WorldWideScience

Sample records for copper carbides

  1. Method of accurate thickness measurement of boron carbide coating on copper foil

    Science.gov (United States)

    Lacy, Jeffrey L.; Regmi, Murari

    2017-11-07

    A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.

  2. Mechanical alloying and sintering of nanostructured tungsten carbide-reinforced copper composite and its characterization

    International Nuclear Information System (INIS)

    Yusoff, Mahani; Othman, Radzali; Hussain, Zuhailawati

    2011-01-01

    Research highlights: → W 2 C phase was formed at short milling time while WC only appears after longer milling time. → Cu crystallite size decreased but internal strain increased with increasing milling time. → Increasing milling time induced more WC formation, thus improving the hardness of the composite. → Electrical conductivity is reduced due to powder refinement and the presence of carbide phases. -- Abstract: Elemental powders of copper (Cu), tungsten (W) and graphite (C) were mechanically alloyed in a planetary ball mill with different milling durations (0-60 h), compacted and sintered in order to precipitate hard tungsten carbide particles into a copper matrix. Both powder and sintered composite were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and assessed for hardness and electrical conductivity to investigate the effects of milling time on formation of nanostructured Cu-WC composite and its properties. No carbide peak was detected in the powder mixtures after milling. Carbide WC and W 2 C phases were precipitated only in the sintered composite. The formation of WC began with longer milling times, after W 2 C formation. Prolonged milling time decreased the crystallite size as well as the internal strain of Cu. Hardness of the composite was enhanced but electrical conductivity reduced with increasing milling time.

  3. Development of high strength hot rolled low carbon copper-bearing steel containing nanometer sized carbides

    Energy Technology Data Exchange (ETDEWEB)

    Phaniraj, M.P. [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shin, Young-Min [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Joonho [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Goo, Nam Hoon [Sheet Product Design Group, Hyundai Steel Co., North Industrial Street 1400, 343-823, DangJin 343-823 (Korea, Republic of); Kim, Dong-Ik; Suh, Jin-Yoo; Jung, Woo-Sang [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shim, Jae-Hyeok, E-mail: jhshim@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, In-Suk, E-mail: insukchoi@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2015-05-01

    A low carbon ferritic steel was alloyed with Ti, Mo and Cu with the intention of achieving greater increment in strength by multiple precipitate strengthening. The steel is hot rolled and subjected to interrupted cooling to enable precipitation of Ti–Mo carbides and copper. Thermodynamic calculations were carried out to determine equilibrium phase fractions at different temperatures. Microstructure characterization using transmission electron microscopy and composition analysis revealed that the steel contains ~5 nm size precipitates of (Ti,Mo)C. Precipitation kinetics calculations using MatCalc software showed that mainly body centered cubic copper precipitates of size < 5nm form under the cooling conditions in the present study. The steel has the high tensile strength of 853 MPa and good ductility. The yield strength increases by 420 MPa, which is more than that achieved in hot rolled low carbon ferritic steels with only copper precipitates or only carbide precipitates. The precipitation and strengthening contribution of copper and (Ti,Mo)C precipitates and their effect on the work hardening behavior is discussed.

  4. Studies on the influence of surface pre-treatments on electroless copper coating of boron carbide particles

    International Nuclear Information System (INIS)

    Deepa, J.P.; Resmi, V.G.; Rajan, T.P.D.; Pavithran, C.; Pai, B.C.

    2011-01-01

    Boron carbide is one of the hard ceramic particles which find application as structural materials and neutron shielding material due to its high neutron capture cross section. Copper coating on boron carbide particle is essential for the synthesis of metal-ceramic composites with enhanced sinterability and dispersibility. Surface characteristics of the substrate and the coating parameters play a foremost role in the formation of effective electroless coating. The effect of surface pre-treatment conditions and pH on electroless copper coating of boron carbide particles has been studied. Surface pre-treatement of B 4 C when compared to acid treated and alkali treated particles were carried out. Uniform copper coating was observed at pH 12 in alkali treated particles when compared to others due to the effective removal of inevitable impurities during the production and processing of commercially available B 4 C. A threshold pH 11 was required for initiation of copper coating on boron carbide particles. The growth pattern of the copper coating also varies depending on the surface conditions from acicular to spherical morphology.

  5. Effect of metallic coating on the properties of copper-silicon carbide composites

    Science.gov (United States)

    Chmielewski, M.; Pietrzak, K.; Teodorczyk, M.; Nosewicz, S.; Jarząbek, D.; Zybała, R.; Bazarnik, P.; Lewandowska, M.; Strojny-Nędza, A.

    2017-11-01

    In the presented paper a coating of SiC particles with a metallic layer was used to prepare copper matrix composite materials. The role of the layer was to protect the silicon carbide from decomposition and dissolution of silicon in the copper matrix during the sintering process. The SiC particles were covered by chromium, tungsten and titanium using Plasma Vapour Deposition method. After powder mixing of components, the final densification process via Spark Plasma Sintering (SPS) method at temperature 950 °C was provided. The almost fully dense materials were obtained (>97.5%). The microstructure of obtained composites was studied using scanning electron microscopy as well as transmission electron microscopy. The microstructural analysis of composites confirmed that regardless of the type of deposited material, there is no evidence for decomposition process of silicon carbide in copper. In order to measure the strength of the interface between ceramic particles and the metal matrix, the micro tensile tests have been performed. Furthermore, thermal diffusivity was measured with the use of the laser pulse technique. In the context of performed studies, the tungsten coating seems to be the most promising solution for heat sink application. Compared to pure composites without metallic layer, Cu-SiC with W coating indicate the higher tensile strength and thermal diffusitivy, irrespective of an amount of SiC reinforcement. The improvement of the composite properties is related to advantageous condition of Cu-SiC interface characterized by well homogenity and low porosity, as well as individual properties of the tungsten coating material.

  6. Understanding dual precipitation strengthening in ultra-high strength low carbon steel containing nano-sized copper precipitates and carbides

    Science.gov (United States)

    Phaniraj, M. P.; Shin, Young-Min; Jung, Woo-Sang; Kim, Man-Ho; Choi, In-Suk

    2017-07-01

    Low carbon ferritic steel alloyed with Ti, Mo and Cu was hot rolled and interrupt cooled to produce nano-sized precipitates of copper and (Ti,Mo)C carbides. The steel had a tensile strength of 840 MPa, an increase in yield strength of 380 MPa over that of the plain carbon steel and reasonable ductility. Transmission electron microscopy and small angle neutron scattering were used to characterize size and volume fraction of the precipitates in the steels designed to form only copper precipitates and only (Ti,Mo)C carbides. The individual and combined precipitation strengthening contributions was calculated using the size and volume fraction of precipitates and compared with the measured values.

  7. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sathiskumar, R., E-mail: sathiscit2011@gmail.com [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Murugan, N., E-mail: murugan@cit.edu.in [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai, 627 657 Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph@karunya.edu [Centre for Research in Metallurgy (CRM), School of Mechanical Sciences, Karunya University, Coimbatore, 641 114 Tamil Nadu (India)

    2013-10-15

    Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

  8. In situ production of tantalum carbide nanodispersoids in a copper matrix by reactive milling and hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Manotas-Albor, Milton, E-mail: manotasm@uninorte.edu.co [Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Km. 5 vía a Puerto Colombia, Barranquilla (Colombia); Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago (Chile); Vargas-Uscategui, Alejandro [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile); Palma, Rodrigo [Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago (Chile); Mosquera, Edgar [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile)

    2014-06-15

    Highlights: • Tantalum carbide nanodispersoids were obtained in a copper matrix. • Nanodispersoids were obtained by means of reactive milling followed by hot extrusion. • Hexane was used as the liquid medium for the reactive mechanical alloying process. • Hexane provides the carbon (C) needed for the process. • The reaction of tantalum carbide formation takes place in the hot extrusion. - Abstract: This paper presents a study of the in situ production of tantalum carbide nanodispersoids in a copper matrix. The copper matrix composites were produced by means of reactive milling in hexane (C{sub 6}H{sub 14}) followed by hot extrusion. The composite materials were characterized by means of optical emission spectroscopy (OES), X-ray fluorescence (XRF), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Vickers micro-hardness. The effect of milling time was analyzed in 10, 20 and 30 h in a composite with a nominal composition Cu–5 vol.% TaC. A systematic increase of the dislocations density and the carbon concentration were observed when the milling time was increased, whereas the crystallite size of the composite matrix decreased. The material milled for 30 h and hot-extruded showed a density of 9037 kg m{sup −3} (98.2% densification) and a softening resistance of 204 HV; however the latter value showed an abrupt drop after an annealing treatment at 923 K for 1 h. Finally, the TEM analysis showed the presence of tantalum carbide (Ta{sub 4}C{sub 3}) nanodispersoids.

  9. Microstructure formations in copper-silicon carbide composites during mechanical alloying in a planetary activator

    Energy Technology Data Exchange (ETDEWEB)

    Kudashov, D.V.; Aksenov, A.A.; Portnoy, V.K.; Zolotorevskii, V.S. [Moscow State Inst. of Steel and Alloys, Moscow (Russian Federation). Dept. of Physical Metallurgy of Non-ferrous Metals; Klemm, V.; Martin, U.; Oettel, H. [Technical Univ., Freiberg (Germany). Inst. of Physical Metallurgy

    2000-12-01

    In the present paper the structure formation process of the powder metallurgical produced copper composite materials was studied. The volume part of the reinforcing SiC particles was varied from 5 to 25 wt.-%. It was discovered that while milling in a planetary activator first of all a ''puff- pastry'' structure appeared. There are important differences between this structure formation process and other known processes of milling. The homogeneous distribution of SiC particles was obtained after 60-100 minutes of treatment in ''Gefest11-3'' planetary activator. Phase composition of the powder and composite samples at the interface SiC/Cu (particles/matrix) was analysed after consolidation of the powder mixture and after the high temperature annealing. It was still determined that not only pure copper powder can be as a starting material for Cu-composites production used, but also the wastes of copper mechanical treatment, for instance, copper shaving. (orig.)

  10. Copper-to-silicon-carbide joints development for Future CLIC Hom Dampers

    CERN Document Server

    Gil Costa, Miguel

    2015-01-01

    Ceramic-to-metal joints have been of paramount importance for the nuclear and aeronautic industry since the last century. In this document, two different approaches to the Cu-to-SiC joining are briefly described and discussed. The first approach consists of an intermediate piece of lower Coefficient of Thermal Expansion than copper aiming to reduce the expansion mismatch with the ceramic during the brazing cycle. Soldering is selected as a second attempt, whose lower joining temperature reduces the absolute expansion difference between Cu and SiC. In addition, four SiC metallization processes are proposed and some of them have been also tested and discussed.

  11. Corrosion resistant cemented carbide

    International Nuclear Information System (INIS)

    Hong, J.

    1990-01-01

    This paper describes a corrosion resistant cemented carbide composite. It comprises: a granular tungsten carbide phase, a semi-continuous solid solution carbide phase extending closely adjacent at least a portion of the grains of tungsten carbide for enhancing corrosion resistance, and a substantially continuous metal binder phase. The cemented carbide composite consisting essentially of an effective amount of an anti-corrosion additive, from about 4 to about 16 percent by weight metal binder phase, and with the remaining portion being from about 84 to about 96 percent by weight metal carbide wherein the metal carbide consists essentially of from about 4 to about 30 percent by weight of a transition metal carbide or mixtures thereof selected from Group IVB and of the Periodic Table of Elements and from about 70 to about 96 percent tungsten carbide. The metal binder phase consists essentially of nickel and from about 10 to about 25 percent by weight chromium, the effective amount of an anti-corrosion additive being selected from the group consisting essentially of copper, silver, tine and combinations thereof

  12. Effect of Milling Condition on the Microstructure and the Properties of Nano structured Copper Tungsten Carbide Composite

    International Nuclear Information System (INIS)

    Mahani Yusoff; Zuhailawati Hussain

    2011-01-01

    In this work, in-situ Cu-WC composite has been fabricated by high energy milling followed by sintering. Cu, W and C mixture were mechanically alloyed in a planetary ball mill for 40 h at various milling speeds. Cu-W-C composite powders were cold compacted and sintered in argon ambient. Milled powder and sintered Cu-W-C composite were characterized in terms of Xray diffraction (XRD), field emission scanning electron microscopy (FESEM) and its properties. The result showed that carbide phases are only detected after sintering process. Greater amount of grain refinement during milling generates very high internal strain which reduced Cu crystallite size. It was found that formation of metastable, W 2 C has taken place before the formation of WC. With the presence of WC, the composite become increasingly harden with the increased of milling speed. Increasing milling speed also found to lower the electrical conductivity. (author)

  13. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  14. Electrocatalysis on tungsten carbide

    International Nuclear Information System (INIS)

    Fleischmann, R.

