WorldWideScience

Sample records for copper corrosion test

  1. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo [Division of Surface and Corrosion Science, KTH, Stockholm (Sweden); Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz [Slovenian National Building and Civil Engineering Institute, Ljubljana (Slovenia)

    2012-12-15

    LOT1 test parcel A2 was exposed for six years in the Aespoe Hard Rock Laboratory, which offers a realistic environment for the conditions that will prevail in a deep repository for high-level radioactive waste disposal in Sweden. The test parcel contained copper electrodes for real-time corrosion monitoring in bentonite ring 36, where the temperature was 24 deg C, and copper coupons in bentonite rings 22 and 30, where the temperature was higher. After retrieval of the test parcel in January 2006, a bentonite test package consisting of bentonite rings 35 - 37 was placed in a container and sealed with a thick layer of paraffin. Later the same year new copper electrodes were installed in the test package. In January 2007 electric resistance (ER) sensors of pure copper with a thickness of 35 {mu}m were also installed in the test package mainly to facilitate the interpretation of the results from the real-time corrosion monitoring with electrochemical techniques. The ER measurements have shown that the corrosion rate of pure copper exposed in an oxic bentonite/ saline groundwater environment at room temperate decreases slowly with time to low but measurable values. The corrosion rates estimated from the regularly performed EIS measurements replicate the ER data. Thus, for this oxic environment in which copper acquires corrosion potentials of the order of 200 mV (SHE) or higher, electrochemical measurements provide believable data. Comparing the recorded ER data with an estimate of the average corrosion rate based on comparing cross-sections from exposed and protected sensor elements, it is obvious that the former overestimates the actual corrosion rate, which is understandable. It seems as if electrochemical measurements can provide a better estimate of the corrosion rate; however, this is quite dependent on the use of proper measuring frequencies and evaluation methods. In this respect ER measurements are more reliable. It has been shown that real-time corrosion

  2. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    International Nuclear Information System (INIS)

    Rosborg, Bo; Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz

    2012-12-01

    LOT1 test parcel A2 was exposed for six years in the Aespoe Hard Rock Laboratory, which offers a realistic environment for the conditions that will prevail in a deep repository for high-level radioactive waste disposal in Sweden. The test parcel contained copper electrodes for real-time corrosion monitoring in bentonite ring 36, where the temperature was 24 deg C, and copper coupons in bentonite rings 22 and 30, where the temperature was higher. After retrieval of the test parcel in January 2006, a bentonite test package consisting of bentonite rings 35 - 37 was placed in a container and sealed with a thick layer of paraffin. Later the same year new copper electrodes were installed in the test package. In January 2007 electric resistance (ER) sensors of pure copper with a thickness of 35 μm were also installed in the test package mainly to facilitate the interpretation of the results from the real-time corrosion monitoring with electrochemical techniques. The ER measurements have shown that the corrosion rate of pure copper exposed in an oxic bentonite/ saline groundwater environment at room temperate decreases slowly with time to low but measurable values. The corrosion rates estimated from the regularly performed EIS measurements replicate the ER data. Thus, for this oxic environment in which copper acquires corrosion potentials of the order of 200 mV (SHE) or higher, electrochemical measurements provide believable data. Comparing the recorded ER data with an estimate of the average corrosion rate based on comparing cross-sections from exposed and protected sensor elements, it is obvious that the former overestimates the actual corrosion rate, which is understandable. It seems as if electrochemical measurements can provide a better estimate of the corrosion rate; however, this is quite dependent on the use of proper measuring frequencies and evaluation methods. In this respect ER measurements are more reliable. It has been shown that real-time corrosion

  3. Demystifying Controlling Copper Corrosion

    Science.gov (United States)

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  4. Corrosion of copper alloys in sulphide containing district heting systems

    DEFF Research Database (Denmark)

    Thorarinsdottir, R.I.; Maahn, Ernst Emanuel

    1999-01-01

    Copper and some copper alloys are prone to corrosion in sulphide containing geothermal water analogous to corrosion observed in district heating systems containing sulphide due to sulphate reducing bacteria. In order to study the corrosion of copper alloys under practical conditions a test...... was carried out at four sites in the Reykjavik District Heating System. The geothermal water chemistry is different at each site. The corrosion rate and the amount and chemical composition of deposits on weight loss coupons of six different copper alloys are described after exposure of 12 and 18 months......, respectively. Some major differences in scaling composition and the degree of corrosion attack are observed between alloys and water types....

  5. Copper corrosion experiments under anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, Kaija [VTT Technical Research Centre of Finland, Espoo (Finland)

    2013-06-15

    This report gives results from the corrosion experiments with copper under anoxic conditions. The objective was to study whether hydrogen-evolving corrosion reaction could occur. Copper foil samples were exposed in deaerated deionized water in Erlenmeyer flasks in the glove box with inert atmosphere. Four corrosion experiments (Cu1, Cu2, Cu3 and Cu4) were started, as well as a reference test standing in air. Cu1 and Cu2 had gas tight seals, whereas Cu3 and Cu4 had palladium foils as hydrogen permeable enclosure. The test vessels were stored during the experiments in a closed stainless steel vessel to protect them from the trace oxygen of the gas atmosphere and light. After the reaction time of three and a half years, there were no visible changes in the copper surfaces in any of the tests in the glove box, in contrast the Cu surfaces looked shiny and unaltered. The Cu3 test was terminated after the reaction time of 746 days. The analysis of the Pd-membrane showed the presence of H2 in the test system. If the measured amount of 7.2{center_dot}10{sup 5} mol H{sub 2} was the result of formation of Cu{sub 2}O this would correspond to a 200 nm thick corrosion layer. This was not in agreement with the measured layer thickness with SIMS, which was 6{+-}1 nm. A clear weight loss observed for the Cu3 test vessel throughout the test period suggests the evaporation of water through the epoxy sealing to the closed steel vessel. If this occurred, the anaerobic corrosion of steel surface in humid oxygen-free atmosphere could be a source of hydrogen. A similar weight loss was not observed for the parallel test (Cu4). The reference test standing in air showed visible development of corrosion products.

  6. Dresden 1 Radiation Level Reduction Program. Intergranular corrosion tests of sensitized Type-304 stainless steel in Dow NS-1, and stress corrosion cracking tests of Type-304 stainless steel and carbon and low alloy steels in Dow copper rinse solution

    International Nuclear Information System (INIS)

    Walker, W.L.

    1978-09-01

    Corrosion tests were performed to evaluate the extent of intergranular attack on sensitized Type-304 stainless steel by a proprietary Dow Chemical solvent, NS-1, which is to be used in the chemical cleaning of the Dresden 1 primary system. In addition, tests were performed to evaluate stress corrosion cracking of sensitized Type-304 stainless steel and post-weld heat-treated ASTM A336-F1, A302-B, and A106-B carbon and low alloy steels in a solution to be used to remove residual metallic copper from the Dresden 1 primary system surfaces following the chemical cleaning. No evidence of deleterious corrosion was observed in either set of tests

  7. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  8. Corrosion mechanism of copper in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2013-01-01

    Highlights: ► Corrosion of copper in biodiesel increases with the increase of immersion time. ► The corrosion patina is found to be composed of CuO, Cu 2 O, CuCO 3 and Cu(OH) 2 . ► Green CuCO 3 was found as the major corrosion product. ► The mechanisms governing corrosion of copper in palm biodiesel are discussed. - Abstract: Biodiesel is a promising alternative fuel. However, it causes enhanced corrosion of automotive materials, especially of copper based components. In the present study, corrosion mechanism of copper was investigated by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Compositional change of biodiesel due to the exposure of copper was also investigated. Corrosion patina on copper is found to be composed of Cu 2 O, CuO, Cu(OH) 2 and CuCO 3. Dissolved O 2 , H 2 O, CO 2 and RCOO − radical in biodiesel seem to be the leading factors in enhancing the corrosiveness of biodiesel.

  9. Corrosion of copper under Canadian nuclear fuel waste disposal conditions

    International Nuclear Information System (INIS)

    King, F.; Litke, C.D.

    1990-01-01

    The corrosion of copper was studied under Canadian nuclear fuel waste disposal conditions. The groundwater in a Canadian waste vault is expected to be saline, with chloride concentrations from 0.1 to 1.0 mol/l. The container would be packed in a sand/clay buffer, and the maximum temperature on the copper surface would be 100C; tests were performed up to 150C. Radiation fields will initially be around 500 rad/h, and conditions will be oxidizing. Sulfides may be present. The minimum design lifetime for the container is 500 years. Most work has been done on uniform corrosion, although pitting has been considered. It was found that the rate of uniform corrosion in aerated NaCl at room temperature is limited by the rate of the anodic reaction, which is controlled mainly by the rate of transport of dissolved metal species away from the copper surface. The rate of corrosion should become controlled by the transport of oxygen to the copper surface only at very low oxygen concentrations. In the presence of gamma radiation the corrosion rate may never become cathodically transport limited. In compacted buffer material, the corrosion rate appears to be limited by the rate of transport of copper species away from the corroding surface. The authors recommend that long-term predictions of container lifetime should be based on the known rate-determining step for the overall corrosion process. 8 refs

  10. Surface films and corrosion of copper

    International Nuclear Information System (INIS)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M.

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  11. Copper Test

    Science.gov (United States)

    ... in the arm and/or a 24-hour urine sample is collected. Sometimes a health practitioner performs a liver ... disease , a rare inherited disorder that can lead to excess storage of copper in the liver, brain, and other ...

  12. Grain boundary corrosion of copper canister material

    International Nuclear Information System (INIS)

    Fennell, P.A.H.; Graham, A.J.; Smart, N.R.; Sofield, C.J.

    2001-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister. The potential for grain boundary corrosion was investigated by exposing copper specimens, which had undergone different heat treatments and hence had different grain sizes, to aerated artificial bentonite-equilibrated groundwater with two concentrations of chloride, for increasing periods of time. The degree of grain boundary corrosion was determined by atomic force microscopy (AFM) and optical microscopy. AFM showed no increase in grain boundary 'ditching' for low chloride groundwater. In high chloride groundwater the surface was covered uniformly with a fine-grained oxide. No increases in oxide thickness were observed. No significant grain boundary attack was observed using optical microscopy either. The work suggests that in aerated artificial groundwaters containing chloride ions, grain boundary corrosion of copper is unlikely to adversely affect SKB's copper canisters

  13. Corrosion of copper by chlorine trifluoride

    International Nuclear Information System (INIS)

    Vincent, L.

    1966-01-01

    The research described called for a considerable amount of preliminary development of the test methods and equipment in order that the various measurements and observations could be carried out without contaminating either the samples or this highly reactive gas. The chlorine trifluoride was highly purified before use, its purity being checked by gas-phase chromatography, micro-sublimation and infrared spectrography. The tests were carried out on copper samples of various purities, in particular a 99.999 per cent copper in the form of mono-crystals. They involved kinetic measurements and the characterization of corrosion products under different temperature and pressure conditions. The kinetics showed reactions of the same order of magnitude as those obtained with elementary fluorine. At atmospheric pressure there occurs formation of cupric fluoride and cuprous chloride. The presence of this latter product shows that it is not possible to consider ClF 3 simply as a fluorinating agent. At low pressures an unknown product has been characterized. There are strong grounds for believing that it is the unstable cuprous fluoride which it has not yet been possible to isolate. A germination phenomenon has been shown to exist indicating an analogy between the initial phases of fluorination and those of oxidation. Important effects resulting from the dissociation of the copper fluorides and the solubility of chlorine in this metal have been demonstrated. Finally, tests have shown the considerable influence of the purity of the gas phase and of the nature of the reaction vessel walls on the rates of corrosion which can in certain cases be increased by a factor of several powers of ten. (author) [fr

  14. Ontario Hydro studies on copper corrosion under waste disposal conditions

    International Nuclear Information System (INIS)

    Lam, K.W.

    1990-01-01

    The corrosion rate of copper is generally greater in aerated solutions containing sulphide; also, in the presence of sulphide there is the fear that pitting may occur. Experiments have been carried out to study the corrosion of copper in deaerated groundwater/bentonite slurries with and without added sulphide for exposure periods from two months to one year. The groundwater contains 6500 ppm of chloride and 1000 ppm of sulphate. Tests were also performed in the presence of a 150 rad/h radiation field. In deaerated slurries at 75C the corrosion rate is less than 2 μm/a. With one addition of 10 mg/l sulphide, the rate increases by a factor of ten. With daily sulphide additions to deaerated solutions the corrosion rate initially falls but then rises and stabilizes after 15 days. In aerated solutions the corrosion increases over the first 25 days and then stabilizes. The corrosion rate of copper reached a steady value in 15 to 30 days. Rates are higher in aerated solutions, but the effect of adding sulphide is not so marked in aerated solutions as in unaerated solutions. The highest corrosion rate, less than 150 μm/a, was observed in aerated slurries saturated with sulphide. For deaerated solutions in the absence of sulphide the corrosion rate increases with temperature, but in aerated solutions the rate decreases. For solutions containing added sulphide the influence of temperature is negligible. The effect of a radiation field may be beneficial; in the presence of a radiation field the corrosion rate is less than 20 μm/a. After descaling the coupons showed a high density of irregularly shaped pits both in the presence and absence of sulphide, resulting from intergranular attack. The pitting factor for the highest corrosion rate is around 15

  15. COPPER PITTING CORROSION: A CASE STUDY

    Science.gov (United States)

    Localized or pitting corrosion of copper pipes used in household drinking-water plumbing is a problem for many water utilities and their customers. Extreme attack can lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. Water quality has b...

  16. Atmospheric corrosion effects on copper

    International Nuclear Information System (INIS)

    Franey, J.P.

    1985-01-01

    Studies have been performed on the naturally formed patina on various copper samples. Samples have been obtained from structures at AT and T Bell Laboratories, Murray Hill, NJ (40,2,1 and <1 yr) and the Statue of Liberty (100 yr). The samples show a distinct layering effect, that is, the copper base material shows separate oxide and basic sulfate layers on all samples, indicating that patina is not a homogeneous mixture of oxides and basic sulfates

  17. Corrosion of copper and copper alloys in a basaltic repository environment

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1990-01-01

    Corrosion testing done on copper and copper alloys in support of the basalt repository program is discussed. Tests were performed under anoxic conditions at 50C, 100C, 150C and 200C in the presence of a saturated basalt-bentonite packing. Tests were also performed in an air/steam mixture at temperatures between 150C and 200C. Some tests, particularly those in air/steam mixtures, were done in the presence of radiation fields of 10 2 , 10 3 or 10 4 rad/h. Exposure periods were up to 28 months. A synthetic groundwater, Grande Ronde ≠4, was used. The materials studied were ASTM B402μm·a for copper and 17 μm·a for cupronickel, but the average rates were muμm·a was obtained. The rates at longer times were less than a third of this value. Corrosion increased monotonically with time and temperature. Chalcocite (Cu 2 S) was the corrosion product at 200C. There was no detectable radiation effect, and no pitting was observed. In air/steam corrosion was uniform with no pitting. Linear corrosion was observed for pure copper. The maximum corrosion penetration after 25 months was 0.13 mm at 300C; cupronickel corroded more slowly, with a maximum penetration of 0.045mm after 25 months. Cuprite (Cu 2 O) and tenorite (CuO) were identified on cupronickel, but only Cu 2 O on copper. A pronounced radiation effect was seen at 250C, but not at 150C; the surface film morphology was different under irradiation. In the short term the presence of packing increased the corrosion rate. 5 refs

  18. Copper Tube Pitting in Santa Fe Municipal Water Caused by Microbial Induced Corrosion.

    Science.gov (United States)

    Burleigh, Thomas D; Gierke, Casey G; Fredj, Narjes; Boston, Penelope J

    2014-06-05

    Many copper water lines for municipal drinking water in Santa Fe, New Mexico USA, have developed pinhole leaks. The pitting matches the description of Type I pitting of copper, which has historically been attributed to water chemistry and to contaminants on the copper tubing surface. However, more recent studies attribute copper pitting to microbial induced corrosion (MIC). In order to test for microbes, the copper tubing was fixed in hexamethyldisilazane (HMDS), then the tops of the corrosion mounds were broken open, and the interior of the corrosion pits were examined with scanning electron microscopy (SEM). The analysis found that microbes resembling actinobacteria were deep inside the pits and wedged between the crystallographic planes of the corroded copper grains. The presence of actinobacteria confirms the possibility that the cause of this pitting corrosion was MIC. This observation provides better understanding and new methods for preventing the pitting of copper tubing in municipal water.

  19. Copper Tube Pitting in Santa Fe Municipal Water Caused by Microbial Induced Corrosion

    Directory of Open Access Journals (Sweden)

    Thomas D. Burleigh

    2014-06-01

    Full Text Available Many copper water lines for municipal drinking water in Santa Fe, New Mexico USA, have developed pinhole leaks. The pitting matches the description of Type I pitting of copper, which has historically been attributed to water chemistry and to contaminants on the copper tubing surface. However, more recent studies attribute copper pitting to microbial induced corrosion (MIC. In order to test for microbes, the copper tubing was fixed in hexamethyldisilazane (HMDS, then the tops of the corrosion mounds were broken open, and the interior of the corrosion pits were examined with scanning electron microscopy (SEM. The analysis found that microbes resembling actinobacteria were deep inside the pits and wedged between the crystallographic planes of the corroded copper grains. The presence of actinobacteria confirms the possibility that the cause of this pitting corrosion was MIC. This observation provides better understanding and new methods for preventing the pitting of copper tubing in municipal water.

  20. Pitting corrosion of copper. Further model studies

    International Nuclear Information System (INIS)

    Taxen, C.

    2002-08-01

    The work presented in this report is a continuation and expansion of a previous study. The aim of the work is to provide background information about pitting corrosion of copper for a safety analysis of copper canisters for final deposition of radioactive waste. A mathematical model for the propagation of corrosion pits is used to estimate the conditions required for stationary propagation of a localised anodic corrosion process. The model uses equilibrium data for copper and its corrosion products and parameters for the aqueous mass transport of dissolved species. In the present work we have, in the model, used a more extensive set of aqueous and solid compounds and equilibrium data from a different source. The potential dependence of pitting in waters with different compositions is studied in greater detail. More waters have been studied and single parameter variations in the composition of the water have been studied over wider ranges of concentration. The conclusions drawn in the previous study are not contradicted by the present results. However, the combined effect of potential and water composition on the possibility of pitting corrosion is more complex than was realised. In the previous study we found what seemed to be a continuous aggravation of a pitting situation by increasing potentials. The present results indicate that pitting corrosion can take place only over a certain potential range and that there is an upper potential limit for pitting as well as a lower. A sensitivity analysis indicates that the model gives meaningful predictions of the minimum pitting potential also when relatively large errors in the input parameters are allowed for

  1. COPPER CORROSION AND SOLUBILITY RESEARCH

    Science.gov (United States)

    This poster provides a very cursory summary of TTEB in-house copper research experimental systems, and extramural research projects. The field studies summarized are the Indian Hill (OH) study of the use of orthophosphate for reducing cuprosolvency in a high alkalinity water, an...

  2. Influences of Corrosive Sulfur on Copper Wires and Oil-Paper Insulation in Transformers

    Directory of Open Access Journals (Sweden)

    Jian Li

    2011-10-01

    Full Text Available Oil-impregnated paper is widely used in power transmission equipment as a reliable insulation. However, copper sulphide deposition on oil-paper insulation can lead to insulation failures in power transformers. This paper presents the influences of copper sulfur corrosion and copper sulphide deposition on copper wires and oil-paper insulation in power transformers. Thermal aging tests of paper-wrapped copper wires and bare copper wires in insulating oil were carried out at 130 °C and 150 °C in laboratory. The corrosive characteristics of paper-wrapped copper wires and bare copper wires were analyzed. Dielectric properties of insulation paper and insulating oil were also analyzed at different stages of the thermal aging tests using a broadband dielectric spectrometer. Experiments and analysis results show that copper sulfide deposition on surfaces of copper wires and insulation paper changes the surface structures of copper wires and insulation paper. Copper sulfur corrosion changes the dielectric properties of oil-paper insulation, and the copper sulfide deposition greatly reduces the electrical breakdown strength of oil-paper insulation. Metal passivator is capable of preventing copper wires from sulfur corrosion. The experimental results are helpful for investigations for fault diagnosis of internal insulation in power transformers.

  3. Influence of sulfide concentration on the corrosion behavior of pure copper in synthetic seawater

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Kawasaki, Manabu

    2008-01-01

    Corrosion rate and stress corrosion cracking (SCC) behavior of pure copper under anaerobic conditions were studied by immersion tests and slow strain rate tests (SSRT) in synthetic seawater containing Na 2 S. The corrosion rate was increased with sulfide concentration both in simple saline solution and in bentnite-sand mixture. The results of SSRT showed that copper was susceptible to intergranular attack; selective dissolution at lower sulfide concentration (less than 0.005 M) and SCC at higher sulfide concentration (0.01 M). It was expected that if the sulfide concentration in groundwater is less than 0.001 M, pure copper is possible to exhibit superior corrosion resistance under anaerobic condition evident by very low corrosion rates and immunity to SCC. In such a low sulfide environment, copper overpack has the potential to achieve super-long lifetimes exceeding several tens of thousands years according to long-term simulations of corrosion based on diffusion of sulfide in buffer material

  4. Corrosion resistance of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban

    2007-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  5. Corrosion resistance of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban [Corrosion and Metals Research Institute, Sto ckholm (Sweden)

    2007-03-15

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  6. Corrosion characteristics of copper and leaded bronze in palm biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A.; Masjuki, H.H.; Ann, L.J.; Fazal, M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-03-15

    Biodiesel has become more attractive as alternative fuel for automobiles because of its environmental benefits and the fact that it is made from renewable sources. However, corrosion of metals in biodiesel is one of the concerns related to biodiesel compatibility issues. This study aims to characterize the corrosion behavior of commercial pure copper and leaded bronze commonly encountered in the automotive fuel system in diesel engine. Static immersion tests in B0, B50 and B100 fuels were carried out at room temperature for 2640 h. Similar immersion tests in B0, B100 and B100 (oxidized) fuels were also conducted at 60 C for 840 h. At the end of the test, corrosion behavior was investigated by weight loss measurements and changes in surface morphology. Fuels were analyzed by using TAN analyzer, FTIR, MOA (multi-element oil analyzer) to investigate acid concentration, oxidation level with water content and corrosive impurities respectively. Results showed that under the experimental conditions, pure copper was more susceptible to corrosion in biodiesel as compared to leaded bronze. (author)

  7. A mechanistic study of the uniform corrosion of copper in compacted clay-sand soil

    International Nuclear Information System (INIS)

    Litke, C.D.; Ryan, S.R.; King, F.

    1992-08-01

    The results of a study of the mechanism of uniform corrosion of copper under simulated nuclear fuel waste disposal conditions are presented. Evidence is given that suggests that the rate-controlling process is the transport of copper corrosion products away from the corroding surface. In the experiments described here, the copper diffused through a column of compacted clay-sand buffer. The properties of the buffer material, especially its ability to sorb copper species, are significant in determining the rate of uniform corrosion of copper. The evidence that copper diffusion is rate-controlling stems from the effect of γ-radiation on the tests. In the presence of γ-radiation, copper diffused farther along the column of compacted buffer material than in the unirradiated tests, but the corrosion rate was lower. These two effects can be best explained in terms of a slow copper-diffusion process. Irradiation is thought to reduce the extent of sorption of copper by the clay component of the buffer. This results in a more mobile copper species and a smaller interfacial flux of copper (i.e., a lower corrosion rate)

  8. Effects of prior cold work on corrosion and corrosive wear of copper in HNO3 and NaCl solutions

    International Nuclear Information System (INIS)

    Yin Songbo; Li, D.Y.

    2005-01-01

    Effects of prior cold work on corrosion and corrosive wear behavior of copper in 0.1 M HNO 3 and 3.5% NaCl solutions, respectively, were investigated using electrochemical tests, electron work function measurements, and sliding corrosive wear tests with and without cathodic protection. Optical microscope and SEM were employed to examine the microstructure and worn surfaces. It was shown that, in general, the prior cold work raised the corrosion rate, but the effect differed in different corrosive media. In both the solutions, pure mechanical wear decreased with an increase in cold work. The prior cold work had a significant influence on the corrosive wear of copper, depending on the corrosive solution and the applied load. In the 0.1 M HNO 3 solution, the ratio of the wear loss caused by corrosion-wear synergism to the total wear loss increased with the cold work and became saturated when the cold work reached a certain level. In the 3.5% NaCl solution, however, this ratio decreased initially and then became relatively stable with respect to the cold work. It was observed that wear of copper in the 3.5% NaCl solution was larger than that in 0.1 M HNO 3 solution, although copper showed lower corrosion rate in the former solution. The experimental observations and the possible mechanisms involved are discussed

  9. Galvanic corrosion of copper-cast iron couples

    International Nuclear Information System (INIS)

    Smart, N.R.; Rance, A.P.; Fennell, P.A.H.

    2005-01-01

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB are considering using the Copper-Cast Iron Canister, which consists of an outer copper canister and an inner cast iron container. The canister will be placed into boreholes in the bedrock of a geologic repository and surrounded by bentonite clay. In the unlikely event of the outer copper canister being breached, water would enter the annulus between the inner and outer canister and at points of contact between the two metals there would be the possibility of galvanic interactions. Although this subject has been considered previously from both a theoretical standpoint and by experimental investigations there was a need for further experimental studies in support of information provided by SKB to the Swedish regulators (SKI). In the work reported here copper-cast iron galvanic couples were set up in a number of different environments representing possible conditions in the SKB repository. The tests investigated two artificial porewaters at 30 deg C and 50 deg C, under aerated and deaerated conditions. Tests were also carried out in a 30 wt% bentonite slurry made up in artificial groundwater. The potential of the couples and the currents passing between the coupled electrodes were monitored for several months. The effect of growing an oxide film on the surface of the cast iron prior to coupling it with copper was investigated. In addition, some crevice specimens based on the multi-crevice assembly (MCA) design were used to simulate the situation where the copper canister will be in direct contact with the cast iron inner vessel. The electrochemical results are presented graphically in the form of electrode potentials and galvanic corrosion currents as a function of time. The galvanic currents in aerated conditions were much higher than in deaerated conditions. For example, at 30 deg C, galvanic corrosion rates as low as 0.02 μm/year for iron were observed after deaeration, but

  10. Effect of sulfide on the corrosion behavior of pure copper under anaerobic condition and possibility of super long lifetime for copper overpacks

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Naitou, Morimasa; Kawasaki, Manabu

    2007-03-01

    In general, copper is thermodynamically stable under anaerobic condition, so that corrosion due to water reduction can not be occurred on copper. In the presence of sulfide, however, this property of immunity to corrosion is lost and corrosion as copper sulfide is occurred. Therefore, it is necessary to understand the effect of sulfide on the corrosion behavior of copper for using the copper as a material for overpacks. In this study, immersion tests and stress corrosion cracking tests were carried out using synthetic seawater containing sodium sulfide. Based on the experimental results, the possibility of super long lifetime for copper overpacks was discussed. The results were summarized as follows; 1) As the results of the immersion tests of copper in buffer material for 2 years, the corrosion rates became large with increase in the concentration of sodium sulfide. The corrosion rates of copper in sodium sulfide of 0.001M, 0.005M and 0.1M were estimated to be 0.55μm/y, 2.2μm/y, 15μm/y respectively. 2) Corrosion product film with black or dark-gray was formed on the surface of copper specimens, and it was identified as Cu 2 S(Chalcocite) by the X-ray diffraction. 3) As the results of stress corrosion cracking experiments by means of slow strain rate technique, copper has little susceptibility to crack initiation for the specimen of the experiment under 0.001M-Na 2 S condition. Obvious cracks were observed for the specimens of the experiment over 0.005M Na 2 S condition. 4) According to the results of immersion tests and stress corrosion cracking tests, copper overpacks have a potential to accomplish super long lifetime far over 1000 years owing to very low corrosion rate and no stress corrosion cracking if the sulfide concentration in repository environment is promised to be less than 0.001M. (author)

  11. Copper corrosion in pure oxygen-free water

    International Nuclear Information System (INIS)

    Moeller, K.

    1995-12-01

    The study was initiated following reports on corrosion of Copper in water in absence of Oxygen. Quartz glass tubes containing pure water and Copper plates were sealed in two different ways, using Palladium or Platinum foils, respectively. Tests were also performed with Copper wires. The insulated systems contained Oxygen initially. The Oxygen was dissolved in the water, and in the air column between the water surface and the Palladium/Platinum foils. The tubes were kept in a hot cabinet at 50 C for a total of two years. The exposed plates were analyzed in different ways, e g using reflectance FTIR. The amounts of oxide formed were also weighed. The following conclusions could be drawn: No difference in color was observed for the Pd and Pt seals except in one case for the Copper wire, where only a slight difference was noticed. No significant difference in oxidation between the plates with Pd or Pt seals in quartz glass tubes. No oxide growth was observed during the last year. The corrosion rate at 50 C is below 2.3 micrograms Copper/cm 2 /year. A certain imbalance was noted between the amounts of oxides formed, and expected amount estimated from the original amount of oxygen in the system. A significant amount of water has 'disappeared' from the tubes. 17 refs, 10 figs, 3 tabs

  12. Corrosion behavior of copper-base materials in a gamma-irradiated environment

    International Nuclear Information System (INIS)

    Yunker, W.H.

    1990-09-01

    Specimens of three copper-base materials were corrosion tested with gamma radiation exposure dose rates in the range of 1.9 x 10 3 R/h to 4.9 x 10 5 R/h. Materials used were pure copper, 7% aluminum bronze and 30% copper-nickel. Exposures were performed in moist air at 95 degree C and 150 degree C and liquid Well J-13 water at 95 degree C, for periods of up to 16 months. Specimens were monitored for uniform weight loss, stress-induced corrosion and crevice corrosion. Specimen surfaces were examined visually at 10X magnification as well as by Auger Electron Spectroscopy, x-ray diffraction and metallography. Corrosion was not severe in any of the cases. In general, the pure copper was corroded most uniformly while the copper-nickel was the least reproducibly corroded. 11 refs, 40 figs., 15 tabs

  13. Corrosion behavior of copper-base materials in a gamma-irradiated environment; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yunker, W.H.

    1990-09-01

    Specimens of three copper-base materials were corrosion tested with gamma radiation exposure dose rates in the range of 1.9 {times} 10{sup 3} R/h to 4.9 {times} 10{sup 5} R/h. Materials used were pure copper, 7% aluminum bronze and 30% copper-nickel. Exposures were performed in moist air at 95{degree}C and 150{degree}C and liquid Well J-13 water at 95{degree}C, for periods of up to 16 months. Specimens were monitored for uniform weight loss, stress-induced corrosion and crevice corrosion. Specimen surfaces were examined visually at 10X magnification as well as by Auger Electron Spectroscopy, x-ray diffraction and metallography. Corrosion was not severe in any of the cases. In general, the pure copper was corroded most uniformly while the copper-nickel was the least reproducibly corroded. 11 refs, 40 figs., 15 tabs.

  14. Grain boundary corrosion of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes

    2006-01-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository

  15. Grain boundary corrosion of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes [Corrosion and Metals Research Inst. (KIMAB), Stockholm (Sweden)

    2006-01-15

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository.

  16. Accelerated cyclic corrosion tests

    Directory of Open Access Journals (Sweden)

    Prošek T.

    2016-06-01

    Full Text Available Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical phases. They are able to predict the material performance in service more correctly as documented on several examples. The use of NSS should thus be restricted for quality control.

  17. Corrosion of copper in alkaline chloride environments

    International Nuclear Information System (INIS)

    King, F.

    2002-08-01

    The available literature information on the corrosion and electrochemical behaviour of copper in alkaline environments has been reviewed. The purpose of the review was to assess the impact of an alkaline plume from cementitious material on the corrosion behaviour of a copper canister in an SKB-3 type repository. The effect of the evolution of the environmental conditions within the repository have been considered, including the effects of temperature, redox conditions, pore-water salinity and pH. If the pore-water pH increases prior to the establishment of anoxic conditions, the canister surface will passivate as the pore-water pH exceeds a value of ∼ pH 9. Passivation will result from the formation of a duplex Cu 2 O/Cu(OH) 2 film. The corrosion potential will be determined by the equilibrium potential for the Cu 2 O/Cu(OH) 2 couple under oxic conditions, or by the Cu/Cu 2 O redox couple under anoxic conditions (in the absence of sulphide). Pitting corrosion is only likely to occur early in the evolution of the repository environment, whilst the canister is still relatively cool ( 2 available to support localised corrosion, and prior to the increase in pore-water pH and salinity. The subsequent increase in canister surface temperature, pore-water pH and salinity, and decrease in O 2 will make pit initiation less likely, although the canister will remain passive provided the pore-water pH is maintained above pH 9. The higher the pore-water pH, the more strongly the canister is passivated and the less likely the surface is to undergo localised attack. If the pore-water salinity increases prior to the increase in pH, there could be a period of active canister corrosion before passivation occurs.Under these circumstances, the corrosion potential will be a true mixed potential, determine by the relative kinetics of Cu dissolution as CuCl 2 - and of the reduction of O 2 . The development of anoxic conditions and an increase in pore-water sulphide concentration will

  18. Corrosion of copper in alkaline chloride environments

    Energy Technology Data Exchange (ETDEWEB)

    King, F. [Integrity Corrosion Consulting Ltd., Calgary (Canada)

    2002-08-01

    The available literature information on the corrosion and electrochemical behaviour of copper in alkaline environments has been reviewed. The purpose of the review was to assess the impact of an alkaline plume from cementitious material on the corrosion behaviour of a copper canister in an SKB-3 type repository. The effect of the evolution of the environmental conditions within the repository have been considered, including the effects of temperature, redox conditions, pore-water salinity and pH. If the pore-water pH increases prior to the establishment of anoxic conditions, the canister surface will passivate as the pore-water pH exceeds a value of {approx} pH 9. Passivation will result from the formation of a duplex Cu{sub 2}O/Cu(OH){sub 2} film. The corrosion potential will be determined by the equilibrium potential for the Cu{sub 2}O/Cu(OH){sub 2} couple under oxic conditions, or by the Cu/Cu{sub 2}O redox couple under anoxic conditions (in the absence of sulphide). Pitting corrosion is only likely to occur early in the evolution of the repository environment, whilst the canister is still relatively cool (<40 deg C), whilst there is still O{sub 2} available to support localised corrosion, and prior to the increase in pore-water pH and salinity. The subsequent increase in canister surface temperature, pore-water pH and salinity, and decrease in O{sub 2} will make pit initiation less likely, although the canister will remain passive provided the pore-water pH is maintained above pH 9. The higher the pore-water pH, the more strongly the canister is passivated and the less likely the surface is to undergo localised attack. If the pore-water salinity increases prior to the increase in pH, there could be a period of active canister corrosion before passivation occurs.Under these circumstances, the corrosion potential will be a true mixed potential, determine by the relative kinetics of Cu dissolution as CuCl{sub 2} - and of the reduction of O{sub 2}. The development

  19. Copper canisters for nuclear high level waste disposal. Corrosion aspects

    International Nuclear Information System (INIS)

    Werme, L.; Sellin, P.; Kjellbert, N.

    1992-10-01

    A corrosion analysis of a thick-walled copper canister for spent fuel disposal is discussed. The analysis has shown that there are no rapid mechanisms that may lead to canister failure, indicating an anticipated corrosion service life of several millions years. If further analysis of the copper canister is considered, it should be concentrated on identifying and evaluating processes other than corrosion, which may have a potential for leading to canister failure. (au)

  20. Corrosion testing facilities in India

    International Nuclear Information System (INIS)

    Viswanathan, R.; Subramanian, Venu

    1981-01-01

    Major types of corrosion tests, establishment of specifications on corrosion testing and scope of their application in practice are briefly described. Important organizations in the world which publish specifications/standards are listed. Indian organizations which undertake corrosion testing and test facilities available at them are also listed. Finally in an appendix, a comprehensive list of specifications relevant to corrosion testing is given. It is arranged under the headings: environmental testing, humidity tests, salt spray/fog tests, immersion tests, specification corrosion phenomena, (tests) with respect to special corrosion media, (tests) with respect to specific corrosion prevention methods, and specific corrosion tests using electrical and electrochemical methods (principles). Each entry in the list furnishes information about: nature of the test, standard number, and its specific application. (M.G.B.)

  1. Mechanical and corrosion behaviors of developed copper-based metal matrix composites

    Science.gov (United States)

    Singh, Manvandra Kumar; Gautam, Rakesh Kumar; Prakash, Rajiv; Ji, Gopal

    2018-03-01

    This work investigates mechanical properties and corrosion resistances of cast copper-tungsten carbide (WC) metal matrix composites (MMCs). Copper matrix composites have been developed by stir casting technique. Different sizes of micro and nano particles of WC particles are utilized as reinforcement to prepare two copper-based composites, however, nano size of WC particles are prepared by high-energy ball milling. XRD (X-rays diffraction) characterize the materials for involvement of different phases. The mechanical behavior of composites has been studied by Vickers hardness test and compression test; while the corrosion behavior of developed composites is investigated by electrochemical impedance spectroscopy in 0.5 M H2SO4 solutions. The results show that hardness, compressive strength and corrosion resistance of copper matrix composites are very high in comparison to that of copper matrix, which attributed to the microstructural changes occurred during composite formation. SEM (Scanning electron microscopy) reveals the morphology of the corroded surfaces.

  2. Axenic aerobic biofilms inhibit corrosion of copper and aluminum.

    Science.gov (United States)

    Jayaraman, A; Ornek, D; Duarte, D A; Lee, C C; Mansfeld, F B; Wood, T K

    1999-11-01

    The corrosion behavior of unalloyed copper and aluminum alloy 2024 in modified Baar's medium has been studied with continuous reactors using electrochemical impedance spectroscopy. An axenic aerobic biofilm of either Pseudomonas fragi K or Bacillus brevis 18 was able to lessen corrosion as evidenced by a consistent 20-fold increase in the low-frequency impedance value of copper as well as by a consistent four- to seven-fold increase in the polarization resistance of aluminum 2024 after six days exposure compared to sterile controls. This is the first report of axenic aerobic biofilms inhibiting generalized corrosion of copper and aluminum. Addition of the representative sulfate-reducing bacterium (SRB) Desulfovibrio vulgaris (to simulate consortia corrosion behavior) to either the P. fragi K or B. brevis 18 protective biofilm on copper increased the corrosion to that of the sterile control unless antibiotic (ampicillin) was added to inhibit the growth of SRB in the biofilm.

  3. SITE-94. CAMEO: A model of mass-transport limited general corrosion of copper canisters

    International Nuclear Information System (INIS)

    Worgan, K.J.; Apted, M.J.

    1996-12-01

    This report describes the technical basis for the CAMEO code, which models the general, uniform corrosion of a copper canister either by transport of corrodants to the canister, or by transport of corrosion products away from the canister. According to the current Swedish concept for final disposal of spent nuclear fuels, extremely long containment times are achieved by thick (60-100 mm) copper canisters. Each canister is surrounded by a compacted bentonite buffer, located in a saturated, crystalline rock at a depth of around 500 m below ground level. Three diffusive transport-limited cases are identified for general, uniform corrosion of copper: General corrosion rate-limited by diffusive mass-transport of sulphide to the canister surface under reducing conditions; General corrosion rate-limited by diffusive mass-transport of oxygen to the canister surface under mildly oxidizing conditions; General corrosion rate-limited by diffusive mass-transport of copper chloride away from the canister surface under highly oxidizing conditions. The CAMEO code includes general corrosion models for each of the above three processes. CAMEO is based on the well-tested CALIBRE code previously developed as a finite-difference, mass-transfer analysis code for the SKI to evaluate long-term radionuclide release and transport in the near-field. A series of scoping calculations for the general, uniform corrosion of a reference copper canister are presented

  4. Impact of chlorinated disinfection on copper corrosion in hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J. Castillo [Centre Scientifique et Technique du Bâtiment Nantes, 11 rue Henri Picherit, BP 82341, 44323 Nantes Cedex 03 (France); Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Hamdani, F. [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Creus, J., E-mail: jcreus@univ-lr.fr [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Touzain, S. [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Correc, O. [Centre Scientifique et Technique du Bâtiment Nantes, 11 rue Henri Picherit, BP 82341, 44323 Nantes Cedex 03 (France)

    2014-09-30

    Highlights: • Impact of disinfectant treatment on the durability of copper pipes. • Synergy between disinfectant concentration and temperature. • Pitting corrosion of copper associated to the corrosion products formation on copper. - Abstract: In France, hot water quality control inside buildings is occasionally ensured by disinfection treatments using temperature increases or addition of sodium hypochlorite (between 0.5 ppm and 1 ppm residual free chlorine). This disinfectant is a strong oxidiser and it could interact with metallic pipes usually used in hot water systems. This work deals with the study of the impact of these treatments on the durability of copper pipes. The objective of this work was to investigate the influence of sodium hypochlorite concentration and temperature on the copper corrosion mechanism. Copper samples were tested under dynamic and static conditions of ageing with sodium hypochlorite solutions ranging from 0 to 100 ppm with temperature at 50 °C and 70 °C. The efficiency of a corrosion inhibitor was investigated in dynamic conditions. Visual observations and analytical analyses of the internal surface of samples was studied at different ageing duration. Corrosion products were characterised by X-ray diffraction and Raman spectroscopy. Temperature and disinfectant were found to considerably affect the copper corrosion mechanism. Surprisingly, the corrosiveness of the solution was higher at lower temperatures. The temperature influences the nature of corrosion products. The protection efficiency is then strongly depend on the nature of the corrosion products formed at the surface of copper samples exposed to the aggressive solutions containing different concentration of disinfectant.

  5. Stress corrosion cracking of copper canisters

    International Nuclear Information System (INIS)

    King, Fraser; Newman, Roger

    2010-12-01

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  6. Stress corrosion cracking of copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    King, Fraser (Integrity Corrosion Consulting Limited (Canada)); Newman, Roger (Univ. of Toronto (Canada))

    2010-12-15

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  7. Corrosion of pure OFHC-copper in simulated repository conditions

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1990-04-01

    The research program 'Corrosion of pure OFHC-copper in simulated repository conditions' was planned to provide an experimental evaluation with respect to the theoretical calculations and forecasts made for the corrosion behaviour of pure copper in bentonite groundwater environments at temperatures between 20-80 deg C. The aim of this study in the first place is to evaluate the effects of groundwater composition, bentonite and temperature on the equilibrium and possible corrosion reactions between pure copper and the simulated repository environment. The progress report includes the results obtained after 36 months exposure time

  8. Potassium sorbate-A new aqueous copper corrosion inhibitor

    International Nuclear Information System (INIS)

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-01-01

    This work presents the novel nature of 2,4-hexadienoic acid potassium salt (potassium sorbate (KCH 3 CH=CHCH=CHCO 2 )) as an effective copper aqueous corrosion inhibitor. The influence of pH and potassium sorbate concentration on copper corrosion in aerated sulfate and chloride solutions is reported. Degree of copper protection was found to increase with an increase in potassium sorbate concentration; an optimum concentration of this inhibitor in sulfate solutions was found to be 10 g/L. Copper is highly resistant to corrosion attacks by chloride ions in the presence of potassium sorbate. X-ray photoelectron spectroscopy (XPS) studies suggest that copper protection is achieved via the formation of a mixed layer of cuprous oxide, cupric hydroxide and copper(II)-sorbate at the metal surface

  9. Measurements of copper corrosion in the LOT Project at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Rosborg, B.; Karnland, O.; Quirk, G.; Werme, L.

    2003-01-01

    Real-time monitoring, of corrosion by means of electrochemical noise and other electrochemical techniques may offer interesting possibilities to estimate the kind and degree of corrosion in a sample or component, and further visualize the corrosion resistance of pure copper in repository environments. As a pilot effort, three cylindrical copper electrodes for such measurements, each of about 100 cm 2 surface area, have been installed in a test parcel in the Aespoe Hard Rock Laboratory and electrochemical measurements using InterCorr's SmartCET system were initiated in May 2001. The first results from real-time monitoring of copper corrosion in the Aespoe HRL under actual repository environment conditions by means of linear polarisation resistance, harmonic distortion analysis and electrochemical noise techniques are presented, and compared with the results obtained from one of the retrieved test parcels. (authors)

  10. IMPACT OF WATER CHEMISTRY ON LOCALIZED CORROSION OF COPPER PITTING

    Science.gov (United States)

    This project will help identify what waters are problematic in causing the corrosion of copper pipes and improve understanding of how water distribution leads to corrosion. This project will also focus on the prevention of pinhole leaks and how to reverse them once they occur. ...

  11. Corrosion resistance of a copper canister for spent nuclear fuel

    International Nuclear Information System (INIS)

    1983-04-01

    The report presents an evaluation of copper as canister material for spent nuclear fuel. The evaluation is made from the viewpoint of corrosion and applies to a concept of 1977. Supplementary corrosion studies have been performed. The report includes 9 appendices which deal with experimental data. (G.B.)

  12. Accelerated Corrosion Testing

    Science.gov (United States)

    1982-12-01

    Treaty Organization, Brussels, 1971), p. 449. 14. D. 0. Sprowls, T. J. Summerson, G. M. Ugianski, S. G. Epstein, and H. L. Craig , Jr., in Stress...National Association of Corrosion Engineers Houston, TX, 1972). 22. H. L. Craig , Jr. (ed.), Stress Corrosion-New Approaches, ASTM-STP- 610 (American...62. M. Hishida and H. Nakada, Corrosion 33 (11) 403 (1977). b3. D. C. Deegan and B. E. Wilde, Corrosion 34 (6), 19 (1978). 64. S. Orman, Corrosion Sci

  13. Accelerated Stress-Corrosion Testing

    Science.gov (United States)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  14. Corrosion and passivation of copper in artificial sea water

    International Nuclear Information System (INIS)

    Chon, Jung Kyoon; Kim, Youn Kyoo

    2007-01-01

    Based on the cyclic voltammograms, potentiodynamic polarizations, transient and steady state Tafel plots and electrochemical impedance spectroscopy, we proposed the copper redox mechanism of the corrosion and passivation in artificial sea water. The copper redox mechanism showed the dependence of the concentration of oxygen in artificial sea water and electrode potentials

  15. Mobile evaporator corrosion test results

    International Nuclear Information System (INIS)

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80 degrees C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either open-quotes satisfactoryclose quotes (2-20 mpy) or open-quotes excellentclose quotes (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment

  16. Copper corrosion under expected conditions in a deep geologic repository

    Energy Technology Data Exchange (ETDEWEB)

    King, F. [Integrity Corrosion Consulting Ltd, Calgary, Alberta (Canada); Ahonen, L. [Geological Survey of Finland, Espoo (Finland); Taxen, C. [Swedish Corrosion Inst., Stockholm (Sweden); Vuorinen, U. [VTT Chemical Technology, Espoo (Finland); Werme, L. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2001-12-01

    Copper has been the corrosion barrier of choice for the canister in the Swedish and Finnish, nuclear waste disposal programmes for over 20 years. During that time many studies have been carried out on the corrosion behaviour of copper under conditions likely to exist in an underground nuclear disposal repository located in he Fenno-Scandian bedrock. This review is a summary of what has been learnt about the long- term behaviour of the corrosion barrier during this period and what the implications of this knowledge are for the predicted service life of the canisters. The review is based on the existing knowledge from various nuclear waste management programs around the world and from the open literature.Various areas are considered: the expected evolution of the geochemical conditions in the groundwater and of the repository environment, the thermodynamics of copper corrosion, corrosion before and during saturation of the compacted bentonite buffer by groundwater, general and localized corrosion following saturation of the compacted bentonite buffer, stress corrosion cracking, radiation effects, the implications of corrosion on the service life of the canister, and areas for further study. Much has been learnt about the long-term corrosion behaviour of copper canisters over the past 20 years. The majority of the information reviewed here is drawn from the Swedish/Finnish and Canadian programmes. Despite differences in scientific approach, and canister and repository design, the results of these two programmes both suggest that copper provides an excellent corrosion barrier in an underground repository. The conclusion drawn from this review is that the original prediction made in 1978 of canister lifetimes exceeding 100,000 years remains valid.

  17. Copper corrosion under expected conditions in a deep geologic repository

    Energy Technology Data Exchange (ETDEWEB)

    King, F.; Ahonen, L.; Taxen, C.; Vuorinen, U.; Werme, L

    2002-01-01

    Copper has been the corrosion barrier of choice for the canister in the Swedish and Finnish, nuclear waste disposal programmes for over 20 years. During that time many studies have been carried out on the corrosion behaviour of copper under conditions likely to exist in an underground nuclear disposal repository located in the Fenno-Scandian bedrock. This review is a summary of what has been learnt about the long-term behaviour of the corrosion barrier during this period and what the implications of this knowledge are for the predicted service life of the canisters. The review is based on the existing knowledge from various nuclear waste management programs around the world and from the open literature. Various areas are considered: the expected evolution of the geochemical conditions in the groundwater and of the repository environment, the thermodynamics of copper corrosion, corrosion before and during saturation of the compacted bentonite buffer by groundwater, general and localized corrosion following saturation of the compacted bentonite buffer, stress corrosion cracking, radiation effects, the implications of corrosion on the service life of the canister, and areas for further study. Much has been learnt about the long-term corrosion behaviour of copper canisters over the past 20 years. The majority of the information reviewed here is drawn from the Swedish/Finnish and Canadian programmes. Despite differences in scientific approach, and canister and repository design, the results of these two programmes both suggest that copper provides an excellent corrosion barrier in an underground repository. The conclusion drawn from this review is that the original prediction made in 1978 of canister lifetimes exceeding 100,000 years remains valid. (orig.)

  18. Copper corrosion under expected conditions in a deep geologic repository

    International Nuclear Information System (INIS)

    King, F.; Ahonen, L.; Taxen, C.; Vuorinen, U.; Werme, L.

    2001-12-01

    Copper has been the corrosion barrier of choice for the canister in the Swedish and Finnish, nuclear waste disposal programmes for over 20 years. During that time many studies have been carried out on the corrosion behaviour of copper under conditions likely to exist in an underground nuclear disposal repository located in he Fenno-Scandian bedrock. This review is a summary of what has been learnt about the long- term behaviour of the corrosion barrier during this period and what the implications of this knowledge are for the predicted service life of the canisters. The review is based on the existing knowledge from various nuclear waste management programs around the world and from the open literature.Various areas are considered: the expected evolution of the geochemical conditions in the groundwater and of the repository environment, the thermodynamics of copper corrosion, corrosion before and during saturation of the compacted bentonite buffer by groundwater, general and localized corrosion following saturation of the compacted bentonite buffer, stress corrosion cracking, radiation effects, the implications of corrosion on the service life of the canister, and areas for further study. Much has been learnt about the long-term corrosion behaviour of copper canisters over the past 20 years. The majority of the information reviewed here is drawn from the Swedish/Finnish and Canadian programmes. Despite differences in scientific approach, and canister and repository design, the results of these two programmes both suggest that copper provides an excellent corrosion barrier in an underground repository. The conclusion drawn from this review is that the original prediction made in 1978 of canister lifetimes exceeding 100,000 years remains valid

  19. Thermodynamic data for copper. Implications for the corrosion of copper under repository conditions

    International Nuclear Information System (INIS)

    Puigdomenech, I.; Taxen, C.

    2000-08-01

    The stability of copper canisters has a central role in the safety concept for the planned nuclear spent fuel repository in Sweden. The corrosion of copper canisters will be influenced by the chemical and physical environment in the near-field of the repository, and thermodynamic equilibrium calculations provide the basis for understanding this system. Thermodynamic data have been selected in this work for solids and aqueous species in the system: Cu - H 2 O - H + - H 2 - F - - Cl - - S 2- - SO 4 2- - NO 3 - - NO 2 - - NH 4 + PO 4 3- - CO 3 2+ . For some reactions and compounds, for which no experimental information on temperature effects was available, entropy and heat capacity values have been estimated. The compiled data were used to calculate thermodynamic equilibria for copper systems up to 100 deg C. The stability of copper in contact with granitic groundwaters has been illustrated using chemical equilibrium diagrams, with he following main conclusions: Dissolved sulphide and O 2 in groundwater are the most damaging components for copper corrosion. If available, HS - will react quantitatively with copper to form a variety of sulphides. However, sulphide concentrations in natural waters are usually low, because it forms sparingly soluble solids with transition metals, including Fe(II), which is wide-spread in reducing environments. Chloride can affect negatively copper corrosion. High concentrations (e.g., [Cl - ]TOT > 60 g/l) may be unfavourable for the general corrosion of copper in combination with in the following circumstances: Low pH ( + . The negative effects of Cl - are emphasised at higher temperatures. The chloride-enhancement of general corrosion may be beneficial for localised corrosion: pitting and stress corrosion cracking. The concept of redox potential, E H , has been found to be inadequate to describe copper corrosion in a nuclear repository. The available amounts of oxidants/reductants, and the stoichiometry of the corrosion reactions are

  20. Pitting corrosion of copper. An equilibrium - mass transport study

    International Nuclear Information System (INIS)

    Taxen, C.

    2002-08-01

    A mathematical model for the propagation of corrosion pits is described and used to calculate the potentials below which copper is immune to pitting. The model uses equilibrium data and diffusion coefficients and calculates the stationary concentration profiles of 26 aqueous species from the bulk water outside a corrosion pit to the site of the metal dissolution. Precipitation of oxides and salts of copper is considered. Studied conditions include water compositions from tap waters to seawater at the temperatures 25 deg C and 75 deg C. Carbonate and sulphate are aggressive towards copper because of complex formation with divalent copper. Carbonate is less aggressive in a corrosion pit than outside at the pH of the bulk. Carbonate carries acidity out from the pit, favours oxide formation and may prevent the initiation of acidic corrosion pits. The concentration profiles are used to estimate the maximum propagation rates for a corrosion pit. A high potential is found to be the most important factor for the rate of propagation. The levels of potential copper can sustain, as corrosion potentials are discussed in terms of the stability of cuprous oxide as a cathode material for oxygen reduction relative to non-conducting cupric phases

  1. Pitting corrosion of copper. An equilibrium - mass transport study

    Energy Technology Data Exchange (ETDEWEB)

    Taxen, C. [Swedish Corrosion Inst., Stockholm (Sweden)

    2002-08-01

    A mathematical model for the propagation of corrosion pits is described and used to calculate the potentials below which copper is immune to pitting. The model uses equilibrium data and diffusion coefficients and calculates the stationary concentration profiles of 26 aqueous species from the bulk water outside a corrosion pit to the site of the metal dissolution. Precipitation of oxides and salts of copper is considered. Studied conditions include water compositions from tap waters to seawater at the temperatures 25 deg C and 75 deg C. Carbonate and sulphate are aggressive towards copper because of complex formation with divalent copper. Carbonate is less aggressive in a corrosion pit than outside at the pH of the bulk. Carbonate carries acidity out from the pit, favours oxide formation and may prevent the initiation of acidic corrosion pits. The concentration profiles are used to estimate the maximum propagation rates for a corrosion pit. A high potential is found to be the most important factor for the rate of propagation. The levels of potential copper can sustain, as corrosion potentials are discussed in terms of the stability of cuprous oxide as a cathode material for oxygen reduction relative to non-conducting cupric phases.

  2. Corrosion of the copper canister in the repository environment

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P.; Eriksson, Sture [Studsvik Material AB, Nykoeping (Sweden)

    1999-12-01

    The present report accounts for studies on copper corrosion performed at Studsvik Material AB during 1997-1999 on commission by SKI. The work has been focused on localised corrosion and electrochemistry of copper in the repository environment. The current theory of localised copper corrosion is not consistent with recent practical experiences. It is therefore desired to complete and develop the theory based on knowledge about the repository environment and evaluations of previous as well as recent experimental and field results. The work has therefore comprised a thorough compilation and up-date of literature on copper corrosion and on the repository environment. A selection of a 'working environment', defining the chemical parameters and their ranges of variation has been made and is used as a fundament for the experimental part of the work. Experiments have then been performed on the long-range electrochemical behaviour of copper in selected environments simulating the repository. Another part of the work has been to further develop knowledge about the thermodynamic limits for corrosion in the repository environment. Some of the thermodynamic work is integrated here. Especially thermodynamics for the system Cu-Cl-H-O up to 150 deg C and high chloride concentrations are outlined. However, there is also a rough overview of the whole system Cu-Fe-Cl-S-C-H-O as a fundament for the discussion. Data are normally accounted as Pourbaix diagrams. Some of the conclusions are that general corrosion on copper will probably not be of significant importance in the repository as far as transportation rates are low. However, if such rates were high, general corrosion could be disastrous, as there is no passivation of copper in the highly saline environment. The claim on knowledge of different kinds of localised corrosion and pitting is high, as pitting damages can shorten the lifetime of a canister dramatically. Normal pitting can happen in oxidising environment, but

  3. Corrosion of the copper canister in the repository environment

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Eriksson, Sture

    1999-12-01

    The present report accounts for studies on copper corrosion performed at Studsvik Material AB during 1997-1999 on commission by SKI. The work has been focused on localised corrosion and electrochemistry of copper in the repository environment. The current theory of localised copper corrosion is not consistent with recent practical experiences. It is therefore desired to complete and develop the theory based on knowledge about the repository environment and evaluations of previous as well as recent experimental and field results. The work has therefore comprised a thorough compilation and up-date of literature on copper corrosion and on the repository environment. A selection of a 'working environment', defining the chemical parameters and their ranges of variation has been made and is used as a fundament for the experimental part of the work. Experiments have then been performed on the long-range electrochemical behaviour of copper in selected environments simulating the repository. Another part of the work has been to further develop knowledge about the thermodynamic limits for corrosion in the repository environment. Some of the thermodynamic work is integrated here. Especially thermodynamics for the system Cu-Cl-H-O up to 150 deg C and high chloride concentrations are outlined. However, there is also a rough overview of the whole system Cu-Fe-Cl-S-C-H-O as a fundament for the discussion. Data are normally accounted as Pourbaix diagrams. Some of the conclusions are that general corrosion on copper will probably not be of significant importance in the repository as far as transportation rates are low. However, if such rates were high, general corrosion could be disastrous, as there is no passivation of copper in the highly saline environment. The claim on knowledge of different kinds of localised corrosion and pitting is high, as pitting damages can shorten the lifetime of a canister dramatically. Normal pitting can happen in oxidising environment, but there is

  4. Recorded corrosion rates on copper electrodes in the Prototype Repository at the Aespoe HRL

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo [Rosborg Consulting, Nykoeping (Sweden)

    2013-04-15

    , saturation of the bentonite in dh 1 may have been faster than in dh 5. Since the major corrosion product formed on the copper electrodes is cuprite, it would have been more appropriate to use n=1 as a default value in the software to convert the corrosion current density to a penetration rate. Furthermore, electrochemical impedance spectroscopy on pure copper electrodes in Aspo groundwater open to air has shown that an applied measuring frequency of 0.01 Hz underestimates the polarization resistance with a factor of 4, and thus overestimates the corrosion rate with the same amount. Applying these corrections better estimates of the corrosion rates in 2010 fall below 0.4 {mu}m/year. Assuming that the correction for the measuring frequency is correct this is the highest possible corrosion rate; the actual corrosion rate could in fact be lower due to parallel reduction-oxidation reactions. The estimated corrosion rates on the copper electrodes in the Prototype Repository are lower than the rate estimated for the copper electrodes in LOT test parcel A2, about 0.4 compared to 0.8 {mu}m/year after six years exposure respectively. Different operating conditions may be the reason for this. The average corrosion rate obtained from weight measurements of copper coupons in LOT test parcel A2 was found to be less than 0.5 {mu}m/year, indicating that the real-time corrosion monitoring may provide conservative corrosion rates. Otherwise it just reflects variability in the near-field environment.

