult to recover iron and copper from the slag by direct reduction since the iron mainly occurs in fayalite and the copper is held in copper sulfide. Therefore, enhancement reduction of copper slag is conducted to improve the recovery of copper and iron. Additives such as Na2CO3 has been proven to be capable of reinforcing the reduction of refractory iron ore. In this research, the effect of Na2CO3 on the carbothermic reduction of copper slag was investigated, and phase transformations during reduction and the distributing characteristics of iron and copper in the alloy and non-metallic phases of the reduced pellets were also studied. The results show that the metallization rate of iron and copper was increased with the addition of Na2CO3, leading to higher iron and copper recovery in Fe-Cu alloy powder. X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) results confirm that Na2CO3 is capable of enhancing the reduction of fayaltie, copper silicate and copper sulfide, which agrees well with thermodynamic analysis. Furthermore, the reduction mechanism of copper slag was demonstrated based on systematic experimental observations.

  19. Microstructures and properties of Al2O3 dispersion-strengthened copper alloys prepared through different methods

    Science.gov (United States)

    Yan, Zhi-qiao; Chen, Feng; Ye, Fu-xing; Zhang, Dong-ping; Cai, Yi-xiang

    2016-12-01

    Al2O3 dispersion copper alloy powder was prepared by internal oxidation, and three consolidation methods—high-velocity compaction (HVC), hot pressing (HP), and hot extrusion (HE)—were used to prepare Al2O3 dispersion-strengthened copper (Cu-Al2O3) alloys. The microstructures and properties of these alloys were investigated and compared. The results show that the alloys prepared by the HP and HE methods exhibited the coarsest and finest grain sizes, respectively. The alloy prepared by the HVC method exhibited the lowest relative density (98.3% vs. 99.5% for HP and 100% for HE), which resulted in the lowest electrical conductivity (81% IACS vs. 86% IACS for HP and 87% IACS for HE). However, this alloy also exhibited the highest hardness (77 HRB vs. 69 HRB for HP and 70 HRB for HE), the highest compressive strength (443 MPa vs. 386 MPa for HP and 378 MPa for HE), and the best hardness retention among the investigated alloys. The results illustrate that the alloy prepared by the HVC method exhibits high softening temperature and good mechanical properties at high temperatures, which imply long service life when used as spot-welding electrodes.

  20. The Copper concentration variation to physical properties of high copper amalgam alloy

    Directory of Open Access Journals (Sweden)

    Aminatun Aminatun

    2006-09-01

    Full Text Available The function of copper (Cu inside amalgam is to increase hardness and impact force and to decrease thermal expansion coefficient. In general, amalgam which is used in dentistry and available in the market is contain Cu 22%, while the maximum Cu concentration is 30%. It is necessary to determine the concentration Cu does generate the best physical properties to be used as dental restorative agent. Amalgam is made by mixing blended-metal Ag-Sn-Cu (with Cu concentration of 13%, 21%, 22%, and 29% and Hg, stirred manually in a bowl for 15 minutes,leave it in temperature 27°C for 24 hours to become hardened. The result of X-Ray Diffractometer (XRD, analyzed by Rietveld method and Rietica program, shows amalgam with Cu 29% concentration for Cu3Sn compound density is 31.790 sma/Å3, for Ag2Hg3 compound is 41.733 sma/ Å3, a Cu3Sn relative weight percentage of 43.23%, Ag2Hg3 of 54.54%, Cu 7Hg6 of 2.23% and hardness of Cu 29% is 90.700 ± 0.005 kgf/mm2. These numbers are the highest values on Cu 29% concentrations compared to other copper concentration variants. Whereas amalgam thermal expansion coefficient on Cu 29% is (2.17 ± 0.9110-3 mm/°C is the lowest value compared to other Cu concentration. The conclution is that adding Cu concentration into amalgam will increase density value, Cu3Sn relative weight percentage, hardness level and will decrease amalgam thermal expansion coefficient. Amalgam 29% Cu concentration has better physical properties compared to amalgam Cu 22% concentration.

  1. Inactivation of murine norovirus on a range of copper alloy surfaces is accompanied by loss of capsid integrity.

    Science.gov (United States)

    Warnes, Sarah L; Summersgill, Emma N; Keevil, C William

    2015-02-01

    Norovirus is one of the most common causes of acute viral gastroenteritis. The virus is spread via the fecal-oral route, most commonly from infected food and water, but several outbreaks have originated from contamination of surfaces with infectious virus. In this study, a close surrogate of human norovirus causing gastrointestinal disease in mice, murine norovirus type 1 (MNV-1), retained infectivity for more than 2 weeks following contact with a range of surface materials, including Teflon (polytetrafluoroethylene [PTFE]), polyvinyl chloride (PVC), ceramic tiles, glass, silicone rubber, and stainless steel. Persistence was slightly prolonged on ceramic surfaces. A previous study in our laboratory observed that dry copper and copper alloy surfaces rapidly inactivated MNV-1 and destroyed the viral genome. In this new study, we have observed that a relatively small change in the percentage of copper, between 70 and 80% in copper nickels and 60 and 70% in brasses, had a significant influence on the ability of the alloy to inactivate norovirus. Nickel alone did not affect virus, but zinc did have some antiviral effect, which was synergistic with copper and resulted in an increased efficacy of brasses with lower percentages of copper. Electron microscopy of purified MNV-1 that had been exposed to copper and stainless steel surfaces suggested that a massive breakdown of the viral capsid had occurred on copper. In addition, MNV-1 that had been exposed to copper and treated with RNase demonstrated a reduction in viral gene copy number. This suggests that capsid integrity is compromised upon contact with copper, allowing copper ion access to the viral genome.

  2. A study of the method of making dental prosthetic appliances by sintered titanium alloys: effect of copper powder content on properties of sintered titanium alloy.

    Science.gov (United States)

    Oda, Y; Nakanishi, K; Sumii, T

    1990-02-01

    The effects of added copper powder to the properties of the sintered titanium alloys were investigated by measuring the compressive strength and densities of the green and sintered compacts, the thermal expansion curves and dimensional changes in the sintered compacts, and the accuracy of the crown-type restorations. The compressive strengths of green compacts ranged from 55 to 75 MPa. The expansion of green compacts increased with increased copper content. The sintered density was lower than the green density. The compressive yield strength of sintered compacts ranged from 260 MPa to 410 MPa. The sintered compacts expanded from 0.35% to 1.03% and the expansion increased with increased copper content. The dimensional accuracy of crown-type restorations showed the same dimensional change tendencies as did the sintered compacts. These results showed that the fit and the strength of sintered titanium alloy restorations could be improved.

  3. Effect of Copper and Silicon on Al-5%Zn Alloy as a Candidate Low Voltage Sacrificial Anode

    Science.gov (United States)

    Pratesa, Yudha; Ferdian, Deni; Togina, Inez

    2017-05-01

    One common method used for corrosion protection is a sacrificial anode. Sacrificial anodes that usually employed in the marine environment are an aluminum alloy sacrificial anode, especially Al-Zn-In. However, the electronegativity of these alloys can cause corrosion overprotection and stress cracking (SCC) on a high-strength steel. Therefore, there is a development of the sacrificial anode aluminum low voltage to reduce the risk of overprotection. The addition of alloying elements such as Cu, Si, and Ge will minimize the possibility of overprotection. This study was conducted to analyze the effect of silicon and copper addition in Al-5Zn. The experiment started from casting the sacrificial anode aluminum uses electrical resistance furnace in a graphite crucible in 800°C. The results alloy was analyzed using Optical emission spectroscopy (OES), Differential scanning calorimetry, electrochemical impedance spectroscopy, and metallography. Aluminum alloy with the addition of a copper alloy is the most suitable and efficient to serve as a low-voltage sacrificial anode aluminum. Charge transfer resistivity of copper is smaller than silicon which indicates that the charge transfer between the metal and the electrolyte is easier t to occur. Also, the current potential values in coupling with steel are also in the criteria range of low-voltage aluminum sacrificial anodes.

  4. Uplift and submarine formation of some Melanesian porphyry copper deposits: Stable isotope evidence

    Science.gov (United States)

    Chivas, A.R.; O'Neil, J.R.; Katchan, G.

    1984-01-01

    Hydrogen and oxygen isotope analyses of sericites and kaolinites from four young porphyry copper deposits (Ok Tedi (1.2 Ma) and Yandera (6.5 Ma), Papua New Guinea; Koloula (1.5 Ma), Solomon Islands; and Waisoi (ocean water. For Ok Tedi, the non-magmatic component was a meteoric water with an isotopic composition different from that of the present meteoric water in the region. The isotopic signature of the former meteoric water is consistent with a surface elevation of 200 m a.s.l. or less at the time of mineralization. The deposit was later exposed and supergene kaolinitization commenced at approximately 1200 m a.s.l. Uplift and erosion has continued to the present at which time the elevation of the exposed deposit is 1800 m a.s.l. This rate of uplift is consistent with that known from other geological evidence. If the rate of uplift were approximately constant during the last 1.2 Ma, the age of supergene enrichment can be dated at approximately 0.4 Ma B.P. Similarly, influx of meteoric water at Yandera occurred when the ground surface above the deposit was at an elevation of approximately 600 m a.s.l. The deposit's present elevation is 1600 m a.s.l. In this case a total uplift of approximately 2.2 km is indicated, with removal of 1.2 km of overburden by erosion. ?? 1984.

  5. Final report on characterization of physical and mechanical properties of copper and copper alloys before and after irradiation. (ITER R and D Task no. T213)

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N.; Taehtinen, S. [VTT Manufacturing Technology (Finland)

    2001-12-01

    The present report summarizes and highlights the main results of the work carried out during the last 5 - 6 years on effects of neutron irradiation on physical and mechanical properties of copper and copper alloys. The work was an European contribution to ITER Research and Development programme and was carried out by the Associations Euratom - Risoe and Euratom - Tekes. Details of the investigations carried out within the framework of the present task and the main results have been reported in various reports and journal publication. On the basis of these results some conclusions are drawn regarding the suitability of a copper alloy for its use in the first wall and divertor components of ITER. It is pointed out that the present work has managed only to identify some of the critical problems and limitations of the copper alloys for their employment in the hostile environment of 14 MeV neutrons. A considerable amount of further effort is needed to find a realistic and optimum solution. (au)

  6. POROSITY AND STRENGTH PROPERTIES OF GYPSUM BONDED INVESTMENT USING TERENGGANU LOCAL SILICA FOR COPPER ALLOYS CASTING

    Directory of Open Access Journals (Sweden)

    S. Z. M. NOR

    2015-07-01

    Full Text Available In this study, several formulations of gypsum bonded investment (GBI as a mould for copper alloy casting has been developed and their properties had been investigated. The mould was developed using Terengganu local silica sand with the average particle size of 220–250 µm, acted as a refractory and Plaster of Paris (POP as a binder. The formulations used were 75% local silica, 25% plaster and various amounts (31–37% of water. The compressive strength, tensile strength, porosity, core hardness and mould hardness properties of the prepared GBI were studied. It has been found that both compressive strength and tensile strength reduced with a water content due to an increment of mould porosity which was confirmed via Scanning Electron Microscopy analysis. The mould hardness was found unchanged, but the core hardness was slightly reduced with the increment of water. The compressive strength of GBI moulds developed in this work was in the range of 600–1100 kN/m2, which was sufficient for copper alloy casting.

  7. The Effect of Dewaxing and Burnout Temperature in Block Mold Process for Copper Alloy Casting

    Directory of Open Access Journals (Sweden)

    S.Z. Mohd Nor

    2015-10-01

    Full Text Available The main objective of this research is to investigate the effect of dewaxing and burnout temperature on the quality of copper alloy casting produced by a low cost block mold that has been developed. In the molding process, two types of silica sand which contains 97.9% silica (SiO2 and 97.2% silica have been used as a refractory material with POP served as a binder. Several mold formulations contained 15-40% plaster of paris (POP, 60-85% silica sand and 35% water had been developed and each formulation had been tested in the process of copper alloy casting. In the dewaxing process, the temperature of 170oC was found appropriate to be used as an initial mold heating temperature and complete wax burnout was effectively achieved with the temperature of 750oC for 5 hours. The insufficient burnout process has produced a defect casting with carbon residue, appeared as a black stain on the surface of the casting. Meanwhile, rapid initial heating had prevented the wax from flowing out smoothly thus, eroded the surface of the mold cavities. This has resulted in deteriorated cavity surface, hence a rough surface of the casting.

  8. Surface topographic characterization for polyamide composite injection molds made of aluminum and copper alloys.

    Science.gov (United States)

    Pereira, A; Hernández, P; Martinez, J; Pérez, J A; Mathia, T G

    2014-01-01

    In order to ensure flexibility and rapid new product development, the mold industry made use of soft materials for cavity inserts in injection molds. However, materials of this kind are prone to wear. This article analyzes the topographic characterization of the surface and wear processes in injection molds cavities. Two materials have been used to produce the cavities: aluminum alloy EN AW‐6082 T4 and copper alloy Cu Zn39 Pb3. The surface topography was measured with the use of optical interferometry profiling technology; roughness and surface parameters were determined according to ISO 4287, ISO 25178, and EUR 15178N. In order to complete this research, an experimental part with different thicknesses and shapes was designed, and cavity inserts of aluminum and copper were made. Polyamide PA6, with 30% fiberglass reinforcement, was employed in the experimental procedure. Measurements of cavity mold surfaces were performed after 9,200 cycles on each mold and at different locations on the mold. The surface measurement was made with a white light vertical scanning interferometry, also known as coherence scanning interferometry (ISO DIS 25178‐604). The results are analyzed and differences between the two types of cavity inserts materials are discussed.

  9. Hot deformation behavior of KFC copper alloy during compression at elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; ZHANG Hong-gang; PENG Da-shu

    2006-01-01

    The hot deformation behavior of a KFC copper alloy was studied by compression deformation tests on Gleeble 1500 machine at strain rates ranging between 0.01-10 s-1 and deformation temperature of 650-850 ℃, and associated structural changes were studied by observations of metallography and TEM. The results show that the true stress-true strain curves for a KFC copper alloy are characterized by multiple peaks or a single peak flow, and tend to a steady state at high strains. The peak stress can be represented by a Zener-Hollomon parameter in the hyperbolic-sine-type equation with the hot deformation activation energy Q of 289 kJ/mol. The dynamic recrystallization(DRX) occurs by bulging out of part serrated grain-boundary, and the dynamic recrystallization grain size is dependent sensitively on deformation temperature T and strain rate ε, also a function of Z. The dynamic spherical Fe-rich precipitates and successive dynamic particles coarsening has been assumed to be responsible for flow softening at high strains, and this is more effective when samples deformed at low temperatures and higher strain rates.

  10. Anisotropic wetting of copper alloys induced by one-step laser micro-patterning

    Energy Technology Data Exchange (ETDEWEB)

    Hans, M., E-mail: michael.hans@mx.uni-saarland.de [Chair of Functional Materials, Faculty of Natural Sciences and Technology, Saarland University, 66123 Saarbruecken (Germany); Mueller, F.; Grandthyll, S.; Huefner, S. [Experimental Physics, Faculty of Natural Sciences and Technology, Saarland University, 66123 Saarbruecken (Germany); Muecklich, F. [Chair of Functional Materials, Faculty of Natural Sciences and Technology, Saarland University, 66123 Saarbruecken (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer One-step, contactless micro-patterning of copper alloys has been achieved. Black-Right-Pointing-Pointer Anisotropic wetting properties are tailored by line-like structures. Black-Right-Pointing-Pointer Both topographical and chemical patterns contribute to the phenomenon. Black-Right-Pointing-Pointer The topographic shape and homogeneity are found to be governing factors. - Abstract: Copper alloys (CuSn8, CuZn23Al3Co) have been micro-patterned with line-like geometries by Laser Interference Surface Structuring (LISS). In the presented study two high power pulsed laser beams are recombined to create unique, line-like intensity distributions with a chosen, constant periodicity of 10 {mu}m at varying laser fluencies. Anisotropic wetting properties on these surfaces have been confirmed by drop shape analysis and static contact angle measurements, which were conducted parallel and perpendicular to the structures revealing up to 25% difference in contact angle. The topography and chemistry of the tailored line structures have been characterized and analyzed by white light interferometry, spatial frequency distribution, AFM and X-ray photoelectron spectroscopy. The topographic shape and homogeneity are considered as key parameters for anisotropic wetting design, although it is concluded that both, the geometry as well as the locally varying chemical composition of the surface structures contribute to the phenomenon. Parallel capillarity effects and perpendicular contact line pinning are found to be the governing mechanisms.

  11. Fluid inclusion and isotope geochemistry of the Yangla copper deposit, Yunnan, China

    Science.gov (United States)

    Yang, Xi-An; Liu, Jia-Jun; Yang, Long-Bo; Han, Si-Yu; Sun, Xiao-Ming; Wang, Huan

    2014-04-01

    The Yangla copper deposit, with Cu reserves of 1.2 Mt, is located between a series of thrust faults in the Jinshajiang-Lancangjiang-Nujiang region, Yunnan, China, and has been mined since 2007. Fluid inclusion trapping conditions ranged from 1.32 to 2.10 kbar at 373-409 °C. Laser Raman spectroscopy confirms that the vapour phase in these inclusions consists of CO2, CH4, N2 and H2O. The gas phases in the inclusions are H2O and CO2, with minor amounts of N2, O2, CO, CH4, C2H2, C2H4, and C2H6. Within the liquid phase, the main cations are Ca2+ and Na+ while the main anions are SO4 2- and Cl-. The oxygen and hydrogen isotope compositions of the ore-forming fluids (-3.05‰ ≤ δ18OH2O ≤ 2.5‰; -100‰ ≤ δD ≤ -120‰) indicate that they were derived from magma and evolved by mixing with local meteoric water. The δ34S values of sulfides range from -4.20‰ to 1.85‰(average on -0.85‰), supporting a magmatic origin. Five molybdenite samples taken from the copper deposit yield a well-constrained 187Re-187Os isochron age of 232.8 ± 2.4 Ma. Given that the Yangla granodiorite formed between 235.6 ± 1.2 Ma and 234.1 ± 1.2 Ma, the Cu metallogenesis is slightly younger than the crystallization age of the parent magma. A tectonic model that combines hydrothermal fluid flow and isotope compositions is proposed to explain the formation of the Yangla copper deposit. At first, westward subduction of the Jinshajiang Oceanic Plate in the Early Permian resulted in the development of a series of thrust faults. This was accompanied by fractional melting beneath the overriding plate, triggering magma ascent and extensive volcanism. The thrust faults, which were then placed under tension during a change in tectonic mode from compression to extension in the Late Triassic, formed favorable pathways for the magmatic ore-forming fluids. These fluids precipitated copper-sulfides to form the Yangla deposit.

  12. Examination of the Oxidation Protection of Zinc Coatings Formed on Copper Alloys and Steel Substrates

    Science.gov (United States)

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.

    2010-01-01

    The exposure of metallic components at aggressive high temperature environments, usually limit their usage at similar application because they suffer from severe oxidation attack. Copper alloys are used in a wide range of high-quality indoor and outdoor applications, statue parts, art hardware, high strength and high thermal conductivity applications. On the other hand, steel is commonly used as mechanical part of industrial set outs or in the construction sector due to its high mechanical properties. The aim of the present work is the examination of the oxidation resistance of pack cementation zinc coatings deposited on copper, leaded brass and steel substrates at elevated temperature conditions. Furthermore, an effort made to make a long-term evaluation of the coated samples durability. The oxidation results showed that bare substrates appear to have undergone severe damage comparing with the coated ones. Furthermore, the mass gain of the uncoated samples was higher than this of the zinc covered ones. Particularly zinc coated brass was found to be more resistant to oxidation conditions in which it was exposed as it has the lower mass gain as compared to the bare substrates and zinc coated copper. Zinc coated steel was also proved to be more resistive than the uncoated steel.

  13. A detailed study of metallic glass formation in copper-hafnium-titanium alloys

    Institute of Scientific and Technical Information of China (English)

    Ignacio A. Figueroa; Sandro Baez-Pimiento; John D. Plummer; Omar Novelo-Peralta; Hywell A. Davies; Iain Todd

    2012-01-01

    Recently we have reported a number of bulk glass forming compositions in the CuHf-Ti system,with the critical thickness for complete glass formation,dc1 ranging from 2 mm to 4 mm.In order to improve the glass forming ability (GFA) getting even larger dc1 the prevailing approach is to use complex multicomponent systems.This strategy has been investigated by us for the Cu-Hf-Ti bulk glass forming alloy Cu55Hf25Ti20 using >1 at.pct additions of B,Y,Nb,Ta,Al,Mn,Si or V but with no significant improvement in the GFA.Clearly,it is necessary,in order to utilise the full potential of the base ternary system,to identify the best glass-forming compositions as a basis for extending the search into multi-dimensional compositional space.Thus,CuxHfyTiz alloys,where x=(40-70) at.pct,y=(5-30) at.pct,and z=(10-36) at.pct,were prepared by melt spinning and copper mould suction-casting.The composition dependence of the GFA for the Cu-Hf-Ti alloys,as measured by dc for rod and ribbon samples,is reported over the composition range given above.

  14. Characterization of Phases in an As-cast Copper-Manganese-Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    J.Iqbal, F.Hasan; F.Ahmad

    2006-01-01

    Copper-manganese-aluminum (CMA) alloys, containing small additions of Fe, Ni, and Si, exhibit good strength and remarkable corrosion resistance against sea water. The alloys are used in as-cast condition, and their microstructure can show wide variations. The morphology, crystallography and composition of the phases presented in an as-cast (CMA) alloy of nominal composition Cu-14%Mn-8%Al-3%Fe-2%Ni were investigated using optical, electron optical, and microprobe analytical techniques. The as-cast microstructure consisted of the grains of fcc α and bcc β-phases alongwith intermetallic precipitates of various morphologies. The dendritic-shaped particles and the cuboid-shaped precipitates, which were rich in Fe and Mn and had an fcc DO3 structure. These four different morphologies of intermetallic precipitates exhibited discrete orientationrelationships with the α-matrix. The β-grains only contained very small cuboid shaped precipitates, which could only be resolved through transmission electron microscopy. These precipitates were found to be based on Fe3Al and had the DO3 structure.

  15. IMPROVING THE MECHANICAL PROPERTIES OF COPPER ALLOYS BY THERMO-MECHANICAL PROCESSING

    Institute of Scientific and Technical Information of China (English)

    M.C.Somani; L.P.Karjalainen

    2004-01-01

    Systematic physical simulation of thermo-mechanical processing routes has been applied on a Gleeble 1500 simulator to four copper alloys(mass %)Cu-0.57Co-0.32Si,Cu-0.55Cr-0.065P,Cu-0.22Zr-0.035Si and Cu-1.01Ni-0.43Si aimed at clarifying the influences of processing conditions on their final properties,strength and electrical conductivity.Flow curves were determined over wide temperature and strain rate ranges.Hardness was used as a measure of the strength level achieved.High hardness was obtained as using equal amounts(strains 0.5)of cold deformation before and after the precipitation annealing stage.The maximum values achieved for the Cu-Co-Si,Cu-Cr-P,Cu-Zr-Si and Cu-Ni-Si alloys were 190,165,178 and 193 HV5,respectively.A thermo-mechanical schedule involving the hot deformation-ageing-cold deformation stages showed even better results for the Cu-Zr-Si alloy.Consequently,the processing routes were designed based on simulation test results and wires of 5 and 2mm in diameters have been successfully processed in the industrial scale.

  16. Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria.

    Science.gov (United States)

    Navarrete, Jesica U; Borrok, David M; Viveros, Marian; Ellzey, Joanne T

    2011-02-01

    Copper isotopes may prove to be a useful tool for investigating bacteria-metal interactions recorded in natural waters, soils, and rocks. However, experimental data which attempt to constrain Cu isotope fractionation in biologic systems are limited and unclear. In this study, we utilized Cu isotopes (δ(65)Cu) to investigate Cu-bacteria interactions, including surface adsorption and intracellular incorporation. Experiments were conducted with individual representative species of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as with wild-type consortia of microorganisms from several natural environments. Ph-dependent adsorption experiments were conducted with live and dead cells over the pH range 2.5-6. Surface adsorption experiments of Cu onto live bacterial cells resulted in apparent separation factors (Δ(65)Cu(solution-solid) = δ(65)Cu(solution) - δ(65)Cu(solid)) ranging from +0.3‰ to +1.4‰ for B. subtilis and +0.2‰ to +2.6‰ for E. coli. However, because heat-killed bacterial cells did not exhibit this behavior, the preference of the lighter Cu isotope by the cells is probably not related to reversible surface adsorption, but instead is a metabolically-driven phenomenon. Adsorption experiments with heat-killed cells yielded apparent separation factors ranging from +0.3‰ to -0.69‰ which likely reflects fractionation from complexation with organic acid surface functional group sites. For intracellular incorporation experiments the lab strains and natural consortia preferentially incorporated the lighter Cu isotope with an apparent Δ(65)Cu(solution-solid) ranging from ~+1.0‰ to +4.4‰. Our results indicate that live bacterial cells preferentially sequester the lighter Cu isotope regardless of the experimental conditions. The fractionation mechanisms involved are likely related to active cellular transport and regulation, including the reduction of Cu(II) to Cu(I). Because similar intracellular Cu

  17. Final report on in-reactor tensile tests on OFHC - Copper and CuCrZr alloy

    DEFF Research Database (Denmark)

    Singh, B.N; Edwards, D.J.; Tähtinen, S.

    2004-01-01

    of uniaxial tensile tests on pure copper and a CuCrZr alloy in a fission reactor at 363 and 393K. In the following, we first describe the experiments and then present results illustrating the build up ofstress as a function of concurrently increasing strain and displacement dose level. Results on both pre...

  18. Strength of Hycon 3 HP{trademark} Be-Cu and other copper alloys from 20 C to 200 C

    Energy Technology Data Exchange (ETDEWEB)

    Weggel, R.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Francis Bitter National Magnet Lab.; Ratka, J.O.; Spiegelberg, W.D. [Brush Wellman Inc., Cleveland, OH (United States); Sakai, Yoshikazu [National Research Inst. for Metals, Ibaraki (Japan)

    1994-07-01

    To be suitable for high-performance water-cooled magnets a conductor must have an excellent combination of electrical conductivity and tensile strength at moderately elevated temperatures. The authors have measured the 0.2% yield and ultimate tensile strengths, elongation and modulus of five copper alloys, in the form of heavily cold-worked strip 0.4 mm to 1.2 mm thick, at temperatures up to 200 C. The alloys are Hycon 3 HP Be-Cu (UNS alloy C17510), a 24% silver-copper being developed by NRIM (Tsukuba, Japan), Glidcop{reg_sign}, Zr-Cu and electrolytic tough pitch copper. Be-Cu, Zr-Cu and Ag-Cu all retained strength very well. Be-Cu decreased in U.T.S. only 10% from room temperature to 200 C, Zr-Cu, 15%. For Ag-Cu the decrease was 10% from 20 to 150 C, and another 10% during the next 50 C. Glidcop weakened 20% by 150 C. So did ETP copper, whose strength then plummeted another 50% by 200 C. Except for Ag-Cu, with its filamentary microstructure, all alloys were isotropic within about 5%. The anisotropy of Ag-Cu was about 12%, with the transverse direction being the stronger.

  19. Isotope Geochemistry of the Dongchuan Copper Deposit,Yunnan,SW China: Stratigraphic Chronology and Application of Lead Isotopes in Geochemical Exploration

    Institute of Scientific and Technical Information of China (English)

    常向阳; 朱炳泉

    2002-01-01

    In this paper the Pb-Pb isochron method was used to determine the isotopic ages of te Luoxue Formation dolomites(1716±56Ma),th Heishan Formation carbonaceous slated (1607±128Ma) of the middle sub-group of the Kunyang Group and the Dayingpan Formation carbonaceous slates(1258±Ma) of the upper sub-group of the Kunyang Group.The age of the middle sub-group of the Kunyang Group is about 1800-1600Ma,belonging to the Late Paleo-Proterozoic,and that of the Dayingpan Formation in the upper sub-group of the Kunyang Group is about 1200-1300Ma, belonging to the Middle Poroterozoic.In addition,the Pb isotope chemical exploration techniques were used to study systematically the Pb isotopic compositions of rocks and ores across the No.14 vein in the middle segment of the No.1 pit of the Tangdan copper deposit and the result showed that the Pb isotope V1 values are neatively correlated with the copper contents.In is the first trial to use the systematic section method to conduct Pb isotope chemical exploration.

  20. Isotope Geochemistry of the Dongchuan Copper Deposit, Yunnan, SW China:Stratigraphic Chronology and Application of Lead Isotopes in Geochemical Exploration

    Institute of Scientific and Technical Information of China (English)

    常向阳; 朱炳泉

    2002-01-01

    In this paper the Pb-Pb isochron method was used to determine the isotopic ages of the Luoxue Formation dolomites (1716 ± 56 Ma), the Heishan Formation carbonaceous slates(1607 ± 128 Ma) of the middle sub-group of the Kunyang Group and the Dayingpan Formation carbonaceous slates ( 1258 ± 70Ma) of the upper sub-group of the Kunyang Group. The age of the middle sub-group of the Kunyang Group is about 1800 - 1600 Ma, belonging to the Late Paleo-Proterozoic, and that of the Dayingpan Formation in the upper sub-group of the Kunyang Group is about 1200 - 1300 Ma, belonging to the Middle Proterozoic. In addition, the Pb isotope chemical exploration techniques were used to study systematically the Pb isotopic compositions of rocks and ores across the No. 14 vein in the middle segment of the No. 1 pit of the Tangdan copper deposit and the result showed that the Pb isotope V1 values are negatively correlated with the copper contents. It is the first trial to use the systematic section method to conduct Pb isotope chemical exploration.

  1. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Bo Sun

    2015-09-01

    Full Text Available This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu2O film increased gradually. Its corrosion product was Cu2(OH3Cl, which increased in quantity over time. Cl− was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss, degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e., dissolved oxygen (DO and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet.

  2. Microstructures and properties analysis of dissimilar metal joint in the friction stir welded copper to aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Wang Xijing; Zhang Zhongke; Da Chaobing; Li Jing

    2007-01-01

    This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (T2) and a preliminary analysis of welding parameters influencing on the microstructures and properties of joint was carried out. The results indicated that the thickness of workpiece played an important role in the welding parameters which could succeed in the friction stir welding of dissimilar metal of copper to aluminum alloy, and the parameters were proved to be a narrow choice. The interfacial region between copper and aluminum in the dissimilar joint was not uniformly mixed, constituted with part of incomplete mixing zone, complete mixing zone, dispersion zone and the most region's boundary was obvious. Meantime a kind banded structure with inhomogeneous width was formed. The intermetallic compounds generated during friction stir welding in the interfacial region were mainly Cu9Al4 , Al2Cu etc, and their hardness was higher than others.

  3. Foundry technology and its applications of ductile iron castings produced by water-cooled copper alloy mold

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The high efficiency mechanized foundry technology of castings produced by using water-cooled copper alloy permanent mold has been systematically studied. Through the researching a Cu-Cr-Mg alloy with high conductivity and good combined mechanical properties used for making permanent mold was developed, and the basic design principles of the water-cooled permanent mold along with the control-range of relevant foundry processing parameters were also established.A cast production line equipped with water-cooled copper alloy mold was designed and fabricated for production of ductile iron automobile gear castings. This production line can consistently make automobile gear castings in QT500-15 and QT600-5 (Chinese Standard) grades of ductile iron with up to 95 % casting success rate.

  4. Effect of composition of titanium in silver-copper-titanium braze alloy on dissimilar laser brazing of binder-less cubic boron nitride and tungsten carbide

    Science.gov (United States)

    Sechi, Yoshihisa; Nagatsuka, Kimiaki; Nakata, Kazuhiro

    2014-08-01

    Laser brazing with Ti as an active element in silver-copper alloy braze metal has been carried out for binder-less cubic boron nitride and tungsten carbide, using silver-copper- titanium braze alloys with titanium content that varied between 0.28 mass% and 1.68 mass%. Observations of the interface using electron probe microanalysis and scanning acoustic microscopy show that efficient interface adhesion between binder-less cubic boron nitride and the silver-copper-titanium braze alloy was achieved for the braze with a titanium content of 0. 28 mass%.

  5. Design of a Nickel-Based Bond-Coat Alloy for Thermal Barrier Coatings on Copper Substrates

    Directory of Open Access Journals (Sweden)

    Torben Fiedler

    2014-11-01

    Full Text Available To increase the lifetime of rocket combustion chambers, thermal barrier coatings (TBC may be applied on the copper chamber wall. Since standard TBC systems used in gas turbines are not suitable for rocket-engine application and fail at the interface between the substrate and bond coat, a new bond-coat material has to be designed. This bond-coat material has to be chemically compatible to the copper substrate to improve the adhesion and needs a coefficient of thermal expansion close to that of copper to reduce thermal stresses. One approach to achieve this is to modify the standard NiCrAlY alloy used in gas turbines by adding copper. In this work, the influence of copper on the microstructure of NiCrAlY-alloys is investigated with thermodynamical calculations, optical microscopy, SEM, EDX and calorimetry. Adding copper leads to the formation of a significant amount of \\(\\beta\\ and \\(\\alpha\\ Reducing the aluminum and chromium content leads furthermore to a two-phase fcc microstructure.

  6. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  7. EFFECT OF THERMAL PROCESSES ON COPPER-TIN ALLOYS FOR ZINC GETTERING

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.; Golyski, M.

    2013-11-01

    A contamination mitigation plan was initiated to address the discovery of radioactive zinc‐65 in a glovebox. A near term solution was developed, installation of heated filters in the glovebox piping. This solution is effective at retaining the zinc in the currently contaminated area, but the gamma emitting contaminant is still present in a system designed for tritium beta. A project was initiated to develop a solution to contain the {sup 65}Zn in the furnace module. Copper and bronze (a Cu/Sn alloy) were found to be candidate materials to combine with zinc‐65 vapor, using thermodynamic calculations. A series of binary Cu/Sn alloys were developed (after determining that commercial alloys were unacceptable), that were found to be effective traps of zinc vapor. The task described in this report was undertaken to determine if the bronze substrates would retain their zinc gettering capability after being exposed to simulated extraction conditions with oxidizing and reducing gases. Pure copper and three bronze alloys were prepared, exposed to varying oxidation conditions from 250 to 450{degree}C, then exposed to varying reduction conditions in He-H{sub 2} from 250-450{degree}C, and finally exposed to zinc vapor at 350{degree}C for four hours. The samples were characterized using scanning electron microscopy, X-ray diffraction, differential thermal analysis, mass change, and visual observation. It was observed that the as fabricated samples and the reduced samples all retained their zinc gettering capacity while samples in the "as-oxidized" condition exhibited losses in zinc gettering capacity. Over the range of conditions tested, i.e., composition, oxidation temperature, and reduction temperature, no particular sample composition appeared better. Samples reduced at 350{degree}C exhibited the greatest zinc capacity, although there were some testing anomalies associated with these samples. This work clearly demonstrated that the zinc gettering was not adversely

  8. An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Yardley, Sean S., E-mail: sean.yardley@materials.ox.ac.uk [Department of Materials, Oxford University, Parks Road, Oxford OX1 3PH (United Kingdom); Moore, Katie L. [Department of Materials, Oxford University, Parks Road, Oxford OX1 3PH (United Kingdom); Ni, Na [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Wei, Jang Fei; Lyon, Stuart; Preuss, Michael [School of Materials, University of Manchester, Materials Performance Centre, Manchester, Lancashire M13 9PL (United Kingdom); Lozano-Perez, Sergio; Grovenor, Chris R.M. [Department of Materials, Oxford University, Parks Road, Oxford OX1 3PH (United Kingdom)

    2013-11-15

    Highlights: •Zr alloys were oxidised for various times in an autoclave to simulate PWR conditions. •Isotopic tracers {sup 18}O and {sup 2}H were added to reveal active oxidation sites by NanoSIMS analysis. •Hydrides were present in all samples, even those with short oxidation times. •Porosity mediated transitions between corrosion regimes occur at critical oxide thicknesses. -- Abstract: High resolution secondary ion mass spectrometry (SIMS) analysis has been used to study the oxidation mechanisms when commercial low tin ZIRLO™ and Zircaloy 4 materials are exposed to corroding environments containing both {sup 18}O and {sup 2}H isotopes. Clear evidence has been shown for different characteristic distributions of {sup 18}O before and after the kinetic transitions, and this behaviour has been correlated with the development of porosity in the oxide which allows the corroding medium to penetrate locally to the metal/oxide interface.

  9. A Novel Algorithm to Scheduling Optimization of Melting-Casting Process in Copper Alloy Strip Production

    Directory of Open Access Journals (Sweden)

    Xiaohui Yan

    2015-01-01

    Full Text Available Melting-casting is the first process in copper alloy strip production. The schedule scheme on this process affects the subsequent processes greatly. In this paper, we build the multiobjective model of melting-casting scheduling problem, which considers minimizing the makespan and total weighted earliness and tardiness penalties comprehensively. A novel algorithm, which we called Multiobjective Artificial Bee Colony/Decomposition (MOABC/D algorithm, is proposed to solve this model. The algorithm combines the framework of Multiobjective Evolutionary Algorithm/Decomposition (MOEA/D and the neighborhood search strategy of Artificial Bee Colony algorithm. The results on instances show that the proposed MOABC/D algorithm outperforms the other two comparison algorithms both on the distributions of the Pareto front and the priority in the optimal selection results.

  10. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  11. Mineralization and leaching process in the Jian copper deposit, northeastern Fars province: Application of petrography and stable isotopes

    Directory of Open Access Journals (Sweden)

    Farid Moore

    2015-04-01

    Full Text Available Introduction One of the first principles in the formation of a reserve is mineralogical, construction and mineral textures studies and investigation of paragenetic relations in the ore minerals. In addition, to petrographic studies, isotopic investigates have wide applications in economic geology. In general, copper isotope variability in primary (high temperature mineralization forms a tight cluster, in contrast to secondary mineralization, which has a much larger isotope range. A distinct pattern of heavier copper isotope signatures is evident in supergene samples, and a lighter signature characterizes the leached cap and oxidation-zone minerals. This relationship has been used to understand oxidation–reduction processes (Hoefs, 2009. Also for a better understanding of the origin of the Jian Cu deposit, this research focuses on the origin and composition of the fluid and elucidation of its evolution during the mineralization process. In order to achieve this end, field observations, vein petrography, microthermometry of fluid inclusions and stable isotope analyses of veins and minerals were investigated. The present study also compares high and low temperature sulfide samples in an attempt to document and explain diagnostic δ65Cu ranges in minerals from the Jian deposit. Materials and methods The samples were taken from different depths to measure Cu isotope variations within each reservoir. Mineralogical composition was determined using X-ray diffractometry. In addition, chromatographic separation was carried out on all samples (except for native Cu samples in a clean lab and was conducted as outlined in Mathur et al. (Mathur et al., 2009. These samples were measured into a Multicollector Inductively-Coupled-Plasma Mass Spectrometer (MC-ICPMS, the Micro mass Isoprobe at the University of Arizona in low resolution mode using a microconcentric nebulizer to increase sensitivity for the samples with lower concentrations of copper. Preparation

  12. Forming a perfect cubic texture in thin copper-yttrium alloy strips during cold rolling and annealing

    Science.gov (United States)

    Schastlivtsev, V. M.; Rodionov, D. P.; Khlebnikova, Yu. V.; Akshentsev, Yu. N.; Egorova, L. Yu.; Suaridze, T. R.

    2016-03-01

    The structure of strips produced from the Cu-1 wt % Y binary alloy using cold deformation by rolling to the degree of deformation of 99%, followed by recrystallization annealing, as well as the process of texture formation in these strips, is studied. The possibility of forming a perfect cubic texture in a thin strip made of a binary yttrium-modified copper-based alloy has been shown in principle, which opens the prospect of the use of this alloy to produce substrates for strip high-temperature superconductors of the second generation. The optimum conditions of annealing have been determined, which make it possible to form a perfect biaxial texture in the Cu-1 wt % Y alloy with a content of cubic grains {001} ± 10° on the surface of the textured strip of over 95%.

  13. Fabrication and Characterization of Nitinol-Copper Shape Memory Alloy Bimorph Actuators

    Science.gov (United States)

    Wongweerayoot, E.; Srituravanich, W.; Pimpin, A.

    2015-02-01

    This study aims to examine the effect of annealing conditions on nitinol (NiTi) characteristics and applies this knowledge to fabricate a NiTi-copper shape memory alloy bimorph actuator. The effect of the annealing conditions was investigated at various temperatures, i.e., 500, 600, and 650 °C, for 30 min. With the characterizations using x-ray diffraction, energy dispersive spectroscopy, and differential scanning calorimetry techniques, the results showed that annealing temperatures at 600 and 650 °C were able to appropriately form the crystalline structure of NiTi. However, at these high annealing temperatures, the oxide on a surface was unavoidable. In the fabrication of actuator, the annealing at 650 °C for 30 min was chosen, and it was performed at two pre-stressing conditions, i.e., straight and curved molds. From static and dynamic response experiments, the results suggested that the annealing temperature significantly affected the deflection of the actuator. On the other hand, the effect of pre-stressing conditions was relatively small. Furthermore, the micro gripper consisting of two NiTi-copper bimorph actuators successfully demonstrated for the viability of small object manipulation as the gripper was able to grasp and hold a small plastic ball with its weight of around 0.5 mg.

  14. Minimally-invasive Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis of model ancient copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walaszek, Damian [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Senn, Marianne; Wichser, Adrian [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Faller, Markus [Laboratory for Jointing Technology and Corrosion, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Wagner, Barbara; Bulska, Ewa [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Ulrich, Andrea [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2014-09-01

    This work describes an evaluation of a strategy for multi-elemental analysis of typical ancient bronzes (copper, lead bronze and tin bronze) by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).The samples originating from archeological experiments on ancient metal smelting processes using direct reduction in a ‘bloomery’ furnace as well as historical casting techniques were investigated with the use of the previously proposed analytical procedure, including metallurgical observation and preliminary visual estimation of the homogeneity of the samples. The results of LA-ICPMS analysis were compared to the results of bulk composition obtained by X-ray fluorescence spectrometry (XRF) and by inductively coupled plasma mass spectrometry (ICPMS) after acid digestion. These results were coherent for most of the elements confirming the usefulness of the proposed analytical procedure, however the reliability of the quantitative information about the content of the most heterogeneously distributed elements was also discussed in more detail. - Highlights: • The previously proposed procedure was evaluated by analysis of model copper alloys. • The LA-ICPMS results were comparable to the obtained by means of XRF and ICPMS. • LA-ICPMS results indicated the usefulness of the proposed analytical procedure.

  15. The effect of copper concentration on the microstructure of Al-Si-Cu alloys

    Directory of Open Access Journals (Sweden)

    R. Maniara

    2007-04-01

    Full Text Available In the metal casting industry, an improvement of component quality depends mainly on better control over the production parameters. In order to gain a better understanding of how to control the as-cast microstructure, it is important to understand the evaluation of microstructure during solidification and understanding how influence the changes of chemical concentration on this microstructure. In this research, the effect of Cu content on the microstructure and solidification parameters of Al-Si-Cu alloys has been investigated. Thus, the thermal analysis of the alloys is used to control of aluminum casting process. The effect of different Cu content on solidification parameters such: aluminum dendrites nucleation temperature (TLiq, Liquidus temperature, α+β eutectic nucleation temperature (TE(Al+SiN, Cu-rich eutectic nucleation temperature (TAl+Cu, solidus temperature (Tsol, solidification range (ΔTs has been studied in liquidus region. Influence of Cu content on the microstructure has been carried out. The principle observation made from this work ware that as copper concentration is increased the liquidus and solodius temperature decried. In addition to this it was observed that increase a Cu content from 1 to 4 wt % caused reduce of the secondary dendrite arm spacing and increase the grain size.

  16. New Screening Test Developed for the Blanching Resistance of Copper Alloys

    Science.gov (United States)

    Thomas-Ogbuji, Linus U.

    2004-01-01

    NASA's extensive efforts towards more efficient, safer, and more affordable space transportation include the development of new thrust-cell liner materials with improved capabilities and longer lives. For rocket engines fueled with liquid hydrogen, an important metric of liner performance is resistance to blanching, a phenomenon of localized wastage by cycles of oxidation-reduction due to local imbalance in the oxygen-fuel ratio. The current liner of the Space Shuttle Main Engine combustion chamber, a Cu-3Ag-0.5Zr alloy (NARloy-Z) is degraded in service by blanching. Heretofore, evaluating a liner material for blanching resistance involved elaborate and expensive hot-fire tests performed on rocket test stands. To simplify that evaluation, researchers at the NASA Glenn Research Center developed a screening test that uses simple, in situ oxidation-reduction cycling in a thermogravimetric analyzer (TGA). The principle behind this test is that resistance to oxidation or to the reduction of oxide, or both, implies resistance to blanching. Using this test as a preliminary tool to screen alloys for blanching resistance can improve reliability and save time and money. In this test a small polished coupon is hung in a TGA furnace at the desired (service) temperature. Oxidizing and reducing gases are introduced cyclically, in programmed amounts. Cycle durations are chosen by calibration, such that all copper oxides formed by oxidation are fully reduced in the next reduction interval. The sample weight is continuously acquired by the TGA as usual.

  17. Heat load behaviors of plasma sprayed tungsten coatings on copper alloys with different compliant layers

    Energy Technology Data Exchange (ETDEWEB)

    Chong, F.L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)], E-mail: flch@ipp.ac.cn; Chen, J.L.; Li, J.G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, D.Y.; Zheng, X.B. [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200051 (China)

    2008-04-15

    Plasma sprayed tungsten (PS-W) coatings with the compliant layers of titanium (Ti), nickel-chromium-aluminum (NiCrAl) alloys and W/Cu mixtures were fabricated on copper alloys, and their properties of the porosity, oxygen content, thermal conductivity and bonding strength were measured. High heat flux tests of actively cooled W coatings were performed by means of an electron beam facility. The results indicated that APS-W coating showed a poorer heat transfer capability and thermo-mechanical properties than VPS-W coating, and the compliant layers improved W coating performance under the heat flux load. Among three compliant layers, W/Cu was the preferable because of its better effects on heat removal and stress alleviating. The optimization of W/Cu compliant layer found that 0.1 mm and 25 vol.%W was optimum compliant layer structure for 1 mm W coating, which induced a 23% reduction of the maximum stress compared to the sharp interface, and the plastic strain was reduced to 0.01% from 1.55%.

  18. Heat load behaviors of plasma sprayed tungsten coatings on copper alloys with different compliant layers

    Science.gov (United States)

    Chong, F. L.; Chen, J. L.; Li, J. G.; Hu, D. Y.; Zheng, X. B.