    1975-01-01

    General concepts of electrocatalysis, the importance of the equilibrium rest potential and its standardization on polished WC-electrodes, the influence of oxygen in the catalysts upon the oxidation of hydrogen, and the attained results of the hydrogen oxidation on tungsten carbide are treated. (HK) [de

  15. On possibility of fabrication of monolith composite materials on niobium carbide base

    International Nuclear Information System (INIS)

    Ploshkin, V.V.; Ul'yanina, I.Yu.; Filonenko, V.P.

    1984-01-01

    An attempt was made to fabricate the composite material on niobium carbide base possessing the elevated heat resistance, erosion and chemical resistance in special media, as well as capable of withstanding sufficient thermal shocks. Powder of niobium carbide of 10 μm fraction was used as base material, the powder of pure copper of 10...12 μm fraction - as binder. It was shown that samples of composite mateiral on niobium carbide base fabricated by the method of hydrostatic pressing possessed the minimal porosity as compared to samples fabricated by usual methods of powder metallurgy. The basic phases of composite material-copper and niobium carbide - distribute uniformly over sample cross-section and don't interact with each other under any conditions. The fabricated composite material possesses sufficient thermal shock resistance and isn't subjected to brittle fracture

  16. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Jia, Z. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Steel Decatur, LLC Sheet Mill, 4301, Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.J. [CBMM-Reference Metals Company, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2011-11-15

    Highlights: {yields} Copper does not significantly influence toughness. {yields} Copper precipitation during aging occurs at dislocations. {yields} Precipitation of copper and carbides is mutually exclusive. - Abstract: We describe here the precipitation behavior of copper and fine-scale carbides during thermo-mechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength steels. During thermo-mechanical processing, precipitation of {epsilon}-copper occurs in polygonal ferrite and at the austenite-ferrite interface. In contrast, during isothermal aging, nucleation of {epsilon}-copper precipitation occurs at dislocations. In the three different chemistries investigated, the increase in strength associated with copper during aging results only in a small decrease in impact toughness, implying that copper precipitates do not seriously impair toughness, and can be considered as a viable strengthening element in microalloyed steels. Precipitation of fine-scale niobium carbides occurs extensively at dislocations and within ferrite matrix together with vanadium carbides. In the presence of titanium, titanium carbides act as a nucleus for niobium carbide formation. Irrespective of the nature of carbides, copper precipitates and carbides are mutually exclusive.

  17. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties

    International Nuclear Information System (INIS)

    Misra, R.D.K.; Jia, Z.; O'Malley, R.; Jansto, S.J.

    2011-01-01

    Highlights: → Copper does not significantly influence toughness. → Copper precipitation during aging occurs at dislocations. → Precipitation of copper and carbides is mutually exclusive. - Abstract: We describe here the precipitation behavior of copper and fine-scale carbides during thermo-mechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength steels. During thermo-mechanical processing, precipitation of ε-copper occurs in polygonal ferrite and at the austenite-ferrite interface. In contrast, during isothermal aging, nucleation of ε-copper precipitation occurs at dislocations. In the three different chemistries investigated, the increase in strength associated with copper during aging results only in a small decrease in impact toughness, implying that copper precipitates do not seriously impair toughness, and can be considered as a viable strengthening element in microalloyed steels. Precipitation of fine-scale niobium carbides occurs extensively at dislocations and within ferrite matrix together with vanadium carbides. In the presence of titanium, titanium carbides act as a nucleus for niobium carbide formation. Irrespective of the nature of carbides, copper precipitates and carbides are mutually exclusive.

  18. Joining elements of silicon carbide

    International Nuclear Information System (INIS)

    Olson, B.A.

    1979-01-01

    A method of joining together at least two silicon carbide elements (e.g.in forming a heat exchanger) is described, comprising subjecting to sufficiently non-oxidizing atmosphere and sufficiently high temperature, material placed in space between the elements. The material consists of silicon carbide particles, carbon and/or a precursor of carbon, and silicon, such that it forms a joint joining together at least two silicon carbide elements. At least one of the elements may contain silicon. (author)

  19. Metal Carbides for Biomass Valorization

    Directory of Open Access Journals (Sweden)

    Carine E. Chan-Thaw

    2018-02-01

    Full Text Available Transition metal carbides have been utilized as an alternative catalyst to expensive noble metals for the conversion of biomass. Tungsten and molybdenum carbides have been shown to be effective catalysts for hydrogenation, hydrodeoxygenation and isomerization reactions. The satisfactory activities of these metal carbides and their low costs, compared with noble metals, make them appealing alternatives and worthy of further investigation. In this review, we succinctly describe common synthesis techniques, including temperature-programmed reaction and carbothermal hydrogen reduction, utilized to prepare metal carbides used for biomass transformation. Attention will be focused, successively, on the application of transition metal carbide catalysts in the transformation of first-generation (oils and second-generation (lignocellulose biomass to biofuels and fine chemicals.

  20. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  1. Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides.

    Science.gov (United States)

    Wang, Zixing; Kochat, Vidya; Pandey, Prafull; Kashyap, Sanjay; Chattopadhyay, Soham; Samanta, Atanu; Sarkar, Suman; Manimunda, Praveena; Zhang, Xiang; Asif, Syed; Singh, Abhisek K; Chattopadhyay, Kamanio; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-08-01

    Ultrathin ceramic coatings are of high interest as protective coatings from aviation to biomedical applications. Here, a generic approach of making scalable ultrathin transition metal-carbide/boride/nitride using immiscibility of two metals is demonstrated. Ultrathin tantalum carbide, nitride, and boride are grown using chemical vapor deposition by heating a tantalum-copper bilayer with corresponding precursor (C 2 H 2 , B powder, and NH 3 ). The ultrathin crystals are found on the copper surface (opposite of the metal-metal junction). A detailed microscopy analysis followed by density functional theory based calculation demonstrates the migration mechanism, where Ta atoms prefer to stay in clusters in the Cu matrix. These ultrathin materials have good interface attachment with Cu, improving the scratch resistance and oxidation resistance of Cu. This metal-metal immiscibility system can be extended to other metals to synthesize metal carbide, boride, and nitride coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...... be delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  3. Tungsten--carbide critical assembly

    International Nuclear Information System (INIS)

    Hansen, G.E.; Paxton, H.C.

    1975-06-01

    The tungsten--carbide critical assembly mainly consists of three close-fitting spherical shells: a highly enriched uranium shell on the inside, a tungsten--carbide shell surrounding it, and a steel shell on the outside. Ideal critical specifications indicate a rather low computed value of k/sub eff/. Observed and calculated fission-rate distributions for 235 U, 238 U, and 237 Np are compared, and calculated leakage neutrons per fission in various energy groups are given. (U.S.)

  4. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  5. Porous silicon carbide (SIC) semiconductor device

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  6. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  7. Production of silicon carbide bodies

    International Nuclear Information System (INIS)

    Parkinson, K.

    1981-01-01

    A body consisting essentially of a coherent mixture of silicon carbide and carbon for subsequent siliconising is produced by casting a slip comprising silicon carbide and carbon powders in a porous mould. Part of the surface of the body, particularly internal features, is formed by providing within the mould a core of a material which retains its shape while casting is in progress but is compressed by shrinkage of the cast body as it dries and is thereafter removable from the cast body. Materials which are suitable for the core are expanded polystyrene and gelatinous products of selected low elastic modulus. (author)

  8. High yield silicon carbide prepolymers

    International Nuclear Information System (INIS)

    Baney, R.H.

    1982-01-01

    Prepolymers which exhibit good handling properties, and are useful for preparing ceramics, silicon carbide ceramic materials and articles containing silicon carbide, are polysilanes consisting of 0 to 60 mole% (CH 3 ) 2 Si units and 40 to 100 mole% CH 3 Si units, all Si valences being satisfied by CH 3 groups, other Si atoms, or by H atoms, the latter amounting to 0.3 to 2.1 weight% of the polysilane. They are prepared by reducing the corresponding chloro- or bromo-polysilanes with at least the stoichiometric amount of a reducing agent, e.g. LiAlH 4 . (author)

  9. Transition metal carbide and boride abrasive particles

    International Nuclear Information System (INIS)

    Valdsaar, H.

    1978-01-01

    Abrasive particles and their preparation are discussed. The particles consist essentially of a matrix of titanium carbide and zirconium carbide, at least partially in solid solution form, and grains of crystalline titanium diboride dispersed throughout the carbide matrix. These abrasive particles are particularly useful as components of grinding wheels for abrading steel. 1 figure, 6 tables

  10. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    International Nuclear Information System (INIS)

    Miyoshi, K.; Buckley, D.H.

    1978-04-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active metal is, and the greater resistance to shear it has, with the exception of rhodium and tungsten, the less transfer to silicon carbide

  11. Fabrication and thermal conductivity of boron carbide/copper cermet

    International Nuclear Information System (INIS)

    Maruyama, Tadashi; Onose, Shoji

    1999-01-01

    Studies on fabrication and thermal conductivity of B 4 C/Cu cermet were made to obtain high performance neutron absorber materials for Liquid Metal-cooled Fast Breeder Reactor (LMFBR). A mixed powder of B 4 C and Cu was mechanically blended at high speed thereby a coating layer of Cu was formed on the surface of B 4 C powder. Then the B 4 C powder with Cu coating was hot pressed at temperatures from 950 to 1,050degC to form a B 4 C cermet. A high density B 4 C/Cu cermet with 70 vol% of B 4 C and relative density higher than 90% was successfully fabricated. In spite of the low volume fraction of Cu, the B 4 C/Cu cermet exhibited high thermal conductivity which originated from the existence of continuous metallic phase Cu in B 4 C/Cu cermet. (author)

  12. Joining silicon carbide to austenitic stainless steel through diffusion welding; Stellingen behorende bij het proefschrift

    Energy Technology Data Exchange (ETDEWEB)

    Krugers, Jan-Paul

    1993-01-19

    In this thesis, the results are presented of a study dealing with joining silicon carbide to austenitic stainless steel AIS316 by means of diffusion welding. Welding experiments were carried out without and with the use of a metallic intermediate, like copper, nickel and copper-nickel alloys at various conditions of process temperature, process time, mechanical pressure and interlayer thickness. Most experiments were carried out in high vacuum. For reasons of comparison, however, some experiments were also carried out in a gas shielded environment of 95 vol.% Ar and 5 vol.% H2.

  13. Superconductivity in borides and carbides

    International Nuclear Information System (INIS)

    Muranaka, Takahiro

    2007-01-01

    It was thought that intermetallic superconductors do not exhibit superconductivity at temperatures over 30 K because of the Bardeen-Cooper-Schrieffer (BCS) limit; therefore, researchers have been interested in high-T c cuprates. Our group discovered high-T c superconductivity in MgB 2 at 39 K in 2001. This discovery has initiated a substantial interest in the potential of high-T c superconductivity in intermetallic compounds that include 'light' elements (borides, carbides, etc.). (author)

  14. Helium diffusion in irradiated boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.

    1981-03-01

    Boron carbide has been internationally adopted as the neutron absorber material in the control and safety rods of large fast breeder reactors. Its relatively large neutron capture cross section at high neutron energies provides sufficient reactivity worth with a minimum of core space. In addition, the commercial availability of boron carbide makes it attractive from a fabrication standpoint. Instrumented irradiation experiments in EBR-II have provided continuous helium release data on boron carbide at a variety of operating temperatures. Although some microstructural and compositional variations were examined in these experiments most of the boron carbide was prototypic of that used in the Fast Flux Test Facility. The density of the boron carbide pellets was approximately 92% of theoretical. The boron carbide pellets were approximately 1.0 cm in diameter and possessed average grain sizes that varied from 8 to 30 μm. Pellet centerline temperatures were continually measured during the irradiation experiments

  15. Crystallization of nodular cast iron with carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper a crystallization process of nodular cast iron with carbides having a different chemical composition have been presented. It have been found, that an increase of molybdenum above 0,30% causes the ledeburutic carbides crystallization after (γ+ graphite eutectic phase crystallization. When Mo content is lower, these carbides crystallize as a pre-eutectic phase. In this article causes of this effect have been given.

  16. Tribology of carbide derived carbon films synthesized on tungsten carbide

    Science.gov (United States)

    Tlustochowicz, Marcin

    Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.

  17. Copper Test

    Science.gov (United States)

    ... in the arm and/or a 24-hour urine sample is collected. Sometimes a health practitioner performs a liver ... disease , a rare inherited disorder that can lead to excess storage of copper in the liver, brain, and other ...