  5. Recorded corrosion rates on copper electrodes in the Prototype Repository at the Aespoe HRL

    International Nuclear Information System (INIS)

    Rosborg, Bo

    2013-04-01

    the bentonite in dh 1 may have been faster than in dh 5. Since the major corrosion product formed on the copper electrodes is cuprite, it would have been more appropriate to use n=1 as a default value in the software to convert the corrosion current density to a penetration rate. Furthermore, electrochemical impedance spectroscopy on pure copper electrodes in Aspo groundwater open to air has shown that an applied measuring frequency of 0.01 Hz underestimates the polarization resistance with a factor of 4, and thus overestimates the corrosion rate with the same amount. Applying these corrections better estimates of the corrosion rates in 2010 fall below 0.4 μm/year. Assuming that the correction for the measuring frequency is correct this is the highest possible corrosion rate; the actual corrosion rate could in fact be lower due to parallel reduction-oxidation reactions. The estimated corrosion rates on the copper electrodes in the Prototype Repository are lower than the rate estimated for the copper electrodes in LOT test parcel A2, about 0.4 compared to 0.8 μm/year after six years exposure respectively. Different operating conditions may be the reason for this. The average corrosion rate obtained from weight measurements of copper coupons in LOT test parcel A2 was found to be less than 0.5 μm/year, indicating that the real-time corrosion monitoring may provide conservative corrosion rates. Otherwise it just reflects variability in the near-field environment

  6. Development of Copper Corrosion Products and Relation between Surface Appearance and Corrosion Rate

    International Nuclear Information System (INIS)

    Lan, Tran Thi Ngoc; Binh, Nguyen Thi Thanh; Tru, Nguyen Nhi; Yoshino, Tsujino; Yasuki, Maeda

    2008-01-01

    Copper was exposed unsheltered and sheltered in four humid tropical sites, representing urban, urban-industrial, urban-marine and rural environments. The corrosion rates and the sequence of corrosion product formation are presented and discussed in relation with climatic and atmospheric pollution parameters. Chemical compositions of corrosion products were found to depend on environments and duration of exposure. In all environments, cuprite was the predominating corrosion product that formed first and continuously increased during the exposure. Among the sulphur-containing corrosion products, posnjakite and brochantite were more frequently found and the first formed earlier. Nantokite was the most common chlorine-containing products for most cases, except the high-chloride environment, where atacamite was detected instead. The corrosion rate of copper was well indicated by the colour of patina. The red-purple colour corresponded to the high corrosion rate and the greenish grey colour corresponded to the low corrosion rate. Corrosion rate of sheltered copper in urban-marine environment increased with the exposure time

  7. In vitro and in vivo corrosion evaluation of nickel-chromium- and copper-aluminum-based alloys.

    Science.gov (United States)

    Benatti, O F; Miranda, W G; Muench, A

    2000-09-01

    The low resistance to corrosion is the major problem related to the use of copper-aluminum alloys. This in vitro and in vivo study evaluated the corrosion of 2 copper-aluminum alloys (Cu-Al and Cu-Al-Zn) compared with a nickel-chromium alloy. For the in vitro test, specimens were immersed in the following 3 corrosion solutions: artificial saliva, 0.9% sodium chloride, and 1.0% sodium sulfide. For the in vivo test, specimens were embedded in complete dentures, so that one surface was left exposed. The 3 testing sites were (1) close to the oral mucosa (partial self-cleaning site), (2) surface exposed to the oral cavity (self-cleaning site), and (3) specimen bottom surface exposed to the saliva by means of a tunnel-shaped perforation (non-self-cleaning site). Almost no corrosion occurred with the nickel-chromium alloy, for either the in vitro or in vivo test. On the other hand, the 2 copper-aluminum-based alloys exhibited high corrosion in the sulfide solution. These same alloys also underwent high corrosion in non-self-cleaning sites for the in vivo test, although minimal attack was observed in self-cleaning sites. The nickel-chromium alloy presented high resistance to corrosion. Both copper-aluminum alloys showed considerable corrosion in the sulfide solution and clinically in the non-self-cleaning site. However, in self-cleaning sites these 2 alloys did not show substantial corrosion.

  8. Inhibition Effect of 1-Butyl-4-Methylpyridinium Tetrafluoroborate on the Corrosion of Copper in Phosphate Solutions

    Directory of Open Access Journals (Sweden)

    M. Scendo

    2011-01-01

    Full Text Available The influence of the concentration of 1-Butyl-4-methylpyridinium tetrafluoroborate (4MBPBF4 as ionic liquid (IL on the corrosion of copper in 0.5 M PO43− solutions of pH 2 and 4 was studied. The research involved electrochemical polarization method, and scanning electron microscopy (SEM technique. The results obtained showed that the inhibition efficiency of corrosion of copper increases with an increase in the concentration of 4MBPBF4 but decreases with increasing temperature. The thermodynamic functions of corrosion analysis and adsorptive behavior of 4MBPBF4 were carried out. During the test, the adsorption of the inhibitor on the copper surface in the phosphate solutions was found to obey the Langmuir adsorption isotherm and had a physical mechanism.

  9. Multilayer graphene as an effective corrosion protection coating for copper

    Science.gov (United States)

    Ravishankar, Vasumathy; Ramaprabhu, S.; Jaiswal, Manu

    2018-04-01

    Graphene grown by chemical vapor deposition (CVD) has been studied as a protective layer against corrosion of copper. The layer number dependence on the protective nature of graphene has been investigated using techniques such as Tafel analysis and Electroimpedance Spectroscopy. Multiple layers of graphene were achieved by wet transfer above CVD grown graphene. Though this might cause grain boundaries, the sites where corrosion is initiated, to be staggered, wet transfer inherently carries the disadvantage of tearing of graphene, as confirmed by Raman spectroscopy measurements. However, Electroimpedance Spectroscopy (EIS) reflects that graphene protected copper has a layer dependent resistance to corrosion. Decrease in corrosion current (Icorr) for graphene protected copper is presented. There is only small dependence of corrosion current on the layer number, Tafel plots clearly indicate passivation in the presence of graphene, whether it be single layer or multiple layers. Notwithstanding the crystallite size, defect free layers of graphene with staggered grain boundaries combined with passivation could offer good corrosion protection for metals.

  10. Effect of menthol coated craft paper on corrosion of copper in HCl ...

    Indian Academy of Sciences (India)

    Administrator

    The effect of menthol on copper corrosion was studied by gravimetric and ... lable for temporary protection of metals and alloys from corrosion, the use of volatile .... The corrosion kinetic parameters were obtained from the anodic and cathodic.

  11. Quality Assurance Review of SKB's Copper Corrosion Experiments

    International Nuclear Information System (INIS)

    Baldwin, Tamara D.; Hicks, Timothy W.

    2010-06-01

    SKB is preparing a license application for the construction of a final repository for spent nuclear fuel in Sweden. This application will be supported by the safety assessment SR-Site for the post-closure phase. The assessment of long-term safety is based on a broad range of experimental results from laboratory scale, intermediate scale and up to full scale experiments. It is essential that there is a satisfactory level of assurance that experiments have been carried out with sufficient quality, so that results can be considered to be reliable within the context of their use in safety assessment. The former named authority, SKI, has initiated a series of reviews of SKB's methods of quality assurance and their implementation. This quality assurance review is focused on the work of copper corrosion being conducted in at SKB's Hard Rock Laboratory (HRL) in Aespoe, LOT and Miniature canister (Minican) experiments. In order for the reviewers to get a broad understanding of the issue of copper corrosion both SKB reports as well as the viewpoint of MKG was collected prior to commencement of the actual review task. The purpose of this project is to assess SKB's quality assurance with the view of providing input for the preparation of the SR-Site safety assessment. This has been achieved by examination of the corrosion part of the LOT and Minican experiments using a check list, visits to the relevant facilities, and meetings with contractors and a few members of the SKB staff. The same approach for quality assurance reviews has been used earlier in similar review tasks. During the quality review of the selected projects, several QA- related issues of different degree of severity was noted by the reviewers. The most significant finding was that SKB has chosen to present only selected real-time corrosion monitoring data in TR-09-20. This was surprising and SSM expect that SKB will analyse the reason for this thoroughly. The reviewers also made other observations which can be

  12. Assessment of corrosion failure in copper tube of refrigerator unit

    International Nuclear Information System (INIS)

    Mohd Harun; Hafizal Yazid; Zaiton Selamat; Mohd Shariff Sattar; Muhamamd Jalil

    2007-01-01

    The copper tubes of the refrigerator unit have been coated with red and white color paints. According to the date of purchase and complaint recorded, the tube leaked after operation about one year. It was observed that the tubes became black and green in color at U-bend of the tube. No corrosion occurred on the internal surface of the tube. The leaking started at outer surface of the tube. The leaking started at outer surface and propagated to the internal surface of the tubes. The leaking damage was caused by corrosive species either from atmospheric corrosion or the paint contained chloride and sulfur elements. The corrosive species of sulfur and chlorine were a main factor in pitting corrosion. (author)

  13. Corrosion of copper-based materials in gamma radiation

    International Nuclear Information System (INIS)

    Yunker, W.H.

    1986-06-01

    The corrosion behaviors of pure copper (CDA 101), 7% aluminum-copper bronze (CDA 613) and 30% nickel-copper (CDA 715) are being studied in a gamma radiation field of 1 x 10 5 R/h. These studies are in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project, by Lawrence Livermore National Laboratory (LLNL), of copper-based materials for possible use in container systems for the permanent geologic burial of nuclear waste. Weight loss, tear drop (stressed), and crevice specimens of the three materials were exposed to water vapor-air atmospheres at 95 0 C and 150 0 C and to liquid water at 95 0 C for periods of one, three, and six months. Longer exposures are in progress. Measurements include: changes in the chemical composition of the gas and water, specimen weight changes, oxide film weights, evidence of microcracking and crevice corrosion, and chemical composition of the oxide films by Auger electron spectroscopy and x-ray diffraction. Interim results show considerable pit and under-film corrosion of alloys CDA 613 and CDA 715. Uniform corrosion rates range from 0.012 mil/yr (0.30 μm/yr) to 0.22 mil/yr (5.6 μm/yr), based on specimen weight losses during six- and seven-month exposures. The time dependencies will be determined as more data become available

  14. Pitting corrosion of copper. An equilibrium - mass transport study

    Energy Technology Data Exchange (ETDEWEB)

    Taxen, C

    1996-11-01

    A mathematical model for the propagation of corrosion pits on copper is described. The model is used to predict the potentials below which copper is immune to pitting. The criteria used for immunity against pitting is that the volume of the cuprous oxide formed at the site of the metal oxidation at the bottom of a corrosion pit must be smaller than the volume of the oxidised metal. Equal volumes would give a complete coverage of the metal in a pit by adherent cuprous oxide and propagation would not be possible. For potentials where copper is not immune to pitting an estimate of the maximum growth rate is given. The model uses equilibrium data and diffusion coefficients and calculates the stationary concentration profiles from the bulk water outside a corrosion pit to the site of the metal dissolution at the bottom a corrosion pit. Precipitation of oxides as well as of basic salts of copper is considered. A total of 26 aqueous species are considered in waters with compositions ranging from those of tap waters to that of sea water. Calculations are made for the temperatures 25 deg C and 75 deg C. 38 refs, 60 figs, 17 tabs

  15. An assessment of corrosion life of copper overpack

    International Nuclear Information System (INIS)

    Honda, A.; Taniguchi, N.

    1999-08-01

    Corrosion life of copper overpack is estimated on the basis of current understandings of copper corrosion processes. The assessment is based on the mass balance. Oxygen and sulfide were taken into account as corrosive species. The sulfate existing in bentonite is assumed to be reduced to sulfide by sulfate reducing bacteria and corrodes copper overpacks. Pitting is involved in the assesment using two methods. One method is use of pitting factor acquired from analysis of archeological artifacts. The other is use of extreme value statistical technique. The time evolution of parameters for cumulative probability distribution function, Gumbel distribution, was estimated using the data from copper specimens buried in various soil and archeological artifacts of the bronze age. The pitting depth for 1000 years is estimated using the parameters for probability distribution function. The result of estimation shows 39-mm is the maximum penetration for 1000 years. Natural analogue data suggest the corrosion rate of 3 mm/1000 years. Therefore the estimation is considered to be conservative. (author)

  16. THE IMPACT OF PHOSPHATE ON COPPER PITTING CORROSION

    Science.gov (United States)

    Pinhole leaks caused by extensive localized or pitting corrosion of copper pipes is a problem for many homeowners. Pinhole water leaks may result in water damage, mold growth, and costly repairs. A large water system in Florida has been addressing a widespread pinhole leak proble...

  17. COPPER PITTING CORROSION AND PINHOLE LEAKS: A CASE STUDY

    Science.gov (United States)

    Localized corrosion, or "pitting", of copper drinking water pipe continues is a problem for many water utilities and their customers. Extreme attack leads to pinhole leaks that can potentially lead to water damage, mold growth, and costly repairs for the homeowners, as well as th...

  18. Effects of glacial meltwater on corrosion of copper canisters

    International Nuclear Information System (INIS)

    Ahonen, L.; Vieno, T.

    1994-08-01

    The composition of glacial meltwater and its reactions in the bedrock are examined. The evidences that there are or should be from past intrusions of glacial meltwater and oxygen deep in the bedrock are also considered. The study is concluded with an evaluation of the potential effects of oxygenated meltwater on the corrosion of copper canisters. (46 refs., 3 figs., 2 tabs.)

  19. Thermodynamic data for copper. Implications for the corrosion of copper under repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Puigdomenech, I. [Royal Inst. of Tech., Stockholm (Sweden); Taxen, C. [Swedish Corrosion Inst., Stockholm (Sweden)

    2000-08-01

    The stability of copper canisters has a central role in the safety concept for the planned nuclear spent fuel repository in Sweden. The corrosion of copper canisters will be influenced by the chemical and physical environment in the near-field of the repository, and thermodynamic equilibrium calculations provide the basis for understanding this system. Thermodynamic data have been selected in this work for solids and aqueous species in the system: Cu - H{sub 2}O - H{sup +} - H{sub 2} - F{sup -} - Cl{sup -} - S{sup 2-} - SO{sub 4}{sup 2-} - NO{sub 3}{sup -} - NO{sub 2}{sup -} - NH{sub 4}{sup +} PO{sub 4}{sup 3-} - CO{sub 3}{sup 2+} . For some reactions and compounds, for which no experimental information on temperature effects was available, entropy and heat capacity values have been estimated. The compiled data were used to calculate thermodynamic equilibria for copper systems up to 100 deg C. The stability of copper in contact with granitic groundwaters has been illustrated using chemical equilibrium diagrams, with he following main conclusions: Dissolved sulphide and O{sub 2} in groundwater are the most damaging components for copper corrosion. If available, HS{sup -} will react quantitatively with copper to form a variety of sulphides. However, sulphide concentrations in natural waters are usually low, because it forms sparingly soluble solids with transition metals, including Fe(II), which is wide-spread in reducing environments. Chloride can affect negatively copper corrosion. High concentrations (e.g., [Cl{sup -}]TOT > 60 g/l) may be unfavourable for the general corrosion of copper in combination with in the following circumstances: Low pH (< 4 at 25 deg C, or < 5 at 100 deg C). The presence of other oxidants than H{sup +}. The negative effects of Cl{sup -} are emphasised at higher temperatures. The chloride-enhancement of general corrosion may be beneficial for localised corrosion: pitting and stress corrosion cracking. The concept of redox potential, E

  20. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2013-01-01

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  1. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  2. Modeling pore corrosion in normally open gold- plated copper connectors.

    Energy Technology Data Exchange (ETDEWEB)

    Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien; Enos, David George; Serna, Lysle M.; Sorensen, Neil Robert

    2008-09-01

    The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.

  3. Pitting corrosion on a copper canister

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Beverskog, B.

    1996-02-01

    It is demonstrated that normal pitting can occur during oxidizing conditions in the repository. It is also concluded that a new theory for pitting corrosion has to be developed, as the present theory is not in accordance with all practical and experimental observations. A special variant of pitting, based on the growth of sulfide whiskers, is suggested to occur during reducing conditions. However, such a mechanism needs to be demonstrated experimentally. A simple calculational model of canister corrosion was developed based on the results of this study. 69 refs, 3 figs

  4. Polystyrene films as barrier layers for corrosion protection of copper and copper alloys.

    Science.gov (United States)

    Románszki, Loránd; Datsenko, Iaryna; May, Zoltán; Telegdi, Judit; Nyikos, Lajos; Sand, Wolfgang

    2014-06-01

    Dip-coated polystyrene layers of sub-micrometre thickness (85-500nm) have been applied on copper and copper alloys (aluminium brass, copper-nickel 70/30), as well as on stainless steel 304, and produced an effective barrier against corrosion and adhesion of corrosion-relevant microorganisms. According to the dynamic wettability measurements, the coatings exhibited high advancing (103°), receding (79°) and equilibrium (87°) contact angles, low contact angle hysteresis (6°) and surface free energy (31mJ/m(2)). The corrosion rate of copper-nickel 70/30 alloy samples in 3.5% NaCl was as low as 3.2μm/a (44% of that of the uncoated samples), and in artificial seawater was only 0.9μm/a (29% of that of the uncoated samples). Cell adhesion was studied by fluorescence microscopy, using monoculture of Desulfovibrio alaskensis. The coatings not only decreased the corrosion rate but also markedly reduced the number of bacterial cells adhered to the coated surfaces. The PS coating on copper gave the best result, 2×10(3)cells/cm(2) (1% of that of the uncoated control). © 2013 Elsevier B.V. All rights reserved.

  5. Stress corrosion cracking and dealloying of copper-gold alloy in iodine vapor

    International Nuclear Information System (INIS)

    Galvez, M.F.; Bianchi, G.L.; Galvele, J.R.

    1993-01-01

    The susceptibility to stress corrosion cracking of copper-gold alloy in iodine vapor was studied and the results were analyzed under the scope of the surface mobility stress corrosion cracking mechanism. The copper-gold alloy undergoes stress corrosion cracking in iodine. Copper iodide was responsible of that behavior. The copper-gold alloy shows two processes in parallel: stress corrosion cracking and dealloying. As was predicted by the surface mobility stress corrosion cracking mechanism, the increase in strain rate induces an increase in the crack propagation rate. (Author)

  6. Real-time monitoring of copper corrosion at the Aespoe HRL

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo; Pan, Jinshan [Div. Corrosion Science, Royal Institute of Technology, Drottning Kristinas vaeg 51, SE - 100 44 Stockholm (Sweden); Eden, David [InterCorr International, Inc., 14503 Bammel-N Houston, Suite 300, Houston, TX 77014 (United States); Karnland, Ola [Clay Technology AB, Ideon Research Center, SE - 223 70 Lund (Sweden); Werme, Lars [Svensk Kaernbraenslehantering AB, P.O. Box 5864, SE - 102 40 Stockholm (Sweden)

    2004-07-01

    In Sweden the principal strategy for high-level radioactive waste disposal is to enclose the spent nuclear fuel in tightly sealed copper canisters that are embedded in bentonite clay about 500 m down in the Swedish bed-rock. Initially, a limited amount of air will be left in a repository after emplacement. The entrapped oxygen will be consumed through reactions with minerals in the rock and the bentonite and also through microbial activity. After the oxygen has been consumed in the repository, after a few hundred years at the very most, corrosion will be controlled completely by the supply of dissolved sulphide to the canister. The present work concerns the oxic period after emplacement. The main hypothesis is that the average corrosion rate of the canister under oxic conditions will be less than 7 {mu}m/year, and that pitting will only be possible under these conditions. The Aespoe Hard Rock Laboratory offers a realistic environment for different experiments and tests under the conditions that will prevail in a deep repository. Real-time monitoring of copper corrosion is presently performed with polarization resistance, harmonic distortion analysis and electrochemical noise techniques. The first two techniques are used to derive information regarding the general corrosion rate and the third to derive information regarding localized corrosion. In order to support these measurements at Aespoe, laboratory work is also performed at the Royal Institute of Technology in Stockholm using the very same corrosion monitoring equipment and also other equipment and techniques. Copper coupons are also exposed at Aespoe. Results from the work at Aespoe and in Stockholm are presented with an emphasis on the gained information concerning localized corrosion. The recorded corrosion rates at Aespoe are well below the value given above, and the recorded localization factors are interpreted as indicating only a slight tendency to local attack. (authors)

  7. Real-time monitoring of copper corrosion at the Aespoe HRL

    International Nuclear Information System (INIS)

    Rosborg, Bo; Pan, Jinshan; Eden, David; Karnland, Ola; Werme, Lars

    2004-01-01

    In Sweden the principal strategy for high-level radioactive waste disposal is to enclose the spent nuclear fuel in tightly sealed copper canisters that are embedded in bentonite clay about 500 m down in the Swedish bed-rock. Initially, a limited amount of air will be left in a repository after emplacement. The entrapped oxygen will be consumed through reactions with minerals in the rock and the bentonite and also through microbial activity. After the oxygen has been consumed in the repository, after a few hundred years at the very most, corrosion will be controlled completely by the supply of dissolved sulphide to the canister. The present work concerns the oxic period after emplacement. The main hypothesis is that the average corrosion rate of the canister under oxic conditions will be less than 7 μm/year, and that pitting will only be possible under these conditions. The Aespoe Hard Rock Laboratory offers a realistic environment for different experiments and tests under the conditions that will prevail in a deep repository. Real-time monitoring of copper corrosion is presently performed with polarization resistance, harmonic distortion analysis and electrochemical noise techniques. The first two techniques are used to derive information regarding the general corrosion rate and the third to derive information regarding localized corrosion. In order to support these measurements at Aespoe, laboratory work is also performed at the Royal Institute of Technology in Stockholm using the very same corrosion monitoring equipment and also other equipment and techniques. Copper coupons are also exposed at Aespoe. Results from the work at Aespoe and in Stockholm are presented with an emphasis on the gained information concerning localized corrosion. The recorded corrosion rates at Aespoe are well below the value given above, and the recorded localization factors are interpreted as indicating only a slight tendency to local attack. (authors)

  8. Nanoscale coatings for erosion and corrosion protection of copper microchannel coolers for high powered laser diodes

    Science.gov (United States)

    Flannery, Matthew; Fan, Angie; Desai, Tapan G.

    2014-03-01

    High powered laser diodes are used in a wide variety of applications ranging from telecommunications to industrial applications. Copper microchannel coolers (MCCs) utilizing high velocity, de-ionized water coolant are used to maintain diode temperatures in the recommended range to produce stable optical power output and control output wavelength. However, aggressive erosion and corrosion attack from the coolant limits the lifetime of the cooler to only 6 months of operation. Currently, gold plating is the industry standard for corrosion and erosion protection in MCCs. However, this technique cannot perform a pin-hole free coating and furthermore cannot uniformly cover the complex geometries of current MCCs involving small diameter primary and secondary channels. Advanced Cooling Technologies, Inc., presents a corrosion and erosion resistant coating (ANCERTM) applied by a vapor phase deposition process for enhanced protection of MCCs. To optimize the coating formation and thickness, coated copper samples were tested in 0.125% NaCl solution and high purity de-ionized (DIW) flow loop. The effects of DIW flow rates and qualities on erosion and corrosion of the ANCERTM coated samples were evaluated in long-term erosion and corrosion testing. The robustness of the coating was also evaluated in thermal cycles between 30°C - 75°C. After 1000 hours flow testing and 30 thermal cycles, the ANCERTM coated copper MCCs showed a corrosion rate 100 times lower than the gold plated ones and furthermore were barely affected by flow rates or temperatures thus demonstrating superior corrosion and erosion protection and long term reliability.

  9. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria

    DEFF Research Database (Denmark)

    Elguindi, J; Moffitt, S; Hasman, Henrik

    2010-01-01

    of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper...... on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells, which contributed directly to bacterial killing....

  10. Effect of Copper on Passivity and Corrosion Behavior of Fe-xC-5Cu ...

    African Journals Online (AJOL)

    ... copper/microstructure is discussed. Alloying Cu showed a beneficial effect on hypoeutectoid steel and harmful effect on hypereutectoid steel. The improved corrosion resistance is related to cementite morphology and by a copper dissolution/re-deposition process. Keywords: Corrosion; Copper; cementite; EIS; Passivation ...

  11. The Impact of Hexametaphosphate, Orthophosphate, and Temperature on Copper Corrosion and Release

    Science.gov (United States)

    Excessive corrosion of copper plumbing can lead to elevated copper levels at consumer’s tap or pinhole leaks. Corrosion control solutions include pH adjustment or phosphate addition. Orthophosphate has been shown to reduce copper levels in some cases while the role of polyphosp...

  12. Fundamental aspects of stress corrosion cracking of copper relevant to the Swedish deep geologic repository concept

    International Nuclear Information System (INIS)

    Bhaskaran, Ganesh; Carcea, Anatolie; Ulaganathan, Jagan; Wang, Shengchun; Huang, Yin; Newman, Roger C.

    2013-03-01

    Phosphorus-doped oxygen-free copper will be used as the outer barrier in canisters that will contain spent nuclear fuel in the proposed Swedish underground repository. The possibility of stress corrosion cracking (SCC) is a concern, in view of isolated reports of cracking or intergranular corrosion of pure copper in sulfide solutions. This concern was addressed in the present work using copper tensile specimens provided by SKB. Methods included slow strain rate testing, constant strain tensile testing, electrochemical and surface analytical studies of corrosion products, and electron backscatter diffraction analysis of grain orientation effects on corrosion. The base solutions were prepared from NaCl or synthetic sea water with addition of varying amounts of sodium sulfide at room temperature and 80 degree Celsius. No SCC was found in any of the testing, for a range of sulfide concentrations from 5-50 mM at room temperature or 8 C, including tests where small anodic or cathodic potential displacements were applied from the open-circuit (corrosion) potential. Neither was SCC found in constant-strain immersion testing with very large strain. The Cu2S corrosion product is generally very coarse, fragile, and easily spalled off in severe corrosion environments, i.e. high sulfide concentration, high temperature, less perfect de aeration, etc. But it could also consist of very fine grains, relatively compact and adherent, on particular grain orientations when it was formed on an electro polished surface in a very well-deaerated solution. These orientations have not yet been identified statistically, although some preference for thin, adherent films was noted on orientations close to (100). The notion that the corrosion reaction is always controlled by inward aqueous-phase diffusion of sulfide may thus not be unconditionally correct for this range of sulfide concentrations; however it is hard to distinguish the role of diffusion within pores in the film. In the actual

  13. Fundamental aspects of stress corrosion cracking of copper relevant to the Swedish deep geologic repository concept

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, Ganesh; Carcea, Anatolie; Ulaganathan, Jagan; Wang, Shengchun; Huang, Yin; Newman, Roger C. [Dept. of Chemical Engineering and Applied Chemistry, Univ. of Toronto, Toronto (Canada)

    2013-03-15

    Phosphorus-doped oxygen-free copper will be used as the outer barrier in canisters that will contain spent nuclear fuel in the proposed Swedish underground repository. The possibility of stress corrosion cracking (SCC) is a concern, in view of isolated reports of cracking or intergranular corrosion of pure copper in sulfide solutions. This concern was addressed in the present work using copper tensile specimens provided by SKB. Methods included slow strain rate testing, constant strain tensile testing, electrochemical and surface analytical studies of corrosion products, and electron backscatter diffraction analysis of grain orientation effects on corrosion. The base solutions were prepared from NaCl or synthetic sea water with addition of varying amounts of sodium sulfide at room temperature and 80 degree Celsius. No SCC was found in any of the testing, for a range of sulfide concentrations from 5-50 mM at room temperature or 8 C, including tests where small anodic or cathodic potential displacements were applied from the open-circuit (corrosion) potential. Neither was SCC found in constant-strain immersion testing with very large strain. The Cu2S corrosion product is generally very coarse, fragile, and easily spalled off in severe corrosion environments, i.e. high sulfide concentration, high temperature, less perfect de aeration, etc. But it could also consist of very fine grains, relatively compact and adherent, on particular grain orientations when it was formed on an electro polished surface in a very well-deaerated solution. These orientations have not yet been identified statistically, although some preference for thin, adherent films was noted on orientations close to (100). The notion that the corrosion reaction is always controlled by inward aqueous-phase diffusion of sulfide may thus not be unconditionally correct for this range of sulfide concentrations; however it is hard to distinguish the role of diffusion within pores in the film. In the actual

  14. Corrosivity Index Copper and Steel at Two Locations in Villahermosa, Tabasco

    Directory of Open Access Journals (Sweden)

    Tejero-Rivas María Candelaria

    2015-03-01

    Full Text Available This paper presents a study of the atmospheric corrosion of copper and carbon steel made ​​in two environments Villahermosa, Tabasco for six months. The test site of the industrial zone started Villahermosa Institute of Technology (ITVH and rural-urban site at the Technological University of Tabasco (UTTAB. Aluminum in combination with a screw carbon steel provided the index marine corrosivity (MA, the brass screw gives the index of industrial corrosivity (IA; wire method of screw according to ASTM G116-93 was used and the plastic screw nylon gives the rate of rural-urban corrosivity (RUA. The determination of air pollutants (sulfur dioxide and chlorides, was with the methods of wet candle and sulfation plates according to ISO 9225. Morphology studies were performed on the corrosion products formed on the specimens screw, using scanning electron microscopy coupled with energy dispersive. The corrosion products that formed on the surface of copper and carbon steel, having a bulb-shaped morphology characteristic of the addition of soluble salts, particularly sulphates and chlorides, were identified in the two stations.

  15. Corrosion and biofouling resistance evaluation of 90-10 copper-nickel

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Carol [Consultant to Copper Development Association, UK, Square Covert, Caynham, Ludlow, Shropshire (United Kingdom)

    2004-07-01

    Copper-nickel alloys for marine use were developed for naval applications in the early part of the 20. century with a view to improving the corrosion resistance of condenser tubes and seawater piping. They still enjoy widespread use today not only for many navies but also in commercial shipping, floating production, storage and off loading vessels (FPSOs), and in multistage flash desalination. The two popular alloys contain 90% or 70% copper and differ in strength and maximum sea water velocity levels they can handle but it is the 90-10 copper-nickel (CuNi10Fe1Mn) which is the more economic and extensively used. An additional benefit of this alloy is its high resistance to biofouling: in recent years this has led to sheathing developments particularly for structures and boat hulls. This paper provides a review of the corrosion and biofouling resistance of 90-10 copper-nickel based on laboratory test data and documented experience of the alloy in marine environments. Particular attention is given to exposure trials over 8 years in Langstone Harbour, UK, which have recently been completed by Portsmouth University on behalf of the Nickel Institute. These examined four sheathing products; plate and foil as well as two composite products with rubber backing. The latter involved copper-nickel granules and slit sheet. The trial results are consistent with the behaviour of the alloy in the overall review. There is an inherent high resistance to marine biofouling when freely exposed. Prolonged exposure to quiet conditions can result in some growth of marine organisms but this is loosely attached and can readily be removed by wiping or a light scraping. The good corrosion resistance of 90-10 copper-nickel in sea water is also confirmed and associated with the formation of a thin, complex, protective and predominantly cuprous oxide surface film, which forms and matures naturally on exposure to seawater. Sound initial oxide film formation is also known to help protect against

  16. Corrosion of copper by chlorine trifluoride; Corrosion du cuivre par le trifluorure de chlore

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    The research described called for a considerable amount of preliminary development of the test methods and equipment in order that the various measurements and observations could be carried out without contaminating either the samples or this highly reactive gas. The chlorine trifluoride was highly purified before use, its purity being checked by gas-phase chromatography, micro-sublimation and infrared spectrography. The tests were carried out on copper samples of various purities, in particular a 99.999 per cent copper in the form of mono-crystals. They involved kinetic measurements and the characterization of corrosion products under different temperature and pressure conditions. The kinetics showed reactions of the same order of magnitude as those obtained with elementary fluorine. At atmospheric pressure there occurs formation of cupric fluoride and cuprous chloride. The presence of this latter product shows that it is not possible to consider ClF{sub 3} simply as a fluorinating agent. At low pressures an unknown product has been characterized. There are strong grounds for believing that it is the unstable cuprous fluoride which it has not yet been possible to isolate. A germination phenomenon has been shown to exist indicating an analogy between the initial phases of fluorination and those of oxidation. Important effects resulting from the dissociation of the copper fluorides and the solubility of chlorine in this metal have been demonstrated. Finally, tests have shown the considerable influence of the purity of the gas phase and of the nature of the reaction vessel walls on the rates of corrosion which can in certain cases be increased by a factor of several powers of ten. (author) [French] Le travail a comporte une importante mise au point des appareillages et methodes d'essai, en vue de pouvoir effectuer differentes mesures et observations sans contaminer les echantillons, ni polluer ce gaz hautement reactif. Une purification poussee du trifluorure de

  17. XPS investigation of copper corrosion in hydro-carbonate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Sieber, I.; Hildebrand, H.; Schmuki, P. [University Erlangen-Nuremberg, Martensstr.7, D-91058 Erlangen (Germany); Kaluzhina, S.A. [Voronezh State University, University Sq.1, 394006 Voronezh (Russian Federation)

    2004-07-01

    Problems of corrosion and effective methods of metal protection are still actual in the present days. Special interest is in copper material, which as basic component of heat exchanger constructions can corrode in contact with carbonate water. The intensity of the corrosion destruction depends on the carbon water concentration and thermal conditions in the system. The present paper provides new insights into the role of the HCO{sub 3}{sup -} - ions in the corrosion process of copper. Copper samples after anodic oxidation in 0.02 and 0.1 M NaHCO{sub 3} have been studied using XPS and SEM. The presence of carbonate compounds in the passive film in 0.1 M NaHCO{sub 3} was established by XPS analysis all over the surface. These compounds are responsible for the protective character of the passive film towards local destruction. In the 0.02 M NaHCO{sub 3} electrolyte carbonate compounds were not found at places of pit formation after multi-cycling of the sample. (authors)

  18. Corrosion of high purity copper as engineering barrier in deep geological repositories

    International Nuclear Information System (INIS)

    Ochoa, Maité; Rodríguez Martín, A.; Farina Silvia, B.

    2013-01-01

    Pure copper with oxygen content below 5 ppm (to minimize segregation at grain boundaries) and doped with phosphorus (to increase creep resistance) is the chosen material for the corrosion-resistant barrier of the High Level Radioactive 2 Wastecontainers in the Swedish and Finnish repository models. These models include the construction of the repository below the water table, which is a reducing environment in which copper has excellent resistance to general and localized corrosion in aqueous electrolytes. The aim of this work is contribute to determine the durability of the material, given that deep geological repositories of HLW are designed to ensure the protection of the environment for periods of hundreds of thousands years. As a first step in a more general analysis the effects of chloride, one of the main aggressive species of corrosion, are evaluated. To this purpose corrosion potential was determined and anodic polarization curves were performed in deaerated solutions varying the chloride concentration between 0.01 and 1M and the temperature between 30 and 90°C. Several electrochemical techniques were used: the evolution of corrosion potential was measured, anodic polarization curves were obtained and electrochemical impedance tests were performed. The analysis was complemented with microscopic observations of the type of corrosive attack, as well as determinations of the eventual corrosion products formed using Energy-Dispersive X-ray Analysis (EDS). Results show that the corrosion potential decreases with the increase of temperature and with the increase of chloride concentration. A correlation of the corrosion potential as a function of temperature and chloride concentration was obtained, with the purpose of making predictions in variable conditions.The current density increases both with temperature and with chloride concentration. A pitting potential is observed in certain conditions. (author)

  19. Corrosion behavior induced by LiCl-KCl in type 304 and 316 stainless steel and copper at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Jee Hyung; Kim, Yong Soo; Cho, Il Je [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-06-15

    The corrosion behavior of stainless steel (304 and 316 type) and copper induced by LiCl-KCl at low temperatures in the presence of sufficient oxygen and moisture was investigated through a series of experiments (at 30°C, 40°C, 60°C, and 80°C for 24 hours, 48 hours, 72 hours, and 96 hours). The specimens not coated on one side with an aqueous solution saturated with LiCl-KCl experienced no corrosion at any temperature, not even when the test duration exceeded 96 hours. Stainless steel exposed to LiCl-KCl experienced almost no corrosion below 40°C, but pitting corrosion was observed at temperatures above 60°C. As the duration of the experiment was increased, the rate of corrosion accelerated in proportion to the temperature. The 316 type stainless steel exhibited better corrosion resistance than did the 304 type. In the case of copper, the rate of corrosion accelerated in proportion to the duration and temperature but, unlike the case of stainless steel, the corrosion was more general. As a result, the extent of copper corrosion was about three times that of stainless steel.

  20. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions

    Science.gov (United States)

    Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng

    2015-01-01

    This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu2O film increased gradually. Its corrosion product was Cu2(OH)3Cl, which increased in quantity over time. Cl− was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e., dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet. PMID:28793549

  1. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions.

    Science.gov (United States)

    Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng

    2015-09-10

    This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu₂O film increased gradually. Its corrosion product was Cu₂(OH)₃Cl, which increased in quantity over time. Cl - was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e. , dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet.

  2. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Bo Sun

    2015-09-01

    Full Text Available This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu2O film increased gradually. Its corrosion product was Cu2(OH3Cl, which increased in quantity over time. Cl− was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss, degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e., dissolved oxygen (DO and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet.

  3. Corrosion of mild steel, copper and brass in crude oil / seawater mixture

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi, S.; Sawant, S.S.; Wagh, A.B.

    Mild steel, copper and brass coupons were introduced in natural seawater containing varying amount of crude oil. Mild steel showed higher rate of corrosion in seawater containing oil and lower corrosion rate in natural as well as artificial seawater...

  4. The stress corrosion cracking of copper nuclear waste containers

    International Nuclear Information System (INIS)

    King, F.; Litke, C.D.; Ikeda, B.M.

    1999-01-01

    The extent of stress corrosion cracking (SCC) of copper nuclear waste containers is being predicted on the basis of a 'limited propagation' argument. In this argument, it is accepted that crack initiation may occur, but it is argued that the environmental conditions and material properties required for a through-wall crack to propagate will not be present. In this paper, the effect of one environmental parameter, the supply of oxidant (J ox ), on the crack growth rate is examined. Experiments have been conducted on two grades of Cu in NANO 2 environments using two loading techniques. The supply of oxidant has been varied either electrochemically in bulk solution using different applied current densities or by embedding the loaded test specimens in compacted buffer material containing O 2 as the oxidant. Measured and theoretical crack growth rates as a function of J ox are compared with the predicted oxidant flux to the containers in a disposal vault and an estimate of the maximum crack depth on a container obtained. (author)

  5. The stress corrosion cracking of copper nuclear waste containers

    International Nuclear Information System (INIS)

    King, F.; Litke, C.D.; Ikeda, B.M.

    1999-01-01

    The extent of stress corrosion cracking (SCC) of copper nuclear waste containers is being predicted on the basis of a limited propagation argument. In this argument, it is accepted that crack initiation may occur, but it is argued that the environmental conditions and material properties required for a through-wall crack to propagate will not be present. In this paper, the effect of one environmental parameter, the supply of oxidant (J OX ), on the crack growth rate is examined. Experiments have been conducted on two grades of Cu in NaNO 2 environments using two loading techniques. The supply of oxidant has been varied either electrochemically in bulk solution using different applied current densities or by embedding the loaded test specimens in compacted buffer material containing O 2 as the oxidant. Measured and theoretical crack growth rates as a function of J OX are compared with the predicted oxidant flux to the containers in a disposal vault and an estimate of the maximum crack depth on a container obtained

  6. A Review of Evidence for Corrosion of Copper by water

    Energy Technology Data Exchange (ETDEWEB)

    Apted, Michael J. (Monitor Scientific LLC (United Kingdom)); Bennett, David G. (TerraSalus Limited (United Kingdom)); Saario, Timo (VTT Materials and Building (Finland))

    2009-09-15

    The planned spent nuclear fuel repository in Sweden relies on a copper cast iron canister as the primary engineered barrier. The corrosion behaviour of copper in the expected environment needs to be thoroughly understood as a basis for the post-closure safety analysis. It has been shown that corrosion may indeed be the primary canister degradation process during the utilised assessment period of 1 million years (this period is the longest time for which risk calculations will be needed according guidelines issued by the Swedish Radiation Safety Authority). Previous analysis work has been based on that copper is corroded during the initial oxic environment as well as by sulphide in groundwater once reducing conditions have been restored. The quantitative analyses of these processes consider upper-bound amounts of atmospheric oxidation as well as representative sulphide concentrations coupled with the transport limitation of the bentonite buffer and of the surrounding bedrock. A group of researchers at the Royal Institute of Technology (KTH), Stockholm, Sweden suggest, based on published experimental results, that disposed canisters will also be corroded by water itself under hydrogen evolution. The purpose of the project is to evaluate the findings of the KTH research group based on an assessment of their experimental methods and chemical analysis work, thermodynamic models, and a discussion of reaction mechanisms as well as comparison with the analogue behaviour of native copper. As a background, the authors also provide a brief overview of other corrosion processes and safety assessment significance. The authors conclude that the KTH researchers have not convincingly demonstrated that copper will indeed be corroded by pure water and that it is in any case very unlikely that this process will be dominant under the reducing chemical conditions that are expected in the repository environment. How-ever, the authors do not completely rule out that copper may corrode

  7. Fabricated super-hydrophobic film with potentiostatic electrolysis method on copper for corrosion protection

    International Nuclear Information System (INIS)

    Wang Peng; Qiu Ri; Zhang Dun; Lin Zhifeng; Hou Baorong

    2010-01-01

    A novel one-step potentiostatic electrolysis method was proposed to fabricate super-hydrophobic film on copper surface. The resulted film was characterized by contact angle tests, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), Field emission scanning electron microscopy (FE-SEM) and electrochemical measurements. It could be inferred that the super-hydrophobic property resulted from the flower-like structure of copper tetradecanoate film. In the presence of super-hydrophobic film, the anodic and cathodic polarization current densities are reduced for more than five and four orders of magnitude, respectively. The air trapped in the film is the essential contributor of the anticorrosion property of film for its insulation, the copper tetradecanoate film itself acts as a 'frame' to trap air as well as a coating with inhibition effect. The super-hydrophobic film presents excellent inhibition effect to the copper corrosion and stability in water containing Cl - .

  8. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    Science.gov (United States)

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH chloride concentrations at least 11 times higher than bulk water levels. Waters with relatively high chloride tend to sustain high galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  9. Accelerated Test Method for Corrosion Protective Coatings

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as...

  10. A SIMPLE APPROACH TO ASSESSING COPPER PITTING CORROSION TENDENCIES AND DEVELOPING CONTROL STRATEGIES

    Science.gov (United States)

    Localized corrosion of copper premise plumbing in drinking water distribution systems can lead to pinhole leaks, which are a growing problem for many homeowners. Despite the fact that water quality is an important factor associated with localized copper corrosion, definitive appr...

  11. Is Copper Immune to Corrosion When in Contact With Water and Aqueous Solutions?

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Digby D.; Sharifi-Asl, Samin (Pennsylvania State Univ., PA (United States). Center for Electrochemical Science and Technology, Dept. of Materials Science and Engineering)

    2011-03-15

    Objectives The aim of this project has been to increase knowledge and to contribute to the research community in the area of copper corrosion in a repository environment. For SSM, the most important subject is to provide better conditions for a science based evaluation of a repository for spent nuclear fuel. In this respect, this project aimed at conducting a comprehensive theoretical study on corrosion of copper in repository environment based on an expected composition of dissolved species in the groundwater in the Forsmark area. In addition the thermodynamic immunity of copper in pure anoxic water has been especially addressed as this was one of the initial conditions made by SKB for selecting copper as canister material. Results The authors have shown, in so-called corrosion Domain Diagrams, that copper in a thermodynamic sense can be considered as immune in pure anoxic water (without dissolved oxygen) only under certain conditions. It is shown that copper will corrode in pure anoxic water with very low concentrations of [Cu+] and very low partial pressures of hydrogen gas. At higher concentrations of [Cu+] and partial pressures of hydrogen, copper is found to be thermodynamically immune and will not corrode. The rate of copper corrosion in the repository water environment will thus depend on the transport of corrosion products away from the copper surface or the transport of corroding species to the copper surface. The degree to which this affects the corrosion of copper canisters in the repository environment has not been further studied. Still, the result shows that copper cannot be considered as thermodynamically immune in the presence of pure anoxic water, this implicate that one of SKB:s initial conditions for selecting copper as a canister material can be questioned. To what degree this may influence the corrosion of copper canisters in the repository environment still needs to be investigated. Of other species present in the water at repository depth in

  12. Is Copper Immune to Corrosion When in Contact With Water and Aqueous Solutions?

    International Nuclear Information System (INIS)

    Macdonald, Digby D.; Sharifi-Asl, Samin

    2011-03-01

    Objectives The aim of this project has been to increase knowledge and to contribute to the research community in the area of copper corrosion in a repository environment. For SSM, the most important subject is to provide better conditions for a science based evaluation of a repository for spent nuclear fuel. In this respect, this project aimed at conducting a comprehensive theoretical study on corrosion of copper in repository environment based on an expected composition of dissolved species in the groundwater in the Forsmark area. In addition the thermodynamic immunity of copper in pure anoxic water has been especially addressed as this was one of the initial conditions made by SKB for selecting copper as canister material. Results The authors have shown, in so-called corrosion Domain Diagrams, that copper in a thermodynamic sense can be considered as immune in pure anoxic water (without dissolved oxygen) only under certain conditions. It is shown that copper will corrode in pure anoxic water with very low concentrations of [Cu + ] and very low partial pressures of hydrogen gas. At higher concentrations of [Cu + ] and partial pressures of hydrogen, copper is found to be thermodynamically immune and will not corrode. The rate of copper corrosion in the repository water environment will thus depend on the transport of corrosion products away from the copper surface or the transport of corroding species to the copper surface. The degree to which this affects the corrosion of copper canisters in the repository environment has not been further studied. Still, the result shows that copper cannot be considered as thermodynamically immune in the presence of pure anoxic water, this implicate that one of SKB:s initial conditions for selecting copper as a canister material can be questioned. To what degree this may influence the corrosion of copper canisters in the repository environment still needs to be investigated. Of other species present in the water at repository

  13. Effect of grain size on corrosion of nanocrystalline copper in NaOH solution

    International Nuclear Information System (INIS)

    Luo Wei; Xu Yimin; Wang Qiming; Shi Peizhen; Yan Mi

    2010-01-01

    Research highlights: → Coppers display an active-passive-transpassive behaviour with duplex passive film. → Grain size variation has little effect on the overall corrosion behaviour of Cu. → Little effect on corrosion may be due to duplex passivation in NaOH solution. → Bulk nanocrystalline Cu show bamboo-like flake corrosion structure. - Abstract: Effect of grain size on corrosion of bulk nanocrystalline copper was investigated using potentiodynamic polarization measurements in 0.1 M NaOH solution. Bulk nanocrystalline copper was prepared by inert gas condensation and in situ warm compress (IGCWC) method. The grain sizes of all bulk nanocrystalline samples were determined to be 48, 68 and 92 nm using X-ray diffraction (XRD). Results showed that bulk coppers displayed an active-passive-transpassive behaviour with duplex passive films. From polycrystalline to nanocrystalline, grain size variation showed little effect on the overall corrosion resistance of copper samples.

  14. Protection of copper surface with phytic acid against corrosion in chloride solution.

    Science.gov (United States)

    Peca, Dunja; Pihlar, Boris; Ingrid, Milošev

    2014-01-01

    Phytic acid (inositol hexaphosphate) was tested as a corrosion inhibitor for copper in 3% sodium chloride. Phytic acid is a natural compound derived from plants, it is not toxic and can be considered as a green inhibitor. Electrochemical methods of linear polarization and potentiodynamic polarization were used to study the electrochemical behaviour and evaluate the inhibition effectiveness. To obtain the optimal corrosion protection the following experimental conditions were investigated: effect of surface pre-treatment (abrasion and three procedures of surface roughening), pre-formation of the layer of phytic acid, time of immersion and concentration of phytic acid. To evaluate the surface pre-treatment procedures the surface roughness and contact angle were measured. Optimal conditions for formation of phytic layer were selected resulting in the inhibition effectiveness of nearly 80%. Morphology and composition of the layer were further studied by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The layer of phytic acid with thickness in the nanometer range homogeneously covers the copper surface. The obtained results show that this natural compound can be used as a mildly effective corrosion inhibitor for copper in chloride solution.

  15. The Application of Electrochemical and Surface Analysis Approaches to Studying Copper Corrosion in Water: Fundamentals, Limitations, and Examples

    Science.gov (United States)

    Corrosion control is a concern for many drinking water utilities. The Lead and Copper Rule established a regulatory need to maintain a corrosion control program. Other corrosion-related issues such as “red” water resulting from excessive iron corrosion and copper pinhole leaks ...

  16. Electrochemical study of stress corrosion cracking of copper alloys

    International Nuclear Information System (INIS)

    Malki, Brahim

    1999-01-01

    This work deals with the electrochemical study of stress corrosion of copper alloys in aqueous environment. Selective dissolution and electrochemical oxidation are two key-points of the stress corrosion of these alloys. The first part of this thesis treats of these aspects applied to Cu-Au alloys. Measurements have been performed using classical electrochemical techniques (in potentio-dynamic, potentio-static and galvano-static modes). The conditions of occurrence of an electrochemical noise is analysed using signal processing techniques. The impact on the behavior of Cu 3 Au are discussed. In the second part, the stress corrosion problem is addressed in the case of surface oxide film formation, in particular for Cu-Zn alloys. We have found useful to extend this study to mechanical stress oxidation mechanisms in the presence of an oscillating potential electrochemical system. The aim is to examine the influence of these new electrochemical conditions (galvano-static mode) on the behavior of stressed brass. Finally, the potential distribution at crack tip is calculated in order to compare the different observations [fr

  17. Thermogalvanic corrosion and galvanic effects of copper and AISI 316L stainless steel pairs in heavy LiBr brines under hydrodynamic conditions

    International Nuclear Information System (INIS)

    Sánchez-Tovar, R.; Montañés, M.T.; García-Antón, J.

    2012-01-01

    Highlights: ► Thermogalvanic corrosion results in an increase of the current densities. ► Thermogalvanic effect increases as temperature difference between tubes is higher. ► Potentials fit linearly with increase in temperature. ► ZRA shows hot cathodes for AISI 316L while cold ones for copper and galvanic pairs. ► Weight loss tests show a combined effect between thermogalvanic and galvanic effects. - Abstract: Thermogalvanic corrosion of the copper/copper and AISI 316L/AISI 316L stainless steel pairs was studied in heavy lithium bromide brines under hydrodynamic conditions. The galvanic coupling effect between copper and stainless steel was also analysed. The cold electrode (25 °C) was the stainless steel for the galvanic pair, whereas copper temperature varied (25, 50 and 75 °C). A hydrodynamic circuit was designed to study thermogalvanic corrosion by means of the zero resistance ammeter technique. Hot cathodes take place in stainless steel pairs while cold cathodes are present in copper/copper and stainless steel/copper pairs; this agrees with the thermal temperature coefficient of the potential sign. Thermogalvanic corrosion increases corrosion rates, especially working with copper. Weight loss measurements show that there is a combined effect due to the thermogalvanic and the galvanic effects.

  18. CHARACTERIZATION OF LOCALIZED CORROSION OF COPPER PIPES USED IN DRINKING WATER

    Science.gov (United States)

    Localized corrosion of copper, or "copper pitting" in water distribution tubing is a large problem at many utilities. Pitting can lead to pinhole leaks less than a year. Tubing affected by copper pitting will often fail in ultiple locations, resulting in a frustrating situation ...

  19. The effect of boron implantation on the corrosion behaviour, microhardness and contact resistance of copper and silver surfaces

    International Nuclear Information System (INIS)

    Henriksen, O.; Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.

    1986-01-01

    In order to investigate the influence of boron implantation on the corrosion resistance of electrical contacts, a number of pure copper, pure silver and copper edge connector samples have been implanted with boron (40 keV) to fluences of 5.10 20 m -2 and 2.10 21 m -2 . Atmospheric corrosion tests of the implanted species were conducted using the following exposures: H 2 S (12.5 ppm, 4 days), SO 2 (25 ppm, 21 days), saltfog (5% NaCl, 1 day), moist air (93% RH, 56 days), and hot/dry air (70 C, 56 days). The boron implantations lead to a significant reduction in the sulphidation rate of copper and silver. The corrosive film formed during exposure in H 2 S and SO 2 atmospheres is confined to pitted regions on the implanted areas, while a thick and relatively uniform film formation is observed on the unimplanted samples. The corrosion resistance of copper and silver in saltfog atmosphere is somewhat improved by boron implantation, whilst the results from exposures to moist air or hot/dry air are inconclusive. The improved corrosion behaviour is accompanied by an increase in the contact resistance and in the microhardness of the implanted samples. (orig.)

  20. Modeling the effects of evolving redox conditions on the corrosion of copper containers

    International Nuclear Information System (INIS)

    Kng, F.; LeNeveu, D.M.; Jobe, D.J.

    1994-01-01

    The corrosive environment around the containers in a Canadian nuclear fuel waste disposal vault will change over time from open-quotes warm and oxidizingclose quotes to open-quotes cool and anoxic.close quotes As the conditions change, so too will the corrosion behaviour of the containers. For copper containers, uniform corrosion and, possibly, pitting will occur during the initial aggressive phase, to be replaced by slow uniform corrosion during the long-term anoxic period. The corrosion behaviour of copper has been studied over a range of conditions representing all phases in the evolution of the vault environment. The results of these studies are summarized and used to illustrate how a model can be developed to predict the corrosion behaviour and container lifetimes over long periods of time. Lifetimes in excess of 10 6 a are predicted for 25-mm-thick copper containers under Canadian disposal conditions

  1. Phosphate ions as inhibiting agents for copper corrosion in chlorinated tap water

    Energy Technology Data Exchange (ETDEWEB)

    Yohai, L. [División Electroquímica y Corrosión, INTEMA, CONICET, UNMdP, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Schreiner, W.H. [Laboratório de Superfícies e Interfases, Departamento de Física, Universidade Federal do Paraná, 81531-990 Curitiba, PR (Brazil); Vázquez, M., E-mail: mvazquez@fi.mdp.edu.ar [División Electroquímica y Corrosión, INTEMA, CONICET, UNMdP, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Valcarce, M.B. [División Electroquímica y Corrosión, INTEMA, CONICET, UNMdP, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina)

    2013-05-15

    PO{sub 4}{sup 3−} ions as corrosion inhibitor were investigated on copper in tap water in the presence of NaClO. The inhibitor was evaluated by electrochemical techniques and weight loss tests. Raman spectroscopy and X-ray photoelectron spectroscopy were used to study the passive layer. In inhibited tap water, the passive layer is thick and compact if NaClO is present. Weight-loss tests showed the inhibition of uniform dissolution and no pitting attack. When adding NaClO, Cu{sub 3}(PO{sub 4}){sub 2} is incorporated to the passive film. Thus, phosphate ions are effective as inhibitors for copper in tap water, even when using high dosages of biocides. - Highlights: ► Changes in the copper corrosion after adding phosphate to tap water were analyzed. ► When NaClO and phosphates are present, Cu{sub 3}(PO{sub 4}){sub 2} participates of the surface film. ► In the absence of biocide the surface film contains a mixture of Cu{sub 2}O, CuO and Cu(OH){sub 2}. ► PO{sub 4}{sup 3−} is an effective inhibitor for Cu in tap water containing high NaClO dosages.

  2. Phosphate ions as inhibiting agents for copper corrosion in chlorinated tap water

    International Nuclear Information System (INIS)

    Yohai, L.; Schreiner, W.H.; Vázquez, M.; Valcarce, M.B.

    2013-01-01

    PO 4 3− ions as corrosion inhibitor were investigated on copper in tap water in the presence of NaClO. The inhibitor was evaluated by electrochemical techniques and weight loss tests. Raman spectroscopy and X-ray photoelectron spectroscopy were used to study the passive layer. In inhibited tap water, the passive layer is thick and compact if NaClO is present. Weight-loss tests showed the inhibition of uniform dissolution and no pitting attack. When adding NaClO, Cu 3 (PO 4 ) 2 is incorporated to the passive film. Thus, phosphate ions are effective as inhibitors for copper in tap water, even when using high dosages of biocides. - Highlights: ► Changes in the copper corrosion after adding phosphate to tap water were analyzed. ► When NaClO and phosphates are present, Cu 3 (PO 4 ) 2 participates of the surface film. ► In the absence of biocide the surface film contains a mixture of Cu 2 O, CuO and Cu(OH) 2 . ► PO 4 3− is an effective inhibitor for Cu in tap water containing high NaClO dosages

  3. A copper container corrosion model for the in-room emplacement of used CANDU fuel

    International Nuclear Information System (INIS)

    King, F.