    2008-04-01

    Plasma sprayed tungsten (PS-W) coatings with the compliant layers of titanium (Ti), nickel-chromium-aluminum (NiCrAl) alloys and W/Cu mixtures were fabricated on copper alloys, and their properties of the porosity, oxygen content, thermal conductivity and bonding strength were measured. High heat flux tests of actively cooled W coatings were performed by means of an electron beam facility. The results indicated that APS-W coating showed a poorer heat transfer capability and thermo-mechanical properties than VPS-W coating, and the compliant layers improved W coating performance under the heat flux load. Among three compliant layers, W/Cu was the preferable because of its better effects on heat removal and stress alleviating. The optimization of W/Cu compliant layer found that 0.1 mm and 25 vol.%W was optimum compliant layer structure for 1 mm W coating, which induced a 23% reduction of the maximum stress compared to the sharp interface, and the plastic strain was reduced to 0.01% from 1.55%.

  19. High-performance Copper Alloy QBD-6%高性能铜合金QBD-6

    Institute of Scientific and Technical Information of China (English)

    曾力维; 张舟逸; 蒋中华

    2015-01-01

    Use electromagnetic stirring, horizontal continuous casting to break casting structure and refine casting the precipitates "Ni - P" compounds by high temperature annealing. After 20 finished rolling mills, the production of QBD - 6 high-performance copper alloy plate strips has high strength, high elasticity, high conductivity, high finish and other characteristics which can replace imported alloy, such as: MF202, CAC5 and some low-intensity C7025. This can be successfully applied to the lead frame materials, connectors, terminals, and motor brush components in power tools.%采用电磁搅拌水平连铸,破碎铸造组织并通过高温退火细化铸造组织中的析出物"Ni-P"化合物,经过20辊轧机的成品轧制,生产的QBD-6高性能铜合金板带材具有高强度、高弹性、高导电和高光洁度等特性,可替代进口合金,如:M F202、C A C5以及部分低强度的C7025.成功应用于引线框架材料、连接器、端子以及电动工具中的电机电刷部件.

  20. Effect of bonding and bakeout thermal cycles on the properties of copper alloys irradiated at 350 degrees C

    DEFF Research Database (Denmark)

    Singh, B.N.; Edwards, D.J.; Eldrup, Morten Mostgaard

    2001-01-01

    Screening experiments were carried out to determine the effect of bonding and bakeout thermal cycles on microstructure, mechanical properties and electrical resistivity of the oxide dispersion strengthened (GlidCop, CuAl-25) and the precipitation hardened (CuCrZr, CuNiBe) copper alloys. Tensile...... results are described and their salient features discussed. The most significant effect of neutron irradiation is a severe loss of ductility in the case of CuNiBe alloys. (C) 2001 Elsevier Science B.V. All rights reserved....

  1. Corrosion Inhibition Performance of Triazole Derivatives on Copper-Nickel Alloy in 3.5 wt.% NaCl Solution

    Science.gov (United States)

    Jiang, B.; Jiang, S. L.; Liu, X.; Ma, A. L.; Zheng, Y. G.

    2015-12-01

    This study investigates the performance of three triazole derivatives with different molecular structures as corrosion inhibitors for the copper-nickel alloy CuNi 90/10 in 3.5 wt.% NaCl solution. Inhibition behavior was systematically determined through electrochemical measurements, scanning electron microscopy, energy-dispersive spectroscopy, and Fourier transform infrared spectroscopy. In addition, adsorption behavior and the inhibition mechanism were investigated via quantum chemical calculation and molecular dynamic simulation. Experimental results indicate that the three inhibitors with triazole rings and heteroatoms exhibited excellent corrosion inhibition capabilities on the copper-nickel alloy surface through physisorption and chemisorption. In particular, 3-amino-5-mercapto-1,2,4-triazole showed the best inhibition capability according to the concentration ranges considered in the experiments. The results of quantum chemical calculation agreed with the experimental findings.

  2. Effects of silicon, copper and iron on static and dynamic properties of alloy 206 (aluminum-copper) in semi-solids produced by the SEED process

    Science.gov (United States)

    Lemieux, Alain

    The advantages of producing metal parts by rheocasting are generally recognised for common foundry alloys of Al-Si. However, other more performing alloys in terms of mechanical properties could have a great interest in specialized applications in the automotive industry, while remaining competitive in the forming. Indeed, the growing demand for more competitive products requires the development of new alloys better suited to semi-solid processes. Among others, Al-Cu alloys of the 2XX series are known for their superior mechanical strength. However, in the past, 2XX alloys were never candidates for pressure die casting. The main reason is their propensity to hot tearing. Semi-solid processes provide better conditions for molding with the rheological behavior of dough and molding temperatures lower reducing this type of defect. In the initial phase, this research has studied factors that reduce hot tearing susceptibility of castings produced by semi-solid SEED of alloy 206. Subsequently, a comparative study on the tensile properties and fatigue was performed on four variants of the alloy 206. The results of tensile strength and fatigue were compared with the specifications for applications in the automotive industry and also to other competing processes and alloys. During this study, several metallurgical aspects were analyzed. The following main points have been validated: i) the main effects of compositional variations of silicon, iron and copper alloy Al-Cu (206) on the mechanical properties, and ii) certain relationships between the mechanism of hot cracking and the solidification rate in semi-solid. Parts produced from the semi-solid paste coming from the SEED process combined with modified 206 alloys have been successfully molded and achieved superior mechanical properties than the requirements of the automotive industry. The fatigue properties of the two best modified 206 alloys were higher than those of A357 alloy castings and are close to those of the

  3. Effects of bonding bakeout thermal cycles on pre- and post irradiation microstructures, physical, and mechanical properties of copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N.; Eldrup, M.; Toft, P.; Edwards, D.J. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-10-01

    At present, dispersion strengthened (DS) copper is being considered as the primary candidate material for the ITER first wall and divertor components. Recently, it was agreed among the ITER parties that a backup alloy should be selected from the two well known precipitation hardened copper alloys, CuCrZr and CuNiBe. It was therefore decided to carry out screening experiments to simulate the effect of bonding and bakeout thermal cycles on microstructure, mechanical properties, and electrical resistivity of CuCrZr and CuNiBe alloys. On the basis of the results of these experiments, one of the two alloys will be selected as a backup material. Tensile specimens of CuCrZr and CuNiBe alloys were given various heat treatments corresponding to solution anneal, prime ageing, and bonding thermal cycle followed by reageing and the reactor bakeout treatment at 623K for 100 hours. Tensile specimens of the DS copper were also given the heat treatment corresponding to the bonding thermal cycle. A number of these heat treated specimens of CuCrZr, CuNiBe, and DS copper were neutron irradiated at 523K to a dose level of {approx}0.3 dpa (NRT) in the DR-3 reactor at Riso. Both unirradiated and irradiated specimens with the various heat treatments were tensile tested at 532K. The dislocation, precipitate and void microstructures and electrical resistivity of these specimens were also determined. Results of these investigations will be reported and discussed in terms of thermal and irradiation stability of precipitates and irradiation-induced precipitation and recovery of dislocation microstructure. Results show that the bonding and bakeout thermal cycles are not likely to have any serious deleterious effects on the performance of these alloys. The CuNiBe alloys were found to be susceptible to radiation-induced embrittlement, however, the exact mechanism is not yet known. It is thought that radiation-induced precipitation and segregation of the beryllium may be responsible.

  4. Preparation and Analysis of Complex Barrier Layer of Heterocyclic and Long-Chain Organosilane on Copper Alloy Surface

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2016-07-01

    Full Text Available A single electrodeposited film of 6-(3-triethoxysilylpropylamino-1,3,5-triazine-2,4-dithiol monosodium (TES on a copper alloy surface was prepared by the galvanostatic method, then octyl-triethoxysilane (OTES or hexadecyl-trimethoxysilane (HDTMS was used to modify the electrodeposited film by the self-assembled technique to fabricate the complex film. The electrodeposition process was inferred by cyclic voltammetry. The single and complex films were characterized by means of contact angle, cyclic voltammetry, Fourier transform infrared spectroscopy (FT-IR, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS and scanning electron microscope (SEM. The results showed that the contact angle of the complex film covering the copper alloy surface was up to 118.1° compared with 89.4° of the bare copper alloy. The cyclic voltammogram, polarization curves and EIS indicated that the anti-corrosion performance of complex film was better than that of single electrodeposited TES film, and the protection efficiency was up to 90.2%.

  5. Auger electron spectroscopy study of initial stages of oxidation in a copper - 19.6-atomic-percent-aluminum alloy

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine the initial stages of oxidation of a polycrystalline copper - 19.6 a/o-aluminum alloy. The growth of the 55-eV aluminum oxide peak and the decay of the 59-, 62-, and 937-eV copper peaks were examined as functions of temperature, exposure, and pressure. Pressures ranged from 1x10 to the minus 7th power to 0.0005 torr of O2. Temperatures ranged from room temperature to 700 C. A completely aluminum oxide surface layer was obtained in all cases. Complete disappearance of the underlying 937-eV copper peak was obtained by heating at 700 C in O2 at 0.0005 torr for 1 hr. Temperature studies indicated that thermally activated diffusion was important to the oxidation studies. The initial stages of oxidation followed a logarithmic growth curve.

  6. Effect of Water Nutrient Pollution on Long-Term Corrosion of 90:10 Copper Nickel Alloy

    Directory of Open Access Journals (Sweden)

    Robert E. Melchers

    2015-11-01

    Full Text Available Due to their good corrosion resistance, copper and copper alloys such as 90:10 Cu-Ni are used extensively in high-quality marine and industrial piping systems and also in marine, urban, and industrial environments. Their corrosion loss and pitting behaviour tends to follow a bi-modal trend rather than the classic power law. Field data for 90:10 copper nickel immersed in natural seawater are used to explore the effect of water pollution and in particular the availability of critical nutrients for microbiologically induced corrosion. It is shown, qualitatively, that increased dissolved inorganic nitrogen increases corrosion predominantly in the second, long-term, mode of the model. Other, less pronounced, influences are salinity and dissolved oxygen concentration.

  7. fs/ns dual-pulse LIBS analytic survey for copper-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santagata, A. [CNR-IMIP, Unita Operativa di Potenza, Zona Industriale di Tito Scalo, 85050 Tito Scalo, PZ (Italy)], E-mail: santagata@pz.imip.cnr.it; Teghil, R. [Universita degli Studi della Basilicata, Dipartimento di Chimica, Via N. Sauro 85, 85100 Potenza (Italy); Albano, G.; Spera, D.; Villani, P. [CNR-IMIP, Unita Operativa di Potenza, Zona Industriale di Tito Scalo, 85050 Tito Scalo, PZ (Italy); De Bonis, A. [Universita degli Studi della Basilicata, Dipartimento di Chimica, Via N. Sauro 85, 85100 Potenza (Italy); Parisi, G.P. [CNR-IMIP, Unita Operativa di Potenza, Zona Industriale di Tito Scalo, 85050 Tito Scalo, PZ (Italy); Galasso, A. [Universita degli Studi della Basilicata, Dipartimento di Chimica, Via N. Sauro 85, 85100 Potenza (Italy)

    2007-12-15

    The quantitative analytic capability of a fs/ns dual-pulse Laser-Induced Breakdown Spectroscopy technique, based on the orthogonal reheating of a fs-laser ablation plume by a ns-laser pulse, is presented. In this work, it is shown how the effect played by the delay times between the two laser beams can vary the analytical response of this dual-pulse LIBS configuration. In order to address this task, the Sn, Pb and Zn calibration curves of five certified copper-based samples have been investigated. These calibration curves have been obtained, in air at atmospheric pressure, by integrating the emission data collected in two different inter-pulse delay zones, one in the delay interval of 1-41 {mu}s, the other within the range of 46-196 {mu}s. For drawing the species calibration curves, the emission intensities of the considered Pb(I), Sn(I) and Zn(I) electronic transitions have been normalized with a non-resonant Cu(I) emission line. The experimental results have shown that, by varying the inter-pulse delay between the two laser beams, complementary analytical results can be induced. By considering at once all data acquired within the inter-pulse delay time of 1-196 {mu}s, this hypothesis has been strengthened. The calibration curves obtained in this way are characterized by excellent linear regression coefficients (0.988-0.999) despite of the large Sn, Pb and Zn compositional variation of the targets employed. The results presented reveal, for the first time, that, by taking into account the role played by the inter-pulse delay time between the two laser beams, the fs/ns dual-pulse LIBS configuration here used can be improved and provide very good opportunities for performing quantitative analysis of copper-based alloys.

  8. Determination of Copper in Silver Copper Alloys by ICP-AES%ICP-AES法测定银铜合金中的铜

    Institute of Scientific and Technical Information of China (English)

    刘守琼; 黄晴晴; 周西林

    2015-01-01

    采用电感耦合等离子体原子发射光谱法( ICP-AES)测定银铜合金中铜的含量。准确称取0.1000 g的银铜合金样品于三角瓶中,加5 mL硝酸(ρ=1.42 g·mL-1),待反应完毕后,加少许水,加入一定浓度的盐酸溶液,将银沉淀下来,经过滤定容后,选择波长Cu327.396 nm,按照额定工作条件上机测定其铜含量,其检出限为0.01 mg/L,精密度( RSD%)控制在1.0%以内,回收率在(97%~103%)之间;用5个自制样品进行测定(n=10),其结果符合要求。%The content of copper in silver copper alloys was determined by inductively coupled plasma atomic emission spectrometry ( ICP-AES) . Accurately measured 0. 1000 g copper and silver alloy samples in erlenmeyer flask, added 5 mL nitric acid ( P=1. 42 g·mL-1 ) , after waiting for the completion of the reaction, added a little water, and a certain concentration of hydrochloric acid solution, silver precipitation precipitated, after filter and volume, selected wavelength Cu327. 396 nm, the copper content was determinate according to rated working conditions on the machine. The detection limit was 0. 01 mg/L, the precision ( RSD) control was less than 1. 0%, recovery rate was 97% ~103%, five homemade samples were measured ( n=10 ) and the results conformed to the requirements.

  9. Textured tape substrates from binary copper alloys with vanadium and yttrium for the epitaxial deposition of buffer and superconducting layers

    Science.gov (United States)

    Khlebnikova, Yu. V.; Rodionov, D. P.; Egorova, L. Yu.; Suaridze, T. R.

    2016-05-01

    The structure of tapes of binary Cu-0.6 wt % V and Cu-1 wt % Y alloys and texturing process of them in the course of cold deformation by rolling to 99% and subsequent recrystallizing annealing have been studied. The possibility of achieving the perfect cube texture in thin tapes made from binary copper-based alloys with vanadium and yttrium additions has in principle been shown. This opens the prospect of using them as substrates when manufacturing tapes of second-generation high-temperature superconductors. Optimum annealing conditions for the studied alloys have been determined, which have made it possible to produce the perfect biaxial texture with a content of cube {001} ± 10° grains on the surfaces of textured tapes of more than 95%.

  10. The deformation texture of rolled ribbons of copper-based alloys as a condition of producing a sharp cubic texture upon recrystallization

    Science.gov (United States)

    Gervas'eva, I. V.; Rodionov, D. P.; Khlebnikova, Yu. V.

    2015-07-01

    It has been shown that a specific quantitative relationship of main textural components after cold deformation (by rolling to 98.6-99%) of copper alloys determines the possibility of producing a sharp cubic texture in the ribbons after subsequent recrystallization annealing. The binary alloys of copper with nickel (up to 40 at %) and of copper with additions of iron and chromium correspond to this criterion. It has been found that the optimum deformation texture can be created in some ternary copper-nickel alloys with addition of Cr, Fe or Mn. It has been shown that the analysis of the component composition of deformation textures using the orientation distribution function can yield more precise predictions than the stacking fault energy values, as well as make it possible to obtain a cubic texture upon subsequent recrystallization.

  11. Microanalysis of oligodeoxynucleotides by cathodic stripping voltammetry at amalgam-alloy surfaces in the presence of copper ions.

    Science.gov (United States)

    Hason, Stanislav; Vetterl, Vladimír

    2006-05-15

    The application of gold amalgam-alloy electrode (AuAE) for a sensitive voltammetric detection of different oligodeoxynucleotides (ODNs) containing the purine units within the ODN-chains in the presence of copper is described. The detection of ODNs is based on the following procedure: (i) the first step includes an acidic hydrolysis of the ODN (ahODN) samples performing the release of the purine bases from ODN-chain; (ii) the second step includes an electrochemical accumulation of the complex of the purine base residues released from ODN-chain with copper ions Cu(I) (ahODN-Cu(I) complex) at the potential of reduction of copper ions Cu(II) on the amalgam-alloy electrode surfaces; (iii) finally followed the cathodic stripping of the electrochemically accumulated ahODN-Cu(I) complex from the electrode surface. The proposed electrochemical method was used for: (a) detection of different ODN lengths containing only adenine units (the number of adenine units within the ODN-chains was changed from 10 to 80), and (b) determination of the number of purine units within the 30-mer ODNs containing a random sequence segments involving both the purine and pyrimidine units. The intensity of the cathodic stripping current density peak (j(CSP)) of the electrochemically accumulated ahODN-Cu(I) complex increased linearly with the increasing number of purine units within the ODN-chains. We observed a good correlation between the percentage content of purine units to the whole length of different 30-mer ODNs and the percentage content of the intensity of the j(CSP) of the electrochemically accumulated 30-mer ahODN-Cu(I) complexes. The detection of acid hydrolysed 80-mer (A(80)) in the bulk solution and in a 20-mul volume is possible down to 200pM and 2nM at the AuAE, respectively. For the shortest 10-mer (A(10)) a detectable value of 5nM in the bulk solution on the AuAE was observed. The sensitive detection of different ODNs containing the purine units in their chains in the presence of

  12. The effect of bonding and bakeout thermal cycles on the properties of copper alloys irradiated at 100 C

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.J. [Pacific Northwest National Lab., Richland, WA (United States); Singh, B.N.; Toft, P.; Eldrup, M. [Risoe National Lab., Roskilde (Denmark)

    1998-03-01

    This report describes the final irradiation experiment in a series of screening experiments aimed at investigating the effects of bonding and bakeout thermal cycles on irradiated copper alloys. Tensile specimens of CuCrZr and CuNiBe alloys were given various heat treatments corresponding to solution anneal, prime-ageing and bonding thermal treatment. The post-irradiation tests at 100 C revealed the greatest loss of ductility occurred in the CuCrZr alloys, irrespective of the pre-irradiation heat treatment, with the uniform elongation dropping to levels of less than 1.5%. The yield and ultimate strengths for all of the individual heat treated samples increased substantially after irradiation. The same trend was observed for the CuNiBe alloys, which overall exhibited a factor of 3 higher uniform elongation after irradiation with almost double the strength. In both alloys irradiation-induced precipitation lead to a large increase in the strength of the solution annealed specimens with a noticeable decrease in uniform elongation. The Al25 alloy also experienced an increase in the overall strength of the alloy after irradiation, accompanied by approximately a 50% decrease in the uniform and total elongation. The additional bakeout treatments given to the CuCrZr and CuNiBe before irradiation served to increase the strength, but in terms of the ductility no improvement or degradation resulted from the additional thermal exposure. The results of this experiment confirm that the al25 possesses the most resistant microstructure to thermal and irradiation-induced changes, while the competing effects of ballistic dissolution and reprecipitation lead to important changes in the two precipitation strengthened alloys. This study and others have repeatedly shown that these materials can only be used if the very low uniform elongation (1% or less) can be accounted for in the design since pre-irradiation thermal processing cannot mitigate the irradiation embrittlement.

  13. Investigation of copper and copper alloy's welding and discussion on manual SHS welding of copper and copper alloy%铜及铜合金焊接研究现状和手工自蔓延焊接铜问题探讨

    Institute of Scientific and Technical Information of China (English)

    曲利峰; 辛文彤; 吴永胜; 李志尊

    2011-01-01

    Meaning of research on Copper and Copper Alloy's welding is of great importance because of the good property and abroad application. Technical characteristics of Copper and Copper AIloy's normal welding,like gas welding,brazing and soldering,activing welding, MIG welding,friction stir welding, thermit friction stir welding,laser welding,laser welding electron beam welding and Self-propagating High-temperature Synthesis (SHS) welding was studied and classified in the paper as well as the analysis about domestic and foreign present situation of research. It is also analyzed that how normal welding can provide direction and guidance for the Manual SHS Welding Technology of Copper and Copper Alloy. Moreover,the present problem of manual SHS welding of copper and copper alloy is diseussed,especially the wettability between welding seam and base metal,the separation between slag and welding seam on emphasis,and the further research orientation was indicated.%概述了铜及铜合金的气焊、钎焊、活性焊、MIG焊、搅拌摩擦焊及热摩擦搅拌焊、激光焊、电子束焊等常规焊法和自蔓延焊法的技术特点及国内外的研究现状.论述了在当前铜及铜合金手工自蔓延焊接技术的研究过程中如何借鉴融合其他焊接技术的工艺及机理,并讨论了铜及铜合金手工自蔓延焊接所存在的问题并对其产生原因作了初步分析.着重分析了焊接时熳缝金属与母材的润湿性,熔渣与焊缝金属的分离等当亟需解决的问题,指出了需要深入研究的方向和解决问题的思路.

  14. Orthogonal fs/ns double-pulse libs for copper-based-alloy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santagata, A.; Spera, D.; Albano, G.; Parisi, G.P.; Villani, P. [Zona Industriale di Tito Scalo, CNR-IMIP, Unita Operativa di Potenza, Tito Scalo (Italy); Teghil, R.; Bonis, A. de [Universita degli Studi della Basilicata, Dipartimento di Chimica, Potenza (Italy)

    2008-12-15

    The analytical response of a fs/ns double-pulse laser induced breakdown spectroscopy technique based on the orthogonal reheating induced by a ns-laser pulse on a fs-laser ablation plume is presented. All investigations have been performed in air at atmospheric pressure and employing certified copper-based-alloy targets. The emission intensities of the considered electronic transitions of Pb(I), Sn(I) and Zn(I) have been normalised with a Cu(I) emission line intensity belonging to the same considered spectral range. Emission data, acquired with inter-pulse steps of 2 {mu}s within the delay range of 1-200 {mu}s, have shown that fractionation takes place. Nevertheless, excellent linear regression coefficients (0.998-0.999), despite the target's large compositional variation and fractionation effects, have been obtained by integrating all emission intensity data along the whole inter-pulse delays used. Deviations from the theoretical ratio of the Zn(I)/Cu(I) emission intensities are shown and some hypotheses about the processes involved are formulated. (orig.)

  15. Influence of annealing treatment on properties and microstructures of alumina dispersion strengthened copper alloy

    Institute of Scientific and Technical Information of China (English)

    SONG Ke-xing; XING Jian-dong; TIAN Bao-hong; LIU Ping; DONG Qi-ming

    2005-01-01

    Alumina dispersion strengthened copper(ADSC) alloy was produced by internal oxidation.The hardness,ultimate tensile strength and electrical conductivity measurements and microstructure observation on the produced 0.12% ADSC(0.24% Al2O3,mass fraction)and 0.25% ADSC(0.50% Al2O3 )subjected to different annealing treatments were conducted.The results show that the microstructure of the produced ADSC is characterized by an uniform distribution of nano-Al2O3 particles in Cu-matrix;the particles range in size from 20 to 50 nm with an interparticle spacing of 30-100 nm.The produced 0.12% ADSC can maintain more than 87% hardness retention after900 ℃,1 h annealing treatment;the recrystallization can be largely retarded and is not fully completed even after annealing at 1 000 ℃ for 1 h,followed by cold deformation of 84%;local grain growth can be observed after 1 050 ℃,1 h annealing treatment.The results also show that increasing either the alumina content or cold deformation degree increases the hardness of the produced ADSC.

  16. ALLOYING EFFECT OF Ni AND Cr ON THE WETTABILITY OF COPPER ON W SUBSTRATE

    Institute of Scientific and Technical Information of China (English)

    X.H.Yang; P.Xiao; S.H.Liang; J.T.Zou; Z.K.Fan

    2008-01-01

    By the sessile drop technique, the wettability of Cu/W systems with the additions of Ni and Cr has been studied under vacuum atmosphere. Effects of Ni and Cr contents and wetting temperatures on the wettability and the wetting mechanisms of copper on W substrate have been investigated in detail. The results show that the wetting angles of Cu on the W substrate are decreased with an increase in the content of Ni or Cr, and also decrease with raising the wetting temperatures. SEM, EPMA, and X-ray diffraction have been used to analyze the interracial characteristics of the CuNi/W and CuCr/W systems. The results reveal that there is a transition layer about 2-3 μm in the interface of Cu-4.0 wt pet Ni/W, in which the intermetallic phase Ni4W is precipitated. As to CuCr/W system, no reaction occurs at the interface. The two factors are that the contents of Cr and Ni and the infiltration temperature must be chosen appropriately in order to control the interfacial dissolution and reaction when the Cu-W alloys are prepared by the infiltration method.

  17. Inverse Calibration Free fs-LIBS of Copper-Based Alloys

    Science.gov (United States)

    Smaldone, Antonella; De Bonis, Angela; Galasso, Agostino; Guarnaccio, Ambra; Santagata, Antonio; Teghil, Roberto

    2016-09-01

    In this work the analysis by Laser Induced Breakdown Spectroscopy (LIBS) technique of copper-based alloys having different composition and performed with fs laser pulses is presented. A Nd:Glass laser (Twinkle Light Conversion, λ = 527 nm at 250 fs) and a set of bronze and brass certified standards were used. The inverse Calibration-Free method (inverse CF-LIBS) was applied for estimating the temperature of the fs laser induced plasma in order to achieve quantitative elemental analysis of such materials. This approach strengthens the hypothesis that, through the assessment of the plasma temperature occurring in fs-LIBS, straightforward and reliable analytical data can be provided. With this aim the capability of the here adopted inverse CF-LIBS method, which is based on the fulfilment of the Local Thermodynamic Equilibrium (LTE) condition, for an indirect determination of the species excitation temperature, is shown. It is reported that the estimated temperatures occurring during the process provide a good figure of merit between the certified and the experimentally determined composition of the bronze and brass materials, here employed, although further correction procedure, like the use of calibration curves, can be demanded. The reported results demonstrate that the inverse CF-LIBS method can be applied when fs laser pulses are used even though the plasma properties could be affected by the matrix effects restricting its full employment to unknown samples provided that a certified standard having similar composition is available.

  18. Integrated Behavior of Carbon and Copper Alloy Heat Sink Under Different Heat Loads and Cooling Conditions

    Institute of Scientific and Technical Information of China (English)

    Li Hua; Li Jiangang; Chen Junling; Hu Jiansheng

    2005-01-01

    An actively water-cooled limiter has been designed for the long pulse operation of an HT-7 device, by adopting an integrated structure-doped graphite and a copper alloy heat sink with a super carbon sheet serving as a compliant layer between them. The behaviors of the integrated structure were evaluated in an electron beam facility under different heat loads and cooling conditions. The surface temperature and bulk temperature distribution were carefully measured by optical pyrometers and thermocouples under a steady state heat flux of 1 to 5 MW/m2 and a water flow rate of 3 m3/h, 4.5 m3/h and 6 m3/h, respectively. It was found that the surface temperature increased rapidly with the heat flux rising, but decreased only slightly with the water flow rate rising. The surface temperature reached approximately 1200℃ at 5 MW/m2 of heat flux and 6 ms/h of water flow. The primary experimental results indicate that the integrated design meets the requirements for the heat expelling capacity of the HT-7 device. A set of numerical simulations was also completed, whose outcome was in good accord with the experimental results.

  19. Spark plasma sintering of mechanically alloyed in situ copper-niobium carbide composite

    Energy Technology Data Exchange (ETDEWEB)

    Long, B.D. [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Othman, R. [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Umemoto, M. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Zuhailawati, H., E-mail: zuhaila@eng.usm.m [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2010-09-03

    A Cu-NbC composite with high electrical conductivity and high microhardness was synthesized by mechanical alloying and densified using spark plasma sintering (SPS). Mixtures of Cu-NbC powders corresponding to volume fractions of 1, 5, 15 and 25 vol% NbC were milled in a high energy planetary mill under argon atmosphere for 30 h using ethanol as process control agent. The Cu-NbC as-milled powder was sintered using spark plasma sintering temperatures between 900 and 1000 {sup o}C. X-ray diffraction investigation showed that NbC started to form in the copper matrix during ball milling and the reaction between Nb and C was completed after 10 min of SPS sintering. Electrical conductivity and density of the Cu-15 vol% NbC composite increased with increasing sintering temperature. The results showed the superior properties of SPS-prepared Cu-NbC composite: electrical conductivity is almost 4 times higher and microhardness is 3.5 times higher than with normal sintering. A highest density of 98% and electrical conductivity of 45.6% IACS were obtained in the Cu-1 vol% NbC composite. The highest microhardness of 452.9 Hv was achieved in the Cu-25 vol% NbC composite.

  20. Fabrication and characterization of Y{sub 2}O{sub 3} dispersion strengthened copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Carro, G.; Muñoz, A. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Monge, M.A., E-mail: mmonge@fis.uc3m.es [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Savoini, B.; Pareja, R.; Ballesteros, C. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Adeva, P. [Centro Nacional de Investigaciones Metalúrgicas, CSIC, Av. Gregorio del Amo, 8, 28040 Madrid (Spain)

    2014-12-15

    Three copper base materials were fabricated following different routes: cast Cu–1 wt.%Y (C-Cu1Y) produced by vacuum induction melting, and Cu–1 wt.%Y (PM-Cu1Y) and Cu–1 wt.%Y{sub 2}O{sub 3} (PM-Cu1Y{sub 2}O{sub 3}) both processed by a powder metallurgy route and sintering by hot isostatic pressing. PM-Cu1Y alloy was prepared by cryomilling and PM-Cu1Y{sub 2}O{sub 3} by conventional milling at room temperature. The materials were characterized by X-ray diffraction, optical and electron microscopy and microhardness measurements. C-Cu1Y presents a characteristic eutectic microstructure while PM-Cu1Y{sub 2}O{sub 3} exhibits a composite like microstructure. Electron microscopy analyses of as-HIP PM-Cu1Y revealed irregular decoration of yttrium-rich oxides at the grain boundaries and an inhomogeneous dispersion of polygonal shaped yttrium-rich oxides dispersed in the Cu matrix. Tensile tests performed on PM-Cu–1Y on the temperature range of 293–773 K have showed a decrease of the yield strength at temperatures higher than 473 K, and monotonically decrease of the ultimate tensile strength and maximum plastic strain on increasing temperature.

  1. The properties of high-energy milled pre-alloyed copper powders containing 1 wt. % Al

    Directory of Open Access Journals (Sweden)

    VISESLAVA RAJKOVIC

    2007-01-01

    Full Text Available The microstructural and morphological changes of inert gas atomized pre-alloyed Cu-1 wt. % Al powders subjected to hith-energy milling were studied. The microhardness of hot-pressed compacts was measured as a function of milling time. The thermal stability during exposure at 800 °C and the electrical conductivity of compacts were also examined. During the high-energy milling, severe deformation led to refinement of the powder particle grain size (from 550 nm to about 55 nm and a decrease in the lattice parameter (0.10 %, indicating precipitation of aluminium from the copper matrix. The microhardness of compacts obtained from 5 h-milled powders was 2160 MPa. After exposure at 800 °C for 5 h, these compacts still exhibited a high microhardness value (1325 MPa, indicating good thermal stability. The increase of microhardness and good thermal stability is attributed to the small grain size (270 and 390 nm before and after high temperature exposure, respectively. The room temperature electrical conductivity of compacts processed from 5 h-milled powder was 79 % IACS.

  2. Mechanisms and rate of dislocation nucleation in aluminum-copper alloys near Guinier-Preston zones

    Science.gov (United States)

    Bryukhanov, I. A.; Larin, A. V.

    2016-12-01

    This article is devoted to a molecular dynamics simulation study of partial dislocation loop nucleation with respect to its mechanism and rate, and its propagation process under high shear stress in aluminum-copper alloys. The mechanisms of dislocation nucleation near Guinier-Preston (GP) zones of various diameters and concentrations have been analyzed. Dislocation nucleation rates near plain GP Cu-zones with diameters of 3.5, 7.5, and 13.5 nm and at various concentrations have been calculated using the mean lifetime method with temperatures in range of 100 and 700 K. It has been found that depending on the temperature and applied stress, the dislocation can nucleate either from the edge, or from the plain area of a GP zone. The dislocation nucleation is preceded by a generation of defect clusters that are formed due to local opposite atomic shifts in two adjacent (111) planes by the half-length of a Burgers vector of a partial dislocation. The expansion of a partial dislocation loop can be accompanied by the formation of twins via a shift of the atoms in the internal region of the loop. The twin velocity along the direction of the partial dislocation Burgers vector inside the loop can achieve longitudinal sound speed. The speeds of the edge and screw segments of a partial dislocation loop as a function of a shear stress component along the Burgers vector have been estimated. The latter seems to be limited by the shear sound speed.

  3. Determination of microstructural changes by severely plastically deformed copper-aluminum alloy: Optical study

    Directory of Open Access Journals (Sweden)

    Romčević N.

    2014-01-01

    Full Text Available Our work deals with the problem of producing a complex metal-ceramic composite using the processes of internal oxidation (IO and severe plastic deformation. For this purpose, Cu-Al alloy with 0.4wt.% of Al was used. IO of sample serves in the first step of the processing as a means for attaining a fine dispersion of nanosized oxide particles in the metal matrix. Production technology continues with repeated application of severe plastic deformation (SPD of the resulting metalmatrix composite to produce the bulk nanoscaled structural material. SPD was carried out with equal channel angular pressing (ECAP, which allowed that the material could be subjected to an intense plastic strain through simple shear. Microstructural characteristics of one phase and multiphase material was studied on internally oxidized Cu with 0.4wt.% of Al sample composed of one phase copper-aluminum solid solution in the core and fine dispersed oxide particles in the same matrix in the mantle region. In this manner AFM, X-ray diffraction and Raman spectroscopy were used. Local structures in plastically deformed samples reflect presence of Cu, CuO, Cu2O, Cu4O3 or Al2O3 structural characteristics, depending on type of sample. [Projekat Ministarstva nauke Republike Srbije, br. III45003

  4. Solution and diffusion of hydrogen isotopes in tungsten-rhenium alloy

    Science.gov (United States)

    Ren, Fei; Yin, Wen; Yu, Quanzhi; Jia, Xuejun; Zhao, Zongfang; Wang, Baotian

    2017-08-01

    Rhenium is one of the main transmutation elements forming in tungsten under neutron irradiation. Therefore, it is essential to understand the influence of rhenium impurity on hydrogen isotopes retention in tungsten. First-principle calculations were used to study the properties of hydrogen solution and diffusion in perfect tungsten-rhenium lattice. The interstitial hydrogen still prefers the tetrahedral site in presence of rhenium, and rhenium atom cannot act directly as a trapping site of hydrogen. The presence of rhenium in tungsten raises the solution energy and the real normal modes of vibration on the ground state and the transition state, compared to hydrogen in pure tungsten. Without zero point energy corrections, the presence of rhenium decreases slightly the migration barrier. It is found that although the solution energy would tend to increase slightly with the rising of the concentration of rhenium, but which does not influence noticeably the solution energy of hydrogen in tungsten-rhenium alloy. The solubility and diffusion coefficient of hydrogen in perfect tungsten and tungsten-rhenium alloy have been estimated, according to Sievert's law and harmonic transition state theory. The results show the solubility of hydrogen in tungsten agrees well the experimental data, and the presence of Re would decrease the solubility and increase the diffusivity for the perfect crystals.

  5. Origin of native copper in the Paraná volcanic province, Brazil, integrating Cu stable isotopes in a multi-analytical approach

    Science.gov (United States)

    Baggio, Sérgio Benjamin; Hartmann, Léo Afraneo; Lazarov, Marina; Massonne, Hans-Joachim; Opitz, Joachim; Theye, Thomas; Viefhaus, Tillmann

    2017-06-01

    Different hypotheses exist on the origin of native copper mineralization in the Paraná volcanic province that invoke magmatic, late magmatic, or hydrothermal events. The average copper content in the host basalts is 200 ppm. Native copper occurs as dendrites in cooling joints, fractures, and cavities within amygdaloidal crusts. Cuprite, tenorite, chrysocolla, malachite, and azurite occur in breccias at the top of the lava flows. Chemical analyses, X-ray diffraction, Raman spectrometry, electron microprobe analyses, LA-ICP-MS, and Cu isotope analyses were used to evaluate the origin of native copper in the volcanic province. Copper contents in magnetite of the host basalt are close to 1 wt.%, whereas clinopyroxene contains up to 0.04 wt.% Cu. Cretaceous hydrothermal alteration of magnetite and clinopyroxene released copper to generate hydrothermal copper mineralization. The isotopic composition of the native copper in the Paraná volcanic province varies from -0.9‰ in the southeastern portion (Rio Grande do Sul state) to 1.9‰ in the central portion (Paraná state) of the province. This study supports a hydrothermal origin followed by supergene enrichment for native copper in the Paraná volcanic province.

  6. Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination

    Directory of Open Access Journals (Sweden)

    Anna Różańska

    2017-07-01

    Full Text Available Background: Hospital equipment made from copper alloys can play an important role in complementing traditional methods of disinfection. Aims of the study: The aim of this study was to assess the dynamics of the antimicrobial properties of selected copper alloys in different simulations of environmental conditions (with organic contamination vs. without organic contamination, and to test alternatives to the currently used testing methods. Materials and Methods: A modification of Japanese standard JIS Z 2801 as well as Staphylococcus aureus (SA and Escherichia coli (EC suspended in NaCl vs. tryptic soy broth (TSB were used in tests performed on seven commonly used copper alloys, copper, and stainless steel. Results: A much faster reduction of the bacterial suspension was observed for the inoculum prepared in NaCl than in TSB. A faster reduction for EC than for SA was observed in the inoculum prepared in NaCl. The opposite results were found for the inoculum based on TSB. A significant correlation between the copper concentration in the copper alloys and the time and degree of bacterial suspension reduction was only observed in the case of EC. Conclusions: This study confirmed the antimicrobial properties of copper alloys, and additionally showed that Staphylococcus aureus was more resistant than Escherichia coli in the variant of the experiment without organic contamination. However, even for SA, a total reduction of the bacterial inoculum’s density took no longer than 2 h. Under conditions simulating organic contamination, all of the tested alloys were shown to have bactericidal or bacteriostatic properties, which was contrary to the results from stainless steel.

  7. Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process

    Science.gov (United States)

    Dong, Bosheng; Pan, Zengxi; Shen, Chen; Ma, Yan; Li, Huijun

    2017-09-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate Cu-9 at. pct Al on pure copper plates in situ, through separate feeding of pure Cu and Al wires into a molten pool, which is generated by the gas tungsten arc welding (GTAW) process. After overcoming several processing problems, such as opening the deposition molten pool on the extremely high-thermal conductive copper plate and conducting the Al wire into the molten pool with low feed speed, the copper-rich Cu-Al alloy was successfully produced with constant predesigned Al content above the dilution-affected area. Also, in order to homogenize the as-fabricated material and improve the mechanical properties, two further homogenization heat treatments at 1073 K (800 °C) and 1173 K (900 °C) were applied. The material and mechanical properties of as-fabricated and heat-treated samples were compared and analyzed in detail. With increased annealing temperatures, the content of precipitate phases decreased and the samples showed gradual improvements in both strength and ductility with little variation in microstructures. The present research opened a gate for in-situ fabrication of Cu-Al alloy with target chemical composition and full density using the additive manufacturing process.

  8. Copper Products Capacity Expansion Stimulate the Copper Consumption

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>The dramatic growth of copper consumption in China can directly be seen from the expansion of copper products capacity.According to sta- tistics,in the past 4 years,the improvement on the balance of trade on copper bar,copper,and copper alloy and copper wire & cable has driven the growth of copper consumption a lot.

  9. Auger electron spectroscopic study of mechanism of sulfide-accelerated corrosion of copper-nickel alloy in seawater

    Science.gov (United States)

    Schrader, Malcolm E.

    The mechanism of sulfide-induced accelerated corrosion of 90-10 copper-nickel(iron) alloy is investigated. Samples of the alloy are exposed to flowing (2.4 m/s) seawater, with and without 0 01 mg/l sulfide, for various periods of time. The resulting surfaces are examined by means of Auger electron spectroscopy coupled with inert-ion-homoardment. A detailed depth profile is thereby obtained of concentrations in the surface region of a total of nine elements. The results are consistent with the hypothesis that iron hydroxide segregates at the surface to form a protective gelatinous layer against the normal chloride-induced corrosion process. Trace sulfide interferes with formation of a good protective layer and leaves the iron hydroxide vulnerable to ultimate partial or complete debonding. When the alloy is first exposed to "pure" seawater for a prolonged period of time, however, subsequent exposure to sulfide is no longer deleterious. This is apparently due to a layer of copper-nickel salt that slowly forms over the iron hydroxide.

  10. Creep properties of phosphorus alloyed oxygen free copper under multiaxial stress state

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Sandstroem, Rolf; Seitisleam, Facredin

    2009-10-15

    Phosphorus alloyed oxygen free copper (Cu-OFP) canisters are planned to be used for spent nuclear fuel in Sweden. The copper canisters will be subjected to creep under multiaxial stress states in the repository. Creep tests have therefore been carried out at 75 deg C using double notch specimens with notch acuities of 0.5, 2, 5, and 18.8, respectively. The creep lifetime for notched specimens is considerably longer than that for the smooth one at a given net section stress, indicating that the investigated Cu-OFP is notch insensitive (notch strengthening). The notch strengthening factor in time is, for instance, greater than 70 at 180 MPa for the bluntest notch (notch acuity = 0.5). The creep lifetime is notch acuity dependent. The sharper the notch, the longer the creep lifetime is. The creep deformation is to a significant extent concentrated to the region around the notches. Different deformation on the two notches is observed. Both axial and radial strains on the failed notch are several times larger than those on the unbroken one. Linear relation between the axial and the radial strains on the notches is found. Transgranular failure is predominant, independent of stress, rupture time, and notch acuity. Adjacent to fracture, elongated grains along the stress direction, separate pores and cavities are often visible. On the unbroken notch, fewer separate cavities and cracks are only seen intergranularly for the sharper notches (notch acuity > 2). To interpret the tests for the notched creep specimens, finite element computations have been performed. A fundamental model for primary and secondary creep without fitting parameters has been used as constitutive equation. The FEM-modelling could represent the creep strain versus time curves for the notched specimens in a satisfactory way. In these curves the strain on loading is included. From the FEM-computations a stationary creep stress could be assessed, which is close to the reference stress. For a given

  11. SU-E-T-10: A Dosimetric Comparison of Copper to Lead-Alloy Apertures for Electron Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rusk, B; Hogstrom, K; Gibbons, J; Carver, R [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States)

    2014-06-01

    Purpose: To evaluate dosimetric differences of copper compared to conventional lead-alloy apertures for electron beam therapy. Methods: Copper apertures were manufactured by .decimal, Inc. and matching lead-alloy, Cerrobend, apertures were constructed for 32 square field sizes (2×2 – 20×20 cm{sup 2}) for five applicator sizes (6×6–25×25 cm{sup 2}). Percent depth-dose and off-axis-dose profiles were measured using an electron diode in water with copper and Cerrobend apertures for a subset of aperture sizes (6×6, 10×10, 25×25 cm{sup 2}) and energies (6, 12, 20 MeV). Dose outputs were measured for all field size-aperture combinations and available energies (6–20 MeV). Measurements were taken at 100 and 110 cm SSDs. Using this data, 2D planar absolute dose distributions were constructed and compared. Passing criteria were ±2% of maximum dose or 1-mm distance-to-agreement for 99% of points. Results: A gamma analysis of the beam dosimetry showed 93 of 96 aperture size, applicator, energy, and SSD combinations passed the 2%/1mm criteria. Failures were found for small field size-large applicator combinations at 20 MeV and 100-cm SSD. Copper apertures showed a decrease in bremsstrahlung production due to copper's lower atomic number compared to Cerrobend (greatest difference was 2.5% at 20 MeV). This effect was most prominent at the highest energies with large amounts of shielding material present (small field size-large applicator). Also, an increase in electrons scattered from the collimator edge of copper compared to Cerrobend resulted in an increased dose at the field edge for copper at shallow depths (greatest increase was 1% at 20 MeV). Conclusion: Apertures for field sizes ≥6×6 cm{sup 2} at any energy, or for small fields (≤4×4 cm{sup 2}) at energies <20 MeV, showed dosimetric differences less than 2%/1mm for more than 99% of points. All field size-applicator size-energy combinations passed 3%/1mm criteria for 100% of points. Work partially

  12. Texture and mechanical properties of tape substrates from binary and ternary copper alloys for second-generation high-temperature superconductors

    Science.gov (United States)

    Khlebnikova, Yu. V.; Rodionov, D. P.; Gervas'eva, I. V.; Suaridze, T. R.; Egorova, L. Yu.; Akshentsev, Yu. N.; Kazantsev, V. A.

    2015-01-01

    The process of texture formation in tapes made of a number of binary and ternary copper alloys upon cold rolling to degrees of deformation of 98.6-99% and subsequent recrystallization annealing has been studied. The possibility of designing multicomponent alloys based on the binary Cu-30% Ni alloy additionally alloyed with elements that strengthen the fcc matrix, such as iron or chromium, has been shown. The opportunity of obtaining a perfect cube texture in a thin tape made of binary and ternary copper alloys opens prospects for their use as substrates in the technology of second-generation HTSC cables. Optimum regimes of annealing have been determined, which make it possible to obtain in the Cu- M and Cu-(30-40)Ni- M ( M = Fe, Cr, Mn) alloys a perfect biaxial texture with the fraction of cube grains {001} on the surface of the tape more than 94%. The estimation of the mechanical properties of the textured tapes of the investigated alloys demonstrates a yield strength that is 2.5-4.5 times greater than that in the textured tape of pure copper.

  13. Roseomonas pecuniae sp. nov., isolated from the surface of a copper-alloy coin.

    Science.gov (United States)

    Lopes, André; Esp Rito Santo, Christophe; Grass, Gregor; Chung, Ana Paula; Morais, Paula V

    2011-03-01

    Strain N75(T) was isolated from the surface of a copper-alloy 50 Euro cent coin collected from general circulation. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain N75(T) formed a distinct branch within the genus Roseomonas and placed it in the Alphaproteobacteria. Strain N75(T) showed 16S rRNA gene sequence similarities of 92.4-97.1  % to type strains of species of the genus Roseomonas. Strain N75(T) was a Gram-negative, non-spore-forming, non-motile coccoid, with an optimum growth temperature of about 30 °C; the strain did not grow at 5 or 37 °C. Strain N75(T) did not grow in medium containing NaCl. The major respiratory quinone was ubiquinone 10 (Q-10). The major fatty acids were unsaturated C₁₆:₁ω7c/C₁₆:₁ω6c and C₁₈:₁ω7c (around 70 % of the total fatty acids); the third most abundant fatty acid was the hydroxylated C₁₈:₁ 2-OH. The major polar lipids were phosphatidylcholine, phosphatidylethanolamine and an unknown aminolipid. The DNA G+C content was 72.8 mol%. On the basis of the phylogenetic analysis and physiological and biochemical characteristics, we conclude that strain N75(T) represents a novel species of the genus Roseomonas, for which we propose the name Roseomonas pecuniae sp. nov. (type strain N75(T) =LMG 25481(T) =CIP 110074(T)).