  18. Muonium states in silicon carbide

    International Nuclear Information System (INIS)

    Patterson, B.D.; Baumeler, H.; Keller, H.; Kiefl, R.F.; Kuendig, W.; Odermatt, W.; Schneider, J.W.; Estle, T.L.; Spencer, D.P.; Savic, I.M.

    1986-01-01

    Implanted muons in samples of silicon carbide have been observed to form paramagnetic muonium centers (μ + e - ). Muonium precession signals in low applied magnetic fields have been observed at 22 K in a granular sample of cubic β-SiC, however it was not possible to determine the hyperfine frequency. In a signal crystal sample of hexagonal 6H-SiC, three apparently isotropic muonium states were observed at 20 K and two at 300 K, all with hyperfine frequencies intermediate between those of the isotropic muonium centers in diamond and silicon. No evidence was seen of an anisotropic muonium state analogous to the Mu * state in diamond and silicon. (orig.)

  19. Low temperature study of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.

    2005-05-01

    By low temperature neutron diffraction method was studied structure in nonstoichiometric titanium carbide from room temperature up to 12K. It is found of low temperature phase in titanium carbide- TiC 0.71 . It is established region and borders of this phase. It is determined change of unit cell parameter. (author)

  20. Elastic modulus and fracture of boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Walther, G.

    1978-12-01

    The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C

  1. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first...... example of a cationic terminal carbide complex, [RuC(Cl)(CH3CN)(PCy3)2]+, is described and characterized by NMR, MS, X-ray crystallography, and computational studies. The experimentally observed irregular variation of the carbide 13C chemical shift is shown to be accurately reproduced by DFT, which also...... demonstrates that details of the coordination geometry affect the carbide chemical shift equally as much as variations in the nature of the auxiliary ligands. Furthermore, the kinetics of formation of the sqaure pyramidal dicyano complex, trans-[RuC(CN)2(PCy3)2], from RuC has been examined and the reaction...

  2. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen.The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  3. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    Pietrowski S.

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  4. Plasma metallization of refractory carbide powders

    International Nuclear Information System (INIS)

    Koroleva, E.B.; Klinskaya, N.A.; Rybalko, O.F.; Ugol'nikova, T.A.

    1986-01-01

    The effect of treatment conditions in plasma on properties of produced metallized powders of titanium, tungsten and chromium carbides with the main particle size of 40-80 μm is considered. It is shown that plasma treatment permits to produce metallized powders of carbide materials with the 40-80 μm particle size. The degree of metallization, spheroidization, chemical and phase composition of metallized carbide powders are controlled by dispersivity of the treated material, concentration of a metal component in the treated mixtures, rate of plasma flow and preliminary spheroidization procedure

  5. Vanadium carbide coatings: deposition process and properties

    International Nuclear Information System (INIS)

    Borisova, A.; Borisov, Y.; Shavlovsky, E.; Mits, I.; Castermans, L.; Jongbloed, R.

    2001-01-01

    Vanadium carbide coatings on carbon and alloyed steels were produced by the method of diffusion saturation from the borax melt. Thickness of the vanadium carbide layer was 5-15 μm, depending upon the steel grade and diffusion saturation parameters. Microhardness was 20000-28000 MPa and wear resistance of the coatings under conditions of end face friction without lubrication against a mating body of WC-2Co was 15-20 times as high as that of boride coatings. Vanadium carbide coatings can operate in air at a temperature of up to 400 o C. They improve fatigue strength of carbon steels and decrease the rate of corrosion in sea and fresh water and in acid solutions. The use of vanadium carbide coatings for hardening of various types of tools, including cutting tools, allows their service life to be extended by a factor of 3 to 30. (author)

  6. Stable carbides in transition metal alloys

    International Nuclear Information System (INIS)

    Piotrkowski, R.

    1991-01-01

    In the present work different techniques were employed for the identification of stable carbides in two sets of transition metal alloys of wide technological application: a set of three high alloy M2 type steels in which W and/or Mo were total or partially replaced by Nb, and a Zr-2.5 Nb alloy. The M2 steel is a high speed steel worldwide used and the Zr-2.5 Nb alloy is the base material for the pressure tubes in the CANDU type nuclear reactors. The stability of carbide was studied in the frame of Goldschmidt's theory of interstitial alloys. The identification of stable carbides in steels was performed by determining their metallic composition with an energy analyzer attached to the scanning electron microscope (SEM). By these means typical carbides of the M2 steel, MC and M 6 C, were found. Moreover, the spatial and size distribution of carbide particles were determined after different heat treatments, and both microstructure and microhardness were correlated with the appearance of the secondary hardening phenomenon. In the Zr-Nb alloy a study of the α and β phases present after different heat treatments was performed with optical and SEM metallographic techniques, with the guide of Abriata and Bolcich phase diagram. The α-β interphase boundaries were characterized as short circuits for diffusion with radiotracer techniques and applying Fisher-Bondy-Martin model. The precipitation of carbides was promoted by heat treatments that produced first the C diffusion into the samples at high temperatures (β phase), and then the precipitation of carbide particles at lower temperature (α phase or (α+β)) two phase field. The precipitated carbides were identified as (Zr, Nb)C 1-x with SEM, electron microprobe and X-ray diffraction techniques. (Author) [es

  7. Point defects and transport properties in carbides

    International Nuclear Information System (INIS)

    Matzke, Hj.

    1984-01-01

    Carbides of transition metals and of actinides are interesting and technologically important. The transition-metal carbides (or carbonitrides) are extensively being used as hard materials and some of them are of great interest because of the high transition temperature for superconductivity, e.g. 17 K for Nb(C,N). Actinide carbides and carbonitrides, (U,Pu)C and (U,Pu)(C,N) are being considered as promising advanced fuels for liquid metal cooled fast breeder nuclear reactors. Basic interest exists in all these materials because of their high melting points (e.g. 4250 K for TaC) and the unusually broad range of homogeneity of nonstoichiometric compositions (e.g. from UCsub(0.9) to UCsub(1.9) at 2500 K). Interaction of point defects to clusters and short-range ordering have recently been studied with elastic neutron diffraction and diffuse scattering techniques, and calculations of energies of formation and interaction of point defects became available for selected carbides. Diffusion measurements also exist for a number of carbides, in particular for the actinide carbides. The existing knowledge is discussed and summarized with emphasis on informative examples of particular technological relevance. (Auth.)

  8. An experimental study of the composite CNT/copper coating

    Science.gov (United States)

    Panarin, Valentin Ye.; Svavil‧nyi, Nikolai Ye.; Khominich, Anastasiya I.

    2018-03-01

    This paper presents experimental results on the preparation and investigation of the carbon nanotubes-copper composite material. Carbon nanotubes (CNTs) were synthesized on silicon substrates by the chemical vapor deposition (CVD) method and then filled with copper by evaporation from a melting pot in a vacuum. Copper evenly covered both the surface of the entangled tubes and the free substrate surface between the tubes. To improve the adhesion of tubes and matrix material, a carbon substructure was grown on the surface of tubes by adding working gas plasma to the CNT synthesis area. It is proposed to use a copper coating as a diffusion barrier upon subsequent filling of the reinforcing CNT frame by a carbide-forming materials matrix with predetermined physico-mechanical and tribological properties.

  9. Plasma spraying of zirconium carbide – hafnium carbide – tungsten cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    2009-01-01

    Roč. 9, č. 1 (2009), s. 49-64 ISSN 1335-8987 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * hafnium carbide * tungsten * water stabilized plasma Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  10. Tungsten carbide and tungsten-molybdenum carbides as automobile exhaust catalysts

    International Nuclear Information System (INIS)

    Leclercq, L.; Daubrege, F.; Gengembre, L.; Leclercq, G.; Prigent, M.

    1987-01-01

    Several catalyst samples of tungsten carbide and W, Mo mixed carbides with different Mo/W atom ratios, have been prepared to test their ability to remove carbon monoxide, nitric oxide and propane from a synthetic exhaust gas simulating automobile emissions. Surface characterization of the catalysts has been performed by X-ray photoelectron spectroscopy (XPS) and selective chemisorption of hydrogen and carbon monoxide. Tungsten carbide exhibits good activity for CO and NO conversion, compared to a standard three-way catalyst based on Pt and Rh. However, this W carbide is ineffective in the oxidation of propane. The Mo,W mixed carbides are markedly different having only a very low activity. 9 refs.; 10 figs.; 5 tabs

  11. High temperature evaporation of titanium, zirconium and hafnium carbides

    International Nuclear Information System (INIS)

    Gusev, A.I.; Rempel', A.A.

    1991-01-01

    Evaporation of cubic nonstoichiometric carbides of titanium, zirconium and hafnium in a comparatively low-temperature interval (1800-2700) with detailed crystallochemical sample certification is studied. Titanium carbide is characterized by the maximum evaporation rate: at T>2300 K it loses 3% of sample mass during an hour and at T>2400 K titanium carbide evaporation becomes extremely rapid. Zirconium and hafnium carbide evaporation rates are several times lower than titanium carbide evaporation rates at similar temperatures. Partial pressures of metals and carbon over the carbides studied are calculated on the base of evaporation rates

  12. Determination of nitrogen in boron carbide with the Leco UO-14 Nitrogen Determinator

    International Nuclear Information System (INIS)

    Gardner, R.D.; Ashley, W.H.; Henicksman, A.L.

    1977-11-01

    Use of various metals as fluxes for releasing nitrogen from boron carbide in the Leco Nitrogen Determinator was investigated. Metals such as iron, chromium, and molybdenum that wet the graphite crucible all promoted nitrogen release. Tin, copper, aluminum, and platinum did not wet the graphite and were of no value as fluxes. A procedure for sample handling and the resulting performance of the method are described. The precision at 0.06 to 0.6 percent nitrogen averaged 4 percent relative standard deviation

  13. Joining of boron carbide using nickel interlayer

    International Nuclear Information System (INIS)

    Vosughi, A.; Hadian, A. M.

    2008-01-01

    Carbide ceramics such as boron carbide due to their unique properties such as low density, high refractoriness, and high strength to weight ratio have many applications in different industries. This study focuses on direct bonding of boron carbide for high temperature applications using nickel interlayer. The process variables such as bonding time, temperature, and pressure have been investigated. The microstructure of the joint area was studied using electron scanning microscope technique. At all the bonding temperatures ranging from 1150 to 1300 d eg C a reaction layer formed across the ceramic/metal interface. The thickness of the reaction layer increased by increasing temperature. The strength of the bonded samples was measured using shear testing method. The highest strength value obtained was about 100 MPa and belonged to the samples bonded at 1250 for 75 min bonding time. The strength of the joints decreased by increasing the bonding temperature above 1250 d eg C . The results of this study showed that direct bonding technique along with nickel interlayer can be successfully utilized for bonding boron carbide ceramic to itself. This method may be used for bonding boron carbide to metals as well.

  14. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    Laterite obtained from Ikpayongo was stabilized with 2-10 % cement and 2-10 % Calcium Carbide waste, for use .... or open dumping which have effect on surface and ... Table 1: Chemical Composition of Calcium Carbide Waste and Cement.

  15. Method of fabricating porous silicon carbide (SiC)

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1995-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  16. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 microm to 100 microm) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both α-SiC and β-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the α-SiC and β-SiC polytypes were similar

  17. Fission product phases in irradiated carbide fuels

    International Nuclear Information System (INIS)

    Ewart, F.T.; Sharpe, B.M.; Taylor, R.G.

    1975-09-01

    Oxide fuels have been widely adopted as 'first charge' fuels for demonstration fast reactors. However, because of the improved breeding characteristics, carbides are being investigated in a number of laboratories as possible advanced fuels. Irradiation experiments on uranium and mixed uranium-plutonium carbides have been widely reported but the instances where segregate phases have been found and subjected to electron probe analysis are relatively few. Several observations of such segregate phases have now been made over a period of time and these are collected together in this document. Some seven fuel pins have been examined. Two of the irradiations were in thermal materials testing reactors (MTR); the remainder were experimental assemblies of carbide gas bonded oxycarbide and sodium bonded oxycarbide in the Dounreay Fast Reactor (DFR). All fuel pins completed their irradiation without failure. (author)

  18. Joining of porous silicon carbide bodies

    Science.gov (United States)

    Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.

    1990-05-01

    A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.

  19. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  20. Fabrication of uranium carbide/beryllium carbide/graphite experimental-fuel-element specimens

    International Nuclear Information System (INIS)

    Muenzer, W.A.