    1996-11-01

    Copper containers in a Canadian nuclear fuel waste disposal vault are expected to undergo uniform corrosion and, possibly, pitting. The corrosion behaviour of the containers will be dictated by the evolution of environmental conditions within the disposal vault. The environment will evolve from an early warm, oxidizing phase, during which fast uniform corrosion and pitting may occur, to an indefinite period of cool, anoxic conditions, during which the container will only be susceptible to slow uniform corrosion. The results of corrosion and electrochemical studies of the uniform corrosion of Cu in O 2 -containing Cl - solutions are discussed and a detailed reaction mechanism presented. The relevant literature on pitting corrosion is briefly reviewed and models for the prediction of pit depth discussed. The potential for microbially influenced corrosion and stress-corrosion cracking is discussed, as are vapour-phase corrosion and the effects of β-radiation. The use of natural analogues for justifying long-term corrosion predictions is also considered. Finally, a model for uniform corrosion and pitting is presented and container lifetimes predicted. Copper containers having a minimum wall thickness of 25.4 mm are not predicted to fail by corrosion in periods 6 a. Thus, despite the assumption of poor rock quality made here, the safety of the entire disposal concept can be assured by the use of a long-lived container. (author). 125 refs., 1 tab., 24 figs

  4. Electrochemical corrosion testing of metal waste forms

    International Nuclear Information System (INIS)

    Abraham, D. P.; Peterson, J. J.; Katyal, H. K.; Keiser, D. D.; Hilton, B. A.

    1999-01-01

    Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also conducted on MWF samples that were coupled to an alloy that has been proposed for the inner lining of the high-level nuclear waste container. The experiments show that the steady-state galvanic corrosion currents are small. Galvanic corrosion will, hence, not be an important mechanism of radionuclide release from the MWF alloys

  5. Corrosion performance tests for reinforcing steel in concrete : test procedures.

    Science.gov (United States)

    2009-09-01

    The existing test method to assess the corrosion performance of reinforcing steel embedded in concrete, mainly : ASTM G109, is labor intensive, time consuming, slow to provide comparative results, and often expensive. : However, corrosion of reinforc...

  6. Corrosion of copper in distilled water without molecular oxygen and the detection of produced hydrogen

    International Nuclear Information System (INIS)

    Hultquist, G.; Graham, M.J.; Kodra, O.; Moisa, S.; Liu, R.; Bexell, U.; Smialek, J.L.

    2013-01-01

    This paper reports on hydrogen pressures measured during the longterm immersion (∼19 000 hours) of copper in oxygen-free distilled water. Hydrogen gas evolution is from copper corrosion and similar pressures (in the mbar range) are measured for copper contained in either a 316 stainless steel or titanium system. Copper corrosion products have been examined ex-situ by SEM and characterized by Xray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). XPS strongly indicates a corrosion product containing both hydroxide and oxide. SIMS shows that oxygen is mainly present in the outer 0.3 μm surface region and that hydrogen penetrates to depths in the substrate well below the corrosion product

  7. Corrosion behavior of beryllium copper and other nonmagnetic alloys in simulated drilling environments

    International Nuclear Information System (INIS)

    Cribb, W.R.; Booker, J.; Kane, R.D.; Turn, J.C.

    1984-01-01

    Beryllium copper (BeCu) alloys are known to exhibit high strength and good electrical conductivity. Other attractive properties, low magnetic susceptibility and resistance to galling, make these alloys strong contenders for use as drill collars and instrument housings in drilling equipment. Environmental cracking and corrosion tests were conducted in autoclaves at 66, 121 and 149 C (150, 250 and 300 F) in environments as severe as 10% H 2 S, 20% CO 2 balance N 2 . The results indicate Brush Alloy 25 adequately resists environmental cracking for these conditions, whereas certain nonmagnetic stainless steel cracked. Brush Alloy 25 exhibits acceptable corrosion rates at or below temperatures of 149 C (300 F) in environments with up to 1% H 2 S. Acceptable rates were also observed for environments containing up to 10% H 2 S at 66 C (150 F). The alloy showed this similar acceptable behavior in billet or tube form regardless of the aging treatment

  8. An Electrochemical Investigation into the Corrosion Protection Properties of Coatings for the Active Metal Copper

    OpenAIRE

    Carragher, Ursula

    2013-01-01

    In the research presented in this thesis, corrosion protection films were synthesised and characterised. The films were based on polypyrrole (PPy) coatings doped with combinations of tartrate, oxalate and dodecylbenzene sulfonate (DBS) along with the incorporation of multiwalled carbon nanotubes (MWCNT), and viologen films adsorbed at copper. The corrosion protective properties of these films were studied and compared to the uncoated copper substrate. They were assessed and stu...

  9. Corrosion and microfouling of copper and its alloys in a tropical marine waters of India (Mangalore)

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Khandeparker, D.C.; Tulaskar, A.; Venkat, K.; Garg, A.

    Rate of corrosion, extent and nature of microfouling of copper, cupronickel 70/30 and cupronickel 90/10 have been studied for three different seasons at a station on the west coast of India. The corrosion rates for all the three materials are higher...

  10. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement

    OpenAIRE

    Abdulkareem Mohammed Ali Al-Sammarraie; Mazin Hasan Raheema

    2017-01-01

    The enhancement of corrosion protection of metals and alloys by coating with simple, low cost, and highly adhered layer is still a main goal of many workers. In this research graphite flakes converted into graphene oxide using modified Hammers method and then reduced graphene oxide was electrodeposited on stainless steel 316, copper, and aluminum for corrosion protection application in seawater at four temperatures, namely, 20, 30, 40, and 50°C. All corrosion measurements, kinetics, and therm...

  11. Weight loss studies of fastener materials corrosion in contact with timbers treated with copper azole and alkaline copper quaternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kear, Gareth [Building Research Association of New Zealand (BRANZ) Ltd., Science and Engineering Services, Private Bag 50 908, Porirua City 5240 (New Zealand)], E-mail: G.Kear@soton.ac.uk; Wu Haizhen; Jones, Mark S. [Building Research Association of New Zealand (BRANZ) Ltd., Science and Engineering Services, Private Bag 50 908, Porirua City 5240 (New Zealand)

    2009-02-15

    Corrosion rates of mild steel, AISI 316 stainless steel and hot-dipped galvanised steel in contact with preservative-treated Pinus radiata have been determined using four distinct accelerated (49 {+-} 1 deg. C) and non-accelerated (21 {+-} 2 deg. C) weight loss methodologies. The data were measured as a function of timber moisture content and copper concentration over periods of exposure ranging from 2 weeks to 14 months. The results show that the corrosion resistance of the stainless steel was not influenced by classification or magnitude of preservative loading. Corrosion rates of this material were multiple orders of magnitude lower than those of the mild and galvanised steels. In most instances, corrosion rates of hot-dipped galvanised layers in contact with alkaline copper quaternary-treated timbers were up to a factor of 10 times, or greater, than those measured for copper-chrome-arsenate treatments. A direct negative influence of copper ion concentration on the corrosion resistance of mild steel was also observed for each preservative type.

  12. Standard Test Method for Sandwich Corrosion Test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method defines the procedure for evaluating the corrosivity of aircraft maintenance chemicals, when present between faying surfaces (sandwich) of aluminum alloys commonly used for aircraft structures. This test method is intended to be used in the qualification and approval of compounds employed in aircraft maintenance operations. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information. 1.3 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements appear in Section 9.

  13. Corrosion of copper-based materials in irradiated moist air systems

    International Nuclear Information System (INIS)

    Reed, D.T.; Van Konynenburg, R.A.

    1991-06-01

    The atmospheric corrosion of oxygen-free copper (CDA-102), 70/30 copper-nickel (CDA-715), and 7% aluminum bronze (CDA-613) in an irradiated moist air environment was investigated. Experiments were performed in both dry and 40% RH (at sign 90 degree C) air at temperatures of 90 and 150 degree C. Initial corrosion rates were determined based on a combination of weight gain and weight loss measurements. Corrosion products observed were identified. These experiments support efforts by the Yucca Mountain Project (YMP) to evaluate possible metallic barrier materials for nuclear waste containers. 8 refs., 1 fig., 2 tabs

  14. Inhibition of Copper Pitting Corrosion in Aggressive Potable Waters

    Directory of Open Access Journals (Sweden)

    Emily Sarver

    2012-01-01

    Full Text Available Copper pitting corrosion can lead to premature plumbing failures, and can be caused by aggressive potable waters characterized by high pH, free chlorine residual and low alkalinity. In such waters and under continuous flow, certain inhibitors including phosphate, silica or natural organic matter may greatly reduce pitting occurrence. In the current work, 1 mg/L phosphate (as P completely prevented initiation of pits, and 5 mg/L silica (as Si significantly decelerated pitting. However, much lower doses of these inhibitors had little benefit and actually accelerated the rate of attack in some cases. Effects of organic matter were dependent on both the type (e.g., natural versus ozonated humic substances and dosage. Dose-response effects of free chlorine and alkalinity were also investigated. Based on electrochemical data, pits initiated more rapidly with increased free chlorine, but even moderate levels of chlorine (~0.4 mg/L eventually caused severe pitting. High alkalinity decreased pit propagation rates but did not prevent pit formation.

  15. Possible effects of external electrical fields on the corrosion of copper in bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Taxen, Claes (Swerea KIMAB (Sweden))

    2011-12-15

    External potentials that develop across a repository may interact with the copper canister. A study was undertaken to investigate the potential corrosion effects of voltage differences in a repository. A set of experiments was performed to study the tendency of copper in bentonite to corrode under influence of an externally applied electrical field. A model study was made to estimate possible corrosion effects of an external electrical field on a full-scale canister in the KBS-3 concept. The interaction between the repository represented by a copper canister in bentonite, and an external electrical field is illustrated with an example

  16. XPS response in the corrosion products analysis for copper exposed at clean air environment

    International Nuclear Information System (INIS)

    Mariaca, L.; Morcillo, M.; Feliu Jr, S.; Gonzalez, J.A.

    1998-01-01

    In this work is presented the obtained response for superficial analysis technique by X-ray photoelectron spectroscopy (XPS or ESCA), to determine the corrosion products formed during the copper exposure at environment without pollutants (clean air) at 50, 70 and 90 % of relative humidity at 35 Centigrade. One of the copper corrosion products most knew is Cu 2 O. This oxide is formed instantly to be exposed the copper at air. However in function of the exposure time and the relative humidity at it is exposed, the Cu 2 O oxide is transformed at Cu O and Cu(OH) 2 (Author)

  17. Eco-Friendly Inhibitors for Copper Corrosion in Nitric Acid: Experimental and Theoretical Evaluation

    Science.gov (United States)

    Savita; Mourya, Punita; Chaubey, Namrata; Singh, V. K.; Singh, M. M.

    2016-02-01

    The inhibitive performance of Vitex negundo, Adhatoda vasica, and Saraka asoka leaf extracts on corrosion of copper in 3M HNO3 solution was investigated using gravimetric, potentiodynamic polarization, and electrochemical impedance spectroscopic techniques. Potentiodynamic polarization studies indicated that these extracts act as efficient and predominantly cathodic mixed inhibitor. Thermodynamic parameters revealed that the adsorption of these inhibitors on copper surface was spontaneous, controlled by physiochemical processes and occurred according to the Langmuir adsorption isotherm. AFM examination of copper surface confirmed that the inhibitor prevented corrosion by forming protective layer on its surface. The correlation between inhibitive effect and molecular structure was ascertained by density functional theory data.

  18. Mechanistic modelling of the corrosion behaviour of copper nuclear fuel waste containers

    Energy Technology Data Exchange (ETDEWEB)

    King, F; Kolar, M

    1996-10-01

    A mechanistic model has been developed to predict the long-term corrosion behaviour of copper nuclear fuel waste containers in a Canadian disposal vault. The model is based on a detailed description of the electrochemical, chemical, adsorption and mass-transport processes involved in the uniform corrosion of copper, developed from the results of an extensive experimental program. Predictions from the model are compared with the results of some of these experiments and with observations from a bronze cannon submerged in seawater saturated clay sediments. Quantitative comparisons are made between the observed and predicted corrosion potential, corrosion rate and copper concentration profiles adjacent to the corroding surface, as a way of validating the long-term model predictions. (author). 12 refs., 5 figs.

  19. Progress in the understanding of the long-term corrosion behaviour of copper canisters

    Science.gov (United States)

    King, Fraser; Lilja, Christina; Vähänen, Marjut

    2013-07-01

    Copper has been proposed as a canister material for the disposal of spent nuclear fuel in a deep geologic repository in a number of countries worldwide. Since it was first proposed for this purpose in 1978, a significant number of studies have been performed to assess the corrosion performance of copper under repository conditions. These studies are critically reviewed and the suitability of copper as a canister material for nuclear waste is re-assessed. Over the past 30-35 years there has been considerable progress in our understanding of the expected corrosion behaviour of copper canisters. Crucial to this progress has been the improvement in the understanding of the nature of the repository environment and how it will evolve over time. With this improved understanding, it has been possible to predict the evolution of the corrosion behaviour from the initial period of warm, aerobic conditions in the repository to the long-term phase of cool, anoxic conditions dominated by the presence of sulphide. An historical review of the treatment of the corrosion behaviour of copper canisters is presented, from the initial corrosion assessment in 1978, through a major review of the corrosion behaviour in 2001, through to the current level of understanding based on the results of on-going studies. Compared with the initial corrosion assessment, there has been considerable progress in the treatment of localised corrosion, stress corrosion cracking, and microbiologically influenced corrosion of the canisters. Progress in the mechanistic modelling of the evolution of the corrosion behaviour of the canister is also reviewed, as is the continuing debate about the thermodynamic stability of copper in pure water. The overall conclusion of this critical review is that copper is a suitable material for the disposal of spent nuclear fuel and offers the prospect of containment of the waste for an extended period of time. The corrosion behaviour is influenced by the presence of the

  20. Effect of Sulfide Concentration on Copper Corrosion in Anoxic Chloride-Containing Solutions

    Science.gov (United States)

    Kong, Decheng; Dong, Chaofang; Xu, Aoni; Man, Cheng; He, Chang; Li, Xiaogang

    2017-04-01

    The structure and property of passive film on copper are strongly dependent on the sulfide concentration; based on this, a series of electrochemical methods were applied to investigate the effect of sulfide concentration on copper corrosion in anaerobic chloride-containing solutions. The cyclic voltammetry and x-ray photoelectron spectroscopy analysis demonstrated that the corrosion products formed on copper in anaerobic sulfide solutions comprise Cu2S and CuS. And the corrosion resistance of copper decreased with increasing sulfide concentration and faster sulfide addition, owing to the various structures of the passive films observed by the atomic force microscope and scanning electron microscope. A p-type semiconductor character was obtained under all experimental conditions, and the defect concentration, which had a magnitude of 1022-1023 cm-3, increased with increasing sulfide concentration, resulting in a higher rate of both film growth and dissolution.

  1. Reactivity test between beryllium and copper

    International Nuclear Information System (INIS)

    Kawamura, H.; Kato, M.

    1995-01-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700 degrees C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper)

  2. Pitting corrosion of copper in aqueous solutions containing phosphonic acid as an inhibitor. Hosuhon san wo inhibita toshite fukumu suiyoekichu ni okeru do no koshiku ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y. (Muroran Univ., Hokkaido (Japan). Graduate School); Seri, O.; Tagashira, K. (Muroran Univ., Hokkaido (Japan)); Nagata, K. (Sumitomo Light Metal Co. Ltd., Tokyo (Japan). Technical Research Lab.)

    1993-09-15

    Phosphonic acid-based inhibitors that are poured into cooling water for copper-tube circulation systems for open heat-accumulators were studied on their influence on pitting corrosion of copper. Amino trimethylene phosphonic acid (ATMP) dissolved into distilled water to 50 ppm was used for the immersion corrosion test. The corrosion-proof effect of additives such as ZnSO4, benzotriazole (BTA) was tested too. 0.5 mm thick phosphate-treated copper plates with a hole of 5 mm in diameter were used as test specimens. Pitting corrosion on the copper plate occurred when ATMP, BTA and ZnSO4 coexisted. It was proved that SO4 [sup 2-] is essential since Na2SO4 in stead of ZnSO4 induced also corrosion. The pitting took place when 0.6 ppm or more of SO4 [sup 2-] was present in a BTA-added ATMP solution. It was observed that the pitting is prone to occur with increase of SO4 [sup 2-] and the number of pitting increases. The following relationship is established when pitting corrosion occurs; E[sub b] [le] E[sub corr], where the former is a potential value at which current density shows a steep increase and the latter is an average value of spontaneous electrode potential showing a plateau. 8 refs., 11 figs., 1 tab.

  3. Galvanic corrosion of copper-cast iron couples in relation to the Swedish radioactive waste canister concept

    International Nuclear Information System (INIS)

    Smart, N.R.; Fennell, P.A.H.; Rance, A.P.; Werme, L.O.

    2004-01-01

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB are considering using the Copper-Iron Canister, which consists of an outer copper canister and an inner cast iron container. The canister will be placed into boreholes in the bedrock of a geologic repository and surrounded by bentonite clay. In the unlikely event of the outer copper canister being breached, water could enter the annulus between the inner and outer canister and at points of contact between the two metals there would be a possibility of galvanic interactions. To study this effect, copper-cast iron galvanic couples were set up in a number of different environments representing possible conditions in the SKB repository. The tests investigated two artificial pore-waters and a bentonite slurry, under aerated and deaerated conditions, at 30 deg. C and 50 deg. C. The currents passing between the coupled electrodes and the potential of the couples were monitored for several months. In addition, some bimetallic crevice specimens based on the multi-crevice assembly (MCA) design were used to simulate the situation where the copper canister will be in direct contact with the cast iron inner vessel. The effect of growing an oxide film on the surface of the cast iron prior to coupling it with copper was also investigated. The electrochemical results are presented graphically in the form of electrode potentials and galvanic corrosion currents as a function of time. The galvanic currents in aerated conditions were much higher than in deaerated conditions. For example, at 30 deg. C, galvanic corrosion rates as low as 0.02 μm/year were observed for iron in groundwater after de-aeration, but of the order of 100 μm/year for the cast iron at 50 deg. C in the presence of oxygen. The galvanic currents were generally higher at 50 deg. C than at 30 deg. C. None of the MCA specimens exhibited any signs of crevice corrosion under deaerated conditions. It will be shown that in deaerated

  4. Galvanic and stress corrosion of copper canisters in repository environment. A short review

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Koenig, M.

    2001-02-01

    The Swedish Nuclear Power Inspectorate, SKI, has studied different aspects of canister and copper corrosion as part of the general improvement of the knowledge base within the area. General and local corrosion has earlier been treated by experiments as well as by thermodynamic calculations. For completeness also galvanic and stress corrosion should be treated. The present work is a short review, intended to indicate areas needing further focus. The work consists of two parts, the first of which contains a judgement of statements concerning risk of galvanic corrosion of copper in the repository. The second part concerns threshold values for the stress intensity factor of stress corrosion in copper. A suggestion is given on how such values possibly could be measured for copper at repository conditions. In early investigations by SKB, galvanic corrosion is not mentioned or at least not treated. In later works it is treated but often in a theoretical way without indications of any further treatment or investigation. Several pieces of work indicate that further investigations are required to ensure that different types of corrosion, like galvanic, cannot occur in the repository environment. There are for example effects of grain size, grain boundary conditions, impurities and other factors that could influence the appearance of galvanic corrosion that are not treated. Those factors have to be considered to be completely sure that galvanic corrosion and related effects does not occur for the actual canister in the specific environment of the repository. The circumstances are so specific, that a rather general discussion indicating that galvanic corrosion is not probable just is not enough. Experiments should also be performed for verification. It is concluded that the following specific areas, amongst others, could benefit from further consideration. Galvanic corrosion of unbreached copper by inhomogeneities in the environment and in the copper metal should be addressed

  5. Galvanic and stress corrosion of copper canisters in repository environment. A short review

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P.; Koenig, M. [Studsvik Nuclear AB, Nykoeping (Sweden)

    2001-02-01

    The Swedish Nuclear Power Inspectorate, SKI, has studied different aspects of canister and copper corrosion as part of the general improvement of the knowledge base within the area. General and local corrosion has earlier been treated by experiments as well as by thermodynamic calculations. For completeness also galvanic and stress corrosion should be treated. The present work is a short review, intended to indicate areas needing further focus. The work consists of two parts, the first of which contains a judgement of statements concerning risk of galvanic corrosion of copper in the repository. The second part concerns threshold values for the stress intensity factor of stress corrosion in copper. A suggestion is given on how such values possibly could be measured for copper at repository conditions. In early investigations by SKB, galvanic corrosion is not mentioned or at least not treated. In later works it is treated but often in a theoretical way without indications of any further treatment or investigation. Several pieces of work indicate that further investigations are required to ensure that different types of corrosion, like galvanic, cannot occur in the repository environment. There are for example effects of grain size, grain boundary conditions, impurities and other factors that could influence the appearance of galvanic corrosion that are not treated. Those factors have to be considered to be completely sure that galvanic corrosion and related effects does not occur for the actual canister in the specific environment of the repository. The circumstances are so specific, that a rather general discussion indicating that galvanic corrosion is not probable just is not enough. Experiments should also be performed for verification. It is concluded that the following specific areas, amongst others, could benefit from further consideration. Galvanic corrosion of unbreached copper by inhomogeneities in the environment and in the copper metal should be addressed

  6. Corrosion study on high power feeding of telecomunication copper cable in 5 wt.% CaSO4.2H2O solution

    Science.gov (United States)

    Shamsudin, Shaiful Rizam; Hashim, Nabihah; Ibrahim, Mohd Saiful Bahri; Rahman, Muhammad Sayuzi Abdul; Idrus, Muhammad Amin; Hassan, Mohd Rezadzudin; Abdullah, Wan Razli Wan

    2016-07-01

    The studies were carried out to find out the best powering scheme over the copper telephone line. It was expected that the application of the higher power feeding could increase the data transfer and capable of providing the customer's satisfaction. To realize the application of higher remote power feeding, the potential of corrosion problem on Cu cables was studied. The natural corrosion behaviour of copper cable in the 0.5% CaSO4.2H2O solution was studied in term of open circuit potential for 30 days. The corrosion behaviour of higher power feeding was studied by the immersion and the planned interval test to determine the corrosion rate as well as the effect of voltage magnitudes and the current scheme i.e. positive direct (DC+) and alternating current (AC) at about 0.40 ± 0.01 mA/ cm2 current density. In the immersion test, both DC+ and AC scheme showed the increasing of feeding voltage magnitude has increased the corrosion rate of Cu samples starting from 60 to 100 volts. It was then reduced at about 100 - 120 volts which may due to the passive and transpassive mechanism. The corrosion rate was slowly reduced further from 120 to 200 volts. Visually, the positively charged of Cu cable was seems susceptible to severe corrosion, while AC scheme exhibited a slight corrosion reaction on the surface. However, the planned interval test and XRD results showed the corrosion activity of the copper cable in the studied solution was a relatively slow process and considered not to be corroded as a partially protective scale of copper oxide formed on the surface.

  7. Adsorption behavior of caffeine as a green corrosion inhibitor for copper

    International Nuclear Information System (INIS)

    Souza, Fernando Sílvio de; Giacomelli, Cristiano; Gonçalves, Reinaldo Simões; Spinelli, Almir

    2012-01-01

    Electrochemical and impedance experiments were carried out to evaluate the corrosion behavior of copper in aerated 0.1 mol L −1 H 2 SO 4 solutions in the presence of three xanthine derivatives with similar chemical structures. The corrosion rate of copper was found to increase in the presence of theophylline and theobromine and decrease in the presence of caffeine. The adsorption and inhibitory effect of caffeine on copper surfaces in aerated 0.1 mol L −1 H 2 SO 4 solutions were then investigated in detail by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), contact angle measurements, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and fluorescence experiments. The data obtained indicate that caffeine behaves as a cathodic-type inhibitor adsorbing onto the copper surface according to the Temkin isotherm, with the negative ∆G° ads value of − 31.1 kJ mol −1 signifying a spontaneous adsorption process. The corrosion inhibition efficiency increased with caffeine concentration in the range of 1.0–10.0 mmol L −1 . Furthermore, the EIS results obtained at the open-circuit potential and surface analysis (SEM, EDS and fluorescence) clearly demonstrated the adsorption of the organic compound onto the copper electrode. The contact angle measurements revealed the formation of a hydrophobic protective film. This film covers up to 72% of the total active surface, acts as a protective barrier and prevents interaction between the metal, water and oxygen molecules. - Highlights: ► We have investigated the adsorption and corrosion inhibition of caffeine on copper surfaces. ► Caffeine behaves as a cathodic-type inhibitor. ► Caffeine adsorbs onto copper surface according to Temkin isotherm. ► There exists the formation of a hydrophobic film that acts as a protective barrier. ► This corrosion inhibitor covers up to 72% of the total active surface of copper.

  8. Catalysis of copper corrosion products on chlorine decay and HAA formation in simulated distribution systems.

    Science.gov (United States)

    Zhang, Hong; Andrews, Susan A

    2012-05-15

    This study investigated the effect of copper corrosion products, including Cu(II), Cu(2)O, CuO and Cu(2)(OH)(2)CO(3), on chlorine degradation, HAA formation, and HAA speciation under controlled experimental conditions. Chlorine decay and HAA formation were significantly enhanced in the presence of copper with the extent of copper catalysis being affected by the solution pH and the concentration of copper corrosion products. Accelerated chlorine decay and increased HAA formation were observed at pH 8.6 in the presence of 1.0 mg/L Cu(II) compared with that observed at pH 6.6 and pH 7.6. Further investigation of chlorine decay in the presence of both Suwannee River NOM and Cu(II) indicated that an increased reactivity of NOM with dissolved and/or solid surface-associated Cu(II), rather than chlorine auto-decomposition, was a primary reason for the observed rapid chlorine decay. Copper corrosion solids [Cu(2)O, CuO, Cu(2)(OH)(2)CO(3)] exhibited catalytic effects on both chlorine decay and HAA formation. Contrary to the results observed when in the absence of copper corrosion products, DCAA formation was consistently predominant over other HAA species in the presence of copper corrosion products, especially at neutral and high pH. This study improves the understanding for water utilities and households regarding chlorine residuals and HAA concentrations in distribution systems, in particular once the water reaches domestic plumbing where copper is widely used. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Vehicle accelerated corrosion test procedures for automotive in Malaysia

    Directory of Open Access Journals (Sweden)

    Anuar Liza

    2017-01-01

    Full Text Available An accelerated corrosion test, known as proving ground accelerated test, is commonly performed by automotive manufacturers to evaluate the corrosion performance of a vehicle. The test combines corrosion and durability inputs to detect potential failures that may occur during in-service conditions. Currently, the test is conducted at an external test center overseas. Such test is aimed to simulate the effects of one year accelerated corrosion in severe corrosive environment of the north-east and south east of America. However, the test results obtained do not correlate with the actual corrosion conditions observed in the Malaysian market, which is likely attributed to the different test environment of the tropical climate of vehicles in service. Therefore, a vehicle accelerated corrosion test procedure that suits the Malaysian market is proposed and benchmarked with other global car manufacturers that have their own dedicated corrosion test procedure. In the present work, a test track is used as the corrosion test ground and consists of various types of roads for structural durability exposures. Corrosion related facilities like salt trough, mud trough and gravel road are constructed as addition to the existing facilities. The establishment of accelerated corrosion test facilities has contributed to the development of initial accelerated corrosion test procedure for the national car manufacturer. The corrosion exposure is monitored by fitting test coupons at the underbody of test vehicle using mass loss technique so that the desired corrosion rate capable of simulating the real time corrosion effects for its target market.

  10. Home Plumbing Simulator for the Study of Copper and Lead Corrosion and Release, Disinfectant Demand, and Biofilm Activity - abstract

    Science.gov (United States)

    The corrosion of household or premise plumbing materials (such as copper, brass, and solder) and the metal release that results from that corrosion can cause numerous problems, ranging from “blue” water to copper pinhole leaks. If left untreated, these problems can lead to health...

  11. Uniaxial and Multiaxial Creep Testing of Copper

    International Nuclear Information System (INIS)

    Auerkari, Pertti; Holmstroem, Stefan; Veivo, Juha; Salonen, Jorma; Nenonen, Pertti; Laukkanen, Anssi

    2003-12-01

    Multiaxial (compact tension, CT) creep testing has been performed for copper with 79 ppm phosphorus and 60 ppm oxygen. The test load levels were selected according to results from preceding uniaxial creep testing and FE analysis of the CT specimens. Interrupted testing was used for metallographic inspection of the specimens for creep damage. After 7,900 h and 10,300 h of testing at 150 deg C and 46 MPa (reference stress), inspected CT specimens showed cavity indications with a low maximum density ( 2 ) and a typical maximum dimension of less than about 1 μm near the notch tip. From previous experience on creep cavitation damage, the expected minimum life to crack initiation at the notch tip would be at least 40,000 hours, but could be considerably longer because the cavity indications are suspected to originate at least partly from precipitates in specimen preparation. The interrupted testing of CT specimens also showed a 'segregation zone' along some grain boundaries, mainly near the notch tip. This zone appears to contain more P and O than the surrounding matrix, but less than the narrow grain boundary films that are already present in the as-new material. The zone is readily etched and shows a relatively sharp edge towards the matrix without an obvious phase boundary. Using converted multiaxial (CT) testing results, the predicted isothermal uniaxial creep life at 150 deg C/46 MPa is about 1,900 years. The corresponding creep life directly predicted from uniaxial data is 3,100 years, when estimated from a parametric best fit expression according to PD6605. Although the two results are satisfactorily within a factor of two in time, the uncertainties in the extended extrapolations remain large. Further testing is recommended, with at least two creep enhancing factors present. Such testing could include notched creep testing at 120-180 deg C in a corrosive environment, and notched model vessel creep testing at elevated pressure. It is also recommended that longer

  12. Exposure testing of fasteners in preservative treated wood: Gravimetric corrosion rates and corrosion product analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Samuel L., E-mail: szelinka@fs.fed.u [USDA Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726 (United States); Sichel, Rebecca J. [College of Engineering, University of Wisconsin, Madison, WI 53706 (United States); Stone, Donald S. [Department of Materials Science and Engineering, College of Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2010-12-15

    Research highlights: {yields} The composition of the corrosion products was similar for the nail head and shank. {yields} Reduced copper was not detected on any of the fasteners. {yields} Measured corrosion rates were between 1 and 35 {mu}m year{sup -1}. - Abstract: Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27 {sup o}C at 100% relative humidity for 1 year. The corrosion rate was determined gravimetrically and the corrosion products were analyzed with scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Although the accepted mechanism of corrosion in treated wood involves the reduction of cupric ions from the wood preservative, no reduced copper was found on the corrosion surfaces. The galvanized corrosion products contained sulfates, whereas the steel corrosion products consisted of iron oxides and hydroxides. The possible implications and limitations of this research on fasteners used in building applications are discussed.

  13. Dissolution of copper in chloride/ammonia mixtures and the implications for the stress corrosion cracking of copper containers

    International Nuclear Information System (INIS)

    King, F.; Greidanus, G.; Jobe, D.J.

    1999-05-01

    Stress-corrosion cracking is a possible failure mechanism for copper nuclear fuel waste disposal containers. One species known to cause the stress corrosion of copper alloys is ammonia. It is conceivable that ammonia could be produced in a disposal vault under certain, very specific conditions. There are a number of conditions, however, that mitigate against container failure by stress corrosion, one of which is the presence of chloride ions in deep Canadian Shield groundwaters. There are a number of reports in the literature that suggest that Cl - has an inhibitive effect on the stress corrosion of Cu alloys in ammonia solutions. The electrochemical behaviour of Cu in Cl - /ammonia solutions has been studied as a function of ammonia concentration, pH, the rate of mass transport and electrochemical potential. In particular, the effects of these parameters on the formation Of Cu 2 O films and the steady-state dissolution behaviour have been determined. All experiments were carried out in 0.1 mol·dm -3 NaC1 as a base solution. A series of aqueous speciation and equilibrium potential/pH diagrams are also presented for the quaternary system Cu-C1 - NH 3 /NH 4 + H 2 O. These diagrams are used to interpret the results of the electrochemical experiments reported here. In addition, it is demonstrated how these diagrams could be used to predict the time-dependence of the susceptibility to stress corrosion cracking of Cu containers in a disposal vault. (author)

  14. DEVELOPMENT OF A REPRODUCIBLE SCREENING METHOD TO DETERMINE THE MECHANISM AND EFFECT OF ORGANIC ACIDS AND OTHER CONTAMINANTS ON THE CORROSION OF ALUMINUM-FINNED COPPER-TUBE HEAT EXCHANGE COILS

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Corbett; Dave Severance

    2005-02-01

    Formicary corrosion is an insidious form of localized pitting corrosion. Notoya (1997b) wrote, ?In Japan, this type of corrosion is found in approximately 10% of cases of premature failure of copper tubes.? Attack characteristically features very small surface pits which are not visible to the un-aided eye, and random directional changes in the underlying copper metal. Attack is rapid. Failures have occurred before installation, shortly thereafter, or within several years later. Objectives of this Research Project Conduct an in depth literature search on the subject of formicary corrosion. Define the corrosion mechanism. Develop a test method that will reproduce formicary corrosion. Develop a test method for screening candidate materials that could cause formicary corrosion.

  15. Corrosion behavior of novel imitation-gold copper alloy with rare earth in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Chen, J.L.; Li, Z.; Zhu, A.Y.; Luo, L.Y.; Liang, J.

    2012-01-01

    Highlights: → The design alloy has better anti-tarnish property than that of H7211 alloy during salt-spray test. → The corrosion rate of design alloy is much lower than that of H7211 alloy as immersed in NaCl solution. → In the low frequency region, the capacitive behavior normally faded and diffusion process had a key role. → In the medium frequency region, the Bode pattern showed a capacitive behavior. -- Abstract: A novel imitation-gold copper alloy with rare earth was designed and prepared. The corrosion behavior of the alloy immersed in 3.5% NaCl solution and its anti-tarnish property in the salt spray for different days has been studied. The designed alloy (CuZnAlNiMeRe) has more excellent anti-tarnish property and lower corrosion rate than those of currency coinage materials of H7211 alloy (used in China). A uniform and compact of corrosion film has been formed after the designed alloy immersed in 3.5% NaCl solution. The corrosion current densities I corr of the alloy decreased while the polarization resistance R p increased with time. The capacitance of the corrosion product film C film of the alloy decreased while the charge transfer resistance R ct . The Warburg diffusion impedance W R and the resistance of the equivalent circuit R increased with time.

  16. Copper corrosion and its relationship to solar collectors:a compendium.

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F.; Mahoney, Alan Roderick

    2007-07-01

    Copper has many fine qualities that make it a useful material. It is highly conductive of both heat and electricity, is ductile and workable, and reasonably resistant to corrosion. Because of these advantages, the solar water heating industry has been using it since the mid-1970s as the material of choice for collectors, the fundamental component of a solar water heating system. In most cases copper has performed flawlessly, but in some situations it has been known to fail. Pitting corrosion is the usual failure mode, but erosion can also occur. In 2000 Sandia National Laboratories and the Copper Development Association were asked to analyze the appearance of pin-hole leaks in solar collector units installed in a housing development in Arizona, and in 2002 Sandia analyzed a pitting corrosion event that destroyed a collector system at Camp Pendleton. This report includes copies of the reports and accounts of these corrosion failures, and provides a bibliography with references to many papers and articles that might be of benefit to the solar community. It consolidates in a single source information that has been accumulated at Sandia relative to copper corrosion, especially as it relates to solar water heaters.

  17. γ-radiation induced corrosion of copper in bentonite-water systems under anaerobic conditions

    Science.gov (United States)

    Karin Norrfors, K.; Björkbacka, Åsa; Kessler, Amanda; Wold, Susanna; Jonsson, Mats

    2018-03-01

    In this work we have experimentally studied the impact of bentonite clay on the process of radiation-induced copper corrosion in anoxic water. The motivation for this is to further develop our understanding of radiation-driven processes occurring in deep geological repositories for spent nuclear fuel where copper canisters containing the spent nuclear fuel will be embedded in compacted bentonite. Experiments on radiation-induced corrosion in the presence and absence of bentonite were performed along with experiments elucidating the impact irradiation on the Cu2+ adsorption capacity of bentonite. The experiments presented in this work show that the presence of bentonite clay has no or very little effect on the magnitude of radiation-induced corrosion of copper in anoxic aqueous systems. The absence of a protective effect similar to that observed for radiation-induced dissolution of UO2 is attributed to differences in the corrosion mechanism. This provides further support for the previously proposed mechanism where the hydroxyl radical is the key radiolytic oxidant responsible for the corrosion of copper. The radiation effect on the bentonite sorption capacity of Cu2+ (reduced capacity) is in line with what has previously been reported for other cations. The reduced cation sorption capacity is partly attributed to a loss of Al-OH sites upon irradiation.

  18. Inhibition Effect of 1-Butyl-4-Methylpyridinium Tetrafluoroborate on the Corrosion of Copper in Phosphate Solutions

    OpenAIRE

    Scendo, M.; Uznanska, J.

    2011-01-01

    The influence of the concentration of 1-Butyl-4-methylpyridinium tetrafluoroborate (4MBPBF4) as ionic liquid (IL) on the corrosion of copper in 0.5 M P O 4 3 − solutions of pH 2 and 4 was studied. The research involved electrochemical polarization method, and scanning electron microscopy (SEM) technique. The results obtained showed that the inhibition efficiency of corrosion of copper increases with an increase in the concentration of 4MBPBF4 but decreases with increasing temperature. The the...

  19. Corrosion test by low-temperature coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Ando, S; Yamamoto, S

    1952-01-01

    Corrosive actions of various fractions of low-temperature coal tar against mild steel or Cr 13-steel were compared at their boiling states. Corrosions became severe when the boiling points exceeded 240/sup 0/. The acidic fractions were more corrosive. In all instances, corrosion was excessive at the beginning of immersion testing and then gradually became mild; boiling accelerated the corrosion. Cr 13-steel was corrosion-resistant to low-temperature coal-tar fractions.

  20. Guided wave testing for touch point corrosion

    International Nuclear Information System (INIS)

    Alleyne, David

    2012-01-01

    Guided wave testing (GWT) is established in the petrochemical and related industries, primarily for the detection of corrosion flaws. Touch point corrosion at support positions in pipe-work has become a significant problem within many operating gas, chemical and petro-chemical plants world-wide, particularly as a high proportion of these plants have been operational for many decades. This article demonstrates how GWT using guided waves sent axially along the pipe can be performed for the detection and accurate classification of touchpoint corrosion. The major advantage of GWT methods for the detection of touch point corrosion is its ability to examine several support positions from a single easy to access transducer position. The strategy is then to prioritize or rank the condition of the pipe at the supports by removing those with negligible wall loss from scheduling for further inspection. Guided waves are accurate at detecting and classifying corrosion patches at support positions, but deep pits within such patches are more difficult to accurately identify. Examples using data from routine inspection testing are used to support the development of the methods and testing approaches presented. Recent developments of the interpretation methods, testing procedures and calibration methods have significantly enhanced the capabilities of GWT for this important application.

  1. Corrosion of copper and authigenic sulfide mineral growth in hydrothermal bentonite experiments

    Energy Technology Data Exchange (ETDEWEB)

    Caporuscio, F.A., E-mail: floriec@lanl.gov [Los Alamos National Laboratory, Earth and Environmental Sciences, MS J966, Los Alamos, NM 87545 (United States); Palaich, S.E.M. [University of California, Los Angeles, CA 90095 (United States); Cheshire, M.C. [Los Alamos National Laboratory, Earth and Environmental Sciences, MS J966, Los Alamos, NM 87545 (United States); Jové Colón, C.F. [Sandia National Laboratory, Albuquerque, NM 87185 (United States)

    2017-03-15

    The focus of this experimental work is to characterize interaction of bentonite with possible used-fuel waste container materials. Experiments were performed up to 300 °C at 150–160 bars for five to six weeks. Bentonite was saturated with a 1900 ppm K-Ca-Na-Cl-bearing water with Cu-foils. Copper rapidly degrades into chalcocite (CuS{sub 2}) and minor covellite (CuS) in the presence of H{sub 2}S. Chalcocite growth and corrosion pit depths were measured for four different experimental runs yielding corrosion rates between 8.8 and 116 μm/yr depending on duration of experiment, brine composition, and clay type (bentonite vs. Opalinus Clay). Results of this research show that although pit-corrosion is demonstrated on Cu substrates, experiments show that the reactions that ensue, and the formation of minerals that develop, are extraordinarily slow. This supports the use of Cu in nuclide-containment systems as a possible engineered barrier system material. - Highlights: • Experiments run at 300 °C and 150 bars for up to six weeks. • Copper degrades to chalcocite (CuS2) and minor covellite (CuS) in presence of H2S. • Corrosion rates between 8.8 and 116 μm/yr. • Rate dependent on experiment duration, brine composition, and clay type. • Sulfide corrosion products may inhibit further corrosion of copper.

  2. Microstructural characterization of copper corrosion in aqueous and soil environments

    International Nuclear Information System (INIS)

    Srivastava, A.; Balasubramaniam, R.

    2005-01-01

    Scanning electron microscopy has been used to investigate the surface films on pure copper after exposure to different aqueous and soil environments, containing chloride, sulfide and ammonium salts. The morphology of the films formed on copper surface in aqueous and soil environments was different for the same amount of pollutants. The surface films formed in soil environments were not homogenous in contrast to the films formed in aqueous environments. The damaging effect of chloride ions and the benign role of sulfide ions were revealed in both the environments. Local compositional analysis confirmed that the surface films formed on copper consisted predominantly of copper and oxygen

  3. Evaluations of corrosion resistance of Ni-Cr plated and Zn-plated Fe Substrates Using an Electrolytic Corrosion Test

    International Nuclear Information System (INIS)

    Lee, Jaebong; Kim, Kyungwook; Park, Minwoo; Song, Taejun; Lee, Chaeseung; Lee, Euijong; Kim, Sangyeol

    2013-01-01

    An Eectrolytic Corrosion(EC) test method was evaluated by the comparison with Copper Accelerated Acetic Salt Spray(CASS) and Neutral Salt Spray(SS) tests. Those methods were applied in order to evaluate corrosion resistance of Ni-Cr plated and Zn-plated Fe substrates. The correlations between results obtained by different test methods were investigated. Results showed that the electrochemical method such as the EC test method was superior to the conventional methods such as CASS and SS, in terms of the quantitative accuracy and the test-time span. Furthermore, the EC test method provided the useful means to estimate the initiation of corrosion of each layer by monitoring the rest potentials of the coated layers such as Ni, Cr, and Zn on Fe substrate. With regard to test time spans, the EC test provided the 78 times and 182 times faster results than the CASS test in cases of Fe + 5μm Ni + 0.5 μm Cr and Fe + 20 μm Ni + 0.5 μm Cr respectively, while the EC test was 85 times faster results than the Salt Spray test in the case of Fe + 20 g/m 2 Zn. Therefore, the EC test can be the better method to evaluate the resistance to corrosion of coated layers than the conventional methods such as the SS test and the CASS

  4. Corrosion of copper in oxygen-deficient groundwater with and without deep bedrock micro-organisms: Characterisation of microbial communities and surface processes

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen-Saarivirta, E., E-mail: elina.huttunen-saarivirta@vtt.fi [VTT Technical Research Centre of Finland, Materials Performance, Kemistintie 3, FI-02044 VTT (Finland); Rajala, P. [VTT Technical Research Centre of Finland, Materials Performance, Kemistintie 3, FI-02044 VTT (Finland); Bomberg, M. [VTT Technical Research Centre of Finland, Geobiotechnology, Tietotie 2, FI-02044 VTT (Finland); Carpén, L. [VTT Technical Research Centre of Finland, Materials Performance, Kemistintie 3, FI-02044 VTT (Finland)

    2017-02-28

    Highlights: • Copper was exposed to groundwater with and without deep bedrock micro-organisms. • Biofilm composition was determined and correlated with the behaviour of copper. • Under biotic conditions, the film of Cu{sub 2}S formed on copper surfaces. • Bacterial pool was in a key role for the morphology and properties of Cu{sub 2}S film. • Under abiotic conditions, Cu{sub 2}O systematically developed on copper surfaces. - Abstract: Copper specimens were exposed to oxygen-deficient artificial groundwater in the presence and absence of micro-organisms enriched from the deep bedrock of the planned nuclear waste repository site at Olkiluoto island on the western coast of Finland. During the exposure periods of 4 and 10 months, the copper specimens were subjected to electrochemical measurements. The biofilm developed on the specimens and the water used in the exposures were subjected to microbiological analyses. Changes in the water chemistry were also determined and surfaces of the copper specimens were characterized with respect to the morphology and composition of the formed corrosion products. The results showed that under biotic conditions, redox of the water and open circuit potential (OCP) of the copper specimens were generally negative and resulted in the build-up of a copper sulphide, Cu{sub 2}S, layer due to the activity of sulphate-reducing bacteria (SRB) that were included in the system. In the 4-month test, the electrochemical behaviour of the specimens changed during the exposure and alphaproteobactria Rhizobiales were the dominant bacterial group in the biofilm where the highest corrosion rate was observed. In the 10-month test, however, deltaproteobacteria SRB flourished and the initial electrochemical behaviour and the low corrosion rate of the copper were retained until the end of the test period. Under abiotic conditions, the positive water redox potential and specimen OCP correlated with the formation of copper oxide, Cu{sub 2}O

  5. Corrosion of copper in oxygen-deficient groundwater with and without deep bedrock micro-organisms: Characterisation of microbial communities and surface processes

    International Nuclear Information System (INIS)

    Huttunen-Saarivirta, E.; Rajala, P.; Bomberg, M.; Carpén, L.

    2017-01-01

    Highlights: • Copper was exposed to groundwater with and without deep bedrock micro-organisms. • Biofilm composition was determined and correlated with the behaviour of copper. • Under biotic conditions, the film of Cu_2S formed on copper surfaces. • Bacterial pool was in a key role for the morphology and properties of Cu_2S film. • Under abiotic conditions, Cu_2O systematically developed on copper surfaces. - Abstract: Copper specimens were exposed to oxygen-deficient artificial groundwater in the presence and absence of micro-organisms enriched from the deep bedrock of the planned nuclear waste repository site at Olkiluoto island on the western coast of Finland. During the exposure periods of 4 and 10 months, the copper specimens were subjected to electrochemical measurements. The biofilm developed on the specimens and the water used in the exposures were subjected to microbiological analyses. Changes in the water chemistry were also determined and surfaces of the copper specimens were characterized with respect to the morphology and composition of the formed corrosion products. The results showed that under biotic conditions, redox of the water and open circuit potential (OCP) of the copper specimens were generally negative and resulted in the build-up of a copper sulphide, Cu_2S, layer due to the activity of sulphate-reducing bacteria (SRB) that were included in the system. In the 4-month test, the electrochemical behaviour of the specimens changed during the exposure and alphaproteobactria Rhizobiales were the dominant bacterial group in the biofilm where the highest corrosion rate was observed. In the 10-month test, however, deltaproteobacteria SRB flourished and the initial electrochemical behaviour and the low corrosion rate of the copper were retained until the end of the test period. Under abiotic conditions, the positive water redox potential and specimen OCP correlated with the formation of copper oxide, Cu_2O. Furthermore, in the absence of

  6. Studies in pitting corrosion on archaeological bronzes. Copper

    International Nuclear Information System (INIS)

    Bresle, Aa.; Saers, J.; Arrhenius, B.

    1983-01-01

    Copper has been proposed as a canister material for use in the long-term storage of radioactive waste from nuclear power reactors. The storage period has been set to at least 100 000 years, during which time the copper cylinders must remain intact so that the contained waste has no possibility of leaking out. In this work, the pitting factor in archaelogical copper objects have been determined. The absolute values of the pitting factor obtained are generally very low. In the case of the most thoroughly studied material the pitting factor is only slightly more than three units. Nor does the native copper, with a presumed burial period of about 8000 years, exhibit particularly high values. In summary, it can therefore be concluded that the present study does not provide support for the assumption of extremely high pitting factors in copper-base material that has been buried for periods of several millenia. (G.B.)

  7. The Effect of Phosphate on the Morphological and Spectroscopic Properties of Copper Pipes Experiencing Localized Corrosion

    Science.gov (United States)

    Extensive localized or pitting corrosion of copper pipes used in household drinking-water plumbing can eventually lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. A growing number of problems have been associated with high pH and low ...

  8. Pitting Corrosion of Copper in Waters with High pH and Low Alkalinity

    Science.gov (United States)

    Localized or pitting corrosion of copper pipes used in household drinking-water plumbing is a problem for many water utilities and their customers. Extreme attack can lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. Water quality has b...

  9. Microelectrodes Based investigation of the Impacts of Water Chemistry on Copper and Iron Corrosion

    Science.gov (United States)

    The effect of bulk drinking water quality on copper and iron pipe corrosion has been extensively studied. Despite past research, many have argued that bulk water quality does not necessarily reflect water quality near the water-metal interface and that such knowledge is necessary...

  10. Copper Corrosion in Nuclear Waste Disposal: A Swedish Case Study on Stakeholder Insight

    Science.gov (United States)

    Andersson, Kjell

    2013-01-01

    The article describes the founding principles, work program, and accomplishments of a Reference Group with both expert and layperson stakeholders for the corrosion of copper canisters in a proposed deep repository in Sweden for spent nuclear fuel. The article sets the Reference Group as a participatory effort within a broader context of…

  11. Microbiologically Influenced Corrosion in Copper and Nickel Seawater Piping Systems

    Science.gov (United States)

    1990-09-01

    Influenced Tipton, D. G. and Kain, R. M. 1980. Effect of temperature onCorosiope in Nuclear Power Plants atudy a Mical Gnuide the resistance to pitting of...Monel alloy 400 in seawater. In:Corrosion in Nuclear Power Plants anda Practical ie fr Proceedings of Corrosion 󈨔. Chicago, Illinois: National...Sons Ltd. 441 pp. Quimica . Verink, E.D. and Pourbaix, M. 1971. Use of electrochemical Pope, D. H., Duquette, D. J., Johannes, A. H., and Wayner

  12. Intramolecular synergistic effect of glutamic acid, cysteine and glycine against copper corrosion in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Zhang Daquan; Xie Bin; Gao Lixin; Cai Qirui; Joo, Hyung Goun; Lee, Kang Yong

    2011-01-01

    The corrosion protection of copper by glutamic acid, cysteine, glycine and their derivative (glutathione) in 0.5 M hydrochloric acid solution has been studied by the electrochemical impedance spectroscopy and cyclic voltammetry. The inhibition efficiency of the organic inhibitors on copper corrosion increases in the order: glutathione > cysteine > cysteine + glutamic acid + glycine > glutamic acid > glycine. Maximum inhibition efficiency for cysteine reaches about 92.9% at 15 mM concentration level. The glutathione can give 96.4% inhibition efficiency at a concentration of 10 mM. The molecular structure parameters were obtained by PM3 (Parametric Method 3) semi-empirical calculation. The intramolecular synergistic effect of glutamic acid, cysteine and glycine moieties in glutathione is attributed to the lower energy of the lowest unoccupied molecular orbital (E LUMO ) level and to the excess hetero-atom adsorption centers and the bigger coverage on the copper surface.

  13. (octadecylthio)benzotriazine on copper for corrosion protection

    Indian Academy of Sciences (India)

    formation of the DOTBT nanofilm have been optimized by electrochemical impedance and electrochemical quartz ... packed SAMs, which retard the oxidation of copper sur- face in air ... fore, methanol was chosen as the solvent for formation of.

  14. Corrosion Inhibition of the Galvanic Couple Copper-Carbon Steel in Reverse Osmosis Water

    Directory of Open Access Journals (Sweden)

    Irene Carrillo

    2011-01-01

    Full Text Available The purpose of this paper is to evaluate the electrochemical behaviour of corrosion inhibition of the copper-carbon steel galvanic couple (Cu-CS, exposed to reverse osmosis water (RO used for rinsing of heat exchangers for heavy duty machinery, during manufacture. Molybdate and nitrite salts were utilized to evaluate the inhibition behaviour under galvanic couple conditions. Cu-CS couple was used as working electrodes to measure open circuit potential (OCP, potentiodynamic polarization (PP, and electrochemical impedance spectroscopy (EIS. The surface conditions were characterized by scanning electron microscopy (SEM and electron dispersive X-ray spectroscopy (EDS. The most effective concentration ratio between molybdate and nitrite corrosion inhibitors was determined. The morphological study indicated molybdate deposition on the anodic sites of the galvanic couple. The design of molybdate-based corrosion inhibitor developed in the present work should be applied to control galvanic corrosion of the Cu-CS couple during cleaning in the manufacture of heat exchangers.

  15. Dissolution of copper in chloride/ammonia mixtures and the implications for the stress corrosion cracking of copper containers

    Energy Technology Data Exchange (ETDEWEB)

    King, F.; Greidanus, G.; Jobe, D.J

    1999-05-01

    Stress-corrosion cracking is a possible failure mechanism for copper nuclear fuel waste disposal containers. One species known to cause the stress corrosion of copper alloys is ammonia. It is conceivable that ammonia could be produced in a disposal vault under certain, very specific conditions. There are a number of conditions, however, that mitigate against container failure by stress corrosion, one of which is the presence of chloride ions in deep Canadian Shield groundwaters. There are a number of reports in the literature that suggest that Cl{sup -} has an inhibitive effect on the stress corrosion of Cu alloys in ammonia solutions. The electrochemical behaviour of Cu in Cl{sup -}/ammonia solutions has been studied as a function of ammonia concentration, pH, the rate of mass transport and electrochemical potential. In particular, the effects of these parameters on the formation Of Cu{sub 2}O films and the steady-state dissolution behaviour have been determined. All experiments were carried out in 0.1 mol{center_dot}dm{sup -3} NaC1 as a base solution. A series of aqueous speciation and equilibrium potential/pH diagrams are also presented for the quaternary system Cu-C1{sup -}NH{sub 3}/NH{sub 4{sup +}}H{sub 2}O. These diagrams are used to interpret the results of the electrochemical experiments reported here. In addition, it is demonstrated how these diagrams could be used to predict the time-dependence of the susceptibility to stress corrosion cracking of Cu containers in a disposal vault. (author)

  16. Adsorption behavior of caffeine as a green corrosion inhibitor for copper

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Fernando Silvio de [Grupo de Estudos de Processos Eletroquimicos e Eletroanaliticos, Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Giacomelli, Cristiano [Departamento de Quimica, Universidade Federal de Santa Maria, Av. Roraima 1000, 97119-900, Santa Maria, RS (Brazil); Goncalves, Reinaldo Simoes [Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Spinelli, Almir, E-mail: almir.spinelli@ufsc.br [Grupo de Estudos de Processos Eletroquimicos e Eletroanaliticos, Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil)

    2012-12-01

    Electrochemical and impedance experiments were carried out to evaluate the corrosion behavior of copper in aerated 0.1 mol L{sup -1} H{sub 2}SO{sub 4} solutions in the presence of three xanthine derivatives with similar chemical structures. The corrosion rate of copper was found to increase in the presence of theophylline and theobromine and decrease in the presence of caffeine. The adsorption and inhibitory effect of caffeine on copper surfaces in aerated 0.1 mol L{sup -1} H{sub 2}SO{sub 4} solutions were then investigated in detail by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), contact angle measurements, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and fluorescence experiments. The data obtained indicate that caffeine behaves as a cathodic-type inhibitor adsorbing onto the copper surface according to the Temkin isotherm, with the negative Increment G Degree-Sign {sub ads} value of - 31.1 kJ mol{sup -1} signifying a spontaneous adsorption process. The corrosion inhibition efficiency increased with caffeine concentration in the range of 1.0-10.0 mmol L{sup -1}. Furthermore, the EIS results obtained at the open-circuit potential and surface analysis (SEM, EDS and fluorescence) clearly demonstrated the adsorption of the organic compound onto the copper electrode. The contact angle measurements revealed the formation of a hydrophobic protective film. This film covers up to 72% of the total active surface, acts as a protective barrier and prevents interaction between the metal, water and oxygen molecules. - Highlights: Black-Right-Pointing-Pointer We have investigated the adsorption and corrosion inhibition of caffeine on copper surfaces. Black-Right-Pointing-Pointer Caffeine behaves as a cathodic-type inhibitor. Black-Right-Pointing-Pointer Caffeine adsorbs onto copper surface according to Temkin isotherm. Black-Right-Pointing-Pointer There exists the formation of a hydrophobic film that acts as a

  17. Corrosion testing of uranium silicide fuel specimens

    International Nuclear Information System (INIS)

    Bourns, W.T.

    1968-09-01

    U 3 Si is the most promising high density natural uranium fuel for water-cooled power reactors. Power reactors fuelled with this material are expected to produce cheaper electricity than those fuelled with uranium dioxide. Corrosion tests in 300 o C water preceded extensive in-reactor performance tests of fuel elements and bundles. Proper heat-treatment of U-3.9 wt% Si gives a U 3 5i specimen which corrodes at less than 2 mg/cm 2 h in 300 o C water. This is an order of magnitude lower than the maximum corrosion rate tolerable in a water-cooled reactor. U 3 Si in a defected unbonded Zircaloy-2 sheath showed only a slow uniform sheath expansion in 300 o C water. All tests were done under isothermal conditions in an out-reactor loop. (author)

  18. Corrosion testing of uranium silicide fuel specimens

    Energy Technology Data Exchange (ETDEWEB)

    Bourns, W T

    1968-09-15

    U{sub 3}Si is the most promising high density natural uranium fuel for water-cooled power reactors. Power reactors fuelled with this material are expected to produce cheaper electricity than those fuelled with uranium dioxide. Corrosion tests in 300{sup o}C water preceded extensive in-reactor performance tests of fuel elements and bundles. Proper heat-treatment of U-3.9 wt% Si gives a U{sub 3}5i specimen which corrodes at less than 2 mg/cm{sup 2} h in 300{sup o}C water. This is an order of magnitude lower than the maximum corrosion rate tolerable in a water-cooled reactor. U{sub 3}Si in a defected unbonded Zircaloy-2 sheath showed only a slow uniform sheath expansion in 300{sup o}C water. All tests were done under isothermal conditions in an out-reactor loop. (author)

  19. Reactive-transport model for the prediction of the uniform corrosion behaviour of copper used fuel containers

    International Nuclear Information System (INIS)

    King, F.; Kolar, M.; Maak, P.