  14. Geochemistry and S, Pb isotope of the Yangla copper deposit, western Yunnan, China: Implication for ore genesis

    Science.gov (United States)

    Yang, Xi-An; Liu, Jia-Jun; Cao, Ye; Han, Si-Yu; Gao, Bing-yu; Wang, Huan; Liu, Yue-Dong

    2012-07-01

    The Yangla copper deposit, situated in the middle section of Jinshajiang tectonic belt between Zhongza-Zhongdian block and Changdu-Simao block, is a representative and giant copper deposit that has been discovered in Jinshajiang-Lancangjiang-Nujiang region in recent years. There are coupled relationships between Yangla granodiorite and copper mineralization in the Yangla copper deposit. Five molybdenite samples yielded a well-constrained 187Re-187Os isochron age of 233.3 ± 3 Ma, the metallogenesis is therefore slightly younger than the crystallization age of the granodiorite. S, Pb isotopic compositions of the Yangla copper deposit indicate that the ore-forming materials were derived from the mixture of upper crust and mantle, also with the magmatic contributions. In the late Early Permian, the Jinshajiang Oceanic plate was subducted to the west, resulting in the formation of a series of gently dipping thrust faults in the Jinshajiang tectonic belt, meanwhile, accompanied magmatic activities. In the early Late Triassic, which was a time of transition from collision-related compression to extension in the Jinshajiang tectonic belt, the thrust faults were tensional; it would have been a favorable environment for forming ore fluids. The ascending magma provided a channel for the ore-forming fluid from the mantle wedge. After the magma arrived at the base of the early-stage Yangla granodiorite, the platy granodiorite at the base of the body would have shielded the late-stage magma from the fluid. The magma would have cooled slowly, and some of the ore-forming fluid in the magma would have entered the gently dipping thrust faults near the Yangla granodiorite, resulting in mineralization.

  15. Surface free energy of copper-zinc alloy for energy-saving of boiler

    Institute of Scientific and Technical Information of China (English)

    WANG Man; LIANG Jinsheng; TANG Qingguo; MING Xing; MENG Junping; DING Yan

    2006-01-01

    Cu-Zn, Cu-Zn-Sn, Cu-Zn-Ni alloys were melted by vacuum smelter. The effect factors to the surface free energy of the alloys such as chemical composition, crystal structure and surface crystal lattice distortion etc. were investigated by OCA30 automatic contact angle test instrument, metallography microscope and XRD instrument etc. Results suggests: adding alloy element to Cu may increase its surface free energy, and the more kinds of alloy elements are added, the more surface free energy increases; the alloy element Sn an increase the surface free energy of Cu-Zn alloy; Cu-Zn alloy with fir-tree crystal structure, great phase discrepancy and obvious composition aliquation has greater surface free energy; Cu-Zn alloy with compounds and serious surface crystal lattice distortion has greater surface free energy.

  16. Superthermostability of nanoscale TIC-reinforced copper alloys manufactured by a two-step ball-milling process

    Science.gov (United States)

    Wang, Fenglin; Li, Yunping; Xu, Xiandong; Koizumi, Yuichiro; Yamanaka, Kenta; Bian, Huakang; Chiba, Akihiko

    2015-12-01

    A Cu-TiC alloy, with nanoscale TiC particles highly dispersed in the submicron-grained Cu matrix, was manufactured by a self-developed two-step ball-milling process on Cu, Ti and C powders. The thermostability of the composite was evaluated by high-temperature isothermal annealing treatments, with temperatures ranging from 727 to 1273 K. The semicoherent nanoscale TiC particles with Cu matrix, mainly located along the grain boundaries, were found to exhibit the promising trait of blocking grain boundary migrations, which leads to a super-stabilized microstructures up to approximately the melting point of copper (1223 K). Furthermore, the Cu-TiC alloys after annealing at 1323 K showed a slight decrease in Vickers hardness as well as the duplex microstructure due to selective grain growth, which were discussed in terms of hardness contributions from various mechanisms.

  17. Heat-Affected Zone Liquation Cracking Resistance of Friction Stir Processed Aluminum-Copper Alloy AA 2219

    Science.gov (United States)

    Karthik, G. M.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2016-12-01

    In the current work, the effect of friction stir processing on heat-affected zone (HAZ) liquation cracking resistance of aluminum-copper alloy AA 2219 was evaluated. In Gleeble hot-ductility tests and longitudinal Varestraint tests, the FSPed material, despite its very fine dynamically recrystallized equiaxed grain structure, showed considerably higher susceptibility to HAZ liquation cracking when compared to the base material. Detailed microstructural studies showed that the increased cracking susceptibility of the FSPed material is due to (i) increase in the amount of liquating θ phase (equilibrium Al2Cu) and (ii) increase in the population of grain boundary θ particles. An important learning from the current work is that, in certain materials like alloy 2219, the use of FSP as a pretreatment to fusion welding can be counterproductive.

  18. Heat-Affected Zone Liquation Cracking Resistance of Friction Stir Processed Aluminum-Copper Alloy AA 2219

    Science.gov (United States)

    Karthik, G. M.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2017-04-01

    In the current work, the effect of friction stir processing on heat-affected zone (HAZ) liquation cracking resistance of aluminum-copper alloy AA 2219 was evaluated. In Gleeble hot-ductility tests and longitudinal Varestraint tests, the FSPed material, despite its very fine dynamically recrystallized equiaxed grain structure, showed considerably higher susceptibility to HAZ liquation cracking when compared to the base material. Detailed microstructural studies showed that the increased cracking susceptibility of the FSPed material is due to (i) increase in the amount of liquating θ phase (equilibrium Al2Cu) and (ii) increase in the population of grain boundary θ particles. An important learning from the current work is that, in certain materials like alloy 2219, the use of FSP as a pretreatment to fusion welding can be counterproductive.

  19. Initiation and propagation of cleared channels in neutron-irradiated pure copper and a precipitation hardened CuCrZr alloy

    DEFF Research Database (Denmark)

    Singh, B.N; Edwards, D.J.; Bilde-Sørensen, Jørgen

    2004-01-01

    has emerged. Recently we have studied the problem of initiation and propagation of cleared channels during post-irradiation tensile tests of pure copper and a copper alloy irradiated with fission neutrons.Tensile specimens of pure copper and a precipitation hardened copper alloy (CuCrZr) were neutron...... irradiated at 323 and 373K to displacement doses in the range of 0.01 to 0.3 dpa (displacement per atom) and tensile tested at the irradiation temperature.The stress-strain curves clearly indicated the occurrence of a yield drop. The post-deformation microstructural examinations revealed that the channels...... throughout the whole tensile test, no clear evidencehas been found for the operation of Frank-Read sources in the volume between the channels. Channels have been observed to penetrate through annealing twins, in some cases stopping at the opposite twin boundary and in other cases penetrating even throughthe...

  20. Study of Acidithiobacillus ferrooxidans and enzymatic bio-Fenton process-mediated corrosion of copper-nickel alloy.

    Science.gov (United States)

    Jadhav, U; Hocheng, H

    2016-10-01

    This study presents the corrosion behavior of the copper-nickel (Cu-Ni) alloy in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans) and glucose oxidase (GOx) enzyme. In both the cases ferric ions played an important role in weight loss and thereby to carry out the corrosion of the Cu-Ni alloy. A corrosion rate of 0.6 (±0.008), 2.11 (±0.05), 3.69 (±0.26), 0.7 (±0.006) and 0.08 (±0.002) mm/year was obtained in 72 h using 9K medium with ferrous sulfate, A. ferrooxidans culture supernatant, A. ferrooxidans cells, GOx enzyme and hydrogen peroxide (H2O2) solution respectively. The scanning electron microscopy (SEM) micrographs showed that a variable extent of corrosion was caused by 9K medium with ferrous sulfate, GOx and A. ferrooxidans cells. An arithmetic average surface roughness (Ra) of 174.78 nm was observed for the control work-piece using optical profilometer. The change in Ra was observed with the treatment of the Cu-Ni alloy using various systems. The Ra for 9K medium with ferrous sulfate, GOx and A. ferrooxidans cells was 374.54, 607.32 and 799.48 nm, respectively, after 24 h. These results suggest that A. ferrooxidans cells were responsible for more corrosion of the Cu-Ni alloy than other systems used.

  1. A reconnaissance of the Cu isotopic compositions of hydrothermal vein-type cop-per deposit, Jinman, Yunnan,China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Jinman deposit is a low-temperature hydrothermal vein-type copper deposit, which occurs along faults and fractures within Middle Jurassic sandstone and mudstone units of the Lanping-Simao Mesozoic-Cenozoic basin of Yunnan Province. In this note, we report for the first time the Cu isotopic compositions of Cu-sulfides from the Jinman deposit. The data show large variations and low 65Cu values of 3.70‰ to +0.30‰, which are in sharp contrast to the 65Cu values of high-temperature magmatic-hydrothermal copper deposits (0.62‰ to +0.40‰) and the modern ocean-floor massive sulfide deposits (0.48‰ to +1.15‰). It is suggested that the Cu isotope fractionation at Jinman is affected mainly by the following factors, i.e. a low temperature of ore formation (150-286℃); a sedimentary source for ore materials; various stages of ore deposition; and involvement of organic matter in the ore-forming processes.

  2. Investigation of the influence of grain boundary chemistry, test temperatures, and strain rate on the fracture behavior of ITER copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Leedy, K.; Stubbins, J.F.; Krus, D. [and others

    1997-08-01

    In an effort to understand the mechanical behavior at elevated temperatures (>200{degrees}C) of the various copper alloys being considered for use in the ITER first wall, divertor, and limiter, a collaborative study has been initiated by the University of Illinois and PNNL with two industrial producers of copper alloys, Brush Wellman and OMG Americas. Details of the experimental matrix and test plans have been finalized and the appropriate specimens have already been fabricated and delivered to the University of Illinois and PNNL for testing and analysis. The experimental matrix and testing details are described in this report.

  3. Effect of copper ions implantation on the corrosion behavior of ZIRLO alloy in 1 mol/L H2SO4

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to study the effect of copper ion implantation on the aqueous corrosion behavior of ZIRLO alloy, specimens were implanted with copper ions with fluences ranging from l×l016 to 1×1017 ions/cm2, using a metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV.The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively.Glancing angle X-ray diffraction(GAXRD) was employed to examine the phase transformation due to the copper ion implantation.The potentiodynamic polarization technique was used to evaluate the aqueous corrosion resistance of implanted ZIRLO alloy in a l mol/L H2SO4 solution.It was found that a significant improvement was achieved in the aqueous corrosion resistance of ZIRLO alloy implanted with copper ions when the fluence is 5×1016 ions/cm2.When the fluence is l×l016 or l×l017 ions/cm2, the corrosion resistance of implanted samples was bad..Finally, the mechanism of the corrosion behavior of copper-implanted ZIRLO alloy was discussed.

  4. The oxygen isotope effect on critical temperature in superconducting copper oxides

    OpenAIRE

    Mourachkine, A.

    2003-01-01

    The isotope effect provided a crucial key to the development of the BCS (Bardeen-Cooper-Schrieffer) microscopic theory of superconductivity for conventional superconductors. In superconducting cooper oxides (cuprates) showing an unconventional type of superconductivity, the oxygen isotope effect is very peculiar: the exponential coefficient strongly depends on doping level. No consensus has been reached so far on the origin of the isotope effect in the cuprates. Here we show that the oxygen i...

  5. Characterization of fluid inclusions and sulfur isotopes in the Iju porphyry copper deposit, North West of Shahr-e-Babak

    Directory of Open Access Journals (Sweden)

    Malihe Golestani

    2017-07-01

    Full Text Available Introduction The Iju porphyry copper deposit is located in the southern part of the Urumieh-Dokhtar magmatic arc (Dehaj-Sarduieh belt within the Kerman copper belt (Dimitrijevic, 1973. The Porphyry Copper mineralization in the Iranian plate occurs dominantly along the Urumieh-Dokhtar arc, which has resulted from the subduction of the Arabian plate beneath the central Iran and the closure of the Neo-Tethys Ocean during the Alpine orogeny (Hassanzadeh, 1993. The Iju porphyry copper deposit with 25 million tons of ore reserves is one of the main copper deposits within the Kerman copper belt. The mining area is composed of upper Miocene volcanic and subvolcanic rocks (mineralized and barren subvolcanic rocks and quaternary deposits. Two hydrothermal alteration zones of quartz-sericite-pyrite and propylitic zones can be identified in the Iju area. The copper mineralization in the Iju deposit occurs as disseminated, stockwork and hydrothermal breccia. In the hypogene zone, the mineral paragenesis include chalcopyrite, pyrite, with minor occurrences of bornite and magnetite. This paper reports geological, mineralogical, fluid inclusion and S isotope data from the Iju deposit in order to investigate ore-bearing fluids’ characteristics and the mechanisms of ore deposition. Materials and methods Fifteen samples of syngenetic quartz+pyrite bearing veinlets within the quartz-sericite-pyrite zone were selected from different depths across the seven boreholes. Quartz was used for double-polished thin sections and pyrite was used for sulfur isotope analysis. Fluid inclusion studies were performed using the Linkam cooling and heating stage, the THMSG 600 model. The syngenetic pyrite with thermometry quartz sample was used for the sulfur isotope experiments. Stable isotope analysis was performed at the Hatch Stable Isotope Laboratory in the University of Ottawa, Canada. Results The fluid inclusions of the Iju deposit represent a wide range in the

  6. Experimental Investigations on Pulsed Nd:YAG Laser Welding of C17300 Copper-Beryllium and 49Ni-Fe Soft Magnetic Alloys

    Science.gov (United States)

    Mousavi, S. A. A. Akbari; Ebrahimzadeh, H.

    2011-01-01

    Copper-beryllium and soft magnetic alloys must be joined in electrical and electro-mechanical applications. There is a high difference in melting temperatures of these alloys which cause to make the joining process very difficult. In addition, copper-beryllium alloys are of age hardenable alloys and precipitations can brittle the weld. 49Ni-Fe alloy is very hot crack sensitive. Moreover, these alloys have different heat transfer coefficients and reflection of laser beam in laser welding process. Therefore, the control of welding parameters on the formation of adequate weld puddle composition is very difficult. Laser welding is an advanced technique for joining of dissimilar materials since it can precisely control and adjust the welding parameters. In this study, a 100W Nd:YAG pulsed laser machine was used for joining 49Ni-Fe soft magnetic to C17300 copper-beryllium alloys. Welding of samples was carried out autogenously by changing the pulse duration, diameter of beam, welding speed, voltage and frequency. The spacing between samples was set to almost zero. The ample were butt welded. It was required to apply high voltage in this study due to high reflection coefficient of copper alloys. Metallography, SEM analysis, XRD and microhardness measurement was used for survey of results. The results show that the weld strength depends upon the chemical composition of the joints. To change the wells composition and heat input of the welds, it was attempted to deviate the laser focus away from the weld centerline. The best strength was achieved by deviation of the laser beam away about 0.1mm from the weld centerline. The result shows no intermetallic compounds if the laser beam is deviated away from the joint.

  7. Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr)oxides: Possible structural control

    Science.gov (United States)

    Pokrovsky, O. S.; Viers, J.; Emnova, E. E.; Kompantseva, E. I.; Freydier, R.

    2008-04-01

    This work is aimed at quantifying the main environmental factors controlling isotope fractionation of Cu during its adsorption from aqueous solutions onto common organic (bacteria, algae) and inorganic (oxy(hydr)oxide) surfaces. Adsorption of Cu on aerobic rhizospheric ( Pseudomonas aureofaciens CNMN PsB-03) and phototrophic aquatic ( Rhodobacter sp. f-7bl, Gloeocapsa sp. f-6gl) bacteria, uptake of Cu by marine ( Skeletonema costatum) and freshwater ( Navicula minima, Achnanthidium minutissimum and Melosira varians) diatoms, and Cu adsorption onto goethite (FeOOH) and gibbsite (AlOOH) were studied using a batch reaction as a function of pH, copper concentration in solution and time of exposure. Stable isotopes of copper in selected filtrates were measured using Neptune multicollector ICP-MS. Irreversible incorporation of Cu in cultured diatom cells at pH 7.5-8.0 did not produce any isotopic shift between the cell and solution (Δ 65/63Cu(solid-solution)) within ±0.2‰. Accordingly, no systematic variation was observed during Cu adsorption on anoxygenic phototrophic bacteria ( Rhodobacter sp.), cyanobacteria ( Gloeocapsa sp.) or soil aerobic exopolysaccharide (EPS)-producing bacteria ( P. aureofaciens) in circumneutral pH (4-6.5) and various exposure times (3 min to 48 h): Δ 65Cu(solid-solution) = 0.0 ± 0.4‰. In contrast, when Cu was adsorbed at pH 1.8-3.5 on the cell surface of soil the bacterium P. aureofacienshaving abundant or poor EPS depending on medium composition, yielded a significant enrichment of the cell surface in the light isotope (Δ 65Cu (solid-solution) = -1.2 ± 0.5‰). Inorganic reactions of Cu adsorption at pH 4-6 produced the opposite isotopic offset: enrichment of the oxy(hydr)oxide surface in the heavy isotope with Δ 65Cu(solid-solution) equals 1.0 ± 0.25‰ and 0.78 ± 0.2‰ for gibbsite and goethite, respectively. The last result corroborates the recent works of Mathur et al. [Mathur R., Ruiz J., Titley S., Liermann L., Buss H. and

  8. Reconciling viability and cost-effective shape memory alloy options – A review of copper and iron based shape memory metallic systems

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2016-09-01

    Full Text Available Shape memory alloys (SMAs are group of alloys that display anthropomorphic characteristics. These alloys recover their pre-deformed morphology when heated above their transition temperatures after being deformed in their lower temperature phase (martensitic phase. This unique material behavior is explored in industrial and technological applications where capacity for strain recovery is a key design parameter. Copper and iron based SMAs are largely viewed as potential cost effective substitute to Ni–Ti SMAs judging from their promising shape memory properties, damping capacity and other functional properties. Despite their outstanding potentials, the susceptibility of copper based SMAS to phase stabilization, transition hysteresis, aging and brittleness creates doubt on the possibility of transiting from the realm of potential to functional long term use in engineering applications. On the other hand the low percentage shape recovery in the Fe based SMAs also creates a gap between the theory and potential use of these alloys. This paper takes a critical look at the science of shape memory phenomena as applicable to copper and iron based SMA systems. It also covers the limitations of these systems, the effect of processing parameters on these alloys, proposed solutions to limitations associated with this group of shape memory alloys and thoughts for future consideration.

  9. Experimental investigation of Ti–6Al–4V titanium alloy and 304L stainless steel friction welded with copper interlayer

    Directory of Open Access Journals (Sweden)

    R. Kumar

    2015-03-01

    Full Text Available The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are especially popular in defense, aerospace, automobile, bio-medical, refinery and nuclear engineerings. In friction welding, some special alloys with dual phase are not joined successfully due to poor bonding strength. The alloy surfaces after bonding also have metallurgical changes in the line of interfacing. The reported research work in this area is scanty. Although the sound weld zone of direct bonding between Ti–6Al–4V and SS304L was obtained though many trials, the joint was not successful. In this paper, the friction welding characteristics between Ti–6Al–4V and SS304L into which pure oxygen free copper (OFC was introduced as interlayer were investigated. Box–Behnken design was used to minimize the number of experiments to be performed. The weld joint was analyzed for its mechanical strength. The highest tensile strength between Ti–6Al–4V and SS304L between which pure copper was used as insert metal was acquired. Micro-structural analysis and elemental analysis were carried out by EDS, and the formation of intermetallic compound at the interface was identified by XRD analysis.

  10. Pentacle gold-copper alloy nanocrystals: a new system for entering male germ cells in vitro and in vivo

    Science.gov (United States)

    Lin, Yu; He, Rong; Sun, Liping; Yang, Yushan; Li, Wenqing; Sun, Fei

    2016-12-01

    Gold-based nanocrystals have attracted considerable attention for drug delivery and biological applications due to their distinct shapes. However, overcoming biological barriers is a hard and inevitable problem, which restricts medical applications of nanomaterials in vivo. Seeking for an efficient transportation to penetrate biological barriers is a common need. There are three barriers: blood-testis barrier, blood-placenta barrier, and blood-brain barrier. Here, we pay close attention to the blood-testis barrier. We found that the pentacle gold-copper alloy nanocrystals not only could enter GC-2 cells in vitro in a short time, but also could overcome the blood-testis barrier and enter male germ cells in vivo. Furthermore, we demonstrated that the entrance efficiency would become much higher in the development stages. The results also suggested that the pentacle gold-copper alloy nanocrystals could easier enter to germ cells in the pathological condition. This system could be a new method for theranostics in the reproductive system.

  11. Experimental investigation of Tie6Ale4V titanium alloy and 304L stainless steel friction welded with copper interlayer

    Institute of Scientific and Technical Information of China (English)

    R. KUMAR; M. BALASUBRAMANIAN

    2015-01-01

    The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are especially popular in defense, aerospace, automobile, bio-medical, refinery and nuclear engineerings. In friction welding, some special alloys with dual phase are not joined successfully due to poor bonding strength. The alloy surfaces after bonding also have metallurgical changes in the line of interfacing. The reported research work in this area is scanty. Although the sound weld zone of direct bonding between Tie6Ale4V and SS304L was obtained though many trials, the joint was not successful. In this paper, the friction welding characteristics between Tie6Ale4V and SS304L into which pure oxygen free copper (OFC) was introduced as interlayer were investigated. BoxeBehnken design was used to minimize the number of experiments to be performed. The weld joint was analyzed for its mechanical strength. The highest tensile strength between Tie6Ale4V and SS304L between which pure copper was used as insert metal was acquired. Micro-structural analysis and elemental analysis were carried out by EDS, and the formation of intermetallic compound at the interface was identified by XRD analysis.

  12. Production of neutron-rich copper isotopes in 30-MeV proton-induced fission of sup 2 sup 3 sup 8 U

    CERN Document Server

    Kruglov, K; Bruyneel, B; Dean, S S; Franchoo, S; Huyse, M; Kudryavtsev, Y; Müller, W F; Prasad, N V S; Raabe, R; Reusen, I; Schmidt, K H; Van De Vel, K; Van Duppen, P; Van Roosbroeck, J; Weissman, L

    2002-01-01

    The neutron-rich isotopes sup 7 sup 0 sup - sup 7 sup 6 Cu have been produced in 30-MeV proton-induced fission of sup 2 sup 3 sup 8 U using the Ion Guide Laser Ion Source (IGLIS) at LISOL. The production rates of the copper isotopes, and of the nickel and cobalt isotopes that were measured earlier, are compared to cross section calculations. Based on these new results an estimate for the cross section of sup 7 sup 8 Ni is given.

  13. Copper isotope behavior during extreme magma differentiation and degassing: a case study on Laacher See phonolite tephra (East Eifel, Germany)

    Science.gov (United States)

    Huang, Jian; Liu, Sheng-Ao; Wörner, Gerhard; Yu, Huimin; Xiao, Yilin

    2016-09-01

    Copper (Cu) isotopic analyses were performed on a set of samples from the Laacher See tephra (LST) (Eifel, Germany) to investigate whether Cu isotopes are fractionated during extreme magma differentiation and degassing. The LST represents a continuous fractional crystallization series from parental basanite through mafic to highly differentiated phonolites. Samples analyzed here include phonolites of variable degrees of differentiation, phonolite-basanite hybrid rocks formed by mixing basanite and phonolite magmas, and basanite-derived mega-crystals (i.e., clinopyroxene, amphibole, phlogopite). In addition, we analyzed a series of mafic parental lavas from surrounding volcanic centers to constrain the Cu isotopic features of the Eifel mantle. Mafic phonolites show strong depletion in Cu compared to their parental basanites from ~50 to ~3 ppm, indicating sulfide fractionation during the basanite-to-phonolite differentiation. Mass balance calculations, based on the most Cu-rich hybrid rock (δ65Cu = -0.21 ‰, [Cu] = 46.2 ppm), show that the parental basanite magmas have δ65Cu of ca. -0.21 ‰, lighter than those of the mafic phonolites (~0.11 ‰). This suggests that sulfide fractionation preferentially removes the lighter Cu isotope (63Cu) in S-saturated magmas. By contrast, all phonolites have a limited range of Cu contents (1.1 to 4.0 ppm) with no systematic variations with S, suggesting that Cu is not controlled by sulfide fractionation during the evolution of mafic to highly differentiated phonolites. The identical δ65Cu values (0.11 ± 0.03 ‰, 2SD, n = 10) of the phonolites, irrespective of highly diverse composition and extents of differentiation, indicate that fractional crystallization of silicates (e.g., plagioclase, sanidine, amphibole, pyroxene, olivine), Fe-Ti-oxides and phosphate (e.g., apatite) generates insignificant Cu isotope fractionation. The lack of correlations between δ65Cu and volatile contents (e.g., S, Cl) in the LST sequence implies

  14. The Colors and Chromatic Charts of Gold -Silver -Copper Carat Alloys%Au-Ag-Cu系开金合金的颜色与色度图

    Institute of Scientific and Technical Information of China (English)

    宁远涛

    2012-01-01

    颜色和色度坐标是珠宝饰品设计与制造的重要因素与参数.Au- Ag-Cu系合金是最重要的颜色开金饰品合金.文章评述了Ag、Cu对Au和Au基合金的光反射率和颜色的影响;介绍了Au- Ag-Cu系合金的色度图、金合金色泽标准及某些标准颜色合金成分;讨论了某些合金化元素对Au- Ag-Cu系合金颜色的影响.通过调整Ag、Cu组元含量比例和添加其它合金化元素,Au-Ag - Cu系开金合金可以获得丰富多彩的颜色,对于设计与控制珠宝饰品的颜色有重要意义.%Au - Ag - Cu system alloys are the most important color jewelry alloys. The colors of Au - Ag - Cu alloys depend on the composition and the content of the alloying components. The influences of Ag and Cu components on the reflectivity and color of gold and gold - based alloys were reviewed. The chromatic charts of gold - silver - copper carat alloys, color standard of carat alloys and the compositions of some standard color gold alloys were introduced. The effects of some other alloying elements on the color of gold alloys were also discussed. Au - Ag - Cu carat alloys can develop rich and varied colors through regulating the ratio of the contents of Ag and Cu in alloys and adding other alloying elements, which is the basis for designing and controlling colors of carat alloys based on gold.

  15. The Influence of Copper Condensates Alloying with Co, Mo, Ta Transition Metals on the Structure and the Hall-Petch Dependence

    Directory of Open Access Journals (Sweden)

    M.A. Glushchenko

    2016-10-01

    Full Text Available The structure and mechanical properties of two-component copper based Cu-Co, Cu-Mo, Cu-Ta is investigated. It is shown that cobalt, molybdenum and tantalum disperse the grain structure of the copper matrix to submicron and nanometer dimension, form a supersaturated solid solution in the copper fcc lattice and heterophase structure. Reducing of the grain size of condensates is explained by the formation of adsorption layers of atoms of alloying elements on the surface of the copper matrix metal growing grains. The Hall-Petch dependences for the the yield strength are built. The dependences for Cu-Mo and Cu-Ta condensates have greater slope than a similar function for the single component copper. The observed effect is explained by the influence of monolayer grain boundary segregation of molybdenum and tantalum atoms and multilayer segregation of Co atoms.

  16. Extremely low-outgassing material: 0.2% beryllium copper alloy

    Science.gov (United States)

    Watanabe, Fumio

    2004-01-01

    Exploration for low-outgassing materials for use in ultrahigh vacuum and extreme high-vacuum systems is one of the most important topics of a vacuum researcher. We have found that a copper alloy containing 0.2% beryllium (0.2% BeCu) can attain an extremely low hydrogen outgassing rate of 10-14 Pa (H2) m/s order. Almost the entire surface of 0.2% BeCu is dominated by a BeO layer, after a 400 °C×72 h prebakeout treatment in an ultrahigh vacuum. This layer functions as a barrier to the processes of oxidization and permeation of hydrogen. In addition, this layer resists carbon contamination. Temperature-programmed desorption spectra show only a single peak for water at 150 °C and small quantities of any other desorption gases. Therefore, an in situ bakeout process in which the temperature simply ramps up to 150 °C and immediately ramps back down is enough for degassing; it does not require an ordinary sustained-temperature bakeout. Using an outgassing sample consisting of 0.2% BeCu disks housed in a 0.2% BeCu nipple chamber, a lowest outgassing rate of the 5.6×10-14 Pa (H2) m/s was measured by the pressure-rise method after pump cutoff. The pressure-rise versus time curve was completely nonlinear. It rises over time to a constant slope of 1/2 in a log-log plot, due to hydrogen diffusion from the bulk, but this requires over a week at room temperature. The hydrogen outgassing from the 0.2% BeCu bulk is completely dominated by a diffusion-limited mechanism. This article will describe why we obtain such low-outgassing rates with 0.2% BeCu. It is based on the observed surface changes with prebakeout treatment seen by x-ray photoelectron spectroscopy, and the improvement of hydrogen outgassing measurements by the pressure-rise method. A comparison is made to ordinary stainless steel. In addition, the concept of an outgassing reduction method will be discussed from a review of the published ultralow-outgassing data and reduction methods. .

  17. Mechanical properties and permeability of hydrogen isotopes through CrNi35WTiAl alloy, containing radiogenic helium

    Energy Technology Data Exchange (ETDEWEB)

    Maksimkin, I.P.; Yukhimchuk, A.A.; Boitsov, I.Y.; Malkov, I.L.; Musyaev, R.K.; Baurin, A.Y.; Shevnin, E.V.; Vertey, A.V. [Russian Federal Nuclear Centre, RFNC-VNIIEf, Sarov (Russian Federation)

    2015-03-15

    The long-term contact of structural materials (SM) with tritium-containing media makes their properties in terms of kinetic permeability of hydrogen isotopes change. This change is the consequence of the defect formation in SM due to the result of {sup 3}He build-up generated by the radioactive decay of tritium dissolved in SM. This paper presents the experimental results concerning the permeability of hydrogen isotopes through CrNi35WTiAl alloy containing {sup 3}He and the impact of the presence of {sup 3}He and H on its mechanical properties. Tensile tests of cylindrical samples containing various concentrations of {sup 3}He (90, 230 and 560 appm) have been performed in inert and hydrogen atmospheres. The build-up of {sup 3}He has been made using the 'helium trick' technique. The maximal decrease in the plastic characteristics of the CrNi35WTiAl alloy occurs in samples with the highest {sup 3}He (560 appm) content at 873 K. The permeability of deuterium through the CrNi35WTiAl alloy in the initial state and that with 560 appm of {sup 3}He content was explored. The presence of this {sup 3}He concentration has shown an increase in deuterium permeability, evidently due to structural changes in the material under the impact of radiogenic helium.

  18. Effect of processing parameters on the electromagnetic radiation emission during plastic deformation and crack propagation in copper-zinc alloys

    Institute of Scientific and Technical Information of China (English)

    KUMAR Rajeev; MISRA Ashok

    2006-01-01

    This paper presents some investigations on the effect of processing parameters on the emission of electromagnetic radiation (EMR) during plastic deformation and crack propagation in copper-zinc alloys. Timing of the EMR emissions, maximum stress during crack instability, stress-intensity factor, elastic strain energy release rate, maximum EMR amplitude, RMS value of EMR amplitude, EMR frequency and electromagnetic energy release rate were analysed for the effect of rolling directions at different percentage of zinc content in Cu-Zn alloy specimens. The same parameters were also analysed for 68-32 Cu-Zn alloy specimens at different annealing temperatures and at different angles θ, to the rolling direction. EMR emissions are observed to be highly anisotropic in nature. At θ=45° to 60°, marked changes in mechanical and electromagnetic parameters were observed.Specimens annealed at 500 °C, just above the recrystallization temperature, and at 700 °C, when grain-size growth is rapid, EMR responses have been found to have well-defined patterns.

  19. Geochronology and isotope geochemistry of the Baogutu porphyry copper deposit in the West Junggar region, Xinjiang, China

    Science.gov (United States)

    Shen, Ping; Shen, Yuanchao; Pan, Hongdi; Li, Xian-hua; Dong, Lianhui; Wang, Jingbin; Zhu, Heping; Dai, Huawu; Guan, Weina

    2012-04-01

    The Baogutu copper deposit, a newly-discovered middle-sized porphyry copper deposit, is located in the West Junggar region of Xinjiang, NW China. Baogutu is associated with a Late Carboniferous intrusive complex that was emplaced into Lower Carboniferous volcano-sedimentary strata. The intrusive complex comprises main-stage diorites and minor late-stage diorite porphyries. Their intrusive activity occurred in 313.0 ± 2.2 Ma to 312.3 ± 2.2 Ma based on U-Pb zircon SIMS analyses. Molybdenite separated from ore-bearing quartz veins yields Re-Os model ages from 309.4 ± 4.4 Ma to 314.1 ± 4.5 Ma with a weighted mean age of 312.4 ± 1.8 Ma. Biotites, separated from fresh diorite and hydrothermal breccias in main-stage diorites, yield 40Ar/39Ar plateau ages of 308.26 ± 1.88 and 305.69 ± 1.76 Ma, respectively. These dates obtained from three independent dating techniques constrain the ore-forming age of the Baogutu deposit. Stable isotopes (H, O, S) and radiogenic isotope (Pb) have been used to discriminate the sources of the ore-forming fluid at Baogutu. The δ18O (1.14-1.74‰) and δD (-74‰ to -98‰) data indicate that the water of the ore-forming fluids was derived from magmatic water. The δ34S values (-0.24‰ to +0.4‰) show that the sulfur isotope composition of the ore fluids is characterized by magma sulfur. Lead isotope compositions (206Pb/204Pb = 17.92-18.89, 207Pb/204Pb = 15.45-15.62, 208Pb/204Pb = 37.68-38.36) indicate that the lead of the ore fluids is derived from the mantle. These data confirm the occurrence of a Cu-Au-Mo mineralizing event at Late Carboniferous in the Baogutu region and the ore-forming fluids are mainly derived from the mantle. The event is inferred to be associated with Late Carboniferous Junggar oceanic crust subduction.

  20. Ideal solution behaviour of glassy Cu–Ti, Zr, Hf alloys and properties of amorphous copper

    Energy Technology Data Exchange (ETDEWEB)

    Ristić, R. [Department of Physics, University of Osijek, Trg Ljudevita Gaja 6, HR-3100 Osijek (Croatia); Cooper, J.R. [Department of Physics, Cavendish Laboratory, J.J. Thomson Avenue, CB3 0HE Cambridge (United Kingdom); Zadro, K.; Pajić, D. [Department of Physics, Faculty of Science, Bijenička cesta 32, HR-10002 Zagreb (Croatia); Ivkov, J. [Institute of Physics, Bijenička cesta 46, HR-10002 Zagreb (Croatia); Babić, E. [Department of Physics, Faculty of Science, Bijenička cesta 32, HR-10002 Zagreb (Croatia)

    2015-02-05

    Highlights: • Ideal solution behaviour (ISB) is established in all Cu–Ti, Zr, Hf glassy alloys. • ISB enables reliable estimates for various properties of amorphous Cu. • ISB also impacts glass forming ability in these and probably other similar alloys. - Abstract: A comprehensive study of selected properties of amorphous (a) Cu–TE alloys (TE = Ti, Zr and Hf) has been performed. Data for average atomic volumes of a-Cu–Hf, Ti alloys combined with literature data show that ideal solution behaviour (Vegard’s law) extends over the whole glass forming range (GFR) in all a-Cu–TE alloys. This enables one to obtain an insight into some properties and probable atomic arrangements for both, a-TEs (Ristić et al., 2010) and a-Cu by extrapolation of the data for alloys. Indeed the atomic volumes and other properties studied for all a-Cu–TE alloys extrapolate to the same values for a-Cu. Depending on the property, these values are either close to those of crystalline (c) Cu, or are close to those for liquid (L) Cu. In particular, the electronic transport properties of a-Cu seem close to those of L-Cu, whereas the static properties, such as the density of states, and Young’s modulus, converge to those of c-Cu. The possible impact of these results on our understanding of a-Cu–TE alloys, including glass forming ability, is discussed.

  1. [High-precision in situ analysis of the lead isotopic composition in copper using femtosecond laser ablation MC-ICP-MS and the application in ancient coins].

    Science.gov (United States)

    Chen, Kai-Yun; Fan, Chao; Yuan, Hong-Lin; Bao, Zhi-An; Zong, Chun-Lei; Dai, Meng-Ning; Ling, Xue; Yang, Ying

    2013-05-01

    In the present study we set up a femtosecond laser ablation MC-ICP-MS method for lead isotopic analysis. Pb isotopic composition of fifteen copper (brass, bronze) standard samples from the National Institute of Standards Material were analyzed using the solution method (MC-ICP-MS) and laser method (fLA-MC-ICPMS) respectively, the results showed that the Pb isotopic composition in CuPb12 (GBW02137) is very homogeneous, and can be used as external reference material for Pb isotopic in situ analysis. On CuPb12 112 fLA-MC-ICPMS Pb isotope analysis, the weighted average values of the Pb isotopic ratio are in good agreement with the results analyzed by bulk solution method within 2sigma error, the internal precision RSEs of the 208 Pb/204 Pb ratio and 207 Pb/206 Pb ratio are less than 90 and 40 ppm respectively, and the external precision RSDs of them are less than 60 and 30 ppm respectively. Pb isotope of thirteen ancient bronze coins was analyzed via fLA-MC-ICPMS, the results showed that the Pb isotopic composition of ancient coins of different dynasties is significantly different, and not all the Pb isotopic compositions in the coins even from the same dynasty are in agreement with each other.

  2. Standard Practice for Use of Mattsson's Solution of pH 7.2 to Evaluate the Stress- Corrosion Cracking Susceptibility of Copper-Zinc Alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers the preparation and use of Mattsson's solution of pH 7.2 as an accelerated stress-corrosion cracking test environment for brasses (copper-zinc base alloys). The variables (to the extent that these are known at present) that require control are described together with possible means for controlling and standardizing these variables. 1.2 This practice is recommended only for brasses (copper-zinc base alloys). The use of this test environment is not recommended for other copper alloys since the results may be erroneous, providing completely misleading rankings. This is particularly true of alloys containing aluminum or nickel as deliberate alloying additions. 1.3 This practice is intended primarily where the test objective is to determine the relative stress-corrosion cracking susceptibility of different brasses under the same or different stress conditions or to determine the absolute degree of stress corrosion cracking susceptibility, if any, of a particular brass or brass component ...

  3. Production of copper-niobium carbide nanocomposite powders via mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Marques, M.T. [INETI-DMTP, Estrada do Paco do Lumiar, 22, 1649-038 Lisbon (Portugal)]. E-mail: tmarques@ineti.pt; Livramento, V. [INETI-DMTP, Estrada do Paco do Lumiar, 22, 1649-038 Lisbon (Portugal); Correia, J.B. [INETI-DMTP, Estrada do Paco do Lumiar, 22, 1649-038 Lisbon (Portugal); Almeida, A. [IST-Dep. Eng. de Materiais, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Vilar, R. [IST-Dep. Eng. de Materiais, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2005-06-15

    Nanocrystalline niobium carbide was synthesed in situ in a copper matrix during high-energy milling of elemental powders. Three powder batches were produced with nominal compositions of 5, 10 and 20 vol.% NbC. Characterisation by X-ray diffraction and scanning electron microscopy indicates that early during the milling process a carbide dispersion is formed within a nanostructured copper matrix. After annealing at 873 K, the carbide structure and particle size are maintained, reflecting the ability of the microstructure to resist to coarsening. The hardness levels attained are more than twice those of nanostructured copper.

  4. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement

    Science.gov (United States)

    Borrok, D.M.; Wanty, R.B.; Ridley, W.I.; Wolf, R.; Lamothe, P.J.; Adams, M.

    2007-01-01

    The measurement of Cu, Fe, and Zn isotopes in natural samples may provide valuable information about biogeochemical processes in the environment. However, the widespread application of stable Cu, Fe, and Zn isotope chemistry to natural water systems remains limited by our ability to efficiently separate these trace elements from the greater concentrations of matrix elements. In this study, we present a new method for the isolation of Cu, Fe, and Zn from complex aqueous solutions using a single anion-exchange column with hydrochloric acid media. Using this method we are able to quantitatively separate Cu, Fe, and Zn from each other and from matrix elements in a single column elution. Elution of the elements of interest, as well as all other elements, through the anion-exchange column is a function of the speciation of each element in the various concentrations of HCl. We highlight the column chemistry by comparing our observations with published studies that have investigated the speciation of Cu, Fe, and Zn in chloride solutions. The functionality of the column procedure was tested by measuring Cu, Fe, and Zn isotopes in a variety of stream water samples impacted by acid mine drainage. The accuracy and precision of Zn isotopic measurements was tested by doping Zn-free stream water with the Zn isotopic standard. The reproducibility of the entire column separation process and the overall precision of the isotopic measurements were also evaluated. The isotopic results demonstrate that the Cu, Fe, and Zn column separates from the tested stream waters are of sufficient purity to be analyzed directly using a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS), and that the measurements are fully-reproducible, accurate, and precise. Although limited in scope, these isotopic measurements reveal significant variations in ??65Cu (- 1.41 to + 0.30???), ??56Fe (- 0.56 to + 0.34???), and ??66Zn (0.31 to 0.49???) among samples collected from different

  5. Preparation and Characterization of Copper/Silver Alloy Nanoparticles%铜/银合金纳米粒子的制备及表征

    Institute of Scientific and Technical Information of China (English)

    张念椿; 胡建强

    2014-01-01

    The preparation method of copper/silver alloy nanoparticles was studied. The small particle size of nano copper was prepared by using the environmentally friendly ascorbic acid as a reducing agent. But this nano copper had poor stability, and is easy to be oxidized. In order to improve its stability, a small amount of Ag+was added during the preparation of nano copper. The silver layer was covered on the nano copper surface by reduction reaction. The copper/silver alloy nanocrystalline possesses good stability and nanoparticles effect. The copper/silver alloy nanoparticles are expected to having potential application in production of printed circuits. The preparation method has shorter product process than the conventional PCB production, thus it can save resources and reduce the environmental pollution.%研究了铜/银合金纳米粒子的制备方法,用抗坏血酸做还原剂,制备了粒径小的纳米铜粉。由于纳米铜粉的稳定性差,易氧化,为了提高其稳定性,在制备的纳米铜粉中加了少量的Ag+,在纳米铜粉表面还原制备出银纳米层覆盖于在铜上。所制备的纳米铜/银合金纳米粒子稳定性好,具有纳米粒子的效应,有望应用于印制电路的制造。该制备方法可以减少传统印制电路板制作方法的工序,节约资源,且减少对环境的污染。

  6. Tin-silver and tin-copper alloys for capillarity joining-soft soldering-of copper piping; Aportaciones de estano-plata y estano-cobre en la soldadura blanda por capilaridad de canalizaciones de cobre

    Energy Technology Data Exchange (ETDEWEB)

    Duran, J.; Amo, J. M.; Duran, C. M.

    2001-07-01

    It is studied the influence of the type of alloy used as filling material on the defects of the soldering joints in copper piping installations, which induce the fluid leak of the systems. The different eutectic temperatures and solidus-liquidus ranges of these alloys, require the setting of the soldering heat input in each case to obtain the suitable capillarity features and alloying temperatures to achieve for the correct formation of the bonding. Most defects in the joints are demonstrated to be generated by bad dossification of thermal inputs, which led depending on the filler alloy used to variations in its fluidity that may produce penetration failures in the bonds or insufficient consistency for the filling of the joints. (Author) 7 refs.

  7. Iron and copper isotope fractionation during filtration and ultrafiltration of boreal organic-rich waters

    Science.gov (United States)

    Ilina, Svetlana M.; Viers, Jerome; Pokrovsky, Oleg S.; Poitrasson, Franck; Lapitsky, Sergey A.; Alekhin, Yuriy V.

    2010-05-01

    Typical feature of all boreal surface waters is high concentration of dissolved (complexes. Organic and organo-mineral colloids are the most likely carriers of trace metals such as Cu in rivers of the boreal zone. This work addresses colloidal speciation of Cu and Fe using conventional size separation technique, on-site frontal ultrafiltration. Specifically, we aimed to test the possibility of the presence of different pools of metal having specific isotopic signatures in different colloidal fractions using stable isotope measurements. We have chosen Cu for its high affinity to colloidal DOM and Fe for its tendency to form stable organo-mineral colloids of various size. Samples of natural waters were collected from small rivers, lakes, bogs, groundwater and soil environments in the Northern Karelia (NW Russia) during summer baseflow period. Large volumes (20-40 L) of water were filtered in the field through progressively decreasing pore size filters: 20, 10, 5, 0.8, 0.45, 0.22, 0.1 µm and 100, 10 and 1 kDa (1 kDa ~ 1 nm) using nylon and regenerated cellulose membranes and frontal ultrafiltration (Millipore, Amicon) devises. The homogeneity of the sample was verified by tracing radiogenic Sr isotopes in each fraction. In all filtrates and ultrafiltrates (permeates), and in selected retentates, stable isotopic composition of Cu and Fe was measured using double focusing high resolution MC-ICP MS (Neptune). We observe rather constant Cu isotopic ratio in all filtrate series and a systematic enrichment of heavy isotope of Fe with decreasing poresize. These preliminary results can be explained by strong complexation of Cu with small-size organic ligands of fulvic nature and its partial association with organo-mineral colloids. Both Fe(III) - OM complxeation and Fe(III) oxyhydroxides precipitation can be invoked to explain Fe isotope fractionation. This work allows, for the first, time, multi-isotopic approach to trace the origin of colloids in surficial waters and it

  8. Effect of alloying with palladium on the electrical and mechanical properties of copper

    Science.gov (United States)

    Volkov, A. Yu.; Novikova, O. S.; Kostina, A. E.; Antonov, B. D.

    2016-09-01

    Structure and physicomechanical properties of Cu-Pd alloys that contain 0.5-5.9 at % Pd have been studied. It has been shown that, in all alloys, a solid solution is formed; the lattice parameter of the fcc lattice and the electrical resistivity of the alloys grow linearly with an increase in the content of palladium. It has also been revealed that the introduction of palladium leads to an increase in the recrystallization temperature and to an increase in the strength properties. The assumption on the formation of an atomic short-range order in the quenched Cu-4.6 at %Pd and Cu-5.9 at %Pd alloys has been made.

  9. Study on Marine Corrosion and Antifouling Behavior of Copper Alloys Exposed to Sea Areas in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The relationship of corrosion resistance and antifouling behavior of 19 Cu alloys exposed to seawater of Qingdao ,Xiamen,Yulin sea areas in China for 1,2,4,8 year intervals was studied .The experiments were carried on by analyzing the composition of corrosion films formed on the surface of alloy specimens during the immersion time and by using OM,SEM,EDXA and AES experiment methods.The results verify the view point that it is the cuprous oxide film which played an important role in antifouling property of Cu alloys in seawater and throw a light on the view point in details further.The influence of different sea areas on the antifouling property of Cu alloys is also discussed.