    1978-01-01

    A method has been developed for fabricating uranium carbide/beryllium carbide/graphite fuel-element specimens for reactor-core-meltdown studies. The method involves milling and blending the raw materials and densifying the resulting blend by conventional graphite-die hot-pressing techniques. It can be used to fabricate specimens with good physical integrity and material dispersion, with densities of greater than 90% of the theoretical density, and with a uranium carbide particle size of less than 10 μm

  1. Morphology study of refractory carbide powders

    International Nuclear Information System (INIS)

    Vavrda, J.; Blazhikova, Ya.

    1982-01-01

    Refractory carbides were investigated using JSM-U3 electron microscope of Joelco company at 27 KV accelerating voltage. Some photographs of each powder were taken with different enlargements to characterise the sample upon the whole. It was shown that morphological and especially topographic study of powders enables to learn their past history (way of fabrication and treatment). The presence of steps of compact particle fractures and cracks is accompanied by occurence of fine dispersion of carbides subjected to machining after facrication. On the contrary, the character of crystallographic surfaces and features of surface growth testify to the way of crystallization

  2. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  3. Tool steel for cold worck niobium carbides

    International Nuclear Information System (INIS)

    Goldenstein, H.

    1984-01-01

    A tool steel was designed so as to have a microstructure with the matrix similar a cold work tool steel of D series, containing a dispersion of Niobium carbides, with no intention of putting Niobium in solution on the matrix. The alloy was cast, forged and heat treated. The alloy was easily forged; the primary carbide morfology, after forging, was faceted, tending to equiaxed. The hardness obtained was equivalent to the maximum hardness of a D-3 sttel when quenched from any temperature between 950 0 C, and 1200 0 , showing a very small sensitivy to the quenching temperature. (Author) [pt

  4. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  5. Preparation of aluminum nitride-silicon carbide nanocomposite powder by the nitridation of aluminum silicon carbide

    NARCIS (Netherlands)

    Itatani, K.; Tsukamoto, R.; Delsing, A.C.A.; Hintzen, H.T.J.M.; Okada, I.

    2002-01-01

    Aluminum nitride (AlN)-silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g-1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich

  6. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  7. Growth and structure of carbide nanorods

    International Nuclear Information System (INIS)

    Lieber, C.M.; Wong, E.W.; Dai, H.; Maynor, B.W.; Burns, L.D.

    1996-01-01

    Recent research on the growth and structure of carbide nanorods is reviewed. Carbide nanorods have been prepared by reacting carbon nanotubes with volatile transition metal and main group oxides and halides. Using this approach it has been possible to obtain solid carbide nanorods of TiC, SiC, NbC, Fe 3 C, and BC x having diameters between 2 and 30 nm and lengths up to 20 microm. Structural studies of single crystal TiC nanorods obtained through reactions of TiO with carbon nanotubes show that the nanorods grow along both [110] and [111] directions, and that the rods can exhibit either smooth or saw-tooth morphologies. Crystalline SiC nanorods have been produced from reactions of carbon nanotubes with SiO and Si-iodine reactants. The preferred growth direction of these nanorods is [111], although at low reaction temperatures rods with [100] growth axes are also observed. The growth mechanisms leading to these novel nanomaterials have also been addressed. Temperature dependent growth studies of TiC nanorods produced using a Ti-iodine reactant have provided definitive proof for a template or topotactic growth mechanism, and furthermore, have yielded new TiC nanotube materials. Investigations of the growth of SiC nanorods show that in some cases a catalytic mechanism may also be operable. Future research directions and applications of these new carbide nanorod materials are discussed

  8. Surface metallurgy of cemented carbide tools

    International Nuclear Information System (INIS)

    Chopra, K.L.; Kashyap, S.C.; Rao, T.V.; Rajagopalan, S.; Srivastava, P.K.

    1983-01-01

    Transition metal carbides, owing to their high melting point, hardness and wear resistance, are potential candidates for specific application in rockets, nuclear engineering equipment and cutting tools. Tungsten carbide sintered with a binder (either cobalt metal or a mixture of Co + TiC and/or TaC(NbC)) is used for cutting tools. The surface metallurgy of several commercially available cemented carbide tools was studied by Auger electron spectroscopy and X-ray photoelectron spectroscopy techniques. The tool surfaces were contaminated by adsorbed oxygen up to a depth of nearly 0.3 μm causing deterioration of the mechanical properties of the tools. Studies of fractured samples indicated that the tool surfaces were prone to oxygen adsorption. The fracture path passes through the cobalt-rich regions. The ineffectiveness of a worn cutting tool is attributed to the presence of excessive iron from the steel workpiece and carbon and oxygen in the surface layers of the tool. The use of appropriate hard coatings on cemented carbide tools is suggested. (Auth.)

  9. Silicon Carbide Power Devices and Integrated Circuits

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Samsel, Isaak; LaBel, Ken; Chen, Yuan; Ikpe, Stanley; Wilcox, Ted; Phan, Anthony; Kim, Hak; Topper, Alyson

    2017-01-01

    An overview of the NASA NEPP Program Silicon Carbide Power Device subtask is given, including the current task roadmap, partnerships, and future plans. Included are the Agency-wide efforts to promote development of single-event effect hardened SiC power devices for space applications.

  10. Low temperature CVD deposition of silicon carbide

    International Nuclear Information System (INIS)

    Dariel, M.; Yeheskel, J.; Agam, S.; Edelstein, D.; Lebovits, O.; Ron, Y.

    1991-04-01

    The coating of graphite on silicon carbide from the gaseous phase in a hot-well, open flow reactor at 1150degC is described. This study constitutes the first part of an investigation of the process for the coating of nuclear fuel by chemical vapor deposition (CVD)

  11. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  12. Reaction of boron carbide with molybdenum disilicide

    International Nuclear Information System (INIS)

    Novikov, A.V.; Melekhin, V.F.; Pegov, V.S.

    1989-01-01

    The investigation results of interaction in the B 4 C-MoSi 2 system during sintering in vacuum are presented. Sintering of boron carbide with molybdenum disilicide is shown to lead to the formation of MoB 2 , SiC, Mo 5 Si 3 compounds, the presence of carbon-containing covering plays an important role in sintering

  13. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  14. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...

  15. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  16. Mechanical and corrosion behaviors of developed copper-based metal matrix composites

    Science.gov (United States)

    Singh, Manvandra Kumar; Gautam, Rakesh Kumar; Prakash, Rajiv; Ji, Gopal

    2018-03-01

    This work investigates mechanical properties and corrosion resistances of cast copper-tungsten carbide (WC) metal matrix composites (MMCs). Copper matrix composites have been developed by stir casting technique. Different sizes of micro and nano particles of WC particles are utilized as reinforcement to prepare two copper-based composites, however, nano size of WC particles are prepared by high-energy ball milling. XRD (X-rays diffraction) characterize the materials for involvement of different phases. The mechanical behavior of composites has been studied by Vickers hardness test and compression test; while the corrosion behavior of developed composites is investigated by electrochemical impedance spectroscopy in 0.5 M H2SO4 solutions. The results show that hardness, compressive strength and corrosion resistance of copper matrix composites are very high in comparison to that of copper matrix, which attributed to the microstructural changes occurred during composite formation. SEM (Scanning electron microscopy) reveals the morphology of the corroded surfaces.

  17. Tribological Characteristics of Tungsten Carbide Reinforced Arc Sprayed Coatings using Different Carbide Grain Size Fractions

    Directory of Open Access Journals (Sweden)

    W. Tillmann

    2017-06-01

    Full Text Available Tungsten carbide reinforced coatings play an important role in the field of surface engineering to protect stressed surfaces against wear. For thermally sprayed coatings, it is already shown that the tribological properties get mainly determined by the carbide grain size fraction. Within the scope of this study, the tribological characteristics of iron based WC-W2C reinforced arc sprayed coatings deposited using cored wires consisting of different carbide grain size fractions were examined. Microstructural characteristics of the produced coatings were scrutinized using electron microscopy and x-ray diffraction analyses. Ball-on-disk test as well as Taber Abraser and dry sand rubber wheel test were employed to analyze both the dry sliding and the abrasive wear behavior. It was shown that a reduced carbide grain size fraction as filling leads to an enhanced wear resistance against sliding. In terms of the Taber Abraser test, it is also demonstrated that a fine carbide grain size fraction results in an improved wear resistant against abrasion. As opposed to that, a poorer wear resistance was found within the dry sand rubber wheel tests. The findings show that the operating mechanisms for both abrasion tests affect the stressed surface in a different way, leading either to microcutting or microploughing.

  18. Neutron irradiation damage in transition metal carbides

    International Nuclear Information System (INIS)

    Matsui, Hisayuki; Nesaki, Kouji; Kiritani, Michio

    1991-01-01

    Effects of neutron irradiation on the physical properties of light transition metal carbides, TiC x , VC x and NbC x , were examined, emphasizing the characterization of irradiation induced defects in the nonstoichiometric composition. TiC x irradiated with 14 MeV (fusion) neutrons showed higher damage rates with increasing C/Ti (x) ratio. A brief discussion is made on 'cascade damage' in TiC x irradiated with fusion neutrons. Two other carbides (VC x and NbC x ) were irradiated with fission reactor neutrons. The irradiation effects on VC x were not so simple, because of the complex irradiation behavior of 'ordered' phases. For instance, complete disordering was revealed in an ordered phase, 'V 8 C 7 ', after an irradiation dose of 10 25 n/m 2 . (orig.)

  19. Seebeck effect of some thin film carbides

    International Nuclear Information System (INIS)

    Beensh-Marchwicka, G.; Prociow, E.

    2002-01-01

    Several materials have been investigated for high-temperature thin film thermocouple applications. These include silicon carbide with boron (Si-C-B), ternary composition based on Si-C-Mn, fourfold composition based on Si-C-Zr-B and tantalum carbide (TaC). All materials were deposited on quartz or glass substrates using the pulse sputter deposition technique. Electrical conduction and thermoelectric power were measured for various compositions at 300-550 K. It has been found, that the efficiency of thermoelectric power of films containing Si-C base composition was varied from 0.0015-0.034 μW/cmK 2 . However for TaC the value about 0.093 μW/cmK 2 was obtained. (author)

  20. METHOD FOR PRODUCING CEMENTED CARBIDE ARTICLES

    Science.gov (United States)

    Onstott, E.I.; Cremer, G.D.

    1959-07-14

    A method is described for making molded materials of intricate shape where the materials consist of mixtures of one or more hard metal carbides or oxides and matrix metals or binder metals thereof. In one embodiment of the invention 90% of finely comminuted tungsten carbide powder together with finely comminuted cobalt bonding agent is incorporated at 60 deg C into a slurry with methyl alcohol containing 1.5% paraffin, 3% camphor, 3.5% naphthalene, and 1.8% toluene. The compact is formed by the steps of placing the slurry in a mold at least one surface of which is porous to the fluid organic system, compacting the slurry, removing a portion of the mold from contact with the formed object and heating the formed object to remove the remaining organic matter and to sinter the compact.

  1. Radiation stability of proton irradiated zirconium carbide

    International Nuclear Information System (INIS)

    Yang, Yong; Dickerson, Clayton A.; Allen, Todd R.

    2009-01-01

    The use of zirconium carbide (ZrC) is being considered for the deep burn (DB)-TRISO fuel as a replacement for the silicon carbide coating. The radiation stability of ZrC was studied using 2.6 MeV protons, across the irradiation temperature range from 600 to 900degC and to doses up to 1.75 dpa. The microstructural characterization shows that the irradiated microstructure is comprised of a high density of nanometer-sized dislocation loops, while no irradiation induced amorphization or voids are observed. The lattice expansion induced by point defects is found to increase as the dose increases for the samples irradiated at 600 and 800degC, while for the 900degC irradiation, a slight lattice contraction is observed. The radiation hardening is also quantified using a micro indentation technique for the temperature and doses studies. (author)

  2. Oxidation of boron carbide at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, Martin

    2005-01-01

    The oxidation kinetics of various types of boron carbides (pellets, powder) were investigated in the temperature range between 1073 and 1873 K. Oxidation rates were measured in transient and isothermal tests by means of mass spectrometric gas analysis. Oxidation of boron carbide is controlled by the formation of superficial liquid boron oxide and its loss due to the reaction with surplus steam to volatile boric acids and/or direct evaporation at temperatures above 1770 K. The overall reaction kinetics is paralinear. Linear oxidation kinetics established soon after the initiation of oxidation under the test conditions described in this report. Oxidation is strongly influenced by the thermohydraulic boundary conditions and in particular by the steam partial pressure and flow rate. On the other hand, the microstructure of the B 4 C samples has a limited influence on oxidation. Very low amounts of methane were produced in these tests

  3. An improved method of preparing silicon carbide

    International Nuclear Information System (INIS)

    Baney, R.H.