    2008-01-01

    Used fuel containers in a deep geological repository will be subject to various forms of corrosion. For containers made from oxygen-free, phosphorus-doped copper, the most likely corrosion processes are uniform corrosion, underdeposit corrosion, stress corrosion cracking, and microbiologically influenced corrosion. The environmental conditions within the repository are expected to evolve with time, changing from warm and oxidizing initially to cool and anoxic in the long-term. In response, the corrosion behaviour of the containers will also change with time as the repository environment evolve. A reactive-transport model has been developed to predict the time-dependent uniform corrosion behaviour of the container. The model is based on an experimentally-based reaction scheme that accounts for the various chemical, microbiological, electrochemical, precipitation/dissolution, adsorption/desorption, redox, and mass-transport processes at the container surface and in the compacted bentonite-based sealing materials within the repository. Coupling of the electrochemical interfacial reactions with processes in the bentonite buffer material allows the effect of the evolution of the repository environment on the corrosion behaviour of the container to be taken into account. The Copper Corrosion Model for Uniform Corrosion predicts the time-dependent corrosion rate and corrosion potential of the container, as well as the evolution of the near-field environment

  20. Effect of Post Weld Heat Treatment on Corrosion Behavior of AA2014 Aluminum – Copper Alloy Electron Beam Welds

    Science.gov (United States)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work pertains to the study of corrosion behavior of aluminum alloy electron beam welds. The aluminium alloy used in the present study is copper containing AA2014 alloy. Electron Beam Welding (EBW) was used to weld the alloys in annealed (O) condition. Microstructural changes across the welds were recorded and the effect of post weld heat treatment (PWHT) in T4 (Solutionized and naturally aged) condition on pitting corrosion resistance was studied. A software based PAR basic electrochemical system was used for potentio-dynamic polarization tests. From the study it is observed that weld in O condition is prone to more liquation than that of PWHT condition. This may be attributed to re-melting and solidification of excess eutectic present in the O condition of the base metal. It was also observed that slightly higher hardness values are recorded in O condition than that of PWHT condition. The pitting corrosion resistance of the PMZ/HAZ in PWHT condition is better than that of O condition. This is attributed to copper segregation at the grain boundaries of PMZ in O condition.

  1. Corrosion of aluminium in copper-aluminium couples under a marine environment: Influence of polyaniline deposited onto copper

    International Nuclear Information System (INIS)

    Vera, Rosa; Verdugo, Patricia; Orellana, Marco; Munoz, Eduardo

    2010-01-01

    Research highlights: → The presence of Polyaniline in the Al-Cu system produces a decrease in the oxygen reduction reaction. → In the marine enviroment, aluminium in Al-Cu couples, suffers pitting and exfoliation. → The aluminium deterioration increases with chloride and enviromental sulphur dioxide presence, mainly when it is united to bare copper. - Abstract: In this study, we examined how aluminium corrosion in Al-Cu/PANI galvanic couples in a marine environment is influenced by deposition of polyaniline (PANI) on copper. Polarization curves and immersion assays in 0.1 M NaCl were performed. The morphologies of etched Al and corrosion products were observed by SEM, and the Al ions in solution were quantified by atomic absorption spectroscopy. A reduction in aluminium damage due to galvanic corrosion was observed as a result of decreased effective area for the oxygen reduction reaction on Cu/PANI electrode. Furthermore, an electrochemical reduction of PANI from leucoemeraldine to emeraldine base is proposed.

  2. Copper corrosion in bentonite: Studying of parameters (pH, Eh/O2) of importance for Cu corrosion

    International Nuclear Information System (INIS)

    Carlsson, T.; Muurinen, A.

    2007-06-01

    The report describes the development of methods and equipment for studying the parameters (pH, Eh/O 2 ) of importance for copper corrosion. The work involved the fabrication of electrodes for determining Eh and pH in compacted water-saturated bentonite. MX-80 and the Indian Asha 505 bentonites were used in the study. The redox-measurements were carried out by using electrodes prepared of Au and Pt wires. The pH measurements were carried out by using solid IrO x electrodes. The report describes testing of electrodes in different solutions and in bentonite. A destructive method for determining oxygen content in compacted bentonite was tested, too. The electrodes were used in measurements inside compacted bentonite with about the same density as is intended to be used in the Finnish repository for spent nuclear fuel. The results indicate that Au and Pt redox-electrodes and IrO x pH electrodes function in compacted bentonite. The oxygen measurement in bentonite seems to work, too, and can complement the Eh measurements. Eh-values in originally aerobic bentonite samples having a dry densitiy of ≤1.5 g/cm 3 , exhibit mostly a decrease during the first days, which may mainly be ascribed to the depletion of oxygen. The Eh-decrease thereafter is probably associated with redox-reactions involving other species than oxygen. In samples with a dry density of 1.8 g/cm 3 , the observed Eh-decrease is mostly slower. No significant difference between the Eh and pH measurements in MX-80 and Asha 505 could be observed. (orig.)

  3. Active Waste Materials Corrosion and Decontamination Tests

    International Nuclear Information System (INIS)

    Danielson, M.J.; Elmore, M.R.; Pitman, S.G.

    2000-01-01

    Stainless steel alloys, 304L and 316L, were corrosion tested in representative radioactive samples of three actual Hanford tank waste solutions (Tanks AW-101, C-104, AN-107). Both the 304L and 316L exhibited good corrosion performance when immersed in boiling waste solutions. The maximum general corrosion rate was 0.015 mm/y (0.60 mils per year). Generally, the 304L had a slightly higher rate than the 316L. No localized attack was observed after 122 days of testing in the liquid phase, liquid/vapor phase, or vapor phase. Radioactive plate-out decontamination tests indicated that a 24-hour exposure to 1 und M HNO 3 could remove about 99% of the radioactive components in the metal film when exposed to the C-104 and AN-107 solutions. The decontamination results are less certain for the AW-101 solution, since the initial contamination readings exceeded the capacity of the meter used for this test

  4. 16 CFR 1209.5 - Test procedures for corrosiveness.

    Science.gov (United States)

    2010-01-01

    ... to eliminate air pockets from forming next to the metal coupons. (5) Do not cover the crystallizing... bristle brush or equivalent to remove loose corrosion products. Remove the remaining corrosion products... Evaluating Corrosion Test Specimens,” published by American Society for Testing and Materials, 1916 Race...

  5. Corrosion performance tests for reinforcing steel in concrete : technical report.

    Science.gov (United States)

    2009-10-01

    The existing test method used to assess the corrosion performance of reinforcing steel embedded in : concrete, mainly ASTM G 109, is labor intensive, time consuming, slow to provide comparative results, : and can be expensive. However, with corrosion...

  6. Critical review of the literature on the corrosion of copper by water

    International Nuclear Information System (INIS)

    King, Fraser

    2010-12-01

    The conventional belief that copper is thermodynamically stable in oxygen-free water has been questioned by a research group from the Royal Inst. of Technology, Stockholm lead by Dr. Gunnar Hultquist. A critical review of the literature both in support of the proposed mechanism and that which argues against it has been conducted. The critical review has been supported by supplementary analyses, with particular focus on the scientific validity of the reported observations and their significance for the corrosion of a copper canister. It is found that: - the scientific evidence in support of the suggestion that water oxidises copper is not conclusive and there are many aspects which are unclear and contradictory, - despite a number of attempts, no other researchers have been able to reproduce the observations of Hultquist and co-workers, - even if correct, the mechanism is not important for copper canisters in a repository, both because of differences in the environmental conditions and because, even if corrosion did occur by this mechanism, it would quickly stop, and - there is no adverse impact on the lifetime of copper canisters due to this proposed, but unproven, mechanism

  7. Critical review of the literature on the corrosion of copper by water

    Energy Technology Data Exchange (ETDEWEB)

    King, Fraser (Integrity Corrosion Consulting Limited (Canada))

    2010-12-15

    The conventional belief that copper is thermodynamically stable in oxygen-free water has been questioned by a research group from the Royal Inst. of Technology, Stockholm lead by Dr. Gunnar Hultquist. A critical review of the literature both in support of the proposed mechanism and that which argues against it has been conducted. The critical review has been supported by supplementary analyses, with particular focus on the scientific validity of the reported observations and their significance for the corrosion of a copper canister. It is found that: - the scientific evidence in support of the suggestion that water oxidises copper is not conclusive and there are many aspects which are unclear and contradictory, - despite a number of attempts, no other researchers have been able to reproduce the observations of Hultquist and co-workers, - even if correct, the mechanism is not important for copper canisters in a repository, both because of differences in the environmental conditions and because, even if corrosion did occur by this mechanism, it would quickly stop, and - there is no adverse impact on the lifetime of copper canisters due to this proposed, but unproven, mechanism

  8. Influence of increasing phosphate/silikate contents on the pitting and general corrosion of galvanized steel tubing and the corrosion of copper in warm water mixed installation systems

    International Nuclear Information System (INIS)

    Ehreke, J.; Stichel, W.

    1989-01-01

    In hot tap water (65 0 C) the influence of a mixture of phosphate/silicate inhibitor on the general, the pitting and the galvanic corrosion of galvanized steel tubes and the general corrosion of copper in mixed installations of both metals was investigated. Increasing concentration of inhibitors descreases the general corrosion rate of galvanized steel and copper. A worth mentioning reduction of pitting and galvanic corrosion of steel could be reached only with high concentrations of 5 mg/l P 2 O 5 and 30 mg/l SiO 2 . Galvannealed tubes are much more sensitive to pitting corrosion than galvanized ones. Referring to this they could not be inhibited. (orig.) [de

  9. Accelerated Test Method for Corrosion Protective Coatings Project

    Science.gov (United States)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  10. Post-test examination of a copper electrode from deposition hole 5 in the Prototype Repository

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo [Rosborg Consulting, Nykoeping (Sweden)

    2013-04-15

    Three copper electrodes have been exposed for eight years in the outer section of the Prototype Repository at Aespoe. The electrodes were installed in the upper bentonite block of deposition hole 5 in May 2003. Most of the time the temperature of the electrodes has been somewhat below 35 deg C. The electrodes were retrieved for post-test examination in September 2011. This report presents results from electrochemical measurements and the post-test examination of one of the electrodes. The corrosion potential of the examined copper electrode was -40 mV SHE (2011-02-04) when part of the concrete plug to the outer section of the repository had been removed and made measurements possible. When the back-fill in the deposition tunnel had been removed it was 25 mV SHE (2011-09-12). Finally, before letting loose the copper electrode from the retrieved bentonite block, the corrosion potential was found to be 165 mV SHE (2011-11-15) being a sign of air ingress to the electrode/ bentonite interface. It was immediately obvious from the appearance of the copper electrode, when part of the surrounding bentonite had been removed, that both Cu(I) and Cu(II) corrosion products existed on the electrode surface. X-ray diffraction measurements also verified the presence of cuprite, Cu{sub 2}O, and malachite, Cu{sub 2}(OH){sub 2}CO{sub 3}, on the electrode; however, paratacamite, Cu{sub 2}(OH){sub 3}Cl, was not found. The performed Fourier transform infrared and Raman spectroscopy confirmed these observations. The corrosion product film, of which cuprite is the main part, was quite uneven and porous. No unmistakable signs of pitting have been found. The appearance of the copper electrode reminded of the coupons from the retrieved LOT test parcels, but was different from the appearance of the surface on the full-size canisters. For the latter blue-green Cu(II) corrosion products have not or only rarely been observed from visual examination immediately after removing the surrounding

  11. Post-test examination of a copper electrode from deposition hole 5 in the Prototype Repository

    International Nuclear Information System (INIS)

    Rosborg, Bo

    2013-04-01

    Three copper electrodes have been exposed for eight years in the outer section of the Prototype Repository at Aespoe. The electrodes were installed in the upper bentonite block of deposition hole 5 in May 2003. Most of the time the temperature of the electrodes has been somewhat below 35 deg C. The electrodes were retrieved for post-test examination in September 2011. This report presents results from electrochemical measurements and the post-test examination of one of the electrodes. The corrosion potential of the examined copper electrode was -40 mV SHE (2011-02-04) when part of the concrete plug to the outer section of the repository had been removed and made measurements possible. When the back-fill in the deposition tunnel had been removed it was 25 mV SHE (2011-09-12). Finally, before letting loose the copper electrode from the retrieved bentonite block, the corrosion potential was found to be 165 mV SHE (2011-11-15) being a sign of air ingress to the electrode/ bentonite interface. It was immediately obvious from the appearance of the copper electrode, when part of the surrounding bentonite had been removed, that both Cu(I) and Cu(II) corrosion products existed on the electrode surface. X-ray diffraction measurements also verified the presence of cuprite, Cu 2 O, and malachite, Cu 2 (OH) 2 CO 3 , on the electrode; however, paratacamite, Cu 2 (OH) 3 Cl, was not found. The performed Fourier transform infrared and Raman spectroscopy confirmed these observations. The corrosion product film, of which cuprite is the main part, was quite uneven and porous. No unmistakable signs of pitting have been found. The appearance of the copper electrode reminded of the coupons from the retrieved LOT test parcels, but was different from the appearance of the surface on the full-size canisters. For the latter blue-green Cu(II) corrosion products have not or only rarely been observed from visual examination immediately after removing the surrounding bentonite. Differences that

  12. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin, E-mail: songaixin@sdu.edu.cn; Hao, Jingcheng

    2017-03-31

    Highlights: • The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol. • The fabrication process of superhydrophobic metal surfaces greatly increases the safety in industrial manufacture in commercial scale. • The superhydrophobic copper surfaces show excellent corrosion resistance. - Abstract: A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  13. Atmospheric corrosion tests along the Norwegian-Russian border. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, J.F.; Mikhailov, A.A.

    1997-12-31

    A bilateral exposure programme was carried out along the Norwegian-Russian border in 1990-1991, 1992-1993 and 1993-1994 to evaluate quantitatively the effect of sulphur pollutants on the atmospheric corrosion of important materials in sub-arctic climate. The first part of the programme demonstrated that also in subarctic climate do metals corrode depending on the atmospheric corrosivity, and dose-response functions were derived which combined the effects of SO{sub 2} and time of wetness. The second part of the programme, which is described in this report, involved exposures of carbon steel, zinc and copper at two sites in Norway and three sites in Russia. It is concluded that the accelerated atmospheric corrosion of metals in regions along the border is mainly due to dry deposition of sulphur. At some sites, dry deposition of Cl contributes because of sea-salt aerosols. The corrosivity of acid precipitation is certain but could not be represented as a function because of the small differences observed in the pH values at the different sites. At all test sites the kinetics of corrosion of steel, zinc and copper are characterized by a reduced corrosion rate after one year of exposure. Time of wetness is an important parameter in predicting atmospheric corrosion of metals even on a regional scale. Hence, for monitoring and for trend-effect analysis, it is very important to determine the corrosivity of SO{sub 2} with time of wetness. In accordance with dose-response functions obtained, the yearly corrosion rate for steel and zinc are higher for the areas with higher amounts of dry deposition of Cl than for areas with analogous but only SO{sub 2}-containing atmosphere. 6 refs., 8 figs., 15 tabs.

  14. Effect of chloride ions on the corrosion behavior of low-alloy steel containing copper and antimony in sulfuric acid solution

    Science.gov (United States)

    Park, Sun-Ah; Kim, Seon-Hong; Yoo, Yun-Ha; Kim, Jung-Gu

    2015-05-01

    The influence of the addition of HCl on the corrosion behavior of low-alloy steel containing copper and antimony was investigated using electrochemical (potentiodynamic and potentiostatic polarization tests, and electrochemical impedance spectroscopy) and weight loss tests in a 1.6M H2SO4 solution with different concentrations of hydrochloric acid (0.00, 0.08, 0.15 and 0.20 M HCl) at 60 °C. The result showed that the corrosion rate decreased with increasing HCl by the formation of protective layers. SEM, EDS and XPS examinations of the corroded surfaces after the immersion test indicated that the corrosion production layer formed in the solution containing HCl was highly comprised of metallic Cu, Cu chloride and metallic (Fe, Cu, Sb) compounds. The corrosion resistance was improved by the Cu-enriched layer, in which chloride ions are an accelerator for cupric ion reduction during copper deposition. Furthermore, cuprous and antimonious chloride species are complex salts for cuprous ions adsorbed on the surface during copper deposition.

  15. Atmospheric corrosion and runoff processes on copper and zinc as roofing materials

    OpenAIRE

    He, Wenle

    2002-01-01

    An extensive investigation with parallel field andlaboratory exposures has been conducted to elucidateatmospheric corrosion and metal runoff processes on copper andzinc used for roofing applications. Detailed studies have beenperformed to disclose the effect of various parameters on therunoff rate including: surface inclination and orientation,natural patination (age), patina composition, rain duration andvolume, rain pH, and length of dry periods inbetween rainevents. Annual and average corr...

  16. Electrochemical Corrosion Testing of Neutron Absorber Materials

    International Nuclear Information System (INIS)

    Tedd Lister; Ron Mizia; Arnold Erickson; Tammy Trowbridge

    2007-01-01

    This report summarizes the results of crevice-corrosion tests for six alloys in solutions representative of ionic compositions inside the Yucca Mountain waste package should a breech occur. The alloys in these tests are Neutronit A978a (ingot metallurgy, hot rolled), Neutrosorb Plus 304B4 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B5 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B6 Grade Ab (powder metallurgy, hot rolled), Ni-Cr-Mo-Gd alloy2 (ingot metallurgy, hot rolled), and Alloy 22 (ingot metallurgy, hot rolled)

  17. Corrosion testing and prediction in SCWO environments

    International Nuclear Information System (INIS)

    Kriksunov, L.B.; Macdonald, D.D.

    1995-01-01

    The authors review recent advances in corrosion monitoring and modeling in SCWO systems. Techniques and results of experimental corrosion measurements at high temperatures are presented. Results of modeling corrosion in high subcritical and supercritical aqueous systems indicate the primary importance of density of water in corrosion processes. A phenomenological model has been developed to simulate corrosion processes at nearcritical and supercritical temperatures in SCWO systems. They discuss as well the construction of Pourbaix diagrams for metals in SCW

  18. Note: Inhibiting bottleneck corrosion in electrical calcium tests for ultra-barrier measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nehm, F., E-mail: frederik.nehm@iapp.de; Müller-Meskamp, L.; Klumbies, H.; Leo, K. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany)

    2015-12-15

    A major failure mechanism is identified in electrical calcium corrosion tests for quality assessment of high-end application moisture barriers. Accelerated calcium corrosion is found at the calcium/electrode junction, leading to an electrical bottleneck. This causes test failure not related to overall calcium loss. The likely cause is a difference in electrochemical potential between the aluminum electrodes and the calcium sensor, resulting in a corrosion element. As a solution, a thin, full-area copper layer is introduced below the calcium, shifting the corrosion element to the calcium/copper junction and inhibiting bottleneck degradation. Using the copper layer improves the level of sensitivity for the water vapor transmission rate (WVTR) by over one order of magnitude. Thin-film encapsulated samples with 20 nm of atomic layer deposited alumina barriers this way exhibit WVTRs of 6 × 10{sup −5} g(H{sub 2}O)/m{sup 2}/d at 38 °C, 90% relative humidity.

  19. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement

    Directory of Open Access Journals (Sweden)

    Abdulkareem Mohammed Ali Al-Sammarraie

    2017-01-01

    Full Text Available The enhancement of corrosion protection of metals and alloys by coating with simple, low cost, and highly adhered layer is still a main goal of many workers. In this research graphite flakes converted into graphene oxide using modified Hammers method and then reduced graphene oxide was electrodeposited on stainless steel 316, copper, and aluminum for corrosion protection application in seawater at four temperatures, namely, 20, 30, 40, and 50°C. All corrosion measurements, kinetics, and thermodynamics parameters were established from Tafel plots using three-electrode potentiostat. The deposited films were examined by FTIR, Raman, XRD, SEM, and AFM techniques; they revealed high percentages of conversion to the few layers of graphene with confirmed defects.

  20. Synchrotron based x-ray fluorescence microscopy confirms copper in the corrosion products of metals in contact with treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Joseph E. Jakes; Grant T. Kirker; David Vine; Stefan Vogt

    2017-01-01

    Copper based waterborne wood preservatives are frequently used to extend the service life of wood products when subjected to frequent moisture exposure. While these copper based treatments protect the wood from fungal decay and insect attack, they increase the corrosion of metals embedded or in contact with the treated wood. Previous research has shown the most...

  1. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    Science.gov (United States)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  2. Quality Assurance Review of SKB's Copper Corrosion Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Tamara D.; Hicks, Timothy W. (Galson Sciencies LTD. 5 Grosvenor House, Melton Road, Oakham (United Kingdom))

    2010-06-15

    SKB is preparing a license application for the construction of a final repository for spent nuclear fuel in Sweden. This application will be supported by the safety assessment SR-Site for the post-closure phase. The assessment of long-term safety is based on a broad range of experimental results from laboratory scale, intermediate scale and up to full scale experiments. It is essential that there is a satisfactory level of assurance that experiments have been carried out with sufficient quality, so that results can be considered to be reliable within the context of their use in safety assessment. The former named authority, SKI, has initiated a series of reviews of SKB's methods of quality assurance and their implementation. This quality assurance review is focused on the work of copper corrosion being conducted in at SKB's Hard Rock Laboratory (HRL) in Aespoe, LOT and Miniature canister (Minican) experiments. In order for the reviewers to get a broad understanding of the issue of copper corrosion both SKB reports as well as the viewpoint of MKG was collected prior to commencement of the actual review task. The purpose of this project is to assess SKB's quality assurance with the view of providing input for the preparation of the SR-Site safety assessment. This has been achieved by examination of the corrosion part of the LOT and Minican experiments using a check list, visits to the relevant facilities, and meetings with contractors and a few members of the SKB staff. The same approach for quality assurance reviews has been used earlier in similar review tasks. During the quality review of the selected projects, several QA- related issues of different degree of severity was noted by the reviewers. The most significant finding was that SKB has chosen to present only selected real-time corrosion monitoring data in TR-09-20. This was surprising and SSM expect that SKB will analyse the reason for this thoroughly. The reviewers also made other

  3. Whiskers and Localized Corrosion on Copper in Repository Environment

    International Nuclear Information System (INIS)

    Hermansson, Hans-Peter; Gillen, Peter

    2004-03-01

    Previous studies have demonstrated that whiskers (thread/hair shaped structures) can form on copper in a sulphide containing environment. A remaining important question is whether the attack on the copper metal surface beneath a whisker is of a localized or of a general nature. This issue has not been clarified as whiskers are very fragile and have always detached and fallen off from the surface at some stage of handling. It has therefore been very difficult to link the growth root of the whisker to underlying structures in the metal surface. A study was therefore initiated to settle the important issue of the relation between whisker position and the type of underlying metal attack. The usage of a porous medium was originally planned to support the whiskers in order to keep them in place and by post examinations characterize the nature of the whisker roots and thus the type of attack on the metal. However, the early stages of the present experimental work clearly indicated that other ways of study were necessary. A photographic method for the registration and positioning of whisker growth was therefore developed. It proved to be a successful means to coordinate whisker position and to link it with the attack on the underlying metal. Shortage of sulphide in previous experiments caused a retarded growth rate of whiskers. Therefore, in present experiments the sulphide concentration was kept at a more constant level throughout an experiment and a hindered whisker growth did not limit the attack on underlying metal. Whiskers and substrates were observed with a video camera throughout an experiment and the phase composition was examined with Laser Raman Spectroscopy, LRS and the Raman video microscope. Post examinations were also performed using light optical microscopy. By combining the results from the optical methods it has been possible to distinguish two kinds of whisker roots (small/large diameter) with the underlying metal surface. It has also been demonstrated

  4. Corrosion inhibition properties of pyrazolylindolenine compounds on copper surface in acidic media

    Directory of Open Access Journals (Sweden)

    Ebadi Mehdi

    2012-12-01

    Full Text Available Abstract Background The corrosion inhibition performance of pyrazolylindolenine compounds, namely 4-(3,3-dimethyl-3H-indol-2-yl-pyrazole-1-carbothioamide (InPzTAm, 4-(3,3-dimethyl-3H-indol-2-yl-1H-pyrazole-1-carbothiohydrazide (InPzTH and 3,3-dimethyl-2-(1-phenyl-1H-pyrazol-4-yl-3H-indole (InPzPh, on copper in 1M HCl solution is investigated by electrochemical impedance spectroscopy (EIS, open circuit potential (OCP and linear scan voltammetry (LSV techniques. Results The results show that the corrosion rate of copper is diminished by the compounds with the inhibition strength in the order of: InPzTAm> InPzTH > InPzPh. The corrosion inhibition efficiencies for the three inhibitors are 94.0, 91.4 and 79.3, for InPzTAm, InPzTH and InPzPh respectively with the same inhibitor concentration (2 mM. Conclusion From the EIS, OCP and LSV results it was concluded that pyrazolylindolenine compounds with S-atom (with an amine group have illustrated better corrosion inhibition performance compared to hydrazine and phenyl group.

  5. Microbially influenced corrosion of copper nuclear fuel waste containers in a Canadian disposal vault

    Energy Technology Data Exchange (ETDEWEB)

    King, F

    1996-11-01

    An assessment of the potential for microbially influenced corrosion (MIC) of copper nuclear fuel waste containers in a Canadian disposal vault is presented. The assessment is based on a consideration of the microbial activity within a disposal vault, the reported cases of MIC of Cu alloys in the literature and the known corrosion behaviour of Cu. Because of the critical role of biofilms in the reported cases of MIC, their formation and properties are discussed in detail. Next, the literature on the MIC of Cu alloys is briefly reviewed. The various MIC mechanisms proposed are critically discussed and the implications for the corrosion of Cu containers considered. In the majority of literature cases, MIC depends on alternating aerated and deaerated environments, with accelerated corrosion being observed when fresh aerated water replaces stagnant water, e.g., the MIC of Cu-Ni heat exchangers in polluted seawater and the microbially influenced pitting of Cu water pipes. Finally, because of the predominance of corrosion by sulphate-reducing bacteria (SRB) in the MIC literature, the abiotic behaviour of Cu alloys in sulphide solutions is also reviewed. The effect of the evolving environment in a disposal vault on the extent and location of microbial activity is discussed. Biofilm formation on the container surface is considered unlikely throughout the container lifetime, but especially initially when the environmental conditions will be particularly aggressive. Microbial activity in areas of the vault away from the container is possible, however. Corrosion of the container could then occur if microbial metabolic by-products diffuse to the container surface. Sulphide, produced by the action of SRB are considered to be the most likely cause of container corrosion. It is concluded that the only likely form of MIC of Cu containers will result from sulphide produced by SRB diffusing to the container surface. A modelling procedure for predicting the extent of corrosion is

  6. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  7. Long Term Corrosion/Degradation Test Six Year Results

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Adler Flitton; C. W. Bishop; M. E. Delwiche; T. S. Yoder

    2004-09-01

    The Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) contains neutron-activated metals from non-fuel, nuclear reactor core components. The Long-Term Corrosion/Degradation (LTCD) Test is designed to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements to the environment. The test is using two proven, industry-standard methods—direct corrosion testing using metal coupons, and monitored corrosion testing using electrical/resistance probes—to determine corrosion rates for various metal alloys generally representing the metals of interest buried at the SDA, including Type 304L stainless steel, Type 316L stainless steel, Inconel 718, Beryllium S200F, Aluminum 6061, Zircaloy-4, low-carbon steel, and Ferralium 255. In the direct testing, metal coupons are retrieved for corrosion evaluation after having been buried in SDA backfill soil and exposed to natural SDA environmental conditions for times ranging from one year to as many as 32 years, depending on research needs and funding availability. In the monitored testing, electrical/resistance probes buried in SDA backfill soil will provide corrosion data for the duration of the test or until the probes fail. This report provides an update describing the current status of the test and documents results to date. Data from the one-year and three-year results are also included, for comparison and evaluation of trends. In the six-year results, most metals being tested showed extremely low measurable rates of general corrosion. For Type 304L stainless steel, Type 316L stainless steel, Inconel 718, and Ferralium 255, corrosion rates fell in the range of “no reportable” to 0.0002 mils per year (MPY). Corrosion rates for Zircaloy-4 ranged from no measurable corrosion to 0.0001 MPY. These rates are two orders of magnitude lower than those specified in

  8. Nanoscale surface characterization of aqueous copper corrosion: Effects of immersion interval and orthophosphate concentration

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Stephanie L. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); United States Environmental Protection Agency, National Risk Management Research Laboratory (NRMRL), Water Supply and Water Resource Division (WSWRD), Cincinnati, OH 45268 (United States); Sprunger, Phillip T. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Center for Advanced Microstructures and Devices, Synchrotron Radiation Facility of Louisiana State University, Baton Rouge, LA 70803 (United States); Kizilkaya, Orhan [Center for Advanced Microstructures and Devices, Synchrotron Radiation Facility of Louisiana State University, Baton Rouge, LA 70803 (United States); Lytle, Darren A. [United States Environmental Protection Agency, National Risk Management Research Laboratory (NRMRL), Water Supply and Water Resource Division (WSWRD), Cincinnati, OH 45268 (United States); Garno, Jayne C., E-mail: jgarno@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2013-11-15

    Morphology changes for copper surfaces exposed to different water parameters were investigated at the nanoscale with atomic force microscopy (AFM), as influenced by changes in pH and the levels of orthophosphate ions. Synthetic water samples were designed to mimic physiological chemistries for drinking water, both with and without addition of orthophosphate over a pH range 6.5–9. Copper surfaces treated with orthophosphate as a corrosion inhibitor after 6 and 24 h were evaluated. Tapping mode AFM images revealed dosing of the water with 6 mg/L of orthophosphate was beneficial in retarding the growth of copper by-products. The chemical composition and oxidation state of the surface deposits were characterized with X-ray diffraction (XRD), near edge X-ray absorption fine structure (NEXAFS) spectroscopy and Fourier transform infrared spectroscopy (FTIR).

  9. Method For Creating Corrosion Resistant Surface On An Aluminum Copper Alloy

    Science.gov (United States)

    Mansfeld, Florian B.; Wang, You; Lin, Simon H.

    1997-06-03

    A method for treating the surface of aluminum alloys hang a relatively high copper content is provided which includes the steps of removing substantially all of the copper from the surface, contacting the surface with a first solution containing cerium, electrically charging the surface while contacting the surface in an aqueous molybdate solution, and contacting the surface with a second solution containing cerium. The copper is substantially removed from the surface in the first step either by (i) contacting the surface with an acidic chromate solution or by (ii) contacting the surface with an acidic nitrate solution while subjecting the surface to an electric potential. The corrosion-resistant surface resulting from the invention is excellent, consistent and uniform throughout the surface. Surfaces treated by the invention may often be certified for use in salt-water services.

  10. Scoping corrosion tests on candidate waste package basket materials for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Konynenburg, R.A. van; Curtis, P.G.; Summers, T.S.E.

    1998-03-01

    A scoping corrosion test was performed on candidate waste package basket materials. The corrosion medium was a pH-buffered solution of chemical species expected to be produced by radiolysis. The test was conducted at 90 C for 96 hours. Samples included aluminum-, copper-, stainless steel- and zirconium-based metallic materials and several ceramics, incorporating neutron-absorbing elements. Sample weight losses and solution chemical changes were measured. Both corrosion of the host materials and dissolution of the neutron-absorbing elements were studied. The ceramics and the zirconium-based materials underwent only minor corrosion. The stainless steel-based materials performed well except for a welded sample. The aluminum- and copper-based materials exhibited the highest corrosion rates. Boron dissolution depends on its chemical form. Boron oxide and many metal borides dissolve readily in acidic solutions while high-chromium borides and boron carbide, though thermodynamically unstable, exhibit little dissolution in short times. The results of solution chemical analyses were consistent with this. Gadolinium did not dissolve significantly from monazite, and hafnium showed little dissolution from a variety of host materials, in keeping with its low solubility

  11. Workshop on Copper Corrosion and Buffer Erosion. Stockholm 15-17 September 2010

    International Nuclear Information System (INIS)

    Robinson, Peter; Bath, Adrian

    2011-02-01

    The workshop was convened to inform and advise SSM about the coupled processes of buffer erosion and enhanced canister corrosion that have been proposed as a potentially detrimental scenario in the long-term evolution of the engineered barrier system of a deep geological repository. It was an extension of the deliberations of SSM's BRITE advisory group on EBS issues and on SKB's approaches to the issues in the forthcoming SR-Site safety case. The workshop was planned to assist and advise SSM in its preparations for review of SKB.s license application and SR-Site submission. The potential for buffer erosion due to a future influx of dilute groundwater that induces bentonite to behave as a sol has been indicated by experiments carried out for SKB. It is generally considered that the most likely source and timing of such groundwater conditions will be the glacial stage of the normal evolution of the repository system, i.e. many tens of thousands of years into the future at least. The workshop considered, however, that potential causes of buffer erosion in the early post-closure period should also be considered. The main significance of buffer erosion for a safety case is that it would potentially lead to higher rates of corrosion of the copper canister. There are various physicochemical mechanisms that could be implicated in enhanced corrosion but basically they would involve (a) the failure of a diffusion controlled constraint on corrodant transport to and product transport away from the copper surface, and (b) the viability of microbially-mediated reactions producing higher concentrations of corrodants at or near to the copper surface. The general issues relating to corrosion had already been the theme for a previous workshop in 2005 (see Report SKI 2006:11), the outcomes of which formed the background for this workshop. Additional background was provided by SKB's interim safety case, SR-Can, and the regulatory authorities. responses to preliminary consideration of

  12. Workshop on Copper Corrosion and Buffer Erosion. Stockholm 15-17 September 2010

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Peter (Quintessa (United Kingdom)); Bath, Adrian (Intellisci Ltd (United Kingdom))

    2011-02-15

    The workshop was convened to inform and advise SSM about the coupled processes of buffer erosion and enhanced canister corrosion that have been proposed as a potentially detrimental scenario in the long-term evolution of the engineered barrier system of a deep geological repository. It was an extension of the deliberations of SSM's BRITE advisory group on EBS issues and on SKB's approaches to the issues in the forthcoming SR-Site safety case. The workshop was planned to assist and advise SSM in its preparations for review of SKB.s license application and SR-Site submission. The potential for buffer erosion due to a future influx of dilute groundwater that induces bentonite to behave as a sol has been indicated by experiments carried out for SKB. It is generally considered that the most likely source and timing of such groundwater conditions will be the glacial stage of the normal evolution of the repository system, i.e. many tens of thousands of years into the future at least. The workshop considered, however, that potential causes of buffer erosion in the early post-closure period should also be considered. The main significance of buffer erosion for a safety case is that it would potentially lead to higher rates of corrosion of the copper canister. There are various physicochemical mechanisms that could be implicated in enhanced corrosion but basically they would involve (a) the failure of a diffusion controlled constraint on corrodant transport to and product transport away from the copper surface, and (b) the viability of microbially-mediated reactions producing higher concentrations of corrodants at or near to the copper surface. The general issues relating to corrosion had already been the theme for a previous workshop in 2005 (see Report SKI 2006:11), the outcomes of which formed the background for this workshop. Additional background was provided by SKB's interim safety case, SR-Can, and the regulatory authorities. responses to preliminary

  13. Ant-nest corrosion of copper tubing in air-conditioning units

    Directory of Open Access Journals (Sweden)

    Bastidas, D. M.

    2006-10-01

    Full Text Available Ant-nest corrosion is a specific type of premature failure (2-3 months of copper tubes used in air-conditioning units causing the loss of refrigerant liquid and the consequent environment pollution. It is known that attack requires the simultaneous presence of moisture, oxygen and a corrodent, usually an organic acid, such as formic, acetic, propionic or butyric acid or other volatile organic substances like methanol, ethanol, formaldehyde or acetoaldehyde. Approximately 10% of all premature failures of copper tubes used in the heating, ventilation and air-conditioning (HVAC industry are the result of ant-nest corrosion. This type of corrosion usually occurs in thin-wall copper pipes, especially when copper is de-sulphurised, and is known by several names: formicary corrosion, unusual corrosion, branched pits, pinhole corrosion, etc.

    Corrosión por “nido de hormigas” es un tipo específico de fallo prematuro (2-3 meses que tiene lugar en tubos de cobre utilizados en sistemas de aire acondicionado originando la pérdida de líquido refrigerante y la consecuente contaminación ambiental. Es conocido que este tipo de ataque requiere la presencia simultánea de humedad, oxígeno y un medio agresivo, habitualmente un ácido orgánico, como fórmico, acético  propiónico o butírico u otras sustancias orgánicas volátiles tales como metanol, etanol, formaldehido o acetoaldehido. Aproximadamente el 10% de los fallos prematuros en tubos de cobre utilizados en calefacción, ventilación y en la industria de aire acondicionado son el resultado de corrosión por nido de hormigas. Frecuentemente, este tipo de corrosión tiene lugar en tubos de cobre de pared delgada, especialmente cuando el cobre es del tipo desulfurizado, y se conoce con varios nombres: corrosión por ácido fórmico, corrosión no habitual, picaduras ramificadas, corrosión con forma de alfiler, etc.

  14. The WR-1 corrosion test facility

    International Nuclear Information System (INIS)

    Murphy, E.V.; Simmons, G.R.

    1978-07-01

    This report describes a new Corrosion Test Facility which has recently been installed in the WR-1 organic-cooled research reactor. The irradiation facility is a single insert, installed in a reactor site, which can deliver a fast neutron flux density of 2.65 x 10 17 neutrons/(m 2 .s) to specimens under irradiation. A self-contained controlled-chemistry cooling water circuit removes the gamma- and neutron-heat generated in the insert and specimens. Specimen temperatures typically vary from 245 deg C to 280 deg C across the insert core region. (author)

  15. Reverse Taylor Tests on Ultrafine Grained Copper

    International Nuclear Information System (INIS)

    Mishra, A.; Meyers, M. A.; Martin, M.; Thadhani, N. N.; Gregori, F.; Asaro, R. J.

    2006-01-01

    Reverse Taylor impact tests have been carried out on ultrafine grained copper processed by Equal Channel Angular Pressing (ECAP). Tests were conducted on an as-received OFHC Cu rod and specimens that had undergone sequential ECAP passes (2 and 8). The average grain size ranged from 30 μm for the initial sample to less than 0.5 μm for the 8-pass samples. The dynamic deformation states of the samples, captured by high speed digital photography were compared with computer simulations run in AUTODYN-2D using the Johnson-Cook constitutive equation with constants obtained from stress-strain data and by fitting to an experimentally measured free surface velocity trace. The constitutive response of copper of varying grain sizes was obtained through quasistatic and dynamic mechanical tests and incorporation into constitutive models

  16. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Renato Altobelli Antunes

    2014-01-01

    Full Text Available The aim of this work was to compare the corrosion products formed on carbon steel plates submitted to atmospheric corrosion in urban and industrial atmospheres with those formed after accelerated corrosion tests. The corrosion products were characterized by X-ray diffraction, Mössbauer spectroscopy, and Raman spectroscopy. The specimens were exposed to natural weathering in both atmospheres for nine months. The morphologies of the corrosion products were evaluated using scanning electron microscopy. The main product found was lepidocrocite. Goethite and magnetite were also found on the corroded specimens but in lower concentrations. The results showed that the accelerated test based on the ASTM B117 procedure presented poor correlation with the atmospheric corrosion tests whereas an alternated fog/dry cycle combined with UV radiation exposure provided better correlation.

  17. Integrated Corrosion Facility for long-term testing of candidate materials for high-level radioactive waste containment

    International Nuclear Information System (INIS)

    Estill, J.C.; Dalder, E.N.C.; Gdowski, G.E.; McCright, R.D.

    1994-10-01

    A long-term-testing facility, the Integrated Corrosion Facility (I.C.F.), is being developed to investigate the corrosion behavior of candidate construction materials for high-level-radioactive waste packages for the potential repository at Yucca Mountain, Nevada. Corrosion phenomena will be characterized in environments considered possible under various scenarios of water contact with the waste packages. The testing of the materials will be conducted both in the liquid and high humidity vapor phases at 60 and 90 degrees C. Three classes of materials with different degrees of corrosion resistance will be investigated in order to encompass the various design configurations of waste packages. The facility is expected to be in operation for a minimum of five years, and operation could be extended to longer times if warranted. A sufficient number of specimens will be emplaced in the test environments so that some can be removed and characterized periodically. The corrosion phenomena to be characterized are general, localized, galvanic, and stress corrosion cracking. The long-term data obtained from this study will be used in corrosion mechanism modeling, performance assessment, and waste package design. Three classes of materials are under consideration. The corrosion resistant materials are high-nickel alloys and titanium alloys; the corrosion allowance materials are low-alloy and carbon steels; and the intermediate corrosion resistant materials are copper-nickel alloys

  18. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  19. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinsong [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  20. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    International Nuclear Information System (INIS)

    Jinsong Liu

    2006-04-01

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10 5 years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10 5 years

  1. Analysis of Barrier Performance: Modelling of Copper corrosion scenarios with and without buffer erosion

    International Nuclear Information System (INIS)

    Benbow, Steven J.; Robinson, Peter C.; Watson, Sarah P.

    2011-02-01

    SKB have identified buffer erosion as a process that could potentially lead to increased corrosion of the copper canister. Buffer erosion can be caused by: the formation of bentonite (i.e., montmorillonite) colloids and their transport away from deposition holes in intersecting fractures containing dilute groundwaters (such as subglacial meltwaters); steep hydraulic gradients during buffer resaturation; or shearing of solid bentonite particles by rapidly flowing groundwater. Only colloidal removal of bentonite (the first of the processes listed) is considered in this study. The erosion of the bentonite leads to a reduction in density and swelling potential, and hence a lowering of transport resistances in the buffer that can make it easier for corrosive agents to transported to be the canister surface, resulting in increased levels of corrosion of the canister surface compared with those predicted in 'normal evolution' conditions. The reduction in bentonite density that follows as a consequence of erosion also leads to the possibility of breaching other safety functions of the buffer, for example prevention of canister sinking and resistance to shear deformation. These are not considered in this study. This report describes the modelling of copper corrosion processes in the SKB KBS-3 design concept. The modelling includes an initial representation of all relevant physical processes, but with some processes represented in more detail than others. This allows investigation of the impacts of the processes that are modelled on canister corrosion, allowing identification of the processes that impact most on the key performance measures for the EBS, which will help to focus modelling developments in future work. This work could be taken as the starting point in a longer-term modelling study in which the interactions between processes that affect canister corrosion are further investigated. Two high-level scenarios are considered in this work: a base case scenario in

  2. Analysis of Barrier Performance: Modelling of Copper corrosion scenarios with and without buffer erosion

    Energy Technology Data Exchange (ETDEWEB)

    Benbow, Steven J.; Robinson, Peter C.; Watson, Sarah P. (Quintessa Limited, Henley-on-Thames (United Kingdom))

    2011-02-15

    SKB have identified buffer erosion as a process that could potentially lead to increased corrosion of the copper canister. Buffer erosion can be caused by: the formation of bentonite (i.e., montmorillonite) colloids and their transport away from deposition holes in intersecting fractures containing dilute groundwaters (such as subglacial meltwaters); steep hydraulic gradients during buffer resaturation; or shearing of solid bentonite particles by rapidly flowing groundwater. Only colloidal removal of bentonite (the first of the processes listed) is considered in this study. The erosion of the bentonite leads to a reduction in density and swelling potential, and hence a lowering of transport resistances in the buffer that can make it easier for corrosive agents to transported to be the canister surface, resulting in increased levels of corrosion of the canister surface compared with those predicted in 'normal evolution' conditions. The reduction in bentonite density that follows as a consequence of erosion also leads to the possibility of breaching other safety functions of the buffer, for example prevention of canister sinking and resistance to shear deformation. These are not considered in this study. This report describes the modelling of copper corrosion processes in the SKB KBS-3 design concept. The modelling includes an initial representation of all relevant physical processes, but with some processes represented in more detail than others. This allows investigation of the impacts of the processes that are modelled on canister corrosion, allowing identification of the processes that impact most on the key performance measures for the EBS, which will help to focus modelling developments in future work. This work could be taken as the starting point in a longer-term modelling study in which the interactions between processes that affect canister corrosion are further investigated. Two high-level scenarios are considered in this work: a base case

  3. Microbial induced corrosion (MIC) on DHP copper by Desulfovibrio desulfuricans and Bacillus megaterium strains in media simulating heater waters

    International Nuclear Information System (INIS)

    Zumelzu, E.; Cabezas, C.; Schoebitz, R.; Ugarte, R.; Rodriguez, E.D.; Rios, J.

    2003-01-01

    The complexity and diversity of microbial populations in water heating systems of steam generators make it necessary to study the magnitude of the metabolic activity of bacteria and biofilm development that may lead to degradation of metal components through microbial induced corrosion (MIC). Electrolytes simulating the conditions found in heater water networks were used to induce biofilm formation on DHP copper coupons by Desulfovibrio desulfuricans DSMZ and Bacillus megaterium C10, a commercial strain and an isolate from these waters, respectively. In order to enhance their action, industrial waters enriched with the minimum nutrient content such as sodium lactate and sodium sulphite for the DSMZ strain and glucose, proteose peptone and starch for the C10 strain were employed. Biofilm formation was studied under controlled temperature, time, shaking, pH and concentrations of the media used in this study. Then, the samples were electrochemically tested in an artificial solution of sea water as control medium, based on the hypothesis that the action of an aggressive biofilm/electrolyte medium generates damaged and non-damaged areas on the metal surface, and assuming that the sea water trial can detect the latter. Hence, a higher anodic current was associated with a lower degradation of the metal surface by the action of one of the media under study. All these trials were performed along with bacterial count, scanning electron microscopy (SEM) and atomic absorption spectroscopy (AAS). Furthermore, it was possible to identify under which conditions MIC on DHP copper occurred and complex mechanisms from retention of cations to diffusion processes at the biofilm/tested media interface level were proposed. Surface corrosion by MIC took place on DHP copper; therefore, greater control on the treatment of industrial waters is highly desirable. (author)

  4. Inhibition of copper corrosion in sodium chloride solution by the self-assembled monolayer of sodium diethyldithiocarbamate

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Q.Q., E-mail: liaoqq1971@yahoo.com.c [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Yue, Z.W.; Yang, D. [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Wang, Z.H. [Department of Chemistry, Tongji University, Shanghai 200092 (China); Li, Z.H. [Department of Chemistry, Fudan University, Shanghai 200433 (China); Ge, H.H. [Key Lab of Shanghai Colleges and Universities for Electric Power Corrosion Control and Applied Electrochemistry, Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090 (China); Li, Y.J. [Department of Chemistry, Tongji University, Shanghai 200092 (China)

    2011-05-15

    Research highlights: DDTC is of low toxicity. DDTC SAM had good corrosion inhibition effects on copper in 3% NaCl solution. DDTC SAM was chemisorbed on copper surface by its S atoms. - Abstract: Sodium diethyldithiocarbamate (DDTC) self-assembled monolayer (SAM) on copper surface has been investigated by SERS and EDS and the results show that DDTC SAM is chemisorbed on copper surface by its S atoms with tilted orientation. Corrosion inhibition ability of DDTC SAM was measured in 3% NaCl solution using electrochemical methods. The impedance results indicate that the maximum inhibition efficiency of DDTC SAM can reach 99%. Quantum chemical calculations show that DDTC has relatively small {Delta}E between HOMO and LUMO and large negative charge in its two sulfur atoms, which facilitates the formation of a DDTC SAM on copper surface.

  5. The effect of discontinuities on the corrosion behaviour of copper canisters

    International Nuclear Information System (INIS)

    King, F.

    2004-03-01

    Discontinuities may remain in the weld region of copper canisters following the final closure welding and inspection procedures. Although the shell of the copper canister is expected to exhibit excellent corrosion properties in the repository environment, the question remains what impact these discontinuities might have on the long-term performance and service life of the canister. A review of the relevant corrosion literature has been carried out and an expert opinion of the impact of these discontinuities on the canister lifetime has been developed. Since the amount of oxidant in the repository is limited and the maximum wall penetration is expected to be 2 O/Cu(OH) 2 film at a critical electrochemical potential determines where and when pits initiate, not the presence of pit-shaped surface discontinuities. The factors controlling pit growth and death are well understood. There is evidence for a maximum pit radius for copper in chloride solutions, above which the small anodic: cathodic surface area ratio required for the formation of deep pits cannot be sustained. This maximum pit radius is of the order of 0.1-0.5 mm. Surface discontinuities larger than this size are unlikely to propagate as pits, and pits generated from smaller discontinuities will die once they reach this maximum size. Death of propagating pits will be compounded by the decrease in oxygen flux to the canister as the repository environment becomes anoxic. Surface discontinuities could impact the SCC behaviour either through their effect on the local environment or via stress concentration or intensification. There is no evidence that surface discontinuities will affect the initiation of SCC by ennoblement of the corrosion potential or the formation of locally aggressive conditions. Stress concentration at pits could lead to crack initiation under some circumstances, but the stress intensity factor for the resultant cracks, or for pre-existing crack-like discontinuities, will be smaller than the

  6. Long-term corrosion of copper in a dilute anaerobic sulfide solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Qin, Z. [Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.ca [Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada)

    2011-09-30

    The mechanism of corrosion of oxygen-free copper has been studied in stagnant aqueous sulfide solutions using corrosion potential and electrochemical impedance spectroscopy (EIS) measurements. Film structure and composition were examined on surfaces and on cross-sections prepared by focused ion beam (FIB) milling using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Experiments were conducted in anaerobic 5 x 10{sup -5} mol dm{sup -3} Na{sub 2}S + 0.1 mol dm{sup -3} NaCl solutions for exposure periods up to 4000 h ({approx}167 days) to mimic (at least partially) the conditions that could develop on a copper nuclear fuel waste container in a deep geologic repository. The corrosion film formed was a single cellular Cu{sub 2}S layer with a non-uniform thickness. The film thickness increased approximately linearly with immersion time, which implied that the sulfide film formed on the Cu surface is non-protective under these conditions up to this exposure time. The film growth process was controlled by HS{sup -} diffusion partially in the aqueous solution in the pores in the cellular sulfide film and partially in the bulk of the aqueous solution.

  7. Predicting the effects of microbial activity on the corrosion of copper nuclear fuel waste disposal containers

    International Nuclear Information System (INIS)

    King, F.; Stroes-Gascoyne, S.

    1996-08-01

    Microbially influenced corrosion (MIC) of copper nuclear fuel waste containers may occur in a disposal vault located 500-1000 m underground in the granitic rock of the Canadian Shield. The extent and diversity of microbial activity in the vault is expected to be limited initially because of the aggressive conditions produced by γ-radiation, elevated temperatures and desiccation of the clay-based buffer in which the containers will be embedded. Experimental results on the heat- and radiation-sensitivity of the natural microbiota in buffer material are presented. The data suggest that the low water activity in the buffer material will severely limit the growth of microbes near the container. The most likely form of MIC involves sulphate-reducing bacteria (SRB). Electrochemical experiments using a clay-covered copper electrode have shown that sulphide ions produced by SRB could diffuse through buffer material and induce corrosion of the container. A method to predict the long-term corrosion behaviour is presented. (author)

  8. Stress corrosion testing of irradiated cladding tubes

    International Nuclear Information System (INIS)

    Lunde, L.; Olshausen, K.D.

    1980-01-01

    Samples from two fuel rods with different cladding have been stress corrosion tested by closed-end argon-iodine pressurization at 320 0 C. The fuel rods with stress relieved and recrystallized Zircaloy-2 had received burnups of 10.000 and 20.000 MWd/ton UO 2 , respectively. It was found that the SCC failure stress was unchanged or slightly higher for the irradiated than for the unirradiated control tubes. The tubes failed consistently in the end with the lowest irradiation dose. The diameter increase of the irradiated cladding during the test was 1.1% for the stress-relieved samples and 0.24% for the recrystallized samples. SEM examination revealed no major differences between irradiated and unirradiated cladding. A ''semi-ductile'' fracture zone in recrystallized material is described in some detail. (author)

  9. Acceptance Test Plan for Fourth-Generation Corrosion Monitoring Cabinet

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This Acceptance Test Plan (ATP) will document the satisfactory operation of the third-generation corrosion monitoring cabinet (Hiline Engineering Part No.0004-CHM-072-C01). This ATP will be performed by the manufacturer of the cabinet prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion monitoring cabinet. The test will consist of a continuity test of the cabinet wiring from the end of cable to be connected to corrosion probe, through the appropriate intrinsic safety barriers and out to the 15 pin D-shell connectors to be connected to the corrosion monitoring instrument. Additional testing will be performed using a constant current and voltage source provided by the corrosion monitoring hardware manufacturer to verify proper operation of corrosion monitoring instrumentation

  10. Behavior of copper corrosion products in water loops of heat-exchange units

    International Nuclear Information System (INIS)

    Zarembo, V.I.; Kritskii, V.G.; Slobodov, A.A.; Puchkov, L.V.

    1989-01-01

    This communication is dedicated to an examination of copper corrosion products (CP) in the conditions of real aqueous-chemical regime (ACR) parameters. The deposition of these CP in steam-generating zones (up to 85% of their total amount) stimulate local types of corrosion. The solubility in Cu CP (Cu 2 O, CuO, Cu(OH) 2 )-water (H 2 O)-gas (H 2 , O 2 )-conditioning additives (HCl, KOH) systems was determined by computer modeling according to the minimum Gibbs energy criterion on the basis of selected and matched thermodynamic constants for various chemical forms of copper under standard conditions. As a result of the authors' calculations they obtained the solubilities in water of CuO, Cu 2 O and Cu(OH) 2 when changing the dosage of active gases from 0 to 10 -2 mole/kg of water, of acid or equal to that of saturated vapor of pure water. Thus, they were able to monitor the behavior of copper CP in conditions modeling those of real ACR in operating heat exchange units, including in conditions deviating from the standard

  11. Electrochemical evaluation of inhibition efficiency of ciprofloxacin on the corrosion of copper in acid media

    Energy Technology Data Exchange (ETDEWEB)

    Thanapackiam, P. [Department of Chemistry, Coimbatore Institute of Technology, Coimbatore, Tamilnadu, 641 014 (India); Rameshkumar, Subramaniam [Department of Chemistry, Sri Vasavi College, Erode, Tamilnadu, 638 316 (India); Subramanian, S.S. [Department of Chemistry, PSG College of Technology, Coimbatore, Tamilnadu, 641 004 (India); Mallaiya, Kumaravel, E-mail: mkvteam.research@gmail.com [Department of Chemistry, PSG College of Technology, Coimbatore, Tamilnadu, 641 004 (India)

    2016-05-01

    The inhibition efficiency of ciprofloxacin on the corrosion of copper was studied in 1.0MHNO{sub 3} and 0.5MH{sub 2}SO{sub 4} solutions by electrochemical impedance spectroscopy and potentiodynamic polarization techniques. The corrosion inhibition action of ciprofloxacin was observed to be of mixed type in both the acid media, but with more of a cathodic nature. The experimental data were found to fit well with the Langmuir adsorption isotherm. The thermodynamic parameters such as adsorption equilibrium constant(K{sub ads}), free energy of adsorption(ΔG{sub ads}), activation energy(E{sub a}) and potential of zero charge(PZC) showed that the adsorption of ciprofloxacin onto copper surface involves both physisorption and chemisorption. - Highlights: • The inhibitor efficiency increases with increase in ciprofloxacin concentration. • Polarization measurements show that ciprofloxacin acts as a mixed type inhibitor. • The adsorption of the inhibitor on copper surface follows Langmuir adsorption isotherm. • The negative values of ΔG{sub ads} indicates that the adsorption is spontaneous and exothermic.

  12. Corrosion of spent Advanced Test Reactor fuel

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Croson, M.L.

    1994-01-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented

  13. Corrosion resistance testing of high-boron-content stainless steels

    International Nuclear Information System (INIS)

    Petrman, I.; Safek, V.

    1994-01-01

    Boron steels, i.e. stainless steels with boron contents of 0.2 to 2.25 wt.%, are employed in nuclear engineering for the manufacture of baskets or wells in which radioactive fissile materials are stored, mostly spent nuclear fuel elements. The resistance of such steels to intergranular corrosion and uniform corrosion was examined in the Strauss solution and in boric acid; the dependence of the corrosion rate of the steels on their chemical composition was investigated, and their resistance was compared with that of AISI 304 type steel. Corrosion resistance tests in actual conditions of ''wet'' compact storage (demineralized water or a weak boric acid solution) gave evidence that boron steels undergo nearly no uniform corrosion and, as electrochemical measurements indicated, match standard corrosion-resistant steels. Corrosion resistance was confirmed to decrease slightly with increasing boron content and to increase somewhat with increasing molybdenum content. (Z.S.). 3 tabs., 4 figs., 7 refs

  14. Standard Practice for Use of Mattsson's Solution of pH 7.2 to Evaluate the Stress- Corrosion Cracking Susceptibility of Copper-Zinc Alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers the preparation and use of Mattsson's solution of pH 7.2 as an accelerated stress-corrosion cracking test environment for brasses (copper-zinc base alloys). The variables (to the extent that these are known at present) that require control are described together with possible means for controlling and standardizing these variables. 1.2 This practice is recommended only for brasses (copper-zinc base alloys). The use of this test environment is not recommended for other copper alloys since the results may be erroneous, providing completely misleading rankings. This is particularly true of alloys containing aluminum or nickel as deliberate alloying additions. 1.3 This practice is intended primarily where the test objective is to determine the relative stress-corrosion cracking susceptibility of different brasses under the same or different stress conditions or to determine the absolute degree of stress corrosion cracking susceptibility, if any, of a particular brass or brass component ...