  10. Enhancement of surface integrity of titanium alloy with copper by means of laser metal deposition process

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-04-01

    Full Text Available The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti...

  11. Novel phenol biosensor based on laccase immobilized on reduced graphene oxide supported palladium-copper alloyed nanocages.

    Science.gov (United States)

    Mei, Li-Ping; Feng, Jiu-Ju; Wu, Liang; Zhou, Jia-Ying; Chen, Jian-Rong; Wang, Ai-Jun

    2015-12-15

    Developing new nanomaterials is of key importance to improve the analytical performances of electrochemical biosensors. In this work, palladium-copper alloyed nanocages supported on reduced graphene oxide (RGO-PdCu NCs) were facilely prepared by a simple one-pot solvothermal method. A novel phenol biosensor based on laccase has been constructed for rapid detection of catachol, using RGO-PdCu NCs as electrode material. The as-developed phenol biosensor greatly enhanced the electrochemical signals for catechol. Under the optimal conditions, the biosensor has two linear ranges from 0.005 to 1.155 mM and 1.655 to 5.155 mM for catachol detection at 0.6 V, the sensitivity of 12.65 µA mM(-1) and 5.51 µA mM(-1), respectively. This biosensor showed high selectivity, low detection limit, good reproducibility, and high anti-interference ability.

  12. The stress relaxation in copper alloys for plug connectors and spring elements. Spannungsrelaxation in Kupferlegierungen fuer Steckverbinder und Federelemente

    Energy Technology Data Exchange (ETDEWEB)

    Boegel, A. (Zentrallabor und Entwicklung, Wieland-Werke AG, Ulm (Germany))

    1994-11-01

    The stress relaxation behaviour of seven copper alloys and one steel materials is evaluated. The measurements refer to two different initial stress levels and are carried out from ambient temperature up to 250 C. An extended discussion of accuracy of measurements and of the influence of test conditions as well as initial stress levels is given. The method according to Larson and Miller can be applied to reduce the duration of tests drastically. Criteria for the admissibility of doing so are presented. Data of stress relaxation behaviour are given graphically and numerically for CuZn30, CuSn6, CuSn1CrNiTi, SuNi2Si, CuNi3Si1Mg, CuCrSiTi, CuFe2P and X12CrNi17,7. (orig.)

  13. A tunable amorphous p-type ternary oxide system: The highly mismatched alloy of copper tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, Patrick J. M., E-mail: P.J.M.Isherwood@lboro.ac.uk; Walls, John M. [CREST, School of Electronic, Electrical and Systems Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Butler, Keith T.; Walsh, Aron [Centre for Sustainable Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2015-09-14

    The approach of combining two mismatched materials to form an amorphous alloy was used to synthesise ternary oxides of CuO and SnO{sub 2}. These materials were analysed across a range of compositions, and the electronic structure was modelled using density functional theory. In contrast to the gradual reduction in optical band gap, the films show a sharp reduction in both transparency and electrical resistivity with copper contents greater than 50%. Simulations indicate that this change is caused by a transition from a dominant Sn 5s to Cu 3d contribution to the upper valence band. A corresponding decrease in energetic disorder results in increased charge percolation pathways: a “compositional mobility edge.” Contributions from Cu(II) sub band-gap states are responsible for the reduction in optical transparency.

  14. Thermal effects in equilibrium surface segregation in a copper/10-atomic-percent-aluminum alloy using Auger electron spectroscopy

    Science.gov (United States)

    Ferrante, J.

    1972-01-01

    Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.

  15. Joining of SiC Fiber-Bonded Ceramics using Silver, Copper, Nickel, Palladium, and Silicon-Based Alloy Interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Asthana, Rajiv [University of Wisconsin-Stout, Menomonie; Singh, Mrityunjay [NASA-Glenn Research Center, Cleveland; Lin, Hua-Tay [ORNL; Matsunaga, Kenji [Ube Industries, Ltd.; Ishikawa, Toshihiro [Ube Industries, Ltd.

    2013-01-01

    SiC fiber-bonded ceramics, SA-Tyrannohex, (SA-THX) with perpendicular and parallel fiber orientations were brazed using Ag-, Ni- and Pd-base brazes, and four Si X (X: Ti, Cr, Y, Ta) eutectics. Outcomes were variable, ranging from bonded joints through partially bonded to un-bonded joints. Prominent Ti- and Si-rich interfaces developed with Cusil-ABA, Ticusil, and Copper-ABA and Ni- and Si-rich layers with MBF-20. Stress rupture tests at 650 and 750 C on Cusil-ABA-bonded joints revealed a temperature-dependent behavior for the perpendicular joints but not for the parallel joints with failure occurring at brazed interface. Higher-use temperatures can be targeted with eutectic Si Ti and Si Cr alloys.

  16. Progress report on the influence of test temperature and grain boundary chemistry on the fracture behavior of ITER copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Stubbins, J.F. [Univ. of Illinois, Urbana, IL (United States). Dept. of Nuclear Engineering; Edwards, D.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-09-01

    This collaborative study was initiated to determine mechanical properties at elevated temperatures of various copper alloys by University of Illinois and Pacific Northwestern National Lab (PNNL) with support of OMG Americas, Inc. and Brush Wellman, Inc. This report includes current experimental results on notch tensile tests and pre-cracked bend bar tests on these materials at room temperature, 200 and 300 C. The elevated temperature tests were performed in vacuum and indicate that a decrease in fracture resistance with increasing temperature, as seen in previous investigations. While the causes for the decreases in fracture resistance are still not clear, the current results indicate that environmental effects are likely less important in the process than formerly assumed.

  17. Comparison study on the annealing behaviors of dispersion strengthened copper alloys with different nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The hardness measurement, optical microscopy (OM), and transmission electron microscopy (TEM) microstructure observation on the annealing behaviors of Cu-Al2O3 (2.25 vol.% and 0.54 vol.% A12O3) and Cu-0.52vol.%Nb alloys were carried out. The results show that with the increase of annealing temperature, the hardness of Cu-A12O3 alloys decreases slowly. No change of the fiber structure formed by cold rolling in the Cu-2.25vol.%A12O3 alloy is observed even after annealing at 900℃, and the higher dislocation density can still be observed by TEM. Less combination of fiber formed by cold rolling and subgrains are observed in the Cu-0.54vol.%A12O3 alloy annealed at 900℃. With the increase of annealing temperature, the hardness of the Cu-0.52vol.%Nb alloy exhibits a general decreasing trend, and its falling rate is higher than that of the Cu-A12O3 alloys, indicating that its ability of resistance to softening at elevated temperature is weaker than that of the Cu-Al2O3 alloys. However, when annealed at a temperature of 300-400 ℃, probably owing to the precipitation strengthening of niobium, the hardness of the Cu-0.52vol.%Nb alloy arises slightly. The fibers formed by cold rolling become un-clear and un-straight and have less combination, and considerably more subgrains are observed by TEM.

  18. Origin and fate of copper in a small Mediterranean vineyard catchment: New insights from combined chemical extraction and δ{sup 65}Cu isotopic composition

    Energy Technology Data Exchange (ETDEWEB)

    El Azzi, D. [Université de Toulouse (France); INPT, UPS (France); Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); CNRS (France); ECOLAB, ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); Viers, J. [Université de Toulouse (France); UPS, Géosciences Environnement Toulouse (GET), 14, avenue Édouard Belin, Toulouse31400 (France); CNRS, IRD, CNES (France); GET, 14, avenue Édouard Belin, Toulouse 31400 (France); Guiresse, M.; Probst, A. [Université de Toulouse (France); INPT, UPS (France); Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); CNRS (France); ECOLAB, ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); Aubert, D. [Université de Perpignan Via Domitia, CEntre de Formation et de Recherche sur les Environnements Méditérranéens (CEFREM), UMR 5110, F-66860, Perpignan (France); CNRS, CEFREM, UMR 5110, F-66860, Perpignan (France); Caparros, J.; Charles, F.; Guizien, K. [CNRS, FRE 3350, LECOB, Observatoire Océanologique, F-66651 Banyuls/mer (France); UPMC Université Paris 6, FRE 3350, LECOB, Observatoire Océanologique, F-66651 Banyuls/mer (France); Probst, J.L., E-mail: jean-luc.probst@ensat.fr [Université de Toulouse (France); INPT, UPS (France); Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); CNRS (France); ECOLAB, ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France)

    2013-10-01

    For centuries, many Mediterranean catchments were covered with vineyards in which copper was widely applied to protect grapevines against fungus. In the Mediterranean-type flow regime, brief and intense flood events increase the stream water discharge by up to 10 times and cause soil leaching and storm runoff. Because vineyards are primarily cultivated on steep slopes, high Cu fluxes are discharged by surface water runoff into the rivers. The purpose of this work was to investigate the riverine behavior and transport of anthropogenic Cu by coupling a sequential chemical extraction (SCE) procedure, used to determine Cu partitioning between residual and non-residual fractions, with δ{sup 65}Cu isotopic measurements in each fraction. In the Baillaury catchment, France, we sampled soils (cultivated and abandoned), river bed sediments (BS), suspended particulate matter (SPM), and river water during the flash flood event of February 2009. Copper partitioning using SCE show that most of Cu in abandoned vineyard soil was in the residual phase (> 60%) whereas in cultivated soil, BS and SPM, Cu was mostly (> 25%) in non-residual fractions, mainly adsorbed onto iron oxide fractions. A small fraction of Cu was associated with organic matter (5 to 10%). Calculated enrichment factors (EF) are higher than 2 and the anthropogenic contribution was estimated between 50 to 85%. Values for δ{sup 65}Cu in bulk samples were similar to bedrock therefore; δ{sup 65}Cu on SCE fractions of superficial soils and SPM allowed for discrimination between Cu origin and distribution. Copper in residual fractions was of natural mineral origin (δ{sup 65}Cu close to local bedrock, + 0.07‰). Copper in water soluble fraction of SPM (δ{sup 65}Cu = + 0.26‰) was similar to dissolved river Cu (δ{sup 65}Cu = + 0.31‰). Copper from fungicide treatment (δ{sup 65}Cu = − 0.35‰) was bound to organic matter (δ{sup 65}Cu = − 0.20‰) without or with slight isotopic fractioning. A preferential

  19. Effect of copper precipitates on the toughness of low alloy steels for pressure boundary components

    Energy Technology Data Exchange (ETDEWEB)

    Foehl, J.; Willer, D.; Katerbau, K.H. [Materialpruefungsanstalt, Univ. Stuttgart (Germany)

    2004-07-01

    The ferritic bainitic steel 15NiCuMoNb5 (WB 36)is widely used for pressure boundary components. Due to the high copper content which leads to precipitation hardening high strength and toughness are characteristic for this type of steel. However, in the initial state, there is still a high amount of dissolved copper in an oversaturated state which makes the steel susceptible to thermal ageing. Ageing and annealing experiments were performed, and the change in microstructure was investigated by small angle neutron scattering (SANS), measurements of the residual electric resistance and hardness measurements. A correlation between micro structural changes and changes in mechanical properties could be established. It could clearly be shown that significant effects on strength and toughness have to be considered when the size of the copper rich precipitates vary in the range from 1.2 to 2.2 nm in radius. The changes in microstructure affect both, the Carpy impact transition temperature and the fracture toughness qualitatively and quantitatively in a similar way. The investigations have contributed to a better understanding of precipitation hardening by copper not only for this type of steel but also for copper containing steels and weld subjected to neutron irradiation. (orig.)

  20. Cooling curve analysis in binary Al-Cu alloys: Part I- Effect of cooling rate and copper content on the eutectic formation

    Directory of Open Access Journals (Sweden)

    M. Dehnavi

    2015-09-01

    Full Text Available There are many techniques available for investigating the solidification of metals and alloys. In recent years computer-aided cooling curve analysis (CA-CCA has been used to determine thermo-physical properties of alloys, latent heat and solid fraction. In this study, the effect of cooling rate and copper addition was taken into consideration in non- equilibrium eutectic transformation of binary Al- Cu melt via cooling curve analysis. For this purpose, melts with different copper weight percent of 2.2, 3.7 and 4.8 were prepared and cooled in controlled rates of 0.04 and 0.42 °C/s. Results show that, latent heat of alloy highly depends upon the post- solidification cooling rate and composition. As copper content of alloy and cooling rate increase, achieved nonequilibrium eutectic phase increases that leads to release of high amount of latent heat and appearing of second deviation in cooling curve. This deviation can be seen in first time derivative curve in the form of a definite peak.

  1. Lead isotopic composition and lead source of the Tongchanghe basalt-type native copper-chalcocite deposit in Ninglang, western Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qian; ZHU Xiaoqing; ZHANG Zhengwei

    2006-01-01

    The Tongchanghe native copper-chalcocite deposit at Ninglang occurs in low-Ti basalts of western Yunnan, and the mode of fault-filling & metasomatism metallogenesis indicates that this deposit is of late-stage hydrothermal origin. This makes it more complicated to define the source of ore-forming materials. This paper introduces the Pb isotope data of Himalayan alkali-rich porphyries, regional Early-Middle Proterozoic metamorphic rock basement and various types of rocks of the mining district in western Yunnan with an attempt to constrain the origin of the Tongchanghe native copper-chalcocite deposit at Ninglang.The results showed that the ores are relatively homogeneous in Pb isotopic composition, implying a simple ore-forming material source. The three sets of Pb isotopic ratios in the Himalayan alkali-rich porphyries are all higher than those of the ores; the regional basement metamorphic rocks show a wide range of variations in Pb isotopic ratio, quite different from the isotopic composition of ore lead; the Pb isotopic composition of the Triassic sedimentary rocks and mudstone and siltstone interbeds in the Late Permian Heinishao Formation (corresponding to the forth cycle of basaltic eruption) in the mining district has the characteristics of radiogenic lead and is significantly different from the isotopic composition of ore lead; like the ores, the Emeishan basalts in the mining district and those regionally distributed possess the same Pb isotopic composition, showing a complete overlap with respect to their distribution range. From the above, the possibilities can be ruled out that the ore-forming materials of the Tongchanghe deposit were derived from the basement, a variety of Himalayan magmatic activities, etc. It is thereby defined that the ore-forming materials were derived largely from the Emeishan basalts. From the data available it is deduced that the native cupper-chalcocite-type metallogenesis that occurred in the Emeishan basalt-distributed area

  2. Metallurgical and chemical characterization of copper alloy reference materials within laser ablation inductively coupled plasma mass spectrometry: Method development for minimally-invasive analysis of ancient bronze objects

    Energy Technology Data Exchange (ETDEWEB)

    Walaszek, Damian, E-mail: damian.walaszek@empa.ch [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw (Poland); Senn, Marianne [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Faller, Markus [Laboratory for Jointing Technology and Corrosion, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Philippe, Laetitia [Laboratory for Mechanics of Materials and Nanostructures, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkstrasse 39, CH-3602 Thun (Switzerland); Wagner, Barbara; Bulska, Ewa [University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw (Poland); Ulrich, Andrea [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2013-01-01

    The chemical composition of ancient metal objects provides important information for manufacturing studies and authenticity verification of ancient copper or bronze artifacts. Non- or minimal-destructive analytical methods are preferred to mitigate visible damage. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) enables the determination of major elements as well as impurities down to lower ppm-levels, however, accuracy and precision of analysis strongly depend on the homogeneity of reference materials used for calibration. Moreover, appropriate analytical procedures are required e.g. in terms of ablation strategies (scan mode, spot size, etc.). This study reviews available copper alloy (certified) reference materials — (C)RMs from different sources and contributes new metallurgical data on homogeneity and spatial elemental distribution. Investigations of the standards were performed by optical and scanning electron microscopy with X-ray spectrometry (SEM-EDX) for the following copper alloy and bronze (certified) reference materials: NIST 454, BAM 374, BAM 211, BAM 227, BAM 374, BAM 378, BAS 50.01-2, BAS 50.03-4, and BAS 50.04-4. Additionally, the influence of inhomogeneities on different ablation and calibration strategies is evaluated to define an optimum analytical strategy in terms of line scan versus single spot ablation, variation of spot size, selection of the most appropriate RMs or minimum number of calibration reference materials. - Highlights: ► New metallographic data for copper alloy reference materials are provided. ► Influence of RMs homogeneity on quality of LA-ICPMS analysis was evaluated. ► Ablation and calibration strategies were critically discussed. ► An LA-ICPMS method is proposed for analyzing most typical ancient copper alloys.

  3. Dislocation Climb Sources Activated by 1 MeV Electron Irradiation of Copper-Nickel Alloys

    DEFF Research Database (Denmark)

    Barlow, P.; Leffers, Torben

    1977-01-01

    Climb sources emitting dislocation loops are observed in Cu-Ni alloys during irradiation with 1 MeV electrons in a high voltage electron microscope. High source densities are found in alloys containing 5, 10 and 20% Ni, but sources are also observed in alloys containing 1 and 2% Ni. The range......, thermodynamically, there is not complete miscibility in the Cu-Ni system as implied by the published phase diagrams. It is furthermore suggested that these precipitates are platelets of Ni atoms on {100} planes, which would account for the formation of the rectangular loops. The binding energy between vacancies...... of irradiation temperatures corresponding to the highest source densities is approximately 350°–500°C. The climb sources are not related to any pre-existing dislocations resolved in the microscope. The sources emit three types of loop: ‘rectangular’ loops with a100 Burgers vector and {100} habit plane, normal...

  4. Development of a dispersion strengthened copper alloy using a MA-HIP method

    Directory of Open Access Journals (Sweden)

    T. Yamada

    2016-12-01

    Full Text Available A new Cu-Al alloy was fabricated by a MA-HIP method for application to the heat sink materials of divertors. With the increase in MA time, the grain size and Vickers hardness decreased and increased, respectively. At MA time of 32hrs, the hardness of the alloy was comparable to that of Glidcop® although the grain size was much larger. X-ray diffractometry, electrical resistivity measurements and STEM-EDS analyses suggested precipitation of Al-rich phase by MA for 32hrs followed by HIP.

  5. Corrosion and microfouling of copper and its alloys in a tropical marine waters of India (Mangalore)

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Khandeparker, D.C.; Tulaskar, A.; Venkat, K.; Garg, A.

    Rate of corrosion, extent and nature of microfouling of copper, cupronickel 70/30 and cupronickel 90/10 have been studied for three different seasons at a station on the west coast of India. The corrosion rates for all the three materials are higher...

  6. Raising the Reliability of Forming Rolls by Alloying Their Core with Copper

    Science.gov (United States)

    Zhizhkina, N. A.

    2016-11-01

    The mechanical properties and the structure of forming rolls from cast irons of different compositions are studied. A novel iron including a copper additive that lowers its chilling and raises the homogeneity of the structure is suggested for the roll cores. The use of such iron should raise the reliability of the rolls in operation.

  7. Nickel-copper alloy tapes as textured substrates for YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Vannozzi, A; Celentano, G; Angrisani, A; Augieri, A; Colantoni, I; Galluzzi, V; Mancini, A; Rufoloni, A [ENEA, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy); Ciontea, L; Petrisor, T; Thalmaier, G [Techn. University of Cluj Napoca, Str. C. Daicoviciu 15, 3400 Cluj-Napoca (Romania); Gambardella, U [INFN-LFN, Via E. Fermi 40, 00044 Frascati (Rome) (Italy)], E-mail: vannozzi@frascati.enea.it

    2008-02-15

    NiCuCo alloy tape was studied as textured substrates for YBCO coated conductors application. The addition of a small amount of cobalt was pursued in order to enhance the microstructure of the NiCu alloy. The use of different thermal treatments during the recrystallization process permitted to obtain area densities of cube orientation as high as 95%. The substrate was thoroughly characterized by means of x-ray diffraction, EBSD and SEM analyses. Further, the mechanical properties and the magnetic behaviour of this substrate have been investigated and compared with those exhibited by Ni, NiW and NiCu tapes. The suitability of this alloy substrate for YBCO coated conductors has been tested through the deposition of a conventional CeO{sub 2}/YSZ/CeO{sub 2} buffer layer architecture using a Pd transient layer. Apart from passivating Ni-Cu-Co substrate, the use of a Pd transient layer produces a relevant texture sharpening in the out-of-plane orientation and the full width at half maximum of the {omega}-scan drops from about 9{sup 0} of NiCuCo to 2{sup 0} of Pd layer. This sharp texture is transferred to the YBCO film and the results indicate that NiCuCo alloy is a promising alternative substrate for the realization of YBCO coated conductors.

  8. Machining characteristics and fracture morphologies in a copper-beryllium (Cu-2Be) alloy

    Science.gov (United States)

    Sudhakar, K. V.; Cisneros, J. C.; Cervantes, Hector; Pineda, Cosme Gomez

    2006-02-01

    The technology of materials removal is improved greatly by the introduction of advanced cutting tools like cubic boron nitride, ceramics, polycrystalline diamond and the more recent whisker-reinforced materials. In this paper, the influence of cutting temperature on machinability, mechanical properties, microstructure, and fracture morphology of Cu-2Be alloy using a polycrystalline diamond cutter is investigated. The information on machining, microstructure, and fracture morphology of Cu-2Be alloy are very useful to understand their fabrication characteristics and the basic mechanisms of its deformation and fracture. The machinability (in terms of surface finish) of Cu-2Be alloy is evaluated as a function of cutting temperature, resulting from wet and dry cutting. Machining is carried out on a Hardinge Cobra 42 CNC machine (Hardinge Inc., Elmira, NY), and the machining parameters used—cutting speed, depth of cut, and feed rate—are kept constant during both wet and dry cutting. The machined surface finish on Cu-2Be alloy is measured using a surface finish analyzer (Surftest 401, series 178) technique. The machined specimens are examined for their strength and hardness properties using a standard Universal Testing Machine and Rockwell hardness tester, respectively. Wet cutting (using coolants) produced a smooth surface finish when compared with dry cutting of the Cu-2Be alloy. The machined specimens are examined for their microstructural features using a Nikon optical microscope. The specimens are etched using a suitable etchant solution for revealing such microstructure constituents as grain size, phase proportions, and the possible overheated areas (especially in dry cutting). The fractured surfaces from the tensile and impact toughness tests are investigated for their fracture morphologies (dry and wet cutting) using a microprocessor-controlled scanning electron microscope (Jeol Model JSM 5910 LV). A detailed analysis is also made to understand and interpret

  9. Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead-zinc (-copper) deposit, Eastern Iran

    Science.gov (United States)

    Malekzadeh Shafaroudi, Azadeh; Karimpour, Mohammad Hassan

    2015-07-01

    The Sechangi lead-zinc (-copper) deposit lies in the Lut block metallogenic province of Eastern Iran. This deposit consists of ore-bearing vein emplaced along fault zone and hosted by Late Eocene monzonite porphyry. Hydrothermal alteration minerals developed in the wall rock include quartz, kaolinite, illite, and calcite. Microscopic studies reveal that the vein contains galena and sphalerite with minor chalcopyrite and pyrite as hypogene minerals and cerussite, anglesite, covellite, malachite, hematite, and goethite as secondary minerals. Fluorite and quartz are the dominant gangue minerals and show a close relationship with sulfide mineralization. Calculated δ34S values for the ore fluid vary between -9.9‰ and -5.9‰. Sulfur isotopic compositions suggest that the ore-forming aqueous solutions were derived from magmatic source and mixed with isotopically light sulfur, probably leached from the volcanic and plutonic country rocks. Microthermometric study of fluid inclusions indicates homogenization temperatures of 151-352 °C. Salinities of ore-forming fluids ranged from 0.2 to 16.5 wt.% NaCl equivalent. The ore-forming fluids of the Sechangi deposit are medium- to low-temperature and salinity. Fluid mixing may have played an important role during Pb-Zn (-Cu) mineralization. The key factors allowing for metal transport and precipitation during ore formation include the sourcing of magmatic fluids with high contents of metallogenic elements and the mixing of these hydrothermal fluids with meteoric waters resulting in the formation of deposit. In terms of the genetic type of deposit, the Sechangi is classified as a volcanic-subvolcanic hydrothermal-related vein deposit.

  10. Ab initio study of the structural, magnetic, and electronic properties of copper and silver clusters and their alloys with one palladium atom

    Directory of Open Access Journals (Sweden)

    S. J Hashemifar

    2015-01-01

    Full Text Available In this paper, the structural, magnetic, and electronic properties of two- to nine-atom copper and silver clusters and their alloys with one palladium atom are investigated by using full-potential all-electron density functional computations. After calculating minimized energy of several structural isomers of every nanocluster, it is argued that the small size nanoclusters (up to size of 6, ‎ prefer planar structures, while by increasing size a 2D-3D structural transformation is observed. The structural transformation of pure and copper-palladium clusters occurs in the size of seven and that of silver-palladium cluster in happens at the size of six. The calculated second difference and dissociation energies confirm that the two- and eight- atom pure clusters and three- and seven- atom alloyed clusters are magic clusters. The electronic and magnetic properties of stable isomers are calculated and considered after applying many body based GW correction.

  11. Application of enriched stable isotope technique to the study of copper bioavailability in Daphnia magna

    Institute of Scientific and Technical Information of China (English)

    Wenhong Fan; Chenguang Wu; Chunmei Zhao; Tao Yu; Yuan Zhang

    2011-01-01

    The biokinetics of Cu in Daphnia magna, including dissolved uptake, assimilation and efflux, has been determined using a gamma 67Cu radiotracer methodology.However, this gamma emitting radioisotope is not readily available due to its very short half-life.In the present study, we employed a stable isotope tracer (65Cu) to determine the Cu biokinetics and compared our results to those determined using 67Cu.The dissolved uptake rate constant of 65Cu was 3.36 L/(g·day), which is higher than that of 67Cu (1.32 L/(g·day)).With increasing food concentrations from 2×104 to 1×105 cells/mL, the Cu assimilation efficiency (AE) decreased from 46% to 11%,compared to a decrease from 27% to 16% when determined using 67Cu.The efflux of Cu from Daphnia magna was quantified following both dissolved and dietary uptake.The efflux of waterborne Cu was comparable to that of dietborne Cu and the efflux rate constant (0.32-0.52 day-1) was higher than that determined by 67Cu (0.19-0.20 day-1).By considering different water properties and handling procedure between the two experiments, we believe that these differences are reasonable.Overall, this study demonstrated that the enriched stable isotope tracer technique is a powerful tool to investigate metal bioavailability and maybe a good alternative to radioactive measurements.

  12. Shell quenching in Ni78: A hint from the structure of neutron-rich copper isotopes

    Science.gov (United States)

    Sieja, K.; Nowacki, F.

    2010-06-01

    Recent progress in experimental techniques allows us to study very exotic systems like neutron-rich nuclei in the vicinity of Ni78. The spectroscopy of this region can nowadays be studied theoretically in the large scale shell model calculations. In this work, we perform a shell model study of odd copper nuclei with N=40-50, in a large valence space with the Ca48 core, using a realistic interaction derived from the CD-Bonn potential. We present the crucial importance of the proton core excitations for the description of spectra and magnetic moments, which are for the first time correctly reproduced in theoretical calculations. Shell evolution from Ni68 to Ni78 is discussed in detail. A weakening of the Z=28 gap when approaching the N=50 shell closure, suggested by the experimental evidence, is confirmed in the calculations.

  13. Cavitation Erosion of Copper, Brass, Aluminum and Titanium Alloys in Mineral Oil

    Science.gov (United States)

    Rao, B. C. S.; Buckley, D. H.

    1983-01-01

    The variations of the mean depth of penetration, the mean depth rate of penetration, MDRP, the pit diameter 2a and depth h due to cavitation attack on Al 6061-T6, Cu, brass of composition Cu-35Zn-3Pb and Ti-5A1-2.5Sn are presented. The experiments are conducted in a mineral oil of viscosity 110 CS using a magnetostrictive oscillator of 20 kHz frequency. Based on MDRP on the materials, it is found that Ti-5Al-2.5Sn exhibits cavitation erosion resistance which is two orders of magnitude higher than the other three materials. The values of h/a are the largest for copper and decreased with brass, titanium, and aluminum. Scanning electron microscope studies show that extensive slip and cross slip occurred on the surface prior to pitting and erosion. Twinning is also observed on copper and brass.

  14. Copper Alloy Mold process for Production Irons Casting in Japan%日本铜合金金属型生产铸铁件状况

    Institute of Scientific and Technical Information of China (English)

    刘子安; 齐笑冰; 唐骥; 申泽骥

    2001-01-01

    The technique of permanent mold casting for producing iron castings has been applied in advanced countries, the copper alloy mold processes for producing the iron castings are rapidly developing in Japan. The characteristics of copper alloy Mold process and its effect on the properties of ductile iron and gray iron castings are presented in this paper. The situation of production of iron castings by using copper alloy mold processes in Japan is also presented.%铸铁件金属型铸造技术已在工业发达国家得到应用,铜合金金属型生产铸铁件在日本得到很快发展。本文介绍了铜合金金属型的特点及其对所生产的球墨铸铁件、灰铸铁件性能的影响;比较详细地介绍了日本铜合金金属型生产铸铁件的状况。

  15. Optimize Cutting Parameters of Gundrill used in Drilling Silver Copper Alloy%加工银铜合金枪钻切削参数优化

    Institute of Scientific and Technical Information of China (English)

    胡江林; 焦剑; 张伟

    2012-01-01

    Silver copper alloy has excellent ductility and toughness,the chips are hard to break when drilling. A domestic engine company use gundrill processing silver copper alloy deep holes. In view of the problems of hard to break chips, the paper solves the problems by optimize the cutting parameters, and summarizes the relevance between the cutting parameters and the shape of the chips. It provides reference for choosing the cutting parameters when drilling the silver copper alloy.%铜合金具有优良的延展性和韧性,钻削加工时产生的切屑很难折断,不易排出,对深孔加工来说是典型的难加工材料.国内某发动机有限公司零部件生产线采用枪钻加工银铜合金深孔,针对加工中出现的断屑困难问题,本文通过优化切削参数,解决了刀具加工中断屑排屑困难问题,并总结出切削参数与切屑形状的关系,为银铜合金深孔加工参数选择提供参考.

  16. Anti-corrosion film formed on HAl77-2 copper alloy surface by aliphatic polyamine in 3 wt.% NaCl solution

    Science.gov (United States)

    Yu, Yinzhe; Yang, Dong; Zhang, Daquan; Wang, Yizhen; Gao, Lixin

    2017-01-01

    The corrosion inhibition of a polyamine compound, N-(4-amino-2, 3-dimethylbutyl)-2, 3-dimethylbutane-1, 4-diamine (ADDD), was investigated for HAl77-2 copper alloy in 3 wt.% NaCl solution. Electrochemical measurements, scanning electron microscopy (SEM), atomic force microscope (AFM) and Fourier transform infrared spectroscopy (FT-IR) techniques were employed for this research. The results show that ADDD strongly suppresses the corrosion of HAl77-2 alloy. The inhibition efficiency of ADDD is 98.6% at 0.5 mM, which is better than benzotriazole (BTAH) at the same concentration. Polarization curves indicate that ADDD is an anodic type inhibitor. Surface analysis suggests that a protective film is formed via the interaction of ADDD and copper. FT-IR reveals that the inhibition mechanism of ADDD is dominated by chemisorption onto the copper alloy surface to form an inhibition film. Furthermore, quantum chemical calculation and molecular dynamics (MD) simulations methods show that ADDD adsorbs on HAl77-2 surface via amino group in its molecule.

  17. Microstructure and microanalysis studies of copper-nickel-tin alloys obtained by conventional powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Waldemar A.; Carrio, Juan A.G.; Masson, T.J.; Vitor, E.; Abreu, C.D.; Marques, I.M., E-mail: fisica.cch@mackenzie.br [Universidade Presbiteriana Mackenzie (CCH), Sao Paulo, SP (Brazil). Centro de Ciencias e Humanidades; Silva, L.C.E. da, E-mail: jgcarrio@mackenzie.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The aim of this paper was to analyze the microstructural development in samples of Cu-Ni-Sn alloys (weight %) obtained by powder metallurgy (P/M). The powders were mixed for 1/2 hour. After this, they were pressed, in a cold uniaxial pressing (1000 kPa). In the next step the specimens were sintered at temperatures varying from 650 up to 780 deg C under vacuum. Secondly, the samples were homogenized at 500 deg C for several special times. The alloys were characterized by optical microscopy, electrical conductivity and Vickers hardness. X-rays powder diffraction data were collected for the sintered samples in order to a structural and microstructural analysis. The comparative analysis is based on the sintered density, densification parameter, hardness, macrostructures and microstructures of the samples. (author)

  18. Rapid growth of primary dendrite in highly undercooled copper-antimany alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The droplets of Cu-11wt.%Sb hypoeutectic alloy have been rapidly solidified during containerless processing in a 3 m drop tube. The undercooling and cooling rates are estimated, and both play a dominant role in the dendritic growth of primary Cu phase. Undercoolings up to 200 K (0.16TL, where TL is the liquidus temperature) have been obtained in the experiment. With the increase of undercooling, the microstructural evolution of primary Cu phase proceeds from remelted dendrites to the equiaxed grains. A coarse dendritic grain microstructure can form in the undercooling range of 61~102 K and at cooling rates of 1.35×102~2.66×103 K/s. The segregationless solidification of Cu-11wt.%Sb hypoeutectic alloy occurs when undercooling is more than 176 K. The growth of primary Cu phase is mainly controlled by solute diffusion.

  19. Demonstration of Ultra High-Strength Nanocrystalline Copper Alloys for Military Applications

    Science.gov (United States)

    2012-01-22

    the consolidated samples was determined by using Archimedes principle . Processing diagram 1 shows a general flow process for the steps involved in...impossible in the past possible today, such as the replacement of Cu-Be alloys. However, as indicated by thermodynamic principles , nanocrystalline...properties predicted by the Hall-Petch relationship generated a push to produce finer and finer grain sizes and structures over the past five

  20. Temperature and strain rate effects in high strength high conductivity copper alloys tested in air

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    The tensile properties of the three candidate alloys GlidCop{trademark} Al25, CuCrZr, and CuNiBe are known to be sensitive to the testing conditions such as strain rate and test temperature. This study was conducted on GlidCop Al25 (2 conditions) and Hycon 3HP (3 conditions) to ascertain the effect of test temperature and strain rate when tested in open air. The results show that the yield strength and elongation of the GlidCop Al25 alloys exhibit a strain rate dependence that increases with temperature. Both the GlidCop and the Hycon 3 HP exhibited an increase in strength as the strain rate increased, but the GlidCop alloys proved to be the most strain rate sensitive. The GlidCop failed in a ductile manner irrespective of the test conditions, however, their strength and uniform elongation decreased with increasing test temperature and the uniform elongation also decreased dramatically at the lower strain rates. The Hycon 3 HP alloys proved to be extremely sensitive to test temperature, rapidly losing their strength and ductility when the temperature increased above 250 C. As the test temperature increased and the strain rate decreased the fracture mode shifted from a ductile transgranular failure to a ductile intergranular failure with very localized ductility. This latter observation is based on the presence of dimples on the grain facets, indicating that some ductile deformation occurred near the grain boundaries. The material failed without any reduction in area at 450 C and 3.9 {times} 10{sup {minus}4} s{sup {minus}1}, and in several cases failed prematurely.

  1. Stress-Stain State of Pipe Made of Copper-Based Alloy Strengthened with Incoherent Nanoparticles

    Science.gov (United States)

    Matvienko, O. V.; Daneyko, O. I.; Kovalevskaya, T. A.

    2017-08-01

    The approach which combines methods of crystal plasticity and deformable solid mechanics is used to explore the stress-strain state of a heavy-wall pipe made of dispersion-hardened Cu-based alloy and subjected to the uniform internal pressure. The distribution of the deformation and stress along the pipe wall is determined for various pipe geometry. The approximating equations are obtained to determine the yielding area and elastic and plastic strength limits.

  2. Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    J. Douglas Way; Paul M. Thoen

    2005-08-31

    This report summarizes progress made during the second year of research funding from DOE Grant DE-FG26-03NT41792 at the Colorado School of Mines. The period of performance was September 1, 2004 through August of 2005. We have reformulated our Pd plating process to minimize the presence of carbon contamination in our membranes. This has improved durability and increased permeability. We have developed techniques for plating the outside diameter of ceramic and metal substrate tubes. This configuration has numerous advantages including a 40% increase in specific surface area, the ability to assay the alloy composition non-destructively, the ability to potentially repair defects in the plated surface, and the ability to visually examine the plated surfaces. These improvements have allowed us to already meet the 2007 DOE Fossil Energy pure H{sub 2} flux target of 100 SCFH/ft{sup 2} for a hydrogen partial pressure difference of 100 psi with several Pd-Cu alloy membranes on ceramic microfilter supports. Our highest pure H{sub 2} flux on inexpensive, porous alumina support tubes at the DOE target conditions is 215 SCFH/ft{sup 2}. Progress toward meeting the other DOE Fossil Energy performance targets is also summarized. Additionally, we have adapted our membrane fabrication procedure to apply Pd and Pd alloy films to commercially available porous stainless steel substrates. Stable performance of Pd-Cu films on stainless steel substrates was demonstrated over a three week period at 400 C. Finally, we have fabricated and tested Pd-Au alloy membranes. These membranes also exceed both the 2007 and 2010 DOE pure H{sub 2} flux targets and exhibit ideal H{sub 2}/N{sub 2} selectivities of over 1000 at partial pressure difference of 100 psi.

  3. Variability in Sican copper alloy artifacts: Its relation to material flow patterns during the Middle Sican Period in Peru, AD 900--1100

    Science.gov (United States)

    Bezur, Aniko

    The Middle Sican culture, centered in the Lambayeque region on the north coast of Peru, began successful, intensive production of arsenical copper starting around AD 900. The excavation and analysis of Middle Sican burials has revealed that artifacts made of copper-arsenic alloys played an important role in mortuary practices and ritual activities. Copper-arsenic alloy artifacts were accessible to a relatively wide cross-section of the population, though in different amounts and forms. So-called grouped artifacts, for example, have primarily been recovered from elite graves and ritual contexts. Such grouped artifacts occurred in hoards and were organized into groups by wrapping with spun yarn, vegetable fibers, and textiles. This dissertation documents the patterning of compositional and morphological variation among three types of grouped copper artifacts and builds connections between the observed patterning and material flow during production and distribution in order to explore relations among producers and consumers. Morphological homogeneity is explored in relation to the methods of manufacture involved in the production of different types of grouped artifacts as well as the number of production units whose output was pooled to form a cache. Compositional standardization is addressed in relation to the mass of an individual object as well as material flow between smelting and smithing stages of the metallurgical chaine operatoire. Hypotheses are anchored in research on the production organization of other Middle Sican crafts as well as literature discussing connections between artifact variability and production organization.

  4. Printable and Flexible Copper-Silver Alloy Electrodes with High Conductivity and Ultrahigh Oxidation Resistance.

    Science.gov (United States)

    Li, Wanli; Hu, Dawei; Li, Lingying; Li, Cai-Fu; Jiu, Jinting; Chen, Chuantong; Ishina, Toshiyuki; Sugahara, Tohru; Suganuma, Katsuaki

    2017-07-26

    Printable and flexible Cu-Ag alloy electrodes with high conductivity and ultrahigh oxidation resistance have been successfully fabricated by using a newly developed Cu-Ag hybrid ink and a simple fabrication process consisting of low-temperature precuring followed by rapid photonic sintering (LTRS). A special Ag nanoparticle shell on a Cu core structure is first created in situ by low-temperature precuring. An instantaneous photonic sintering can induce rapid mutual dissolution between the Cu core and the Ag nanoparticle shell so that core-shell structures consisting of a Cu-rich phase in the core and a Ag-rich phase in the shell (Cu-Ag alloy) can be obtained on flexible substrates. The resulting Cu-Ag alloy electrode has high conductivity (3.4 μΩ·cm) and ultrahigh oxidation resistance even up to 180 °C in an air atmosphere; this approach shows huge potential and is a tempting prospect for the fabrication of highly reliable and cost-effective printed electronic devices.

  5. Evaluation of single liquid primers with organic sulfur compound for bonding between indirect composite material and silver-palladium-copper-gold alloy.

    Science.gov (United States)

    Shimoe, Saiji; Tanoue, Naomi; Satoda, Takahiro; Murayama, Takeshi; Nikawa, Hiroki; Matsumura, Hideo

    2010-01-01

    The purpose of this study was to evaluate the effect of primers on bonding between a silver-palladium-copper-gold alloy and an indirect composite material. Cast disks were air-abraded with alumina, conditioned with one of five primers (Alloy Primer, Luna-Wing Primer, Metal Primer II, Metaltite, M.L. Primer), and bonded with a light-activated indirect composite. Shear bond strengths were determined after 20,000 times of thermocycling. The results showed that four of the primers, except the Luna-Wing Primer, were effective in enhancing the bond strength as compared with the unprimed control group. Of these four primers, Alloy Primer, Metal Primer II, and M.L. Primer exhibited significantly greater bond strengths. It can be concluded that the effectiveness of primers varies considerably according to the organic sulfur compounds added to the solvent, and that care must be taken in selecting priming agents for bonding the composite material and the silver-palladium-copper-gold alloy.

  6. Low Temperature Phase Transformations in Copper-Quenched Ti-44.5Al-8Nb-2.5V Alloy.

    Science.gov (United States)

    Cao, Shouzhen; Xiao, Shulong; Chen, Yuyong; Xu, Lijuan; Wang, Xiaopeng; Han, Jianchao

    2017-02-18

    In this study, an easily controlled transformation similar to the β + α → β + α + γ and the analysis of metastable phases in a β solidifying Ti-44.5Al-8Nb-2.5V alloy were investigated. Therefore, a liquid alloy copper-quenching followed by annealing at an application temperature (850 °C) has been carried out. Following quenching, a microstructure composed of several supersaturated phases-the basket-weave β₀ (βbv) phase, the plate-like α₂ (αp) phase and the stripe-like γ (γs) phase-was obtained. In the annealing processes, phase transformations in the prior βbv and αp phases domain corresponded nicely to the β + α → β + α + γ transformation during solidification. Also, in the annealed γs phase, the kinetics of the phase transformations involving the metastable L1₂ phase was firstly detected by transmission electron microscopy (TEM). The L1₂ phase had a lattice structure similar to the γ phase, whereas the composition of the phase was similar to the α₂ phase. The formation of the γ pre-twin phase with an anti-phase boundary (APB) was detected in the γs phase of the matrix. The orientation relationships between the γs and precipitated: γ (γp) phase are <101]γs//<114]γp, (10 1 ¯ )γs//( 1 ¯ 10)γp and (0 1 ¯ 0)γs//(22 1 ¯ )γp.

  7. Multiple Sulfate Isotopic Evidence on the Formation of Oxide Copper Ore at Spence, Atacama Desert, Northern Chile

    Science.gov (United States)

    Sun, T.; Bao, H.; Reich, M.; Palacios, C.

    2007-12-01

    In the Atacama Desert of northern Chile, one of the world's richest metallogenic provinces, porphyry copper deposits are characterized by the unique occurrence of atacamite in their oxidized zones. The origin and formation of the oxide zone of these copper deposits is, however, controversial. It was proposed that Cl-rich deep formation water pumping-up events along faults by earthquakes, after onset of the hyperaridity, were required (Cameron et al., 2007). Their model would imply that supplies of saline deep formation water from fractures to the surface should have left behind a homogeneous or fracture-controlled salt profile from surface down to the oxide zone. While no excluding the deep formation water model in other deposit, here we propose that, in our sampling region, the alternative saline source, which is critical for atacamite formation, could be locally evaporated groundwater, Cl-rich salts leached from arid surface by meteoric water, or brines from eastern salar basins at a time when the climate in northern Chile was changing from arid to hyperarid. At this climate transition, arid- requiring minerals such as atacamite in the oxide zone were formed and, more importantly, preserved upon evaporation beneath the surface alluvial deposits. Since salt accumulation at the surface remain active during hyperarid condition, our model would predict that water-soluble salt profile from surface to the oxide zone should have a characteristic pattern: salts with an atmospheric component on the surface gradually transitioning to salts of the oxide ore zone on the bottom and a mixing zone in between. To test these two alternative models, we focus on sulfate salts, one of the common water-soluble salts in arid environments. An added advantage is that sulfate accumulated on desert surface has a secondary atmospheric component that bears a unique triple oxygen isotope signature, easily distinguishable from sulfate formed by the oxidation of sulfide minerals at the oxide

  8. High Stability Performance of Superhydrophobic Modified Fluorinated Graphene Films on Copper Alloy Substrates

    Directory of Open Access Journals (Sweden)

    Rafik Abbas

    2017-01-01

    Full Text Available A stable self-cleaning superhydrophobic modified fluorinated graphene surface with micro/nanostructure was successfully fabricated on copper substrates via drop coating process. Irregularly stacked island-like multilayered fluorinated graphene nanoflakes comprised the microstructure. The fabricated films exhibited outstanding superhydrophobic property with a water contact angle 167° and water sliding angle lower than 4°. The developed superhydrophobic surface showed excellent corrosion resistance with insignificant decrease of water contact angle 166° in 3.5 wt.% NaCl solution. This stable highly hydrophobic performance of the fluorinated graphene films could be useful in self-cleaning, antifogging, corrosion resistive coatings and microfluidic devices.

  9. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments

    Science.gov (United States)

    Little, S. H.; Vance, D.; Walker-Brown, C.; Landing, W. M.

    2014-01-01

    The oceanic biogeochemical cycles of the transition metals have been eliciting considerable attention for some time. Many of them have isotope systems that are fractionated by key biological and chemical processes so that significant information about such processes may be gleaned from them. However, for many of these nascent isotopic systems we currently know too little of their modern oceanic mass balance, making the application of such systems to the past speculative, at best. Here we investigate the biogeochemical cycling of copper (Cu) and zinc (Zn) isotopes in the ocean. We present estimates for the isotopic composition of Cu and Zn inputs to the oceans based on new data presented here and published data. The bulk isotopic composition of dissolved Cu and Zn in the oceans (δ65Cu ∼+0.9‰, δ66Zn ∼+0.5‰) is in both cases heavier than their respective inputs (at around δ65Cu = +0.6‰ and δ66Zn = +0.3‰, respectively), implying a marine process that fractionates them and a resulting isotopically light sedimentary output. For the better-known molybdenum isotope system this is achieved by sorption to Fe-Mn oxides, and this light isotopic composition is recorded in Fe-Mn crusts. Hence, we present isotopic data for Cu and Zn in three Fe-Mn crusts from the major ocean basins, which yield δ65Cu = 0.44 ± 0.23‰ (mean and 2SD) and δ66Zn = 1.04 ± 0.21‰. Thus for Cu isotopes output to particulate Fe-Mn oxides can explain the heavy isotopic composition of the oceans, while for Zn it cannot. The heavy Zn in Fe-Mn crusts (and in all other authigenic marine sediments measured so far) implies that a missing light sink is still to be located. These observations are some of the first to place constraints on the modern oceanic mass balance of Cu and Zn isotopes.