    1979-01-01

    A method of preparing silicon carbide is described which comprises forming a desired shape from a polysilane of the average formula:[(CH 3 ) 2 Si][CH 3 Si]. The polysilane contains from 0 to 60 mole percent (CH 3 ) 2 Si units and from 40 to 100 mole percent CH 3 Si units. The remaining bonds on the silicon are attached to another silicon atom or to a halogen atom in such manner that the average ratio of halogen to silicon in the polysilane is from 0.3:1 to 1:1. The polysilane has a melt viscosity at 150 0 C of from 0.005 to 500 Pa.s and an intrinsic viscosity in toluene of from 0.0001 to 0.1. The shaped polysilane is heated in an inert atmosphere or in a vacuum to an elevated temperature until the polysilane is converted to silicon carbide. (author)

  4. Hadfield steels with Nb and Ti carbides

    International Nuclear Information System (INIS)

    Vatavuk, J.; Goldenstein, H.

    1987-01-01

    The Hadfield Steels and the mechanisms responsible for its high strain hardening rate were reviewed. Addition of carbide forming alloying elements to the base compostion was discussed, using the matrix sttel concept. Three experimental crusher jaws were cast, with Nb and Nb + Ti added to the usual Hadfiedl compostion, with enough excess carbon to allow the formation of MC carbides. Samples for metallographic analysis were prepared from both as cast and worn out castings. The carbic morphology was described. Partition of alloying elements was qualitatively studied, using Energy Dispersive Espectroscopy in SEM. The structure of the deformed layer near the worn surface was studied by optical metalography and microhardness measurements. The results showed that fatigue cracking is one of the wear mechanisms is operation in association with the ciclic work hardening of the surface of worn crusher jaws. (Author) [pt

  5. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  6. Spark plasma sintering of tantalum carbide

    International Nuclear Information System (INIS)

    Khaleghi, Evan; Lin, Yen-Shan; Meyers, Marc A.; Olevsky, Eugene A.

    2010-01-01

    A tantalum carbide powder was consolidated by spark plasma sintering. The specimens were processed under various temperature and pressure conditions and characterized in terms of relative density, grain size, rupture strength and hardness. The results are compared to hot pressing conducted under similar settings. It is shown that high densification is accompanied by substantial grain growth. Carbon nanotubes were added to mitigate grain growth; however, while increasing specimens' rupture strength and final density, they had little effect on grain growth.

  7. HCl removal using cycled carbide slag from calcium looping cycles

    International Nuclear Information System (INIS)

    Xie, Xin; Li, Yingjie; Wang, Wenjing; Shi, Lei

    2014-01-01

    Highlights: • Cycled carbide slag from calcium looping cycles is used to remove HCl. • The optimum temperature for HCl removal of cycled carbide slag is 700 °C. • The presence of CO 2 restrains HCl removal of cycled carbide slag. • CO 2 capture conditions have important effects on HCl removal of cycled carbide slag. • HCl removal capacity of carbide slag drops with cycle number rising from 1 to 50. - Abstract: The carbide slag is an industrial waste from chlor-alkali plants, which can be used to capture CO 2 in the calcium looping cycles, i.e. carbonation/calcination cycles. In this work, the cycled carbide slag from the calcium looping cycles for CO 2 capture was proposed to remove HCl in the flue gas from the biomass-fired and RDFs-fired boilers. The effects of chlorination temperature, HCl concentration, particle size, presence of CO 2 , presence of O 2 , cycle number and CO 2 capture conditions in calcium looping cycles on the HCl removal behavior of the carbide slag experienced carbonation/calcination cycles were investigated in a triple fixed-bed reactor. The chlorination product of the cycled carbide slag from the calcium looping after absorbing HCl is not CaCl 2 but CaClOH. The optimum temperature for HCl removal of the cycled carbide slag from the carbonation/calcination cycles is 700 °C. The chlorination conversion of the cycled carbide slag increases with increasing the HCl concentration. The cycled carbide slag with larger particle size exhibits a lower chlorination conversion. The presence of CO 2 decreases the chlorination conversions of the cycled carbide slag and the presence of O 2 has a trifling impact. The chlorination conversion of the carbide slag experienced 1 carbonation/calcination cycle is higher than that of the uncycled calcined sorbent. As the number of carbonation/calcination cycles increases from 1 to 50, the chlorination conversion of carbide slag drops gradually. The high calcination temperature and high CO 2

  8. Electronic specific heat of transition metal carbides

    International Nuclear Information System (INIS)

    Conte, R.

    1964-07-01

    The experimental results that make it possible to define the band structure of transition metal carbides having an NaCI structure are still very few. We have measured the electronic specific heat of some of these carbides of varying electronic concentration (TiC, either stoichiometric or non-stoichiometric, TaC and mixed (Ti, Ta) - C). We give the main characteristics (metallography, resistivity, X-rays) of our samples and we describe the low temperature specific heat apparatus which has been built. In one of these we use helium as the exchange gas. The other is set up with a mechanical contact. The two use a germanium probe for thermometer. The measurement of the temperature using this probe is described, as well as the various measurement devices. The results are presented in the form of a rigid band model and show that the density of the states at the Fermi level has a minimum in the neighbourhood of the group IV carbides. (author) [fr

  9. Laser deposition of carbide-reinforced coatings

    International Nuclear Information System (INIS)

    Cerri, W.; Martinella, R.; Mor, G.P.; Bianchi, P.; D'Angelo, D.

    1991-01-01

    CO 2 laser cladding with blown powder presents many advantages: fusion bonding with the substrate with low dilution, metallurgical continuity in the metallic matrix, high solidification rates, ease of automation, and reduced environmental contamination. In the present paper, laser cladding experimental results using families of carbides (tungsten and titanium) mixed with metallic alloys are reported. As substrates, low alloy construction steel (AISI 4140) (austenitic stainless steel) samples have been utilized, depending on the particular carbide reinforcement application. The coating layers obtained have been characterized by metallurgical examination. They show low dilution, absence of cracks, and high abrasion resistance. The WC samples, obtained with different carbide sizes and percentages, have been characterized with dry and rubber wheel abrasion tests and the specimen behaviour has been compared with the behaviour of materials used for similar applications. The abrasion resistance proved to be better than that of other widely used hardfacing materials and the powder morphology have a non-negligible influence on the tribological properties. (orig.)

  10. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  11. Aquatic Life Criteria - Copper

    Science.gov (United States)

    Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.

  12. Microhardness and grain size of disordered nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.

    1999-01-01

    Effect of the disordered nonstoichiometric titanium carbide on its microhardness and grain size is studied. It is established that decrease in defectiveness of carbon sublattice of disordered carbide is accompanied by microhardness growth and decrease in grain size. Possible causes of the TiC y microhardness anomalous behaviour in the area 0.8 ≤ y ≤ 0.9 connected with plastic deformation mechanism conditioned by peculiarities of the electron-energetic spectrum of nonstoichiometric carbide are discussed [ru

  13. Fabrication of chamfered uranium-plutonium mixed carbide pellets

    International Nuclear Information System (INIS)

    Arai, Yasuo; Iwai, Takashi; Shiozawa, Kenichi; Handa, Muneo

    1985-10-01

    Chamfered uranium-plutonium mixed carbide pellets for high burnup irradiation test in JMTR were fabricated in glove boxes with purified argon gas. The size of die and punch in a press was decided from pellet densities and dimensions including the angle of chamfered parts. No chip or crack caused by adopting chamfered pellets was found in both pressing and sintering stages. In addition to mixed carbide pellets, uranium carbide pellets used as insulators were also successfully fabricated. (author)

  14. Copper Bioleaching in Chile

    OpenAIRE

    Juan Carlos Gentina; Fernando Acevedo

    2016-01-01

    Chile has a great tradition of producing and exporting copper. Over the last several decades, it has become the first producer on an international level. Its copper reserves are also the most important on the planet. However, after years of mineral exploitation, the ease of extracting copper oxides and ore copper content has diminished. To keep the production level high, the introduction of new technologies has become necessary. One that has been successful is bioleaching. Chile had the first...

  15. Copper infiltrated high speed steels based composites

    International Nuclear Information System (INIS)

    Madej, M.; Lezanski, J.

    2003-01-01

    High hardness, mechanical strength, heat resistance and wear resistance of M3/2 high speed steel (HSS) make it an attractive material. Since technological and economical considerations are equally important, infiltration of high-speed steel skeleton with liquid cooper has proved to be a suitable technique whereby fully dense material is produced at low cost. Attempts have been made to describe the influence of the production process parameters and alloying additives, such as tungsten carbide on the microstructure and mechanical properties of copper infiltrated HSS based composites. The compositions of powder mixtures are 100% M3/2, M3/2+10% Wc, M3/2=30% WC. The powders were uniaxially cold compacted in a cylindrical die at 800 MPa. The green compacts were sintered in vacuum at 1150 o C for 60 minutes. Thereby obtained porous skeletons were subsequently infiltrated with cooper, by gravity method, in vacuum furnace at 1150 o C for 15 minutes. (author)

  16. Demystifying Controlling Copper Corrosion

    Science.gov (United States)

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  17. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  18. Silicon Carbide Corrugated Mirrors for Space Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  19. Fracture and Residual Characterization of Tungsten Carbide Cobalt Coatings on High Strength Steel

    National Research Council Canada - National Science Library

    Parker, Donald S

    2003-01-01

    Tungsten carbide cobalt coatings applied via high velocity oxygen fuel thermal spray deposition are essentially anisotropic composite structures with aggregates of tungsten carbide particles bonded...

  20. Characterization of Nanometric-Sized Carbides Formed During Tempering of Carbide-Steel Cermets

    Directory of Open Access Journals (Sweden)

    Matus K.

    2016-06-01

    Full Text Available The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary hardness effect observed for this material to a higher tempering temperature range. Determined influence of the atmosphere in the sintering process on precipitations formed during tempering of carbide-steel cermets. So far examination of carbidesteel cermet produced by powder injection moulding was carried out mainly in the scanning electron microscope. A proper description of nanosized particles is both important and difficult as achievements of nanoscience and nanotechnology confirm the significant influence of nanocrystalline particles on material properties even if its mass fraction is undetectable by standard methods. The following research studies have been carried out using transmission electron microscopy, mainly selected area electron diffraction and energy dispersive spectroscopy. The obtained results and computer simulations comparison were made.

  1. Reactor irradiation effect on the physical-mechanical properties of zirconium carbides and niobium carbides

    International Nuclear Information System (INIS)

    Andrievskij, R.A.; Vlasov, K.P.; Shevchenko, A.S.; Lanin, A.G.; Pritchin, S.A.; Klyushin, V.V.; Kurushin, S.P.; Maskaev, A.S.

    1978-01-01

    A study has been made of the effect of the reactor radiation by a flux of neutrons 1.5x10 20 n/cm 2 (E>=1 meV) at radiation temperatures of 150 and 1100 deg C on the physico-mechanical properties of carbides of zirconium and niobium and their equimolar hard solution. A difference has been discovered in the behaviour of the indicated carbides under the effect of radiation. Under the investigated conditions of radiation the density of zirconium carbide is being decreased, while in the niobium carbide no actual volumetric changes occur. The increase of the lattice period in ZrC is more significant than in NbC. The electric resistance of ZrC is also changed more significantly than in the case of NbC, while for the microhardness a reverse relationship is observed. Strength and elasticity modulus change insignificantly in both cases. Resistance to crack formation shows a higher reduction for ZrC than for NbC, while the thermal strength shows an approximately similar increase. The equimolar hard solution of ZrC and NbC behaves to great extent similar to ZrC, although the change in electric resistance reminds of NbC while thermal strength changes differently. The study of the microstructure of the specimens has shown that radiation causes a large number of etching patterns-dislocations in NbC which are almost absent in ZrC

  2. Nondestructive neutron activation analysis of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Vandergraaf, T. T.; Wikjord, A. G.

    1973-10-15

    Instrumentel neutron activation analysis was used to determine trace constituents in silicon carbide. Four commercial powders of different origin, an NBS reference material, and a single crystal were characterized. A total of 36 activation species were identified nondestructively by high resolution gamma spectrometry; quantitative results are given for 12 of the more predominant elements. The limitations of the method for certain elements are discussed. Consideration is given to the depression of the neutron flux by impurities with large neutron absorption cross sections. Radiation fields from the various specimens were estimated assuming all radionuclides have reached their saturation activities. (auth)

  3. Crack propagation and fracture in silicon carbide

    International Nuclear Information System (INIS)

    Evans, A.G.; Lange, F.F.