  15. Electrochemical Corrosion Testing of Neutron Absorber Materials

    International Nuclear Information System (INIS)

    Tedd Lister; Ron Mizia; Sandra Birk; Brent Matteson; Hongbo Tian

    2006-01-01

    The Yucca Mountain Project (YMP) has been directed by DOE-RW to develop a new repository waste package design based on the transport, aging, and disposal canister (TAD) system concept. A neutron poison material for fabrication of the internal spent nuclear fuel (SNF) baskets for these canisters needs to be identified. A material that has been used for criticality control in wet and dry storage of spent nuclear fuel is borated stainless steel. These stainless products are available as an ingot metallurgy plate product with a molybdenum addition and a powder metallurgy product that meets the requirements of ASTM A887, Grade A. A new Ni-Cr-Mo-Gd alloy has been developed by the Idaho National Laboratory (INL) with its research partners (Sandia National Laboratory and Lehigh University) with DOE-EM funding provided by the National Spent Nuclear Fuel Program (NSNFP). This neutron absorbing alloy will be used to fabricate the SNF baskets in the DOE standardized canister. The INL has designed the DOE Standardized Spent Nuclear Fuel Canister for the handling, interim storage, transportation, and disposal in the national repository of DOE owned spent nuclear fuel (SNF). A corrosion testing program is required to compare these materials in environmental conditions representative of a breached waste canister. This report will summarize the results of crevice corrosion tests for three alloys in solutions representative of ionic compositions inside the waste package should a breech occur. The three alloys in these tests are Neutronit A978 (ingot metallurgy, hot rolled), Neutrosorb 304B4 Grade A (powder metallurgy, hot rolled), and Ni-Cr-Mo-Gd alloy (ingot metallurgy, hot rolled)

  16. An evaluation of corrosion resistant alloys by field corrosion test in Japanese refuse incineration plants

    International Nuclear Information System (INIS)

    Kawahara, Yuuzou; Nakamura, Masanori; Shibuya, Eiichi; Yukawa, Kenichi

    1995-01-01

    As the first step for development of the corrosion resistant superheater tube materials of 500 C, 100 ata used in high efficient waste-to-energy plants, field corrosion tests of six conventional alloys were carried out at metal temperatures of 450 C and 550 C for 700 and 3,000 hours in four typical Japanese waste incineration plants. The test results indicate that austenitic alloys containing approximately 80 wt% [Cr+Ni] show excellent corrosion resistance. When the corrosive environment is severe, intergranular corrosion of 40∼200 microm depth occurs in stainless steel and high alloyed materials. It is confirmed quantitatively that corrosion behavior is influenced by environmental corrosion factors such as Cl concentration and thickness of deposits on tube surface, metal temperature, and flue gas temperature. The excellent corrosion resistance of high [Cr+Ni+Mo] alloys such as Alloy 625 is explained by the stability of its protective oxide, such that the time dependence of corrosion nearly obeys the parabolic rate law

  17. Microbially influenced corrosion of copper nuclear fuel waste containers in a Canadian disposal vault

    International Nuclear Information System (INIS)

    King, F.

    1996-11-01

    An assessment of the potential for microbially influenced corrosion (MIC) of copper nuclear fuel waste containers in a Canadian disposal vault is presented. The assessment is based on a consideration of the microbial activity within a disposal vault, the reported cases of MIC of Cu alloys in the literature and the known corrosion behaviour of Cu. Because of the critical role of biofilms in the reported cases of MIC, their formation and properties are discussed in detail. Next, the literature on the MIC of Cu alloys is briefly reviewed. The various MIC mechanisms proposed are critically discussed and the implications for the corrosion of Cu containers considered. In the majority of literature cases, MIC depends on alternating aerated and deaerated environments, with accelerated corrosion being observed when fresh aerated water replaces stagnant water, e.g., the MIC of Cu-Ni heat exchangers in polluted seawater and the microbially influenced pitting of Cu water pipes. Finally, because of the predominance of corrosion by sulphate-reducing bacteria (SRB) in the MIC literature, the abiotic behaviour of Cu alloys in sulphide solutions is also reviewed. The effect of the evolving environment in a disposal vault on the extent and location of microbial activity is discussed. Biofilm formation on the container surface is considered unlikely throughout the container lifetime, but especially initially when the environmental conditions will be particularly aggressive. Microbial activity in areas of the vault away from the container is possible, however. Corrosion of the container could then occur if microbial metabolic by-products diffuse to the container surface. Sulphide, produced by the action of SRB are considered to be the most likely cause of container corrosion. It is concluded that the only likely form of MIC of Cu containers will result from sulphide produced by SRB diffusing to the container surface. A modelling procedure for predicting the extent of corrosion is

  18. Corrosion Inhibition of Copper-nickel Alloy: Experimental and Theoretical Studies

    Energy Technology Data Exchange (ETDEWEB)

    Khadom, Anees A. [Univ. of Daiyla, Baquba (Iran, Islamic Republic of); Yaro, Aprael S. [Univ. of Baghdad, Aljadreaa (Iran, Islamic Republic of); Musa, Ahmed Y.; Mohamad, Abu Bakar; Kadhum, Abdul Amir H. [UniversitiKebangsaan Malaysia, Bangi (Malaysia)

    2012-08-15

    The corrosion inhibition of copper-nickel alloy by Ethylenediamine (EDA) and Diethylenetriamine (DETA) in 1.5M HCl has been investigated by weight loss technique at different temperatures. Maximum value of inhibitor efficiency was 75% at 35 .deg. C and 0.2 M inhibitor concentration EDA, while the lower value was 4% at 35 .deg. C and 0.01 M inhibitor concentration DETA. Two mathematical models were used to represent the corrosion rate data, second order polynomial model and exponential model respectively. Nonlinear regression analysis showed that the first model was better than the second model with high correlation coefficient. The reactivity of studied inhibitors was analyzed through theoretical calculations based on density functional theory (DFT). The results showed that the reactive sites were located on the nitrogen (N1, N2 and N4) atoms.

  19. Influence of surface condition on the corrosion resistance of copper alloy condenser tubes in sea water

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S; Nagata, K; Yamauchi, S

    1979-07-01

    Investigation was made on the influence of various surface conditions of aluminum brass tube. The corrosion behavior of aluminum brass tube, with nine kinds of surface conditions, was studied in stagnant 0.1N NaHCo/sub 3/ solution and flowing sea water (natural, Fe/sup + +/ containing and S/sup - -/ containing water). Surface treatments investigated contained bright annealing, special annealing to form carbon film, hot oxidizing and pickling. Anodic polarization measurements in 0.1N NaHCO/sub 3/ solution showed that the oxidized surface was superior and that the pickled surface was inferior. However, relation between these characteristics and corrosion resistance in sea water has not been established. Electrochemical characteristics in flowing sea water were dependent on the surface conditions in the very beginning of immersion time; nobler corrosion potential for the surface with carbon film, higher polarization resistance for the bright annealed and the oxidized surface, and faster decrease of polarization resistance in S/sup - -/ containing sea water for the pickled surface. However, these differences disappeared in the immersion time of only 2 to 7 days. It was revealed, by the statistical analysis on the corrosion depth in corrosion test in flowing sea water and in jet impingement test, that the corrosion behavior was not influenced by surface conditions, but was significantly influenced by quality of sea water and sponge ball cleaning. Sulfide ion of 0.05 ppm caused severe pitting corrosion, and sponge ball cleaning of 5 chances a week caused erosion corrosion. From above results, it was concluded that surface conditions of aluminum brass were not important to sea water corrosion, and that quality of sea water and operating condition such as sponge ball cleaning were more significant.

  20. Synergistic Effect of L-Methionine and KI on Copper Corrosion Inhibition in HNO3 (1M

    Directory of Open Access Journals (Sweden)

    Amel SEDIK

    2014-05-01

    Full Text Available L-Methionine (L-Met efficiency as a non-toxic corrosion inhibitor for copper in 1M HNO3 has been studied by using electrochemical impedance spectroscopy (EIS and potentiodynamic polarization. Copper corrosion rate significant decrease was observed in the presence of L-Met at 10-4M. The Obtained Results from potentiodynamic polarization and impedance measurements are in good agreement. L-Methionine adsorption on copper surface follows Langmuir isotherm. L-Met free energy adsorption on copper (-30 KJ mol-1 reveals an inhibition strong physical adsorption on copper surface. In order to evaluate the L-Met effect, L-Met and iodide ion’synergistic effect was used to prevent copper corrosion in nitric acid. It was found that inhibitor efficiency (IE reached 98.27 % in 1M solution containing 10-4M L-Met and 10- 3 M KI. The synergistic effect was attributed to iodide ions adsorption on copper surface, which facilitated the L-Met adsorption and an inhibitive film formation.

  1. Standard Operating Procedure for Accelerated Corrosion Testing at ARL

    Science.gov (United States)

    2017-11-01

    ARL-TN-0855 ● NOV 2017 US Army Research Laboratory Standard Operating Procedure for Accelerated Corrosion Testing at ARL by... Corrosion Testing at ARL by Thomas A Considine Weapons and Materials Research Directorate, ARL Approved for public...November 2017 2. REPORT TYPE Technical Note 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Standard Operating Procedure for Accelerated

  2. An improved stress corrosion test medium for aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Coston, J. E.

    1981-01-01

    A laboratory test method that is only mildly corrosive to aluminum and discriminating for use in classifying the stress corrosion cracking resistance of aluminum alloys is presented along with the method used in evaluating the media selected for testing. The proposed medium is easier to prepare and less expensive than substitute ocean water.

  3. SERS and DFT study of copper surfaces coated with corrosion inhibitor

    Directory of Open Access Journals (Sweden)

    Maurizio Muniz-Miranda

    2014-12-01

    Full Text Available Azole derivatives are common inhibitors of copper corrosion due to the chemical adsorption occurring on the metal surface that gives rise to a protective film. In particular, 1,2,4-triazole performs comparable to benzotriazole, which is much more widely used, but is by no means an environmentally friendly agent. In this study, we have analyzed the adsorption of 1,2,4-triazole on copper by taking advantage of the surface-enhanced Raman scattering (SERS effect, which highlights the vibrational features of organic ligand monolayers adhering to rough surfaces of some metals such as gold, silver and copper. To ensure the necessary SERS activation, a roughening procedure was implemented on the copper substrates, resulting in nanoscale surface structures, as evidenced by microscopic investigation. To obtain sufficient information on the molecule–metal interaction and the formation of an anticorrosive thin film, the SERS spectra were interpreted with the aid of theoretical calculations based on the density functional theory (DFT approach.

  4. Interactive Effects of Corrosion, Copper, and Chloramines on Legionella and Mycobacteria in Hot Water Plumbing.

    Science.gov (United States)

    Rhoads, William J; Pruden, Amy; Edwards, Marc A

    2017-06-20

    Complexities associated with drinking water plumbing systems can result in undesirable interactions among plumbing components that undermine engineering controls for opportunistic pathogens (OPs). In this study, we examine the effects of plumbing system materials and two commonly applied disinfectants, copper and chloramines, on water chemistry and the growth of Legionella and mycobacteria across a transect of bench- and pilot-scale hot water experiments carried out with the same municipal water supply. We discovered that copper released from corrosion of plumbing materials can initiate evolution of >1100 times more hydrogen (H 2 ) from water heater sacrificial anode rods than does presence of copper dosed as soluble cupric ions. H 2 is a favorable electron donor for autotrophs and causes fixation of organic carbon that could serve as a nutrient for OPs. Dosed cupric ions acted as a disinfectant in stratified stagnant pipes, inhibiting culturable Legionella and biofilm formation, but promoted Legionella growth in pipes subject to convective mixing. This difference was presumably due to continuous delivery of nutrients to biofilm on the pipes under convective mixing conditions. Chloramines eliminated culturable Legionella and prevented L. pneumophila from recolonizing biofilms, but M. avium gene numbers increased by 0.14-0.76 logs in the bulk water and were unaffected in the biofilm. This study provides practical confirmation of past discrepancies in the literature regarding the variable effects of copper on Legionella growth, and confirms prior reports of trade-offs between Legionella and mycobacteria if chloramines are applied as secondary disinfectant residual.

  5. Substituted benzotriazoles as inhibitors of copper corrosion in borate buffer solutions

    Science.gov (United States)

    Agafonkina, M. O.; Andreeva, N. P.; Kuznetsov, Yu. I.; Timashev, S. F.

    2017-08-01

    The adsorption of substituted 1,2,3-benzotriazoles (R-BTAs) onto copper is measured via ellipsometry in a pure borate buffer (pH 7.4) and satisfactorily described by Temkin's isotherm. The adsorption free energy (-Δ G a 0 ) values of these azoles are determined. The (-Δ G a 0 ) values are found to rise as their hydrophobicity, characterized by the logarithm of the partition coefficient of a substituted BTA in a model octanol-water system (log P), grows. The minimum concentration sufficient for the spontaneous passivation of copper ( C min) and a shift in the potential of local copper depassivation with chlorides ( E pt) after an azole is added to the solution (i.e., Δ E = E pt in - E pt backgr characterizing the ability of its adsorption to stabilize passivation) are determined in the same solution containing a corrosion additive (0.01M NaCl) for each azole under study. Both criteria of the passivating properties of azoles (log C min and Δ E) are shown to correlate linearly with log P, testifying to the role played by surface activity of this family of organic inhibitors in protecting copper in an aqueous solution.

  6. Cephradine as corrosion inhibitor for copper in 0.9% NaCl solution

    Science.gov (United States)

    Tasić, Žaklina Z.; Petrović Mihajlović, Marija B.; Radovanović, Milan B.; Simonović, Ana T.; Antonijević, Milan M.

    2018-05-01

    The effect of (6R,7R)-7-[[(2R)-2-amino-2-cyclohexa-1,4-dien-1-ylacetyl]amino]-3-methyl-8-oxo-5-thia-1-azobicyclo[4.2.0]oct-2-ene-2-carboxylic acid (cephradine) on corrosion behavior of copper in 0.9% NaCl solution was investigated. The electrochemical methods including the open circuit potential measurements, potentiodynamic polarization and electrochemical impedance spectroscopy measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy and quantum chemical calculations were used for this investigation. According to the results obtained by potentiodynamic polarization, cephradine acts as mixed type inhibitor. Also, the results obtained by electrochemical impedance spectroscopy indicate that cephradine provides good copper protection in 0.9% NaCl solution. The inhibition efficiency of cephradine increases with increasing its concentration. The scanning electron microscopy with energy dispersive X-ray spectroscopy confirms that a protective layer is formed on the copper surface due to the adsorption of cephradine on the active sites on the copper surface. Adsorption of cephradine in 0.9% NaCl solution follows the Langmuir adsorption isotherm. Quantum chemical calculations are in agreement with results obtained by electrochemical measurements.

  7. Engineered Barrier System - Assessment of the Corrosion Properties of Copper Canisters. Report from a Workshop. Synthesis and extended abstract

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Peter (ed.) [Quintessa Ltd., Henley-on-Thames (GB)] (and others)

    2006-03-15

    A general impression from literature studies, presentations by workshop participants and the informal hearing with SKB is that there is in general a strong basis for the handling of copper corrosion in safety assessment. Work has been ongoing in the area for many decades and there appears to be a consensus on several key aspects of corrosion, such as the existence of a threshold potential for localised corrosion. This is of key importance for the assessment of corrosion under repository conditions. Localised corrosion has to be evaluated for the initial oxygenated phase. There is a need to demonstrate that the corrosion profile in reality will be similar to those of small scale experiments, i.e. roughening without real pitting. There is also a need to develop a better and more transparent basis for assessing how much oxygen can be available during the early oxygenated phase. Regarding stress corrosion cracking, there is a need for a consistent and possibly more detailed explanation either why it can be completely disregarded, or accounted for by probabilistic methods. Copper is normally assumed to be resistant to corrosion in oxygen free environments. However, this is not correct for the extremely long time period of one million years covered by SKB's safety assessment. Copper will react with sulphide by reduction of water. This reaction is the basis for SKB's performance assessment model for copper corrosion. The key aspect of this model is the availability of sulphide. SKB may need to address in more detail the availability of sulphide from the groundwater and the buffer bentonite and its speciation and solubility behaviour. However, the most sensitive assumption in SKB's modelling appears to be the assumption of zero microbial activity in the buffer throughout the assessment time scale of 10{sup 6} years. A detailed justification of this assumption is needed and possibly also 'what-if' calculations to illustrate consequences if this

  8. Engineered Barrier System - Assessment of the Corrosion Properties of Copper Canisters. Report from a Workshop. Synthesis and extended abstract

    International Nuclear Information System (INIS)

    Robinson, Peter

    2006-03-01

    A general impression from literature studies, presentations by workshop participants and the informal hearing with SKB is that there is in general a strong basis for the handling of copper corrosion in safety assessment. Work has been ongoing in the area for many decades and there appears to be a consensus on several key aspects of corrosion, such as the existence of a threshold potential for localised corrosion. This is of key importance for the assessment of corrosion under repository conditions. Localised corrosion has to be evaluated for the initial oxygenated phase. There is a need to demonstrate that the corrosion profile in reality will be similar to those of small scale experiments, i.e. roughening without real pitting. There is also a need to develop a better and more transparent basis for assessing how much oxygen can be available during the early oxygenated phase. Regarding stress corrosion cracking, there is a need for a consistent and possibly more detailed explanation either why it can be completely disregarded, or accounted for by probabilistic methods. Copper is normally assumed to be resistant to corrosion in oxygen free environments. However, this is not correct for the extremely long time period of one million years covered by SKB's safety assessment. Copper will react with sulphide by reduction of water. This reaction is the basis for SKB's performance assessment model for copper corrosion. The key aspect of this model is the availability of sulphide. SKB may need to address in more detail the availability of sulphide from the groundwater and the buffer bentonite and its speciation and solubility behaviour. However, the most sensitive assumption in SKB's modelling appears to be the assumption of zero microbial activity in the buffer throughout the assessment time scale of 10 6 years. A detailed justification of this assumption is needed and possibly also 'what-if' calculations to illustrate consequences if this assumption turns out not to be

  9. NASA's Beachside Corrosion Test Site and Current Environmentally Friendly Corrosion Control Initiatives

    Science.gov (United States)

    Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current research and testing programs involving chromium free coatings, environmentally friendly corrosion preventative compounds, and alternates to nitric acid passivation will be discussed.

  10. Effect of 1,2,4-triazole on galvanic corrosion between cobalt and copper in CMP based alkaline slurry

    Science.gov (United States)

    Fu, Lei; Liu, Yuling; Wang, Chenwei; Han, Linan

    2018-04-01

    Cobalt has become a new type of barrier material with its unique advantages since the copper-interconnects in the great-large scale integrated circuits (GLSI) into 10 nm and below technical nodes, but cobalt and copper have severe galvanic corrosion during chemical–mechanical flattening. The effect of 1,2,4-triazole on Co/Cu galvanic corrosion in alkaline slurry and the control of rate selectivity of copper and cobalt were investigated in this work. The results of electrochemical experiments and polishing experiments had indicated that a certain concentration of 1,2,4-triazole could form a layer of insoluble and dense passive film on the surface of cobalt and copper, which reduced the corrosion potential difference between cobalt and copper. Meantime, the removal rate of cobalt and copper could be effectively controlled according to demand during the CMP process. When the study optimized slurry was composed of 0.5 wt% colloidal silica, 0.1 %vol. hydrogen peroxide, 0.05 wt% FA/O, 345 ppm 1,2,4-triazole, cobalt had higher corrosion potential than copper and the galvanic corrosion could be reduced effectively when the corrosion potential difference between them decreased to 1 mV and the galvanic corrosion current density reached 0.02 nA/cm2. Meanwhile, the removal rate of Co was 62.396 nm/min, the removal rate of Cu was 47.328 nm/min, so that the removal rate ratio of cobalt and copper was 1.32 : 1, which was a good amendment to the dishing pits. The contact potential corrosion of Co/Cu was very weak, which could be better for meeting the requirements of the barrier CMP. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Outstanding Young Science and Technology Innovation Fund of Hebei University of Technology (No. 2015007).

  11. Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test

    Science.gov (United States)

    Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark

    2013-12-01

    To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.

  12. Effects of Copper and Sulfur Additions on Corrosion Resistance and Machinability of Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Kim, Soon Tae; Park, Yong Soo; Kim, Hyung Joon

    1999-01-01

    Effects of Cu and S on corrosion resistance and machinability of austenitic stainless steel were investigated using immersion test, metallographic examination, Auger surface analysis and tool life test with single point turning tools. Corrosion resistance of the experimental Cu containing alloys in 18.4N H 2 SO 4 at 80 ∼ 120 .deg. C and 3N HCl at 40 .deg. C decreased as S content increased. However, one of the experimental alloys (Fe- 18%Cr- 21%Ni-3.2%Mo- 1.6%W- 0.2%N- 3.1%Cu- 0.091%S) showed general and pitting corrosion resistance equivalent to that of CW12MW in highly concentrated SO 4 2- environment. The alloy also showed pitting corrosion resistance superior to super stainless steel such as 654SMO in Cl - environment. The reasons why the increase in S content deteriorated the corrosion resistance were first, that the number and size of (Mn, Cr)S sulfides having corrosion resistance lower than that of matrix increased, leading to pitting corrosion and second, that rapid dissolution of the matrix around the pits was caused by adsorbed S. However, the alloy containing 3.1 %Cu and 0.091 % S maintained high general and pitting corrosion resistance due to heavily enriched noble Cu through selective dissolution of active Fe and Ni. The tool life for 3.1 % Cu + 0.091 % S added alloy was about four times that of 0.06%Cu + 0.005% S added alloy due to high shear strain rate generated by Cu addition giving easy cross slip of dislocation, lubrication of ductile (Mn, Cr)S sulfides adhering to tool crater surface and low cutting force resulting from thin continuous sulfides formed in chips during machining

  13. Research process of nondestructive testing pitting corrosion in metal material

    Directory of Open Access Journals (Sweden)

    Bo ZHANG

    2017-12-01

    Full Text Available Pitting corrosion directly affects the usability and service life of metal material, so the effective nondestructive testing and evaluation on pitting corrosion is of great significance for fatigue life prediction because of data supporting. The features of pitting corrosion are elaborated, and the relation between the pitting corrosion parameters and fatigue performance is pointed out. Through introducing the fundamental principles of pitting corrosion including mainly magnetic flux leakage inspection, pulsed eddy current and guided waves, the research status of nondestructive testing technology for pitting corrosion is summarized, and the key steps of nondestructive testing technologies are compared and analyzed from the theoretical model, signal processing to industrial applications. Based on the analysis of the signal processing specificity of different nondestructive testing technologies in detecting pitting corrosion, the visualization combined with image processing and signal analysis are indicated as the critical problems of accurate extraction of pitting defect information and quantitative characterization for pitting corrosion. The study on non-contact nondestructive testing technologies is important for improving the detection precision and its application in industries.

  14. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  15. Double shell slurry low-temperature corrosion tests

    International Nuclear Information System (INIS)

    Divine, J.R.; Bowen, W.M.; McPartland, S.A.; Elmore, R.P.; Engel, D.W.

    1983-09-01

    A series of year-long tests have been completed on potential double shell slurry (DSS) compositions at temperatures up to 100 0 C. These tests have sought data on uniform corrosion, pitting, and stress-corrosion cracking. No indication of the latter two types of corrosion were observed within the test matrix. Corrosion rates after four months were generally below the 1 mpy (25 μm/y) design limit. By the end of twelve months all results were below this limit and, except for very concentrated mixtures, all were below 0.5 mpy. Prediction equations were generated from a model fitted to the data. The equations provide a rapid means of estimating the corrosion rate for proposed DSS compositions

  16. Corrosion Study and Intermetallics Formation in Gold and Copper Wire Bonding in Microelectronics Packaging

    Directory of Open Access Journals (Sweden)

    Christopher Breach

    2013-07-01

    Full Text Available A comparison study on the reliability of gold (Au and copper (Cu wire bonding is conducted to determine their corrosion and oxidation behavior in different environmental conditions. The corrosion and oxidation behaviors of Au and Cu wire bonding are determined through soaking in sodium chloride (NaCl solution and high temperature storage (HTS at 175 °C, 200 °C and 225 °C. Galvanic corrosion is more intense in Cu wire bonding as compared to Au wire bonding in NaCl solution due to the minimal formation of intermetallics in the former. At all three HTS annealing temperatures, the rate of Cu-Al intermetallic formation is found to be three to five times slower than Au-Al intermetallics. The faster intermetallic growth rate and lower activation energy found in this work for both Au/Al and Cu/Al as compared to literature could be due to the thicker Al pad metallization which removed the rate-determining step in previous studies due to deficit in Al material.

  17. Electrodeposited Organic Layers Formed from Aryl Diazonium Salts for Inhibition of Copper Corrosion

    Directory of Open Access Journals (Sweden)

    Ana Chira

    2017-02-01

    Full Text Available Copper substrates deposed on a gold screen-printed electrode were covered with different aryl diazonium salts by electrodeposition at 0.25 mA for 30 or 300 s. Seven compounds were investigated: 4-aminophenylacetic acid, 4-aminophenethyl alcohol, 4-fluoroaniline, 4-(heptadecafluorooctylaniline, 4-aminoantipyrine, 4-(4-aminophenylbutyric acid and 3,4,5-trimethoxyaniline. Quantitative monitoring of the electrodeposition process was carried out by electrogravimetry using quartz crystal microbalance (QCM. The electrodeposited mass varies between 26 ng/cm2 for 4-fluoroaniline formed during 30 s to 442 ng/cm2 for 4-phenylbutyric acid formed during 300 s. The corrosion inhibition properties of aryl-modified layers have been studied in buffer citrate with pH = 3 or 3.5% NaCl solutions using electrochemical noise (ECN and Tafel potentiodynamic polarization measurements. A corrosion inhibiting efficiency up to 90% was found. The highest corrosion inhibition was obtained for 4-(4-aminophenylbutyric acid and the lowest for 4-fluoroaniline. A relation between the inhibition efficiency and the chemical nature of the substituents in the protective layer was found.

  18. Electrodeposited Organic Layers Formed from Aryl Diazonium Salts for Inhibition of Copper Corrosion.

    Science.gov (United States)

    Chira, Ana; Bucur, Bogdan; Radu, Gabriel-Lucian

    2017-02-28

    Copper substrates deposed on a gold screen-printed electrode were covered with different aryl diazonium salts by electrodeposition at 0.25 mA for 30 or 300 s. Seven compounds were investigated: 4-aminophenylacetic acid, 4-aminophenethyl alcohol, 4-fluoroaniline, 4-(heptadecafluorooctyl)aniline, 4-aminoantipyrine, 4-(4-aminophenyl)butyric acid and 3,4,5-trimethoxyaniline. Quantitative monitoring of the electrodeposition process was carried out by electrogravimetry using quartz crystal microbalance (QCM). The electrodeposited mass varies between 26 ng/cm² for 4-fluoroaniline formed during 30 s to 442 ng/cm² for 4-phenylbutyric acid formed during 300 s. The corrosion inhibition properties of aryl-modified layers have been studied in buffer citrate with pH = 3 or 3.5% NaCl solutions using electrochemical noise (ECN) and Tafel potentiodynamic polarization measurements. A corrosion inhibiting efficiency up to 90% was found. The highest corrosion inhibition was obtained for 4-(4-aminophenyl)butyric acid and the lowest for 4-fluoroaniline. A relation between the inhibition efficiency and the chemical nature of the substituents in the protective layer was found.

  19. Study by acoustic emission and electrochemical methods of the corrosion and the protection of the copper-zinc alloy (60/40) in neutral and alkaline media

    International Nuclear Information System (INIS)

    Assouli, B.

    2002-12-01

    The aim of this work is to study and characterize, by electrochemical methods and acoustic emission, the corrosion and the protection of the copper-zinc alloy (60/40) having a metallographic structure αβ'. The electrochemical measurements, in neutral, chlorinated or alkaline medium have allowed, to study the corrosion resistance of the copper-zinc and to show that the corrosion of this alloy, in the used media, is determined by a diffusional mechanism. The observations to the optical and scanning electron microscopes and the EDX analyzes have confirmed that this corrosion phenomenon is mainly due to the selective dissolution of the β' phase. The acoustic emission has shown, during this corrosion, the presence of two emissive sources whose initiation has been attributed to the relaxation of the micro- and macro- residual stresses of the α phase. These stresses have been characterized by X-ray diffraction and the salvoes emitted during the relaxation of these stresses have been discriminated by the characteristic frequencies and by the barycenter of their spectral density. The protection of this alloy has been carried out by the 2-mercapto-benzimidazole (MBI). This last compound has been tested both as inhibitor added directly in the corrosive medium and/or as polymer film previously deposited by an electrochemical way (p-MBI). The MBI is very efficient for an inhibition in a chlorinated alkaline medium. It is an interphase inhibitor. The p-MBI is efficient too in a neutral chlorinated medium and is moreover non pollutant for the environment. (O.M.)

  20. Standard practice for preparing, cleaning, and evaluating corrosion test specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This practice covers suggested procedures for preparing bare, solid metal specimens for tests, for removing corrosion products after the test has been completed, and for evaluating the corrosion damage that has occurred. Emphasis is placed on procedures related to the evaluation of corrosion by mass loss and pitting measurements. (Warning—In many cases the corrosion product on the reactive metals titanium and zirconium is a hard and tightly bonded oxide that defies removal by chemical or ordinary mechanical means. In many such cases, corrosion rates are established by mass gain rather than mass loss.) 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see 1 and 7.2.

  1. Inhibiting effects of imidazole on copper corrosion in 1 M HNO3 solution

    International Nuclear Information System (INIS)

    Lee, Woo-Jin

    2003-01-01

    The present work deals with the inhibiting effects of imidazole on the pure copper (Cu) corrosion in 1 M HNO 3 solution analysing potentiodynamic polarisation curves, potentiostatic anodic current transient, AC impedance spectra and X-ray photoelectron spectra (XPS). By adding imidazole to HNO 3 solution, the polarisation curves showed decrease in the corrosion current and the cathodic current, suggesting that imidazole acts as an effective cathodic inhibitor to Cu corrosion. From the measured anodic current transients, it is inferred that the protective Cu-imidazole complex film is simultaneously formed with the Cu oxide in the presence of imidazole during the early stage of the anodic polarisation. Analysis of the AC impedance spectra revealed that the values of the charge transfer resistance R ct obtained in imidazole-containing HNO 3 solution were greater than that value in imidazole-free one and at the same time steadily increased with immersion time to the constant value. Contrarily, the capacitance value was abruptly lowered from the double layer capacitance C dl to the complex film capacitance C cf in the progress of immersion time. Furthermore, the Warburg coefficient σ value for the ion diffusion through the complex film was observed to increase with immersion time. This means that the Cu(N-OH) complex film becomes thicker during immersion in the HNO 3 solution with imidazole through the inward growth of the N-rich outer layer to the O-rich inner layer, as well validated by XPS. Based upon the experimental results, it is suggested that the Cu corrosion in 1 M HNO 3 solution is efficiently inhibited with the addition of imidazole by retarding both the charge transfer on cathodic sites of the Cu surface in the early stage of immersion time and the subsequent ion diffusion through the steadily growing complex film

  2. THE EFFECT OF PHOSPHATE ON THE MORPHOLOGICAL AND SPECTROSCOPIC PROPERTIES OF COPPER DRINKING WATER PIPES EXPERIENCING LOCALIZED CORROSION

    Science.gov (United States)

    Extensive localized or pitting corrosion of copper pipes used in household drinking-water plumbing can eventually lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. A large water system in Florida has been addressing a widespread pinhole...

  3. Tension Tests of Copper Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Jo; Kim, Chung Youb [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2017-08-15

    Tension tests for copper thin films with thickness of 12 μm were performed by using a digital image correlation method based on consecutive digital images. When calculating deformation using digital image correlation, a large deformation causes errors in the calculated result. In this study, the calculation procedure was improved to reduce the error, so that the full field deformation and the strain of the specimen could be accurately and directly measured on its surface. From the calculated result, it can be seen that the strain distribution is not uniform and its variation is severe, unlike the distribution in a common bulk specimen. This might result from the surface roughness introduced in the films during the fabrication process by electro-deposition.

  4. Electrochemical tests for pitting and crevice corrosion susceptibility

    International Nuclear Information System (INIS)

    Postlethwaite, J.

    1983-01-01

    Passive metals are being considered as container materials for the disposal of nuclear waste by deep burial. Localized corrosion is a potential problem and electrochemical techniques have an important role in the assessment of the susceptibility of these container materials to crevice and pitting corrosion. This paper critically reviews both the theoretical background and the experimental details of the electrochemical test methods presently used in both industrial and scientific studies of localized corrosion in both halide and non-halide solutions and identifies those areas where theory and experimental behaviour are in agreement and those areas for which there is neither well established theory nor an experimental test method

  5. Evaluation of annual corrosion tests for aggressive water

    Science.gov (United States)

    Dubová, V.; Ilavský, J.; Barloková, D.

    2011-12-01

    Internal corrosion has a significant effect on the useful life of pipes, the hydraulic conditions of a distribution system and the quality of the water transported. All water is corrosive under some conditions, and the level of this corrosion depends on the physical and chemical properties of the water and properties of the pipe material. Galvanic treatment is an innovation for protecting against corrosion, and this method is also suitable for removal of water stone too. This method consists of the electrogalvanic principle, which is generated by the flowing of water between a zinc anode and the cupro-alloy cover of a column. This article presents experimental corrosion tests at water resource Pernek (This water resource-well marked as HL-1 is close to the Pernek of village), where the device is operating based on this principle.

  6. SR-XRD in situ monitoring of copper-IUD corrosion in simulated uterine fluid using a portable spectroelectrochemical cell.

    Science.gov (United States)

    Grayburn, Rosie A; Dowsett, Mark G; Sabbe, Pieter-Jan; Wermeille, Didier; Anjos, Jorge Alves; Flexer, Victoria; De Keersmaecker, Michel; Wildermeersch, Dirk; Adriaens, Annemie

    2016-08-01

    The objective of this work is to study the initial corrosion of copper in the presence of gold when placed in simulated uterine fluid in order to better understand the evolution of active components of copper-IUDs. In order to carry out this study, a portable cell was designed to partially simulate the uterine environment and provide a way of tracking the chemical changes occurring in the samples in situ within a controlled environment over a long period of time using synchrotron spectroelectrochemistry. The dynamically forming crystalline corrosion products are determined in situ for a range of copper-gold surface ratios over the course of a 10-day experiment in the cell. It is concluded that the insoluble deposits forming over this time are not the origin of the anticonception mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cysteine as a non toxic corrosion inhibitor for copper alloys in conservation

    DEFF Research Database (Denmark)

    Gravgaard, Mari; van Lanschot, Jettie

    2012-01-01

    studies of colour changes in the corrosion products. The results obtained in this article demonstrate that cysteine could be a non-toxic alternative to BTA. Cysteine performed as well as BTA on pre-corroded coupons with bronze disease in high humidity and showed acceptable results during testing...

  8. Kinetic modelling of bentonite-canister interaction. Long-term predictions of copper canister corrosion under oxic and anoxic conditions

    International Nuclear Information System (INIS)

    Wersin, P.; Spahiu, K.; Bruno, J.

    1994-09-01

    A new modelling approach for canister corrosion which emphasises chemical processes and diffusion at the bentonite-canister interface is presented. From the geochemical boundary conditions corrosion rates for both an anoxic case and an oxic case are derived and uncertainties thereof are estimated via sensitivity analyses. Time scales of corrosion are assessed by including calculations of the evolution of redox potential in the near field and pitting corrosion. This indicates realistic corrosion depths in the range of 10 -7 and 4*10 -5 mm/yr, respectively for anoxic and oxic corrosion. Taking conservative estimates, depths are increased by a factor of about 200 for both cases. From these predictions it is suggested that copper canister corrosion does not constitute a problem for repository safety, although certain factors such as temperature and radiolysis have not been explicitly included. The possible effect of bacterial processes on corrosion should be further investigated as it might enhance locally the described redox process. 35 refs, 11 figs, 6 tabs

  9. Kinetic modelling of bentonite-canister interaction. Long-term predictions of copper canister corrosion under oxic and anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, P; Spahiu, K; Bruno, J [MBT Tecnologia Ambiental, Cerdanyola (Spain)

    1994-09-01

    A new modelling approach for canister corrosion which emphasises chemical processes and diffusion at the bentonite-canister interface is presented. From the geochemical boundary conditions corrosion rates for both an anoxic case and an oxic case are derived and uncertainties thereof are estimated via sensitivity analyses. Time scales of corrosion are assessed by including calculations of the evolution of redox potential in the near field and pitting corrosion. This indicates realistic corrosion depths in the range of 10{sup -7} and 4*10{sup -5} mm/yr, respectively for anoxic and oxic corrosion. Taking conservative estimates, depths are increased by a factor of about 200 for both cases. From these predictions it is suggested that copper canister corrosion does not constitute a problem for repository safety, although certain factors such as temperature and radiolysis have not been explicitly included. The possible effect of bacterial processes on corrosion should be further investigated as it might enhance locally the described redox process. 35 refs, 11 figs, 6 tabs.

  10. [Stress-corrosion test of TIG welded CP-Ti].

    Science.gov (United States)

    Li, H; Wang, Y; Zhou, Z; Meng, X; Liang, Q; Zhang, X; Zhao, Y

    2000-12-01

    In this study TIG (Tungsten Inert Gas) welded CP-Ti were subjected to stress-corrosion test under 261 MPa in artificial saliva of 37 degrees C for 3 months. No significant difference was noted on mechanical test (P > 0.05). No color-changed and no micro-crack on the sample's surface yet. These results indicate that TIG welded CP-Ti offers excellent resistance to stress corrosion.

  11. Test manufacturing of copper canisters with cast inserts. Assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, C.G

    1998-08-01

    The current design of canisters for the deep repository for spent nuclear fuel consists of an outer corrosion-protective copper casing in the form of a tubular section with lid and bottom and an inner pressure-resistant insert. The insert is designed to be manufactured by casting and inside are channels in which the fuel assemblies are to be placed. Over the last years, a number of full-scale manufacturing tests of all canister components have been carried out. The purpose has been to determine and develop the best manufacturing technique and to establish long-term contacts with the best suppliers of material and technology. Part of the work has involved the developing and implementing of a quality assurance system in accordance with ISO 9001, covering the whole chain from suppliers of material up to and including the delivery of assembled canisters. This report consists of a description of the design of the canister together with current drawings and complementary technical specifications stipulating, among other things, requirements placed on different materials. The different manufacturing methods that have been used are also described and commented on in both text and illustrations. For the manufacturing of copper tubes, the roll-forming of rolled plate to tube halves and longitudinal welding is a method that has been tested on a relatively large number of tubes by now, and that probably can be developed into a functioning production method. However, the very promising outcome of performed tests on seamless tube manufacturing, has resulted in a change in direction in tube manufacturing, focusing on continued testing of extrusion as well as pierce and draw processing in the immediate future. In connection with ongoing operations, new manufacturing tests of tubes with less material thickness will be carried out. Test manufacturing of cast inserts has resulted in the choice of nodular iron as material in the continued work. This improvement in design has resulted

  12. Test manufacturing of copper canisters with cast inserts. Assessment report

    International Nuclear Information System (INIS)

    Andersson, C.G.

    1998-08-01

    The current design of canisters for the deep repository for spent nuclear fuel consists of an outer corrosion-protective copper casing in the form of a tubular section with lid and bottom and an inner pressure-resistant insert. The insert is designed to be manufactured by casting and inside are channels in which the fuel assemblies are to be placed. Over the last years, a number of full-scale manufacturing tests of all canister components have been carried out. The purpose has been to determine and develop the best manufacturing technique and to establish long-term contacts with the best suppliers of material and technology. Part of the work has involved the developing and implementing of a quality assurance system in accordance with ISO 9001, covering the whole chain from suppliers of material up to and including the delivery of assembled canisters. This report consists of a description of the design of the canister together with current drawings and complementary technical specifications stipulating, among other things, requirements placed on different materials. The different manufacturing methods that have been used are also described and commented on in both text and illustrations. For the manufacturing of copper tubes, the roll-forming of rolled plate to tube halves and longitudinal welding is a method that has been tested on a relatively large number of tubes by now, and that probably can be developed into a functioning production method. However, the very promising outcome of performed tests on seamless tube manufacturing, has resulted in a change in direction in tube manufacturing, focusing on continued testing of extrusion as well as pierce and draw processing in the immediate future. In connection with ongoing operations, new manufacturing tests of tubes with less material thickness will be carried out. Test manufacturing of cast inserts has resulted in the choice of nodular iron as material in the continued work. This improvement in design has resulted

  13. Effects of copper and titanium on the corrosion behavior of newly fabricated nanocrystalline aluminum in natural seawater

    International Nuclear Information System (INIS)

    Sherif, El-Sayed M.; Ammar, Hany Rizk; Khalil, Khalil Abdelrazek

    2014-01-01

    Graphical abstract: - Highlights: • We fabricated nanocrystalline Al and some of its alloys by mechanical alloying method. • The corrosion behavior of the fabricated materials in natural seawater was reported. • We found that Al suffers both uniform and localized corrosion in the seawater. • The presence of Cu significantly decreased the corrosion of Al. • The addition of Ti to the Al–Cu alloy presented more protection to Al against corrosion. - Abstract: Fabrication of a newly nanocrystalline Al and two of its alloys, namely Al–10%Cu; and Al–10%Cu–5%Ti has been carried out using mechanical alloying (MA) technique. The corrosion behavior of these materials in aerated stagnant Arabian Gulf seawater (AGSW) at room temperature has been reported. Cyclic potentiodynamic polarization (CPP), chronoamperometric current-time (CCT) and electrochemical impedance spectroscopy (EIS) measurements along with scanning electron microscopy (SEM) and X-ray energy dispersive (EDX) investigations were employed to report the corrosion behavior of the fabricated materials. All results indicated that Al suffers both uniform and localized corrosion in the AGSW test solution. The presence of 10%Cu decreases the corrosion current density, the anodic and cathodic currents and corrosion rate and increases the corrosion resistance of Al. The addition of 5%Ti to the Al–10%Cu alloy produced further decreases in the corrosion parameters. Measurements together confirmed that the corrosion of the fabricated materials in AGSW decreases in the order Al > Al–10%Cu > Al–10%Cu–5%Ti

  14. Effects of copper and titanium on the corrosion behavior of newly fabricated nanocrystalline aluminum in natural seawater

    Energy Technology Data Exchange (ETDEWEB)

    Sherif, El-Sayed M., E-mail: esherif@ksu.edu.sa [Mechanical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Al-Riyadh 11421 (Saudi Arabia); Electrochemistry and Corrosion Laboratory, Department of Physical Chemistry, National Research Centre , (NRC), Dokki, 12622, Cairo 8 (Egypt); Ammar, Hany Rizk [Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez University, Suez (Egypt); Khalil, Khalil Abdelrazek [Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez University, Suez (Egypt); Mechanical Design and Materials Department, Faculty of Energy Engineering, Aswan University, Aswan (Egypt)

    2014-05-01

    Graphical abstract: - Highlights: • We fabricated nanocrystalline Al and some of its alloys by mechanical alloying method. • The corrosion behavior of the fabricated materials in natural seawater was reported. • We found that Al suffers both uniform and localized corrosion in the seawater. • The presence of Cu significantly decreased the corrosion of Al. • The addition of Ti to the Al–Cu alloy presented more protection to Al against corrosion. - Abstract: Fabrication of a newly nanocrystalline Al and two of its alloys, namely Al–10%Cu; and Al–10%Cu–5%Ti has been carried out using mechanical alloying (MA) technique. The corrosion behavior of these materials in aerated stagnant Arabian Gulf seawater (AGSW) at room temperature has been reported. Cyclic potentiodynamic polarization (CPP), chronoamperometric current-time (CCT) and electrochemical impedance spectroscopy (EIS) measurements along with scanning electron microscopy (SEM) and X-ray energy dispersive (EDX) investigations were employed to report the corrosion behavior of the fabricated materials. All results indicated that Al suffers both uniform and localized corrosion in the AGSW test solution. The presence of 10%Cu decreases the corrosion current density, the anodic and cathodic currents and corrosion rate and increases the corrosion resistance of Al. The addition of 5%Ti to the Al–10%Cu alloy produced further decreases in the corrosion parameters. Measurements together confirmed that the corrosion of the fabricated materials in AGSW decreases in the order Al > Al–10%Cu > Al–10%Cu–5%Ti.

  15. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  16. Influence of 8-aminoquinoline on the corrosion behaviour of copper in 0.1 M NaCl

    International Nuclear Information System (INIS)

    Cubillos, M.; Sancy, M.; Pavez, J.; Vargas, E.; Urzua, R.; Henriquez-Roman, J.; Tribollet, B.; Zagal, J.H.; Paez, M.A.

    2010-01-01

    The corrosion behaviour of copper in aerated 0.1 M NaCl solution in presence of 8-aminoquinoline (8-AQ), using open circuit potential (OCP) measurements, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) measurements and atomic force microscopy (AFM), was studied. The measurements revealed that the effect of 8-AQ is dependent on its concentration. For concentrations up to 10 -3 M, the organic compound displaces the corrosion potential following no trend and also reduces the anodic current. In contrast, for concentrations higher than 10 -3 , 8-AQ reduces markedly both, the anodic and cathodic currents and consequently, the corrosion current density of copper. After 9 days of exposure in chloride solution, containing the organic compound, potentiodynamic polarization analyses showed a significant reduction in the anodic response and a less significant reduction in the cathodic response, which is associated with a film formed at the copper surface of about 10 μm in thickness and visually observed by a colour change of the copper surface. In order to elucidate the most likely interaction between the 8-AQ molecule and the different molecular structures probably present on copper surfaces in chloride solutions, some results obtained from theoretical calculations are presented. The following molecular structures were considered: CuCl molecule, CuCl 2 - complex, and little copper clusters defect representation built as five atoms on C 4v symmetry. Thus, based on the geometric, energetic, frontier orbital, and Total Electronic Density analysis done for the optimized states found for the systems investigated, we suggest that the most probable interaction of 8-AQ proceeds above CuCl units and free copper sites.

  17. Study of the Susceptibility of Oxygen-Free Phosphorous Doped Copper to Corrosion in Simulated Groundwater in the Presence of Chloride and Sulfide

    International Nuclear Information System (INIS)

    Escobar, Ivan; Lamas, Claudia; Werme, Lars; Oversby, Virginia

    2007-01-01

    Oxygen free high conductivity copper, doped with phosphorus (Cu OFP) has been chosen as the material for the fabrication of high level nuclear waste containers in Sweden. This material will be the corrosion barrier for spent fuel in the environment of a deep geological repository in granitic rock. The service life of this container is expected to exceed 1,000,000 years. During this time, which includes several glaciations, water of different compositions, including high concentration of chloride ions, will contact the copper surface. This work reports a study of the susceptibility of Cu OFP to corrosion when chloride ions are present, in deionized water (DW) and in synthetic groundwater (SGW). The techniques used were electrochemical methods such as corrosion potential evolution and Tafel curves. The system was studied with Electrochemical Impedance Spectroscopy (EIS). We also used as characterization techniques Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The main conclusions are that copper is more susceptible to corrosion at high chloride ion concentration. When the chloride concentration is low, it is possible to form copper chloride crystals, but at the highest concentration, copper chloride complexes are formed, leaving the copper surface without deposits. When the chloride concentration is low ( -5 M), copper corrosion in the presence of chloride is controlled by diffusional processes, while at higher concentrations corrosion is controlled by charge transfer processes. (authors)

  18. From laboratory corrosion tests to a corrosion lifetime for wood fasteners : progress and challenges

    Science.gov (United States)

    Samuel L. Zelinka; Dominique Derome; Samuel V. Glass

    2010-01-01

    Determining a “corrosion-lifetime” for fasteners embedded in wood treated with recently adopted preservative systems depends upon successfully relating results of laboratory tests to in-service conditions. In contrast to laboratory tests where metal is embedded in wood at constant temperature and moisture content, the in-service temperature and moisture content of wood...

  19. Water corrosion test of oxide dispersion strengthened (ODS) steel claddings

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasushi

    2006-07-01

    As a part of feasibility study of ODS steel cladding, its water corrosion resistance was examined under water pool condition. Although addition of Cr is effective for preventing water corrosion, excessive Cr addition leads to embrittlement due to the Cr-rich α' precipitate formation. In the ODS steel developed by the Japan Atomic Energy Agency (JAEA), the Cr content is controlled in 9Cr-ODS martensite and 12Cr-ODS ferrite. In this study, water corrosion test was conducted for these ODS steels, and their results were compared with that of conventional austenitic stainless steel and ferritic-martensitic stainless steel. Following results were obtained in this study. (1) Corrosion rate of 9Cr-ODS martensitic and 12Cr-ODS ferritic steel are significantly small and no pitting was observed. Thus, these ODS steels have superior resistance for water corrosion under the condition of 60degC and pH8-12. (2) It was showed that 9Cr-ODS martensitic steel and 12Cr-ODS ferritic steel have comparable water corrosion resistance to that of PNC316 and PNC-FMS at 60degC for 1,000h under varying pH of 8, 10. Water corrosion resistance of these alloys is slightly larger than that of PNC316 and PNC-FMS at pH12 without significant difference of appearance and uneven condition. (author)

  20. Tendency of the 18-8 type corrosion-resistant steel to cracking in automatic building-up of copper and copper base alloys in argon

    International Nuclear Information System (INIS)

    Abramovich, V.R.; Andronik, V.A.

    1978-01-01

    Studied was the tendency of the 18-8 type corrosion-resistant steel to cracking during automatic building-up of copper and bronze in argon. The investigation was carried out on the 0kh18n10t steel in argon. It had been established, that the degree of copper penetration into the steel inceases with the increase in the time of the 0Kh18n10t steel contact with liquid copper. Liquid copper and copper base alloys have a detrimental effect on mechanical properties of the steel under external tensile load during intercontant. It is shown that in building-up of copper base alloys on the steel-0Kh18n10t, tendency of the steel to cracking decreases with increase in stiffness of a surfaced weld metal plate and with decrease in building-up energy per unit length. The causes of macrocracking in steel at building-up non-ferrous metals are explained. The technological procedures to avoid cracking are suggested

  1. Effectiveness of using pure copper and silver coupon corrosivity monitoring (CCM) metal strips to measure the severity levels of air pollutants in indoor and outdoor atmospheres

    CSIR Research Space (South Africa)

    Foax, LJ

    2008-10-01

    Full Text Available Severity levels of air pollutants rich in oxides, chlorides and sulphides were successfully measured in indoor and outdoor atmospheres using pure copper and silver coupon corrosivity monitoring (CCM) metal strips when the maximum exposure periods...

  2. The corrosion of copper in pure oxygen-free water; Korrosion av koppar i ren syrefritt vatten

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Kenneth [SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden)

    2012-02-15

    The overall objective of this study was to investigate whether further growth of copper oxides occurred during the 19 years the test tube with copper wires was stored at SP. Further more detailed analyzes have been added during the investigation. These assays have not only been focused on the copper wires but also the palladium closure plate, the test tube and the water in the test tube have come to be analyzed by a variety of techniques.

  3. The role of surface preparation in corrosion protection of copper with nanometer-thick ALD alumina coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mirhashemihaghighi, Shadi; Światowska, Jolanta [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Maurice, Vincent, E-mail: vincent.maurice@chimie-paristech.fr [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Seyeux, Antoine; Klein, Lorena H. [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France); Salmi, Emma; Ritala, Mikko [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Marcus, Philippe [PSL Research University, CNRS – Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris (France)

    2016-11-30

    Highlights: • 10–50 nm thick alumina coatings were grown on copper by atomic layer deposition. • Surface smoothening by substrate annealing was studied as pre-deposition treatment. • Corrosion protection is promoted by pre-treatment for 10 nm but not for thicker films. • Local adhesion failure is assigned to the stresses accumulated in the thicker films. • Surface smoothening decreases the interfacial strength bearing the film stresses. - Abstract: Surface smoothening by substrate annealing was studied as a pre-treatment for improving the corrosion protection provided to copper by 10, 20 and 50 nm thick alumina coatings deposited by atomic layer deposition. The interplay between substrate surface state and deposited film thickness for controlling the corrosion protection provided by ultrathin barrier films is demonstrated. Pre-annealing at 750 °C heals out the dispersed surface heterogeneities left by electropolishing and reduces the surface roughness to less than 2 nm independently of the deposited film thickness. For 10 nm coatings, substrate surface smoothening promotes the corrosion resistance. However, for 20 and 50 nm coatings, it is detrimental to the corrosion protection due to local detachment of the deposited films. The weaker adherence of the thicker coatings is assigned to the stresses accumulated in the films with increasing deposited thickness. Healing out the local heterogeneities on the substrate surface diminishes the interfacial strength that is bearing the stresses of the deposited films, thereby increasing adhesion failure for the thicker films. Pitting corrosion occurs at the local sites of adhesion failure. Intergranular corrosion occurs at the initially well coated substrate grain boundaries because of the growth of a more defective and permeable coating at grain boundaries.

  4. Comparison of galvanic corrosion potential of metal injection molded brackets to that of conventional metal brackets with nickel-titanium and copper nickel-titanium archwire combinations.

    Science.gov (United States)

    Varma, D Praveen Kumar; Chidambaram, S; Reddy, K Baburam; Vijay, M; Ravindranath, D; Prasad, M Rajendra

    2013-05-01

    The aim of the study is to investigate the galvanic corrosion potential of metal injection molding (MIM) brackets to that of conventional brackets under similar in vitro conditions with nickel-titanium and copper nickel-titanium archwires. Twenty-five maxillary premolar MIM stainless steel brackets and 25 conventional stainless steel brackets and archwires, 0.16 inch, each 10 mm length, 25 nickeltitanium wires, 25 copper nickel-titanium wires were used. They were divided into four groups which had five samples each. Combination of MIM bracket with copper nickel-titanium wire, MIM bracket with nickel-titanium wire and conventional stainless steel brackets with copper nickel-titanium wire and conventional stainless steel brackets with nickel-titanium wires which later were suspended in 350 ml of 1 M lactic acid solution media. Galvanic corrosion potential of four groups were analyzed under similar in vitro conditions. Precorrosion and postcorrosion elemental composition of MIM and conventional stainless steel bracket by scanning electron microscope (SEM) with energy dispersive spectroscope (EDS) was done. MIM bracket showed decreased corrosion susceptibility than conventional bracket with copper nickeltitanium wire. Both MIM and conventional bracket showed similar corrosion resistance potential in association with nickel-titanium archwires. It seems that both brackets are more compatible with copper nickel-titanium archwires regarding the decrease in the consequences of galvanic reaction. The EDS analysis showed that the MIM brackets with copper nickel-titanium wires released less metal ions than conventional bracket with copper nickeltitanium wires. MIM brackets showed decreased corrosion susceptibility, copper nickel-titanium archwires are compatible with both the brackets than nickel-titanium archwires. Clinically MIM and conventional brackets behaved more or less similarly in terms of corrosion resistance. In order to decrease the corrosion potential of MIM

  5. Standard Guide for Conducting Corrosion Tests in Field Applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide covers procedures for conducting corrosion tests in plant equipment or systems under operating conditions to evaluate the corrosion resistance of engineering materials. It does not cover electrochemical methods for determining corrosion rates. 1.1.1 While intended primarily for immersion tests, general guidelines provided can be applicable for exposure of test specimens in plant atmospheres, provided that placement and orientation of the test specimens is non-restrictive to air circulation. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See also 10.4.2.

  6. High temperature aqueous stress corrosion testing device

    International Nuclear Information System (INIS)

    Bornstein, A.N.; Indig, M.E.

    1975-01-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston

  7. Alginate biopolymer as green corrosion inhibitor for copper in 1 M hydrochloric acid: Experimental and theoretical approaches

    Science.gov (United States)

    Jmiai, A.; El Ibrahimi, B.; Tara, A.; El Issami, S.; Jbara, O.; Bazzi, L.

    2018-04-01

    The anti-corrosion behavior of sodium alginate (SA) on copper in the 1 M hydrochloric medium was carried out using weight loss and electrochemical measurements. The obtained results show that the inhibition increases with SA concentration and then reaches a maximum of 83% at a concentration of 0.1 mg L-1. The effect of temperature on the reactions of copper corrosion inhibition and analyzing the thermodynamic parameters revealed that the mode of adsorption has a physical nature and obeys the Langmuir isotherm. The surface morphology was performed by scanning electron microscopy coupled with energy dispersive X-ray spectrometry and atomic force microscopy. To better understand the adsorption mechanism, describing the relationship between inhibitory ability and the molecular structure of SA, quantum calculations using density functional theory were performed. Monte Carlo simulation approache was performed to know well of the relationship between the inhibition ability and molecular structure of alginate.

  8. X-ray diffraction phase analysis of crystalline copper corrosion products after treatment in different chloride solutions

    International Nuclear Information System (INIS)

    Chmielova, M.; Seidlerova, J.; Weiss, Z.

    2003-01-01

    The corrosion products Cu 2 (OH) 3 Cl, Cu 2 O, and CuCl 2 were identified on the surface of copper plates after their four days treating in three different sodium chloride, sodium/magnesium, and sodium/calcium chloride solutions using X-ray diffraction powder analysis. However, the quantitative proportions of individual corrosion products differ and depend on the type of chloride solution used. Treating of copper plates only in the sodium chloride solution produced the mixture of corrosion products where Cu 2 O is prevailing over the Cu 2 (OH) 3 Cl and CuCl 2 was not identified. The sample developed after treating of the cooper surface in the sodium/magnesium chloride solution contains Cu 2 (OH) 3 Cl and CuCl 2 prevailing over the Cu 2 O, while the sample developed after treatment of copper in sodium/calcium chloride solution contains Cu 2 (OH) 3 Cl prevailing over CuCl 2 and Cu 2 O was not identified

  9. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    International Nuclear Information System (INIS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-01-01

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  10. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Guo, Changhong; Jiang, Guirong [College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen, Dejiu, E-mail: DejiuShen@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-08-15

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  11. Alternate immersion stress corrosion testing of 5083 aluminum

    International Nuclear Information System (INIS)

    Briggs, J.L.; Dringman, M.R.; Hausburg, D.E.; Jackson, R.J.