  10. Investigation into the stress corrosion cracking properties of AA2099, an aluminum-lithium-copper alloy

    Science.gov (United States)

    Padgett, Barbara Nicole

    Recently developed Al-Li-Cu alloys show great potential for implementation in the aerospace industry because of the attractive mix of good mechanical properties and low density. AA2099 is an Al-Li-Cu alloy with the following composition Al-2.69wt%Cu-1.8wt%Li-0.6wt%Zn-0.3wt%Mg-0.3wt%Mn-0.08wt%Zr. The environmental assisted cracking and localized corrosion behavior of the AA2099 was investigated in this thesis. The consequences of uncontrolled grain boundary precipitation via friction stir welding on the stress corrosion cracking (SCC) behavior of AA2099 was investigated first. Using constant extension rate testing, intergranular corrosion immersion experiments, and potentiodynamic scans, the heat-affected zone on the trailing edge of the weld (HTS) was determined to be most susceptible of the weld zones. The observed SCC behavior for the HTS was linked to the dissolution of an active phase (Al2CuLi, T1) populating the grain boundary. It should be stated that the SCC properties of AA2099 in the as-received condition were determined to be good. Focus was then given to the electrochemical behavior of precipitate phases that may occupy grain and sub-grain boundaries in AA2099. The grain boundary micro-chemistry and micro-electrochemistry have been alluded to within the literature as having significant influence on the SCC behavior of Al-Li-Cu alloys. Major precipitates found in this alloy system are T1 (Al 2CuLi), T2 (Al7.5Cu4Li), T B (Al6CuLi3), and theta (Al2 Cu). These phases were produced in bulk form so that the electrochemical nature of each phase could be characterized. It was determined T1 was most active electrochemically and theta was least. When present on grain boundaries in the alloy, electrochemical behavior of the individual precipitates aligned with the observed corrosion behavior of the alloy (e.g. TB was accompanied by general pitting corrosion and T 1 was accompanied by intergranular corrosion attack). In addition to the electrochemical behavior of

  11. Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    J. Douglas Way; Paul M. Thoen

    2006-08-31

    This report summarizes progress made during the a three year University Coal Research grant (DEFG26-03NT41792) at the Colorado School of Mines. The period of performance was September 1, 2003 through August of 2006. We made excellent progress toward our goal of contributing to the development of high productivity, sulfur tolerant composite metal membranes for hydrogen production and membrane reactors. Composite Pd and Pd alloy metal membranes with thin metal films (1-7 {micro}m) were prepared on porous stainless steel and ceramic supports that meet or exceed the DOE 2010 and 2015 pure hydrogen flux targets at differential pressure of only 20 psi. For example, a 2 {micro}m pure Pd membrane on a Pall AccuSep{reg_sign} substrate achieved an ideal H{sub 2}/N{sub 2} separation factor of over 6000, with a pure hydrogen flux of 210 SCFH/ft{sup 2} at only 20 psig feed pressure. Similar performance was achieved with a Pd{sub 80}Au{sub 20} composite membrane on a similar stainless steel substrate. Extrapolating the pure hydrogen flux of this PdAu membrane to the DOE Fossil Energy target conditions of 150 psia feed pressure and 50 psia permeate pressure gives a value of 508 SCFH/ft{sup 2}, exceeding the 2015 target. At these thicknesses, it is the support cost that will dominate the cost of a large scale module. In a direct comparison of FCC phase PdCu and PdAu alloys on identical supports, we showed that a Pd{sub 85}Au{sub 15} (mass %) alloy membrane is not inhibited by CO, CO{sub 2}, or steam present in a water-gas shift feed mixture at 400 C, has better resistance to sulfur than a Pd{sub 94}Cu{sub 6} membrane, and has over twice the hydrogen permeance.

  12. Characterization of Magnetron Sputtered Copper-Nickel Thin Film and Alloys

    Science.gov (United States)

    2016-09-01

    1000 °C in a low- pressure chemical vapor deposition (LPCVD) reactor with a gas mixture of 40%H2/60%Ar at 15 Torr pressure to form the final alloys...uniformity of the film improves if the chamber pressure is decreased and/or the distance between target and substrate is increased, we decided to...of 500 W d.c. to improve the deposition rate in order to achieve a film thickness of 1 µm within a reasonable amount of time. Substrate rotation

  13. Gold-copper nano-alloy, "Tumbaga", in the era of nano: phase diagram and segregation.

    Science.gov (United States)

    Guisbiers, Grégory; Mejia-Rosales, Sergio; Khanal, Subarna; Ruiz-Zepeda, Francisco; Whetten, Robert L; José-Yacaman, Miguel

    2014-11-12

    Gold-copper (Au-Cu) phases were employed already by pre-Columbian civilizations, essentially in decorative arts, whereas nowadays, they emerge in nanotechnology as an important catalyst. The knowledge of the phase diagram is critical to understanding the performance of a material. However, experimental determination of nanophase diagrams is rare because calorimetry remains quite challenging at the nanoscale; theoretical investigations, therefore, are welcomed. Using nanothermodynamics, this paper presents the phase diagrams of various polyhedral nanoparticles (tetrahedron, cube, octahedron, decahedron, dodecahedron, rhombic dodecahedron, truncated octahedron, cuboctahedron, and icosahedron) at sizes 4 and 10 nm. One finds, for all the shapes investigated, that the congruent melting point of these nanoparticles is shifted with respect to both size and composition (copper enrichment). Segregation reveals a gold enrichment at the surface, leading to a kind of core-shell structure, reminiscent of the historical artifacts. Finally, the most stable structures were determined to be the dodecahedron, truncated octahedron, and icosahedron with a Cu-rich core/Au-rich surface. The results of the thermodynamic approach are compared and supported by molecular-dynamics simulations and by electron-microscopy (EDX) observations.

  14. Element segregation behavior of aluminum-copper alloy ZL205A

    Institute of Scientific and Technical Information of China (English)

    Fan Li; Hao Qitang; Xian Fuchao

    2014-01-01

    In aluminum-copper al oy, the segregation has a severe bad effect on the al oying degree, strength and corrosion resistance. A deeper understanding of element segregation behavior wil have a great significance on the prevention of segregation. In the study, the element segregation behavior of ZL205A aluminum-copper al oy was investigated by examining isothermal y solidified samples using scanning electron microscopy and energy dispersive spectroscopy. The calculated results of segregation coefficients show that Cu and Mn are negative segregation elements; while Ti, V and Zr are positive segregation elements. The sequence of element segregation degree from the greatest to the least in ZL205A al oy is Cu, Mn, V, Ti, Zr and Al. The density of residual liquid is expected to increase with a decrease in the quenching temperature ranging from 630 ºC to 550 ºC. The calculated results confirm that the quenching temperature has an insignificant effect on the liquid density;and the variation of density is mainly due to element segregation. Consequently, segregations of Al, Cu and Mn lead to an increase in density, but Ti, V and Zr present the opposite effect. The contribution of each element to the variation of the liquid density was analyzed. The sequence of contributions of al oying elements to the variation of total liquid density is Cu﹥Al﹥Mn﹥V﹥Ti﹥Zr.

  15. Microstructure and mechanical properties of similar and dissimilar joints of aluminium alloy and pure copper by friction stir welding

    Directory of Open Access Journals (Sweden)

    V.C. Sinha

    2016-09-01

    Full Text Available In the present study, the microstructure and mechanical properties of similar and dissimilar friction stir welded joints of aluminium alloy (AlA and pure copper (Cu were evaluated at variable tool rotational speeds from 150 to 900 rpm in steps of 150 rpm at 60 mm/min travel speed and constant tilt angle 2°. The interfacial microstructures of the joints were characterised by optical and scanning electron microscopy. The Al4Cu9, AlCu, Al2Cu and Al2Cu3 intermetallic compounds have been observed at the interface and stir zone region of dissimilar Al/Cu FSWed joints. Variation in the grain size was observed in the stir zone depending upon the heat input value. Axial force, traverse force and torque value were analysed with variation in tool rotational speed. Residual stresses were measured at the stir zone by X-ray diffraction technique. Maximum ultimate tensile strength of ∼75% of AlA strength for AlA–AlA joints has been obtained at 750 rpm and for Cu–Cu joint tensile strength of ∼100% of tensile strength of Cu was obtained at 300 rpm. However, for Cu–AlA joint when processed at 600 rpm tool rotational speed achieved maximum ultimate tensile strength of ∼77% of AlA.

  16. Modelling of nodular particle growth in a liquid-solid film during condensation experiments of copper-silver alloys

    Energy Technology Data Exchange (ETDEWEB)

    Leroux, S.; Ny, J. le; Gueneau, C.; Goldstein, S. [DCC/DPE/SPCP/LEPCA, Commissariat a l' Energie Atomique Saclay, Gif-sur-Yvette (France); Camel, D. [DTA/CEREM/DEM/SPCM, Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Grenoble, Grenoble (France)

    2001-07-01

    Silver-copper alloys are condensed in a liquid-solid domain of the phase diagram on a tilted molybdenum substrate regulated in temperature. After a droplets regime, a film which contains a monolayer of nodular solid crystals forms. The size distribution and density of the particles in the film are measured after different condensation times. Results show that in our experimental conditions a ripening process occurs which is evidenced by a decrease of the number of particles with time, and a broad particle size distribution. However, the decrease rate is smaller than expected without a condensation flux. A model is then developed to interpret and generalize these results. This model results from the modification of the Lifshitz-Slyosov model to take into account the supply from the vapour phase. It is shown that the higher the flux of material to solidify from the vapour phase is, the more the growth from the vapour phase overcomes the ripening process. Once the particle density reaches a characteristic value which is simply proportional to the incoming flux, no more particles are dissolved. The system then tends towards a monomodal distribution with a radius which grows in t{sup 1/3}. (orig.)

  17. Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Darling, K.A., E-mail: kristopher.darling.civ@mail.mil [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD 21005-5069 (United States); Roberts, A.J. [ORISE Program, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5069 (United States); Mishin, Y. [George Mason University, Dept of Physics and Astronomy, Fairfax, VA 22030 (United States); Mathaudhu, S.N. [U.S. Army Research Laboratory, Army Research Office, Research Triangle Park, NC 27709-2211 (United States); Kecskes, L.J. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD 21005-5069 (United States)

    2013-10-05

    Highlights: •A mean grain size of 167 nm is retained after annealing at 97% of the melting point. •Hardness surpasses conventional pure nanocrystalline Cu by 2.5 GPa. •Extreme stability is attributed to both thermodynamic and kinetic stabilization. -- Abstract: Nanocrystalline Cu–Ta alloys belong to an emerging class of immiscible materials with potential for high-temperature applications. Differential scanning calorimetry (DSC), Vickers microhardness, transmission and scanning electron microscopy (TEM/SEM), and atomistic simulations have been applied to study the structural evolution in high-energy cryogenically alloyed nanocrystalline Cu–10 at.%Ta. The thermally induced coarsening of the as-milled microstructure was investigated and it was found that the onset of grain growth occurs at temperatures higher than that for pure nanocrystalline Cu. The total heat release associated with grain growth was 0.553 kJ/mol. Interestingly, nanocrystalline Cu–10 at.%Ta maintains a mean grain size (GS) of 167 nm after annealing at 97% of its melting point. The increased microstructural stability is attributed to a combination of thermodynamic and kinetic stabilization effects which, in turn, appear to be controlled by segregation and diffusion of Ta solute atoms along grain boundaries (GBs). The as-milled nanocrystalline Cu–10 at.%Ta exhibits Vickers microhardness values near 5 GPa surpassing the microhardness of conventional pure nanocrystalline Cu by ∼2.5 GPa.

  18. Application of Copper-tin Alloy Contact Wires on Electrified Railways%电气化铁路铜锡合金接触线的应用

    Institute of Scientific and Technical Information of China (English)

    陈绍华; 王作祥

    2011-01-01

    阐述了不同等级的铜锡接触线的性能、应用范围;说明了铜锡接触线可以满足所有速度等级电气化铁路以及城市地铁和轨道交通的要求;对铜锡接触线与铜银接触线和铜镁接触线在使用性能、工艺性能和制造成本方面进行了比较。并对铁道部行业标准提出了修订意见。%The paper illustrates the performances and the scope of application of the copper-tin alloy contact wires;states clearly that the copper-tin contact wires are able to satisfy with the requirements of the electrified railways in different speeds,the metro and urban rail transportation;the comparisons are given for the copper-tin contact wires,copper-silver contact wires and copper-magnesium contact wires in terms of the application performance,processing performance and manufacture costs.It also puts forward the proposals on revision of the industrial standards of the Ministry of Railways.

  19. On the melt infiltration of copper coated silicon carbide with an aluminium alloy

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    Pressure-assisted infiltration of porous compacts of Cu coated and uncoated single crystals of platelet shaped alpha (hexagonal) SiC was used to study infiltration dynamics and particulate wettability with a 2014 Al alloy. The infiltration lengths were measured for a range of experimental variables which included infiltration pressure, infiltration time, and SiC size. A threshold pressure (P(th)) for flow initiation through compacts was identified from an analysis of infiltration data; P(th) decreased while penetration lengths increased with increasing SiC size (more fundamentally, due to changes in interparticle pore size) and with increasing infiltration times. Cu coated SiC led to lower P(th) and 60-80 percent larger penetration lengths compared to uncoated SiC under identical processing conditions.

  20. Hydrogen-induced phase separation of an amorphous cerium-copper alloy

    Energy Technology Data Exchange (ETDEWEB)

    Felsch, W.; Volkmer, H.; Schneider, S.; Kohlmann, J.; Regenbrecht, A.; Samwer, K. (Goettingen Univ. (Germany, F.R.). 1. Physikalisches Inst.)

    1989-01-01

    X-ray diffraction and differential scanning calorimetry show that the amorphous alloy Ce{sub 26}Cu{sub 74} decomposes gradually into a two-phase amorphous structure by the absorption of hydrogen. There is evidence that these phases are close, in their metallic composition, to the intermetallic compounds CeCu{sub 2} and CeCu{sub 6}. Hydrogen is absorbed almost entirely by the amorphous phase related to CeCu{sub 2}. The electrical resistivity increases steeply by a factor of 3 near H/M=0.4. While the magnetic susceptibility shows a small reduction only on the spin-glass temperature due to hydrogen absorption, the low-temperature specific heat is substantially modified, indicating a considerably diminished exchange coupling between the Ce-4f and conduction electrons. (orig.).

  1. Peculiar oxygen and copper isotope effects on the pseudogap formation temperature in underdoped to overdoped cuprates: Pseudogap induced by pairing correlations above Tc in cuprates with large and small Fermi surfaces

    Science.gov (United States)

    Dzhumanov, S.; Khudayberdiev, Z. S.; Djumanov, Sh. S.

    2015-05-01

    We investigate the pseudogap (PG) state and the peculiar oxygen and copper isotope effects on the PG onset temperature T* in cuprate superconductors with large and small Fermi surfaces within the polaron model and two different BCS-based approaches extended to the intermediate coupling regime. We argue that the unconventional electron-phonon interactions are responsible for the polaron formation and BCS-like pairing correlations above Tc in underdoped to overdoped cuprates, which are exotic (non-BCS) superconductors. Using the generalized BCS-like theory, we calculate pseudogap formation temperatures T*, isotope shifts ΔT*, oxygen and copper isotope exponents (i.e. αT*O and αT*Cu) and show that isotope effects on T* strongly depend on strengths of Coulomb and electron-phonon interactions, doping levels and dielectric constants of the cuprates. This theory explains the existence of small positive or sign reversed oxygen isotope effect, sizable and very large negative oxygen and copper isotope effects on T* in cuprates with large Fermi surfaces. Further, we use another version of the extended BCS-like model to study the PG formation and the peculiar isotope effects on T* in deeply underdoped cuprates with small Fermi surfaces and predict the existence of small and sizable negative oxygen and copper isotope effects on T* in such underdoped cuprates. The results for T*, isotope shifts ΔT* and exponents (αT*O and αT*Cu) in different classes of high-Tc cuprates are in good agreement with the existing well-established experimental data and explain the controversy between various experiments on isotope effects for T* in the cuprates.

  2. Electrical and Magneto-Resistivity Measurements on Amorphous Copper-Titanium Alloys at Low Temperatures

    Science.gov (United States)

    Fan, Renyong

    1992-01-01

    The anomalous transport properties of highly disordered metallic glasses, which require corrections to the classical Boltzmann theory, are due to quantum interference effects of the scattered electron waves. These corrections provide new contributions to the resistivity: "weak localization" and "electron-electron interaction". To study these quantum interference effects, we have made the highest-precision measurements, so far, of the resistances of the amorphous rm Cu_{50}Ti_{50 } and rm Cu_{60}Ti _{40} ribbons at much lower temperatures than before (15mK 0.15K. In contrast, at the lowest temperatures, the magnetoresistances were dominated by weak localization with Zeeman splitting and Maki-Thompson superconducting fluctuations. For higher magnetic fields and lowest temperatures (B/T > 1 T/K), we find discrepancies between our data and the theoretical calculations. We found that most of the parameters of the theoretical fits to the data were similar for both rm Cu_{50}Ti_{50} and rm Cu_{60}Ti_ {40} alloys. The two important exceptions were the inelastic and spin-orbit lifetimes: their zero -field values were about an order of magnitude smaller than those from the magnetoresistances. Also the inelastic lifetimes tend to saturate for T<0.1K in non-zero magnetic fields. Finally, we were also able to estimate the expected superconducting transition temperatures of both rm Cu_{50}Ti_{50} and rm Cu_{60}Ti _{40} alloys: less than 15mK and 5mK, respectively. Our novel technique can, in principle, be used to make high precision resistance measurements down to 15mK on any ribbon or film-like high resistivity metal.

  3. Lack of Involvement of Fenton Chemistry in Death of Methicillin-Resistant and Methicillin-Sensitive Strains of Staphylococcus aureus and Destruction of Their Genomes on Wet or Dry Copper Alloy Surfaces.

    Science.gov (United States)

    Warnes, Sarah L; Keevil, C William

    2016-01-29

    The pandemic of hospital-acquired infections caused by methicillin-resistant Staphylococcus aureus (MRSA) has declined, but the evolution of strains with enhanced virulence and toxins and the increase of community-associated infections are still a threat. In previous studies, 10(7) MRSA bacteria applied as simulated droplet contamination were killed on copper and brass surfaces within 90 min. However, contamination of surfaces is often via finger tips and dries rapidly, and it may be overlooked by cleaning regimes (unlike visible droplets). In this new study, a 5-log reduction of a hardy epidemic strain of MRSA (epidemic methicillin-resistant S. aureus 16 [EMRSA-16]) was observed following 10 min of contact with copper, and a 4-log reduction was observed on copper nickel and cartridge brass alloys in 15 min. A methicillin-sensitive S. aureus (MSSA) strain from an osteomyelitis patient was killed on copper surfaces in 15 min, and 4-log and 3-log reductions occurred within 20 min of contact with copper nickel and cartridge brass, respectively. Bacterial respiration was compromised on copper surfaces, and superoxide was generated as part of the killing mechanism. In addition, destruction of genomic DNA occurs on copper and brass surfaces, allaying concerns about horizontal gene transfer and copper resistance. Incorporation of copper alloy biocidal surfaces may help to reduce the spread of this dangerous pathogen. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Lack of Involvement of Fenton Chemistry in Death of Methicillin-Resistant and Methicillin-Sensitive Strains of Staphylococcus aureus and Destruction of Their Genomes on Wet or Dry Copper Alloy Surfaces

    Science.gov (United States)

    2016-01-01

    The pandemic of hospital-acquired infections caused by methicillin-resistant Staphylococcus aureus (MRSA) has declined, but the evolution of strains with enhanced virulence and toxins and the increase of community-associated infections are still a threat. In previous studies, 107 MRSA bacteria applied as simulated droplet contamination were killed on copper and brass surfaces within 90 min. However, contamination of surfaces is often via finger tips and dries rapidly, and it may be overlooked by cleaning regimes (unlike visible droplets). In this new study, a 5-log reduction of a hardy epidemic strain of MRSA (epidemic methicillin-resistant S. aureus 16 [EMRSA-16]) was observed following 10 min of contact with copper, and a 4-log reduction was observed on copper nickel and cartridge brass alloys in 15 min. A methicillin-sensitive S. aureus (MSSA) strain from an osteomyelitis patient was killed on copper surfaces in 15 min, and 4-log and 3-log reductions occurred within 20 min of contact with copper nickel and cartridge brass, respectively. Bacterial respiration was compromised on copper surfaces, and superoxide was generated as part of the killing mechanism. In addition, destruction of genomic DNA occurs on copper and brass surfaces, allaying concerns about horizontal gene transfer and copper resistance. Incorporation of copper alloy biocidal surfaces may help to reduce the spread of this dangerous pathogen. PMID:26826226

  5. Extractive spectrophotometric determination of copper(II in water and alloy samples with 3-methoxy-4-hydroxy benzaldehyde-4-bromophenyl hydrazone (3,4-MHBBPH

    Directory of Open Access Journals (Sweden)

    D. REKHA

    2007-03-01

    Full Text Available A facile, sensitive and selective extractive spectrophotometricmethod was developed for the determination of copper(II in various water and alloy samples using a newly synthesized reagent, 3-methoxy-4-hydroxy benzaldehyde 4-bromophenyl hydrazone (3,4-MHBBPH. Copper(II forms a orange colored complex with (3,4-MHBBPH in acetate buffermedium (pH 4 which increases the sensitivity and the complexwas extracted into chloroform. Under optimum conditions, the maximum absorption of the chloroform extract was measured at 462 nm. The Beer law was obeyed in the range of 0.20 to 4.0 mg ml-1 of copper. The molar absorptivity and the Sandell's sensitivity of the complex were 2.0520 ´ 104 mol-1 cm-1 and 0.2540 mg cm-2, respectively. The detection limit was found to be 0.0270 mg mL-1. Adetailed study of various interfering ions made the method more sensitive. The method was successfully applied for the determination of Cu(II in water and alloy samples. The performance of the present method was evaluated in terms of Student 't' test and Variance ratio 'f ' test, which indicate the significance of the present method over reported methods.

  6. Reliability design and assessment of a micro-probe using the results of a tensile test of a beryllium-copper alloy thin film

    Science.gov (United States)

    Park, Jun-Hyub; Shin, Myung-Soo

    2011-09-01

    This paper describes the results of tensile tests for a beryllium-copper (BeCu) alloy thin film and the application of the results to the design of a probe. The copper alloy films were fabricated by electroplating. To obtain the tensile characteristics of the film, the dog-bone type specimen was fabricated by the etching method. The tensile tests were performed with the specimen using a test machine developed by the authors. The BeCu alloy has an elastic modulus of 119 GPa and the 0.2% offset yield and ultimate tensile strengths of 1078 MPa and 1108 MPa, respectively. The design and manufacture of a smaller probe require higher pad density and smaller pad-pitch chips. It should be effective in high-frequency testing. For the design of a new micro-probe, we investigated several design parameters that may cause problems, such as the contact force and life, using the tensile properties and the design of experiment method in conjunction with finite element analysis. The optimal dimensions of the probe were found using the response surface method. The probe with optimal dimensions was manufactured by a precision press process. It was verified that the manufactured probe satisfied the life, the contact force and the over drive through the compression tests and the life tests of the probes.

  7. Rare earth element and stable sulphur (δ 34S) isotope study of baryte-copper mineralization in Gulani area, Upper Benue Trough, NE Nigeria

    Science.gov (United States)

    El-Nafaty, Jalo Muhammad

    2015-06-01

    The geology of Gulani area comprises of inliers of diorite and granites of the Older Granite suite of the Pan-African (600 ± 150 Ma) age within Cretaceous sediments of the Bima, Yolde and Pindiga Formations and the Tertiary/Quaternary basalts of the Biu Plateau. Epigenetic baryte-copper mineralization occurs as baryte veins within the Bima and Yolde sandstones and fracture-filling malachite in Pan-African granites. Unaltered (distal), hydrothermally altered (proximal) granites and sandstones and vein materials (mineral separates of baryte and chalcopyrite/malachite mineralized rocks) were analysed for rare earth elements (REE) and stable sulphur isotopes. The REE patterns of the unaltered rocks (both granites and sandstones) indicate background values before mineralization, depicted by enriched LREE, depleted HREE and weak negative Eu anomalies typical of Pan-African (calc-alkaline) granites and sandstones derived from them. On the other hand, the hydrothermally altered and mineralized rocks and mineral separates show a distinct baryte and copper mineralization sub-systems characterized by similar high LREE and corresponding low HREE abundances. However, the negative Eu anomalies of the copper sub-system hosted by granites are typical of Pan-African (calc-alkaline) granites. The sandstone host rocks of the baryte sub-system are marked by positive Eu anomalies interpreted as reflecting the injection and subsequent deposition of the baryte-bearing hydrothermal solutions under oxidizing conditions. The baryte mineral separates show δ (34S) isotope range of 12.3-13.1‰ (CDT) indicating sulphur from sedimentary formation sources. This ruled out magmatic source of the sulphur from the nearby Tertiary/Quaternary volcanic rocks of the Biu Plateau as well as ocean water. However, the stable sulphur isotopic determination of the sulphides (chalcopyrite/malachite mineral separates and mineralized rocks) did not yield peaks and therefore no inferences drawn in this regard.

  8. Formula optimization of copper and copper alloy's manual SHS welding based on uniform design%基于均匀设计法的铜及铜合金手工自蔓延焊接配方优化

    Institute of Scientific and Technical Information of China (English)

    曲利峰; 辛文彤; 吴永胜; 王森

    2011-01-01

    which is based on self-propagating high-temperature synthesis(SHS) theory and manual arc welding technique of copper and copper alloy.lt was introduced that principle of uniform design in contrast with orthogonal design and fast assessment standard of copper and copper alloy's Manual SHS welding technology,on which a project for formula optimization of SHS welding rod is presented.Thermite Al+CuO,slagforming constituent B2O3 and alloying constituent Ni,Zn were chosen as the influencing factors.The main survey index comprises combustion speed,heat quantity,spatter,viscosity,slag detachability,fluidity,spreading,gas hole, inclusion, intensity .The final result of formula optimization shows that it will be welded better when content of thermite was 75, slagforming constituent B2O3 was 23,alloying constituent Ni as well as Zn was 1.Final appearance of the weld seam was analyzed when the formula was adjusted.%通过对比正交设计法介绍了均匀设计法的优点,引入铜及铜合金手工自蔓延焊接快速评价方法,并采用均匀设计法优化已有铜基燃烧型焊条配方.选择高热剂Al+CuO、造渣剂B2O3、合金剂Ni、合金剂Zn 含量为影响因素,以燃速、热量、飞溅、黏度、脱渣、流动、铺展、气孔、夹杂、强度这十项性能作为主要考察指标,按照均匀设计法流程,经计算配方优化结果为:高热剂含量为75、B2O3含量为23、Ni含量为1、Zn含量为1,并对调整配方后的最终焊缝成型情况进行了机理解释.

  9. High-speed blanking of copper alloy sheets: Material modeling and simulation

    Science.gov (United States)

    Husson, Ch.; Ahzi, S.; Daridon, L.

    2006-08-01

    To optimize the blanking process of thin copper sheets ( ≈ 1. mm thickness), it is necessary to study the influence of the process parameters such as the punch-die clearance and the wear of the punch and the die. For high stroke rates, the strain rate developed in the work-piece can be very high. Therefore, the material modeling must include the dynamic effects.For the modeling part, we propose an elastic-viscoplastic material model combined with a non-linear isotropic damage evolution law based on the theory of the continuum damage mechanics. Our proposed modeling is valid for a wide range of strain rates and temperatures. Finite Element simulations, using the commercial code ABAQUS/Explicit, of the blanking process are then conducted and the results are compared to the experimental investigations. The predicted cut edge of the blanked part and the punch-force displacement curves are discussed as function of the process parameters. The evolution of the shape errors (roll-over depth, fracture depth, shearing depth, and burr formation) as function of the punch-die clearance, the punch and the die wear, and the contact punch/die/blank-holder are presented. A discussion on the different stages of the blanking process as function of the processing parameters is given. The predicted results of the blanking dependence on strain-rate and temperature using our modeling are presented (for the plasticity and damage). The comparison our model results with the experimental ones shows a good agreement.

  10. Influence of Bond Coat on HVOF-Sprayed Gradient Cermet Coating on Copper Alloy

    Science.gov (United States)

    Ke, Peng; Cai, Fei; Chen, Wanglin; Wang, Shuoyu; Ni, Zhenhang; Hu, Xiaohong; Li, Mingxi; Zhu, Guanghong; Zhang, Shihong

    2017-06-01

    Coatings are required on mold copper plates to prolong their service life through enhanced hardness, wear resistance, and oxidation resistance. In the present study, NiCr-30 wt.%Cr3C2 ceramic-metallic (cermet) layers were deposited by high velocity oxy-fuel (HVOF) spraying on different designed bond layers, including electroplated Ni, HVOF-sprayed NiCr, and double-decker Ni-NiCr. Annealing was also conducted on the gradient coating (GC) with NiCr bond layer to improve the wear resistance and adhesion strength. Coating microstructure was investigated by scanning electron microscopy and x-ray diffraction analysis. Mechanical properties including microhardness, wear resistance, and adhesion strength of the different coatings were evaluated systematically. The results show that the types of metallic bond layer and annealing process had a significant impact on the mechanical properties of the GCs. The GCs with electroplated Ni bond layer exhibited the highest adhesion strength (about 70 MPa). However, the GC with HVOF-sprayed NiCr bond layer exhibited better wear resistance. The wear resistance and adhesion strength of the coating with NiCr metallic bond layer were enhanced after annealing.

  11. Alloy

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  12. Morphology and microstructure of annealed Ni-Co alloy powders electrodeposited on copper substrates

    Directory of Open Access Journals (Sweden)

    Rafailović L.D.

    2009-01-01

    Full Text Available Nickel and cobalt alloy powders from two different electrolyte compositions were obtained by electrodeposition from an ammonium sulfate solution. The structure of Ni-Co deposits formed by electrodeposition at a galvanostatic regime and the influence of current density and the bath composition were studied by SEM, DSC and X-ray diffraction methods. It was shown that the microstructure and morphology of the powders depended on the deposition current density as well as bath composition. Both, bath composition and current density affect strongly the deposit growth mechanism and the deposit composition, microstructure, grain size and surface morphology. It was found that the overpotential significantly affects the structure of the formed deposits. When electrodeposition was performed far from equilibrium conditions face-centered cubic (FCC cobalt was deposited while at low overpotential hexagonal close packed (HCP Co was formed with a lower rate of hydrogen evolution. The increase of HCP phase in the nanocrystalline deposits was caused by increase of the Co content in the powder as well by decrease of the deposition current density. It was shown that the powders change their structure in the temperature interval from 300°C to 600°C. In Co rich samples, structural changes during heating were attributed to the phase transformation of HCP to FCC.

  13. Study of tin-silver-copper alloy reliability through material microstructure evolution and laser moire interferometry

    Science.gov (United States)

    Tunga, Krishna Rajaram

    This research aims to understand the reliability of Sn-Ag-Cu solder interconnects used in plastic ball grid array (PBGA) packages using microstructure evolution, laser moire interferometry and finite-element modeling. A particle coarsening based microstructure evolution of the solder joint material during thermal excursions was studied for extended periods of time lasting for several months. The microstructure evolution and particle coarsening was quantified, and acceleration factors were determined between benign field-use conditions and accelerated thermal cycling (ATC) conditions for PBGA packages with different form factors and for two different lead-free solder alloys. A new technique using laser moire interferometry was developed to assess the deformation behavior of Sn-Ag-Cu based solder joints during thermal excursions. This technique can used to estimate the fatigue life of solder joints quickly in a matter of few days instead of months and can be extended to cover a wide range of temperature regimes. Finite-element analysis (FEA) in conjunction with experimental data from the ATC for different lead-free PBGA packages was used to develop a fatigue life model that can be used to predict solder joint fatigue life for any PBGA package. The proposed model will be able to predict the mean number of cycles required for crack initiation and crack growth rate in a solder joint.

  14. Status of the Development of Beryllium-Copper Alloy Ignition Capsules by Precision Machining

    Science.gov (United States)

    Nobile, Arthur

    2005-10-01

    Cu-doped Be capsules are being developed for ignition on the National Ignition Facility (NIF). The fabrication approach being pursued at Los Alamos is based on bonding of cylindrical parts containing precision machined hemispherical cavities, followed by machining the external contour to produce a spherical capsule. While we have demonstrated this approach, there are several key issues that need to be resolved before a capsule meeting NIF specifications can be produced. These issues are synthesis of high purity small grain size Be-Cu alloy, formation of a hemishell bond strong enough to allow the capsule to be machined after the hemishells are bonded, precision machining and polishing of the capsule to meet stringent specifications for surface finish and spherical quality, and filling with DT. In this paper we report on the progress that has been made on these issues. This work is performed at Los Alamos National Laboratory and supported by U.S. Department of Energy under contract number W7405-ENG36

  15. Determination of isotopic composition of dissolved copper in seawater by multi-collector inductively coupled plasma mass spectrometry after pre-concentration using an ethylenediaminetriacetic acid chelating resin.

    Science.gov (United States)

    Takano, Shotaro; Tanimizu, Masaharu; Hirata, Takafumi; Sohrin, Yoshiki

    2013-06-19

    Copper is an essential trace metal that shows a vertical recycled-scavenged profile in the ocean. To help elucidate the biogeochemical cycling of Cu in the present and past oceans, it is important to determine the distribution of Cu isotopes in seawater. However, precise isotopic analysis of Cu has been impaired by the low concentrations of Cu as well as co-existing elements that interfere with measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The objective of this study is to develop a simple Cu pre-concentration method using Nobias-chelate PA1 resin (Hitachi High Technologies). This extraction followed by anion exchange, allows precise analysis of the Cu isotopic composition in seawater. Using this method, Cu was quantitatively concentrated from seawater and >99.9999% of the alkali and alkaline earth metals were removed. The technique has a low procedural blank of 0.70 ng for Cu for a 2L sample and the precision of the Cu isotopic analysis was ±0.07‰ (±2SD, n=6). We applied this method to seawater reference materials (i.e., CASS-5 and NASS-6) and seawater samples obtained from the northwestern Pacific Ocean. The range of dissolved δ(65)Cu was 0.40-0.68‰.

  16. Underwater Superoleophobicity Induced by the Thickness of the Thermally Grown Porous Oxide Layer on C84400 Copper Alloy

    Directory of Open Access Journals (Sweden)

    Aniedi Nyong

    2014-02-01

    Full Text Available The underwater contact angle behavior on oxide layers of varying thicknesses was studied. These oxide layers were grown by thermally oxidizing C84400 copper alloys in N2-0.75 wt.% O2 and N2-5 wt.% O2 gas mixtures at 650 °C. Characterization of the oxidized specimens was effected using X-ray diffraction, scanning electron microscope (SEM and contact angle goniometer. The results from the X-ray diffraction analyses confirmed the formation of CuO, ZnO and PbO. The average sizes of the oxide granules were in the range of 70 nm to 750 nm, with the average thickness of the oxide layer increasing with the increase in the weight percent of oxygen in the N2-O2 gas mixtures. The results showed that the oxide layer growth followed the parabolic law. The underwater oil contact angles increased, due to the change in the surface morphology and porosity of the oxide layer. The small sizes and irregular packing of the oxide granules cause hierarchical rough surface layers with pores. The estimated pore sizes, in the range of 88 ± 40 to 280 ± 76, were predominant on the oxide layers of the samples processed in the N2-5 wt.% O2 gas mixture. The presence of these pores caused an increase in the porosities as the thickness of the oxide layers increased. At oxide layer thickness above 25 microns, the measured contact angle exceeded 150° as underwater superoleophobicity was recorded.

  17. Interstitial-impurity interactions in copper-silver and aluminum-magnesium alloys. [Electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Wong, H.P.

    1982-01-01

    The configurations and dynamical properties of complexes formed between interstitials and oversized impurities in electron-irradiated aluminum and copper were determined. Measurements were taken of the ultrasonic attention and resonant frequency in single crystal samples of Cu-Ag and Al-Mg. A variety of peaks appeared in both materials in plots of the logarithmic decrement versus temperature. The simultaneous presence of multiple defects was established by the different annealing behavior shown by each peak. It was found that interstitial trapping in our oversized systems was generally weaker than in previously studied undersized systems. The principal features in Cu-Ag that must be accounted for by a model include the following: (1) Three low-temperature peaks were seen having trigonal symmetry. The main peak annealed away at 110 K uncorrelated with any resistivity recovery and it grew at 60 K, correlated with a resistivity decrease. For Al-MG, the principal features associated with the main peak include: seen at high temperature (>135 K) having trigonal symmetry; annealed away at 127 K and seemed to correlate with a resistivity decrease; remaining peaks grew while the main peak annealed away. The implications of an existing model were developed. No evidence was found for the deeply-trapped <110>-orthorhombic defect predicted by the existing model. Therefore, two alternative models were developed. Model A uses a canted dumb-bell at the next-nearest neighbor position to explain the results. Model B uses a point interstitial at an octahedral position. A distinction between the two which is subject to experimental check is that model A predicts that interstitial migration between different impurity atoms occurs near 127 K in Cu-Ag while model B predicts a migration temperature near 60 K.

  18. A Review of Tungsten Heavy Alloy Utilization in Isotope Transport Containers - 13380

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, Steven G. [ATI Firth Sterling, Madison, AL (United States)

    2013-07-01

    A common requirement for radioisotope transport containers is that they provide both durable and efficient shielding of penetrating gamma radiation. This is the case for transport of both spent nuclear fuel as well as intentionally created radioisotopes for medical or other uses. Tungsten heavy alloy (WHA) provides a unique engineering property set for such shielding - easily surpassing more commonly used lead alloys in both strength and attenuation. This family of alloys contains typically 90-98 wt.% W in combination with transition metals such as Ni and Fe. WHA is manufactured in near net shape blanks by liquid phase sintering of compacted powder shapes to full metallurgical density parts. This powder metallurgy approach is described in its ability to provide excellent material utilization and affords efficient manufacturing of various shapes required for gamma shields or collimators. WHAs offer very high density (approaching 19 g/cc) in combination with relatively high thermal conductivity, low thermal expansion, ambient corrosion resistance, and can be provided with mechanical properties comparable to many medium carbon steels. As such, they can be machined to complex, damage resistant geometries using common metal cutting tools and methods. WHA additionally provides a lower toxicity alternative to Pb- or U-based gamma shielding. Given the specialty nature of WHA, specific metallurgical characteristics are reviewed to assist shielding designers who may otherwise encounter difficulties locating important alloy selection and fabrication details. Contained within this materials and applications overview are guidelines for WHA component design, alloy selection, and practical machining, finishing, and assembly considerations. The microstructure of WHA is that of a metal matrix composite. This factor has specific implications in the design of components for stress service as well as their protection in the presence of electrolytes. WHA is also discussed in the

  19. The structure and phase composition of the surface layer of the samples during the processing of VT-10 titanium alloys by copper ions

    Science.gov (United States)

    Kalashnikov, Mark P.; Fedorischeva, Marina V.; Nikonenko, Alisa V.; Bozhko, Irina A.; Sergeev, Victor P.

    2016-11-01

    The phase composition, structure and morphology of the surface of VT-10 titanium modified by copper ions have been investigated by X-ray, SEM and TEM. It has been established that there are intermetallide phases of Cu-Ti equilibrium diagram in the surface layer during the treatment of VT-10 titanium by copper ions. The modified surface layer in the cross section is divided into two layers: up to 1 µm in thickness and from 1µm up to 4.5-5.0 µm, depending on the treatment time. Two-level micro and nanoporous nanocrystalline structure was formed in the modified layer. It was found that the phase structure and the morphology of the surface layers of VT-10 alloys depend on the treatment time.

  20. The Effect of the Solution Heat Treatment on the Mechanical Properties of Aluminum-Copper Alloy (2024-T3 Using Rolling Process

    Directory of Open Access Journals (Sweden)

    Khairia Salman Hassan

    2011-01-01

    Full Text Available The effect of solution heat treatment on the mechanical properties of Aluminum-Copper alloy. (2024-T3 by the rolling process is investigated. The solution heat treatment was implemented by heating the sheets to 480 C° and quenching them by water; then forming by rolling for many passes. And then natural aging is done for one month. Mechanical properties (tensile strength and hardness are evaluated and the results are compared with the metal without treatment during the rolling process. ANSYS analysis is used to show the stresses distribution in the sheet during the rolling process. It has been seen that good mechanical properties are evident in the alloy without heat treatment due to the strain hardening and also the mechanical properties are improved after heat treatment and rolling process but with lower forces and stresses when compared with the untreated.

  1. Comparative study on the corrosion behavior of the cold rolled and hot rolled low-alloy steels containing copper and antimony in flue gas desulfurization environment

    Science.gov (United States)

    Park, S. A.; Kim, J. G.; He, Y. S.; Shin, K. S.; Yoon, J. B.

    2014-12-01

    The correlation between the corrosion and microstructual characteristics of cold rolled and hot rolled low-alloy steels containing copper and antimony was established. The corrosion behavior of the specimens used in flue gas desulfurization systems was examined by electrochemical and weight loss measurements in an aggressive solution of 16.9 vol % H2SO4 + 0.35 vol % HCl at 60°C, pH 0.3. It has been shown that the corrosion rate of hot rolled steel is lower than that of cold rolled steel. The corrosion rate of cold rolled steel was increased by grain refinement, inclusion formation, and preferred grain orientation.

  2. MICELLAR SOLUBLIZING SPECTROPHOTOMETRIC DETERMINATION OF MICRO COPPER IN ALUMINUM ALLOY%PAN胶束增溶光度法测定铝合金中铜

    Institute of Scientific and Technical Information of China (English)

    寇兴明; 印红玲

    2001-01-01

    A direct spectrophotometric method for the determination of micro copper in aluminum alloy using PAN as chromogenic reagent has been proposed.   In the presence of CTMAB,a stable red complex between Cu(Ⅱ) and PAN is formed in the buffer solution of pH1.3~4.5.The apparent molar absorptivity is 2.09×104L*mol-1*cm-1 at 558nm.The RSD is 0.8%(n=4).Beer's law is obeyed for 0~80μg/25ml of Cu(Ⅱ).The linear correlation coefficient is 0.9998.

  3. The Effects of Grain Size on the Martensitic Transformation in Copper-Zinc-Aluminum Shape Memory Alloys.

    Science.gov (United States)

    1982-12-01

    production or nearly so. In the medical arts these alloys are being exploited for their SME properties as orthodontic appliances, intercranial aneurism...treatment is applicable to the Cu-Zn-Al alloys. 60 LIST OF REFERENCES 1. Wayman, C. M., "Some Applications of Shape Memory Alloys," Journal of Metals, pp

  4. Lead-isotopic, sulphur-isotopic, and trace-element studies of galena from the Silesian-Cracow Zn-Pb ores, polymetallic veins from the Gory Swietokrzyskie MTS, and the Myszkow porphyry copper deposit, Poland

    Science.gov (United States)

    Church, S.E.; Vaughn, R.B.; Gent, C.A.; Hopkins, R.T.

    1996-01-01

    Lead-isotopic data on galena samples collected from a paragenetically constrained suite of samples from the Silesian-Cracow ore district show no regional or paragenetically controlled lead-isotopic trends within the analytical reproducibility of the measurements. Furthermore, the new lead-isotopic data agree with previously reported lead-isotopic results (R. E. Zartman et al., 1979). Sulfur-isotopic analyses of ores from the Silesian-Cracow district as well as from vein ore from the Gory Swietokrzyskie Mts. and the Myszkow porphyry copper deposit, when coupled with trace-element data from the galena samples, clearly discriminate different hydrothermal ore-forming events. Lead-isotopic data from the Permian and Miocene evaporite deposits in Poland indicate that neither of these evaporite deposits were a source of metals for the Silesian-Cracow district ores. Furthermore, lead-isotopic data from these evaporite deposits and the shale residues from the Miocene halite samples indicate that the crustal evolution of lead in the central and western European platform in southern Poland followed normal crustal lead-isotopic growth, and that the isotopic composition of crustal lead had progressed beyond the lead-isotopic composition of lead in the Silesian-Cracow ores by Permian time. Thus, Mesozoic and Tertiary sedimentary flysch rocks can be eliminated as viable source rocks for the metals in the Silesian-Cracow Mississippi Valley-type (MVT) deposits. The uniformity of the isotopic composition of lead in the Silesian-Cracow ores, when coupled with the geologic evidence that mineralization must post-date Late Jurassic faulting (E. Gorecka, 1991), constrains the geochemical nature of the source region. The source of the metals is probably a well-mixed, multi-cycle molasse sequence of sedimentary rocks that contains little if any Precambrian metamorphic or granitic clasts (S. E. Church, R. B. Vaughn, 1992). If ore deposition was post Late Jurassic (about 150 m. y.) or later

  5. Determination of isotopic composition of dissolved copper in seawater by multi-collector inductively coupled plasma mass spectrometry after pre-concentration using an ethylenediaminetriacetic acid chelating resin

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Shotaro, E-mail: shotaro@inter3.kuicr.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Tanimizu, Masaharu [Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, 200 Monobe Otsu, Nankoku 783-8502 (Japan); Hirata, Takafumi [Laboratory for Planetary Sciences, Division of Earth and Planetary Sciences, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan); Sohrin, Yoshiki [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2013-06-19

    Graphical abstract: -- Highlights: •A simple analytical method for determining the Cu isotopic composition in seawater using an ethylenediaminetriacetic acid chelating resin was developed. •The accuracy was evaluated via addition of NIST SRM976 or {sup 65}Cu-enriched standard to seawater. •δ{sup 65}Cu of seawater reference materials (i.e., CASS-5 and NASS-6) and seawater samples from the northwestern Pacific Ocean were firstly determined. -- Abstract: Copper is an essential trace metal that shows a vertical recycled-scavenged profile in the ocean. To help elucidate the biogeochemical cycling of Cu in the present and past oceans, it is important to determine the distribution of Cu isotopes in seawater. However, precise isotopic analysis of Cu has been impaired by the low concentrations of Cu as well as co-existing elements that interfere with measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The objective of this study is to develop a simple Cu pre-concentration method using Nobias-chelate PA1 resin (Hitachi High Technologies). This extraction followed by anion exchange, allows precise analysis of the Cu isotopic composition in seawater. Using this method, Cu was quantitatively concentrated from seawater and >99.9999% of the alkali and alkaline earth metals were removed. The technique has a low procedural blank of 0.70 ng for Cu for a 2 L sample and the precision of the Cu isotopic analysis was ±0.07‰ (±2SD, n = 6). We applied this method to seawater reference materials (i.e., CASS-5 and NASS-6) and seawater samples obtained from the northwestern Pacific Ocean. The range of dissolved δ{sup 65}Cu was 0.40–0.68‰.