    1975-01-01

    Fracture mechanics and strength studies performed on two silicon carbides - a hot-pressed material (with alumina) and a sintered material (with boron) - have shown that both materials exhibit slow crack growth at room temperature in water, but only the hot-pressed material exhibits significant high temperature slow crack growth (1000 to 1400 0 C). A good correlation of the observed fracture behaviour with the crack growth predicted from the fracture mechanics parameters shows that effective failure predictions for this material can be achieved using macro-fracture mechanics data. (author)

  4. An improved method for preparing silicon carbide

    International Nuclear Information System (INIS)

    Baney, R.H.

    1980-01-01

    A desired shape is formed from a polysilane and the shape is heated in an inert atmosphere or under vacuum to 1150 to 1600 0 C until the polysilane is converted to silicon carbide. The polysilane contains from 0 to 60 mole percent of (CH 3 ) 2 Si units and from 40 to 100 mole percent of CH 3 Si units. The remaining bonds on silicon are attached to another silicon atom or to a chlorine or bromine atom, such that the polysilane contains from 10 to 43 weight percent of hydrolyzable chlorine or from 21 to 63 weight percent of hydrolyzable bromine. (author)

  5. Hardness of carbides, nitrides, and borides

    International Nuclear Information System (INIS)

    Schroeter, W.

    1981-01-01

    Intermetallic compounds of metals with non-metals such as C, N, and B show different hardness. Wagner's interaction parameter characterizes manner and extent of the interaction between the atoms of the substance dissolved and the additional elements in metallic mixed phases. An attempt has been made to correlate the hardness of carbides, nitrides, and borides (data taken from literature) with certain interaction parameters and associated thermodynamic quantities (ΔH, ΔG). For some metals of periods 4, 5, and 6 corresponding relations were found between microhardness, interaction parameters, heat of formation, and atomic number

  6. The chemical vapor deposition of zirconium carbide onto ceramic substrates

    International Nuclear Information System (INIS)

    Glass A, John Jr.; Palmisiano, Nick Jr.; Welsh R, Edward

    1999-01-01

    Zirconium carbide is an attractive ceramic material due to its unique properties such as high melting point, good thermal conductivity, and chemical resistance. The controlled preparation of zirconium carbide films of superstoichiometric, stoichiometric, and substoichiometric compositions has been achieved utilizing zirconium tetrachloride and methane precursor gases in an atmospheric pressure high temperature chemical vapor deposition system

  7. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a preliminary study on obtaining and characterization of phenolic resin-based com- posites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ...

  8. Determination of free and combined carbon in boron carbide

    International Nuclear Information System (INIS)

    Shankaran, P.S.; Kulkarni, Amit S.; Pandey, K.L.; Ramanjaneyulu, P.S.; Yadav, C.S.; Sayi, Y.S.; Ramakumar, K.L.

    2009-01-01

    A simple, sensitive and fast method for the determination of free and combined carbon in boron carbide samples, based on combustion in presence of oxygen at different temperatures, has been developed. Method has been standardized by analyzing mixture of two different boron carbide samples. Error associated with the method in the determination of free carbon is less than 5%. (author)

  9. Stress in tungsten carbide-diamond like carbon multilayer coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Janssen, G.C.A.M.

    2007-01-01

    Tungsten carbide-diamond like carbon (WC-DLC) multilayer coatings have been prepared by sputter deposition from a tungsten-carbide target and periodic switching on and off of the reactive acetylene gas flow. The stress in the resulting WC-DLC multilayers has been studied by substrate curvature.

  10. Process for the preparation of fine grain metal carbide powders

    International Nuclear Information System (INIS)

    Gortsema, F.P.

    1976-01-01

    Fine grain metal carbide powders are conveniently prepared from the corresponding metal oxide by heating in an atmosphere of methane in hydrogen. Sintered articles having a density approaching the theoretical density of the metal carbide itself can be fabricated from the powders by cold pressing, hot pressing or other techniques. 8 claims, no drawings

  11. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    the stabilization of soil will ensure economy in road construction, while providing an effective way of disposing calcium carbide waste. KEYWORDS: Cement, Calcium carbide waste, Stabilization, Ikpayongo laterite, Pavement material. INTRODUCTION. Road building in the developing nations has been a major challenge to ...

  12. Ternary carbide uranium fuels for advanced reactor design applications

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    1999-01-01

    Solid-solution mixed uranium/refractory metal carbides such as the pseudo-ternary carbide, (U, Zr, Nb)C, hold significant promise for advanced reactor design applications because of their high thermal conductivity and high melting point (typically greater than 3200 K). Additionally, because of their thermochemical stability in a hot-hydrogen environment, pseudo-ternary carbides have been investigated for potential space nuclear power and propulsion applications. However, their stability with regard to sodium and improved resistance to attack by water over uranium carbide portends their usefulness as a fuel for advanced terrestrial reactors. An investigation into processing techniques was conducted in order to produce a series of (U, Zr, Nb)C samples for characterization and testing. Samples with densities ranging from 91% to 95% of theoretical density were produced by cold pressing and sintering the mixed constituent carbides at temperatures as high as 2650 K. (author)

  13. Method for fabricating boron carbide articles

    International Nuclear Information System (INIS)

    Ardary, Z.; Reynolds, C.

    1980-01-01

    Described is a method for fabricating an essentially uniformly dense boron carbide article of a length-to-diameter or width ratio greater than 2 to 1 comprising the steps of providing a plurality of article segments to be joined together to form the article with each of said article segments having a length-to-diameter or width ratio less than 1.5 to 1. Each segment is fabricated by hot pressing a composition consisting of boron carbide powder at a pressure and temperature effective to provide the article segment with a density greater than about 85% of theoretical density, providing each article segment with parallel planar end surfaces, placing a plurality of said article segments in a hot-pressing die in a line with the planar surfaces of adjacent article segments being disposed in intimate contact, and hot pressing the aligned article segments at a temperature and pressure effective to provide said article with a density over the length thereof in the range of about 94 to 98 percent theoretical density and greater than the density provided in the discrete hot pressing of each of the article segments and to provide a bond between adjacent article segments with said bond being at least equivalent in hardness, strength and density to a remainder of said article

  14. Carbon potential measurement on some actinide carbides

    International Nuclear Information System (INIS)

    Anthonysamy, S.; Ananthasivan, K.; Kaliappan, I.; Chandramouli, V.; Vasudeva Rao, P.R.; Mathews, C.K.; Jacob, K.T.

    1994-01-01

    Uranium-Plutonium mixed carbides with a Pu/(U+Pu) ratio of 0.55 are to be used as the fuel in the Fast Breeder Test Reactor (FBTR) at Kalpakkam, India. Carburization of the stainless steel clad by this fuel is determined by its carbon potential. Because the carbon potential of this fuel composition is not available in the literature, it was measured by the methane-hydrogen gas equilibration technique. The sample was equilibrated with purified hydrogen and the equilibrium methane-to-hydrogen ratio in the gas phase was measured with a flame ionization detector. The carbon potential of the ThC-ThC 2 as well as Mo-Mo 2 C system, which is an important binary in the actinide-fission product-carbon systems, were also measured by this technique in the temperature range 973 to 1,173 K. The data for the Mo-Mo 2 C system are in agreement with values reported in the literature. The results for the ThC-ThC 2 system are different from estimated values with large uncertainty limits given in the literature. The data on (U, Pu) mixed carbides indicates the possibility of stainless steel clad attack under isothermal equilibrium conditions

  15. Development of silicon carbide composites for fusion

    International Nuclear Information System (INIS)

    Snead, L.L.

    1993-01-01

    The use of silicon carbide composites for structural materials is of growing interest in the fusion community. However, radiation effects in these materials are virtually unexplored, and the general state of ceramic matrix composites for nonnuclear applications is still in its infancy. Research into the radiation response of the most popular silicon carbide composite, namely, the chemically vapor-deposited (CVD) SiC-carbon-Nicalon fiber system is discussed. Three areas of interest are the stability of the fiber and matrix materials, the stability of the fiber-matrix interface, and the true activation of these open-quotes reduced activityclose quotes materials. Two methods are presented that quantitatively measure the effect of radiation on fiber and matrix elastic modulus as well as the fiber-matrix interfacial strength. The results of these studies show that the factor limiting the radiation performance of the CVD SiC-carbon-Nicalon system is degradation of the Nicalon fiber, which leads to a weakened carbon interface. The activity of these composites is significantly higher than expected and is dominated by impurity isotopes. 52 refs., 12 figs., 3 tabs

  16. Chemical, mechanical, and tribological properties of pulsed-laser-deposited titanium carbide and vanadium carbide

    International Nuclear Information System (INIS)

    Krzanowski, J.E.; Leuchtner, R.E.

    1997-01-01

    The chemical, mechanical, and tribological properties of pulsed-laser-deposited TiC and VC films are reported in this paper. Films were deposited by ablating carbide targets using a KrF (λ = 248 nm) laser. Chemical analysis of the films by XPS revealed oxygen was the major impurity; the lowest oxygen concentration obtained in a film was 5 atom%. Oxygen was located primarily on the carbon sublattice of the TiC structure. The films were always substoichiometric, as expected, and the carbon in the films was identified primarily as carbidic carbon. Nanoindentation hardness tests gave values of 39 GPa for TiC and 26 GPa for VC. The friction coefficient for the TiC films was 0.22, while the VC film exhibited rapid material transfer from the steel ball to the substrate resulting in steel-on-steel tribological behavior

  17. Study on the performance of fuel elements with carbide and carbide-nitride fuel

    International Nuclear Information System (INIS)

    Golovchenko, Yu.M.; Davydov, E.F.; Maershin, A.A.

    1985-01-01

    Characteristics, test conditions and basic results of material testing of fuel elements with carbide and carbonitride fuel irradiated in the BOR-60 reactor up to 3-10% burn-up at specific power rate of 55-70 kW/m and temperatures of the cladding up to 720 deg C are described. Increase of cladding diameter is stated mainly to result from pressure of swelling fuel. The influence of initial efficient porosity of the fuel on cladding deformation and fuel stoichiometry on steel carbonization is considered. Utilization of carbide and carbonitride fuel at efficient porosity of 20% at the given test modes is shown to ensure their operability up to 10% burn-up

  18. Preparation and Fatigue Properties of Functionally Graded Cemented Carbides

    International Nuclear Information System (INIS)

    Liu Yong; Liu Fengxiao; Liaw, Peter K.; He Yuehui

    2008-01-01

    Cemented carbides with a functionally graded structure have significantly improved mechanical properties and lifetimes in cutting, drilling and molding. In this work, WC-6 wt.% Co cemented carbides with three-layer graded structure (surface layer rich in WC, mid layer rich in Co and the inner part of the average composition) were prepared by carburizing pre-sintered η-phase-containing cemented carbides. The three-point bending fatigue tests based on the total-life approach were conducted on both WC-6wt%Co functionally graded cemented carbides (FGCC) and conventional WC-6wt%Co cemented carbides. The functionally graded cemented carbide shows a slightly higher fatigue limit (∼100 MPa) than the conventional ones under the present testing conditions. However, the fatigue crack nucleation behavior of FGCC is different from that of the conventional ones. The crack nucleates preferentially along the Co-gradient and perpendicular to the tension surface in FGCC, while parallel to the tension surface in conventional cemented carbides

  19. Graphite and boron carbide composites made by hot-pressing

    International Nuclear Information System (INIS)

    Miyazaki, K.; Hagio, T.; Kobayashi, K.

    1981-01-01

    Composites consisting of graphite and boron carbide were made by hot-pressing mixed powders of coke carbon and boron carbide. The change of relative density, mechanical strength and electrical resistivity of the composites and the X-ray parameters of coke carbon were investigated with increase of boron carbide content and hot-pressing temperature. From these experiments, it was found that boron carbide powder has a remarkable effect on sintering and graphitization of coke carbon powder above the hot-pressing temperature of 2000 0 C. At 2200 0 C, electrical resistivity of the composite and d(002) spacing of coke carbon once showed minimum values at about 5 to 10 wt% boron carbide and then increased. The strength of the composite increased with increase of boron carbide content. It was considered that some boron from boron carbide began to diffuse substitutionally into the graphite structure above 2000 0 C and densification and graphitization were promoted with the diffusion of boron. Improvements could be made to the mechanical strength, density, oxidation resistance and manufacturing methods by comparing with the properties and processes of conventional graphites. (author)

  20. Precipitation behavior of carbides in high-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao; Shi, Chang-min [University of Science and Technology, Beijing (China). State Key Laboratory of Advanced Metallurgy; Li, Ji-hui [Yang Jiang Shi Ba Zi Group Co., Ltd, Guangdong (China)

    2017-01-15

    A fundamental study on the precipitation behavior of carbides was carried out. Thermo-calc software, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, X-ray diffractometry and high-temperature confocal laser scanning microscopy were used to study the precipitation and transformation behaviors of carbides. Carbide precipitation was of a specific order. Primary carbides (M7C3) tended to be generated from liquid steel when the solid fraction reached 84 mol.%. Secondary carbides (M7C3) precipitated from austenite and can hardly transformed into M23C6 carbides with decreasing temperature in air. Primary carbides hardly changed once they were generated, whereas secondary carbides were sensitive to heat treatment and thermal deformation. Carbide precipitation had a certain effect on steel-matrix phase transitions. The segregation ability of carbon in liquid steel was 4.6 times greater that of chromium. A new method for controlling primary carbides is proposed.