    1978-01-01

    The stress corrosion susceptibility of Type 5083 aluminum--magnesium alloy in plate form and press-formed shapes was determined in the short transverse direction. C-ring type specimens were exposed to alternate immersion in a sodium chloride solution. The test equipment and procedure, with several innovative features, are described in detail. Statistical test results are listed for seven thermomechanical conditions. A certain processing scheme was shown to yield a work-strengthened part that is not sensitized with respect to stress corrosion cracking

  12. Corrosion of several components of the in-situ test performed in a deep geological granite disposal site

    International Nuclear Information System (INIS)

    Madina, Virginia; Azkarate, Inaki; Insausti, Mikel

    2004-01-01

    The corrosion damage experienced by different components in a deep geological disposal in a granite formation has been analysed. This in-situ test is part of the Full-scale Engineered Barriers EXperiment project (FEBEX) carried out in Grimsel (Switzerland). Two heaters, simulating the canister and the heat generated, were installed horizontally inside the guide tubes or liners and surrounded by highly compacted bentonite blocks. Coupons of several candidate metals for manufacturing HLW containers were introduced in these bentonite blocks, as well as sensors in order to monitor different physicochemical parameters during the test. The in- situ test began in July 1996 and in June 2002 one of the heaters, a section of the liner, several corrosion coupons and four sensors were extracted. The studied heater is a carbon steel cylinder with welded lids, with a wall thickness of 100 mm and 4.54 m long. The liner consists of a perforated carbon steel tube, 970 mm in diameter and 15 mm thick. Corrosion coupons were made of carbon steel, stainless steel, titanium, copper and cupronickel alloys. Two extensometer type sensors with an outer protection tube made of austenitic stainless steel were also analysed. Visual inspection of the above mentioned components, optical and scanning electron microscope study, together with EDS and XRD analyses of corrosion products, have been performed in order to analyse the corrosion suffered by these components. This has been complemented with the chemical and microbiological characterisation of bentonite samples. Results obtained in the study indicate a slight generalised corrosion for the heater, liner and corrosion coupons. The low humidity content of the bentonite surrounding the liner and the corrosion coupons, is the responsible of this practical absence of corrosion. The sensors studied show, however, an important corrosion damage. The sulphur rich corrosion products, the presence of Sulphate Reducing Bacteria (SRB) in the bentonite

  13. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Science.gov (United States)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  14. Developing of corrosion and creep property test database system

    International Nuclear Information System (INIS)

    Park, S. J.; Jun, I.; Kim, J. S.; Ryu, W. S.

    2004-01-01

    The corrosion and creep characteristics database systems were constructed using the data produced from corrosion and creep test and designed to hold in common the data and programs of tensile, impact, fatigue characteristics database that was constructed since 2001 and others characteristics databases that will be constructed in future. We can easily get the basic data from the corrosion and creep characteristics database systems when we prepare the new experiment and can produce high quality result by compare the previous test result. The development part must be analysis and design more specific to construct the database and after that, we can offer the best quality to customers various requirements. In this thesis, we describe the procedure about analysis, design and development of the impact and fatigue characteristics database systems developed by internet method using jsp(Java Server pages) tool

  15. Mechanical Characterization and Corrosion Testing of X608 Al Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad; Choi, Jung-Pyung; Stephens, Elizabeth V.; Catalini, David; Lavender, Curt A.; Rohatgi, Aashish

    2016-02-07

    This paper describes the mechanical characterization and corrosion testing of X608 Al alloy that is being considered for A-pillar covers for heavy-duty truck applications. Recently, PNNL developed a thermo-mechanical process to stamp A-pillar covers at room temperature using this alloy, and the full-size prototype was successfully stamped by a tier-1 supplier. This study was conducted to obtain additional important information related to the newly developed forming process, and to further improve its mechanical properties. The solutionization temperature, pre-strain and paint-bake heat-treatment were found to influence the alloy’s fabricability and mechanical properties. Natural aging effect on the formability was investigated by limiting dome height (LDH) tests. Preliminary corrosion experiments showed that the employed thermo-mechanical treatments did not significantly affect the corrosion behavior of Al X608.

  16. Corrosion of metallic materials. Dry corrosion, aqueous corrosion and corrosion by liquid metal, methods of protection

    International Nuclear Information System (INIS)

    Helie, Max

    2015-01-01

    This book is based on a course on materials given in an engineering school. The author first gives an overview of metallurgy issues: metallic materials (pure metals, metallic alloys), defects of crystal lattices (point defects, linear defects or dislocations), equilibrium diagrams, steels and cast, thermal processing of steels, stainless steels, aluminium and its alloys, copper and its alloys. The second part addresses the properties and characterization of surfaces and interfaces: singularity of a metal surface, surface energy of a metal, energy of grain boundaries, adsorption at a material surface, metal-electrolyte interface, surface oxide-electrolyte interface, techniques of surface analysis. The third chapter addresses the electrochemical aspects of corrosion: description of the corrosion phenomenon, free enthalpy of a compound and free enthalpy of a reaction, case of dry corrosion (thermodynamic aspect, Ellingham diagram, oxidation mechanisms, experimental study, macroscopic modelling), case of aqueous corrosion (electrochemical thermodynamics and kinetics, experimental determination of corrosion rate). The fourth part addresses the different forms of aqueous corrosion: generalized corrosion (atmospheric corrosion, mechanisms and tests), localized corrosion (galvanic, pitting, cracking, intergranular, erosion and cavitation), particular cases of stress cracking (stress corrosion, fatigue-corrosion, embrittlement by hydrogen), and bi-corrosion (of non alloyed steels, of stainless steels, and of aluminium and copper alloys). The sixth chapter addresses the struggle and the protection against aqueous corrosion: methods of prevention, scope of use of main alloys, geometry-based protection of pieces, use of corrosion inhibitors, use of organic or metallic coatings, electrochemical protection. The last chapter proposes an overview of corrosion types in industrial practices: in the automotive industry, in the oil industry, in the aircraft industry, and in the

  17. Inhibition effect of 4-amino-antipyrine on the corrosion of copper in 3 wt.% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Hong Song; Chen Wen; Luo Hongqun [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li Nianbing, E-mail: linb@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer 4-Amino-antipyrine (AAP) has inhibition behaviour for copper corrosion in 3.0 wt.% NaCl. Black-Right-Pointing-Pointer AAP acted as a mixed-type inhibitor with anodic predominance. Black-Right-Pointing-Pointer Adsorption of AAP on the copper surface obeys the Langmuir isotherm. Black-Right-Pointing-Pointer Quantum chemical calculations were applied to explain the experimental results. - Abstract: The effect of 4-amino-antipyrine (AAP) on the corrosion of copper in 3.0 wt.% NaCl was investigated using weight loss, potentiodynamic polarisation, and electrochemical impedance spectroscopy. The results revealed that AAP acts as a mixed-type inhibitor with more pronounced effect on anodic domain and the inhibition efficiency decreases with increasing the temperature. The adsorption of AAP was found to obey the Langmuir isotherm. Surface characterisation was performed using scanning electron microscope and Fourier transform infrared spectrometer. Quantum chemical calculations show that AAP has large negative charge in nitrogen and oxygen atoms, which facilitates the adsorption of AAP on the copper surface.

  18. How copper corrosion can be retarded--New ways investigating a chronic problem for cellulose in paper.

    Science.gov (United States)

    Ahn, Kyujin; Hofmann, Christa; Horsky, Monika; Potthast, Antje

    2015-12-10

    To better assess the stabilization effects of chemical treatments on Cu(II)-catalyzed cellulose degradation, we developed Cu(II)-containing model rag paper with typical copper corrosion characteristics using e-beam radiation. The paper can be prepared homogeneously and quickly compared to tedious pre-aging methods. Using the Cu(II)-containing model rag paper, the stabilization effects of various chemicals on Cu(II)-catalyzed degradation of cellulose were tested. Benzotriazol was highly effective in retarding the degradation of the Cu(II)-containing model rag paper under hot and humid aging condition, as well as under photo-oxidative stress. Tetrabutylammonium bromide reduced Cu(II)-catalyzed degradation of cellulose, but its efficacy was dependent on the accelerated aging conditions. The results with the alkaline treatments and gelatin treatment suggested that their roles in the degradation mechanisms of cellulose in the presence of Cu(II) differ from those of benzotriazol and tetrabutylammonium bromide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.

    Science.gov (United States)

    Su, Fenghua; Yao, Kai

    2014-06-11

    A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 ± 1° and a sliding angle of 3 ± 0.5° on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials.

  20. Optically detected X-ray absorption spectroscopy measurements as a means of monitoring corrosion layers on copper.

    Science.gov (United States)

    Dowsett, Mark G; Adriaens, Annemie; Jones, Gareth K C; Poolton, Nigel; Fiddy, Steven; Nikitenko, Sergé

    2008-11-15

    XANES and EXAFS information is conventionally measured in transmission through the energy-dependent absorption of X-rays or by observing X-ray fluorescence, but secondary fluorescence processes, such as the emission of electrons and optical photons (e.g., 200-1000 nm), can also be used as a carrier of the XAS signatures, providing complementary information such as improved surface specificity. Where the near-visible photons have a shorter range in a material, the data will be more surface specific. Moreover, optical radiation may escape more readily than X-rays through liquid in an environmental cell. Here, we describe a first test of optically detected X-ray absorption spectroscopy (ODXAS) for monitoring electrochemical treatments on copper-based alloys, for example, heritage metals. Artificially made corrosion products deposited on a copper substrate were analyzed in air and in a 1% (w/v) sodium sesquicarbonate solution to simulate typical conservation methods for copper-based objects recovered from marine environments. The measurements were made on stations 7.1 and 9.2 MF (SRS Daresbury, UK) using the mobile luminescence end station (MoLES), supplemented by XAS measurements taken on DUBBLE (BM26 A) at the ESRF. The ODXAS spectra usually contain fine structure similar to that of XAS spectra measured in X-ray fluorescence. Importantly, for the compounds examined, the ODXAS is significantly more surface specific, and >98% characteristic of thin surface layers of 0.5-1.5-microm thickness in cases where X-ray measurements are dominated by the substrate. However, EXAFS and XANES from broadband optical measurements are superimposed on a high background due to other optical emission modes. This produces statistical fluctuations up to double what would be expected from normal counting statistics because the data retain the absolute statistical fluctuation in the original raw count, while losing up to 70% of their magnitude when background is removed. The problem may be

  1. Sodium corrosion tests in the ML 1 circuit

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1977-01-01

    In the ML-1 circuit of the 'Juan Vigon' research centre in Madrid, sodium corrosion tests are being carried out on the austenitic steels DIN 1.4970 (X10NiCrMoTiB1515) and DIN 1.4301 (X5CrNi189) at temperatures between 500 and 700 0 C. The exposure time of the samples amounts to 6,000 h by now. Every 1,000 h, the samples were weighed in order to measure corrosion and deposition effects. After 3,000 and 6,000 h, some selected samples were destroyed for inspection. The results are given. (GSC) [de

  2. Novel Galvanic Corrosion Inhibitors: Synthesis, Characterization, Fabrication and Testing

    Science.gov (United States)

    2007-09-30

    Polyimide Insulated Electrical Wire", SAMPE pp.16, Jan/Feb 1984. 11. Brown, S. R.; Deluccia, J.J., " Galvanic Corrosion Fatigue Testing of 7075-T6...Modified Microporous Aluminosilicate" Development of Adsorbents for Air and Water Treatment Conference, 226th American Chemical Society (ACS) National

  3. A Technique for Dynamic Corrosion Testing in Supercritical CO2

    International Nuclear Information System (INIS)

    Loewen, Eric P.; Davis, Cliff B.; Shropshire, David E.; Weaver, Kevan

    2004-01-01

    An experimental apparatus for the investigation of the flow-assisted corrosion of potential fuel cladding and structural materials to be used on a fast reactor cooled by supercritical carbon dioxide has been designed. This experimental project is part of a larger research at the Department of Energy being lead by the Idaho National Engineering and Environmental Laboratory (INEEL) to investigate the suitability of supercritical carbon dioxide for cooling a fast reactor designed to produce low-cost electricity as well as for actinide burning. The INEEL once-through corrosion apparatus consists of two syringe pumps, a pre-heat furnace, a 1.3 meter long heated corrosion test section, and a gas measuring system. The gas flow rates, heat input, and operating pressure can be adjusted so that a controlled coolant flow rate, temperature, and oxygen potential are created within each of six test sections. The corrosion cell will test tubing that is commercially available in the U.S. and specialty coupons to temperatures up to 600 deg. C and a pressure of 20 MPa. The ATHENA computer code was used to estimate the fluid conditions in each of the six test sections during normal operation. (authors)

  4. Investigation into the stress corrosion cracking properties of AA2099, an aluminum-lithium-copper alloy

    Science.gov (United States)

    Padgett, Barbara Nicole

    Recently developed Al-Li-Cu alloys show great potential for implementation in the aerospace industry because of the attractive mix of good mechanical properties and low density. AA2099 is an Al-Li-Cu alloy with the following composition Al-2.69wt%Cu-1.8wt%Li-0.6wt%Zn-0.3wt%Mg-0.3wt%Mn-0.08wt%Zr. The environmental assisted cracking and localized corrosion behavior of the AA2099 was investigated in this thesis. The consequences of uncontrolled grain boundary precipitation via friction stir welding on the stress corrosion cracking (SCC) behavior of AA2099 was investigated first. Using constant extension rate testing, intergranular corrosion immersion experiments, and potentiodynamic scans, the heat-affected zone on the trailing edge of the weld (HTS) was determined to be most susceptible of the weld zones. The observed SCC behavior for the HTS was linked to the dissolution of an active phase (Al2CuLi, T1) populating the grain boundary. It should be stated that the SCC properties of AA2099 in the as-received condition were determined to be good. Focus was then given to the electrochemical behavior of precipitate phases that may occupy grain and sub-grain boundaries in AA2099. The grain boundary micro-chemistry and micro-electrochemistry have been alluded to within the literature as having significant influence on the SCC behavior of Al-Li-Cu alloys. Major precipitates found in this alloy system are T1 (Al 2CuLi), T2 (Al7.5Cu4Li), T B (Al6CuLi3), and theta (Al2 Cu). These phases were produced in bulk form so that the electrochemical nature of each phase could be characterized. It was determined T1 was most active electrochemically and theta was least. When present on grain boundaries in the alloy, electrochemical behavior of the individual precipitates aligned with the observed corrosion behavior of the alloy (e.g. TB was accompanied by general pitting corrosion and T 1 was accompanied by intergranular corrosion attack). In addition to the electrochemical behavior of

  5. An update of the state-of-the-art report on the corrosion of copper under expected conditions in a deep geologic repository

    Energy Technology Data Exchange (ETDEWEB)

    King, F. [Integrity Corrosion Consulting Limited (Canada); Lilja, C. [Svensk Kaernbraenslehantering AB, Stockholm (Sweden); Pedersen, K. [Microbial Analytics Sweden AB, Molnlycke (Sweden); Pitkaenen, P.; Vaehaenen, M.

    2012-07-15

    Copper has been the corrosion barrier of choice for the canister in the Swedish and Finnish, nuclear waste disposal programmes for over 30 years. During that time many studies have been carried out on the corrosion behaviour of copper under conditions likely to exist in an underground nuclear waste repository located in the Fenno-Scandian bedrock. This review is a summary of what has been learnt about the long-term behaviour of the corrosion barrier during this period and what the implications of this knowledge are for the predicted service life of the canisters. The review is based on the existing knowledge from various nuclear waste management programs around the world and from the open literature. Various areas are considered: the expected evolution of the geochemical and microbiological conditions in the groundwater and of the repository environment, the thermodynamics of copper corrosion, corrosion during the operational phase and in the bentonite prior to saturation of the buffer by groundwater, general and localised corrosion following saturation of the compacted bentonite buffer, stress corrosion cracking, radiation effects, the implications of corrosion on the service life of the canister, and areas for further study. This report is an updated version of that originally published in 2001/2002. The original material has been supplemented by information from studies carried out over the last decade. The conclusion drawn from this review is that the original prediction made in 1978 of canister lifetimes exceeding 100,000 years remains valid. (orig.)

  6. An update of the state-of-the-art report on the corrosion of copper under expected conditions in a deep geologic repository

    International Nuclear Information System (INIS)

    King, Fraser; Lilja, Christina; Pedersen, Karsten; Pitkaenen, Petteri; Vaehaenen, Marjut

    2010-12-01

    Copper has been the corrosion barrier of choice for the canister in the Swedish and Finnish, nuclear waste disposal programmes for over 30 years. During that time many studies have been carried out on the corrosion behaviour of copper under conditions likely to exist in an underground nuclear waste repository located in the Fenno-Scandian bedrock. This review is a summary of what has been learnt about the long-term behaviour of the corrosion barrier during this period and what the implications of this knowledge are for the predicted service life of the canisters. The review is based on the existing knowledge from various nuclear waste management programs around the world and from the open literature. Various areas are considered: the expected evolution of the geochemical and microbiological conditions in the groundwater and of the repository environment, the thermodynamics of copper corrosion, corrosion during the operational phase and in the bentonite prior to saturation of the buffer by groundwater, general and localised corrosion following saturation of the compacted bentonite buffer, stress corrosion cracking, radiation effects, the implications of corrosion on the service life of the canister, and areas for further study. This report is an updated version of that originally published in 2001/2002. The original material has been supplemented by information from studies carried out over the last decade. The conclusion drawn from this review is that the original prediction made in 1978 of canister lifetimes exceeding 100,000 years remains valid

  7. An update of the state-of-the-art report on the corrosion of copper under expected conditions in a deep geologic repository

    Energy Technology Data Exchange (ETDEWEB)

    King, Fraser (Integrity Corrosion Consulting Limited (Canada)); Lilja, Christina (Svensk Kaernbraenslehantering AB (Sweden)); Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden)); Pitkaenen, Petteri; Vaehaenen, Marjut (Posiva Oy (Finland))

    2010-12-15

    Copper has been the corrosion barrier of choice for the canister in the Swedish and Finnish, nuclear waste disposal programmes for over 30 years. During that time many studies have been carried out on the corrosion behaviour of copper under conditions likely to exist in an underground nuclear waste repository located in the Fenno-Scandian bedrock. This review is a summary of what has been learnt about the long-term behaviour of the corrosion barrier during this period and what the implications of this knowledge are for the predicted service life of the canisters. The review is based on the existing knowledge from various nuclear waste management programs around the world and from the open literature. Various areas are considered: the expected evolution of the geochemical and microbiological conditions in the groundwater and of the repository environment, the thermodynamics of copper corrosion, corrosion during the operational phase and in the bentonite prior to saturation of the buffer by groundwater, general and localised corrosion following saturation of the compacted bentonite buffer, stress corrosion cracking, radiation effects, the implications of corrosion on the service life of the canister, and areas for further study. This report is an updated version of that originally published in 2001/2002. The original material has been supplemented by information from studies carried out over the last decade. The conclusion drawn from this review is that the original prediction made in 1978 of canister lifetimes exceeding 100,000 years remains valid

  8. An update of the state-of-the-art report on the corrosion of copper under expected conditions in a deep geologic repository

    International Nuclear Information System (INIS)

    King, F.; Lilja, C.; Pedersen, K.; Pitkaenen, P.; Vaehaenen, M.

    2012-07-01

    Copper has been the corrosion barrier of choice for the canister in the Swedish and Finnish, nuclear waste disposal programmes for over 30 years. During that time many studies have been carried out on the corrosion behaviour of copper under conditions likely to exist in an underground nuclear waste repository located in the Fenno-Scandian bedrock. This review is a summary of what has been learnt about the long-term behaviour of the corrosion barrier during this period and what the implications of this knowledge are for the predicted service life of the canisters. The review is based on the existing knowledge from various nuclear waste management programs around the world and from the open literature. Various areas are considered: the expected evolution of the geochemical and microbiological conditions in the groundwater and of the repository environment, the thermodynamics of copper corrosion, corrosion during the operational phase and in the bentonite prior to saturation of the buffer by groundwater, general and localised corrosion following saturation of the compacted bentonite buffer, stress corrosion cracking, radiation effects, the implications of corrosion on the service life of the canister, and areas for further study. This report is an updated version of that originally published in 2001/2002. The original material has been supplemented by information from studies carried out over the last decade. The conclusion drawn from this review is that the original prediction made in 1978 of canister lifetimes exceeding 100,000 years remains valid. (orig.)

  9. Mechanisms and energetics of surface reactions at the copper-water interface. A critical literature review with implications for the debate on corrosion of copper in anoxic water

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Adam Johannes; Brinck, Tore [Applied Physical Chemistry, KTH Royal Inst. of Technology, Stockholm (Sweden)

    2012-06-15

    In order to make a critical analysis of the discussion of corrosion of copper in pure anoxic water it is necessary to understand the chemical reactivity at the copper-water interface. Even though the most fundamental issue, i.e. the nature and existence of a hypothetical product that is thermodynamically stable, is still under debate, it is clear that if anoxic corrosion really exists, it must be initiated through oxidative surface reactions at the copper-water interface. This report presents a survey of the peer reviewed literature on the reactivity of copper surfaces in water. Reactions discussed involve molecular adsorption of water, dissociation of the OH-bonds in adsorbed water molecules and hydroxyl groups, the disproportionation/synproportionation equilibrium between hydroxyl groups/hydroxide ions, water molecules and atomic oxygen, the surface diffusion of adsorbed species, and the formation of hydrogen gas (molecular hydrogen). Experimental, as well as theoretical (quantum chemical) studies are reviewed. It is concluded that a limited amount of hydrogen gas (H{sub 2}) should be formed as the result of dissociative water adsorption at certain copper surfaces. Quantitative estimates of the amounts of H2 that could form at the copper-water interface are made. Assuming that the water-cleavage/hydrogen-formation reaction proceeds on an ideal [110] or [100] surface until a hydroxyl monolayer (ML) is reached, the amount of H{sub 2} formed is {approx} 2.4 ng cm{sup -2} copper surface. Based on the literature cited, this is most likely possible, thermodynamically as well as kinetically. Although not proven, it is not unlikely that the reaction can proceed until an oxide ML is formed, which would give 4.8 ng cm{sup -2}. If the formation of an oxide ML is thermodynamically feasible the surface will probably react further, since Cu{sub 2}O(s) is known to activate and cleave the water molecule when it adsorbs at the Cu{sub 2}O(s) surface. Assuming the formation of a

  10. Corrosion of copper containers prior to saturation of a nuclear fuel waste disposal vault

    International Nuclear Information System (INIS)

    King, F.; Kolar, M.

    1997-12-01

    The buffer material surrounding the containers in a Canadian nuclear fuel waste disposal vault will partially desiccate as a result of the elevated temperature at the container surface. This will lead to a period of corrosion in a moist air atmosphere. Corrosion will either take the form of slow oxidation if the container surface remains dry or aqueous electrochemical corrosion if the surface is wetted by a thin liquid film. The relevant literature is reviewed, from which it is concluded that corrosion should be uniform in nature, except if the surface is wetted, in which case localized corrosion is a possibility. A quantitative analysis of the extent and rate of uniform corrosion during the unsaturated period is presented. Two bounding cases are considered: first, the case of slow oxidation in moist air following either logarithmic or parabolic oxide-growth kinetics and, second, the case of electrochemically based corrosion occurring in a thin liquid film uninhibited by the growth of corrosion products. (author)

  11. Preliminary Design of the Liquid Lead Corrosion Test Loop

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Cha, Jae Eun; Cho, Choon Ho; Song, Tae Yung; Kim, Hee Reyoung

    2005-01-01

    Recently, Lead-Bismuth Eutectic (LBE) or Lead has newly attracted considerable attraction as a coolant to get the more inherent safety. Above all, LBE is preferred as the coolant and target material for an Accelerator-Driven System (ADS) due to its high production rate of neutrons, effective heat removal, and good radiation damage properties. But, the LBE or Lead as a coolant has a challenging problem that the LBE or Lead is more corrosive to the construction materials and fuel cladding material than the sodium because the solubility of Ni, Cr and Fe is high. After all, the LBE or Lead corrosion has been considered as an important design limit factor of ADS and Liquid Metal cooled Fast Reactors (LMFR). The Korea Atomic Energy Research Institute (KAERI) has been developing an ADS called HYPER. HYPER is designed to transmute Transuranics (TRU), Tc-99 and I-129 coming from Pressurized Water Reactors (PWRs) and uses an LBE as a coolant and target material. Also, an experimental apparatuses for the compatibility of fuel cladding and structural material with the LBE or Lead are being under the construction or design. The main objective of the present paper is introduction of Lead corrosion test loop which will be built the upside of the LBE corrosion test loop by the end of October of 2005

  12. The corrosion inhibition of aluminum and its copper alloys in 1.0 M H2SO4 solution using linear-sodium dodecyl benzene sulfonate as inhibitor

    International Nuclear Information System (INIS)

    Abd El Rehim, Sayed S.; Amin, Mohammed A.; Moussa, S.O.; Ellithy, Abdallah S.

    2008-01-01

    The corrosion inhibition of Al and its two copper alloys are the subject of tremendous technological importance due to the increased industrial applications of these materials. This paper reports the results of potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) measurements on the corrosion inhibition of Al (Al-2.5% Cu and Al-7.0% Cu) alloys in 1.0 M H 2 SO 4 solution carried out in different concentrations of linear-sodium dodecyl benzene sulfonate as an anionic surfactant (LAS) and temperature range from 10 to 60 deg. C. The data revealed that the inhibition efficiency increases with increasing surfactant concentration and time of immersion, and decreases with solution temperature. Energy dispersion X-ray (EDX) observations of the electrode surface confirmed the existence of LAS adsorbed film on the electrode surface. The surfactant acted mainly as cathodic inhibitor. Maximum inhibition efficiency of the surfactant is observed at concentration around its critical micelle concentration (CMC). The inhibition occurs through adsorption of the surfactant on the metal surface without modifying the mechanism of the corrosion process, which tested by UV-spectroscopy. The potential of zero charge (PZC) of aluminum and Al-7.0% Cu was studied by ac-impedance, and the mechanism of adsorption is discussed. The adsorption isotherm is described by Temkin adsorption isotherm. Thermodynamic functions for activation and adsorption process were determined

  13. Standard test method for determining susceptibility to stress-corrosion cracking of 2XXX and 7XXX Aluminum alloy products

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This test method covers a uniform procedure for characterizing the resistance to stress-corrosion cracking (SCC) of high-strength aluminum alloy wrought products for the guidance of those who perform stress-corrosion tests, for those who prepare stress-corrosion specifications, and for materials engineers. 1.2 This test method covers method of sampling, type of specimen, specimen preparation, test environment, and method of exposure for determining the susceptibility to SCC of 2XXX (with 1.8 to 7.0 % copper) and 7XXX (with 0.4 to 2.8 % copper) aluminum alloy products, particularly when stressed in the short-transverse direction relative to the grain structure. 1.3 The values stated in SI units are to be regarded as standard. The inch-pound units in parentheses are provided for information. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and de...

  14. Yttrium 3-(4-nitrophenyl)-2-propenoate used as inhibitor against copper alloy corrosion in 0.1 M NaCl solution

    International Nuclear Information System (INIS)

    Nam, Nguyen Dang; Thang, Vo Quoc; Hoai, Nguyen To; Hien, Pham Van

    2016-01-01

    Highlights: • Yttrium 3-(4-nitrophenyl)-2-propenoate has been studied as an effective corrosion inhibitor for copper. • A high inhibition performance is attributed to the forming protective inhibiting deposits. • Yttrium 3-(4-nitrophenyl)-2-propenoate mitigates corrosion by promoting random distribution of minor anodes. - Abstract: Yttrium 3-(4-nitrophenyl)-2-propenoate has been studied as an effective corrosion inhibitor for copper alloy in 0.1 M chloride solution. The results show that the surface of copper alloy coupons exposed to solutions containing 0.45 mM yttrium 3-(4-nitrophenyl)-2-propenoate had no signs of corrosion attack due to protective film formation, whereas the surface of copper alloy coupons exposed to non-inhibitor and lower concentrations of yttrium 3-(4-nitrophenyl)-2-propenoate containing solutions were severely corroded. A high inhibition performance is attributed to the forming protective inhibiting deposits that slow down the electrochemical corrosion reactions and mitigate corrosion by promoting random distribution of minor anodes.

  15. Durable Corrosion Resistance of Copper Due to Multi-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Abhishek Tiwari

    2017-09-01

    Full Text Available Ultra-thin graphene coating has been reported to provide considerable resistance against corrosion during short-term exposures, however, there is great variability in the corrosion resistance due to graphene coating in different studies. It may be possible to overcome the problem of hampered corrosion protection ability of graphene that is caused due to defective single layer graphene by applying multilayer graphene. Systematic electrochemical characterization showed that the multilayer graphene coating developed in the study provided significant corrosion resistance in a chloride solution and the corrosion resistance was sustained for long durations (~400 h, which is attributed to the multilayer graphene.

  16. High temperature corrosion investigation in an oxyfuel combustion test rig

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Bjurman, M.; Hjörnhede, A

    2014-01-01

    Oxyfuel firing and subsequent capture of CO2 is a way to reduce CO2 emissions from coal‐fired boilers. Literature is summarized highlighting results which may contribute to understanding of the corrosion processes in an oxyfuel boiler.Tests were conducted in a 500 kWth oxyfuel test facility...... constructed by Brandenburg Technical University to gain understanding into oxyfuel firing. Two air‐cooled corrosion probes were exposed in this oxyfuel combustion chamber where the fuel was lignite. Gas composition was measured at the location of testing. Various alloys from a 2½ Cr steel, austenitic steels...... to nickel alloys were exposed at set metal temperatures of 570 and 630 °C for 287 h. The specimens were investigated using light optical and scanning electron microscopy and X‐ray diffraction.The deposit on the probe contained predominantly CaSO4 and Fe2O3. Oxide thickness and depth of the precipitated...

  17. Corrosion tests of high temperature alloys in impure helium

    International Nuclear Information System (INIS)

    Berka, Jan; Kalivodova, Jana; Vilemova, Monika; Skoumalova, Zuzana; Brabec, Petr

    2014-01-01

    Czech research organizations take part several projects concerning technologies and materials for advanced gas cooled reactors, as an example international project ARCHER supported by EU within FP7, also several national projects supported by Technology Agency of the Czech Republic are solved in cooperation with industrial and research organization. Within these projects the material testing program is performed. The results presented in these paper concerning high temperature corrosion and degradation of alloys (800 H, SS 316 and P91) in helium containing minor impurities (H_2, CO, CH_4, HZO) at temperatures up to 760°C. After corrosion tests (up to 1500 hours) the specimens was investigated by several methods (gravimetry, SEM-EDX, optical microscopy, hardness and micro-hardness testing etc. (author)

  18. Thermal cycling tests of actively cooled beryllium copper joints

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.; Wiechers, B. [Forschungszentrum Juelich GmbH (Germany)

    1998-01-01

    Screening tests (steady state heating) and thermal fatigue tests with several kinds of beryllium-copper joints have been performed in an electron beam facility. Joining techniques under investigation were brazing with silver containing and silver-free braze materials, hot isostatic pressing (HIP) and diffusion bonding (hot pressing). Best thermal fatigue performance was found for the brazed samples. (author)

  19. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  20. Polypyrrole electrodeposited on copper from an aqueous phosphate solution: Corrosion protection properties

    OpenAIRE

    Redondo, Clara; Breslin, Carmel B.

    2007-01-01

    Highly adherent and homogenous polypyrrole films were electrodeposited at copper from a dihydrogen phosphate solution. The polypyrrole films were electrosynthesized in the overoxidized state by cycling the copper electrode from –0.4 to 1.8 V (SCE) in a pyrrole-containing phosphate solution. The growth of the polypyrrole films was facilitated by the initial oxidation of the copper electrode in the phosphate solution to generate a mixed copper–phosphate, copper oxide or hydroxide layer. This la...

  1. Corrosion processes of austenitic stainless steels and copper-based materials in gamma-irradiated aqueous environments

    International Nuclear Information System (INIS)

    Glass, R.S.

    1985-09-01

    The US Department of Energy is evaluating a site located at Yucca Mountain in Nye County, Nevada, as a potential high-level nuclear waste repository. The rock at the proposed repository horizon (above the water table) is densely welded, devitrified tuff, and the fluid environment in the repository is expected to be primarily air-steam. A more severe environment would be present in the unlikely case of intrusion of vadose groundwater into the repository site. For this repository location, austenitic stainless steels and copper-based materials are under consideration for waste container fabrication. This study focuses on the effects of gamma irradiation on the electrochemical mechanisms of corrosion for the prospective waste container materials. The radiolytic production of such species as hydrogen peroxide and nitric acid are shown to exert an influence on corrosion mechanisms and kinetics

  2. SOLVING COPPER CORROSION PROBLEMS WHILE MAINTAINING LEAD CONTROL IN A HIGH ALKALINITY WATER USING ORTHOPHOSPHATE

    Science.gov (United States)

    Lead and Copper Rule sampling in 1992 uncovered high copper levels in many homes in the Indian Hill Water Works, Ohio (IHWW) water system. The 90th percentile copper and lead levels were 1.63 mg/L and 0.012 mg/L, respectively. IHWW supplies water to several suburban communities t...

  3. Effect of corrosion product layer on SCC susceptibility of copper containing type 304 stainless steel in 1 M H2SO4

    International Nuclear Information System (INIS)

    Asawa, M.; Devasenapathi, A.; Fujisawa, M.

    2004-01-01

    The effect of surface corrosion product layer on the stress corrosion cracking (SCC) susceptibility of type 304 stainless steel with Cu was studied in 1 kmol/m 3 (1 M) sulfuric acid at 353 K temperature. Studies based on the intermittent removal of surface corrosion product layer indicated that the surface film governs the SCC behavior of the alloy by accelerating both the crack initiation and propagation stages. The electrochemical impedance and polarization studies showed the surface layer to be promoting SCC initiation by lowering the uniform corrosion rate and the propagation by shifting the surface corrosion potential to a more noble direction. The elemental analysis of the corrosion product both by the energy dispersive X-ray (EDX) spectroscopy and by X-ray diffraction (XRD) analysis along with the thermodynamic calculations showed the layer to be constituted mainly of metallic copper (Cu) and the mono-hydrated iron sulfate which acts as cathode promoting SCC

  4. Corrosion control of copper in 3.5 wt.% NaCl Solution by Domperidone: Experimental and Theoretical Study

    International Nuclear Information System (INIS)

    Wang, Dan; Xiang, Bin; Liang, Yuanpeng; Song, Shan; Liu, Chao

    2014-01-01

    Highlights: • Domperidone has good inhibition effect for copper in 3.5 wt.% NaCl solution. • Domperidone acts as an anodic type inhibitor. • The SEM and AFM analyses support the weight loss, polarization, and EIS data. • Molecular dynamics (MD) method simulates the adsorption model of domperidone on Cu surface. • The adsorption of domperidone on copper surface obeys Langmuir adsorption isotherm. - Abstract: Inhibition of copper corrosion in 3.5 wt.% NaCl solution by domperidone was investigated by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The experimental results revealed that domperidone was an anodic inhibitor with a maximum achievable inhibition efficiency of 94.2%. The results of SEM and AFM studies further confirmed the inhibition action of domperidone. Quantum chemical calculation and the molecular dynamics (MD) simulation showed that the domperidone molecule could be adsorbed on copper surface through the imidazolidinone ring, benzene ring and N atom of hexaheterocyclic. Adsorption of domperidone was found to follow the Langmuir adsorption isotherm

  5. Corrosion Tests of LWR Fuels - Nuclide Release

    International Nuclear Information System (INIS)

    P.A. Finn; Y. Tsai; J.C. Cunnane

    2001-01-01

    Two BWR fuels [64 and 71 (MWd)/kgU], one of which contained 2% Gd, and two PWR fuels [30 and 45 (MWd)/kgU], are tested by dripping groundwater on the fuels under oxidizing and hydrologically unsaturated conditions for times ranging from 2.4 to 8.2 yr at 90 C. The 99 Tc, 129 I, 137 Cs, 97 Mo, and 90 Sr releases are presented to show the effects of long reaction times and of gadolinium on nuclide release. This investigation showed that the five nuclides at long reaction times have similar fractional release rates and that the presence of 2% Gd reduced the 99 Tc cumulative release fraction by about an order of magnitude over that of a fuel with a similar burnup

  6. Study of the Effect of Sulfide Ions on the Corrosion Resistance of Copper for Use in Containers for High Level radioactive waste

    International Nuclear Information System (INIS)

    Urbal Espinoza, Andrea Elizabeth

    2000-01-01

    The work 'Study of sulfide ion on Resisting Copper Corrosion' is part of the project 'Study of Copper Corrosion in Underground Water Solution in Reducer Conditions', which the Department of Nuclear Materials, Chilean Nuclear Energy Commission is carrying out. These activities are important because of this metal's potential applications for handling and controlling contaminating wastes that are a product of using nuclear energy in electric generation. Copper has important mechanical properties and is also resistant to disintegration in corrosive environments, which is an important condition for its use in manufacturing of high level radioactive waste containers. This work is based on a study of cyclic volta metric curves, anodic and cathodic polarization and potentiostatic measurements, with which the potential range, sweep speed system, electrochemical reactions involved and corrosion speed could be defined. The microstructural characterization of the films was done by Scanning Electron Microscopy (SEM), and the chemical composition and surface contamination of the film were studied by photoelectron spectroscopy induced by X- rays (XPS), and the crystalline structure by X- ray Diffraction (XRD). Some noticeable results, such as low potentials (less than .7 V, in cathode direction) and high concentrations of sulfur make the formation of copper sulfides (I) and (II) possible; unlike the potential over .6 V, in anodic direction, where copper oxides (I) and (II) are formed, but they are inhibited by high sulfur concentrations. The morphological study of the copper surface has shown that the film that forms is more abundant and granular at higher cathodic potentials, forming small pits on the surface. The effect of the presence of sulfur ions is minimal, and the metal's deterioration is inhibited by other ions in the groundwater. The corrosion rate is greater as the sulfur concentration rises, and a time period of 20,000 years can be predicted for the total corrosion of

  7. A comparative study of accelerated tests to simulate atmospheric corrosion

    International Nuclear Information System (INIS)

    Assis, Sergio Luiz de

    2000-01-01

    In this study, specimens coated with five organic coating systems were exposed to accelerated tests for periods up to 2000 hours, and also to weathering for two years and six months. The accelerated tests consisted of the salt spray test, according to ASTM B-117; Prohesion (ASTM G 85-98 annex 5A); Prohesion combined with cyclic exposure to UV-A radiation and condensation; 'Prohchuva' a test described by ASTM G 85-98 using a salt spray with composition that simulated the acid rain of Sao Paulo, but one thousand times more concentrated, and 'Prohchuva' combined with cyclic exposure to UV-A radiation and condensation. The coated specimens were exposed with and without incision to expose the substrate. The onset and progress of corrosion at and of the exposed metallic surface, besides coating degradation, were followed by visual observation, and photographs were taken. The coating systems were classified according to the extent of corrosion protection given to the substrate, using a method based on ASTM standards D-610, D-714, D-1654 and D-3359. The rankings of the coatings obtained from accelerated tests and weathering were compared and contrasted with classification of the same systems obtained from literature, for specimens exposed to an industrial atmosphere. Coating degradation was strongly dependent on the test, and could be attributed to differences in test conditions. The best correlation between accelerated test and weathering was found for the test Prohesion alternated with cycles of exposure to UV-A radiation and condensation. (author)

  8. Electrochemical techniques implementation for corrosion rate measurement in function of humidity level in grounding systems (copper and stainless steel) in soil samples from Tunja (Colombia)

    Science.gov (United States)

    Salas, Y.; Guerrero, L.; Blanco, J.; Jimenez, C.; Vera-Monroy, S. P.; Mejía-Camacho, A.

    2017-12-01

    In this work, DC electrochemical techniques were used to determine the corrosion rate of copper and stainless-steel electrodes used in grounding, varying the level of humidity, in sandy loam and clay loam soils. The maximum corrosion potentials were: for copper -211 and -236mV and for stainless steel of -252 and -281mV, in sandy loam and clay loam respectively, showing that in sandy loam the values are higher, about 30mV. The mechanism by which steel controls corrosion is by diffusion, whereas in copper it is carried out by transfer of mass and charge, which affects the rate of corrosion, which in copper reached a maximum value of 5mm/yr and in Steel 0.8mm/yr, determined by Tafel approximations. The behaviour of the corrosion rate was mathematically adjusted to an asymptotic model that faithfully explains the C.R. as a function of humidity, however, it is necessary to define the relation between the factor □ established in the model and the precise characteristics of the soil, such as the permeability or quantity of ions present.

  9. The influence of Reynolds number on the galvanic corrosion of the copper/AISI 304 pair in aqueous LiBr solutions

    International Nuclear Information System (INIS)

    Montanes, M.T.; Sanchez-Tovar, R.; Garcia-Anton, J.; Perez-Herranz, V.

    2009-01-01

    The influence of Reynolds number on the galvanic corrosion of the copper/AISI 304 stainless steel pair in a concentrated lithium bromide solution was investigated according to the mixed potential theory. A hydraulic circuit was designed to study dynamic corrosion processes in situ. A potential relation between corrosion current density (i corr ) and Reynolds number (Re) was found for copper, showing a mixed control of a chemical step and mass transport through the corrosion products film with the predominance of the former. No dependence of i corr on Re could be established for AISI 304, showing a chemical step control. Moreover, under stagnant conditions, partial passivation may occur in AISI 304; however, under flowing conditions passivation is not possible. Copper is the anodic element of the pair under all flowing conditions analysed. The galvanic phenomenon is more important as Re increases, but the results show compatibility of both materials at all Re values analysed. Similarly, a potential relation between galvanic current density (i G ) and Re was found, showing a mixed control of a chemical step and mass transport with the predominance of the latter. Copper corrosion resistance decreases more rapidly as Re increases due to the AISI 304 galvanic effect: there is a synergy between the galvanic effect and the hydrodynamic conditions. Under stagnant conditions, the galvanic behaviour of the materials is close to the compatibility limit and an inversion of the anodic element of the galvanic pair takes place.

  10. Automated corrosion fatigue crack growth testing in pressurized water environments

    International Nuclear Information System (INIS)

    Ceschini, L.J.; Liaw, P.K.; Rudd, G.E.; Logsdon, W.A.

    1984-01-01

    This paper describes in detail a novel approach to construct a test facility for developing corrosion fatigue crack growth rate (FCGR) properties in aggressive environments. The environment studied is that of a pressurized water reactor (PWR) at 288 0 C (550 0 F) and 13.8 MPa (200 psig). To expedite data generation, each chamber was designed to accommodate two test specimens. A common water recirculation and pressurization system was employed to service two test chambers. Thus, four fatigue crack propagation rate tests could be conducted simultaneously in the pressurized water environment. The data analysis was automated to minimize the typically high labor costs associated with corrosion fatigue crack propagation testing. Verification FCGR tests conducted on an ASTM A469 rotor steel in a room temperature air environment as well as actual PWR environment FCGR tests performed on an ASTM A533 Grade B Class 2 pressure vessel steel demonstrated that the dual specimen test facility is an excellent system for developing the FCGR properties of materials in adverse environments

  11. Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods

    International Nuclear Information System (INIS)

    Mendonça, Glaydson L.F.; Costa, Stefane N.; Freire, Valder N.; Casciano, Paulo N.S.; Correia, Adriana N.; Lima-Neto, Pedro de

    2017-01-01

    Highlights: • Corrosion inhibition of carbon steel and of copper by the amino acids was studied. • Inhibition efficiencies were experimentally achieved by electrochemical impedance. • DFT and Monte Carlo methods allowed correlating molecular properties with inhibition efficiency. • The corrosion inhibition followed the electron donation the electron-back donations process. - Abstract: Six amino acids were evaluated as corrosion inhibitors for carbon steel and copper in 0.5 mol L"−"1 H_2SO_4 solution by potentiodynamic polarization and electrochemical impedance techniques allied to Density Functional Theory (DFT) and Monte Carlo computations The corrosion inhibitor rankings were: Arg > Gln > Asn > Met > Cys > Ser, for copper, and Met > Cys > Ser > Arg > Gln > Asn, for carbon steel. The DFT approach failed to explain the corrosion inhibition rating based on the HOMO and LUMO energies of the isolated amino acid molecules, while the simpler classical Monte Carlo approach, performed considering the interaction energies between the corrosion inhibitor and the metallic substrate, was successful.

  12. Measurements and mechanisms of localized aqueous corrosion in aluminum-lithium-copper alloys

    Science.gov (United States)

    Wall, Douglas; Stoner, Glenn E.

    1991-01-01

    Summary information is included for electrochemical aspects of stress corrosion cracking in alloy 2090 and an introduction to the work to be initiated on the new X2095 (Weldalite) alloy system. Stress corrosion cracking (SCC) was studied in both S-T and L-T orientations in alloy 2090. A constant load TTF test was performed in several environments with a potentiostatically applied potential. In the same environments the electrochemical behavior of phases found along subgrain boundaries was assessed. It was found that rapid failure due to SCC occurred when the following criteria was met: E(sub BR,T1) is less than E(sub applied) is less than E(sub Br, matrix phase). Although the L-T orientation is usually considered more resistant to SCC, failures in this orientation occurred when the stated criteria was met. This may be due to the relatively isotropic geometry of the subgrains which measure approximately 12 to 25 microns in diameters. Initial studies of alloy X2095 includes electrochemical characterization of three compositional variations each at three temperatures. The role of T(sub 1) dissolution in SCC behavior is addressed using techniques similar to those used in the research of 2090 described. SCC susceptibility is also studied using alternate immersion facilities at Reynolds Metals Corporation. Pitting is investigated in terms of stability, role of precipitate phases and constituent particles, and as initiation sites for SCC. In all research endeavors, attempts are made to link electrochemistry to microstructure. Previous work on 2090 provides a convenient basis for comparison since both alloys contain T(sub 1) precipitates but with different distributions. In 2090 T(sub 1) forms preferentially on subgrain boundaries whereas in X2095 the microstructure appears to be more homogeneous with finer T(sub 1) particles. Another point for comparison is the delta prime strengthening phase found in 2090 but absent in X2095.

  13. A Technique for Dynamic Corrosion Testing in Liquid Lead Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, Eric Paul; Davis, Cliff Bybee; Mac Donald, Philip Elsworth

    2001-04-01

    An experimental apparatus for the investigation of the flow-assisted dissolution and precipitation (corrosion) of potential fuel cladding and structural materials to be used in liquid lead alloy cooled reactors has been designed. This experimental project is part of a larger research effort between Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology to investigate the suitability of lead, lead-bismuth, and other lead alloys for cooling fast reactors designed to produce low-cost electricity as well as for actinide burning. The INEEL forced convection corrosion cell consists of a small heated vessel with a shroud and gas flow system. The gas flow rates, heat input, and shroud and vessel dimensions have been adjusted so that a controlled coolant flow rate, temperature, and oxygen potential are created within the downcomer located between the shroud and vessel wall. The ATHENA computer code was used to design the experimental apparatus and estimate the fluid conditions. The corrosion cell will test steel that is commercially available in the U. S. to temperatures above 650oC.

  14. Corrosion evaluation in insulated pipes by non destructive testing method

    International Nuclear Information System (INIS)

    Abd Razak Hamzah; Azali Muhammad; Mohammad Pauzi Ismail; Abd Nassir Ibrahim; Abd Aziz Mohamed; Sufian Saad; Saharuddin Sayuti; Shukri Ahmad

    2002-01-01

    In engineering plants, detection of corrosion and evaluation of deposit in insulated pipes using radiography method are considered as a very challenging tasks. In General this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is the wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most common technique is that based on the A-Scan, using either a normal flaw detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method were studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Result of this study is presented and discussed in this paper. (Author)

  15. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    Science.gov (United States)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  16. LIQUID AIR INTERFACE CORROSION TESTING FOR FY2010

    International Nuclear Information System (INIS)

    Zapp, P.

    2010-01-01

    An experimental study was undertaken to investigate the corrosivity to carbon steel of the liquid-air interface of dilute simulated radioactive waste solutions. Open-circuit potentials were measured on ASTM A537 carbon steel specimens located slightly above, at, and below the liquid-air interface of simulated waste solutions. The 0.12-inch-diameter specimens used in the study were sized to respond to the assumed distinctive chemical environment of the liquid-air interface, where localized corrosion in poorly inhibited solutions may frequently be observed. The practical inhibition of such localized corrosion in liquid radioactive waste storage tanks is based on empirical testing and a model of a liquid-air interface environment that is made more corrosive than the underlying bulk liquid due to chemical changes brought about by absorbed atmospheric carbon dioxide. The chemical changes were assumed to create a more corrosive open-circuit potential in carbon in contact with the liquid-air interface. Arrays of 4 small specimens spaced about 0.3 in. apart were partially immersed so that one specimen contacted the top of the meniscus of the test solution. Two specimens contacted the bulk liquid below the meniscus and one specimen was positioned in the vapor space above the meniscus. Measurements were carried out for up to 16 hours to ensure steady-state had been obtained. The results showed that there was no significant difference in open-circuit potentials between the meniscus-contact specimens and the bulk-liquid-contact specimens. With the measurement technique employed, no difference was detected between the electrochemical conditions of the meniscus versus the bulk liquid. Stable open-circuit potentials were measured on the specimen located in the vapor space above the meniscus, showing that there existed an electrochemical connection through a thin film of solution extending up from the meniscus. This observation supports the Hobbs-Wallace model of the development

  17. Screening of soil corrosivity by field testing: Results and design of an electrochemical soil corrosion probe

    DEFF Research Database (Denmark)

    Nielsen, Lars vendelbo; Bruun, Niels Kåre

    1996-01-01

    The corrosivity of different types of soil have been assessed by exposing carbon-steel plates at 50 different locations in Denmark for an extended period of time. The investigations included weight loss measurements and analysis of the chemical compositions of the corrosion products formed...... on the plates during exposure. An electrochemical soil corrosion probe has been designed and manufactured allowing for simultaneous measurements of several qauntities to predict corrosion. The probe consists of individual sections capable of measuring redox-potential, corrosion potential, soil resistivity...

  18. SOLVING A COPPER CORROSION PROBLEM WITH ORTHOPHOSPHATE: INDIAN HILL, OHIO CASE STUDY

    Science.gov (United States)

    Many small and medium-sized water systems have troublt complying with the copper Action Level (of the Lead and Copper Rule), sometimes concurrently with meeting the lead Action level. The problem is especially troubling and widespread with ground water supplies having high alkali...

  19. Control of New Copper Corrosion in High-Alkalinity Drinking Water using Orthophosphate - article

    Science.gov (United States)

    Research and field experience have shown that high-alkalinity waters can be associated with elevated copper levels in drinking water. The objective of this study was to document the application of orthophosphate to the distribution system of a building with a copper problem asso...

  20. Mechanisms of Copper Corrosion in Aqueous Environments. A report from the Swedish National Council for Nuclear Waste's scientific workshop, on November 16, 2009

    International Nuclear Information System (INIS)

    2010-01-01

    In 2010 the Swedish Nuclear Fuel and Waste Management Company, SKB, plans to submit its license application for the final repository of spent nuclear fuel. The proposed method is the so-called KBS-3 method and implies placing the spent nuclear fuel in copper canisters, surrounded by a buffer of bentonite clay, at 500 m depth in the bedrock. The site selected by SKB to host the repository is located in the municipality of Oesthammar on the Swedish east coast. The copper canister plays a key role in the design of the repository for spent nuclear fuel in Sweden. The long-term physical and chemical stability of copper in aqueous environments is fundamental for the safety evolution of the proposed disposal concept. However, the corrosion resistance of copper has been questioned by results obtained under anoxic conditions in aqueous solution. These observations caused some head-lines in the Swedish newspapers as well as public and political concerns. Consequently, the Swedish National Council for Nuclear Waste organized a scientific workshop on the issue 'Mechanisms of Copper Corrosion in Aqueous Environments'. The purpose of the workshop was to address the fundamental understanding of the corrosion characteristics of copper regarding oxygen-free environments, and to identify what additional information is needed to assess the validity of the proposed corrosion mechanism and its implication on the containment of spent nuclear fuel in a copper canister. This seminar report is based on the presentations and discussions at the workshop. It also includes written statements by the members of the expert panel

  1. Mechanisms of Copper Corrosion in Aqueous Environments. A report from the Swedish National Council for Nuclear Waste's scientific workshop, on November 16, 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    In 2010 the Swedish Nuclear Fuel and Waste Management Company, SKB, plans to submit its license application for the final repository of spent nuclear fuel. The proposed method is the so-called KBS-3 method and implies placing the spent nuclear fuel in copper canisters, surrounded by a buffer of bentonite clay, at 500 m depth in the bedrock. The site selected by SKB to host the repository is located in the municipality of Oesthammar on the Swedish east coast. The copper canister plays a key role in the design of the repository for spent nuclear fuel in Sweden. The long-term physical and chemical stability of copper in aqueous environments is fundamental for the safety evolution of the proposed disposal concept. However, the corrosion resistance of copper has been questioned by results obtained under anoxic conditions in aqueous solution. These observations caused some head-lines in the Swedish newspapers as well as public and political concerns. Consequently, the Swedish National Council for Nuclear Waste organized a scientific workshop on the issue 'Mechanisms of Copper Corrosion in Aqueous Environments'. The purpose of the workshop was to address the fundamental understanding of the corrosion characteristics of copper regarding oxygen-free environments, and to identify what additional information is needed to assess the validity of the proposed corrosion mechanism and its implication on the containment of spent nuclear fuel in a copper canister. This seminar report is based on the presentations and discussions at the workshop. It also includes written statements by the members of the expert panel

  2. Development of corrosion testing equipment under heat transfer and irradiation conditions to evaluate corrosion resistance of materials used in acid recovery evaporator. Contract research

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Numata, Masami; Kiuchi, Kiyoshi

    2002-01-01

    We have been evaluated the safety for corrosion of various metals applied to acid recovery evaporators by the mock-up tests using small scaled equipment and the reference tests in laboratories with small specimens. These tests have been conducted under-radioactive environment. The environment in practical reprocessing plants has many radioactive species. Therefore, the effect of irradiation on corrosion should be evaluated in detail. In this study, we have developed the corrosion testing equipment, which is employed to simulate environments in the acid recovery evaporators. This report describes the specification of corrosion testing equipment and the results of primary, reference and hot tests. Using the equipment, the corrosion test under heat transfer and irradiation conditions have been carried out for 930 hours in safety. It is expectable that useful corrosion test data in radioactive environment are accumulated with this equipment in future, and help the adequate choice of corrosion test condition in laboratories. (author)

  3. Aqueous corrosion in static capsule tests representing multi-metal assemblies in the hydraulic circuit of Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Lipa, M. [Association Euratom-CEA, CEA/DSM/DRFC, Centre de Cadarache, 13108 Saint-Paul-Lez-Durance (France)], E-mail: manfred.lipa@cea.fr; Blanchet, J.; Feron, D. [CEA/DEN/SCCME, Centre de Saclay, 91191 Gif sur Yvette (France); Cellier, F. [AREVA ANP, Centre Technique, 71380 Saint Marcel (France)

    2008-12-15

    Tore supra (TS) in vessel components represent a unique combination of metals in the hydraulic circuit. Different materials, e.g. stainless steel, copper alloys, nickel, etc., were joined together by fusion welding, brazing and friction. Since the operation and baking temperature of all in vessel components has been defined to be set at 230 deg. C/40 bars a special water chemistry of the cooling water loop was suggested in order to prevent eventual water leaks due to corrosion at relative high temperatures and pressures in tubes, bellows, coils and coolant plant ancillary equipments. Following experiences with water chemistry in Pressurised Water Reactors, an all volatile chemical treatment (AVT) has been defined for the cooling water quality of TS. Since then, a simplified static (no fluid circulation) corrosion test program at relatively high temperature and pressure has been performed using capsule-type samples made of above mentioned multi-metal assemblies.

  4. Nondestructive testing diagnosis for corrosion and welding by means of hydrostatic test and gamma ray tomography

    International Nuclear Information System (INIS)

    Moura, Alex E.; Dantas, Carlos C.; Nery, Marcelo S.; Barbosa, Jose Maria A.; Rolim, Tiago L.; Melo, Silvio B.; Lima, Emerson A.O.

    2013-01-01

    Diagnoses of light and severe corrosion process in steel tubes are carried out and results are presented. The material discontinuity in metallic pieces was investigated and signals from gamma source detection shown defect present or no defect present. Samples taken from street illumination posts were placed in computerized gamma ray scan to investigate corrosion effect. Scanning at three angles 0 deg, 60 deg and 120 deg degrees with five repetitions provide data set sufficient to a statistical analysis. Samples taken from small diameter steel tubes with light corrosion were analyzed too. Comparing corrosion-free samples detection of transmission gamma ray shows that along with diameter reduction a random density distribution takes place with severe corrosive process. The asymmetry induced in sample density provided to be effective for diagnosis of light corrosion by means of straight-line slope obtained in gamma profile. Structural integrity of steel pipes affected by welding process and defect propagation due to Hydrostatic Testing - HT was simulated by numerical finite element method and data comparison with experimental gamma tomography was carried out. Samples of pipes with preexisting defect on the welding region were submitted to hydrostatic tests over working pressure and a correlation between defect degree and structural resistance was evaluated. (author)

  5. Corrosion of high-density sintered tungsten alloys

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1989-01-01

    In comparative corrosion tests, the corrosion resistance of an Australian tungsten alloy (95% W, 3.5% Ni, 1.5% Fe) was found to be superior to three other tungsten alloys and, under certain conditions, even more corrosion-resistant than pure tungsten. Corrosion resistance was evaluated after immersion in both distilled water and 5% sodium chloride solutions, and in cyclic humidity and salt mist environments. For all but the Australian alloy, the rate of corrosion in sodium chloride solution was markedly less than that in distilated water. In all cases, alloys containing copper had the greatest corrosion rates. Corrosion mechanisms were investigated using a scanning electron microscope, analysis of corrosion products and galvanic corrosion studies. For the alloys, corrosion was attributed primarily to a galvanic reaction. Whether the tungsten or binder phase of the alloy became anodic, and thus was attacked preferentially, depended upon alloy composition and corrosion environment. 16 refs., 4 tabs., 4 figs

  6. Mechanisms of Corrosion of Copper-Nickel Alloys in Sulfide-Polluted Seawater

    Science.gov (United States)

    1981-02-01

    anaerobic bacteria, which convert the natural sulfate content of the seawater into sulfides. Also, the putrefaction of organic compounds containing...corrosion rate bozause the Cu2 0 growth3 292 probably follows a parabolic rate law. The corrosion behavior at high oxygen concentrations (> 7.0 g/m ) is...determined using the rotating ring disk electrode method or SRI’s recently developed rotating cylinder- collector electrode.3 In these methods, the

  7. Testing of intergranular and pitting corrosion in sensitized welded joints of austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdic

    2017-06-01

    Full Text Available Pitting corrosion resistance and intergranular corrosion of the austenitic stainless steel X5Cr Ni18-10 were tested on the base metal, heat affected zone and weld metal. Testing of pitting corrosion was performed by the potentiodynamic polarization method, while testing of intergranular corrosion was performed by the method of electrochemical potentiokinetic reactivation with double loop. The base metal was completely resistant to intergranular corrosion, while the heat affected zone showed a slight susceptibility to intergranular corrosion. Indicators of pitting corrosion resistance for the weld metal and the base metal were very similar, but their values are significantly higher than the values for the heat affected zone. This was caused by reduction of the chromium concentration in the grain boundary areas in the heat affected zone, even though the carbon content in the examined stainless steel is low (0.04 wt. % C.