  6. Failure Analysis on Rupture of a Copper Alloy Water Meter Shell%铜合金自来水表外壳破裂失效分析

    Institute of Scientific and Technical Information of China (English)

    戴维弟

    2011-01-01

    采用宏观检验、断口分析、能谱分析、金相检验以及化学成分分析等方法,对某铜合金自来水表外壳在使用中发生破断开裂、造成泄露的原因进行了分析。结果表明:该铜合金自来水表外壳在使用过程中发生破裂属于应力腐蚀破裂,致使其发生应力腐蚀的原因主要与使用环境中含有硫化物有关。%A copper alloy water meter shell ruptured and resulted in leakage in service, and the rupture reason was analyzed by means of macroscopic examination, fracture analysis, energy spectrum analysis, metallographic examination and chemical compositions analysis. The results show that the rupture of the copper alloy water meter shell in service was stress corrosion cracking which was mainly because there Were sulfides in the service environment.

  7. Electro-deposition metallic tungsten coatings in a Na{sub 2}WO{sub 4}-WO{sub 3} melt on copper based alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.H., E-mail: dreamerhong77@126.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang, Y.C.; Liu, Q.Z.; Li, X.L.; Jiang, F. [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The tungsten coating (>1 mm) was obtained by electro-deposition method in molten salt. Black-Right-Pointing-Pointer Different thickness tungsten coatings were obtained by using different durations. Black-Right-Pointing-Pointer Good performance of coating was obtained when pulse parameters were modulated. - Abstract: The tungsten coating was prepared by electro-deposition technique on copper alloy substrate in a Na{sub 2}WO{sub 4}-WO{sub 3} melt. The coating's surface and cross-section morphologies as well as its impurities were investigated by XPS, SEM and line analysis. Various plating durations were investigated in order to obtain an optimal coating's thickness. The results demonstrated that the electro-deposited coating was compact, voidless, crackless and free from impurities. The tungsten coating's maximum Vickers hardness was measured to be 520 HV. The tungsten coating's minimum oxygen content was determined to be 0.018 wt%. Its maximum thickness was measured to be 1043.67 {mu}m when the duration of electrolysis was set to 100 h. The result of this study has demonstrated the feasibility of having thicker tungsten coatings on copper alloy substrates. These electrodeposited tungsten coatings can be potentially implemented as reliable armour for the medium heat flux plasma facing component (PFC).

  8. Petrography, sulfide mineral chemistry, and sulfur isotope evidence for a hydrothermal imprint on Musina copper deposits, Limpopo Province, South Africa: Evidence for a breccia pipe origin?

    Science.gov (United States)

    Chaumba, Jeff B.; Mundalamo, Humbulani R.; Ogola, Jason S.; Cox, J. A.; Fleisher, C. J.

    2016-08-01

    values of 0.4 and 0.7‰. The same sample also yielded a δ34Sbornite value of 0.4‰. Another Campbell Mine quartz vein sample yielded a chalcopyrite δ34S value of -0.3‰. Sulfur isotope thermometry for one Campbell Mine quartz vein sample with coexisting sulfides yielded a Δ34Schalcopyrite-bornite value of 359 °C that is consistent with the stability of this mineral pair. Thus, δ34S values from Campbell Mine are consistent with an igneous source for the sulfur. Based on a simple two-end member isotope mixing model, contamination of the sulfur by sulfur derived from granitic country rocks likely occurred at Artonvilla Mine. Based on findings from this study and by other previous investigators, it is concluded that features displayed by the Musina copper deposits are consistent with a breccia pipe origin for the Musina copper deposits.

  9. Copper-based alloys, crystallographic and crystallochemical parameters of alloys in binary systems Cu-Me (Me=Co, Rh, Ir, Cu, Ag, Au, Ni, Pd, Pt)

    Energy Technology Data Exchange (ETDEWEB)

    Porobova, Svetlana, E-mail: porobova.sveta@yandex.ru; Loskutov, Oleg, E-mail: lom58@mail.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Markova, Tat’jana, E-mail: patriot-rf@mail.ru [Siberian State Industrial University. 42 Kirov St., Novokuznetsk, 654007 (Russian Federation); Klopotov, Vladimir, E-mail: vdklopotov@mail.ru [Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation); Klopotov, Anatoliy, E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36, Lenin Ave., Tomsk, 634050 (Russian Federation); Vlasov, Viktor, E-mail: vik@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.

  10. The nature of hydrothermal fluids in the Kahang porphyry copper deposit (Northeast of Isfahan based on mineralography, fluid inclusion and stable isotopic data

    Directory of Open Access Journals (Sweden)

    Salimeh Sadat Komeili

    2017-02-01

    event, owing to the pressure reduction in the faulted zones and mineralized hydrothermal breccias and/or increase of hydrostatic pressure compared to the lithostatic pressure. This may be caused by the instability of the copper complex accompanied by precipitation of copper. The decrease of temperature and the diluted mineralized fluids could be the cause of precipitation of copper due to mixing with the meteoric water. Stable isotope study supports the mixing of magmatic and meteoric waters in the peripheral zones of ore deposit (phyllic and propyllitic zones. Acknowledgements This paper has benefited from critical comments by Dr. Shamsi pour and Dr. Mackizadeh who are thanked for their interest. Financial support of the University of Isfahan is acknowledged. References Afshooni, S.Z., Esmaeily, D. and Asadi Haroni, H., 2014. Stable isotopes (S, H, O study In phyllic and potassic- phyllic alteration zones of the Kahang porphyry copper- Molybdenum deposit (Northeast of Isfahan. Journal of Advanced Applied Geology, 1(7: 64-73. (in Persian Asadi, H., 2007. Detailed exploration in Kahang porphyry Cu- Mo index. Dorsa pardazeh company, Isfahan, Report 3, 114 pp. (in Persian Hezarkhani, A., 2006. Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu-Mo deposit, Iran: Evidence from fluid inclusions. Journal of Asian Earth Sciences, 28(4-6: 409-422. Hezarkhani, A., 2009. Hydrothermal fluid geochemistry at the Chah-Firuzeh porphyry copper deposit, Iran: Evidence from fluid inclusions. Journal of Geochemical Exploration, 101(3: 254-264. Morales Ruano, S., Both, R.A. and Golding, S.D., 2002. A fluid inclusion and stable isotope study of the Moonta copper-gold deposits, South Australia: evidence for fluid immiscibility in a magmatic hydrothermal system. Chemical Geology, 192(3-4: 211-226.

  11. Process for electroplating copper and silver on titanium alloy%钛合金镀铜、镀银工艺

    Institute of Scientific and Technical Information of China (English)

    刘玉敏; 李鹏; 李任和

    2015-01-01

    In order to eliminate the poor adhesion of copper and silver coatings prepared from cyanide bath on titanium alloy surface, five process schemes for copper and silver plating were designed through changing pretreatment methods of substrate. The optimal process flow is as follows:wet sand blowing, protection, degreasing by scrubbing with light lime, washing with cold water, acid copper plating or cyanide silver plating, washing with cold water again, and drying with compressed air. The production practice showed that all of the products prepared by the given process have qualified adhesion and their hydrogen contents are under the control level. The method for controlling hydrogen content in titanium alloy and some points for attention were described.%为克服钛合金氰化镀铜、镀银层结合力不良的问题,通过改变基体预处理方式设计了5个镀铜、镀银方案并进行结合力表征,得到钛合金镀铜、镀银的最佳工艺流程为:湿吹砂─保护─轻石灰刷洗除油─冷水洗─酸性镀铜或氰化镀银─冷水洗─压缩空气吹干。生产实践证明采用该工艺电镀所得产品结合力均合格,且含氢量不超标。介绍了电镀过程中控制钛合金含氢量的方法和注意事项。

  12. 40 CFR 468.10 - Applicability; description of the copper forming subcategory.

    Science.gov (United States)

    2010-07-01

    ... treatment works from the forming of copper and copper alloys except beryllium copper alloys. ... copper forming subcategory. 468.10 Section 468.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE CATEGORY Copper...

  13. Copper nanowall array grown on bulk Fe-Co-Ni alloy substrate at room temperature as lithium-ion battery current collector

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yingying, E-mail: yyhu@phy.ccnu.edu.cn; Liu Jinping; Ding Ruimin; Wang Kai; Jiang Jian; Ji Xiaoxu; Li Yuanyuan; Huang Xintang, E-mail: xthuang@phy.ccnu.edu.c

    2010-09-30

    Large-scale copper nanowall array on the bulk Fe-Co-Ni alloy substrate has been prepared in aqueous solution at room temperature via an electroless deposition method. The thickness of the nanowalls is about 15 nm. A possible growth mechanism of the nanowalls was proposed. The effects of reaction temperature, reaction time and the amount of critical agent (Fe{sup 3+}) on the morphology and crystalline phase of the nanowalls were investigated. Furthermore, the electrochemical performance of Sn film supported on the as-prepared copper nanowalls current collector is enhanced in comparison with that on the commercial copper foil when used as anode for Li-ion batteries with the operating voltage window of 0.01-2.0 V (vs. Li). After 20 cycles, the discharge capacity of Sn-Cu nanowalls anode still remained 365.9 mAh g{sup -1}, that is, 40% retention of the reversible capacity, while the initial charge capacity of Sn film cast on commercial Cu foil was 590 mAh g{sup -1}, dropping rapidly to 260 mAh g{sup -1} only after 10 cycles.

  14. Electrochemical behaviors of copper and copper-tin alloy electrodeposition from aqueous pyrophosphate electrolyte%焦磷酸盐溶液体系电沉积铜及铜-锡合金的电化学行为

    Institute of Scientific and Technical Information of China (English)

    黄灵飞; 曾振欧; 冯冰; 谢金平; 李树泉

    2014-01-01

    The electrochemical behaviors of Cu and low-Sn Cu-Sn alloy electrodeposition on copper electrode from aqueous pyrophosphate bath were studied by electrochemical test methods. The effect of additive JZ-1 on Cu and Cu-Sn alloy electrodeposition was discussed and the surface morphologies and crystal structures of electrodeposited coatings were analyzed. The results showed that both Cu and Cu-Sn alloy electrodeposition from aqueous pyrophosphate bath are irreversible electrode process, during which electrochemical polarization happens. It was considered that the reaction mechanism of the cathodic process of Cu electrodeposition consists of fast preceding chemical transformation step and direct reduction of 22 7CuP O -. There is interaction between Cu and Sn during Cu-Sn alloy electrodeposition process, as well as mutual promotion between Cu2+ and Sn2+in electrodeposition. The crystal structure of Cu-Sn alloy is Cu13.7Sn. The additive JZ-1 has a dual role of promoting Cu electrodeposition and inhibiting Sn electrodeposition, which is benefit for the reduction of Sn content in Cu-Sn alloy and grain refinement.%采用电化学测试方法研究了焦磷酸盐溶液体系在铜电极表面电沉积Cu及Cu-Sn合金(低Sn)的电化学行为。探讨了添加剂JZ-1对电沉积Cu和Cu-Sn合金的影响,并对电沉积层的表面形貌和晶相结构进行分析。结果表明,焦磷酸盐溶液体系电沉积Cu及Cu-Sn合金均为不可逆电极过程,发生电化学极化。电沉积 Cu 的阴极过程表现为前置转化反应很快和以227CuP O -直接还原的反应机理形式。电沉积Cu-Sn合金过程中Cu与Sn之间存在相互作用,溶液中的Cu2+与Sn2+也存在相互促进电沉积的作用,Cu-Sn合金的晶相结构为Cu13.7Sn。添加剂JZ-1具有促进Cu电沉积和抑制Sn电沉积的双重作用,有利于降低Cu-Sn合金中的Sn含量并细化晶粒。

  15. Osmium isotope compositions of detrital Os-rich alloys from the Rhine River provide evidence for a global late Mesoproterozoic mantle depletion event

    Science.gov (United States)

    Dijkstra, Arjan H.; Dale, Christopher W.; Oberthür, Thomas; Nowell, Geoffrey M.; Graham Pearson, D.

    2016-10-01

    We report osmium isotopic compositions for 297 mantle-derived detrital Ru-Os-Ir alloy grains found in gold and platinum-group mineral bearing placers of the Rhine River. These alloys were likely formed as a result of high degree melting in the convective mantle and derived from residual Paleozoic mantle peridotites in the Alps of Central Europe that were accreted as part of a collage of Gondwana-derived 'Armorican' terranes before the Variscan Orogeny. The 187Os/188Os isotope ratios of the Os-rich alloys show a wide distribution, with two modes at 0.1244 and 0.1205. These two modes correspond to rhenium depletion ages, interpreted to correspond with episodes of high-degree mantle melting, at ∼0.5 and ∼1.1 Ga. The data confirm the ability of the oceanic mantle to preserve evidence of ancient melting events. Our new data, in combination with published data on Os-rich alloys from the Urals and Tasmania and with data for abyssal peridotites, indicate a geographically widespread record of a major global Late Mesoproterozoic (1.0-1.2 Ga) high-degree melting event in Paleozoic oceanic mantle rocks. This model age peak is essentially absent from the crustal record of Central-Western Europe, but does coincide with the apparent peak in global continental crust zircon ages at this time. Thus, high-degree mantle melting peaking in the 1.0-1.2 Ga interval may have affected a large part of Earth's mantle. This interval occurred during a period of relative super-continental stability, which may have been accompanied in the oceanic realm by rapid seafloor spreading and extensive subduction, and by unusually high activity of mantle plumes forming two active mantle superswells.

  16. Fs–ns double-pulse Laser Induced Breakdown Spectroscopy of copper-based-alloys: Generation and elemental analysis of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Guarnaccio, A.; Parisi, G.P.; Mollica, D. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito Scalo, PZ (Italy); De Bonis, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito Scalo, PZ (Italy); Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell' Ateneo Lucano 10, 85100 Potenza (Italy); Teghil, R. [Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell' Ateneo Lucano 10, 85100 Potenza (Italy); Santagata, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito Scalo, PZ (Italy)

    2014-11-01

    Evolution of nanoparticles ejected during ultra-short (250 fs) laser ablation of certified copper alloys and relative calibration plots of a fs–ns double-pulse Laser Induced Breakdown Spectroscopy orthogonal configuration is presented. All work was performed in air at atmospheric pressure using certified copper-based-alloy samples irradiated by a fs laser beam and followed by a delayed perpendicular ns laser pulse. In order to evaluate possible compositional changes of the fs induced nanoparticles, it was necessary to consider, for all samples used, comparable features of the detected species. With this purpose the induced nanoparticles black-body-like emission evolution and their relative temperature decay have been studied. These data were exploited for defining the distance between the target surface and the successive ns laser beam to be used. The consequent calibration plots of minor constituents (i.e. Sn, Pb and Zn) of the certified copper-based-alloy samples have been reported by taking into account self-absorption effects. The resulting linear regression coefficients suggest that the method used, for monitoring and ruling the fs laser induced nanoparticles, could provide a valuable approach for establishing the occurrence of potential compositional changes of the detected species. All experimental data reveal that the fs laser induced nanoparticles can be used for providing a coherent composition of the starting target. In the meantime, the fs–ns double-pulse Laser Induced Breakdown Spectroscopy orthogonal configuration here used can be considered as an efficient technique for compositional determination of the nanoparticles ejected during ultra-short laser ablation processes. - Highlights: • Laser induced NP continuum black-body-like emission was used for T determination. • Invariable composition of generated NPs was assumed in the range of 20 μs. • Fs-ns DP-LIBS was employed for the compositional characterization of NPs. • NPs obtained by fs

  17. Two series of copper-gold deposits in the middle and lower reaches of the Yangtze River area (MLYRA) and the hydrogen, oxygen, sulfur and lead isotopes of their ore-forming hydrothermal systems

    Institute of Scientific and Technical Information of China (English)

    周涛发; 袁峰; 岳书仓; 赵勇

    2000-01-01

    Based on studies on the geological characteristics of the copper-gold deposits in the middle and lower reaches of the Yangtze River area (MLYRA) and their hydrogen, oxygen, sulfur and lead isotope compositions, it is concluded that there existed two series of copper-gold deposits. They are evolutional products of two ore-forming hydrothermal systems in different geodynamic settings and geological era. Series I is stratiform or stratabound copper-gold deposits. These deposits were formed by submarine exhalation and sedimentation of hydrothermal solutions in Her-cynian tensional tectonic environment after bot brine ascending along contemporaneous faults and exhaled into the sea-floor. Series II consists of copper-gold deposits related to medium and acidic magmatic intrusions. Their mineralizations took place in Yanshanian in a tensional or a transitional period to the tensional tectonic environment from the composite of the tethys tectonic regime and the Paleo-Pacific ocean tectonic regime, as well as in

  18. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis

    Science.gov (United States)

    Liu, Rui; Memarzadeh, Kaveh; Chang, Bei; Zhang, Yumei; Ma, Zheng; Allaker, Robert P.; Ren, Ling; Yang, Ke

    2016-07-01

    Formation of bacterial biofilms on dental implant material surfaces (titanium) may lead to the development of peri-implant diseases influencing the long term success of dental implants. In this study, a novel Cu-bearing titanium alloy (Ti-Cu) was designed and fabricated in order to efficiently kill bacteria and discourage formation of biofilms, and then inhibit bacterial infection and prevent implant failure, in comparison with pure Ti. Results from biofilm based gene expression studies, biofilm growth observation, bacterial viability measurements and morphological examination of bacteria, revealed antimicrobial/antibiofilm activities of Ti-Cu alloy against the oral specific bacterial species, Streptococcus mutans and Porphyromonas gingivalis. Proliferation and adhesion assays with mesenchymal stem cells, and measurement of the mean daily amount of Cu ion release demonstrated Ti-Cu alloy to be biocompatible. In conclusion, Ti-Cu alloy is a promising dental implant material with antimicrobial/antibiofilm activities and acceptable biocompatibility.

  19. Comparison of Super-Hydrophobicity and Corrosion Resistance of Micro-Nano Structured Nickel and Nickel- Cobalt Alloy Coatings on Copper Substrate

    Directory of Open Access Journals (Sweden)

    S. Khorsand

    2016-03-01

    Full Text Available Super-hydrophobic nickel and nickel-cobalt alloy coatings with micro-nano structure were successfully electrodeposited on copper substrates with one and two steps electrodeposition. Surface morphology, wettability and corrosion  resistance were characterized by scanning electron microscopy, water contact angle measurements, electrochemical impedanc spectroscopy (EIS and potentiodynamic polarization curves. The results showed that the wettability of the micro-nano Ni and Ni-Co films varied from super-hydrophilicity to super-hydrophobicity by exposure of the surface to air at room temperature. The corrosion results revealed the positive effect of hydrophobicity on corrosion resistance of Ni coating (~10 times and Ni-Co coating (~100 times in comparison with their fresh coatings. The results showed that super-hydrophobic nickel coating had higher corrosion resistance than super-hydrophobic nickel-cobalt coating.

  20. Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China

    Science.gov (United States)

    Zhao, Yun; Xue, Chunji; Liu, Sheng-Ao; Symons, David T. A.; Zhao, Xiaobo; Yang, Yongqiang; Ke, Junjun

    2017-08-01

    Although it has been recently demonstrated that Cu isotope fractionation during mantle melting and basaltic magma differentiation is limited, the behavior of Cu isotopes during magmatic differentiation involving significant sulfide segregation remains unclear. Magmatic Ni-Cu deposits, which formed via sulfide segregation from basaltic or picritic magmas, are appropriate targets to address this issue. Here we report Cu isotope data for sulfides (chalcopyrite) from the Tulaergen Ni-Cu sulfide deposit in Xinjiang, NW China. Sulfides, including sparsely disseminated (hosted by hornblende gabbro), moderately disseminated (hosted by hornblende olivine websterite), densely disseminated (hosted by hornblende lherzolite) and massive sulfides (sandwiched between country rocks and mafic-ultramafic rocks), were collected from adits at 1050 m, 1100 m and 1150 m levels. The sparsely and moderately disseminated sulfides on 1150 m and 1050 m levels have a restricted range of δ65Cu values from - 0.38‰ to 0.15‰, whereas disseminated and massive sulfides on 1100 m level have δ65Cu values ranging widely from - 1.98‰ to - 0.04‰ and from - 1.08‰ to - 0.52‰, respectively. The δ65Cu values of disseminated sulfides are negatively correlated with whole-rock S and Cu concentrations, and sulfides formed at later stages have heavier δ65Cu values. These observations suggest significant Cu isotope fractionation during sulfide-magma differentiation above 600 °C. During the formation of the Tulaergen magmatic Ni-Cu deposit, sulfide segregation and crystallization of olivine and pyroxene caused the increase of Fe3 + contents in the residual magmas, which would move the redox reaction Cu+ + Fe3 + = Fe2 + + Cu2 + toward larger amounts of Cu2 + in the melt. The presence of Cu2 + in melt allowed redox transformation to happen during sulfide segregation. The residual magmas are enriched in heavy Cu isotopes due to the removal of 65Cu-depleted sulfides, and sulfides formed at later

  1. 采用非洲某铜钴矿生产铜钴合金的工艺研究%Study on the Copper-Cobalt Alloy Production Technology for an Africa Copper-Cobalt Mine

    Institute of Scientific and Technical Information of China (English)

    胡宇杰

    2012-01-01

    Aiming at the copper and cobalt oxide ores with high SiO2 and low CaO in an Africa mine,explored the feasibility to produce copper-cobalt alloy through EF reduction smelting.The result shows that it is reasonable to produce copper-cobalt alloy by EF reduction smelting with coke powders as reducing agent and CaO as refractory agent.The most suitable conditions are that the addition of CaO is about 40% of the raw ores and the coke is about 6%~10%,the smelting temperature is 1 500~1 600 ℃ and the smelting period is about one hour.The valuable metal recovery is: Co 90%,Cu 86% and Ni 90%.Meanwhile the erosion conditions for different refractories were investigated,providing a reference basis for the design of the industrial furnace and the selection of refractory materials.%针对非洲某高SiO2低CaO铜钴氧化矿,探讨了采用电炉还原熔炼生产铜钴合金的可行性。试验结果表明:采用焦粉做还原剂、CaO做造渣剂进行电炉还原熔炼是合理的;最佳工艺条件为:CaO加入的质量占原矿的40%,还原剂焦粉加入的质量占原矿的6%~10%,还原熔炼温度为1 500~1 600℃,还原熔炼时间为1 h;有价金属回收率Co为90%,Cu为86%,Ni为90%。同时还试验考察了不同耐火材料的侵蚀情况,为工业炉的设计及耐火材料的选用提供参考依据。

  2. Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele’s hairs, and a terrestrial basalt

    Science.gov (United States)

    Herzog, G. F.; Moynier, F.; Albarède, F.; Berezhnoy, A. A.

    2009-10-01

    We used ICP-MS to measure the elemental concentrations and isotopic abundances of Cu and Zn in: nine Ti-rich lunar basalts (10017, 10022, 10024, 10057, 70215, 71055, 74255, 75055, and 75075); size-separated samples prepared by sieving of pyroclastic black glass 74001, orange glass 74022, and the lunar soils 15021, 15231, 70181, and 79221; a basalt from the Piton des Neiges volcano, Reunion Island; two samples of Pele's hairs from the Nyiragongo volcano, Democratic Republic of Congo, and the martian meteorite Zagami. The isotopic fractionation of zinc in lunar basalts and Zagami is mass dependent relative to a terrestrial standard (JMC 400882B). These and published results imply that lunar, terrestrial, meteoritic, and perhaps martian zinc all come from one or more reservoirs linked by mass-dependent fractionation processes. Relative to terrestrial basalts, Ti-rich lunar basalts are enriched in the heavier isotopes of Cu and Zn: we find for Ti-rich lunar basalts the following ranges and averages ±1 - σ (‰): δ 65Cu/ 63Cu ≡ δ 65Cu, 0.1-1.4, 0.5 ± 0.1‰ ( N = 7); δ 66Zn/ 64Zn ≡ δ 66Zn = 0.2-1.9, 1.2 ± 0.2‰ ( N = 8; 10017 excluded). For two terrestrial samples, we find δ 66Zn ˜ +0.3‰ and δ 65Cu ˜ 0‰, which are consistent with published values. The differences between the lunar basalts and terrestrial basalts could reflect minor, planetary-scale vaporization or igneous processes on the Moon. Data for size separates of the pyroclastic glasses 74001 and 74220 confirm the well-known surface correlation of Cu and Zn, but modeling calculations reveal no sharp differences between either the elemental ratios or the isotopic composition of grain interiors and exteriors. The absence of such differences indicates that the isotopic compositions for bulk samples are dominated by a light-isotope-rich surface component. Data for size separates of lunar soils also confirm the surface correlation of Cu and Zn, but an enrichment of heavy rather than light

  3. Aluminum alloy

    Science.gov (United States)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  4. Effect of equal-channel angular pressing on pitting corrosion resistance of anodized aluminum-copper alloy

    Institute of Scientific and Technical Information of China (English)

    In-Joon SON; Hiroaki NAKANO; Satoshi OUE; Shigeo KOBAYASHI; Hisaaki FUKUSHIMA; Zenji HORITA

    2009-01-01

    The effect of equal-channel angular pressing(ECAP) on the pitting corrosion resistance of anodized Al-Cu alloy was investigated by electrochemical techniques in a solution containing 0.2 mol/L AlCl3 and also by surface analysis. Anodizing was conducted for 20 min at 200 and 400 A/m2 in a solution containing 1.53 mol/L H2SO4 and 0.018 5 mol/L Al2(SO4)3-16H2O at 20 ℃. Anodized Al-Cu alloy was immediately dipped in boiling water for 20 min to seal the micro pores present in anodic oxide films. The time required before initiating pitting corrosion of anodized Al-Cu alloy is longer with ECAP than without, indicating that ECAP process improves the pitting corrosion resistance of anodized Al-Cu alloy. Second phase precipitates such as Si, Al-Cu-Mg and Al-Cu-Si-Fe-Mn intermetallic compounds are present in Al-Cu alloy and the size of these precipitates is greatly decreased by application of ECAP. Al-Cu-Mg intermetallic compounds are dissolved during anodization, whereas the precipitates composed of Si and Al-Cu-Si-Fe-Mn remain in anodic oxide films due to their more noble corrosion potential than Al. FE-SEM and EPMA observation reveal that the pitting corrosion of anodized Al-Cu alloy occurs preferentially around Al-Cu-Si-Fe-Mn intermetallic compounds, since the anodic oxide films are absent at the boundary between the normal oxide films and these impurity precipitates. The improvement of pitting corrosion resistance of anodized Al-Cu alloy processed by ECAP appears to be attributed to a decrease in the size of precipitates, which act as origins of pitting corrosion.

  5. Conducting water chemistry of the secondary coolant circuit of VVER-based nuclear power plant units constructed without using copper containing alloys

    Science.gov (United States)

    Tyapkov, V. F.

    2014-07-01

    The secondary coolant circuit water chemistry with metering amines began to be put in use in Russia in 2005, and all nuclear power plant units equipped with VVER-1000 reactors have been shifted to operate with this water chemistry for the past seven years. Owing to the use of water chemistry with metering amines, the amount of products from corrosion of structural materials entering into the volume of steam generators has been reduced, and the flow-accelerated corrosion rate of pipelines and equipment has been slowed down. The article presents data on conducting water chemistry in nuclear power plant units with VVER-1000 reactors for the secondary coolant system equipment made without using copper-containing alloys. Statistical data are presented on conducting ammonia-morpholine and ammonia-ethanolamine water chemistries in new-generation operating power units with VVER-1000 reactors with an increased level of pH. The values of cooling water leaks in turbine condensers the tube system of which is made of stainless steel or titanium alloy are given.

  6. Shear punch testing of {sup 59}Ni isotopically-doped model austenitic alloys after irradiation in FFTF at different He/dpa ratios

    Energy Technology Data Exchange (ETDEWEB)

    Hankin, G.L.; Faulkner, R.G. [Loughborough Univ., Leicestershire (United Kingdom). I.P.T.M.E.; Hamilton, M.L.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    A series of three model alloys, Fe-15Cr-25Ni, Fe-15Cr-25Ni-0.04P and Fe-15Cr45Ni were irradiated side-by-side in FFTF-MOTA in both the annealed and the cold worked condition in each of two variants, one using naturally occurring isotopic mixtures, and another doped with {sup 59}Ni to generate relatively high helium-to-dpa ratios. Previous papers in this series have addressed the influence of helium on radiation-induced evolution of microstructure, dimensional stability and mechanical properties, the latter using miniature-tensile specimens. In the final paper of this experimental series, three sets of irradiations conducted at different temperatures and displacement rates were examined by shear punch testing of standard microscopy disks. The results were used to determine the influence of helium generation rate, alloy starting condition, irradiation temperature and total neutron exposure. The results were also compared with the miniature tensile data obtained earlier. In general, all alloys approached saturation levels of strength and ductility that were relatively independent of He/dpa ratio and starting condition, but were sensitive to the irradiation temperature and total exposure. Some small influence of helium/dpa ratio on the shear strength is visible in the two series that ran at {approximately}490 C, but is not evident at 365 C.

  7. Modulating fcc and hcp Ruthenium on the Surface of Palladium-Copper Alloy through Tunable Lattice Mismatch.

    Science.gov (United States)

    Yao, Yancai; He, Dong Sheng; Lin, Yue; Feng, Xiaoqian; Wang, Xin; Yin, Peiqun; Hong, Xun; Zhou, Gang; Wu, Yuen; Li, Yadong

    2016-04-25

    Herein, we report an epitaxial-growth-mediated method to grow face-centered cubic (fcc) Ru, which is thermodynamically unfavorable in the bulk form, on the surface of Pd-Cu alloy. Induced by the galvanic replacement between Ru and Pd-Cu alloy, a shape transformation from a Pd-Cu@Ru core-shell to a yolk-shell structure was observed during the epitaxial growth. The successful coating of the unconventional crystallographic structure is critically dependent on the moderate lattice mismatch between the fcc Ru overlayer and PdCu3 alloy substrate. Further, both fcc and hexagonal close packed (hcp) Ru can be selectively grown through varying the lattice spacing of the Pd-Cu substrate. The presented findings provide a new synthetic pathway to control the crystallographic structure of metal nanomaterials.

  8. Corrosion Behaviours of Copper Alloy in Solutions Containing Na2SO4 and NaCl with Different Concentrations

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Potentiodynamic polarisation, potential-time measurements, X-ray diffraction (XRD) and infrared spectroscopy (IR)have been used to investigate the effect of different concentrations of Na2SO4 in the absence and presence of NaCl,on the corrosion of Cu-alloy. The electrochemical measurements showed that the increase of Na2SO4 concentration led to increase the corrosion current density of Cu alloy and vice versa. The presence of NaCl shifted the potential to more cathodic potential, which had a great influence on the protectiveness of the Cu oxide layer formed on the surface in presence of Na2SO4. The spectrometric measurements indicated the constituents of the film formed on the alloy surface were mainly Cu2O, in addition to the oxides, NiO and Fe2O3, which were traced by XRD analysis.

  9. Zinc and copper behaviour at the soil-river interface: New insights by Zn and Cu isotopes in the organic-rich Rio Negro basin

    Science.gov (United States)

    Guinoiseau, Damien; Gélabert, Alexandre; Allard, Thierry; Louvat, Pascale; Moreira-Turcq, Patricia; Benedetti, Marc F.

    2017-09-01

    The complex behaviour of Zn and Cu at the soil-river interface was investigated in soil and riverine water samples from the Rio Negro basin, a secondary tributary of the Rio Amazonas, using their stable isotope compositions. This acidic and organic river drains two types of intensely weathered terrains: podzols in its upstream part, and lateritic soils downstream. Bulk soil particles, suspended particulate matter (SPM) as well as colloidal fractions were sampled across the whole basin during low and high water stages. In the basin, Zn and Cu are mostly exported from lateritic soils and transported by organic colloids where significant losses are observed in the downstream part of the river. The use of δ66Zn and δ65Cu measurements reveals distinct stories for these two metals in suspended sediments and colloids. In the colloids, the constant δ66Zncoll across the basin is induced by the same weak association mode between Zn and organic ligands, regardless of the origin of the water. By contrast, in SPM, the speciation of Zn and thus δ66ZnSPM differ according to the type of drained soils. Zn is associated with organic complexes in particles exported with water draining podzol whereas Zn2+ is incorporated in the structure of the remaining kaolinite clays in lateritic output. The stronger reactivity of Cu than Zn with organic ligands induces its complete complexation. Copper is controlled by refractory particulate organic matter (POM) and by reactive colloidal organic matter; the latter being enriched in 65Cu due to stronger binding interactions than in POM. While the Cu content remains constant in the upstream part of the Rio Negro, downstream, the decrease of SPM and colloidal Cu fluxes is associated with a constant δ65CuSPM and with an increase of δ65Cucoll at the Rio Negro outlet. Geochemical mass balance modelling, based on SPM, Cu and Zn fluxes in SPM and their associated isotopic signatures, confirms distinct host phases for Zn and Cu, and identifies the

  10. Microstructural characterization of copper based alloys produced by reactive milling; caracterizacion microestructural de aleaciones base cobre obtenidas mediante molienda reactiva

    Energy Technology Data Exchange (ETDEWEB)

    Palma, R.; Sepulveda, A.; Zuniga, A.; Donoso, E.; Dianez, M. J.; Criado, J. M.

    2010-07-01

    The micro and nano structure of Cu-Al, Cu-V and Cu-Ti alloys produced by reactive milling were analyzed using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Samples with different milling times (t= 0, 10, 20 and 30 h) were considered. The grain size, dislocation density and residual micro strain were evaluated form the XRD data using the Williamson-Hall and Klug-Alexander methods. The evolution of texture as a function of milling time was also studied using XRD. It was found, using TEM, that the grain size and dispersoid size were nano metric in all three alloys considered. (Author) 12 refs.

  11. Copper-Zinc Alloy Nanopowder : A Robust Precious-Metal-Free Catalyst for the Conversion of 5-Hydroxymethylfurfural

    NARCIS (Netherlands)

    Bottari, Giovanni; Kumalaputri, Angela J; Krawczyk, Krzysztof K; Feringa, Ben L; Heeres, Hero J; Barta, Katalin

    2015-01-01

    Noble-metal-free copper-zinc nanoalloy (<150 nm) is found to be uniquely suited for the highly selective catalytic conversion of 5-hydroxymethylfurfural (HMF) to potential biofuels or chemical building blocks. Clean mixtures of 2,5-dimethylfuran (DMF) and 2,5-dimethyltetrahydrofuran (DMTHF) with com

  12. Mechanical characterization based in the impact test of the cadmium-zinc and cadmium-zinc-copper alloys; Caracterizacion mecanica basada en la prueba de impacto de las aleaciones cadmio-zinc y cadmio-zinc-cobre

    Energy Technology Data Exchange (ETDEWEB)

    Casolco, S.R.; Torres V, G. [Instituto de Investigacion en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, 04510 Mexico D.F. (Mexico)

    1999-11-01

    The present work is a study carried out in the Institute for Materials Research of the UNAM, of the alloys cadmium-zinc and cadmium-zinc-copper with the fundamental objective of knowing their behavior to the impact that which will allow to establish structural applications of these alloys. This work consists mainly on impact tests of the type Charpy at different temperatures in a range of - 150 Centigrade to 250 Centigrade and to study their fracture morphologies with the help of a scanning electron microscope to recognize the tendency of the material toward the fracture of the fragile type and to determine the ductile-fragile transition. (Author)

  13. Improvement in the Mechanical Properties of High Temperature Shape Memory Alloy (Ti50Ni25Pd25) by Copper Addition

    National Research Council Canada - National Science Library

    Rehman, Saif ur; Khan, Mushtaq; Khan, A. Nusair; Jaffery, Syed Husain Imran; Ali, Liaqat; Mubashar, Aamir

    2015-01-01

      High temperature shape memory alloys Ti50Ni25Pd25 and Ti50Ni20Pd25Cu5 were developed, characterized, and tensile tested in both martensite ( [subscript]Mf[/subscript] - 50°C) and austenite ( [subscript]Af[/subscript] + 50°C) phases...

  14. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination of high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.

  15. Recent Development in Strengthening Techniques of High Strength and High Conductive Copper Alloys%高强高导铜合金强化技术研究进展

    Institute of Scientific and Technical Information of China (English)

    张蓓; 张治国; 李卫

    2012-01-01

    Copper and its alloys are extensively applied in various industries. However, with the development of modern industry, the copper alloys with high-strength and high-conductivity prepared by traditional strengthening technologies have lost the ability to fulfill the combination property requirement. The recent progress on enhancing techniques of high-strength and high-conductive copper alloys is reviewed, with the emphasis on the substrate strengthening and surface strengthening technologies. A various technologies, such as spray deposition, pulsed elec-trodeposition of new copper alloy forming technology and the laser cladding, surface spaying, ion implantation and pack cementation of surface modification technology, are introduced, and the trends of surface modification technologies is commented.%铜及铜合金在众多领域得到了广泛应用,然而随着现代工业技术的发展,传统强化方法得到的高强高导铜合金已不能完全满足对其综合性能的需求.从基体强化和表面改性两个方面综述了国内外高强高导铜合金强化技术的最新研究进展.主要介绍了喷射成型法、脉冲电沉积法等新型铜合金成型工艺技术和激光束表面熔覆、喷涂涂覆、离子注入技术及粉末包埋渗等表面改性技术,并展望了铜合金表面改性技术的发展趋势.

  16. A Comparison of Corrosion Behavior of Copper and Its Alloy in Pongamia pinnata Oil at Different Conditions

    Directory of Open Access Journals (Sweden)

    Meenakshi H. N. Parameswaran

    2013-01-01

    Full Text Available Vegetable oils are promising substitutes for petrodiesel as they can be produced from numerous oil seed crops that can be cultivated anywhere and have high energy contents, exhibiting clean combustion behavior with zero CO2 emission and negligible SO2 generation. The impact of biofuel on the corrosion of various industrial metals is a challenge for using biofuel as automotive fuel. Fuel comes in contact with a wide variety of metallic materials under different temperatures, velocities, and loads thereby causing corrosion during storage and flow of fuel. Hence, the present investigation compares the corrosion rates of copper and brass in Pongamia pinnata oil (O100, 3% NaCl, and oil blend with NaCl (O99 obtained by static immersion test and using rotating cage. The corrosivity and conductivity of the test media are positively correlated. This study suggested that the corrosivity of copper is higher than brass in Pongamia pinnata oil (PO.

  17. Adhesive performance of silver-palladium-copper-gold alloy and component metals bonded with organic sulfur-based priming agents and a tri-n-butylborane initiated luting material.

    Science.gov (United States)

    Yamashita, Miyuki; Koizumi, Hiroyasu; Ishii, Takaya; Nakayama, Daisuke; Oba, Yusuke; Matsumura, Hideo

    2013-01-01

    The purpose of the current study was to evaluate the effect of thione-based metal priming agents on the adhesive behavior of a Ag-Pd-Cu-Au alloy and component metals bonded with an acrylic resin. Disk specimens (10 mm in diameter by 3 mm thick) were prepared from a silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy (Castwell M.C.12), high-purity silver, palladium, copper and gold. Four single-liquid priming agents containing organic sulfur compound (Alloy Primer, Metaltite, M.L. Primer and V-Primer) and three acidic priming agents (All Bond II Primer B, Estenia Opaque Primer and Super-Bond Liquid) were assessed. The metal specimens were flat-ground with abrasive papers, primed with one of the agents and bonded with a tri-n-butylborane initiated resin. The shear bond strengths were determined both before and after repeated thermocycling (5°C and 55°C, 1 min each, 20,000 cycles). The results were statistically analyzed with a non-parametric procedure (p = 0.05 level). The post-thermocycling bond strengths in MPa (median; n = 11) associated with the Alloy Primer, Metaltite, M.L. Primer and V-Primer materials were, respectively, 20.8, 22.8, 17.8 and 18.4 for the Ag-Pd-Cu-Au alloy; 19.6, 21.9, 14.4 and 20.1 for silver; 5.4, 4.5, 12.8 and 5.3 for palladium; 17.1, 19.2, 0.7 and 6.6 for copper; and 18.5, 17.7, 22.8 and 15.4 for gold. It can be concluded that the use of the four priming agents, which are based on organic sulfur compounds, effectively enhanced bonding to the Ag-Pd-Cu-Au alloy and the component metals, although the bonding performance varied among the priming agents and metal elements. The priming agents appeared to have more of an effect on the alloy, silver and gold than on the palladium and copper.

  18. ANALYSIS AND DEVELOPMENT OF COPPER RECYCLING OF DEAD COPPER-CONTAINING CATALYSTS

    OpenAIRE

    O. S. Komarov; I. V. Provorova; V. I. Volosatikov; D. O. Komarov; N. I. Urbanovich

    2009-01-01

    The technology of processing of copper-bearing dead catalysts, which includes leaching and deposition of copper by means of electrolysis and also their application in composition of the mixture for alloy doping is offered.

  19. ANALYSIS AND DEVELOPMENT OF COPPER RECYCLING OF DEAD COPPER-CONTAINING CATALYSTS

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2009-01-01

    Full Text Available The technology of processing of copper-bearing dead catalysts, which includes leaching and deposition of copper by means of electrolysis and also their application in composition of the mixture for alloy doping is offered.

  20. Study on electrodeposition of copper-chromium alloy%铜-铬合金电沉积的研究

    Institute of Scientific and Technical Information of China (English)

    滕莹雪; 郭菁

    2013-01-01

    Cu-Cr alloy was prepared by electrodeposition respectively from 4 kinds of electrolytes containing different complexing agents i.e. glycine, ascorbic acid, thiourea, and trisodium citrate. The electrochemical behaviors of different electrolytes were studied by cyclic voltammetry and linear scanning voltammetry. The electrolyte with glycine as complexing agent is most suitable for electrodeposition of Cu-Cr alloy. The Cu-Cr alloy coating obtained therefrom at 10 A/dm2 for 10 min features Cr content up to 18.63%, thickness 25μm, smooth and bright golden yellow surface, strong adhesion, and relative conductivity 68.2%. The conductivity of the Cu-Cr alloy coating basically meets the demand of contact materials.%采用氨基乙酸、抗坏血酸、硫脲和柠檬酸三钠4种配位体系镀液电沉积制备Cu-Cr合金。通过测定循环伏安曲线和线性扫描伏安曲线,研究了不同镀液的电化学行为。氨基乙酸体系镀液最适用于制备Cu-Cr合金,采用该配方制得的Cu-Cr合金中Cr含量高达18.63%,10 A/dm2下电镀10 min所得镀层厚度为25μm,表面平整,呈光亮的金黄色,结合力好,相对导电率达68.2%,导电性基本满足触头材料要求。

  1. Micromechanical Modeling of Grain Boundaries Damage in a Copper Alloy Under Creep; Mikromechanische Modellierung der Korngrenzenschaedigung in einer Kupferlegierung unter Kriechbeanspruchung

    Energy Technology Data Exchange (ETDEWEB)

    Voese, Markus

    2015-07-01

    In order to include the processes on the scale of the grain structure into the description of the creep behaviour of polycrystalline materials, the damage development of a single grain boundary has been initially investigated in the present work. For this purpose, a special simulationmethod has been used, whose resolution procedure based on holomorphic functions. The mechanisms taken into account for the simulations include nucleation, growth by grain boundary diffusion, coalescence and shrinkage until complete sintering of grain boundary cavities. These studies have then been used to develop a simplified cavitation model, which describes the grain boundary damage by two state variables and the time-dependent development by a mechanism-oriented rate formulation. To include the influence of grain boundaries within continuum mechanical considerations of polycrystals, an interface model has been developed, that incorporates both damage according to the simplified cavitation model and grain boundary sliding in dependence of a phenomenological grain boundary viscosity. Furthermore a micromechanical model of a polycrystal has been developed that allows to include a material's grain structure into the simulation of the creep behaviour by means of finite element simulations. Thereby, the deformations of individual grains are expressed by a viscoplastic single crystal model and the grain boundaries are described by the proposed interface model. The grain structure is represented by a finite element model, in which the grain boundaries are modelled by cohesive elements. From the evaluation of experimental creep data, the micromechanical model of a polycrystal has been calibrated for a copper-antimony alloy at a temperature of 823 K. Thereby, the adjustment of the single crystal model has been carried out on the basis of creep rates of pure copper single crystal specimens. The experimental determination of grain boundary sliding and grain boundary porosity for coarse

  2. 海水中泥沙对铜及铜合金腐蚀的影响%Effect of Sea Water Silt on Erosion of Copper and Its Alloy

    Institute of Scientific and Technical Information of China (English)

    金威贤; 谢荫寒; 靳裕康; 朱洪兴

    2001-01-01

    采用室内模拟加速试验装置,对紫铜、青铜、黄铜和白铜等几类铜及铜合金,在不同泥沙含量的海水中的冲蚀情况及腐蚀速率进行了研究。用实体显微镜观察检测表面的腐蚀形貌发现,泥沙的存在明显加速了铜及铜合金在流动海水中的冲刷腐蚀,表面形成点蚀、局部腐蚀和蚀坑,且对不同铜合金的腐蚀影响和规律不一致。%Cailiao Baohu 2001, 34(1), 22~23 (Ch). The erosion rate and morphology of nine kinds copper and copper alloy, including brass and bronze, were investigated in sea water with different silt content through indoor simulated testa The results showed that the existence of silt in flowing sea water could accelerate erosion of copper and copper al- loys, and pitting corrosion was also found on the tested samples The erosion effects was different with the alloys

  3. Systematic sulfur stable isotope and fluid inclusion studies on veinlet groups in the Sarcheshmeh porphyry copper deposit: based on new data

    Directory of Open Access Journals (Sweden)

    Mohammad Maanijou

    2012-10-01

    Full Text Available Mineralization occurred by intrusion of granodioritic stock of middle Miocene in volcano–sedimenrary rocks in Sarcheshmeh of early Tertiary age. This research is based on samples of new drilled boreholes and benches of 2500m elevation. Based on mineralogy and crosscutting relationships, at least four groups of veinlets pertaining to four stages of mineralization were recognized. Sulfur isotope studies in the Sarcheshmeh porphyry copper deposit were conducted on pyrite, chalcopyrite, molybdenite and anhydrites of four groups of veinlets. The δ34S values in the sulfides and sulfates range from -2.2 to 1.27‰ and from 10.2 to 14.5 ‰, respectively. The average δ34S value in the sulfides is 1‰ and that for the sulfates is about 13‰. Considering these results, it can be concluded that the sulfides made up of a fluid that its sulfur has a magmatic origin. Also, fluid inclusions of different veinlet groups were studied, showing high temperature, high salinity and the occurrence of boiling in the mineralizing fluids. Moreover, these studies indicate presence of three types of fluids including magmatic, meteoritic and mixture of these two fluids in alteration and mineralizion processes.

  4. Toward a Molecular Understanding of the Antibacterial Mechanism of Copper-Bearing Titanium Alloys against Staphylococcus aureus.