  1. Plasma spraying process of disperse carbides for spraying and facing

    International Nuclear Information System (INIS)

    Blinkov, I.V.; Vishnevetskaya, I.A.; Kostyukovich, T.G.; Ostapovich, A.O.

    1989-01-01

    A possibility to metallize carbides in plasma of impulsing capacitor discharge is considered. Powders granulation occurs during plasma spraying process, ceramic core being completely capped. X-ray phase and chemical analyses of coatings did not show considerable changes of carbon content in carbides before and after plasma processing. This distinguishes the process of carbides metallization in impulsing plasma from the similar processing in arc and high-frequency plasma generator. Use of powder composites produced in the impulsing capacitor discharge, for plasma spraying and laser facing permits 2-3 times increasing wear resistance of the surface layer as against the coatings produced from mechanical powders mixtures

  2. On the carbide formation in high-carbon stainless steel

    International Nuclear Information System (INIS)

    Mujahid, M.; Qureshi, M.I.

    1996-01-01

    Stainless steels containing high Cr as well as carbon contents in excess of 1.5 weight percent have been developed for applications which require high resistance erosion and environmental corrosion. Formation of carbides is one of important parameters for controlling properties of these materials especially erosion characteristics. Percent work includes the study of different type of carbides which from during the heat treatment of these materials. It has been found that precipitation of secondary carbides and the nature of matrix transformation plays an important role in determining the hardness characteristics of these materials. (author)

  3. Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix

    International Nuclear Information System (INIS)

    Baney, Ronald

    2008-01-01

    The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process

  4. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  5. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  6. Oxide film assisted dopant diffusion in silicon carbide

    International Nuclear Information System (INIS)

    Tin, Chin-Che; Mendis, Suwan; Chew, Kerlit; Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin; Atabaev, Bakhtiyar; Adedeji, Victor; Rusli

    2010-01-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  7. Silver diffusion through silicon carbide in microencapsulated nuclear fuels TRISO

    International Nuclear Information System (INIS)

    Cancino T, F.; Lopez H, E.

    2013-10-01

    The silver diffusion through silicon carbide is a challenge that has persisted in the development of microencapsulated fuels TRISO (Tri structural Isotropic) for more than four decades. The silver is known as a strong emitter of gamma radiation, for what is able to diffuse through the ceramic coatings of pyrolytic coal and silicon carbide and to be deposited in the heat exchangers. In this work we carry out a recount about the art state in the topic of the diffusion of Ag through silicon carbide in microencapsulated fuels and we propose the role that the complexities in the grain limit can have this problem. (Author)

  8. Method of producing silicon carbide articles

    International Nuclear Information System (INIS)

    Milewski, J.V.

    1985-01-01

    A method of producing articles comprising reaction-bonded silicon carbide (SiC) and graphite (and/or carbon) is given. The process converts the graphite (and/or carbon) in situ to SiC, thus providing the capability of economically obtaining articles made up wholly or partially of SiC having any size and shape in which graphite (and/or carbon) can be found or made. When the produced articles are made of an inner graphite (and/or carbon) substrate to which SiC is reaction bonded, these articles distinguish SiC-coated graphite articles found in the prior art by the feature of a strong bond having a gradual (as opposed to a sharply defined) interface which extends over a distance of mils. A method for forming SiC whisker-reinforced ceramic matrices is also given. The whisker-reinforced articles comprise SiC whiskers which substantially retain their structural integrity

  9. Carbon in palladium catalysts: A metastable carbide

    International Nuclear Information System (INIS)

    Seriani, Nicola; Mittendorfer, Florian; Kresse, Georg

    2010-01-01

    The catalytic activity of palladium towards selective hydrogenation of hydrocarbons depends on the partial pressure of hydrogen. It has been suggested that the reaction proceeds selectively towards partial hydrogenation only when a carbon-rich film is present at the metal surface. On the basis of first-principles simulations, we show that carbon can dissolve into the metal because graphite formation is delayed by the large critical nucleus necessary for graphite nucleation. A bulk carbide Pd 6 C with a hexagonal 6-layer fcc-like supercell forms. The structure is characterized by core level shifts of 0.66-0.70 eV in the core states of Pd, in agreement with experimental x-ray photoemission spectra. Moreover, this phase traps bulk-dissolved hydrogen, suppressing the total hydrogenation reaction channel and fostering partial hydrogenation. (author)

  10. Production of titanium carbide from ilmenite

    Directory of Open Access Journals (Sweden)

    Sutham Niyomwas

    2008-03-01

    Full Text Available The production of titanium carbide (TiC powders from ilmenite ore (FeTiO3 powder by means of carbothermal reduction synthesis coupled with hydrochloric acid (HCl leaching process was investigated. A mixture of FeTiO3 and carbon powders was reacted at 1500oC for 1 hr under flowing argon gas. Subsequently, synthesized product of Fe-TiC powders were leached by 10% HCl solutions for 24 hrs to get final product of TiC powders. The powders were characterized using X-ray diffraction, scanning electron and transmission electron microscopy. The product particles were agglomerated in the stage after the leaching process, and the size of this agglomerate was 12.8 μm with a crystallite size of 28.8 nm..

  11. Stored energy in irradiated silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Burchell, T.D. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This report presents a short review of the phenomenon of Wigner stored energy release from irradiated graphite and discusses it in relation to neutron irradiation of silicon carbide. A single published work in the area of stored energy release in SiC is reviewed and the results are discussed. It appears from this previous work that because the combination of the comparatively high specific heat of SiC and distribution in activation energies for recombining defects, the stored energy release of SiC should only be a problem at temperatures lower than those considered for fusion devices. The conclusion of this preliminary review is that the stored energy release in SiC will not be sufficient to cause catastrophic heating in fusion reactor components, though further study would be desirable.

  12. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Hay, J.C.

    1998-01-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 10 25 n/m 2 . Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  13. Boron carbide in pile behaviour Rapsodie experience

    International Nuclear Information System (INIS)

    Kryger, B.; Colin, M.

    1983-04-01

    Results concerning boron carbide irradiation experiments performed in RAPSODIE up to 10 22 .cm - 3 capture density in the temperature range 600-1100 0 lead to the following main conclusions: initial density and grain size lowering contribute to swelling decrease but density is the major parameter for swelling limitation; swelling rate can vary in a wide range (ratio 1 to 3) according to combinations of density (1.8 to 2.3) and grain size (10 to 50 μm) values; a swelling balance reveals that the most important contribution to swelling should be a high density of helium small bubbles (<400 A); helium retention increases with density and grain size and decreases with temperature elevation. A diffusion law is proposed to describe the rate of helium release

  14. Texaco, carbide form hydrogen plant venture

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Texaco Inc. and Union Carbide Industrial Gases Inc. (UCIG) have formed a joint venture to develop and operate hydrogen plants. The venture, named HydroGEN Supply Co., is owned by Texaco Hydrogen Inc., a wholly owned subsidiary of Texaco, and UCIG Hydrogen Services Inc., a wholly owned subsidiary of UCIG. Plants built by HydroGEN will combine Texaco's HyTEX technology for hydrogen production with UCIG's position in cryogenic and advanced air separation technology. Texaco the U.S. demand for hydrogen is expected to increase sharply during the next decade, while refinery hydrogen supply is expected to drop. The Clean Air Act amendments of 1990 require U.S. refiners to lower aromatics in gasoline, resulting in less hydrogen recovered by refiners from catalytic reforming units. Meanwhile, requirements to reduce sulfur in diesel fuel will require more hydrogen capacity

  15. Ordering effects in nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.; Kottar, A.

    2000-01-01

    The effect of nonstoichiometry and ordering on crystalline structure and specific electric resistance (ρ) of TiC y (0.52≤y≤0.98) is studied within the temperature range of 300-1100 K. It is shown that the titanium carbide ordering in the areas 0.52≤y≤0.55, 0.56≤y≤0.58 and 0.62≤y≤0.68 leads to formation of the Ti 2 C cubic and trigonal ordered phase and the Ti 3 C 2 rhombic ordered phase correspondingly. Availability of hysteresis on the ρ(T) dependences in the area of the disorder-order reversible equilibrium transition points out to the fact that the TiC y ↔Ti 2 C and TiC y ↔Ti 3 C 2 transformations are the first order phase transitions [ru

  16. Oxalate complexation in dissolved carbide systems

    International Nuclear Information System (INIS)

    Choppin, G.R.; Bokelund, H.; Valkiers, S.

    1983-01-01

    It has been shown that the oxalic acid produced in the dissolution of mixed uranium, plutonium carbides in nitric acid can account for the problems of incomplete uranium and plutonium extraction on the Purex process. Moreover, it was demonstrated that other identified products such as benzene polycarboxylic acids are either too insoluble or insufficiently complexing to be of concern. The stability constants for oxalate complexing of UO 2 +2 and Pu +4 ions (as UO 2 (C 2 O 4 ), Pu(C 2 O 4 ) 2+ and Pu(C 2 O 4 ) 2 , respectively) were measured in nitrate solutions of 4.0 molar ionic strength (0-4 M HNO 3 ) by extraction of these species with TBP. (orig.)

  17. Study on niobium carbide dispersed superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Wada, H; Tachikawa, K [National Research Inst. for Metals, Tokyo (Japan); Oh' asa, M [Science Univ. of Tokyo (Japan)

    1977-11-01

    Niobium carbide (NbC) dispersed superconducting tapes have been fabricated by two metallurgical processes. In the first process, Ni-Nb-C alloys are directly arc melted and hot worked in air and the NbC phase is distributed in the form of fine discrete particles. In the second process, Ni-Nb and Ni-Nb-Cu alloys are arc melted, hot worked and subjected to solid-state carburization. NbC then precipitates along the grain boundaries, forming a network. The highest superconducting transition temperature attained is about 11 K. Taken together with the lattice parameter measurement, this indicates that NbC with a nearly perfect NaCl structure is formed in both processes. Measured values of the upper critical field, the critical current density and the volume fraction of the NbC phase are also discussed.

  18. Single Photon Sources in Silicon Carbide

    International Nuclear Information System (INIS)

    Brett Johnson

    2014-01-01

    Single photon sources in semiconductors are highly sought after as they constitute the building blocks of a diverse range of emerging technologies such as integrated quantum information processing, quantum metrology and quantum photonics. In this presentation, we show the first observation of single photon emission from deep level defects in silicon carbide (SiC). The single photon emission is photo-stable at room temperature and surprisingly bright. This represents an exciting alternative to diamond color centers since SiC possesses well-established growth and device engineering protocols. The defect is assigned to the carbon vacancy-antisite pair which gives rise to the AB photoluminescence lines. We discuss its photo-physical properties and their fabrication via electron irradiation. Preliminary measurements on 3C SiC nano-structures will also be discussed. (author)

  19. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...... lattice mismatch. Secondly, SiC material is abundant, containing no rear-earth element material as commercial phosphor. In this paper, fabrication of porous SiC is introduced, and their morphology and photoluminescence are characterized. Additionally, the carrier lifetime of the porous SiC is measured...... by time-resolved photoluminescence. The ultrashort lifetime in the order of ~70ps indicates porous SiC is very promising for the application in the ultrafast visible light communications....

  20. White light emission from engineered silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan

    Silicon carbide (SiC) is a wide indirect bandgap semiconductor. The light emission efficiency is low in nature. But this material has very unique physical properties like good thermal conductivity, high break down field etc in addition to its abundance. Therefore it is interesting to engineer its...... light emission property so that to take fully potential applications of this material. In this talk, two methods, i.e. doping SiC heavily by donor-acceptor pairs and making SiC porous are introduced to make light emission from SiC. By co-doping SiC with nitrogen and boron heavily, strong yellow emission...... is demonstrated. After optimizing the passivation conditions, strong blue-green emission from porous SiC is demonstrated as well. When combining the yellow emission from co-doped SiC and blue-green from porous SiC, a high color rendering index white light source is achieved....