  8. Standard test method for measuring pH of soil for use in corrosion testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This test method covers a procedure for determining the pH of a soil in corrosion testing. The principle use of the test is to supplement soil resistivity measurements and thereby identify conditions under which the corrosion of metals in soil may be accentuated (see G 57 - 78 (1984)). 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  9. Probability density fittings of corrosion test-data: Implications on ...

    Indian Academy of Sciences (India)

    Steel-reinforced concrete; probability distribution functions; corrosion ... to be present in the corrosive system at a suitable concentration (Holoway et al 2004; Söylev & ..... voltage, equivalent to voltage drop, across a resistor divided by the ...

  10. System for stress corrosion conditions tests on PWR reactors

    International Nuclear Information System (INIS)

    Castro, Andre Cesar de Jesus

    2007-01-01

    The study of environmentally assisted cracking (EAC) involves the consideration and evaluation of the inherent compatibility between a material and the environment under conditions of either applied or residual stress. EAC is a critical problem because equipment, components and structure are subject to the influence of mechanical stress, water environment of different composition, temperature and different material history. Testing for resistance to EAC is one of the most effective ways to determine the interrelationships among this variables on the process of EAC. Up to now, several experimental techniques have been developed worldwide, which address different aspects of environmental caused damage. Constant loading of CT specimens test is a typical example of test, which is used for the estimation of parameters of stress corrosion cracking. To assess the initiation stages and kinetics of crack growth, the testing facility should allow active loading of specimens in the environment that is close to the actual operation conditions of assessed component. This paper presents a testing facility for stress corrosion cracking to be installed at CDTN, which was designed and developed at CDTN. The facility is used to carry out constant load tests under simulated PWR environment, where temperature, water pressure and chemistry are controlled, which are considered the most important factors in SCC. Also, the equipment operational conditions, its applications, and restrictions are presented. The system was developed to operate at temperature until 380 degree C and pressure until 180 bar. It consists in a autoclave stuck at a mechanical system, responsible of producing load , a water treatment station, and a data acquisition system. This testing facility allows the evaluation of cracking progress, especially at PWR reactor. (author) operational conditions. (author)

  11. Modification and upgradation of corrosion fatigue testing system

    International Nuclear Information System (INIS)

    Farooq, A.; Qamar, R.

    2006-08-01

    Stress Corrosion Cracking (SCC) and Corrosion Fatigue (CF) are important tests which are performed to check the integrity of structural materials operating in different environments, such as nuclear power system, steam and gas turbines, aircraft marine structure, pipelines and bridges. To establish the environmental testing facility on laboratory scale, NMD acquired a computerized (286 Based PC) electromechanical testing machine from M/S CorTest, USA. This machine was commissioned at NMD in 1989. Since then it has been utilized to test and qualify the materials provided by different establishments of PAEC for SCC and CF behavior. However, in October 2004, computer attached to the machine was corrupted and became out of order. Users were handicapped because there was no any alternate system i.e. Manual control tower to operate the machine. Then users approached to Computer Division to investigate the malfunctioning at the computer. Therefore, upon complete checkup of system, it was diagnosed that there was a serious problem in the hard disk and mother board of the computer. Much difficulty was faced in retrieving the application software from the obsolete 286 computer system. Then the basic aim was to replace the old computer with Pentium System. But with Pentium system application software was not working. Since we have already recovered full application software package including source programs, so all the seventeen programs has been thoroughly studied. Four programs had to be modified according to the new hardware. Now the new Pentium system with modified software has been interfaced with the machine. Machine was tested for the both types of above mentioned tests and compared with previous results. The performance of machine was confirmed satisfactory on the new setup. (author)

  12. Standard practice for conducting atmospheric corrosion tests on metals

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers and defines conditions for exposure of metals and alloys to the weather. It sets forth the general procedures that should be followed in any atmospheric test. It is presented as an aid in conducting atmospheric corrosion tests so that some of the pitfalls of such testing may be avoided. As such, it is concerned mainly with panel exposures to obtain data for comparison purposes. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  13. Effect of Copper on Corrosion of Forged AlSi1MgMn Automotive Suspension Components

    Science.gov (United States)

    Koktas, Serhan; Gokcil, Emre; Akdi, Seracettin; Birol, Yucel

    2017-09-01

    Recently, modifications in the alloy composition and the manufacturing process cycle were proposed to achieve a more uniform structure with no evidence of coarse grains across the section of the AlSi1MgMn alloys. Cu was added to the AlSi1MgMn alloy to improve its age hardening capacity without a separate solution heat treatment. However, Cu addition degrades the corrosion resistance of this alloy due to the formation of Al-Cu precipitates along the grain boundaries that are cathodic with respect to the aluminum matrix and thus encourage intergranular corrosion. The present work was undertaken to identify the impact of Cu addition on the corrosion properties of AlSi1MgMn alloys with different Cu contents. A series of AlSi1MgMn alloys with 0.06-0.89 wt.% Cu were tested in order to identify an optimum level of Cu addition.

  14. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    Science.gov (United States)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  15. Seawater corrosion tests for low-level radioactive waste drum containers

    International Nuclear Information System (INIS)

    Maeda, Sho; Wadachi, Yoshiki

    1985-11-01

    This report is a part of corrosion tests of drums under various environmental conditions (seawater, river water, coastal sand, inland soil and indoor and outdoor atmosphere) done at Japan Atomic Energy Research Institute sponsored by the Science and Technology Agency. The corrosion tests were started in November, 1977 and complated at March, 1984. This report describes the results of the seawater corrosion tests which are part of the final report, ''Corrosion Safety Demonstration Test'' (Japanese), and it is expected to contribute the safety assessment of sea dumping of low-level radioactive waste packages. (author)

  16. Demonstration through EPR tests of the sensitivity of austeno-ferritic steels to intergranular corrosion and stress corrosion cracking

    International Nuclear Information System (INIS)

    Lopez, Nathalie

    1997-01-01

    Duplex stainless steels can be sensitised to intergranular corrosion and stress corrosion cracking (SCC) under some conditions (heat treatments, welding). The aim of this work is to contribute to the validation of the EPR (Electrochemical Potentiodynamic Reactivation) test in order to determine conditions for normalisation. This method, based on the dissolution of chromium depleted areas due to precipitation of σ-phase, provides a degree of sensitisation to intergranular corrosion. The test is broaden considering the mechanical stress by the way of slow strain rate tests, performed in chloride magnesium and in a solution similar to the EPR solution. A metallurgical study puts on the precipitates and the structural modifications due to welding and heat treatments, in order to make a critical analysis of the EPR test. (author) [fr

  17. A study of the inhibiton of copper corrosion by triethyl phosphate and triphenyl phosphate self-assembled monolayers

    Directory of Open Access Journals (Sweden)

    HOUYI MA

    2006-02-01

    Full Text Available Two kinds of phosphates, triethyl phosphate (TEP and triphenyl phosphate (TPP, were used to form self-assembled monolayers for the inhibition of the corrosion of copper in 0.2 mol dm–3 NaCl solution. Electrochemical impedance spectroscopy (EIS was applied to investigate the inhibition effects. The results showed that their inhibition ability first increased with increasing immersion time in ethanolic solutions of the corresponding compounds. However, when the immersion time was increased over some critical point, the inhibition effect decreased. For the same immersion time, the inhibition effect of the TPP monolayer was more pronounced than that of the TEP monolayer. Thus, ab initio calculations were used to interpret the relationship between the inhibition effects and the structures of the compounds.

  18. Results of water corrosion in static cell tests representing multi-metal assemblies in the hydraulic circuits of Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Lipa, M.; Blanchet, J. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Cellier, F. [Framatome, Centre Technique, 71 - Saint Marcel (France)

    2007-07-01

    Full text of publication follows: Tore supra (TS) has used from the beginning of operation in 1989 actively cooled plasma facing components. Since the operation and baking temperature of all in vessel components has been defined to be up to 230 deg. C at 40 bars, a special water chemistry of the cooling water plant was suggested in order to avoid eventual water leaks due to corrosion (general corrosion, galvanic corrosion, stress corrosion, etc.) at relative high temperatures and pressures in tubes, pipes, bellows, water boxes, coils, etc. From the beginning of TS operation, in vessel components (e.g. wall protection panels, limiters, ergodic divertor coils, neutralisers and diagnostics) represented a unique combination of metals in the hydraulic circuit mainly such as stainless steel, Inconel, CuCrZr, Nickel and Copper. These different materials were joined together by welding (St to St, Inconel to Inconel, CuCrZr to CuCrZr and CuCrZr to St-St via a Ni sleeve adapter), brazing (St-St to Cu and Cu-LSTP), friction (CuCrZr and Cu to St-St), explosion (CuCrZr to St-St) and memory metal junction (Cryo-fit to Cu - only test sample). Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralized water with adjustment of the pH value to about 9.0/ 7.0 (25 deg. C/ 200 deg. C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 deg. C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal

  19. Results of water corrosion in static cell tests representing multi-metal assemblies in the hydraulic circuits of Tore Supra

    International Nuclear Information System (INIS)

    Lipa, M.; Blanchet, J.

    2007-01-01

    Full text of publication follows: Tore supra (TS) has used from the beginning of operation in 1989 actively cooled plasma facing components. Since the operation and baking temperature of all in vessel components has been defined to be up to 230 deg. C at 40 bars, a special water chemistry of the cooling water plant was suggested in order to avoid eventual water leaks due to corrosion (general corrosion, galvanic corrosion, stress corrosion, etc.) at relative high temperatures and pressures in tubes, pipes, bellows, water boxes, coils, etc. From the beginning of TS operation, in vessel components (e.g. wall protection panels, limiters, ergodic divertor coils, neutralisers and diagnostics) represented a unique combination of metals in the hydraulic circuit mainly such as stainless steel, Inconel, CuCrZr, Nickel and Copper. These different materials were joined together by welding (St to St, Inconel to Inconel, CuCrZr to CuCrZr and CuCrZr to St-St via a Ni sleeve adapter), brazing (St-St to Cu and Cu-LSTP), friction (CuCrZr and Cu to St-St), explosion (CuCrZr to St-St) and memory metal junction (Cryo-fit to Cu - only test sample). Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralized water with adjustment of the pH value to about 9.0/ 7.0 (25 deg. C/ 200 deg. C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 deg. C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal

  20. Intergranular corrosion testing of austenitic stainless steels in nitric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Whillock, G.O.H.; Dunnett, B. F. [British Nuclear Fuels plc, BNFL, B170, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

    2004-07-01

    In hot strong nitric acid solutions, stainless steels exhibit intergranular corrosion. Corrosion rates are often measured from immersion testing of specimens manufactured from the relevant material (e.g. plate or pipe). The corrosion rates, measured from weight loss, are found to increase with time prior to reaching steady state, which can take thousands of hours to achieve. The apparent increase in corrosion rate as a function of time was found to be an artefact due to the surface area of the specimen's being used in the corrosion rate calculations, rather than that of the true area undergoing active corrosion i.e. the grain boundaries. The steady state corrosion rate coincided with the onset of stable grain dropping, where the use of the surface area of the specimen to convert the weight loss measurements to corrosion rates was found to be appropriate. This was confirmed by sectioning of the specimens and measuring the penetration depths. The rate of penetration was found to be independent of time and no induction period was observed. A method was developed to shorten considerably the testing time to reach the steady state corrosion rate by use of a pre-treatment that induces grain dropping. The long-term corrosion rates from specimens which were pre-treated was similar to that achieved after prolonged testing of untreated (i.e. initially ground) specimens. The presence of cut surfaces is generally unavoidable in the simple immersion testing of specimens in test solutions. However, inaccuracy in the results may occur as the measured corrosion rate is often influenced by the orientation of the microstructure, the highest rates typically being observed on the cut surfaces. Two methods are presented which allow deconvolution of the corrosion rates from immersion testing of specimens containing cut surfaces, thus allowing reliable prediction of the long-term corrosion rate of plate surfaces. (authors)

  1. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1996-08-01

    In Phase 1 of this project, a variety of developmental and commercial tubing alloys and claddings was exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF 709, 690 clad, and 671 clad for over 10,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy are being exposed for 4,000, 12,000, and 16,000 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after approximately 4,400 hours of exposure.

  2. Acceptance Test Report for Fourth-Generation Hanford Corrosion Monitoring Cabinet

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This Acceptance Test Plan (ATP) will document the satisfactory operation of the third-generation corrosion monitoring cabinet (Hiline Engineering Part No.0004-CHM-072-C01). This ATP will be performed by the manufacturer of the cabinet prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion monitoring cabinet. The test will consist of a continuity test of the cabinet wiring from the end of cable to be connected to corrosion probe, through the appropriate intrinsic safety barriers and out to the 15 pin D-shell connectors to be connected to the corrosion monitoring instrument. Additional testing will be performed using a constant current and voltage source provided by the corrosion monitoring hardware manufacturer to verify proper operation of corrosion monitoring instrumentation

  3. Exposure testing of fasteners in preservative treated wood : gravimetric corrosion rates and corrosion product analyses

    Science.gov (United States)

    Samuel L. Zelinka; Rebecca J. Sichel; Donald S. Stone

    2010-01-01

    Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27oC at 100% relative humidity for 1 year. The...

  4. The potential for stress corrosion cracking of copper containers in a Canadian nuclear fuel waste disposal vault

    International Nuclear Information System (INIS)

    King, F.

    1996-09-01

    The potential for stress corrosion cracking (SCC) of copper nuclear fuel waste containers in a conceptual Canadian disposal vault has been assessed through a review of the literature and comparison of those environmental factors that cause SCC with the expected disposal environment. Stress-corrosion cracking appears to be an unlikely failure mode for Cu containers in a Canadian disposal vault because of a combination of environmental factors. Most importantly, there is only a relatively short period during which the containers will be undergoing strain when cracking should be possible at all, and then cracking is not expected because of the absence of known SCC agents, such as NH 3 , NO 2 - or organic acids. In addition, other environmental factors will mitigate SCC, namely, the presence of C1 - and its effect on film properties and the limited supply of oxidants. These arguments, to greater or lesser extent, apply to the three major mechanisms proposed for SCC of Cu alloys in aqueous solutions: film-rupture/anodic dissolution, tarnish rupture and film-induced cleavage. Detailed reviews of the SCC literature are presented as Appendices. The literature on the SCC of Cu (>99 wt.% Cu) is reviewed, including studies carried out in a number of countries under nuclear waste disposal conditions. Because of similarities with the behaviour of Cu, the more extensive literature on the SCC of α-brass in ammonia solutions is also reviewed. (author). 140 refs., 3 tabs., 25 figs

  5. Thermodynamic studies on corrosion inhibition of aqueous solutions of amino/carboxylic acids toward copper by EMF measurement

    International Nuclear Information System (INIS)

    Spah, Manjula; Spah, Dal Chand; Deshwal, Balraj; Lee, Seungmoon; Chae, Yoon-Keun; Park, Jin Won

    2009-01-01

    Electromotive force (E) measurements were made on an electrochemical cell [Cu x Hg|CuCl 2 (m) in a solvent S|AgCl-Ag] (where S is a dilute aqueous solution (0.01 m) of amino acid (glycine, alanine, methionine and glutamic acid) or aliphatic carboxylic acid (formic acid, acetic acid, n-butyric acid and glutaric acid)) at 30 deg. C. These measured E values were used to compute the dissociation constants (K 1 and K 2 ) and the degree of dissociation (α 1 and α 2 ) by iterative procedures. The standard cell potential (E o ) and the mean activity coefficient (γ ± ) of CuCl 2 were also determined. The E o data were next used to evaluate the Gibbs energy of transfer (ΔG tr 0 ) of CuCl 2 from water to dilute aqueous solutions of the amino/carboxylic acids. The negative ΔG tr 0 values suggested that these acids act as potential corrosion inhibitors. The magnitudes of ΔG tr 0 values show that the amino acids act as better corrosion inhibitors towards copper than the aliphatic carboxylic acids.

  6. The study of marine corrosion of copper alloys in chlorinated condenser cooling circuits: the role of microbiological components.

    Science.gov (United States)

    Carvalho, Maria L; Doma, Jemimah; Sztyler, Magdalena; Beech, Iwona; Cristiani, Pierangela

    2014-06-01

    The present paper reports the on-line monitoring of corrosion behavior of the CuNi 70:30 and Al brass alloys exposed to seawater and complementary offline microbiological analyses. An electrochemical equipment with sensors specifically set for industrial application and suitable to estimate the corrosion (by linear polarization resistance technique), the biofilm growth (by the BIOX electrochemical probe), the chlorination treatment and other physical-chemical parameters of the water has been used for the on-line monitoring. In order to identify and better characterize the bacteria community present on copper alloys, tube samples were collected after a long period (1year) and short period (2days) of exposition to treated natural seawater (TNSW) and natural seawater (NSW). From the collected samples, molecular techniques such as DNA extraction, polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE) and identification by sequencing were performed to better characterize and identify the microbial biodiversity present in the samples. The monitoring data confirmed the significant role played by biofouling deposition against the passivity of these Cu alloys in seawater and the positive influence of antifouling treatments based on low level dosages. Molecular analysis indicated biodiversity with the presence of Marinobacter, Alteromonas and Pseudomonas species. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Fracture testing and performance of beryllium copper alloy C 17510

    International Nuclear Information System (INIS)

    Murray, H.A.; Zatz, I.J.

    1992-01-01

    A series of test programs was undertaken on copper beryllium alloy C 17510 for several variations in material process and chemistry. These variations in C 17510 were primarily optimized for combinations of strength and conductivity. While originally intended for use as cyclically loaded high-field, high-strength conductors in fusion energy research, material testing of C 17510 has indicated that it is an attractive and economical alternative for a host of other structural, mechanical and electrical applications. ASTM tests performed on three variations of C 17510 alloys included both J-integral and plane strain fracture toughness testing (E813, E399) and fatigue crack growth rate tests (E647), as well as verifying tensile, hardness, Charpy, and other well defined mechanical properties. Fracture testing was performed at both room and liquid nitrogen temperatures, which bound the thermal environment anticipated for the fusion components being designed. Fatigue crack propagation stress ratios ranged from nominal zero to minus one at each temperature

  8. Some aspects of the role of inhibitors in the corrosion of copper in tap water as observed by cyclic voltammetry

    International Nuclear Information System (INIS)

    Bi, H.; Burstein, G.T.; Rodriguez, B.B.; Kawaley, G.

    2016-01-01

    Highlights: • The presence of Fernox ® inhibits both the anodic and cathodic reactions of copper in tap water, with the anodic reaction more heavily supressed. • Fernox ® is more inhibitive than the individual components, BTA or TEA, and also more inhibitive than a mixture of the two. • BTA is the dominant inhibitive component of Fernox ® . TEA also inhibits the reaction, but less effectively. • The inhibitors show the same degree of inhibition and the same mechanism of inhibition in hard and soft tap water. • A mechanism of inhibition is proposed whereby the inhibitor forms a film on the surface, which is reactive: surface polymerization of the reactive inhibitor is proposed. - Abstract: Cyclic voltammetric examination of the corrosion and inhibition of copper in hard and soft tap-waters in the presence of a commercial inhibitor containing benzotriazole (BTA) and triethanolamine (TEA), or its separate components, is presented. The anodic and cathodic reactions are both strongly inhibited, although the anodic reaction more so. BTA is by far the dominant inhibiting component. The inhibitor forms a polymerized reactive adsorbed surface film. Inhibition of the cathodic reaction (oxygen reduction) is not due to electron resistivity of the inhibitor, but rather, by heavily reduced surface coverage of adsorbed oxygen over a wide range of oxygen reduction overpotential.

  9. THE ROLE OF PIPE AGEING IN COPPER CORROSION BY-PRODUCT RELEASE

    Science.gov (United States)

    The presence of sulphate, bicarbonate and orthophosphate can change the type of solid present in systems containing cupric ion or cupric hydroxide solids. In some cases, a short-term reduction in copper solubility is realized, but over longer periods of time formation of basic c...

  10. Corrosion characterization of in-situ titanium diboride (TiB2) reinforced aluminium-copper (Al-Cu) alloy by two methods: Salts spray fog and linear polarization resistance (LPR)

    Science.gov (United States)

    Rosmamuhamadani, R.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.; Hanim, M. A. Azmah

    2018-05-01

    Aluminium-copper (Al-Cu) alloys is the one of most Metal Matrix Composites (MMCs) have important high-strength Al alloys. The aluminium (Al) casting alloys, based on the Al-Cu system are widely used in light-weight constructions and transport applications requiring a combination of high strength and ductility. In this research, Al-Cu master alloy was reinforced with 3 and 6wt.% titanium diboride (TiB2) that obtained from salts route reactions. The salts used were were potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4). The salts route reaction process were done at 800 °C. The Al-Cu alloy then has characterized on the mechanical properties and microstructure characterization. Salts spray fog test and Gamry-electrode potentiometer instruments were used to determine the corrosion rate of this alloys. From results obtained, the increasement of 3wt.%TiB2 contents will decrease the value of the corrosion rate. In corrosion test that conducted both of salt spray fog and Gamry-electrode potentiometer, the addition of 3wt.%TiB2 gave the good properties in corrosion characterization compare to Al-Cu-6wt.%TiB2 and Al-Cu cast alloy itself. As a comparison, Al-Cu with 3wt.%TiB2 gave the lowest value of corrosion rate, which means alloy has good properties in corrosion characterization. The results obtained show that in-situ Al-Cu alloy composites containing the different weight of TiB2 phase were synthesized successfully by the salt-metal reaction method.

  11. Test Production of Anti-Corrosive Paint in Laboratory Scale

    International Nuclear Information System (INIS)

    Thein Thein Win, Daw; Khin Aye Tint, Daw; Wai Min Than, Daw

    2003-02-01

    The main purpose of this project is to produce the anti-corrosive paint in laboratory scale. In these experiments, local raw materials, natural resin (shellac), pine oil, turpentine and ethyl alcohol wer applied basically. Laboratory trials were undrtaken to determine the suitablity of raw materials ane their composition for anti-corrosive paint manufacture.The results obtained show that the anti-corrosive paint from experiment No.(30) is suitable for steel plate and this is also considered commercially economics

  12. Field test corrosion experiences when co-firing straw and coal: 10 year status within Elsam

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Berg; Montgomery, Melanie; Larsen, Ole Hede

    2007-01-01

    and straw at the 150 MW pulverized coal fired boiler Studstrup unit 1. Two exposure series lasting 3000 hours each were performed for co-firing 10 and 20% of straw (% energy basis) with coal. Using built in test tubes in the hot end of the actual superheaters and air/water cooled corrosion probes...... to 575 degrees C and for the flue gas from 1025 to 1300 degrees C. All these test tubes have been removed during the last three years at one year intervals for corrosion studies. The corrosion studies performed on all investigated tubes included measurements of the corrosion attack, light optical...

  13. Corrosive effect of the type of soil in the systems of grounding more used (copper and stainless steel) for local soil samples from the city of Tunja (Colombia), by means of electrochemical techniques

    Science.gov (United States)

    Guerrero, L.; Salas, Y.; Blanco, J.

    2016-02-01

    In this work electrochemical techniques were used to determine the corrosion behaviour of copper and stainless steel electrodes, used in grounding varying soil type with which they react. A slight but significant change in the corrosion rate, linear polarization resistance and equivalent parameters in the technique of electrochemical impedance spectroscopy circuit was observed. Electrolytes in soils are slightly different depending on laboratory study, but the influence was noted in the retention capacity of water, mainly due to clays, affecting ion mobility and therefore measures such as the corrosion rate. Behaviour was noted in lower potential for copper corrosion, though the corrosion rate regardless of the type of soil, was much higher for electrodes based on copper, by several orders of magnitude.

  14. An acceleration test for stress corrosion cracking using humped specimen

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Fukumura, Takuya; Totsuka, Nobuo

    2003-01-01

    By using the humped specimen, which is processed by the humped die, in the slow strain rate technique (SSRT) test, fracture facet due to stress corrosion cracking (SCC) can be observed in relatively short duration. Although the cold work and concentrated stress and strain caused by the characteristic shape of the specimen accelerate the SCC, to date these acceleration effects have not been examined quantitatively. In the present study, the acceleration effects of the humped specimen were examined through experiments and finite element analyses (FEA). The experiments investigated the SCC of alloy 600 in the primary water environment of a pressurized water reactor. SSRT tests were conducted using two kinds of humped specimen: one was annealed after hump processing in order to eliminate the cold work, and the other was hump processed after the annealing treatment. The work ratio caused by the hump processing and stress/strain conditions during SSRT test were evaluated by FEA. It was found that maximum work ratio of 30% is introduced by the hump processing and that the distribution of the work ratio is not uniform. Furthermore, the work ratio is influenced by the friction between the specimen and dies as well as by the shape of dies. It was revealed that not only the cold work but also the concentrated stress and strain during SSRT test accelerate the crack initiation and growth of the SCC. (author)

  15. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Tong [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Shahzad, M. Babar [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xu, Dake [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Sun, Ziqing; Zhao, Jinlong [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Yang, Chunguang, E-mail: cgyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Qi, Min [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2017-02-01

    The effects of addition of different Cu content (0, 2.5 and 3.5 wt%) on mechanical properties, corrosion resistance and antibacterial performance of 316L austenitic stainless steel (SS) after solution and aging treatment were investigated by mechanical test, transmission electron microscope (TEM), X-ray diffraction (XRD), electrochemical corrosion, X-ray photoelectron spectroscopy (XPS) and antibacterial test. The results showed that the Cu addition and heat treatment had no obvious influence on the microstructure with complete austenite features. The yield strength (YS) after solution treatment was almost similar, whereas the aging treatment obviously increased the YS due to formation of tiny Cu-rich precipitates. The pitting and protective potential of the solution treated Cu-bearing 316L SS in 0.9 wt% NaCl solution increased with increasing Cu content, while gradually declined after aging, owing to the high density Cu-rich precipitation. The antibacterial test proved that higher Cu content and aging were two compulsory processes to exert good antibacterial performance. The XPS results further indicated that aging enhanced the Cu enrichment in passive film, which could effectively stimulate the Cu ions release from the surface of passive film. - Highlights: • Higher Cu addition and aging guaranteed an excellent antibacterial property. • The Cu addition and heat treatment had no obvious influence on the microstructure. • The lower corrosion resistance for aging was attributed to Cu-rich precipitates.

  16. Electrochemical noise of the erosion-corrosion of copper in relation with its hydrodynamic parameters; Ruido electroquimico de la erosion-corrosion en cobre: su relacion con los parametros hidrodinamicos

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, I.; Romero, M.; Malo, J.M.; Uruchurtu, J.

    2010-07-01

    This work presents the electrochemical noise results obtained of the surface degradation on copper, due to erosion corrosion phenomena, which were a function of the hydrodynamic parameters of the system (fluid movement). A modified rotating cylinder (RC) comprising three ring electrodes under two rotating speeds (880 and 1750 rpm with a Reynolds numbers 1486 Re and 2972 Re, respectively) were used. Characteristic electrochemical noise spectra as a function of the hydrodynamic parameters were found, as well as surface attack intensities the noise signal. An increase and a more uniform attack due to particle impact was related to larger particle size and lesser erosion corrosion intensity, in the form of more localized attack over the surface, was obtained for smaller ones. Erosion corrosion attack presents characteristic electrochemical current and potential noise signals, according to the laminar or transitional turbulent regime and particle size added. (Author).

  17. In situ corrosion tests on HLW glass as part of a larger approach

    International Nuclear Information System (INIS)

    Van Iseghem, P.

    1997-01-01

    In-situ corrosion tests were performed on various candidate high-level waste glasses in the underground laboratory in clay underneath SCK x CEN. The tests exposed the glass samples directly to the Boom clay rock, for maximum durations of 7.5 years. We succeeded to interpret the corrosion data at 90 deg C in terms of dissolution mechanisms, and we concluded that the glass composition has a determining effect on the corrosion stability. The data from our in-situ tests were of high relevance for estimating the long-term behaviour of the glasses. The long-term in-situ tests provide corrosion data which show different trends than other corrosion tests, e.g. shorter duration tests in Boom clay, or tests in deionized water. The initial dissolution rate using MCC1 test at 90 deg C is about the same for the three glasses discussed, but the longest duration in Boom clay at 90 deg C shows a difference in mass loss of about 25 times. We finally present some ideas on how the corrosion tests can meet the needs, such as the modelling of the glass corrosion or providing input in the performance assessment. (author)

  18. Proposed Guidelines for Selection of Methods for Erosion-corrosion Testing in Flowing Liquids

    International Nuclear Information System (INIS)

    Matsumura, Masanobu

    2007-01-01

    The corrosion of metals and alloys in flowing liquids can be classified into uniform corrosion and localized corrosion which may be categorized as follows. (1) Localized corrosion of the erosion-corrosion type: the protective oxide layer is assumed to be removed from the metal surface by shear stress or turbulence of the fluid flow. A macro-cell may be defined as a situation in which the bare surface is the macro-anode and the other surface covered with the oxide layer is the macro-cathode. (2) Localized corrosion of the differential flow-velocity corrosion type: at a location of lower fluid velocity, a thin and coarse oxide layer with poor protective qualities may be produced because of an insufficient supply of oxygen. A macro-cell may be defined as a situation in which this surface is the macro-anode and the other surface covered witha dense and stable oxide layer is the macro-cathode. (3) Localized corrosion of the active/passive-cell type: on a metal surface a macro-cell may be defined as a situation in which a part of it is in a passivation state and another in an active dissolution state. This situation may arise from differences in temperature as well as in the supply of the dissolved oxygen. Compared to uniform corrosion, localized corrosion tends to involve a higher wall thinning rate (corrosion rate) due to the macro-cell current as well as to the ratio of the surface area of the macro-anode to that of the macro-cathode, which may be rationalized using potential vs. current density diagrams. The three types of localized corrosion described above can be reproduced in a Jet-in-slit test by changing the flow direction of the test liquid and arranging environmental conditions in an appropriate manner

  19. Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test

    International Nuclear Information System (INIS)

    Lyon, S.B.; Thompson, G.E.; Johnson, J.E.; Wood, G.C.

    1989-01-01

    Aluminum corrosion is important in overhead electrical conductors constructed from aluminum wire centrally reinforced by galvanized steel strands. Inspection of conductor after long service has implicated rubber bushing material, on the outside, and the galvanized strands, on the inside, as providing potential galvanic sites for the initiation of rapid aluminum corrosion. Therefore, the galvanic corrosion of aluminum in contact with graphite-loaded neoprene rubber, hot-dip galvanized steel and steel was assessed in a cyclic wet/dry exposure test using mixed-salts spray solutions containing appropriate ratios of sulfate and chloride ion. Aluminum was found to corrode at between 3 to 6 times its uncoupled rate when associated with the rubber material. While the eta-phase, relatively pure Zn, galvanized layer remained intact, galvanic corrosion of aluminum was slow. However, on exposure of the zeta-phase, Zn/Fe intermetallic layer, aluminum corroded about 35 times faster than expected in a solution with a high level of Cl - ion. The importance of these data to conductor lifetime is discussed

  20. Microbiologically influenced corrosion in the service water system of a test reactor

    International Nuclear Information System (INIS)

    Subba Rao, T.; Venugopalan, V.P.; Nair, K.V.K.

    1995-01-01

    This paper addresses the biofouling and corrosion problems in the service water system of a test reactor. Results of microbiological, electron microscopic and chemical analyses of water and deposit samples indicate the role of bacteria in the corrosion process. The primary role played by iron oxidising bacteria is emphasised. (author). 7 refs., 2 figs., 1 tab

  1. Digital speckle correlation for nondestructive testing of corrosion

    Science.gov (United States)

    Paiva, Raul D., Jr.; Soga, Diogo; Muramatsu, Mikiya; Hogert, Elsa N.; Landau, Monica R.; Ruiz Gale, Maria F.; Gaggioli, Nestor G.

    1999-07-01

    This paper describes the use of optical correlation speckle patterns to detect and analyze the metallic corrosion phenomena, and shows the experimental set-up used. We present some new results in the characterization of the corrosion process using a model based in electroerosion phenomena. We also provide valuable information about surface microrelief changes, which is also useful in numerous engineering applications. The results obtained are good enough for showing that our technique is very useful for giving new possibilities to the analysis of the corrosion and oxidation process, particularly in real time.

  2. Study on the correlation between long-term exposure tests and accelerated corrosion tests by the combined damage of salts

    International Nuclear Information System (INIS)

    Park, Sang Soon; Lee, Min Woo

    2014-01-01

    Interest in the durability assessment and structural performance has increased according to an increase of concrete structures in salt damage environment recent years. Reliable way ensuring the most accelerated corrosion test is a method of performing the rebar corrosion monitoring as exposed directly to the marine test site exposure. However, long-term exposure test has a disadvantage because of a long period of time. Therefore, many studies on reinforced concrete in salt damage environments have been developed as alternatives to replace this. However, accelerated corrosion test is appropriate to evaluate the critical chlorine concentration in the short term, but only accelerated test method, is not easy to get correct answer. Accuracy of correlation acceleration test depends on the period of the degree of exposure environments. Therefore, in this study, depending on the concrete mix material, by the test was performed on the basis of the composite degradation of the salt damage, and investigate the difference of corrosion initiation time of the rebar, and indoor corrosion time of the structure, of the marine environment of the actual environments were investigated. The correlation coefficient was derived in the experiment. Long-term exposure test was actually conducted in consideration of the exposure conditions submerged zone, splash zone and tidal zone. The accelerated corrosion tests were carried out by immersion conditions, and by the combined deterioration due to the carbonation and accelerated corrosion due to wet and dry condition

  3. Insights on the Role of Copper Addition in the Corrosion and Mechanical Properties of Binary Zr-Cu Metallic Glass Coatings

    Directory of Open Access Journals (Sweden)

    Junlei Tang

    2017-12-01

    Full Text Available The effect of copper addition on the corrosion resistance and mechanical properties of binary Zr100–xCux (x = 30, 50, 80, 90 at.% glassy coatings was investigated by means of electrochemical measurements, scanning electron microscopy (SEM, energy dispersive analysis spectroscopy (EDS, X-ray photoelectron spectroscopy (XPS and nano-indentation techniques. The corrosion resistance in 0.01 M deaerated H2SO4 solution and the mechanical properties of the Zr-Cu glassy coatings depend considerably upon the copper content in the glassy matrix. The top surfaces of the Zr-Cu coatings with lower Cu content were covered by a compact protective ZrO2 passive film. The competition between the oxidation of Zr atoms (ZrO2 film formation and the oxidation–dissolution of Cu atoms assumed the most important role in the electrochemical behavior of the Zr-Cu glassy coatings. The generation of ZrO2 on the surface benefited the formation of passive film; and the corrosion resistance of the metallic glass coatings depended on the coverage degree of ZrO2 passive film. The evolution of free volume affected both the mechanical and corrosion behaviors of the Zr-Cu glassy coatings.

  4. Results of water corrosion in static cell tests representing multi-metal assemblies in the hydraulic circuits of Tore supra

    Energy Technology Data Exchange (ETDEWEB)

    Lipa, M. [CEA/DSM/DRFC Centre de Cadarache, 13 - Saint-Paul lez Durance (France); Blanchet, J.; Cellier, F. [Framatome, 71 - Saint Marcel (France). Centre Technique

    2007-07-01

    Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralised water with adjustment of the pH value to about 9.0/7.0 (25 C/200 C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal combinations survived the test campaign without stress corrosion cracking, with the exception of the memory metal junction (creep in Cu) and the bellows made of St-St 316L and Inconel 625 while 316 Ti bellows survived. In contrary to the vacuum brazed Cu-LSTP to St-St samples, some of flame brazed Cu to St-St samples failed either in the braze joint or in the copper structure itself. For comparison, a spot weld of an inflated 316L panel sample, filled voluntary with a caustic solution of pH 11.5 (25 C), failed after 90 h of testing (intergranular cracking at the spot weld), while an identical sample containing AVT water of pH 9.0 (25 C) survived without damage. The results of these tests, performed during 1986 and 1997, have never been published and therefore are presented more in detail in this paper since corrosion in hydraulic circuits is also an issue of ITER. Up to day, the TS cooling water plant operates with an above mentioned water treatment and no water leaks have been detected on in-vessel components originating from water corrosion at high temperature and high pressure. (orig.)

  5. Results of water corrosion in static cell tests representing multi-metal assemblies in the hydraulic circuits of Tore supra

    International Nuclear Information System (INIS)

    Lipa, M.; Blanchet, J.; Cellier, F.

    2007-01-01

    Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralised water with adjustment of the pH value to about 9.0/7.0 (25 C/200 C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal combinations survived the test campaign without stress corrosion cracking, with the exception of the memory metal junction (creep in Cu) and the bellows made of St-St 316L and Inconel 625 while 316 Ti bellows survived. In contrary to the vacuum brazed Cu-LSTP to St-St samples, some of flame brazed Cu to St-St samples failed either in the braze joint or in the copper structure itself. For comparison, a spot weld of an inflated 316L panel sample, filled voluntary with a caustic solution of pH 11.5 (25 C), failed after 90 h of testing (intergranular cracking at the spot weld), while an identical sample containing AVT water of pH 9.0 (25 C) survived without damage. The results of these tests, performed during 1986 and 1997, have never been published and therefore are presented more in detail in this paper since corrosion in hydraulic circuits is also an issue of ITER. Up to day, the TS cooling water plant operates with an above mentioned water treatment and no water leaks have been detected on in-vessel components originating from water corrosion at high temperature and high pressure. (orig.)

  6. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  7. Fracture testing and performance of beryllium copper alloy C17510

    International Nuclear Information System (INIS)

    Murray, H.A.; Zatz, I.J.

    1994-05-01

    When a literature search and discussion with manufacturers revealed that there was virtually no existing data related to the fracture properties and behavior of copper beryllium alloy C17510, a series of test programs was undertaken to ascertain this information for several variations in material processing and chemistry. These variations in C17510 were primarily optimized for combinations of strength and conductivity. While originally intended for use as cyclically loaded high-field, high-strength conductors in fusion energy research, material testing of C17510 has indicated that it is an attractive and economical alternative for a host of other structural, mechanical and electrical applications. ASTM tests performed on three variations of C17510 alloys included both J-integral and plane strain fracture toughness testing and fatigue crack growth rate tests, as well as verifying tensile, hardness, Charpy, and other well defined mechanical properties. Fracture testing was performed at both room and liquid nitrogen temperatures, which bound the thermal environment anticipated for the fusion components being designed. Fatigue crack propagation stress ratios ranged from nominal zero to minus one at each temperature. In order to confirm the test results, duplicate and independent test programs were awarded to separate facilities with appropriate test experience, whenever possible. The primary goal of the test program, to determine and bound the fracture toughness and Paris constants for C17510,was accomplished. In addition, a wealth of information was accumulated pertaining to crack growth characteristics, effects of directionality and potential testing pitfalls. The paper discusses the test program and its findings in detail

  8. Anti-corrosion film formed on HAl77-2 copper alloy surface by aliphatic polyamine in 3 wt.% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yinzhe; Yang, Dong; Zhang, Daquan, E-mail: zhdq@sh163.net; Wang, Yizhen; Gao, Lixin

    2017-01-15

    Highlights: • Properties of ADDD meet environment-friendly requirements. • ADDD’s inhibition efficiency is better than BTA at the low concentration. • ADDD adsorbs on the copper alloy surface by via the N atom in its amino group using flat mode. - Abstract: The corrosion inhibition of a polyamine compound, N-(4-amino-2, 3-dimethylbutyl)-2, 3-dimethylbutane-1, 4-diamine (ADDD), was investigated for HAl77-2 copper alloy in 3 wt.% NaCl solution. Electrochemical measurements, scanning electron microscopy (SEM), atomic force microscope (AFM) and Fourier transform infrared spectroscopy (FT-IR) techniques were employed for this research. The results show that ADDD strongly suppresses the corrosion of HAl77-2 alloy. The inhibition efficiency of ADDD is 98.6% at 0.5 mM, which is better than benzotriazole (BTAH) at the same concentration. Polarization curves indicate that ADDD is an anodic type inhibitor. Surface analysis suggests that a protective film is formed via the interaction of ADDD and copper. FT-IR reveals that the inhibition mechanism of ADDD is dominated by chemisorption onto the copper alloy surface to form an inhibition film. Furthermore, quantum chemical calculation and molecular dynamics (MD) simulations methods show that ADDD adsorbs on HAl77-2 surface via amino group in its molecule.

  9. Test methods for microbiologically influenced corrosion (MIC) in marine environments

    International Nuclear Information System (INIS)

    Little, B.; Wagner, P.; Mansfeld, F.

    1992-01-01

    Electrochemical techniques such as measurements of corrosion and redox potentials, polarization curves, polarization resistance, electrochemical impedance and electrochemical noise have been used to evaluate the impact of marine microorganisms on corrosion processes. Surface analytical techniques including microbiological culturing, scanning electron microscopy, microprobes and microelectrodes have been used to characterize metal surfaces after exposure to marine waters. A combination of electrochemical, surface analytical and microbiological techniques is the most promising approach for determining mechanisms of MIC

  10. Preparation and testing of corrosion and spallation-resistant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, John P. [Univ. of North Dakota, Grand Forks, ND (United States); Cavalli, Matthew N. [Univ. of North Dakota, Grand Forks, ND (United States)

    2016-06-30

    its standard oxidation, spallation, and corrosion testing, which was scheduled for completion in the spring of 2016. However, because of commercial demands, the tests were not completed by the time of this report except some initial spallation tests at 1150°C. In those tests, several of the APMT plates separated from the CM247LC, likely because of the remaining aluminum oxide scale on the surface of the CM247LC. This implies that surface preparation may need to include machining to remove the oxide scale before bonding rather than just sandblasting. In previous tensile testing at 950°C, the breaks in the tensile samples always occurred in the APMT and not at the joints. Gasifier sampling was completed to determine what types of trace contaminants may occur in cleaned and combusted syngas and that could lead to corrosion or deposition in turbines firing coal syngas. The sampling was done from a pressurized fluidized-bed gasifier and a pressurized entrained-flow gasifier. The particles captured on a filter from syngas were typically 0.2 to 0.5 μm in diameter, whereas those captured from the combusted syngas were slightly larger and more spherical. X-ray photoelectron spectroscopy done at Oak Ridge National Laboratory showed that the particles do not contain any metals and have an atomic composition almost identical to that of the polycarbonate filter. This indicates that the particles are primarily soot-based and not formed from volatilization of metals in the gasifiers.

  11. Evaluation of Accelerated Graphitic Corrosion Test of Gray Cast Iron

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Hong, Jong Dae; Chang Heui; Na, Kyung Hwan; Lee, Jae Gon

    2011-01-01

    In operating nuclear power plants, gray cast iron is commonly used as materials for various non-safety system components including pipes in fire water system, valve bodies, bonnets, and pump castings. In such locations, operating condition does not require alloy steels with excellent mechanical properties. But, a few corrosion related degradation, or graphitic corrosion is frequently occurred to gray cast iron during the long-term operation in nuclear power plant. Graphitic corrosion is selective leaching of iron from gray cast iron, where iron gets removed and graphite grains remain intact. In U.S.A., one-time visual inspection and hardness measurement are required from regulatory body to detect the graphitic corrosion for the life extension evaluation of the operating nuclear power plant. In this study, experiments were conducted to make accelerated graphitic corrosion of gray cast iron using electrochemical method, and hardness was measured for the specimens to establish the correlation between degree of graphitic corrosion and surface hardness of gray cast iron

  12. Gallium-cladding compatibility testing plan. Phases 1 and 2: Test plan for gallium corrosion tests. Revision 2

    International Nuclear Information System (INIS)

    Wilson, D.F.; Morris, R.N.

    1998-05-01

    This test plan is a Level-2 document as defined in the Fissile Materials Disposition Program Light-Water-Reactor Mixed-Oxide Fuel Irradiation Test Project Plan. The plan summarizes and updates the projected Phases 1 and 2 Gallium-Cladding compatibility corrosion testing and the following post-test examination. This work will characterize the reactions and changes, if any, in mechanical properties that occur between Zircaloy clad and gallium or gallium oxide in the temperature range 30--700 C

  13. Test installation for studying erosion-corrosion of metals for coal washing plants

    Energy Technology Data Exchange (ETDEWEB)

    Hoey, G. R.; Dingley, W.; Wiles, C. T.

    1979-02-15

    A test installation was constructed for investigating erosion-corrosion of metals by coal-water slurries. Erosion-corrosion tests of mild steel panels were conducted using slurries of alundum, quartz, washed coal and coal refuse. Wear rates were found to depend on type of abrasive, particle size and water conductivity and were reduced by cathodic protection and inhibitors. Cathodic protection of mild steel in coal slurries containing sulphate ion reduced wear by 90% and 86% for stationary and rotating panels, respectively. This study has demonstrated that the successful application of corrosion control techniques would reduce metal wastage in coal washing plants. The test installation is considered suitable for developing the techniques.

  14. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    Science.gov (United States)

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  15. Multi-Function Waste Tank Facility Corrosion Test Report (Phase 1)

    International Nuclear Information System (INIS)

    Carlos, W. C.; Fritz, R. L.

    1993-01-01

    This report documents the results of the corrosion tests that were performed to aid in the selection of the construction materials for multi-function waste tanks to be built in the U.S. Department of Energy Hanford Site. Two alloys were tested: 304L and Alloy 20 austenitic stainless steel. The test media were aqueous solutions formulated to represent the extreme of the chemical compositions of waste to be stored in the tanks. The results summerized by alloy are as follows: For 304L the tests showed no stress-corrosion cracking in any of the nine test solutions. The tests showed pitting in on of the solutions. There were no indications of any weld heat-tint corrosion, nor any sign of preferential corrosion in the welded areas. For Alloy 20 the tests showed no general, pitting, or stress-corrosion cracking. One crevice corrosion coupon cracked at the web between a hole and the edge of the coupon in one of the solutions. Mechanical tests showed some possible crack extension in the same solution. Because of the failure of both alloys to meet test acceptance criteria, the tank waste chemistry will have to be restricted or an alternative alloy tested

  16. Development of Copper Canister through Cold Sprayed Coating Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Soo; Choi, Jong Won; Choi, Heui Joo; Lee, Jong Youl; Jeong, Jong Tae; Kim, Sung Ki; Cho, Dong Keun

    2007-12-15

    General thickness of a copper canister is 5 cm for a underground disposal application. The lower limit of a thickness is determined by a forging technology. But many experts in this area agrees that the thickness 1 cm is enough at the underground disposal for the life time of 1,000,000 years. Thus new technology is suggested for the making 1 cm thickness copper canister, that is a cold spray coating method(CSC). In this report, the CSC is examined and the technical possibility for making copper canister is measured. The overview of CSC and its characteristics are discussed. Various copper particles for the CSC are analyzed and the formed coating layers are examined to find their porosity and uniformity. A Tafa copper particle and Chang-sung copper particle are selected for making 1 cm thick test specimen. Using the CSC specimens, tensile test and XRD analysis are performed. As a corrosion evaluation, a electrochemical test such as a polarization test is done, together with humid corrosion test and chloric acid immersion test. Through the corrosion tests, it is tried to confirm that the CSC is valuable method for making a copper canister. Consequently, it is confirmed that the CSC method is very usful for making 1 cm thick copper canister. the porosity of CSC layer is very low at 0.3 in case of Tafa copper layer. In corrosion tests, the CSC layers are very stable in active environments. It is hard to say that the difference of processing method but the purity of copper is important for the corrosion rate evaluation. The CSC method is very effective method for making 1 cm thick copper canister, It is hoped that the CSC method is applied in a HLW underground disposal system in the future.

  17. Development of Copper Canister through Cold Sprayed Coating Method

    International Nuclear Information System (INIS)

    Lee, Min Soo; Choi, Jong Won; Choi, Heui Joo; Lee, Jong Youl; Jeong, Jong Tae; Kim, Sung Ki; Cho, Dong Keun

    2007-12-01

    General thickness of a copper canister is 5 cm for a underground disposal application. The lower limit of a thickness is determined by a forging technology. But many experts in this area agrees that the thickness 1 cm is enough at the underground disposal for the life time of 1,000,000 years. Thus new technology is suggested for the making 1 cm thickness copper canister, that is a cold spray coating method(CSC). In this report, the CSC is examined and the technical possibility for making copper canister is measured. The overview of CSC and its characteristics are discussed. Various copper particles for the CSC are analyzed and the formed coating layers are examined to find their porosity and uniformity. A Tafa copper particle and Chang-sung copper particle are selected for making 1 cm thick test specimen. Using the CSC specimens, tensile test and XRD analysis are performed. As a corrosion evaluation, a electrochemical test such as a polarization test is done, together with humid corrosion test and chloric acid immersion test. Through the corrosion tests, it is tried to confirm that the CSC is valuable method for making a copper canister. Consequently, it is confirmed that the CSC method is very usful for making 1 cm thick copper canister. the porosity of CSC layer is very low at 0.3 in case of Tafa copper layer. In corrosion tests, the CSC layers are very stable in active environments. It is hard to say that the difference of processing method but the purity of copper is important for the corrosion rate evaluation. The CSC method is very effective method for making 1 cm thick copper canister, It is hoped that the CSC method is applied in a HLW underground disposal system in the future

  18. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Seitz, W.W.; Girshik, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1998-06-01

    In Phase 1 of this project, laboratory experiments were performed on a variety of developmental and commercial tubing alloys and claddings by exposing them to fireside corrosion tests which simulated a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, RA253MA, Fe{sub 3}Al + 5Cr, Ta-modified 310, NF 709, 690 clad, 671 clad, and 800HT for up to approximately 16,000 hours to the actual operating conditions of a 250-MW, coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, and controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy were exposed for 4,483, 11,348, and 15,883 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after the full 15,883 hours of exposure. A previous topical report has been issued for the 4,483 hours of exposure.

  19. Investigation of the cut-edge corrosion of organically-coated galvanized steel after accelerated atmospheric corrosion test

    Directory of Open Access Journals (Sweden)

    Reşit Yıldız

    2015-11-01

    Full Text Available The cut edge corrosion of organically coated (epoxy, polyurethane and polyester galvanized steel was investigated using electrochemical impedance spectroscopy (EIS. Measurements were performed on specimens that had been tested in an accelerated atmospheric corrosion test. The samples were subjected to 10 s fogging and 1 h awaiting cycles in an exposure cabinet (120 and 180 days with artificial acid rain solution. According to the investigation, the coatings were damaged from the cut edge into the sheet, this distance was about 0.8 cm. These defects were more pronounced at after 180 days in proportion to after 120 days.

  20. High temperature (salt melt) corrosion tests with ceramic-coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Schütz, Adelheid [University Bayreuth, Metals and Alloys, Ludwig-Thoma-Str. 36b, D-95447 Bayreuth (Germany); Günthner, Martin; Motz, Günter [University Bayreuth, Ceramic Materials Engineering, L.-Thoma-Str. 36b, D-95447 Bayreuth (Germany); Greißl, Oliver [EnBW Kraftwerke AG, Schelmenwasenstraße 13-15, D-70567 Stuttgart (Germany); Glatzel, Uwe, E-mail: uwe.glatzel@uni-bayreuth.de [University Bayreuth, Metals and Alloys, Ludwig-Thoma-Str. 36b, D-95447 Bayreuth (Germany)

    2015-06-01

    Thermal recycling of refuse in waste-to-energy plants reduces the problems connected to waste disposal, and is an alternative source of electric energy. However, the combustion process in waste incinerators results in a fast degradation of the steam-carrying superheater steel tubes by corrosive attack and abrasive wear. Higher firing temperatures are used to increase their efficiency but lead to higher corrosion rates. It is more economical to apply protective coatings on the superheater steel tubes than to replace the base material. In-situ tests were conducted in a waste-to-energy plant first in order to identify and quantify all involved corrosive elements. Laboratory scale experiments with salt melts were developed accordingly. The unprotected low-alloyed steel displayed substantial local corrosion. Corrosion was predominant along the grain boundaries of α-ferrite. The corrosion rate was further increased by FeCl{sub 3} and a mixture of HCL and FeCl{sub 3}. Coatings based on pre-ceramic polymers with specific filler particles were engineered to protect superheater tubes. Tests proved their suitability to protect low-alloYed steel tubes from corrosive attack under conditions typical for superheaterS in waste incinerators, rendering higher firing temperatures in waste-to-energy plants possible. - Highlights: • Corrosion wall thickness losses of 400 μm/2 weeks occurred in a waste incinerator. • Abrasion is a major problem on superheater tubes in waste incinerators. • Laboratory salt melt tests can simulate metal corrosion in waste incinerators. • Corrosion protection coatings for steel (temperature: max. 530 °C) were developed. • Higher steam temperatures are possible in WIs with the developed coatings.

  1. Corrosion of high-density sintered tungsten alloys. Part 1

    International Nuclear Information System (INIS)

    Batten, J.J.; McDonald, I.G.; Moore, B.T.; Silva, V.M.

    1988-10-01

    The corrosion behaviour of four tungsten alloys has been evaluated through weight loss measurements after total immersion in both distilled water insight into the mechanism of corrosion was afforded by an examination of the and 5% sodium chloride solutions. Some insight the mechanism of corrosion was afforded by using the Scanning Electron Microscopy and through an analysis of the corrosion products. Pure tungsten and all the alloys studied underwent corrosion during the tests, and in each case the rare of corrosion in sodium chloride solution was markedly less than that in distilled water. A 95% W, 3.5% Ni, 1.5% Fe alloy was found to be the most corrosion resistant of the alloys under the experimental conditions. Examination of the data shows that for each of the tests, copper as an alloying element accelerates corrosion of tungsten alloys. 9 refs., 7 tabs., 12 figs

  2. Towards corrosion testing of unglazed solar absorber surfaces in simulated acid rain

    International Nuclear Information System (INIS)

    Salo, T.; Pehkonen, A.; Konttinen, P.; Lund, P.

    2005-01-01

    Electrochemical impedance spectroscopy and potentiodynamic polarization tests were utilized for determining corrosion probabilities of unglazed C/Al 2 O 3 /Al solar absorber surfaces in simulated acid rain. Previously, the main degradation mechanism found was exponentially temperature-related hydration of aluminium oxide. In acid rain tests the main corrosion determinant was the pH value of the rain. Results indicate that these methods measure corrosion characteristics of Al substrate instead of the C/Al 2 O 3 /Al surface, probably mainly due to the rough and non-uniform microstructure of the latter. Further analyses of the test methods are required in order to estimate their applicability on Al-based uniform sputtered absorber surfaces. (author) (C/Al 2 O 3 /Al solar absorber; Acid rain; Corrosion; Electrochemical tests)

  3. Design and testing of corrosion damaged prestressed concrete joists: the Pescara Benchmark

    International Nuclear Information System (INIS)

    Di Evangelista, A; De Leonardis, A; Valente, C; Zuccarino, L

    2011-01-01

    An experimental campaign named the Pescara benchmark and devoted to study the dynamic behaviour of corroded p.c. joists has been conducted. The steel corrosion reduces the area of the reinforcement and causes cracking of concrete so that r/c members are subjected to loss of strength and stiffness. It is of interest to evaluate the corrosion level at which the damage can be detected through signal processing procedures and how close such level is to the r/c member safety limits. Joists of current industrial production having different steel to concrete ratios are tested in different laboratory conditions. Dynamic tests involve either free vibrations and forced vibrations due to a moving mass simulating actual traffic loads in railway bridges. The paper discusses the rationale of the tests including the set up of the artificial corrosion, the static characterization of the joist and the dynamic tests in the different stages of corrosion experienced.

  4. Material testing of copper by extrusion-cutting

    DEFF Research Database (Denmark)

    Segalina, F.; De Chiffre, Leonardo

    2017-01-01

    was developed and implemented on a CNC lathe. An investigation was carried out extrusion-cutting copper discs using high-speed-steel cutting tools at 100 m/min cutting speed. Flow stress values for copper under machining-relevant conditions were obtained from measurement of the extrusion-cutting force...

  5. Sensitivity and specificity of copper sulphate test in determining ...

    African Journals Online (AJOL)

    Background: The accuracy of the copper sulphate method for the rapid screening of prospective blood donors has been questioned because this rapid screening method may lead to false deferral of truly eligible prospective blood donors. Objective: This study was aimed at determining the sensitivity and specificity of copper ...

  6. A Time-Variant Reliability Model for Copper Bending Pipe under Seawater-Active Corrosion Based on the Stochastic Degradation Process

    Directory of Open Access Journals (Sweden)

    Bo Sun

    2018-03-01

    Full Text Available In the degradation process, the randomness and multiplicity of variables are difficult to describe by mathematical models. However, they are common in engineering and cannot be neglected, so it is necessary to study this issue in depth. In this paper, the copper bending pipe in seawater piping systems is taken as the analysis object, and the time-variant reliability is calculated by solving the interference of limit strength and maximum stress. We did degradation experiments and tensile experiments on copper material, and obtained the limit strength at each time. In addition, degradation experiments on copper bending pipe were done and the thickness at each time has been obtained, then the response of maximum stress was calculated by simulation. Further, with the help of one kind of Monte Carlo method we propose, the time-variant reliability of copper bending pipe was calculated based on the stochastic degradation process and interference theory. Compared with traditional methods and verified by maintenance records, the results show that the time-variant reliability model based on the stochastic degradation process proposed in this paper has better applicability in the reliability analysis, and it can be more convenient and accurate to predict the replacement cycle of copper bending pipe under seawater-active corrosion.

  7. Comparison of Corrosion Behavior of Low-Alloy Steel Containing Copper and Antimony with 409L Stainless Steel for a Flue Gas Desulfurization System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Ah; Shin, Su-Bin; Kim, Jung-Gu [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-07-15

    The corrosion behavior of low alloy steel containing Cu, Sb and 409L stainless steel was investigated for application in the low-temperature section of a flue gas desulfurization (FGD) system. The electrochemical properties were evaluated by potentiodynamic polarization testing and electrochemical impedance spectroscopy (EIS) in 16.9 vol% H{sub 2}SO{sub 4} + 0.35 vol% HCl at 60 ℃. The inclusions in these steels ere identified by electron probe microanalyzer (EPMA). The corrosion products of the steels were analyzed using scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The corrosion rate of the low alloy steel containing Cu, Sb was about 100 times lower than that of 409L stainless steel. For stainless steel without passivation, active corrosion behavior was shown. In contrast, in the low alloy steel, the Cu, Sb compounds accumulated on the surface improved the corrosion resistance by suppressing the anodic dissolution reaction.