    Science.gov (United States)

    Li, Mei; Ma, Zheng; Zhu, Ye; Xia, Hong; Yao, Mengyu; Chu, Xiao; Wang, Xiaolan; Yang, Ke; Yang, Mingying; Zhang, Yu; Mao, Chuanbin

    2016-03-01

    The antibacterial mechanism of the Cu-containing materials has not been fully understood although such understanding is crucial for the sustained clinical use of Cu-containing antibacterial materials such as bone implants. The aim of this study is to investigate the molecular mechanisms by which the Gram-positive Staphylococcus aureus is inactivated through Cu-bearing titanium alloys (Ti6Al4V5Cu). Cu ions released from the alloys are found to contribute to lethal damage of bacteria. They destroy the permeability of the bacterial membranes, resulting in the leakage of reducing sugars and proteins from the cells. They also promote the generation of bacteria-killing reactive oxygen species (ROS). The ROS production is confirmed by several assays including fluorescent staining of intracellular oxidative stress, detection of respiratory chain activity, and measurement of the levels of lipid peroxidation, catalase, and glutathione. Furthermore, the released Cu ions show obvious genetic toxicity by interfering the replication of nuc (species-specific) and 16SrRNA genes, but with no effect on the genome integrity. All of these effects lead to the antibacterial effect of Ti6Al4V5Cu. Collectively, our work reconciles the conflicting antibacterial mechanisms of Cu-bearing metallic materials or nanoparticles reported in the literature and highlights the potential use of Ti6Al4V5Cu alloys in inhibiting bacterial infections.

  5. A Facile Synthesis of Hollow Palladium/Copper Alloy Nanocubes Supported on N-Doped Graphene for Ethanol Electrooxidation Catalyst

    Directory of Open Access Journals (Sweden)

    Zhengyu Bai

    2015-04-01

    Full Text Available In this paper, a catalyst of hollow PdCu alloy nanocubes supported on nitrogen-doped graphene support (H-PdCu/ppy-NG is successfully synthesized using a simple one-pot template-free method. Two other catalyst materials such as solid PdCu alloy particles supported on this same nitrogen-doped graphene support (PdCu/ppy-NG and hollow PdCu alloy nanocubes supported on the reduced graphene oxide support (H-PdCu/RGO are also prepared using the similar synthesis conditions for comparison. It is found that, among these three catalyst materials, H-PdCu/ppy-NG gives the highest electrochemical active area and both the most uniformity and dispersibility of H-PdCu particles. Electrochemical tests show that the H-PdCu/ppy-NG catalyst can give the best electrocatalytic activity and stability towards the ethanol electrooxidation when compared to other two catalysts. Therefore, H-PdCu/ppy-NG should be a promising catalyst candidate for anodic ethanol oxidation in direct ethanol fuel cells.

  6. Spectrophotometric determination of cobalt in copper alloy with picramazochrom%苦氨酸偶氮变色酸光度法测定铜合金中钴

    Institute of Scientific and Technical Information of China (English)

    钟国秀; 黄清华; 唐小红

    2012-01-01

    探讨了显色剂苦氨酸偶氮变色酸与钴的显色反应.pH 10的柠檬酸铵-氨水溶液中,钴与苦氨酸偶氮变色酸反应形成绿色络合物,最大吸收波长为650 nm,表观摩尔吸光系数为2.62×104 L·mol-1·cm-1,钴量在0~2.0 mg/L范围内符合比尔定律.方法通过加入锌粉置换出铜而消除溶液中基体的干扰,用于铜合金中钴的测定,结果与亚硝基R盐光度法一致,相对标准偏差(n=5)小于2%,加标回收率接近100%.%The coloring reaction between coloring reagent picramazochrom and cobalt was studied. In ammonium citrate-ammonia water solution at pH 10,cobalt could react with picramazochrom to form a green complex,which had maximum absorption wavelength at 650 nm. The apparent molar absorptivity was 2. 62 × 104 L · mol-1 · cm-1. Beer's law was obeyed for cobalt in the range of 0-2. 0 mg/L. The interference of matrix in solution could be eliminated by adding zinc to replace copper. The proposed method had been applied to the determination of cobalt in copper alloy,and the results were consistent with those obtained by nitroso R salt spectrophotometry. The relative standard deviation(RSD,n = 5) was less than 2% ,and the recovery was close to 100%.

  7. Thermal processes and solidification kinetcs of evolution of the microstructure of tin-silver-copper solder alloys

    Science.gov (United States)

    Kinyanjui, Robert Kamau

    The adoption of Sn-Ag-Cu (SAC) Pb-free solders will affect electronic manufacturing processes and joint reliability for electronics packages. Since SAC solder has a higher melting temperature than eutectic Pb-Sn solder, higher processing temperatures will be required. The higher processing temperatures can potentially affect the microstructure of these Pb-free solder joints. We investigated the effect of thermal history on the evolution of the microstructure of Sn-xAg-yCu (0 ≤ x ≤ 4.0; 0 ≤ y ≤ 1.4, concentrations are in weight percent) solder alloys. This family of alloys falls within a class of Sn-rich Sn-Ag-Cu (SAC) alloys recommended by various international consortia for implementation in electronic manufacturing industry to replace the conventional PbSn solders. This investigation was divided into three parts: part one was an investigation of an optimum SAC alloy composition devoid of large (in length scales) intermetallic compounds (IMCs) after thermal treatment. The presence of large IMCs, with different mechanical characteristics from the bulk Sn, may compromise the mechanical integrity of the Pb-free solder interconnect. In part two of this study, we examined the growth morphology of Ag3Sn, Cu6Sn 5, and betaSn in the SAC alloys. In part three, an examination of the effect of sample size on undercooling was carried out. A Sn-Ag-Cu alloy of the composition: 96.5Sn-2.6Ag-0.9Cu (in weight percent) was found to exhibit no growth of large Ag3Sn, Cu6Sn 5 intermetallic compounds at cooling rates from 0.1 to 1°C/s. However, growth of large betaSn dendrites was observed. The crystallized Sn-Ag-Cu balls were found to contain only a few Sn grains. Also the solidification temperature of the 96.5Sn-2.6Ag-yCu (0 ≤ y ≤ 1.4) solder system was found to increase with Cu content. Further, this investigation established a strong correlation between Sn-Ag-Cu sample size and degree of undercooling for these Pb-free solder alloys. The degree of undercooling of Sn in

  8. Influence of time of annealing on anneal hardening effect of a cast CuZn alloy

    OpenAIRE

    Nestorović Svetlana; Ivanić Lj.; Marković Desimir

    2003-01-01

    Investigated cast copper alloy containing 8at%Zn of a solute. For comparison parallel specimens made from cast pure copper. Copper and copper alloy were subjected to cold rolling with different a final reduction of 30,50 and 70%. The cold rolled copper and copper alloy samples were isochronally and isothermally annealed up to recrystallization temperature. After that the values of hardness, strength and electrical conductivity were measured and X-ray analysis was performed. These investigatio...

  9. Segmentation of copper alloys processed by equal-channel angular pressing%等径角挤压铜合金的分节断裂

    Institute of Scientific and Technical Information of China (English)

    Omid NEJADSEYFI; Ali SHOKUHFAR; Vahid MOODI

    2015-01-01

    本研究提供了等径角挤压不同铜合金的局部剪切、坯锭开裂和分节断裂的实验依据。结果表明,尽管很多参数影响局部剪切,但是合金的硬度和分节断裂与其有着直接的关系,而硬度与合金的成分和相组成有关。在室温下,α-黄铜可以成功进行等径角挤压,而α/β黄铜甚至在350°C下都不能成功进行等径角挤压。利用DEFORMTM 软件模拟了开裂和分节断裂,研究不同参数对分节断裂的影响。结果表明,摩擦力和加工速率对获得完美坯锭影响很小,而利用背压可以很好地减小局部剪切、坯锭裂纹、分节断裂和破坏。利用背压能减小流动局部化,当背压由0提高到600 MPa时,可以提高材料流动均匀性并且使坯锭的均匀性提高36.1%。%This research provides experimental evidence for localized shear, billet cracking, and segmentation during the processing of various copper alloys. The results demonstrate that although many parameters affect the shear localization, there is a direct relation between segmentation and alloy strength (hardness) that is related to the alloying elements and constitutive phases. For instance, alpha brass is successfully processed by ECAP at room temperature, but alpha/beta brasses fail even at a temperature of 350 °C. Finite element simulation of cracking and segmentation was performed using DEFORMTM to investigate the influence of different parameters on segmentation. The results confirm that friction and processing speed have narrow effects on attaining a perfect billet. However, employing back pressure could be reliably used to diminish shear localization, billet cracking, segmentation, and damage. Moreover, diminishing the flow localization using back pressure leads to uniform material flow and the billet homogeneity increases by 36.1%, when back pressure increases from 0 to 600 MPa.

  10. 引线框架用铜合金材料弯曲回弹有限元分析%Numerical Simulation of Springback of Copper Alloy for Lead Frame

    Institute of Scientific and Technical Information of China (English)

    张国军; 苏娟华

    2011-01-01

    The research and development status of materials for lead frame abroad and in China was described, then the springback amount of copper alloy was discussed. The bending model was built by 3-D modeling software, which was simulated and calculated in simulation software, then the necessary post-processing was made, finally, according to the data, the bending springback amounts of the four kinds of copper alloy materials were calculated. The conclusion is that,from larger to little, the order of springback amounts of the four kinds of materials for lead frame is CuCrZrMg alloy,CuNiSi alloy, CuFeP alloy, CuCrSnZn alloy, it is verified that the bending properties of the four kinds of materials for lead frame increase in turn, the smaller the minimum bending radius of copper alloy for lead frame, the smaller the springback amount.%阐述了引线框架材料在国内外的研究与发展现状,着重分析了铜合金材料的弯曲回弹量.利用三维软件建立弯曲模型,然后在模拟软件中进行模拟,进行计算和必要的后处理后,最后根据有关数据计算出四种铜合金材料的弯曲回弹量的大小,得出四种铜合金材料CuFeP、CuCrSnZn、CuCrZrMg、CuNiSi的回弹量由大到小顺序排列为:CuCrZrMg、CuNiSi、CuFeP、CuCrSnZn,表明四种引线框架铜合金材料的弯曲性能依次增大;铜合金框架材料的最小弯曲半径越小,其回弹量越小.

  11. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  12. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  13. Zircon U-Pb geochronology, geochemistry, and Sr-Nd-Hf isotopes of granitoids in the Yulekenhalasu copper ore district, northern Junggar, China: Petrogenesis and tectonic implications

    Science.gov (United States)

    Yang, Fuquan; Chai, Fengmei; Zhang, Zhixin; Geng, Xinxia; Li, Qiang

    2014-03-01

    The Yulekenhalasu porphyry copper deposit is located in the Kalaxiange'er metallogenic belt in northern Junggar, China. We present the results from zircon U-Pb geochronology, and geochemical and Sr-Nd-Hf isotope analyses of the granitoids associated with the ore deposits with a view to constrain their petrogenesis and tectonic setting. The granitoids consist of quartz diorite, diorite porphyry, porphyritic monzonite, and quartz porphyry, emplaced at 382, 379, 375-374, and 348 Ma, respectively, which span Late Devonian to early Carboniferous ages. The ore-bearing intrusion is mainly diorite porphyry, with subordinate porphyritic monzonite. The Late Devonian intrusions are characterized by SiO2 contents of 54.5-64.79 wt.%, Na2O contents of 3.82-8.24 wt.%, enrichment in Na, light rare-earth elements (LREEs), and large ion lithophile elements. They also display relative depletion in Y, Ba, P, Nb, Ta, and Ti, and weak negative Eu anomalies (δEu = 0.6-0.87). The early Carboniferous quartz porphyry is characterized by high SiO2 content (72.26-73.35 wt.%), enrichment in LREEs, K, and Sr, and relative depletion in Y (10.82-12.52 ppm) and Yb (1.06-1.15 ppm). The Late Devonian and early Carboniferous granitoids are characterized by positive ɛNd(t) values (5.2-10.1, one sample at - 1.9), positive ɛHf(t) values (7.46-18.45), low (87Sr/86Sr)i values (0.70363-0.70476), and young crustal residence ages. These data indicate that the sources of the granitoids were mainly mantle-derived juvenile rocks. Geochemical and Nd-Sr-Hf isotopic data demonstrate that the Late Devonian granitoids formed in an oceanic island arc, and they were formed from different sources, among which the mineralized diorite porphyry might have originated from a mixed slab-derived and mantle wedge melt source. The early Carboniferous quartz porphyry was likely emplaced in a mature island arc environment, and was probably derived from juvenile crust.

  14. Selective dissolution in copper-tin alloys: Formation of corrosion- resistant patina on ancient Chinese bronze mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Taube, M. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Materials Science and Engineering]|[Brookhaven National Lab., Upton, NY (United States); Davenport, A.J. [Brookhaven National Lab., Upton, NY (United States); King, A.H. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Materials Science and Engineering; Chase, T. III [Smithsonian Institution, Washington, D.C. (United States) Freer Gallery of Art, Dept. of Conservation and Scientific Research

    1996-07-01

    Many ancient Chinese bronze mirrors have survived with a patina that leaves the delicate relief surface decorations intact. The microstructure of these ancient mirrors is two-phase and consists of acicular {alpha}-phase (Cu-rich) regions encased in a {delta}-phase (Sn-rich) matrix. At the surface, there is evidence of selective dissolution of the ct phase; the cc-phase regions are replaced pseudomorphically by a mineral product with the {delta} phase remaining metallic. Electrochemical polarization has been used to drive the copper dealloying process in modem, cast bronze. Synchrotron x-ray diffraction was employed to compare the ancient samples with those that were prepared potentiostatically. Poorly crystallized tin oxide (SnO{sub 2}) was found in the {alpha} replacement products of both sample types. The corrosion-resistance of the potentiostatically-treated bronze samples was tested by atmospheric exposure. Comparison with exposed, untreated samples indicated that the treatment was protective.

  15. An Assessment of the Residual Stresses in Low Pressure Plasma Sprayed Coatings on an Advanced Copper Alloy

    Science.gov (United States)

    Raj, S. V.; Ghosn, L. J.; Agarwal, A.; Lachtrupp, T. P.

    2002-01-01

    Modeling studies were conducted on low pressure plasma sprayed (LPPS) NiAl top coat applied to an advanced Cu-8(at.%)Cr-4%Nb alloy (GRCop-84) substrate using Ni as a bond coat. A thermal analysis suggested that the NiAl and Ni top and bond coats, respectively, would provide adequate thermal protection to the GRCop-84 substrate in a rocket engine operating under high heat flux conditions. Residual stress measurements were conducted at different depths from the free surface on coated and uncoated GRCop-84 specimens by x-ray diffraction. These data are compared with theoretically estimated values assessed by a finite element analysis simulating the development of these stresses as the coated substrate cools down from the plasma spraying temperature to room temperature.

  16. PdCu alloy nanoparticle-decorated copper nanotubes as enhanced electrocatalysts: DFT prediction validated by experiment

    Science.gov (United States)

    Wu, Dengfeng; Xu, Haoxiang; Cao, Dapeng; Fisher, Adrian; Gao, Yi; Cheng, Daojian

    2016-12-01

    In order to combine the advantages of both 0D and 1D nanostructured materials into a single catalyst, density functional theory (DFT) calculations have been used to study the PdCu alloy NP-decorated Cu nanotubes (PdCu@CuNTs). These present a significant improvement of the electrocatalytic activity of formic acid oxidation (FAO). Motivated by our theoretical work, we adopted the seed-mediated growth method to successfully synthesize the nanostructured PdCu@CuNTs. The new catalysts triple the catalytic activity for FAO, compared with commercial Pd/C. In summary, our work provides a new strategy for the DFT prediction and experimental synthesis of novel metal NP-decorated 1D nanostructures as electrocatalysts for fuel cells.

  17. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Science.gov (United States)

    2010-07-01

    ... of pollutants into publicly owned treatment works from the forming of beryllium copper alloys. ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE...

  18. Formation of reacted interfacial zone and improvement of bonding strength in aluminum alloy clad stainless steel and aluminum alloy clad copper plateusing explosive welding technique. Al gokin no stainless ko oyobi do eno bakuhatsu assetsu ni okeru kaimen hannoso no keisei to setsugo kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Hokamoto, K.; Fujita, M. (Kumamoto University, Kumamoto (Japan). Faculty of Engineering); Izuma, T. (Asahi Chemical Industry Co. Ltd., Tokyo (Japan))

    1993-10-31

    Explosive welding experiments using intermediate materials have been performed on combinations of aluminum alloy with stainless steel, and aluminum alloy with copper that are difficult of explosive welding with an ordinary method. The experiments have investigated interfacial reaction layers and bonding strength. The drive plates have used four kinds of aluminum alloy plates with a thickness of 4 mm and a base material of stainless steel (SUS 304) or copper having a thickness of 9 mm. Investigation has been given on how the interfacial structure and the bonding strength change as a result of using intermediate materials of the similar kind with the base material. The composition in the generated reaction layers has higher aluminum concentration than that has been predicted. This is because more aluminum component has been dissolved because of transformation having converged on the side of the aluminum alloy with smaller transformation resistance. Use of the intermediate materials can reduce energy of collision given on the interface, thus controlling the formation of reactive layers on the interface. This has improved the bonding strength largely, leading to a possibility of fabricating clad materials that have good interface properties. 10 refs., 9 figs., 3 tabs.

  19. Origin of the mysterious Yin-Shang bronzes in China indicated by lead isotopes

    Science.gov (United States)

    Sun, Wei-dong; Zhang, Li-peng; Guo, Jia; Li, Cong-ying; Jiang, Yu-hang; Zartman, Robert E.; Zhang, Zhao-feng

    2016-01-01

    Fine Yin-Shang bronzes containing lead with puzzlingly highly radiogenic isotopic compositions appeared suddenly in the alluvial plain of the Yellow River around 1400 BC. The Tongkuangyu copper deposit in central China is known to have lead isotopic compositions even more radiogenic and scattered than those of the Yin-Shang bronzes. Most of the Yin-Shang bronzes are tin-copper alloys with high lead contents. The low lead and tin concentrations, together with the less radiogenic lead isotopes of bronzes in an ancient smelting site nearby, however, exclude Tongkuangyu as the sole supplier of the Yin-Shang bronzes. Interestingly, tin ingots/prills and bronzes found in Africa also have highly radiogenic lead isotopes, but it remains mysterious as to how such African bronzes may have been transported to China. Nevertheless, these African bronzes are the only bronzes outside China so far reported that have lead isotopes similar to those of the Yin-Shang bronzes. All these radiogenic lead isotopes plot along ~2.0–2.5 Ga isochron lines, implying that deposits around Archean cratons are the most likely candidates for the sources. African cratons along the Nile and even micro-cratons in the Sahara desert may have similar lead signatures. These places were probably accessible by ancient civilizations, and thus are the most favorable suppliers of the bronzes. PMID:26988425

  20. High temperature characteristics and solidification microstructures of dental metallic materials part I: silver-palladium-copper-gold alloy.

    Science.gov (United States)

    Nagasawa, Sakae; Yoshida, Takamitsu; Mizoguchi, Toshihide; Terashima, Nobuyoshi; Ito, Michio; Platt, Jeffrey A; Oshida, Yoshiki

    2003-09-01

    Ag-Pd-Cu-Au alloy was subjected to a Thermo-Mechanical Analyzer to investigate high temperature properties up to its liquidus temperature. Microstructural examination and elemental analysis with EPMA were also conducted in the solid/liquid mixture region. The following conclusions were obtained. (1) The solidus temperature was 838.3 +/- 2.52 degrees C and 957.7 +/- 1.53 degrees C for the liquidus point. (2) Thermal expansion coefficients were 1.39 +/- 0.08% at the solidus, 2.338 +/- 0.13% at the liquidus, and the melting expansion coefficient was 0.932 +/- 0.058%. (3) The expansion during melting was controlled by a small amount of pressure such as 1/100 of the air pressure, therefore the fit accuracy of castings is suggested not to be influenced by the solidification shrinkage. (4) Although the softening heat treatment and casting exhibited an influence on thermal expansion behavior, casting temperature in addition to post-casting plastic deformation did not show an effect on the thermal expansion. (5) The yield strength at 750 degrees C was reduced down to about 1/400 of that at room temperature, and the modulus of elasticity was about 1/100 of the room temperature value.

  1. Effects of additives on cyanide-flee white copper-tin alloy electroplating%添加剂对无氰电镀白铜锡工艺的影响

    Institute of Scientific and Technical Information of China (English)

    赵洋; 曾振欧; 谢金平; 范小玲; 高帅

    2013-01-01

    研究了多种胺类高分子添加剂对焦磷酸盐体系无氰电镀白铜锡工艺及镀层微观形貌的影响.基础镀液的组成为:K4P2O7·3H2O 200~250 g/L,Cu2P2O7·3H2O 16~19 g/L,Sn2P2O712~15 g/L,pH 8.5~8.7.以IEP(水性阳离子季铵盐)、DPTHE(多胺高分子聚合物)和JZ-1(胺类化合物)作添加剂时,均可在较宽的电流密度范围内得到白亮铜锡合金镀层.以IEP作添加剂时,电镀白铜锡的电流密度上限最高为3.70 A/dm2;以DPTHE作添加剂时,电镀白铜锡合金镀层的电流密度下限最低为0.09 A/dm2,可抑制低电流密度区形成金黄色低锡铜锡合金.以IEP和DPTHE作添加剂时,均可使白铜锡合金镀层持续增厚,电镀50 min可得到白亮、无裂纹的镀层,且IEP具有更明显的整平和细化晶粒作用.%The effects of different kinds of additives on the plating process and surface morphology of white copper-tin alloy coatings were studied in a cyanide-free pyrophosphate plating bath. The basic bath composition is as follows: K4P2O7?3H2O 200-250 g/L, Cu2P2O?3H2O 16-19 g/L, Sn2P2O7 12-15 g/L, and pH 8.5-8.7. Bright white copper-tin alloy coatings can be obtained over wide range of current density when using IEP (a water-soluble quaternary ammonium salt cation), DPTHE (a high-molecular-weight polyamine) and JZ-1 (an amine compound) as the additive. The upper limit of current density for white copper-tin alloy plating is up to 3.70 A/dm2 while using IEP. The lower limit of current density for white copper-tin alloy plating is 0.09 A/dm2 when using DPTHE. DPTHE can inhibit the forming of golden low-tin copper-tin alloy at low current density area. The white copper-tin alloy coatings can be thickened continually when using IEP and DPTHE, and are still brightly white and crack-free after plating for 50 min. IEP has more obvious leveling and grain-refining effects.

  2. Monzonitoid magmatism of the copper-porphyritic Lazurnoe deposit (South Primor'e): U-Pb and K-Ar geochronology and peculiarities of ore-bearing magma genesis by the data of isotopic-geochemical studies

    Science.gov (United States)

    Sakhno, V. G.; Kovalenko, S. V.; Alenicheva, A. A.

    2011-05-01

    Magmatic rocks from the copper-porphyritic Lazurnoe deposit (Central Primor'e) have been studied. It has been found that rocks from the Lazurnyi massif are referred to gabbro-monzodiorites, monzodiorites, and monzo-granodiorites formed during two magmatic phases of different ages. The earlier phase is represented by gabbro-monzodiorites and diorites of the North Stock, and the later one, by gabbro-monzodiorites and monzo-grano-diorites of the South Stock. On the basis of isotopic dating by the U-Pb (SHRIMP) method for zircon and by the K-Ar method for hornblendes and biotites, the age of magmatic rocks is determined at 110 ± 4 for the earlier phase and at 103.5 ± 1.5 for the later one. Examination of the isotopic composition for Nd, Sr, Pb, Hf, δ18O, and REE spectra has shown that melts of the first phase are contaminated with crustal rocks and they are typical for a high degree of secondary alterations. Potassiumfeldspar, biotite, propylitic alterations, and sulfidization are manifested in these rocks. The rocks of the later stage of magmatism are characteristic for a primitive composition of isotopes and the absence of secondary alterations. They carry the features of adakite specifics that allows us to consider them derivatives of mantle generation under high fluid pressure. The intrusion of fluid-saturated melts of the second phase into the magmatic source of the first phase caused both an alteration pattern of rocks and copper-porphyritic mineralization. Isotopes of sulfur and oxygen allow us to consider the ore component to be of magmatic origin.

  3. 环境友好型替代铜及其合金基体镀金的工艺研究%Research of Environment Friendly Electrical Contact Protective lubricant Instead of Gold Plated Covering on Copper and Its Alloy

    Institute of Scientific and Technical Information of China (English)

    贾成林; 张宝根; 段练

    2014-01-01

    通过长期研究试验,研制出代替镀金用的铜及其合金表面的保护材料SP-2085C和LP-1087C电接触润滑保护剂,经过反复试验,大批量生产实践证明:SP-2085C和LP-1087C电接触润滑保护剂不仅能替代银、铜、镍等金属及其合金上的镀金层,而且保护后的银、铜、镍表面耐蚀能力优于替代前的镀金表面,且电气性能和微波传输性能没有影响。在滑动摩擦的接触表面上,还解决了金、银或铜滑动摩擦的接触表面上的磨损问题。%Through long-term research and test, the electrical contact protective lubricant SP-2085C and LP-1087C instead of gold plated covering on copper and its alloy have been manufactured. after repeated testing, mass production practice has proved that SP-2085C and LP-1087C electrical contact protective lubricant can not only replacing the gold-plating on the silver, copper, nickel and their alloys, but also have no influence on the electricity function and microwave transmission, and with using the protective agent, the corrosion resistance of silver, copper and nickel's surface is better than the gold plated covering before. In addition, the attrition issues of the sliding friction of gold or copper's contact surface have also been solved.

  4. Jiangrun Copper Limited Company Set its Eyes on the Leading Position of Copper Processing Industry in China

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Jiangrun Copper Limited Company’s total investment volume for projects of stranded copper wire with high strength and high conductivity as well as high-performance copper and copper alloy wire are 500 million yuan and 360 million yuan, respectively. The company plans to introduce 85 units (sets) of high-end

  5. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  6. Shandong Hengyuan 200,000 tonnes of High-Precision Copper Product Project is Making Smooth Progress

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Shandong Hengyuan Copper Co., Ltd is an emerging copper product processing enterprise in China, the company plans to invest 1 billion yuan to construct 200,000 t/a high precision copper product, which includes: 20,000 tones of precision copper tube and copper alloy tube, 10,000 tonnes of railway electrification copper

  7. Influence of the control atmosphere and milling time on the morphology and microstructure of pure copper and copper-2.5 % lithium powders produced by mechanical alloying; Influencia de la atmosfera de control y tiempo de molienda sobre la morfologia y microestructura de polvos de cobre puro y cobre-2,5% litio producidos por aleado mecanio

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, P. A.; Alvarez, M. P.; Penaloza, A.; Zuniga, A.; Ordonez, S.

    2009-07-01

    In the present work was investigated the effect of two milling parameters, atmosphere and milling time, on the morphology and microstructure of pure copper powder and a mixture of copper-2,5 wt. % lithium. The mechanical alloying was performed in a SPEX 8000D mill, using steel containers and balls. The two control atmospheres were argon and nitrogen and the milling time was varied from 3 up to 30 hours. The microstructural changes and the phases after milling were analyzed using scanning microscopy and X ray diffraction, whereas the amount of iron was measured by atomic absorption spectroscopy and the amount of oxygen by infrared spectroscopy. The results show the effect of the milling parameters studied on the microstructure as well as on the chemical composition of the samples. (Author) 22 refs.

  8. Synergistic extraction and spectrophotometric determination of copper(II) using 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol: Analysis of alloys, pharmaceuticals and biological samples

    Science.gov (United States)

    Kamble, Ganesh S.; Kolekar, Sanjay S.; Anuse, Mansing A.

    2011-05-01

    A simple and selective spectrophotometric method was developed for the determination of copper(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The procedure was based on the synergistic extraction of copper(II) with 2',4'-dinitro APTPT in the presence of 0.5 mol L -1 pyridine to give green colored ternary complex of a molar ratio 1:2:2 (M:L:Py) in the pH range 8.7-10.5. It exhibits a maximum absorption of colored complex at 445 nm and 645 nm in chloroform against the reagent blank. Beer's law was followed in the concentration range 10-80 μg mL -1 of copper(II) and optimum range of 20-70 μg mL -1 the metal as evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of copper(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 0.87 × 10 3 L mol -1 cm -1 and 0.072 μg cm -2, respectively. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The proposed method is rapid, reproducible and successfully applied for the determination of copper(II) in binary and synthetic mixtures, alloys, pharmaceutical formulations, environmental and fertilizer samples. Comparison of the results with those obtained using an atomic absorption spectrophotometer also tested the validity of the method.

  9. 光度法快速测定铜合金中微量铝%RAPID DETERMINATION OF TRACE ALUMINUM IN COPPER ALLOYS

    Institute of Scientific and Technical Information of China (English)

    钟国秀; 黄清华

    2011-01-01

    In hexamethylenetetramine medium pH 4 - 6, aluminum reacts with chlorophosphonazo I to form a blue - violet complex which exhibits an absorption maximum at 600 nm with a apparent molar absorptivity of 3.9 x 104 L/( mol· cm). The absorption spectra, acidity, reagent dosage, interfering ions and other factors were discussed, and the experimental conditions were optimized. Beer's law was obeyed in the range of 0 -25 μg/(50 mL) for aluminum with EDTA - Mn as a masking agent. Coexisting ele-merits didn't interfere with the determination, the method had good selectivity. The proposed method can be applied to determine aluminum directly in copper alloy, and the RSD was less than 2% (n =5). The determination results were corresponded with the certified values.%在pH 4-6的六次甲基四胺介质中,显色剂偶氮氯膦I与铝形成稳定的蓝紫色络合物.讨论了吸收光谱、酸度、试剂用量、干扰离子等因素对实验的影响,确定了反应的最佳条件.铝含量在0-25μg/(50 mL )范围内符合比耳定律,铝络合物在600 nm处有最大吸收,表观摩尔吸光系数为3.9×104L/(mol·cm).用EDTA-Mn作掩蔽剂.共存元素均不干扰测定,方法有良好的选择性.此法可不经过分离直接测定铜合金中的微量铝,测定结果的相对标准偏差小于2%(n=5),测定结果与认定值相符.

  10. 锌镍合金用于载体支撑超薄铜箔剥离层的研究%Study on Zn-Ni Alloy Used for Stripping Layer of Ultra-thin Copper Foil with Carrier Foil

    Institute of Scientific and Technical Information of China (English)

    邓庚凤; 黄崛起; 赖远腾; 徐鹏

    2013-01-01

    High-zinc and low-nickel alloy coating used for stripping layer on 35 μm ultra-thin copper foil as carrier foil was electrodeposited. Ultra-thin copper foil was electrodeposited in pyrophosphate solution, and then ultra-thin copper carrier foil was prepared. The effects of ratio of zinc sulfate and nickel sulfate, dosage of complexing agent of potassium pyrophosphate trihydrate, dosage of additives of gelatin on the properties of stripping layer were investigated. The results show that zinc and nickel can be co-electroplated under the conditions including zinc sulfate of 12 g/L, nickel sulfate of 6 g/L, potassium pyrophosphate trihydrate of 0. 5 mol/L, gelatin of 0. 2 g/L and sodium dodecyl benzene sulfonate 0. 2~0. 3 g/L. Peelable strength between ultra-thin copper foil and carrier copper foil is stable and can reach 4. 7 N/cm when zinc-nickel alloy is used as a stripping layer.%在35μm载体铜箔上电镀一层高锌低镍合金镀层作为剥离层,再在焦磷酸盐液中电沉积超薄铜箔层,最后制得载体支撑超薄铜箔.考察了镀液硫酸锌和硫酸镍的配比、焦磷酸钾络合剂及明胶添加剂等对剥离层性能的影响.结果表明,在剥离层镀液中Zn2+∶Ni2+=4∶1,焦磷酸钾0.5 mol/L,明胶0.2g/L,十二烷基苯磺酸钠0.2~0.3 g/L条件下,锌和镍能够共同沉积,该镀层作为剥离层后剥离效果良好,载体箔和超薄铜箔间的剥离强度较稳定,可以达到4.7 N/cm.

  11. Reactivity test between beryllium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Kato, M. [NGK Insulators, Ltd., Aichi-ken (Japan)

    1995-09-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700{degrees}C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper).

  12. Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, Low-Carbon Nickel-Chromium-Molybdenum-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Tungsten, and Low-Carbon Nickel-Molybdenum-Chromium Alloy Plate, Sheet, and Strip

  13. Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Low-Carbon Nickel-Chromium-Molybdenum, Low-Carbon Nickel-Molybdenum-Chromium, Low-Carbon Nickel-Molybdenum-Chromium-Tantalum, Low-Carbon Nickel-Chromium-Molybdenum-Copper, and Low-Carbon Nickel-Chromium-Molybdenum-Tungsten Alloy Rod

  14. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria

    DEFF Research Database (Denmark)

    Elguindi, J; Moffitt, S; Hasman, Henrik

    2010-01-01

    The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by the influx of copper ions into the cells, but the exact mechanism is not fully understood. This study showed that the kinetics of contact killing of copper surfaces depended greatly on the amount...... of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper ion-resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing...... of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper...

  15. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  16. Isotopic signatures suggest important contributions from recycled gasoline, road dust and non-exhaust traffic sources for copper, zinc and lead in PM10 in London, United Kingdom

    Science.gov (United States)

    Dong, Shuofei; Ochoa Gonzalez, Raquel; Harrison, Roy M.; Green, David; North, Robin; Fowler, Geoff; Weiss, Dominik

    2017-09-01

    The aim of this study was to improve our understanding of what controls the isotope composition of Cu, Zn and Pb in particulate matter (PM) in the urban environment and to develop these isotope systems as possible source tracers. To this end, isotope ratios (Cu, Zn and Pb) and trace element concentrations (Fe, Al, Cu, Zn, Sb, Ba, Pb, Cr, Ni and V) were determined in PM10 collected at two road sites with contrasting traffic densities in central London, UK, during two weeks in summer 2010, and in potential sources, including non-combustion traffic emissions (tires and brakes), road furniture (road paint, manhole cover and road tarmac surface) and road dust. Iron, Ba and Sb were used as proxies for emissions derived from brake pads, and Ni, and V for emissions derived from fossil fuel oil. The isotopic composition of Pb (expressed using 206Pb/207Pb) ranged between 1.1137 and 1.1364. The isotope ratios of Cu and Zn expressed as δ65CuNIST976 and δ66ZnLyon ranged between -0.01‰ and +0.51‰ and between -0.21‰ and +0.33‰, respectively. We did not find significant differences in the isotope signatures in PM10 over the two weeks sampling period and between the two sites, suggesting similar sources for each metal at both sites despite their different traffic densities. The stable isotope composition of Pb suggests significant contribution from road dust resuspension and from recycled leaded gasoline. The Cu and Zn isotope signatures of tires, brakes and road dust overlap with those of PM10. The correlation between the enrichments of Sb, Cu, Ba and Fe in PM10 support the previously established hypothesis that Cu isotope ratios are controlled by non-exhaust traffic emission sources in urban environments (Ochoa Gonzalez et al., 2016). Analysis of the Zn isotope signatures in PM10 and possible sources at the two sites suggests significant contribution from tire wear. However, temporary additional sources, likely high temperature industrial emissions, need to be invoked

  17. Simultaneous determination of trace-levels of alloying zinc and copper by semi-mercury-free potentiometric stripping analysis with chemometric data treatment

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Hansen, Elo Harald

    1998-01-01

    Assays of copper and zinc in brass samples were performed by Semi-Mercury Free Potentiometric Stripping Analysis (S-MF PSA) using a thin-film mercury covered glassy-carbon working electrode and dissolved oxygen as oxidizing agent during the stripping step. The stripping peak transients were...... resolved by chemometrics which enabled simultaneous determination of both the copper and the zinc concentrations, thereby eliminating the conventional necessary pretreatment of the sample solution, such as initial addition of Ga(III) or solvent extraction of copper. The brass samples were diluted...

  18. The Effect of Aging Treatment on the Microstructure and Properties of Copper-Precipitation Strengthened HSLA (High Strength Low Alloy) Steel

    Science.gov (United States)

    1988-12-01

    precipitation of copper from alpha iron and concluded that the copper precipitates as FCC E-phase without any intermediate compounds being formed. Hornbogen...pre- cipitates in an alpha Iron matrix. Their research confirmed the 4 2 A ST.S 9 00- 0 -1400 6 W COPOOr Content Figure 2. Iron-Rich Portion of Fe-Cu...64-67, August 1984. 6. Hornbogen, E., and Glenn, R. C., "A Metallurgical Study of Precip- itation of Copper from Alpha Iron ," Transactions of the

  19. Environment-friendly Chemical Polishing Technology of BFe10-1-1 Copper Alloy%绿色环保型BFe10-1-1铁白铜化学抛光工艺研究

    Institute of Scientific and Technical Information of China (English)

    黄俊学; 张晖; 杨锦瑜

    2011-01-01

    Taking H2O2 as main oxidant, the process of environment-friendly chemical polishing of Bfel 0-1-1 copper alloy was investigated. The influence of type of brightener, type of corrosion inhibitor, type of stabilizer of hydrogen peroxide, the polishing solution composition and polishing condition including polishing temperature and polishing time on the surface quality of the polished BFel0-1-1 copper alloy was discussed, and processing condition was optimized. The optimum composition of the chemical polishing solution for the BFelO-1-1 copper alloy was recommended to be composed of 350 mL/L hydrogen peroxide (30%) , 50 mL/L sulfuric acid, 17--20 mL/L ethyl alcohol, 1 mL/L OP-10, and 1 g/L 1,2,3-Benzotriazole, while the optimized polishing condition was suggested as temperature about 50 ℃ and polishing time 3~5 min.%研究以H2O2为主要氧化剂的化学抛光液对BFe10-1-1铁白铜进行表面化学抛光,考察了光亮剂、缓蚀剂、H2O2稳定剂的种类,化学抛光液各组分的含量,抛光温度以及抛光时间对铜合金抛光效果的影响.优化出抛光液组成及抛光工艺条件:质量分数为30%的H2O2 350 mL/L,浓H2SO450 mL/L,无水乙醇17~20mL/L,OP-10 1 mL/L,苯骈三氮唑(BTA)1 g/L,水余量;在50℃下抛光3~5 min.

  20. BFe30-1-1铜合金的化学抛光工艺研究%Chemical polishing technology of BFe30-1-1 copper alloy

    Institute of Scientific and Technical Information of China (English)

    张晖

    2011-01-01

    The process of chemical polishing of BFe30-l-l copper alloy with nitric acid was investigated. The influence of type of brightener, type of corrosion inhibitor, the polishing solution composition and polishing condition including polishing temperature and polishing time on the surface quality of the polished BFe30-l-l copper alloy was discussed, and processing condition was optimized. The optimum composition of the chemical polishing solution for the BFe30-l -1 copper alloy was 350 ~ 450 mL/L sulfuric acid, 3 ~5 mL/L hydrochloric acid,30 ~40 mL/L nitric acid,2 ~4 mL/L polyoxyethylene octylphenol ether, and 3 g/L benzotriazole, while the optimized polishing conditions were temperature 30℃ and polishing time 3 ~ 5 min.%研究以含硝酸的化学抛光液对BFe30-1-1铜合金进行化学抛光的方法,考察光亮剂的种类、缓蚀剂的种类、化学抛光液各组分的含量、抛光温度以及抛光时间对铜合金抛光效果的影响.结果表明,在实验范围内优化工艺条件为:350~450mL/L H2SO4,3~5 mL/L HCl,30 ~40 mL/L HNO3,2~4 mL/L辛基酚聚氧乙烯醚(OP-10),3 g/L苯骈三氮唑(BTA),水余量,抛光温度30℃左右,抛光时间3~5 min.在此工艺条件下对BFe30-1-1铜合金进行化学抛光,可以获得较好的抛光效果.

  1. JNMC No.1 for White Copper Tube Production Bases in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Recently,JNMC’s 60,000-ton copper-nickel alloy energy-saving transformation project was completed and put into production.With its main products consisting of copper alloy tube,rods,wires and copper processed products

  2. Effect of iron-intermetallics and porosity on tensile and impact properties of aluminum-silicon-copper and aluminum-silicon-magnesium cast alloys

    Science.gov (United States)

    Ma, Zheyuan

    Aluminum-silicon (Al-Si) alloys are an important class of materials that constitute the majority of aluminum cast parts produced, due to their superior properties and excellent casting characteristics. Within this family of alloys, Al-Si-Cu and Al-Si-Mg cast alloys are frequently employed in automotive applications. The commercially popular 319 and 356 alloys, representing these two alloy systems, were selected for study in the present work, with the aim of investigating the effect of iron intermetallics and porosity on the alloy performance. This was carried out through a study of the tensile and impact properties, these being two of the important mechanical properties used in design calculations. Iron, through the precipitation of second phase intermetallic constituents, in particular the platelike beta-Al5FeSi phase, is harmful to the alloy properties. Likewise, gas- or shrinkage porosity in castings is also detrimental to the mechanical properties. By determining the optimum alloying, melt processing and solidification parameters (viz., Fe content, Sr modification and cooling rate) required to minimize the harmful effects of porosity and iron intermetallics, and studying their role on the fracture behavior, the fracture mechanism in the alloys could be determined. Castings were prepared from both industrial and experimental 319.2, B319.2 and A356.2 alloy melts, containing Fe levels of 0.2--1.0 wt%. Sr-modified (˜200 ppm) melts were also prepared for each alloy Fe level. The end-chilled refractory mold used provided directional solidification and a range of cooling rates (or dendrite arm spacings, DAS) within the same casting. Tensile and impact test samples machined from specimen blanks sectioned from the castings at various heights above the chill end provided DASs of 23--85mum. All samples were T6-heat-treated before testing. Tests were carried out employing Instron Universal and Instrumented Charpy testing machines. Optical microscopy, image analysis, SEM

  3. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  4. Effects of Rolling Reduction and Strength of Composed Layers on Bond Strength of Pure Copper and Aluminium Alloy Clad Sheets Fabricated by Cold Roll Bonding

    Directory of Open Access Journals (Sweden)

    Yoji Miyajima

    2014-01-01

    Full Text Available Three types of clad sheets, Cu/Al, Cu/AA5052, and Cu/AA5083, were produced by cold roll bonding with the rolling reduction of 50% and 75%. Tensile shear tests which give tensile shear strength were performed in order to assess the bond strength. Scanning electron microscopy was performed on the fractured interface produced by the tensile shear tests, which suggests that the fracture occurs within the Al alloy layer. The tensile shear strengths considering the area fraction of deposit of Al alloy on Cu side were compared with the shear stress converting from the ultimate tensile strengths. As a result, the tensile shear strength of the clad sheets is attributed to the shear strength of Al alloy layer close to the well bonded interface. A simple model was proposed that explains the effects of the rolling reduction and area fraction of deposit of Al alloy.

  5. Microstructure and Properties of Copper Alloy Fabricated by Laser Direct Deposition%激光直接堆积成形铜合金的组织及性能

    Institute of Scientific and Technical Information of China (English)

    张永忠; 章萍芝; 石力开; 程晶; 徐骏; 席明哲

    2001-01-01

    Based upon the mechanism of rapid prototyping,copper alloy components with complicated shape were directed deposited on base table through laser melting metallic powders which were delivered coaxially.The obtained microstructure is fully dense and evenly distributed.The mechanical properties are somewhat higher than that for casting,and meet the requirement for real usage.%基于快速成型原理,采用激光熔化同轴输送的铜合金粉末,在沉积基板上直接制备出具有一定复杂外形的零件。零件组织致密,成分均匀,力学性能较铸态有所提高,能满足直接使用的性能要求。

  6. 铜合金化学热处理在有色金属加工中的应用%Application of Copper Alloy Chemical Heat Treatment in Nonferrous Metal Fabrication

    Institute of Scientific and Technical Information of China (English)

    庄一东; 董云伟; 顾建其

    2001-01-01

    运用铜合金化学热处理技术制成的高性能摩擦件,具有耐磨、减摩、抗咬合、抗高温氧化和抗酸蚀等特性,其应用可降低企业的生产成本,提高产品质量。文中简析了原因。%High functional wear-resisting copper alloy parts made by the application of chemical heat treatment technology have the properties of wearability,antifriction,antiseizing and resistance to high temperature oxidation and acid corrosion,etc.In using these parts,it is proved that the production cost can be reduced and the product quality improved.This paper briefly analyzes the reason for the effects.

  7. Selective dissolution in binary alloys

    Science.gov (United States)

    McCall, Carol Rene

    Corrosion is an important issue in the design of engineering alloys. De-alloying is an aspect of alloy corrosion related to the selective dissolution of one or more of the components in an alloy. The work reported herein focuses on the topic of de-alloying specific to single-phase binary noble metal alloy systems. The alloy systems investigated were gold-silver and gold-copper. The onset of a bulk selective dissolution process is typically marked by a critical potential whereby the more reactive component in the alloy begins dissolving from the bulk, leading to the formation of a bi-continuous solid-void morphology. The critical potential was investigated for the entire composition range of gold-silver alloys. The results presented herein include the formulation of an expression for critical potential as a function of both alloy and electrolyte composition. Results of the first investigation of underpotential deposition (UPD) on alloys are also presented herein. These results were implemented as an analytical tool to provide quantitative measurements of the surface evolution of gold during de-alloying. The region below the critical potential was investigated in terms of the compositional evolution of the alloy surface. Below the critical potential, there is a competition between the dissolution of the more reactive alloying constituent (either silver or copper) and surface diffusion of gold that serves to cover dissolution sites and prevent bulk dissolution. By holding the potential at a prescribed value below the critical potential, a time-dependent gold enrichment occurs on the alloy surface leading to passivation. A theoretical model was developed to predict the surface enrichment of gold based on the assumption of layer-by-layer dissolution of the more reactive alloy constituent. The UPD measurements were used to measure the time-dependent surface gold concentration and the results agreed with the predictions of the theoretical model.

  8. 再生水中硫酸盐还原菌对铜合金的腐蚀%Effect of Sulfate Reducing Bacteria on Corrosion of Copper Alloy HSn701-AB in Recycled Water

    Institute of Scientific and Technical Information of China (English)

    李娟; 李进; 焦迪

    2011-01-01

    The morphology and growth characters of sulfate reducing bacteria, which were separated from recycled water, and its effect on corrosion of copper alloy HSn701-AB in recycled water were investigated by means of microbiological technology, surface analysis technique and electrochemical impedance spectroscopy. The results showed that the growth of SRB had 2 d~3 d's lag phase in recycled water. After immersed in recycled water with SRB for 3 days, the copper alloy HSn701-AB showed features of barrier diffusion impedance, and with the immersion time increased, the corrosion of HSn701-AB became severe in company with formation of a dense SRB bio-film.%采用微生物技术、表面分析技术以及电化学测量技术,研究了从再生水环境中分离提纯得到的硫酸盐还原菌(SRB)的形态、生长规律,以及SRB对铜合金HSn701-AB在再生水环境中腐蚀的影响.结果表明,在再生水环境中SRB的生长曲线存在2 d~3 d的停滞期;铜合金HSn701~AB在接种SRB的再生水环境中浸泡3 d时,出现阻挡层扩散阻抗,随着浸泡时间的增长,腐蚀加重,20 d时其表而生成致密的SRB生物膜.