  8. Synthetic sea water - An improved stress corrosion test medium for aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1973-01-01

    A major problem in evaluating the stress corrosion cracking resistance of aluminum alloys by alternate immersion in 3.5 percent salt (NaCl) water is excessive pitting corrosion. Several methods were examined to eliminate this problem and to find an improved accelerated test medium. These included the addition of chromate inhibitors, surface treatment of specimens, and immersion in synthetic sea water. The results indicate that alternate immersion in synthetic sea water is a very promising stress corrosion test medium. Neither chromate inhibitors nor surface treatment (anodize and alodine) of the aluminum specimens improved the performance of alternate immersion in 3.5 percent salt water sufficiently to be classified as an effective stress corrosion test method.

  9. Modeling and experimental tests of a copper thermosyphon

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Dias dos Santos

    2017-02-01

    Full Text Available Electrical energy, solar energy, and/or direct combustion of a fuel are the most common thermal sources for home water heating. In recent years, the use of solar energy has become popular because it is a renewable and economic energy source. Among the solar collectors, those assisted by thermosyphons are more efficient; therefore, they can enhance the heat transfer to water. A thermosyphon is basically a sealed tube filled with a working fluid and, normally, it has three regions: the evaporator, the adiabatic section and the condenser. The great advantage of this device is that the thermal resistance to heat transfer between its regions is very small, and as a result, there is a small temperature difference. This article aims to model a thermosyphon by using correlations based on its operation limits. This modeling will be used as a design tool for compact solar collectors assisted by thermosyphons. Based on the results obtained with the mathematical modeling, one copper thermosyphon, with deionized water as the working fluid, was developed and experimentally tested. The tests were carried out for a heat load varying from 30 to 60W in a vertical position. The theoretical and experimental results were compared to verify the mathematical model.

  10. Corrosion and Deterioration Testing in the Humid Tropic Environments

    Science.gov (United States)

    2014-07-21

    specimens while transporting the retrieved specimens back to the laboratories for detailed analysis . Preferably, each specimen should be wrapped...VEGETATION. Some types of vegetation tend to exude tannins , sugars, and other natural plant products which may support microbial growth and corrosion

  11. Operation corrosion test of austenitic steel bends for supercritical coal boilers

    Directory of Open Access Journals (Sweden)

    Cizner J.

    2016-03-01

    Full Text Available Corrosion tests of both annealed and not annealed bends of HR3C and S304H steels in operation conditions of black and brown coal combustion boilers in EPRU and EDE. After a long-term exposure, the samples were assessed gravimetrically and metallographically. The comparison of annealed and unannealed states showed higher corrosion rates in the annealed state; corrosion of the sample surface did not essentially differ for compression and tensile parts of the beams. Detailed assessment of both steels is described in detail in this study.

  12. Testing the permeability and corrosion resistance of micro-mechanically interlocked joints

    DEFF Research Database (Denmark)

    Byskov-Nielsen, Jeppe; Holm, Allan Hjarbæk; Højsholt, Rune

    2011-01-01

    Micro-mechanical interlocking (MMI) can be applied to create new and interesting composite materials. We have employed laser structuring to achieve MMI between stainless steel and plastic with extremely high joint strength. However, the water permeability and corrosion resistance of the joint must...... is conducted. The permeability seems to be consistent with the Hagen–Poiseuille equation independent of the laser structuring technique and is orders of magnitudes larger than the diffusion rate through the plastic. Two different types of corrosion tests have been undertaken, and we show that care must...... be taken in order not to degrade the corrosion resistance of the sample to an unacceptable level....

  13. Electrochemical testing of passivity state and corrosion resistance of supermartensitic stainless steels

    Directory of Open Access Journals (Sweden)

    S. Lasek

    2010-01-01

    Full Text Available On low interstitial - supermartensitic stainless steels (X1CrNiMo 12-5-1, X2CrNiMo 13-6-2, X1CrNiMo 12-6-2 the electrochemical potentiodynamic polarization tests were carried out and the passive state stability and localized corrosion resistance were compared and evaluated. The effect of quenching and tempering as well as the changes in microstructure on polarisation curves and corrosion properties at room temperature were established. Small differences in chemical composition of steels were also registered on their corrosion parameters changes and resistance.

  14. Evaluation of bioleaching column test of sulphide copper ore and copper concentrate using preconditioned surface

    Directory of Open Access Journals (Sweden)

    Videla Leiva Alvaro

    2016-01-01

    Full Text Available Bacterial activity can be related to the presence of Fe+3 in the solution, which drives copper oxidation during the secondary copper low grade sulfide ore leaching process. The present work evaluates improvements in kinetics of leaching when ferroxidans are preconditioned in an inert surface helping to build a biofilm which improves metabolism of the colony. The present work shows evaluation using laboratory columns to perform bioleaching during a 30 days period under three conditions: a base column with no inert surface, a column with loofa available for bacterial growth and conditioning, and finally a column with the loofa surface ground and distributed in the column among the particles.

  15. The effect of moisture content on the corrosion of fasteners embedded in wood subjected to alkaline copper quaternary treatment

    International Nuclear Information System (INIS)

    Zelinka, Samuel L.; Glass, Samuel V.; Derome, Dominique

    2014-01-01

    Highlights: • We examine the dependence of metal corrosion on wood moisture content. • Corrosion of steel and galvanized steel in treated wood were measured. • Corrosion products were analyzed across moisture contents using X-ray diffraction. • The corrosion rate has a sigmoidal dependence on moisture content. • The data herein can be used to improve combined hygrothermal–corrosion models. - Abstract: This paper characterizes the corrosion rate of embedded fasteners as a function of wood moisture content using gravimetric and electrochemical measurements. The results indicated that the corrosion rate increased with moisture content before reaching a plateau. The phases present in the corrosion products, as analyzed using X-ray diffraction, are generally consistent with previous work. Uniform corrosion was observed for all fasteners and all conditions except steel fasteners embedded in water-saturated wood. Data of dependence of corrosion rate on moisture content, presented herein, are necessary to ensure the accuracy of combined hygrothermal/corrosion models used to predict durability of wood structures

  16. Investigations into the corrosion resistance of copper aluminium alloys. Effect of phosphorus as corrosion resistant third alloying element in the ternary system CuAl20P1

    International Nuclear Information System (INIS)

    Allwardt, A.

    1997-01-01

    The effect of phosphorus on the corrosion resistance of Al-bronzes is studied in detail in this work. A literature review showed that there are a lot of things known about the microstructure and the mechanical properties of Al-bronzes. In spite of their corrosion resistance the corrosion properties and the structure of the protective oxide films of Al-bronzes were seldom a matter of interest. Systematic studies of the influence of different alloying elements on the oxide film and the corrosion properties are rare. Therefore, it is not possible to predict the corrosion resistance of Al-bronzes, made by alloying particular elements. The high corrosion resistance of the new alloy CuAl 20 P 1 was the reason to investigate the influence of phosphorus on the corrosion properties of Al-bronzes in more detail. A systematic study of the microstructure and the corrosion properties of Cu, CuP x , CuAl 20 and CuAl 20 P x offers an insight into the effect of aluminium and phosphorus on the formation of the oxide film on Al-bronzes. It was found that there exists a critical amount of 1 at.-% of phosphorus. Above and below this amount the corrosion resistance becomes worse. This behaviour could be explained by XPS-and electrochemical measurements. Although there are still some questions about the influence of phosphorus on the corrosion resistance of Al-bronzes, this work has produced some important results, which in the future may be helpful to develop new high corrosion resistant Al-bronzes more efficiently: - on clean surface Al-bronze, the oxidation of Al and Cu takes place simultaneously, - Al promotes the formation of Cu 2 O but impedes the formation of Cu(II)-oxide/-hydride in neutral solutions, - P impedes the formation of Cu 2 O and as a consequence promotes the formation of aluminium oxide. This results in a higher amount of Al in the oxide film on the surface of the alloy, which leads to a better corrosion resistance. (author) figs., tabs., 106 refs

  17. Hot corrosion testing of Ni-based alloys and coatings in a modified Dean rig

    Science.gov (United States)

    Steward, Jason Reid

    Gas turbine blades are designed to withstand a variety of harsh operating conditions. Although material and coating improvements are constantly administered to increase the mean time before turbine refurbishment or replacement, hot corrosion is still considered as the major life-limiting factor in many industrial and marine gas turbines. A modified Dean rig was designed and manufactured at Tennessee Technological University to simulate the accelerated hot corrosion conditions and to conduct screening tests on the new coatings on Ni-based superalloys. Uncoated Ni-based superalloys, Rene 142 and Rene 80, were tested in the modified Dean rig to establish a testing procedure for Type I hot corrosion. The influence of surface treatments on the hot corrosion resistance was then investigated. It was found that grit-blasted specimens showed inferior hot corrosion resistance than that of the polished counterpart. The Dean rig was also used to test model MCrAlY alloys, pack cementation NiAl coatings, and electro-codeposited MCrAlY coatings. Furthermore, the hot corrosion attack on the coated-specimens were also assessed using a statistical analysis approach.

  18. Preparation and Testing of Corrosion and Spallation-Resistant Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, John

    2015-11-01

    with the Rene 80. One-inch-diameter buttons were machined from each of the bonded blocks and sent to Siemens for standard oxidation, spallation, and corrosion testing, which should be complete in the spring of 2016.

  19. Conditions for testing the corrosion rates of ceramics in coal gasification systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.; Nowok, J.W. [Univ. of North Dakota, Grand Forks, ND (United States)

    1996-08-01

    Coal gasifier operating conditions and gas and ash compositions affect the corrosion rates of ceramics used for construction in three ways: (1) through direct corrosion of the materials, (2) by affecting the concentration and chemical form of the primary corrodents, and (3) by affecting the mass transport rate of the primary corrodents. To perform an accurate corrosion test on a system material, the researcher must include all relevant corrodents and simulate conditions in the gasifier as closely as possible. In this paper, the authors present suggestions for conditions to be used in such corrosion tests. Two main types of corrosion conditions are discussed: those existing in hot-gas cleanup systems where vapor and dry ash may contribute to corrosion and those experienced by high-temperature heat exchangers and refractories where the main corrodent will be coal ash slag. Only the fluidized-bed gasification systems such as the Sierra Pacific Power Company Pinon Pine Power Project system are proposing the use of ceramic filters for particulate cleanup. The gasifier is an air-blown 102-MWe unit employing a Westinghouse{trademark} ceramic particle filter system operating at as high as 1100{degrees}F at 300 psia. Expected gas compositions in the filter will be approximately 25% CO, 15% H{sub 2}, 5% CO{sub 2}, 5% H{sub 2}O, and 50% N{sub 2}. Vapor-phase sodium chloride concentrations are expected to be 10 to 100 times the levels in combustion systems at similar temperatures, but in general the concentrations of the minor primary and secondary corrodents are not well understood. Slag corrosiveness will depend on its composition as well as viscosity. For a laboratory test, the slag must be in a thermodynamically stable form before the beginning of the corrosion test to assure that no inappropriate reactions are allowed to occur. Ideally, the slag would be flowing, and the appropriate atmosphere must be used to assure realistic slag viscosity.

  20. Lithuanian Quarry Aggregates Concrete Effects of Alkaline Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Aurimas Rutkauskas

    2016-02-01

    Full Text Available Aggregate alkaline corrosion of cement in concrete is going to respond in sodium and potassium hydroxide (lye with active SiO2 found in some aggregates. During this reaction, the concrete has resulted in significant internal stresses which cause deformation of the concrete, cracking and disintegration. The reaction is slow and concrete signs of decomposition appear only after a few months or years. The study used two different aggregates quarries. Studies show that Lithuania gravel contaminated with reactive particles having amorphous silicon dioxide reacting with cement in sodium and potassium hydroxide and the resulting alkaline concrete corrosion. It was found that, according to AAR 2 large aggregates include Group II – potentially reactive because of their expansion after 14 days, higher than 0.1%.

  1. Copper Leaching from Copper-ethanolamine Treated Wood: Comparison of Field Test Studies and Laboratory Standard Procedures

    OpenAIRE

    Nejc Thaler; Miha Humar

    2014-01-01

    Copper-based compounds are some of the most important biocides for the protection of wood in heavy duty applications. In the past, copper was combined with chromium compounds to reduce copper leaching, but a recent generation of copper-based preservatives uses ethanolamine as a fixative. To elucidate the leaching of copper biocides from wood, Norway spruce (Picea abies) wood was treated with a commercial copper-ethanolamine solution with two different copper concentrations (cCu = 0.125% and 0...

  2. Review of test methods used to determine the corrosion rate of metals in contact with treated wood

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2005-01-01

    The purpose of this literature review is to give an overview of test methods previously used to evaluate the corrosion of metals in contact with wood. This article reviews the test methods used to evaluate the corrosion of metals in contact with wood by breaking the experiments into three groups: exposure tests, accelerated exposure tests, and electrochemical tests....

  3. Moessbauer Characterization of Rust Obtained in an Accelerated Corrosion Test

    International Nuclear Information System (INIS)

    Garcia, K. E.; Morales, A. L.; Arroyave, C. E.; Barrero, C. A.; Cook, D. C.

    2003-01-01

    We have performed drying-humectation cyclical processes (CEBELCOR) on eight A36 low carbon steel coupons in NaCl solutions containing 1x10 -2 M and 1x10 -1 M concentrations. The main purpose of these experiments is to contribute to the understanding of the conditions for akaganeite formation. Additionally, and with the idea to perform a complete characterization of the rust, this work also considers the formation of other iron oxide phases. The corrosion products were characterized by Moessbauer spectroscopy and X-ray diffraction techniques. Gravimetric analysis demonstrates that the coupons presented high corrosion rates. Magnetite/maghemite was common in the rust stuck to the steel surface, whereas akaganeite was present only in traces. In the rust collected from the solutions, i.e., the rust that goes away from the metal surface easily, a magnetite/maghemite was not present and akaganeite showed up in larger quantities. These results support the idea that high concentrations of Cl - ions are required for the akaganeite formation. We concluded that akaganeite is not easily bonded to the rust layer; this may lead to the formation of a less protective rust layer and to higher corrosion rates.

  4. Model tests for corrosion influence of electrode surface on electroosmosis in marine sludge

    Science.gov (United States)

    Zheng, Lingwei; Li, Jinzhu; Shi, Hanru

    2017-11-01

    The corrosion of metal electrodes is inevitable on electroosmosis in soil. Surface corrosion of electrodes is also one of the reasons for increasing energy consumption in electroosmosis treatment. A series of laboratory tests were conducted employing three kinds of materials, aluminium, steel, and brass. To explore the impact of surface corrosion degree on electroosmosis, metal electrodes were pretreated with durations 0 h, 12 h, 24 h, and 36 h. After the pretreatment, corroded electrodes are used as anodes on electroosmosis. Water discharge, current, voltage potential were measured during the tests; water content was also tested at three points after the electroosmosis. The results showed that aluminium was better than steel in electroosmotic drainage while brass provided the worst dewatering performance. Surface corrosion did not influence the aluminium and steel on electroosmosis in marine sludge, but brass did. In the pretreatment of brass electrodes, corrosion rate had started to slow down at later periods, with the deterioration rate of dewatering reduced afterwards. As the results showed, it is not recommended to employ those easily deteriorated electrode materials from surface corrosion in practical engineering, such as brass; electrode material with higher electroosmosis exchange rate is recommended, such as aluminium.

  5. ELECTROCHEMICAL CORROSION TESTING OF TANKS 241-AN-102 & 241-AP-107 & 241-AP-108 IN SUPPORT OF ULTRASONIC TESTING

    Energy Technology Data Exchange (ETDEWEB)

    WYRWAS RB; DUNCAN JB

    2008-11-20

    This report presents the results of the corrosion rates that were measured using electrochemical methods for tanks 241-AN-102 (AN-102), 241-AP-107 (AP 107), and 241-AP-108 (AP-108) performed under test plant RPP-PLAN-38215. The steel used as materials of construction for AN and AP tank farms was A537 Class 1. Test coupons of A537 Class 1 carbon steel were used for corrosion testing in the AN-107, AP-107, and AP-108 tank waste. Supernate will be tested from AN-102, AP-107, and Ap-108. Saltcake testing was performed on AP-108 only.

  6. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela

    2011-01-01

    ) was conducted to describe the impact of water-to-cement ratio and corrosion current density (i.e., corrosion rate) on the reinforcement corrosion process. Focus was placed, in particular on the determination of the corrosion accommodating region (CAR) and time to corrosion-induced cracking. Experimental results...... showed that x-ray attenuation measurements allow determination of the actual concentrations of corrosion products averaged through the specimen thickness. The total mass loss of steel measured by x-ray attenuation was found to be in very good agreement with the calculated mass loss obtained by Faraday......’s law. Furthermore, experimental results demonstrated that the depth of penetration of corrosion products as well as time to corrosion-induced cracking is varying for the different water-to-cement ratios and applied corrosion current densities....

  7. Hot-wall corrosion testing of simulated high level nuclear waste

    International Nuclear Information System (INIS)

    Chandler, G.T.; Zapp, P.E.; Mickalonis, J.I.

    1995-01-01

    Three materials of construction for steam tubes used in the evaporation of high level radioactive waste were tested under heat flux conditions, referred to as hot-wall tests. The materials were type 304L stainless steel alloy C276, and alloy G3. Non-radioactive acidic and alkaline salt solutions containing halides and mercury simulated different high level waste solutions stored or processed at the United States Department of Energy's Savannah River Site. Alloy C276 was also tested for corrosion susceptibility under steady-state conditions. The nickel-based alloys C276 and G3 exhibited excellent corrosion resistance under the conditions studied. Alloy C276 was not susceptible to localized corrosion and had a corrosion rate of 0.01 mpy (0.25 μm/y) when exposed to acidic waste sludge and precipitate slurry at a hot-wall temperature of 150 degrees C. Type 304L was susceptible to localized corrosion under the same conditions. Alloy G3 had a corrosion rate of 0.1 mpy (2.5 μm/y) when exposed to caustic high level waste evaporator solution at a hot-wall temperature of 220 degrees C compared to 1.1 mpy (28.0 μ/y) for type 304L. Under extreme caustic conditions (45 weight percent sodium hydroxide) G3 had a corrosion rate of 0.1 mpy (2.5 μm/y) at a hot-wall temperature of 180 degrees C while type 304L had a high corrosion rate of 69.4 mpy (1.8 mm/y)

  8. Corrosion of aluminium alloy test coupons in water of spent fuel storage pool at RA reactor

    International Nuclear Information System (INIS)

    Pesic, M.; Maksin, T.; Jordanov, G.; Dobrijevic, R.

    2004-12-01

    Study on corrosion of aluminium cladding, of the TVR-S type of enriched uranium spent fuel elements of the research reactor RA in the storage water pool is examined in the framework nr the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) 'Corrosion of Research Reactor Clad-Clad Spent Fuel in Water' since 2002. Standard racks with aluminium coupons are exposed to water in the spent fuel pools of the research reactor RA. After predetermined exposure times along with periodic monitoring of the water parameters, the coupons are examined according to the strategy and the protocol supplied by the IAEA. Description of the standard corrosion racks, experimental protocols, test procedures, water quality monitoring and compilation of results of visual examination of corrosion effects are present in this article. (author)

  9. Inhibitory action of an heterocyclic organic compound containing amine group for copper corrosion in 5,0 M nitric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    El-Naggar, M.M.; Abdallah, M. [Benha Univ., Benha (Egypt). Chemistry Dept., Faculty of Science

    2000-10-01

    An heterocyclic organic compound containing amine group namely: 3-mercaptomethyl-4amino-5-hydroxy-1, 2, 4-triazole compound 1{sub a} was tested as a new inhibitor for copper corrosion in 5.0 M HNO{sub 3} solution. It proved to have a high value of inhibition efficiency (> 99.9%) at an inhibitor concentration of {>=} 2.5 x 10{sup -}3 M. A parallelism is established between the results obtained from weight loss, thermometric and galvanostatic polarization techniques. The high protective effect of compound I{sub a} is related to the decomposition of HNO{sub 2} formed through the autocatalytic cycle. The decomposition of HNO{sub 2} could be attributed to its reaction with the adsorbed inhibitor amine group. Furthermore, the results indicated that compound I{sub a} provides long-term protection and behaves as a mixed inhibitor type with a predominant cathodic effectiveness. [Italian] E' stato valutato, quale nuovo inibitore della corrosione del rame in soluzione 5.0 M di HNO{sub 3}, un composto organico eterociclico contenente un amino gruppo, chiamato: 3-mercaptometil-4amino-5-idrossi-1, 2, 4-triazolo composto I{sub a}. Questi, ad una concentrazione {>=} 2.5 x 10{sup -}3 M, ha dimostrato di possedere un elevato valore di efficienza di inibizione (> 99.9%). E' stato stabilito un parallelismo tra i risultati ottenuti dalla perdita di peso, da misure termometriche e di polarizzazione galvanostatica. L'elevato effetto protettivo del composto I{sub a} e' correlato alla decomposizione dell'HNO{sub 2} formatosi attraverso il ciclo autocatalitico. La decomposizione di HNO{sub 2} puo' essere attribuita alla sua reazione con il gruppo inibitore aminico adsorbito. Inoltre, i risultati indicano che il composto I{sub a} fornisce una protezione a lungo termine e si comporta come un inibitore di tipo misto con una predominante efficienza catodica.

  10. Corrosion engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, M.G.

    1986-01-01

    This book emphasizes the engineering approach to handling corrosion. It presents corrosion data by corrosives or environments rather than by materials. It discusses the corrosion engineering of noble metals, ''exotic'' metals, non-metallics, coatings, mechanical properties, and corrosion testing, as well as modern concepts. New sections have been added on fracture mechanics, laser alloying, nuclear waste isolation, solar energy, geothermal energy, and the Statue of Liberty. Special isocorrosion charts, developed by the author, are introduced as a quick way to look at candidates for a particular corrosive.

  11. Study on corrosion test techniques in lead bismuth eutectic flow. Joint research report in JFY2002

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Sekimoto, Hiroshi

    2003-03-01

    The evaluation of corrosion behaviors of core and structural materials in lead bismuth eutectic is one of the key issues for the utilization of lead bismuth eutectic as a coolant of the primary loops of lead bismuth cooled fast breeder reactors (FBRs) and the intermediate heat transport media of new-type steam generators of the sodium cooled FBRs. The purpose of the present study is to establish corrosion test techniques in lead bismuth eutectic flow. The techniques of steel corrosion test and oxygen control in flowing lead bismuth eutectic, and the technologies of a lead bismuth flow test at high temperature and high velocity were developed through corrosion test using a lead bismuth flow test loop of the Tokyo Institute of Technology in JFY2002. The major results are summarized as follows: (1) Techniques of fabrication, mount and rinse of corrosion specimens, measurement method of weight loss, and SEM/EDX analysis method have been established through lead bismuth corrosion test. (2) Weight losses were measured, corrosion and lead bismuth-adhered layers and eroded parts were observed in two 1000 hr-corrosion tests, and the results were compared with each other for twelve existing steels including ODS, F82H and SUH-3. (3) An oxygen sensor made of zirconia electrolyte structurally resistant to thermal stress and thermal shock was developed and tested in the lead bismuth flow loop. Good performance has been obtained. (4) An oxygen control method by injecting argon and hydrogen mixture gas containing steam into lead bismuth was applied to the lead bismuth flow loop, and technical issues for the development of the oxygen control method were extracted. (5) Technical measures for freezing and leakage of lead bismuth in the flow loop were accumulated. (6) Technical measures for flow rate decrease/blockage due to precipitation of oxide and corrosion products in a low temperature section of the lead bismuth flow loop were accumulated. (7) Electromagnetic flow meters with MI

  12. Field test corrosion experiments in Denmark with biomass fuels Part I Straw firing

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, A; Larsen, OH

    2002-01-01

    plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. A series of field tests have been undertaken in the various straw-fired power plants in Denmark, namely Masnedø, Rudkøbing and Ensted. Three types of exposure were undertaken......In Denmark, straw and other types of biomass are used for generating energy in power plants. Straw has the advantage that it is a "carbon dioxide neutral fuel" and therefore environmentally acceptable. Straw combustion is associated with corrosion problems which are not encountered in coal-fired...... to investigate corrosion: a) the exposure of metal rings on water/air cooled probes, b) the exposure of test tubes in a test superheater, and c) the exposure of test tubes in existing superheaters. Thus both austenitic steels and ferritic steels were exposed in the steam temperature range of 450-600°C...

  13. Gold coated copper artifacts from the Royal Tombs of Sipán (Huaca Rajada, Perù): manufacturing techniques and corrosion phenomena

    Science.gov (United States)

    Ingo, Gabriel M.; Bustamante, Angel D.; Alva, Walter; Angelini, Emma; Cesareo, Roberto; Gigante, Giovanni E.; Zambrano, Sandra Del Pilar A.; Riccucci, Cristina; Di Carlo, Gabriella; Parisi, Erica I.; Faraldi, Federica; Chero, Luis; Fabian, Julio S.

    2013-12-01

    Twenty five years ago, close to the northern Peruvian town of Lambayeque (Huaca Rajada) beneath two large and eroded pyramids, built of adobe mud bricks, Professor Alva discovered the world-famous unlooted pre-Columbian burial chambers of the Royal Tombs of Sipan. The tombs contained a large amount of objects of exceptional artistic and historical value including the greatest intact number of gold and silver artefacts in the Americas to be considered one of the most important archaeological discoveries of the last century. Some copper based objects coated with thin layers of gold have been studied by means of the combined use of analytical techniques such as optical microscopy (OM), scanning electron microscopy coupled with energy dispersive X-ray micro-analysis (SEM-EDS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) in order to identify the chemical composition and the manufacturing processes of the gold layer as well as the corrosion products formed during the long-term burial. The micro-chemical and structural results give useful information about the manufacturing techniques used by the Moche metalsmiths to modify the surface chemical composition of the coated artefacts likely based on the depletion gilding process carried out by oxidising the surface copper containing the noble metal and etching away the copper oxides. Furthermore, the results reveal that the main degradation agent is the ubiquitous chlorine and that copper has been almost completely transformed during the burial into mineral species giving rise to the formation of stratified structures constituted by different mineral phases such as cuprous oxide (Cu2O) and copper carbonates [azurite (Cu3(CO3)2(OH)2 and malachite (CuCO3Cu(OH)2)] as well as dangerous chlorine-based compounds such as nantokite (CuCl) and atacamite (Cu2(OH)3Cl) polymorphs. These information evidence the strict interaction of the alloying elements with the soil components as well as the occurrence of the

  14. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions

    Directory of Open Access Journals (Sweden)

    Arpith Siddaiah

    2017-09-01

    Full Text Available Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the “byproduct effects” in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear–corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.

  15. Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions.

    Science.gov (United States)

    Siddaiah, Arpith; Khan, Zulfiqar Ahmad; Ramachandran, Rahul; Menezes, Pradeep L

    2017-09-28

    Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the "byproduct effects" in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear-corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.

  16. Standard practice for conducting and evaluating laboratory corrosions tests in soils

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This practice covers procedures for conducting laboratory corrosion tests in soils to evaluate the corrosive attack on engineering materials. 1.2 This practice covers specimen selection and preparation, test environments, and evaluation of test results. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Influence of mechanical stress level in preliminary stress-corrosion testing on fatigue strength of a low-carbon steel

    International Nuclear Information System (INIS)

    Aleskerova, S.A.; Pakharyan, V.A.

    1978-01-01

    Effect of corrosion and mechanical factors of preliminary stress corrosion of a metal in its fatigue strength, has been investigated. Smooth cylindrical samples of 20 steel have been tested. Preliminary corrosion under stress has been carried out under natural sea conditions. It is shown that mechanical stresses in the case of preliminary corrosion affect fatigue strength of low-carbon steels, decreasing the range of limited durability and fatigue limit. This effect increases with the increase of stress level and agressivity of corrosive medium

  18. Selection and application of C18200 chrome copper for the OHTE confinement test helical coil

    International Nuclear Information System (INIS)

    Puhn, F.A.; Graumann, D.W.

    1981-01-01

    The selection and qualification of copper for the OHTE confinement test helical coil (H-coil) was a crucial step in the success of this new experiment. Previous problems encountered at General Atomic Company with close tolerance machined parts made from high strength copper were identified. The design criteria included selecting a material with minimal warpage during machining, an electrical conductivity >80% IACS, and a yield strength of at least 241 Mpa (35 ksi). The investigation of candidate materials and testing samples led to selection of a material that fully met all requirements. The C18200 chrome copper forged plates were supplied by the Ampco Metal Division of Ampco-Pittsburgh Corporation

  19. Assessment of copper resistance to stress-corrosion cracking in nitrite solutions by means of joint analysis of acoustic emission measurements, deformation diagrams, qualitative and quantitative fractography, and non-linear fracture mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Khanzhin, V.G.; Nikulin, S.A. [Moscow State Inst. of Steel and Alloys (Russian Federation)

    2005-06-01

    A study of stress-corrosion cracking (SCC) of copper in 0.1M NaNO{sub 2} aqueous solution is presented. The fracture kinetics was monitored by measuring the acoustic emission (AE) signals. Macro- and micro-fractography analysis, using scanning electron microscopy (SEM), was employed to investigate the fracture mechanisms. Estimates of stress intensity factor, KI, and J-integral were derived in order to assess the resistance of copper to stress corrosion cracking. Two kinds of SCC tests under continuous circulation of the corrosive solution were employed in the present study: 1. Constant extension rate (2x10{sup -6}/s) tests on pre-cracked, middle tension (MT) panel specimens. 2. Tests on pre-cracked, compact tension (CT) specimens at a fixed (by a fixing bolt) opening of the crack walls ({delta} = 0.3 mm, K{sub i} = 27 MPax{radical}m). The time base for these tests was about two months. After the completion of the SCC test, the CT specimen was additionally tested, under a constant-rate (0.02 mm/s) off-center extension. In the both kinds of tests, the SCC fracture kinetics is found to exhibit two typical stages: Stage 1: SCC initiation stage (after a certain incubation period, T{sub i}, measured to be T{sub i} {approx_equal} 3-4 hours for MT specimens under constant extension, the corresponding stress was {sigma} {approx_equal} 40-70 MPa, and T{sub i} {approx_equal} 200 hours for CT specimens under a fixed crack wall opening). Stage 2: Active fracture process (SCC macro-fracture) distinguished by strong AE pulses (which are registered after time T{sub 2} {approx_equal} 8 hours for MT specimens and T{sub 2} {approx_equal} 800 hours for CT specimens). Fractography analysis has shown that the zone of SCC fracture in MT specimens extends to approximately 1,500 {mu}m. A 400-700 {mu}m deep zone of brittle transgranular fracture, which included small areas showing characteristic SCC 'striations', was observed adjacent to the fatigue pre-crack area. At higher

  20. Design, Fabrication and Test of a Full Scale Copper Tubular Combustion Chamber

    National Research Council Canada - National Science Library

    Cooley, Christine

    2002-01-01

    This paper presents the design fabrication and test of a full scale copper tubular combustion chamber as an enabling technology for future application in a high thrust upper-stage expander-cycle engine...

  1. Metallic corrosion in the polluted urban atmosphere of Hong Kong.

    Science.gov (United States)

    Liu, Bo; Wang, Da-Wei; Guo, Hai; Ling, Zhen-Hao; Cheung, Kalam

    2015-01-01

    This study aimed to explore the relationship between air pollutants, particularly acidic particles, and metallic material corrosion. An atmospheric corrosion test was carried out in spring-summer 2012 at a polluted urban site, i.e., Tung Chung in western Hong Kong. Nine types of metallic materials, namely iron, Q235 steel, 20# steel, 16Mn steel, copper, bronze, brass, aluminum, and aluminum alloy, were selected as specimens for corrosion tests. Ten sets of the nine materials were all exposed to ambient air, and then each set was collected individually after exposure to ambient air for consecutive 6, 13, 20, 27, 35, 42, 49, 56, 63, and 70 days, respectively. After the removal of the corrosion products on the surface of the exposed specimens, the corrosion rate of each material was determined. The surface structure of materials was observed using scanning electron microscopy (SEM) before and after the corrosion tests. Environmental factors including temperature, relative humidity, concentrations of gaseous pollutants, i.e., sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), ozone (O₃), and particulate-phase pollutants, i.e., PM₂.₅ (FSP) and PM₁₀ (RSP), were monitored. Correlation analysis between environmental factors and corrosion rate of materials indicated that iron and carbon steel were damaged by both gaseous pollutants (SO₂ and NO₂) and particles. Copper and copper alloys were mainly corroded by gaseous pollutants (SO₂ and O₃), while corrosion of aluminum and aluminum alloy was mainly attributed to NO₂ and particles.

  2. Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing.

    Science.gov (United States)

    Walker, Jemimah; Shadanbaz, Shaylin; Kirkland, Nicholas T; Stace, Edward; Woodfield, Tim; Staiger, Mark P; Dias, George J

    2012-05-01

    Magnesium (Mg) and its alloys have been proposed as degradable replacements to commonly used orthopedic biomaterials such as titanium alloys and stainless steel. However, the corrosion of Mg in a physiological environment remains a difficult characteristic to accurately assess with in vitro methods. The aim of this study was to identify a simple in vitro immersion test that could provide corrosion rates similar to those observed in vivo. Pure Mg and five alloys (AZ31, Mg-0.8Ca, Mg-1Zn, Mg-1Mn, Mg-1.34Ca-3Zn) were immersed in either Earle's balanced salt solution (EBSS), minimum essential medium (MEM), or MEM-containing 40 g/L bovine serum albumin (MEMp) for 7, 14, or 21 days before removal and assessment of corrosion by weight loss. This in vitro data was compared to in vivo corrosion rates of the same materials implanted in a subcutaneous environment in Lewis rats for equivalent time points. The results suggested that, for the alloys investigated, the EBSS buffered with sodium bicarbonate provides a rate of degradation comparable to those observed in vivo. In contrast, the addition of components such as (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES), vitamins, amino acids, and albumin significantly increased corrosion rates. Based on these findings, it is proposed that with this in vitro protocol, immersion of Mg alloys in EBSS can be used as a predictor of in vivo corrosion. Copyright © 2012 Wiley Periodicals, Inc.

  3. Corrosion in nuclear systems. 4. Comparison of the PWR Cladding Corrosion Models for Test IFA-638.1-3

    International Nuclear Information System (INIS)

    Kim, Yong-Deog; Bae, Seong-Man; Lee, Chang-Sup

    2001-01-01

    The cladding corrosion test (IFA-638) is being performed to investigate the corrosion properties of different modern PWR cladding materials. The experimental results are evaluated by the corrosion models EPRI/KWU/CE, ESCORE, NEPLC, and COCHISE. When comparing the measured and the predicted oxide thickness, the following conclusions can be drawn: 1. Considering the fresh material parts (lower parts) of each rod, the oxide thickness calculations of all models under-predicted the measured values by up to 50% after 118 days of exposure. The NEPLC model, however, showed good agreement for 263 days of exposure, while the COCHISE and EPRI/KWU/CE-ESCORE models over-predicted (about +50%) and under-predicted (about -42%), respectively. 2. The oxide layer thickness on the pre-irradiated parts (upper parts) of each rod is well predicted by the COCHISE model after 118 days of exposure, but the other models over-predicted the thickness. All the models over-predicted the oxide thickness after 263 days of exposure, and the divergency between the measured and calculated oxide thickness became larger. 3. The differences in the calculated oxide thickness between the models at low burnup (fresh parts) are attributed to the different transition point determinations of the models. 4. Comparing the measurements with the calculations from the pre-irradiated parts of each rod, the overall over-prediction could be accounted for by the fact that the post-transition regime of all four models was calibrated for standard Zircaloy-4 materials. The differences between the models were attributed to empirical variables such as the frequency factor (k 2 , B) and the activation energy (Q 2 ) in Tables I, II, and III, which were calibrated with other experimental/plant data. (authors)

  4. Vapor Space Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gray, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-30

    As part of an integrated program to better understand corrosion in the high level waste tanks, Hanford has been investigating corrosion at the liquid/air interface (LAI) and at higher areas in the tank vapor space. This current research evaluated localized corrosion in the vapor space over Hanford double shell tank simulants to assess the impact of ammonia and new minimum nitrite concentration limits, which are part of the broader corrosion chemistry limits. The findings from this study showed that the presence of ammonia gas (550 ppm) in the vapor space is sufficient to reduce corrosion over the short-term (i.e. four months) for a Hanford waste chemistry (SY102 High Nitrate). These findings are in agreement with previous studies at both Hanford and SRS which showed ammonia gas in the vapor space to be inhibitive. The presence of ammonia in electrochemical test solution, however, was insufficient to inhibit against pitting corrosion. The effect of the ammonia appears to be a function of the waste chemistry and may have more significant effects in waste with low nitrite concentrations. Since high levels of ammonia were found beneficial in previous studies, additional testing is recommended to assess the necessary minimum concentration for protection of carbon steel. The new minimum R value of 0.15 was found to be insufficient to prevent pitting corrosion in the vapor space. The pitting that occurred, however, did not progress over the four-month test. Pits appeared to stop growing, which would indicate that pitting might not progress through wall.

  5. Standard test method for initial screening of corrosion inhibiting admixtures for steel in concrete

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers a procedure for determining the effects of chemical admixtures on the corrosion of metals in concrete. This test method can be used to evaluate materials intended to inhibit chloride-induced corrosion of steel in concrete. It can also be used to evaluate the corrosivity of admixtures by themselves or in a chloride environment. This test is not applicable for emulsions. 1.2 &solely-SI-units; 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  6. Field Testing of Rapid Electrokinetic Nanoparticle Treatment for Corrosion Control of Steel in Concrete

    Science.gov (United States)

    Cardenas, Henry E.; Alexander, Joshua B.; Kupwade-Patil,Kunal; Calle, Luz Marina

    2009-01-01

    This work field tested the use of electrokinetics for delivery of concrete sealing nanoparticles concurrent with the extraction of chlorides. Several cylinders of concrete were batched and placed in immersion at the Kennedy Space Center Beach Corrosion Test Site. The specimens were batched with steel reinforcement and a 4.5 wt.% (weight percent) content of sodium chloride. Upon arrival at Kennedy Space Center, the specimens were placed in the saltwater immersion pool at the Beach Corrosion Test Site. Following 30 days of saltwater exposure, the specimens were subjected to rapid chloride extraction concurrent with electrokinetic nanoparticle treatment. The treatments were operated at up to eight times the typical current density in order to complete the treatment in 7 days. The findings indicated that the short-term corrosion resistance of the concrete specimens was significantly enhanced as was the strength of the concrete.

  7. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  8. Corrosion resistance test based on electrochemical noise-limiting the number of long-lasting and costly climate chamber tests

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, B.B.; Veldman, D.; Gouwen, R.J.; Bende, E.E.; Eerenstein, W.

    2013-10-15

    Damp-heat testing of PV modules is a time-consuming process, taking months. The electrochemical noise (EcN) set-up is a fast, direct corrosion measurement of solar cells, whereby results can be obtained within one hour. EcN measurements are presented for several solar cell concepts and different environments. It correlates with damp-heat degradation involving corrosion, which is rather common in EVA-encapsulated crystalline Si modules. Furthermore, the EcN test can be done as an evaluation tool when probing alternative brands, formulations or processing for metallisation pastes and as a screening test for new batches of metallisation paste.

  9. Shadow corrosion testing in the INCA facility in the Studsvik R2 reactor

    International Nuclear Information System (INIS)

    Nystrand, A.C.; Lassing, A.

    1999-01-01

    Shadow corrosion is a phenomenon which occurs when zirconium alloys are in contact with or in proximity to other metallic objects in a boiling water reactor environment (BWR, RBMK, SGHWR etc.). An enhanced corrosion occurs on the zirconium alloy with the appearance of a 'shadow' of the metallic object. The magnitude of the shadow corrosion can be significant, and is potentially limiting for the lifetime of certain zirconium alloy components in BWRs and other reactors with a similar water chemistry. In order to evaluate the suitability of the In-Core Autoclave (INCA) in the Studsvik R2 materials testing reactor as an experimental facility for studying shadow corrosion, a demonstration test has been performed. A number of test specimens consisting of Zircaloy-2 tubing in contact with Inconel were exposed in an oxidising water chemistry. Some of the specimens were placed within the reactor core and some above the core. The conclusion of this experiment after post irradiation examination is that it is possible to use the INCA facility in the Studsvik R2 reactor to develop a significant level of shadow corrosion after only 800 hours of irradiation. (author)

  10. A Study on Accelerated Corrosion Test by Combined Deteriorating Action of Salt Damage and Freeze-Thaw

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Soon; So, Byung-Tak [Sangmyung University, Cheonan (Korea, Republic of)

    2016-01-15

    In this study, the accelerated corrosion test by combined deteriorating action of salt damage and freeze-thaw was investigated. freeze-thaw cycle is one method for corrosion testing; corrosion initiation time was measured in four types of concrete samples, i.e., two samples mixed with fly ash (FA) and blast furnace slag (BS), and the other two samples having two water/cement ratio (W/C = 0.6, 0.35) without admixture (OPC60 and OPC35). The corrosion of rebar embedded in concrete occurred most quickly at the 30th freeze-thaw cycle. Moreover, a corrosion monitoring method with a half-cell potential measurement and relative dynamic elastic modulus derived from resonant frequency measures was conducted simultaneously. The results indicated that the corrosion of rebar occurred when the relative dynamic elastic modulus was less than 60%. Therefore, dynamic elastic modulus can be used to detect corrosion of steel bar. The results of the accelerated corrosion test exhibited significant difference according to corrosion periods combined with each test condition. Consequently, the OPC60 showed the lowest corrosion resistance among the samples.

  11. Corrosion tests of 316L and Hastelloy C-22 in simulated tank waste solutions

    International Nuclear Information System (INIS)

    Danielson, M.J.; Pitman, S.G.

    2000-01-01

    Both the 316L stainless steel and Hastelloy C-22 gave satisfactory corrosion performance in the simulated test environments. They were subjected to 100 day weight loss corrosion tests and electrochemical potentiodynamic evaluation. This activity supports confirmation of the design basis for the materials of construction of process vessels and equipment used to handle the feed to the LAW-melter evaporator. BNFL process and mechanical engineering will use the information derived from this task to select material of construction for process vessels and equipment

  12. Development of new corrosion inhibitor tested on mild steel supported by electrochemical study

    Directory of Open Access Journals (Sweden)

    Hussein Jwad Habeeb

    2018-03-01

    Full Text Available Mild steel is a metal which is commonly used in industrials and manufacturing of equipment for most industries round the world. It is cheaper cost compared with the other metals and its durable, hard and easy-to-wear physical properties make it a major choice in the manufacture of equipment parts. The main problem through the uses of mild steel in industry is its resistance against corrosion, especially in acidic solutions. This case led to raise the cost of maintenance of equipment that used mild steel and as a result increased costs for the company. Organic corrosive inhibitors that also act as green chemicals, 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol have been synthesized. This inhibitor is tested as corrosion inhibitor on a mild steel sample MS in 1 M hydrochloric acid solution (HCl using electrochemical measurements test includes PD (Potentiodynamic, EIS (Electrochemical impedance spectroscopy, OCP (Open circuit potential and EFM (electrochemical frequency modulation. The obtained results indicate that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol acts as a good corrosion inhibitor for mild steel sample in HCl solution with efficiency above 90%. Changes in the impedance parameters postulated adsorption on the mild steel specimens' surfaces of, which it going to the formation of protective coating layer. It also shows that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol corrosion inhibitors are effective in helping to reduce and slow down the corrosion process that occurs on mild steel surface in hydrochloric acid solution. Increase of corrosion inhibitor concentration provides a protective layer of mild steel. However, this protective layer becomes weak when the temperature of the solution increases. Keywords: Hydroxybenzylideneaminomethy, Potentiodynamic, Electrochemical frequency modulation, Impedance

  13. Development of new corrosion inhibitor tested on mild steel supported by electrochemical study

    Science.gov (United States)

    Habeeb, Hussein Jwad; Luaibi, Hasan Mohammed; Dakhil, Rifaat Mohammed; Kadhum, Abdul Amir H.; Al-Amiery, Ahmed A.; Gaaz, Tayser Sumer

    2018-03-01

    Mild steel is a metal which is commonly used in industrials and manufacturing of equipment for most industries round the world. It is cheaper cost compared with the other metals and its durable, hard and easy-to-wear physical properties make it a major choice in the manufacture of equipment parts. The main problem through the uses of mild steel in industry is its resistance against corrosion, especially in acidic solutions. This case led to raise the cost of maintenance of equipment that used mild steel and as a result increased costs for the company. Organic corrosive inhibitors that also act as green chemicals, 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol have been synthesized. This inhibitor is tested as corrosion inhibitor on a mild steel sample MS in 1 M hydrochloric acid solution (HCl) using electrochemical measurements test includes PD (Potentiodynamic), EIS (Electrochemical impedance spectroscopy), OCP (Open circuit potential) and EFM (electrochemical frequency modulation). The obtained results indicate that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol acts as a good corrosion inhibitor for mild steel sample in HCl solution with efficiency above 90%. Changes in the impedance parameters postulated adsorption on the mild steel specimens' surfaces of, which it going to the formation of protective coating layer. It also shows that 4-hydroxybenzylideneaminomethyl-5-ethyl-1,3,4-thiadiazol corrosion inhibitors are effective in helping to reduce and slow down the corrosion process that occurs on mild steel surface in hydrochloric acid solution. Increase of corrosion inhibitor concentration provides a protective layer of mild steel. However, this protective layer becomes weak when the temperature of the solution increases.

  14. Copper corrosion in irradiated environments. The influence of H2O2 on the electrochemistry of copper dissolution in HC1 electrolyte

    International Nuclear Information System (INIS)

    Smyrl, W.H.; Bell, B.T.; Atanasoski, R.T.; Glass, R.S.

    1987-01-01

    The anodic dissolution of copper has been examined in deaerated, 0.1 M HCl aqueous solution in the presence of H 2 O 2 . Concentrations of H 2 O 2 up to 0.2 M were studied at a rotating copper disk-platinum ring electrode. The open circuit potential (OCP) of copper was found to depend on both peroxide concentration and rotation rate. The OCP shifts towards more positive values with increasing H 2 O 2 concentration (C) and decreasing rotation rate (Omega). The dependence of OCP on (C/Omega/sup 1/2/) was the same as for oxygenated solutions reported earlier [1], at small values of (C/Omega/sup 1/2/). At higher values of (C/Omega/sup 1/2/), departure from the expected behavior was observed. The current-voltage curves for anodic dissolution of copper were also influenced by the presence of peroxide. The curves recorded with the potential scanned in the positive direction showed the expected 60 mV slope, but the reverse scans showed significant departures. At a given potential scan rate, hysteresis was observed which was larger for higher H 2 O 2 concentrations, lower rotation rates, and more positive anodic potential limits. Monitoring the cuprous ions at the outer Pt ring revealed that there was a complex set of events taking place at the copper surface, including film formation and the appearance of cupric ions. 13 references, 7 figures

  15. Copper corrosion in irradiated environments: The influence of H2O2 on the electrochemistry of copper dissolution in HCl electrolyte

    International Nuclear Information System (INIS)

    Smyrl, W.H.; Bell, B.T.; Atanasoski, R.T.; Glass, R.S.

    1986-12-01

    The anodic dissolution of copper was examined in deaerated, 0.1 M HCl aqueous solution in the presence of H 2 O 2 . Concentrations of H 2 O 2 up to 0.2 M were studied at a rotating copper disk-platinum ring electrode. The open circuit potential (OCP) of copper was found to depend on both peroxide concentration and rotation rate. The OCP shifts towards more positive values with increasing H 2 O 2 concentration (C) and decreasing rotation rate. The current-voltage curves for anodic dissolution of copper were also influenced by the presence of peroxide. The curves recorded with the potential scanned in the positive direction showed the expected 60 mV slope, but the reverse scans showed significant departures. At a given potential scan rate, hysteresis was observed which was larger for higher H 2 O 2 concentrations, lower rotation rates, and more positive anodic potential limits. Monitoring the cuprous ions at the outer Pt ring revealed that there was a complex set of events taking place at the copper surface, including film formation and the appearance of cupric ions. 13 refs., 7 figs

  16. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods

  17. Laboratory testing of waste glass aqueous corrosion; effects of experimental parameters

    International Nuclear Information System (INIS)

    Ebert, W.L.; Mazer, J.J.

    1993-01-01

    A literature survey has been performed to assess the effects of the temperature, glass surface area/leachate volume ratio, leachant composition, leachant flow rate, and glass composition (actual radioactive vs. simulated glass) used in laboratory tests on the measured glass reaction rate. The effects of these parameters must be accounted for in mechanistic models used to project glass durability over long times. Test parameters can also be utilized to highlight particular processes in laboratory tests. Waste glass corrosion results as water diffusion, ion-exchange, and hydrolysis reactions occur simultaneously to devitrify the glass and release soluble glass components into solution. The rates of these processes are interrelated by the affects of the solution chemistry and glass alteration phases on each process, and the dominant (fastest) process may change as the reaction progresses. Transport of components from the release sites into solution may also affect the observed corrosion rate. The reaction temperature will affect the rate of each process, while other parameters will affect the solution chemistry and which processes are observed during the test. The early stages of corrosion will be observed under test conditions which maintain dilute leachates and the later stages will be observed under conditions that generate more concentrated leachate solutions. Typically, water diffusion and ion-exchange reactions dominate the observed glass corrosion in dilute solutions while hydrolysis reactions dominant in more concentrated solutions. Which process(es) controls the long-term glass corrosion is not fully understood, and the long-term corrosion rate may be either transport- or reaction-limited

  18. Study of the effect of the NO{sub 2} in the atmospheric corrosion of copper; Estudio del efecto del NO{sub 2} en la corrosion atmosferica del cobre

    Energy Technology Data Exchange (ETDEWEB)

    Mariaca Rodriguez, Liboria

    1997-12-31

    Factors as the increase of the power consumption and the development of new combustion technologies, together with the increasing campaigns for the diminution of the SO{sub 2} emissions, have given rise to an increase of the relative importance of other atmospheric polluting agents, among which the nitrogen oxides occupy preponderant place. This new situation has motivated that during the last years greater attention is appearing to the effect these oxides can have on the stability of the materials. However, the results still are scarce and sometimes contradictory. With the purpose of contributing to the understanding of the effect of the NO{sub x} in the atmospheric corrosion, the investigation that is shown here was made. The effect that the NO{sub 2} has in the atmospheric corrosion of copper was studied, considering cases with and without the simultaneous presence of SO{sub 2}, with different relative humidities (RH) and temperatures of the atmospheric air. For this purpose one resorted to the simulation of atmospheres of interest by means of laboratory chambers that allowed the control of the temperature, RH and the contamination level. In each atmosphere completely clean copper coupons were exposed, and withdrawn at 7, 14, 21 and 28 days. Gravimetric analyses of gain and loss of mass and one complete characterization the corrosion products formed was made, mainly by means of X ray diffraction techniques by grazing angle (DRS), and photo electronic X ray spectroscopy (XPS or ESCA). Also, the applicability in these conditions of the electrochemical techniques of DC (RP, CP and RE) and of alternating current (EIE). From the results obtained it is worth mentioning as the more important the following ones: The corrosion of copper in atmospheres contaminated solely with NO{sub 2} depends fundamentally on the RH, not existing, as in the case of other metals, a critical RH (CRH), from which the kinetics of the corrosion process increases; all the opposite, the copper

  19. An accurately controllable imitative stress corrosion cracking for electromagnetic nondestructive testing and evaluations

    International Nuclear Information System (INIS)

    Yusa, Noritaka; Uchimoto, Tetsuya; Takagi, Toshiyuki; Hashizume, Hidetoshi

    2012-01-01

    Highlights: ► We propose a method to simulate stress corrosion cracking. ► The method offers nondestructive signals similar to those of actual cracking. ► Visual and eddy current examinations validate the method. - Abstract: This study proposes a simple and cost-effective approach to fabricate an artificial flaw that is identical to stress corrosion cracking especially from the viewpoint of electromagnetic nondestructive evaluations. The key idea of the approach is to embed a partially-bonded region inside a material by bonding together surfaces that have grooves. The region is regarded as an area of uniform non-zero conductivity from an electromagnetic nondestructive point of view, and thus simulates the characteristics of stress corrosion cracking. Since the grooves are introduced using electro-discharge machining, one can control the profile of the imitative stress corrosion cracking accurately. After numerical simulation to evaluate the spatial resolution of conventional eddy current testing, six specimens made of type 316L austenitic stainless steel were fabricated on the basis of the results of the simulations. Visual and eddy current examinations were carried out to demonstrate that the artificial flaws well simulated the characteristics of actual stress corrosion cracking. Subsequent destructive test confirmed that the bonding did not change the depth profiles of the artificial flaw.

  20. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 4 – Integrated chemical effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Amir; LaBrier, Daniel [Department of Nuclear Engineering, University of New Mexico (United States); Blandford, Edward, E-mail: edb@unm.edu [Department of Nuclear Engineering, University of New Mexico (United States); Howe, Kerry [Department of Civil Engineering, University of New Mexico (United States)

    2016-04-15

    Highlights: • Integrated test explored the material release of a postulated large break LOCA. • Aluminum concentration was very low (<0.1 mg/L) throughout the test duration. • Zinc concentration was low (<1 mg/L) in TSP-buffered system. • Calcium release showed two distinguished release zones: prompt and meta-stable. • Copper and iron has no distinguishable concentration up to first 24 h of testing. - Abstract: This paper presents the results of an integrated chemical effects experiment executed under conditions representative of the containment pool following a postulated loss of coolant accident (LOCA) at the Vogtle nuclear power plant, operated by the Southern Nuclear Operating Company (SNOC). This test was conducted for closure of a series of bench scale experiments conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum (Howe et al., 2015) and zinc (Pease et al., 2015) from metallic surfaces, and calcium from NUKON fiberglass insulation (Olson et al., 2015) . The integrated test was performed in the Corrosion/Chemical Head Loss Experimental (CHLE) facility with representative amounts of zinc, aluminum, carbon steel, copper, NUKON fiberglass, and latent debris. The test was conducted using borated TSP-buffered solution under a post-LOCA prototypical temperature profile lasting for 30 days. The results presented in this article demonstrate trends for zinc, aluminum, and calcium release that are consistent with separate bench scale testing and previous integrated tests under TSP conditions. The release rate and maximum concentrations of the released materials were slightly different than the separate effect testing as a result of different experimental conditions (temperature, surface area-to-water volume ratio) and/or the presence of other metals and chemicals in the integrated test. Samples of metal coupons and fiberglass were selected for analysis using Scanning Electron Microscopy

  1. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 4 – Integrated chemical effects testing

    International Nuclear Information System (INIS)

    Ali, Amir; LaBrier, Daniel; Blandford, Edward; Howe, Kerry

    2016-01-01

    Highlights: • Integrated test explored the material release of a postulated large break LOCA. • Aluminum concentration was very low (<0.1 mg/L) throughout the test duration. • Zinc concentration was low (<1 mg/L) in TSP-buffered system. • Calcium release showed two distinguished release zones: prompt and meta-stable. • Copper and iron has no distinguishable concentration up to first 24 h of testing. - Abstract: This paper presents the results of an integrated chemical effects experiment executed under conditions representative of the containment pool following a postulated loss of coolant accident (LOCA) at the Vogtle nuclear power plant, operated by the Southern Nuclear Operating Company (SNOC). This test was conducted for closure of a series of bench scale experiments conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum (Howe et al., 2015) and zinc (Pease et al., 2015) from metallic surfaces, and calcium from NUKON fiberglass insulation (Olson et al., 2015) . The integrated test was performed in the Corrosion/Chemical Head Loss Experimental (CHLE) facility with representative amounts of zinc, aluminum, carbon steel, copper, NUKON fiberglass, and latent debris. The test was conducted using borated TSP-buffered solution under a post-LOCA prototypical temperature profile lasting for 30 days. The results presented in this article demonstrate trends for zinc, aluminum, and calcium release that are consistent with separate bench scale testing and previous integrated tests under TSP conditions. The release rate and maximum concentrations of the released materials were slightly different than the separate effect testing as a result of different experimental conditions (temperature, surface area-to-water volume ratio) and/or the presence of other metals and chemicals in the integrated test. Samples of metal coupons and fiberglass were selected for analysis using Scanning Electron Microscopy

  2. Diagnostic of corrosion defects in steam generator tubes using advanced signal processing from Eddy current testing

    International Nuclear Information System (INIS)

    Formigoni, Andre L.; Lopez, Luiz A.N.M.; Ting, Daniel K.S.

    2009-01-01

    Recently, the Brazilian Angra I PWR nuclear power plant went into a programmed shutdown for substitution of its Steam Generator (SG) which life was shortened due to stress corrosion in its tubes. The total cost of investment were around R$724 million. The signals generated during an Eddy-current Testing (ECT) inspection in SG tubes of nuclear plant allows for the localization and dimensioning of defects in the tubes. The defects related with corrosion generate complex signals that are difficult to analyze and are the most common cause in SG replacement in nuclear power plants around the world. The objective of this paper is the development of a methodology that allows for the characterization of corrosion signals by ECT inspections applied in the heat exchangers tubes of SG of a nuclear power plant. In this present work, the aim is to investigate distributed type defects by inducing controlled corrosion in sample tubes of different materials The ECT signals obtained from these samples tubes with corrosion implanted, will be analyzed using Zetec ECT equipment, the MIZ-17ET and its probes. The data acquisition will use a NI PC A/D CARD 700 card and the LabVIEW program. Subsequently, we will apply mathematical tools for signal processing like time windowed Fast Fourier transforms and Wavelets transforms, in MATLAB platform, which will allow effectiveness to remove the noises and to extract representative characteristics for the defect being analyzed. Previously obtained results as well as the proposal for the future work will be presented. (author)

  3. In situ corrosion testing of various nickel alloys at Måbjerg waste incineration plant