  9. Corrosion behavior of novel colour-stable imitation gold copper alloy with rare earth%抗变色仿金稀土铜合金的耐蚀行为

    Institute of Scientific and Technical Information of China (English)

    罗利阳; 朱安印; 陈景林; 李周; 梁军; 张晓男

    2011-01-01

    A novel colour-stable imitation gold copper alloy with rare earth was designed and prepared. The microstructures, anti-tarnishing and corrosion resistance properties of the designed alloy and the existing mint metal of H72-1-1 were compared by means of metallographic analysis, neutral salt spray test, mass loss measurement, electrochemical impedance spectroscopy and scanning electron microscopy. The results show that the annealed microstructure of the designed alloy is fine and homogeneous, and discoloring time of the alloy in 3.5% NaCl solution is 25% longer than that of H72-1-1 alloy. The mass loss rate of the designed alloy is slightly lower than that of the H72-1-1 alloy in 3.5% NaCl solution, which can be attributed to the uniform and compact corrosion film which retards the corrosion process, and the corrosion rate is 10.3 μm/a. The charge transfer resistance Rct and the diffusion impedance Zw of the designed alloy increase much more greatly than those of the H72-1-1 alloy, which increases the corrosion process resistance.%设计并制备一种新型的抗变色仿金稀土铜合金.采用金相组织分析、中性盐雾试验、质量损失法、电化学阻抗谱和扫描电镜等手段对比研究所设计合金与现有造币用H72-1-1合金的组织结构、抗变色性能和耐蚀性能.结果表明:所设计合金退火组织细小、均匀,在3.5%NaCl溶液中保持不变色的时间较H72-1-1合金的延长了25%.在3.5%NaCl溶液中浸泡腐蚀过程中,所设计合金形成了一层均匀致密、完整的腐蚀产物膜,减缓了腐蚀的进程,其耐腐蚀性能优于H72-1-1合金的,腐蚀速率为10.3 μm/a;所设计合金电荷转移电阻Rct Warburg扩散阻抗Zw与H72-1-1合金的相比都有大幅度的提高,腐蚀过程阻力增加.

  10. A novel absolute quantitative imaging strategy of iron, copper and zinc in brain tissues by Isotope Dilution Laser Ablation ICP-MS.

    Science.gov (United States)

    Feng, Liuxing; Wang, Jun; Li, Hongmei; Luo, Xinzheng; Li, Jiao

    2017-09-01

    Isotope Dilution Laser Ablation ICP-MS (ID-LA-ICP-MS), because of its impressive spatial resolution capacity and precise means for quantification, is one of the most promising tools for in-situ quantitative imaging of trace elements in biological samples. In the ID-LA-ICP-MS strategy for tissue section, the tissue must be maintained intact during the whole sample preparation process. Therefore, how to homogeneously distribute enriched isotope spike on tissue section and how to confirm isotope equilibration between sample and spike are two important challenges. In this study, we reported a novel quantitative imaging strategy for biological thin section based on ID-LA-ICP-MS. To distribute the enriched isotope spikes on tissue section homogeneously, a "border" was constructed to make spike droplet stay on the tissue for isotope exchange. Laser ablation and isotope exchange parameters were also investigated to obtain optimal ID-LA-ICP-MS conditions. The prepared homogeneous in-house standard was used to validate the ID-LA-ICP-MS approach and good agreement with the bulk analysis was achieved. On this basis, quantitative imaging of Fe, Cu and Zn in real mouse brain of Alzheimer's Disease (AD) were measured by the improved methodology. Assessment of the method for real sample was undertaken by comparison of the LA-ICP-MS data with that obtained by micro-XRF. Moreover, comparative analysis of elements distribution and immunohistochemical markers in AD mouse brain was also carried out. The similar distributional patterns demonstrated that the proposed methodology is potential to investigate the correlation of biomarker heterogeneity and elements distribution, and may be useful to understand such complex brain mechanisms in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Current Situation of Precision Copper Tube Capacity in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Precision copper tube generally refers to seam- less copper and copper alloy production tube with high dimension precision,high surface quality,narrow performance range and meeting strict requirements on other general perform- ances such as erosion resistance.These prod-

  12. Examination of chloritization of biotite as a tool for reconstructing the physicochemical parameters of mineralization and associated alteration in the Zafarghand porphyry copper system, Ardestan, Central Iran: mineral-chemistry and stable isotope analyses

    Science.gov (United States)

    Aminroayaei Yamini, Maryam; Tutti, Faramarz; Aminoroayaei Yamini, Mohammad Reza; Ahmadian, Jamshid; Wan, Bo

    2016-12-01

    The chloritization of biotite and stable isotopes of silicate have been studied for the Zafarghand porphyry copper deposit, Ardestan, Iran. The studied area, in the central part of the Urumieh-Dokhtar magmatic belt, contains porphyry-style Cu mineralization and associated hydrothermal alteration within the Miocene (19-26 Ma, Zircon U-Pb age) granodioritc stock and adjacent andesitic to rhyodacitic volcanic rocks (ca. 56 Ma, zircon U-Pb age). The primary and secondary biotite that formed during potassic alteration in this porphyry and these volcanic host rocks are variably chloritized. Chloritization of biotite pseudomorphically is characterized by an increase in MgO, FeOt, and MnO, with decreasing in SiO2, K2O, and TiO2. Based on the Ti-in-biotite geothermometer of Henry et al. (Am Mineral 90:316-328, 2005) and Al-in-chlorite geothermometer of Cathelineau (Clay Miner 23:417-485, 1988), crystallization temperatures of primary biotite representative of magmatic conditions and later chloritization temperature range from 617° to 675 °C ± 24 °C and 177° to 346 °C, respectively. Calculated isotopic compositions of fluids that chloritized primary and secondary biotite display isotopic compositions of 1.1 to 1.7 per mil for δ18O and -19.9 to -20.5 per mil for δD consistent with meteoric water. Sericite, barren, and A-type-quartz veins from phyllic alteration were produced by mixed magmatic and meteoric water with δ18O values from -2.8 to 2.5 and δD values of ˜ -23 per mil; the narrow range of δD values of the propylitic epidote may be due to a meteoric water with δ18O values from 0.8 to 1.6 and δD values from -14.6 to -16.9 per mil.

  13. Zinc alloy enhances strength and creep resistance

    Energy Technology Data Exchange (ETDEWEB)

    Machler, M. [Fisher Gauge Ltd., Peterborough, Ontario (Canada). Fishercast Div.

    1996-10-01

    A family of high-performance ternary zinc-copper-aluminum alloys has been developed that provides higher strength, hardness, and creep resistance than the traditional zinc-aluminum alloys Zamak 3, Zamak 5, and ZA-8. Designated ACuZinc, mechanical properties comparable to those of more expensive materials make it suitable for high-load applications and those at elevated temperatures. This article describes the alloy`s composition, properties, and historical development.

  14. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  15. Filler metal alloy for welding cast nickel aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  16. Thermal, mechanics and electrical characterization of the Al-0,6%Mg-08%Si alloy refined and modified with different copper contents; Caracterizacao termica, mecanica e eletrica da liga Al-0,6% Mg-0,8% Si refinada e modificada com diferentes teores de cobre

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, E.S. [Universidade Federal do Para (UFPA), Belem, PA (Brazil)], Email: mmanufreitas@gmail.com; Marques, P.R.R.; Santos, W.L.R.; Kamizono, K.A.; Quaresma, J. Maria V.

    2009-07-01

    The aluminum, magnesium and silicon alloys form a very important group, utilized as casted form and worked alloys, especially in 6201 alloy series. These alloys show applicability on cables and wires fabrication to electrical energy transmission. The present work analyzes the copper content variation and its influence in electrical conductivity, tensile strength and in studied alloy ductility. The refined Al-0,6% Mg-0,8% Si studied alloy was modified with the following contents: [0,05; 0,10; 0,20 e 0,30]% Cu and unidirectional solidified. The test specimen were machined to 10 mm diameter and rolled to 3,98 mm, whose deformation rate was 60,2%. The obtained wires were mechanical, electrical and structural characterized and the mechanical and electrical characterization results were associated to fractures of evaluated micro cavities. The highest observation was the Cu content in alloy increases the TS, decreases electrical conductivity and increases liquidus isotherm's velocity, forming micro cavities. (author)

  17. Authenticity of Benin metalworks evaluated by inductively coupled plasma mass spectrometry and lead isotope analyses

    Science.gov (United States)

    Fabbri, E.; Soffritti, C.; Merlin, M.; Vaccaro, C.; Garagnani, G. L.

    2017-05-01

    Two metal plaques and a cock statuette belonging to a private collection and stylistically consistent with the Royal Art of Benin (Nigeria) were investigated in order to verify their authenticity. The characterization of alloys and patinas were carried out by inductively coupled plasma mass spectrometry, optical microscopy, scanning electron microscopy and energy dispersion spectroscopy, and X-Ray diffraction spectrometry. Furthermore, thermal ionization mass spectrometry was used to assess the abundances of lead isotopes and to attempt a dating by the measurement of 210Pb/204Pb ratio. The results showed that all three artefacts were mainly composed of low lead-brass alloys, with relatively high concentrations of zinc, antimony, cadmium and aluminum in the solid copper solution. Microstructures were mostly dendritic, typical of as-cast brasses, and characterized by recrystallized non-homogeneous twinned grains in areas corresponding to surface decorations, probably due to multiple hammering steps followed by partial annealing treatments. The matrix was composed of a cored α-Cu solid solution together with non-metallic inclusions, lead globules and Sn-rich precipitates in interdendritic spaces. On the surface of all metalworks, both copper and zinc oxides, a non-continuous layer of sulphur-containing contaminants and chloride-containing compounds, were identified. The lead isotope results were consistent with brasses produced shortly before or after 1900 CE. Overall, the data obtained by different techniques supported the hypothesis that the three artefacts were not authentic.

  18. Copper hypersensitivity.

    Science.gov (United States)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-10-01

    The world production of copper is steadily increasing. Although humans are widely exposed to copper-containing items on the skin and mucosa, allergic reactions to copper are only infrequently reported. To review the chemistry, biology and accessible data to clarify the implications of copper hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common. As a metal, it possesses many of the same qualities as nickel, which is a known strong sensitizer. Cumulative data on subjects with presumed related symptoms and/or suspected exposure showed that a weighted average of 3.8% had a positive patch test reaction to copper. We conclude that copper is a very weak sensitizer as compared with other metal compounds. However, in a few and selected cases, copper can result in clinically relevant allergic reactions.

  19. Energy and materials flows in the copper industry

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  20. Energy and materials flows in the copper industry

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  1. Effect of Copper and Bronze Addition on Corrosion Resistance of Alloyed 316L Stainless Steel Cladded on Plain Carbon Steel by Powder Metallurgy

    Institute of Scientific and Technical Information of China (English)

    Wenjue CHEN; Yueying WU; Jianian SHEN

    2004-01-01

    A sandwich structure with cladding alloyed 316L stainless steel on plain carbon steel was prepared by means of powder metallurgy (PM) processing. Electrolytic Cu and prealloyed bronze (95Cu wt pct, 5Sn wt pct) were added in different contents up to 15% into the surface cladded 316L layers and the effect of alloying concentrations on the corrosion resistance of the 316L cladding layers was studied. The corrosion performances of the cladding samples were studied by immersion tests and potentio-dynamic anodic polarization tests in H2SO4 and FeCl3 solutions. Both 316L and alloyed 316L surface layers with 1.0 mm depth produced by PM cladding had an effect to improve corrosion resistance in H2SO4 and FeCl3 solutions. Small Cu and bronze addition (4%) had a positive effect in H2SO4 and FeCl3 solutions. 4% Cu alloyed 316L surface layer produced by PM cladding showed similar anodic polarization behaviour to the 316L cladding layer in H2SO4 and FeCl3 solutions.

  2. Initiation and propagation of cleared channels in neutron-irradiated pure copper and a precipitation hardened CuCrZr alloy

    DEFF Research Database (Denmark)

    Edwards, D.J.; Singh, B.N.; Bilde-Sørensen, Jørgen

    2005-01-01

    The formation of ‘cleared’ channels in neutron irradiated metals and alloys have been frequently reported for more than 40 years. So far, however, no unambiguous and conclusive evidence showing as to how and where these channels are initiated has emerged. In the following we present experimental ...

  3. 铜基化学镀Ni-P-B合金工艺及镀层性能研究%Study on Technology and Performance of Electroless Ni-P-B Alloy Coating on Copper Substrate

    Institute of Scientific and Technical Information of China (English)

    石建华; 王钰蓉; 王文昌; 刘智超; 陈智栋

    2012-01-01

    Ni-P-B alloy coating with outstanding quality was obtained by introducing trace boron into Ni-P alloy. The optimum processing formulation of electroless Ni-P-B alloy was determined [25 g/L NiSO4 · 6H2O,30 g/L NH2CH2COOH,20 g/L CH3CH(OH)COOH,25 g/L NaH2PO2,0.2 g/L KBH4,1 mg/L CdSO4 · 8H2O, Ph =12,θ=69~71℃] by investigating the influences of complexing agent (NH2CH2COOH and CH3CH( OH)COOH) and reducer (NaH2PO2 and KBH4) on plating rate and component concentration. Corrosion resistance, solderability and adhesive strength of the coating were also tested. Results showed that the Ni-P-B ternary alloy coating was of better corrosion-resistance,solderability and excellent bonding with copper substrate.%通过向Ni-P二元合金镀层中引入微量B元素,制备了性能优异的Ni-P-B三元合金镀层.研究了镀液中络合剂甘氨酸和乳酸、还原剂次磷酸钠和硼氢化钾对镀速、镀层成分的影响,确定镀液的最佳配方及工艺条件为25 g/L NiSO4·6H2O,30 g/L NH2CH2COOH,20 g/L CH3CH(OH) COOH,25 g/L NaH2PO2,0.2 g/L KBH4,1 mg/L CdSO4·8H2O,pH=12,θ=69~71℃.并对在最佳工艺条件下获得的镀层进行了耐腐蚀性、可焊性及与基体结合力的测试.结果表明,该镀层具有较好的抗腐蚀性和可焊性,并且与铜基体结合牢固.

  4. The engineering sizing of the packed desorption column of hydrogen isotopes from Pb–17Li eutectic alloy. A rate based model using experimental mass transfer coefficients from a Melodie loop

    Energy Technology Data Exchange (ETDEWEB)

    Linek, V., E-mail: linekv@vscht.cz [Prague Institute of Chemical Technology, Department of Chemical Engineering, CZ-166 28 Prague 6 (Czech Republic); Košek, L. [Research Centre Řež, CZ-250 68 Husinec-Řež (Czech Republic); Moucha, T.; Rejl, F.J.; Kordač, M.; Valenz, L.; Opletal, M. [Prague Institute of Chemical Technology, Department of Chemical Engineering, CZ-166 28 Prague 6 (Czech Republic)

    2014-11-15

    Highlights: • The model of hydrogen isotopes desorption from lead lithium alloy in packed column is presented. • Mass transfer coefficient k{sub L}a are evaluated from Alpy's Melodie loop experiments. • Packing height and efficiency of packed columns in DEMO plant for DCLL and HCLL are evaluated. • Effects of liquid phase axial dispersion, surface tension and wettability of packing are evaluated. • Effect of flow rate of the purge gas on packing height and desorption efficiency is evaluated. - Abstract: The model of the desorption of hydrogen isotopes from lead lithium alloy in a packed column is derived from the first principles using the plug flow in the liquid phase either the plug flow or ideal mixing in the gas phases. Sievert's law of non-linear equilibrium is followed. The volumetric mass transfer coefficient k{sub L}a and its dependence on the liquid metal flow rate are evaluated on the basis of the Melodie loop experiments. The presented model is used for evaluation of the minimum flow rate of the purge gas for which the concentration of the isotope in the gas leaving the column is at its highest, while the driving force of the interfacial transport of the isotope is still not reduced and the tritium desorption efficiency is therefore retained. The potential effect of the axial dispersion in the gas and liquid phase is evaluated. Highlighted are the issues of the optimum packing geometric surface area, above which the efficiency starts to decrease, and of the role of the surface tension and the contact angle with regard to the wettability of the packing. On the basis of the findings related to these factors, the Mellapak 500 Y and Mellapak packings with flat surfaces are recommended for the tests aiming to intensify the tritium desorption efficiency in the packed columns. The models were used for the engineering sizing of the packed columns in two breeding blanket concepts for the DEMO plant – utilizing DCLL (dual coolant lead lithium

  5. Copper transport.

    Science.gov (United States)

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats.

  6. The shielding against radiation produced by powder metallurgy with tungsten copper alloy applied on transport equipment for radio-pharmaceutical products

    Energy Technology Data Exchange (ETDEWEB)

    Cione, Francisco C.; Sene, Frank F.; Souza, Armando C. de; Betini, Evandro G.; Rossi, Jesualdo L., E-mail: fceoni@hotmail.com, E-mail: ffsene@hotmail.com, E-mail: armandocirilo@yahoo.com, E-mail: evandrobetini@gmail.com, E-mail: jelrossi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rizzuto, Marcia A., E-mail: marizzutto@if.usp.br [Universidade de Sao Paulo (IF/USP), SP (Brazil). Instituto de Fisica

    2015-07-01

    Safety is mandatory on medicine radiopharmaceutical transportation and dependent on radiation shielding material. The focus of the present work is to minimize the use of harmful materials as lead and depleted uranium usually used in packages transportation. The tungsten-copper composite obtained by powder metallurgy (PM) is non-toxic. In powder metallurgy the density and the porosity of the compacted parts depends basically upon particle size distribution of each component, mixture, compacting pressure and sintering temperature cycle. The tungsten-copper composite, when used for shielding charged particles, X-rays, gamma photons or other photons of lower energy require proper interpretation of the radiation transport phenomena. The radioactive energy reduction varies according to the porosity and density of the materials used as shielding. The main factor for radiation attenuation is the cross section value for tungsten. The motivation research factor is an optimization of the tungsten and cooper composition in order to achieve the best linear absorption coefficient given by equation I{sub (x)} = I{sub 0}e{sup (-ux)}. Experiments were conducted to quantify the effective radiation shielding properties of tungsten-copper composite produced by PM, varying the cooper amount in the composite. The studied compositions were 15%, 20% and 25% copper in mass. The Compaction pressure was 270 MPa and the sintering atmosphere was in 1.1 atm in N{sub 2}+H{sub 2}. The sintering temperature was 980 deg C for 2 h. The linear absorption coefficient factor was similar either for the green and the sintered compacts, due the amount of porosity did not affect the radiation attenuation. Thus the sintered was meant for size reduction and mechanical properties enhancement. (author)

  7. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  8. Atomic-absorption determination of copper and zinc in ferroboron

    Energy Technology Data Exchange (ETDEWEB)

    Malinina, R.D.; Toropova, L.S.

    1986-03-01

    This paper reports on the development of an atomic-absorption method for determining copper and zinc impurities in ferroboron, used for alloying steels and special alloys. The work was done on a Model 503 Perkin-Elmer atomic absorption spectrophotometer. Effects of perchloric acid and alloy macrocomponents on zinc and copper atomization were studied. Results by atomic absorption spectrometry were compared with those found by polarography, using a PPT-6016 ac polarograph. Compared with the GOST 14021.7-78 method for determining copper, the proposed procedure is more rapid and decreases the detection limit from 1 X 10/sup -2/ to 5 X 10/sup -3/ wt. %.

  9. Recent results on the neutron irradiation of ITER candidate copper alloys irradiated in DR-3 at 250{degrees}C to 0.3 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.J. [Pacific Northwest National Lab., Richland, WA (United States); Singh, B.N.; Toft, P.; Eldrup, M.

    1997-04-01

    Tensile specimens of CuCrZr and CuNiBe alloys were given various heat treatments corresponding to solution anneal, prime-ageing and bonding thermal treatment with additional specimens re-aged and given a reactor bakeout treatment at 350{degrees}C for 100 h. CuAl-25 was also heat treated to simulate the effects of a bonding thermal cycle on the material. A number of heat treated specimens were neutron irradiated at 250{degrees}C to a dose level of {approximately}0.3 dpa in the DR-3 reactor as Riso. The main effect of the bonding thermal cycle heat treatment was a slight decrease in strength of CuCrZr and CuNiBe alloys. The strength of CuAl-25, on the other hand, remained almost unaltered. The post irradiation tests at 250{degrees}C showed a severe loss of ductility in the case of the CuNiBe alloy. The irradiated CuAl-25 and CuCrZr specimens exhibited a reasonable amount of uniform elongation, with CuCrZr possessing a lower strength.

  10. Role(s) of pretreatment, inhibitors, and other process steps that effect surface composition on the under-paint corrosion of an aluminum-copper-magnesium alloy 2024-T3

    Science.gov (United States)

    Little, Daryl A.

    2006-12-01

    Under-paint corrosion is a surface corrosion that grows under a coating. The composition of an aluminum alloy, particularly Cu and Fe content, has a direct and dominant effect on the growth rate of filiform corrosion (FFC) and scribe-creep. The Cu and Fe content leads to formation of galvanic cells between intermetallic compounds (IMCs) or replated Cu and the aluminum-rich matrix. However, there is no model which describes scribe-creep behavior and can be used to predict the effect of material and surface pretreatment parameters such as inhibitors, chemical surface pretreatment, and alloy microstructure. Surface pretreatments and aging which control the amount of surface copper and alter IMC distributions decrease the growth rate of scribe-creep. Scribe-creep was observed to be enhanced by temperature, regardless of surface pretreatment, as well as by artificial aging and surface pretreatments. Scribe-creep was accelerated by pretreatments that increased surface copper or left a high capacity for Cu-replating such as Cu-containing IMCs. Pretreatment was rationalized to decrease the cathodic oxygen reduction reaction (ORR) rate, which supports anodic undercutting at the head of the corrosion front. In this galvanic corrosion mechanism, the scribe-creep rate will be proportional to the rate of the anodic dissolution at the head. This, in turn, is proportional to the galvanic corrosion rate. Both charge transfer controlled and mass transport controlled cathodic reaction rates occurred at the fastest rates at the scratch and tail. The charge transfer controlled cathodic reaction rate was directly proportional to the surface coverage of Cu (thetaCu) while the mass transport limited rate was a complex nonlinear function of thetaCu . Based on enhanced understanding a galvanic couple model that describes scribe-creep rates in terms of the relevant processes at the tail and head as well as ohmic voltage between the head and tail was developed in order to explain scribe

  11. Study of Rapid Determination of Low-content Silver in Copper Alloy%铜合金中低含量银的快速测定

    Institute of Scientific and Technical Information of China (English)

    范珍媛

    2015-01-01

    The paper presented rapid determination method of low -content silver (0.03% ~0.60%)in copper al oy,and it pointed out that the method has the advantages of rapid reaction,energy efficiency,convenient operation,environmental protection.%文章介绍了铜合金中低含量银(0.03%~0.60%)的快速测定方法,指出该方法快速、节能降耗、操作简便且环保。

  12. Study of micronutrients cycling in boreal forest of Central Siberia on continuous permafrost using Copper (Cu) and zinc (Zn) isotope fractionation

    Science.gov (United States)

    Viers, Jérôme; Prokushkin, Anatoly; Pokrovsky, Oleg; Kirdyanov, Anatoly; Chabaux, François; Oliva, Priscia

    2010-05-01

    Boreal forests mainly located between the latitudes 46°N and 72°N play a key role in regulating the global carbon cycle and climate of the Earth. These forests store about 140 gigatons of carbon (Gt C) in above ground biomass and 180 Gt C in soil organic matter that represents about 25% and 12% of the global amounts (Tarnocai et al., 2009). Within the context of global warming, forested permafrost regions appear to be very sensitive and are likely to be deeply modified in the near future due to the increase of soil temperature and the active layer thickness, as well as the northward shift of the vegetation. Before the quantitative modelling of the evolution of these ecosystems face to the climate change and their reciprocal influence on the whole Earth system become available, we have to constrain the main processes and parameters that control elements transfer between and within mineral and organic reservoirs in order to calculate the associated element fluxes. Indeed, the hydro- and biogeochemical functioning of these boreal environments is still poorly understood. This study will present new results on two important metal micro-nutrient and toxicants (Cu and Zn) concentrations in soil and plants and Zn and Cu isotopes fractionation data we acquired within the pilot site of Tura (Central Siberia, Yenissey basin). This pilot site is located in the drainage area of Nizhnaya Tunguska River, the largest tributary of the Yenissey River, on continuous permafrost of 100 to 300 m thickness. This watershed is located in the field of Central Siberia basalts ages 248+/-20 millions years. The landscape morphology presents north-facing slopes and south facing slopes separated by riparian zones. These environments exhibit peculiarities in terms of hydrological regime, active soil depth, that is, seasonal thawing permafrost depth, nutrients availability, total biomass and plants community distribution (Prokushkin et al., 2007). This region is dominated by deciduous Dahurian

  13. Penning-trap mass spectrometry of neutron-rich copper isotopes for probing the Z = 28 and N = 50 shell closures

    CERN Multimedia

    Manea, V

    We propose to perform a Penning-trap mass measurement of $^{79}$Cu. This exotic N = 50 isotone is the last frontier before the doubly-magic $^{78}$Ni and will greatly improve our knowledge of shell evolution. In the same run, we propose $^{77-78}$Cu mass measurements, as well as the search for a possible isomer in $^{76m}$Cu. The data will help to clarify the structure of the odd proton in the Cu isotopes, the influence on the Z = 28 proton core of the νg$_{9/2}$ orbital filling and the impact of the proton-neutron residual interaction on the strength of the N = 50 shell closure.

  14. Application of Isotope Dilution Mass Spectrometry for Reference Measurements of Cadmium. Copper, Mercury, Lead, Zinc and Methyl Mercury in Marine Sediment Sample

    Directory of Open Access Journals (Sweden)

    Vasileva E.

    2013-04-01

    Full Text Available Marine sediment was selected as a test sample for the laboratory inter-comparison studies organized by the Environment Laboratoryes of the International Atomic Energy. The analytical procedure to establish the reference values for the Cd, Cu, Hg, Methyl Hg, Pb and Zn amount contents was based on Isotope Dilution Inductively Coupled Plasma-Mass Spectrometry (ID ICP-MS applied as a primary method of measurement..The Hg and Methyl Hg determination will be detailed more specifically because of the problems encountered with this element, including sample homogeneity issues, memory effects and possible matrix effects during the ICP- MS measurement stage. Reference values, traceable to the SI, with total uncertainties of less than 2% relative expanded uncertainty (k=2 were obtained for Cd, Cu, Zn and Pb and around 5% for Hg and CH3Hg.

  15. Nuclear moments, spins and charge radii of copper isotopes from N=28 to N=50 by collinear fast-beam laser spectroscopy

    CERN Multimedia

    2002-01-01

    We aim at establishing an unambiguous spin determination of the ground and isomeric states in the neutron rich Cu-isotopes from A=72 up to A=78 and to measure the magnetic and quadrupole moments between the N=28 and N=50 shell closures. This study will provide information on the double-magicity of $^{56}$Ni and $^{78}$Ni, both at the extremes of nuclear stability. It will provide evidence on the suggested inversion of ground state spin around A$\\approx$74, due to the monopole migration of the $\\pi f_{5/2}$ level. The collinear laser spectroscopy technique will be used, which furthermore provides information on the changes in mean square charge radii between both neutron shell closures, probing a possible onset of deformation in this region.

  16. Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China

    Science.gov (United States)

    Leng, Cheng-Biao; Zhang, Xing-Chun; Hu, Rui-Zhong; Wang, Shou-Xu; Zhong, Hong; Wang, Wai-Quan; Bi, Xian-Wu

    2012-10-01

    The Xuejiping porphyry copper deposit is located in northwestern Yunnan Province, China. Tectonically, it lies in the southern part of the Triassic Yidun island arc. The copper mineralization is mainly hosted in quartz-dioritic and quartz-monzonitic porphyries which intruded into clastic-volcanic rocks of the Late Triassic Tumugou Formation. There are several alteration zones including potassic, strong silicific and phyllic, argillic, and propylitic alteration zones from inner to outer of the mineralized porphyry bodies. The ages of ore-bearing quartz-monzonitic porphyry and its host andesite are obtained by using the zircon SIMS U-Pb dating method, with results of 218.3 ± 1.6 Ma (MSWD = 0.31, N = 15) and 218.5 ± 1.6 Ma (MSWD = 0.91, N = 16), respectively. Meanwhile, the molybdenite Re-Os dating yields a Re-Os isochronal age of 221.4 ± 2.3 Ma (MSWD = 0.54, N = 5) and a weighted mean age of 219.9 ± 0.7 Ma (MSWD = 0.88). They are quite in accordance with the zircon U-Pb ages within errors. Furthermore, all of them are contemporary with the timing of the Garzê-Litang oceanic crust subduction in the Yidun arc. Therefore, the Xuejiping deposit could be formed in a continental margin setting. There are negative ɛNd(t) values ranging from -3.8 to -2.1 and relatively high initial 87Sr/86Sr ratios from 0.7051 to 0.7059 for the Xuejiping porphyries and host andesites. The (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t values of the Xuejiping porphyries and host andesites vary from 17.899 to 18.654, from 15.529 to 15.626, and from 37.864 to 38.52, respectively, indicative of high radiogenic Pb isotopic features. In situ Hf isotopic analyses on zircons by using LA-MC-ICP-MS exhibit that there are quite uniform and slightly positive ɛHf(t) values ranging from -0.2 to +3.2 (mostly between 0 and +2), corresponding to relatively young single-stage Hf model ages from 735 Ma to 871 Ma. These isotopic features suggest that the primary magmas of the Xuejiping porphyries and

  17. Calculation and measurement of helium generation and solid transmutations in Cu-Zn-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Oliver, B.M.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States); Muroga, T. [National Inst. of Fusion Science, Nagoya (Japan)

    1998-03-01

    A method was recently proposed by Garner and Greenwood that would allow the separation of the effects of solid and gaseous transmutation for Cu-Zn-Ni alloys. Pure copper produces zinc and nickel during neutron irradiation. {sup 63}Cu transmutes to {sup 64}Ni and {sup 64}Zn, in about a 2-to-1 ratio, and {sup 65}Cu transmutes to {sup 66}Zn. The {sup 64}Zn further transmutes to {sup 65}Zn which has been shown to have a high thermal neutron (n,{alpha}) cross-section. Since a three-step reaction sequence is required for natural copper, the amount of helium produced is much smaller than would be produced for the two-step, well-known {sup 58}Ni (n,{gamma}) {sup 59}Ni (n,{alpha}) reaction sequence. The addition of natural Zn and Ni to copper leads to greatly increased helium production in neutron spectra with a significant thermal component. Using a suitable Cu-Zn-Ni alloy matrix and comparative irradiation of thermal neutron-shielded and unshielded specimens, it should be possible to distinguish the separate influences of the solid and gaseous transmutants. Whereas helium generation rates have been previously measured for natural nickel and copper, they have not been measured for natural Zn or Cu-Ni-Zn alloys. The (N,{alpha}) cross section for {sup 65}Zn was inferred from helium measurements made with natural copper. By comparing helium production in Cu and Cu-Zn alloys, this cross section can be determined more accurately. In the current study, both the solid and helium transmutants were measured for Cu, Cu-5Ni, Cu-3.5Zn and Cu-5Ni-2Zn, irradiated in each of two positions in the HFIR JP-23 test. Highly accurate helium measurements were performed on these materials by isotope dilution mass spectrometry using a facility that was recently moved from Rockwell International to PNNL. It is shown that both the helium and solid transmutants for Cu-zn-Ni alloys can be calculated with reasonable certainty, allowing the development of a transmutation experiment as proposed by

  18. Effects of Rolling Reduction and Strength of Composed Layers on Bond Strength of Pure Copper and Aluminium Alloy Clad Sheets Fabricated by Cold Roll Bonding

    OpenAIRE

    Yoji Miyajima; Kotaro Iguchi; Susumu Onaka; Masaharu Kato

    2014-01-01

    Three types of clad sheets, Cu/Al, Cu/AA5052, and Cu/AA5083, were produced by cold roll bonding with the rolling reduction of 50% and 75%. Tensile shear tests which give tensile shear strength were performed in order to assess the bond strength. Scanning electron microscopy was performed on the fractured interface produced by the tensile shear tests, which suggests that the fracture occurs within the Al alloy layer. The tensile shear strengths considering the area fraction of deposit of Al al...

  19. 二溴对甲偶氮羧光度法测定Cu-C0合金中钴%Spectrophotometric determination of cobalt in copper-cobalt alloy with Dibromomethyl carboxyazo

    Institute of Scientific and Technical Information of China (English)

    钟国秀; 杨浩义; 晏高华

    2011-01-01

    The chromogenic reaction between the reagent Dibromomethyl carboxyazo and cobalt was studied. In ammonium citrate-ammonia solution at pH 10. 2, cobalt reacted with Dibromomethyl carboxyazo, forming a blue complex which exhibited an absorption maximum at 660 nm with an apparent molar absorptivity of 1. 77 × 104 L · mol-1 · cm-1, Beer's law was obeyed in the range of 0-3. 2 mg/L for cobalt. The proposed method has been applied to determine cobalt in copper-cobalt alloy with RSD (n=5) smaller than 2%. The results were consistent with those obtained by nitroso-R salt spectrophotometry.%研究了显色剂二溴对甲偶氮羧与钴的显色反应.pH 10.2的柠檬酸铵-氨水溶液中,钴与二溴对甲偶氮羧反应形成蓝色络合物,最大吸收波长为660 nm,表观摩尔吸光系数为1.77×104L·mol-1·cm-1,钴量在0~3.2 mg/L范围内符合比尔定律.方法用于Cu-Co合金中钴的测定,相对标准偏差小于2%,结果与亚硝基R盐光度法一致.

  20. Study of the bipolar electrolysis of the tritiated water applied to the hydrogen isotopes separation by electrochemical permeation threw Pd-Ag alloy membranes; Etude de l'electrolyse bipolaire de l'eau tritiee appliquee a la separation des isotopes de l'hydrogene par permeation electrochimique a travers des membranes d'alliage PD-AG

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, S

    2000-07-01

    The objective of the study is to enrich waters of poor tritium concentration, by electrolysis in the same time of an hydrogen emission of low activity. In this framework the hydrogen electrochemical permeation threw Pd-Ag alloy membranes has been used. The first part of the study concerns the hydrogen and the deuterium diffusion threw these membranes. The activation and the thermal treatments influence have been studied. A relation between the membrane microstructure and the diffusion mechanism has been proposed. The second part of the study is devoted to the hydrogen gate mechanism determination in the membrane by impedance spectroscopy. The last part concerns the determination of the isotopic separation factor hydrogen-deuterium. Experimental results agree the calculated theoretical data. The operation of an operational membrane cell has been simulated and the process feasibility has been proved. (A.L.B.)

  1. Copper Recycling in the United States in 2004

    Science.gov (United States)

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).

  2. High toughness-high strength iron alloy

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R. (Inventor)

    1980-01-01

    An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment.

  3. Chemical and stable isotopic geochemical characteristics of ore-forming fluid of the Shizishan copper and gold ore-field, Tongling, China%铜陵狮子山铜金矿田成矿流体成分及稳定同位素地球化学

    Institute of Scientific and Technical Information of China (English)

    陆三明; 徐晓春; 谢巧勤; 楼金伟; 储国正; 熊亚平

    2007-01-01

    Shizishan ore-field is a nonferrous and noble metal ore-field which is most rich in copper and gold. There are many types of fluid inclusions in minerals of the deposits. The homogeneous temperatures and the salinities of the fluid inclusions in main mineralization stages have wide ranges, while the different types of the fluid inclusions existed together and their homogeneous temperatures are almost identical in the same mineralization stage, which indicates that the ore-forming process has great relation with the fluid boiling. The gas and liquid chemical compositions and the carbon, hydrogen and oxygen isotopic compositions of the fluid inclusions show that the ore-forming fluids of copper-gold deposits have the same characteristics and evolution tendency, which reflects that the ore-forming material mainly came from the magmatism. The stratigraphic component and the meteoric water may mix in oreforming fluids in the later mineralization stages. Furthermore, with the fall of the ore-forming temperature the ratios of water and rock decreased. The characteristics of chemical composition and carbon isotopic composition of fluid inclusions indicate that CH4 may play an important role for separating copper and gold in the ore-forming process.

  4. Creep-fatigue deformation behaviour of OFHC-copper and CuCrZr alloy with different heat treatments and with and without neutron irradiation

    DEFF Research Database (Denmark)

    Singh, B.N.; Li, M.; Stubbins, J.F.

    2005-01-01

    The creep-fatigue interaction behaviour of a precipitation hardened CuCrZr alloy was investigated at 295 and 573 K. To determine the effect of irradiation a number of fatigue specimens were irradiated at 333 and 573 K to a dose level in the range of 0.2 -0.3 dpa and were tested at room temperature...... with a frequency of 0.5 Hz. Holdtimes of up to 1000 seconds were used. Creep-fatigue experiments were carried out using strain, load and extension controlled modesof cyclic loading. In addition, a number of “interrupted” creep-fatigue tests were performed on the prime aged CuCuZr specimens in the strain controlled...

  5. Unusual dealloying effect in gold/copper alloy thin films: the role of defects and column boundaries in the formation of nanoporous gold.

    Science.gov (United States)

    El Mel, Abdel-Aziz; Boukli-Hacene, Farah; Molina-Luna, Leopoldo; Bouts, Nicolas; Chauvin, Adrien; Thiry, Damien; Gautron, Eric; Gautier, Nicolas; Tessier, Pierre-Yves

    2015-02-04

    Understanding the dealloying mechanisms of gold-based alloy thin films resulting in the formation of nanoporous gold with a sponge-like structure is essential for the future design and integration of this novel class of material in practical devices. Here we report on the synthesis of nanoporous gold thin films using a free-corrosion approach in nitric acid applied to cosputtered Au-Cu thin films. A relationship is established between the as-grown Au-Cu film characteristics (i.e., composition, morphology, and structure) and the porosity of the sponge-like gold thin films. We further demonstrate that the dealloying approach can be applied to nonhomogenous Au-Cu alloy thin films consisting of periodic and alternate Au-rich/Au-poor nanolayers. In such a case, however, the dealloying process is found to be altered and unusual etching stages arise. Thanks to defects and column boundaries playing the role of channels, the nitric acid is found to quickly penetrate within the films and then laterally (i.e., parallel to the film surface) attacks the nanolayers rather than perpendicularly. As a consequence to this anisotropic etching, the Au-poor layers are etched preferentially and transform into Au pillars holding the Au-rich layers and preventing them against collapsing. A further exposure to nitric acid results in the collapsing of the Au-rich layers accompanied by a transition from a multilayered to a sponge-like structure. A scenario, supported by experimental observations, is further proposed to provide a detailed explanation of the fundamental mechanisms occurring during the dealloying process of films with a multilayered structure.

  6. China Resumes Processing Trade of Copper Concentrate

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>On December 31,2008,China’s Ministry of Commerce and General Administration of Cus- toms issued its year-2008 No.121 announce- ment,saying it will adjust the forbidden cate- gory of processing trade,which includes non- ferrous metal products such as copper concen- trate,nickel concentrate,cobalt concentrate, refined copper,nickel and nickel alloy.The above products will be exempt from being for- bidden to process starting from Feb.1,2009.

  7. The intermetallic formation and growth kinetics at the interface of near eutectic tin-silver-copper solder alloys and gold/nickel metallization

    Science.gov (United States)

    Gao, Mao

    The formation of a one micron thick layer of an intermetallic compound between a solder alloy and a metallic substrate generally constitutes a good solder joint in an electronic device. However, if the compound grows too thick, and/or if multiple intermetallic compounds form, poor solder joint reliability may result. Thus significant interest has been focused on intermetallic compound phase selection and growth kinetics at such solder/metal interfaces. The present study focuses on one such specific problem, the formation and growth of intermetallic compounds at near eutectic Sn-Ag-Cu solder alloy/Ni interfaces. Sn-3.0Ag-0.5Cu solder was reflowed on Au/Ni substrates, resulting in the initial formation and growth of (CuNi)6Sn 5 at Sn-3.0Ag-0.5Cu /Ni interfaces. (NiCu)3Sn4 formed between the (CuNi)6Sn5 and the Ni substrate when the concentration of Cu in the liquid SnAgCu solder decreased to a critical value which depended upon temperature: 0.37, 0.31 and 0.3(wt.%) at reflow temperatures of 260°C, 245°C and 230°C respectively. The growth rate of (CuNi)6Sn5 was found to be consistent with extrapolations of a diffusion limited growth model formulated for lower temperature, solid state diffusion couples. The long range diffusion of Cu did not limit growth rates. The spalling of (CuNiAu)6Sn5 from (NiCu)3 Sn4 surfaces during reflow was also examined. When the Cu concentration in the solder decreased to approximately 0.28wt.%, the (Cu,Ni,Au) 6Sn5 was observed to spall. Compressive stress in (CuNiAu) 6Sn5 and weak adhesion between (CuNiAu)6Sn 5 and (NiCu)3Sn4 was found to cause this effect.

  8. 影响镍铜合金电镀层成分的因素%Factors affecting the composition of electroplated nickel-copper alloy coating

    Institute of Scientific and Technical Information of China (English)

    王瑞永; 黄中省

    2011-01-01

    研究了以柠檬酸钠为配位剂的硫酸盐体系中影响镍铜合金镀层成分的因素.镀液基本组成及工艺条件为:六水合硫酸镍100 g/L,五水合硫酸铜10g/L,柠檬酸钠70g/L,硼酸30g,氯化钠6g/L,温度55℃C,pH 4.5,电流密度3A/dm2.结果表明:镀层中铜含量随主盐硫酸铜和配位剂柠檬酸钠含量的增大而增加,随电流密度和pH的增大而减少.单独加入丁炔二醇或糖精,可使镀层中铜含量升高,加入明胶则镀层铜含量下降.%The factors affecting the composition of Ni-Cu alloy electroplated from a sulfate bath with sodium citrate as complexing agent were studied. The bath composition and process conditions are as follows: NiSO4·6H2O 100 g/L, CuSO4·5H2O 10 g/L, sodium citrate 70 g/L, H3BO3 30 g/L, NaCl 6 g/L, temperature 55 °C, pH 4.5, and current density 3 A/dm2. The results showed that the Cu content of Ni-Cu alloy deposit is increased with increasing CuSO4 and sodium citrate contents in bath or by the addition of butynediol or saccharin, but decreased with increasing current density and pH or by the addition of gelatin.

  9. Characteristics of stable isotopic compositions and its geological significances of the Yangla copper deposit, northwestern Yunnan Province%滇西北羊拉铜矿床稳定同位素特征及其地质意义

    Institute of Scientific and Technical Information of China (English)

    陈思尧; 顾雪祥; 程文斌; 章永梅; 郑硌; 彭义伟; 刘瑞萍

    2013-01-01

    The Yangla copper deposit is locate in the middle part of the Jinshajiang belt. It was formed due to the westward subduction of the Jinshajiang oceanic basin and collisional orogeny during Mid-Late Triassic. Ore bodies are typically layered or bedded and closely related to the acidic plutons. Ore bodies are trinity controlled by the pluton, stratum and structure and have obvious feature of the skarn deposit. The stable isotopic compositions of marble and various kinds of minerals in different stages have been analyzed respectively. The results show that the δ18OSMOW values of the garnet which is the major mineral of the skarn is 6.1‰, indicating that the oxygen isotopic compositions of skarn may inherit directly from the acidic plutons. The δD values of the quartz in main mineralization are varied from — 112‰ ~-77‰ and the δ180H2O values are varied from -2. 42‰ ~4. 85‰, which reflects that the main compositions of ore-forming fluids was magmatic water and accompanied with input of meteoric water. The δ13 CPDB values of — 5.1‰ ~ — 1. 7‰ and the δ18OSMOW values of 12. 7‰ ~20.1‰ for the calcite shows that the carbon and oxygen of calcite are sourced mainly from magma and less from marble. The δ13CPDB values of 3. 6‰ ~5. 0‰ and the δ18OSMOW values of 21. 2‰ -25. 4‰ for marble indicate that the marble was re-crystallized from the oceanic carbonate. And as the distance between marble and ore-body decreases, the δ13C values and δ18O values have a trend reducing constantly, which shows that during the process which the ore-forming fluids metasomatiled marble, the fluids with low δ13C values and δ18O values occurred isotope exchange with marble and made the δ13C values and δ18 0 values of marble decrease, and the nearer distance between marble and ore-body was, the more intense the isotope exchange was. The δ34S value of ore sulfides varied from -6. 9‰ ~ 2. 5‰ and were focused from - 2‰ ~ 1‰, showing that the sulfur of

  10. Microstructure and Aging of Powder-Metallurgy Al Alloys

    Science.gov (United States)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  11. Bulk Copper Electrodeposition on Gold Imaged by In Situ STM

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Møller, Per

    1996-01-01

    Electrochemical measurements were carried out simultaneously with acquisition of in situ STM images of copper electrodeposition at low cathodic overpotentials and subsequent dissolution from the underlying polycrystalline gold surfaces. The morphologies of the copper deposits were examined...... for correlation with features of the current-voltage diagram. Copper growth is by nucleation and formation of 3D islands. During the initial stages of bulk copper growth the potentials were fixed at selected values and a balance observed between formation of polycrystalline copper nuclei and of copper crystals....... After the first cycle of copper deposition and dissolution the morphology of the polycrystalline gold surface had apparently changed into a recrystallized phase of a copper-gold alloy. At a given stage of the cycle the potential of the electrode was found to depend linearly on the tip potential...

  12. Isolation and Characterization of Bacteria Resistant to Metallic Copper Surfaces▿ †

    OpenAIRE

    Espírito Santo, Christophe; Morais, Paula Vasconcelos; Grass, Gregor

    2010-01-01

    Metallic copper alloys have recently attracted attention as a new antimicrobial weapon for areas where surface hygiene is paramount. Currently it is not understood on a molecular level how metallic copper kills microbes, but previous studies have demonstrated that a wide variety of bacteria, including Escherichia coli, Staphylococcus aureus, and Clostridium difficile, are inactivated within minutes or a few hours of exposure. In this study, we show that bacteria isolated from copper alloy coi...

  13. Radiocopper for the imaging of copper metabolism.

    Science.gov (United States)

    Hueting, Rebekka

    2014-04-01

    The redox-active transition metal copper is an essential trace element for growth and development and serves as a structural or catalytic cofactor for many enzymes in a range of physiological processes. Mammalian copper homeostasis is tightly regulated, and an imbalance in copper metabolism is implicated in various pathological disorders. Radioactive copper isotopes, in particular (64) Cu (t1/2  = 12.7 h) and (67) Cu (t1/2  = 62.01 h), have made important contributions to the understanding of copper metabolism in health and disease. This review gives a brief account of how radiolabelled copper(II) salts and bioreductive copper complexes have been used to trace copper uptake, transport and efflux in vitro and in vivo. Recently, positron emission tomography (PET) has emerged as a noninvasive tool to image copper metabolism in living subjects and (64) Cu-PET is investigated for the study of copper-related neurological disorders, genetic diseases and cancer.