  1. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  2. Mechanical-thermal synthesis of chromium carbides

    International Nuclear Information System (INIS)

    Cintho, Osvaldo Mitsuyuki; Favilla, Eliane Aparecida Peixoto; Capocchi, Jose Deodoro Trani

    2007-01-01

    The present investigation deals with the synthesis of chromium carbides (Cr 3 C 2 and Cr 7 C 3 ), starting from metallic chromium (obtained from the reduction of Cr 2 O 3 with Al) and carbon (graphite). The synthesis was carried out via high energy milling, followed by heat-treating of pellets made of different milled mixtures at 800 o C, for 2 h, under an atmosphere of argon. A SPEX CertPrep 8000 Mixer/Mill was used for milling under argon atmosphere. A tool steel vat and two 12.7 mm diameter chromium steel balls were used. The raw materials used and the products were characterized by differential thermal analysis, thermo gravimetric analysis, X-ray diffraction, electronic microscopy and X-ray fluorescence chemical analysis. The following variables were investigated: the quantity of carbon in the mixture, the milling time and the milling power. Mechanical activation of the reactant mixture depends upon the milling power ratio used for processing. The energy liberated by the reduction of the chromium oxide with aluminium exhibits a maximum for milling power ratio between 5:1 and 7.5:1. Self-propagating reaction occurred for all heat-treated samples whatever the carbon content of the sample and the milling power ratio used. Bearing carbon samples exhibited hollow shell structures after the reaction. The level of iron contamination of the milled samples was kept below 0.3% Fe. The self-propagated reaction caused high temperatures inside the samples as it may be seen by the occurrence of spherules, dendrites and whiskers. The carbon content determines the type of chromium carbide formed

  3. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  4. Carbide-reinforced metal matrix composite by direct metal deposition

    Science.gov (United States)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  5. Properties of cemented carbides alloyed by metal melt treatment

    International Nuclear Information System (INIS)

    Lisovsky, A.F.

    2001-01-01

    The paper presents the results of investigations into the influence of alloying elements introduced by metal melt treatment (MMT-process) on properties of WC-Co and WC-Ni cemented carbides. Transition metals of the IV - VIll groups (Ti, Zr, Ta, Cr, Re, Ni) and silicon were used as alloying elements. It is shown that the MMT-process allows cemented carbides to be produced whose physico-mechanical properties (bending strength, fracture toughness, total deformation, total work of deformation and fatigue fracture toughness) are superior to those of cemented carbides produced following a traditional powder metallurgy (PM) process. The main mechanism and peculiarities of the influence of alloying elements added by the MMT-process on properties of cemented carbides have been first established. The effect of alloying elements on structure and substructure of phases has been analyzed. (author)

  6. Structure and thermal expansion of NbC complex carbides

    International Nuclear Information System (INIS)

    Khatsinskaya, I.M.; Chaporova, I.N.; Cheburaeva, R.F.; Samojlov, A.I.; Logunov, A.V.; Ignatova, I.A.; Dodonova, L.P.

    1983-01-01

    Alloying dependences of the crystal lattice parameters at indoor temperature and coefficient of thermal linear exspansion within a 373-1273 K range are determined for complex NbC-base carbides by the method of mathematical expemental design. It is shown that temperature changes in the linear expansion coefficient of certain complex carbides as distinct from NbC have an anomaly (minimum) within 773-973 K caused by occurring reversible phase transformations. An increase in the coefficient of thermal linear expansion and a decrease in hardness of NbC-base tungsten-, molybdenum-, vanadium- and hafnium-alloyed carbides show a weakening of a total chemical bond in the complex carbides during alloying

  7. DEVELOPMENT OF CARBIDE AND NITRIDE CERAMICS OF INCREASED RESISTIBILITY

    Directory of Open Access Journals (Sweden)

    O. V. Roman

    2005-01-01

    Full Text Available The developments of carbide and nitrite ceramics of high solidity are presented. It is shown that development of nanotechnology led to creation of thenanostructural ceramics, the composition of which is controlled on cluster level.

  8. Medium temperature reaction between lanthanide and actinide carbides and hydrogen

    International Nuclear Information System (INIS)

    Dean, G.; Lorenzelli, R.; Pascard, R.

    1964-01-01

    Hydrogen is fixed reversibly by the lanthanide and actinide mono carbides in the range 25 - 400 C, as for pure corresponding metals. Hydrogen goes into the carbides lattice through carbon vacancies and the total fixed amount is approximately equal to two hydrogen atoms per initial vacancy. Final products c.n thus be considered as carbo-hydrides of general formula M(C 1-x , H 2x ). The primitive CFC, NaCl type, structure remains unchanged but expands strongly in the case of actinide carbides. With lanthanide carbides, hydrogenation induces a phase transformation with reappearance of the metal structure (HCP). Hydrogen decomposition pressures of all the studied carbo-hydrides are greater than those of the corresponding di-hydrides. (authors) [fr

  9. Iron Carbides and Nitrides: Ancient Materials with Novel Prospects.

    Science.gov (United States)

    Ye, Zhantong; Zhang, Peng; Lei, Xiang; Wang, Xiaobai; Zhao, Nan; Yang, Hua

    2018-02-07

    Iron carbides and nitrides have aroused great interest in researchers, due to their excellent magnetic properties, good machinability and the particular catalytic activity. Based on these advantages, iron carbides and nitrides can be applied in various areas such as magnetic materials, biomedical, photo- and electrocatalysis. In contrast to their simple elemental composition, the synthesis of iron carbides and nitrides still has great challenges, particularly at the nanoscale, but it is usually beneficial to improve performance in corresponding applications. In this review, we introduce the investigations about iron carbides and nitrides, concerning their structure, synthesis strategy and various applications from magnetism to the catalysis. Furthermore, the future prospects are also discussed briefly. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis of carbon fibre-reinforced, silicon carbide composites by ...

    Indian Academy of Sciences (India)

    carbon fibre (Cf) reinforced, silicon carbide matrix composites which are ... eral applications, such as automotive brakes, high-efficiency engine systems, ... The PIP method is based on the use of organo metallic pre-ceramic precursors.

  11. Analytical chemistry methods for boron carbide absorber material. [Standard

    Energy Technology Data Exchange (ETDEWEB)

    DELVIN WL

    1977-07-01

    This standard provides analytical chemistry methods for the analysis of boron carbide powder and pellets for the following: total C and B, B isotopic composition, soluble C and B, fluoride, chloride, metallic impurities, gas content, water, nitrogen, and oxygen. (DLC)

  12. Spheroidization of transition metal carbides in low temperature plasma

    International Nuclear Information System (INIS)

    Klinskaya, N.A.; Koroleva, E.B.; Petrunichev, V.A.; Rybalko, O.F.; Solov'ev, P.V.; Ugol'nikova, T.A.

    1986-01-01

    Plasma process of preparation of titanium, tungsten and chromium carbide spherical powders with the main particle size 40-80 μm is considered. Spheroidization degree, granulometric and phase composition of the product are investigated

  13. Stochastic Distribution of Wear of Carbide Tools during Machining ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... The stochastic point model was used to determine the rate of wear distribution of the carbide tool ... Keywords: cutting speed, feed rate, machining time, tool life, reliability, wear.

  14. Calculation of vapour pressures over mixed carbide fuels

    International Nuclear Information System (INIS)

    Joseph, M.; Mathews, C.K.

    1988-01-01

    Vapour pressure over the uranium-plutonium mixed carbide (Usub(l-p) Pusub(p C) was calculated in the temperature range of 1300-9000 for various compositions (p=0.1 to 0.7). Effects of variation of the sesquicarbide content were also studied. The principle of corresponding states was applied to UC and mixed carbides to obtain the equation of state. (author)

  15. Study of aging and ordering processes in titanium carbide

    International Nuclear Information System (INIS)

    Arbuzov, M.P.; Khaenko, B.V.; Kachkovskaya, Eh.T.

    1977-01-01

    Aging and ordering processes in titanium carbide were investigated on monocrystals (fragments of alloys) with the aid of roentgenographic method. The sequence of phase transformations during aging was ascertained,and a monoclinic structure of the carbon atoms ordering is suggested. The microhardness of titanium carbide was studied as a function of the heat treatment of alloys and the main factors (ordering and dislocation structure) which govern the difference in the microhardness of hardened and aged (annealed) specimens were determined

  16. Simulations of Proton Implantation in Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-31

    Simulations of Proton Implantation in Silicon Carbide (SiC) Jonathan P. McCandless, Hailong Chen, Philip X.-L. Feng Electrical Engineering, Case...of implanting protons (hydrogen ions, H+) into SiC thin layers on silicon (Si) substrate, and explore the ion implantation conditions that are...relevant to experimental radiation of SiC layers. Keywords: silicon carbide (SiC); radiation effects; ion implantation ; proton; stopping and range of

  17. Bainite obtaining in cast iron with carbides castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available In these paper the possibility of upper and lower bainite obtaining in cast iron with carbides castings are presented. Conditions, when in cast iron with carbides castings during continuous free air cooling austenite transformation to upper bainite or its mixture with lower bainte proceeds, have been given. A mechanism of this transformation has been given, Si, Ni, Mn and Mo distribution in the eutectic cell has been tested and hardness of tested castings has been determined.

  18. Single-Event Effects in Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Ikpe, Stanley; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2015-01-01

    This report summarizes the NASA Electronic Parts and Packaging Program Silicon Carbide Power Device Subtask efforts in FY15. Benefits of SiC are described and example NASA Programs and Projects desiring this technology are given. The current status of the radiation tolerance of silicon carbide power devices is given and paths forward in the effort to develop heavy-ion single-event effect hardened devices indicated.

  19. A novel plastification agent for cemented carbides extrusion molding

    International Nuclear Information System (INIS)

    Ji-Cheng Zhou; Bai-Yun Huang

    2001-01-01

    A type of novel plastification agent for plasticizing powder extrusion molding of cemented carbides has been developed. By optimizing their formulation and fabrication method, the novel plastification agent, with excellent properties and uniform distribution characters, were manufactured. The thermal debinding mechanism has been studied, the extruding rheological characteristics and debinding behaviors have been investigated. Using the newly developed plastification agent, the cemented carbides extrusion rods, with diameter up to 25 mm, have been manufactured. (author)

  20. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    International Nuclear Information System (INIS)

    Ivanovskii, Alexander L

    2009-01-01

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  1. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  2. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.

    1996-01-01

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  3. Conceptual design study of LMFBR core with carbide fuel

    International Nuclear Information System (INIS)

    Tezuka, H.; Hojuyama, T.; Osada, H.; Ishii, T.; Hattori, S.; Nishimura, T.

    1987-01-01

    Carbide fuel is a hopeful candidate for demonstration FBR(DFBR) fuel from the plant cost reduction point of view. High thermal conductivity and high heavy metal content of carbide fuel lead to high linear heat rate and high breeding ratio. We have analyzed carbide fuel core characteristics and have clarified the concept of carbide fuel core. By survey calculation, we have obtained a correlation map between core parameters and core characteristics. From the map, we have selected a high efficiency core whose features are better than those of an oxide core, and have obtained reactivity coefficients. The core volume and the reactor fuel inventory are approximately 20% smaller, and the burn-up reactivity loss is 50% smaller compared with the oxide fuel core. These results will reduce the capital cost. The core reactivity coefficients are similar to the conventional oxide DFBR's. Therefore the carbide fuel core is regarded as safe as the oxide core. Except neutron fluence, the carbide fuel core has better nuclear features than the oxide core

  4. The growth mechanism of grain boundary carbide in Alloy 690

    International Nuclear Information System (INIS)

    Li, Hui; Xia, Shuang; Zhou, Bangxin; Peng, Jianchao

    2013-01-01

    The growth mechanism of grain boundary M 23 C 6 carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M 23 C 6 and matrix was curved, and did not lie on any specific crystal plane. The M 23 C 6 carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M 23 C 6 carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M 23 C 6 : (111) matrix //(0001) transition //(111) carbide , ¯ > matrix // ¯ 10> transition // ¯ > carbide . The crystal lattice constants of transition phase are c transition =√(3)×a matrix and a transition =√(6)/2×a matrix . Based on the experimental results, the growth mechanism of M 23 C 6 and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M 23 C 6 and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M 23 C 6 . • The M 23 C 6 transforms from the matrix directly at the incoherent phase interface

  5. Design, Fabrication and Performance of Boron-Carbide Control Elements

    International Nuclear Information System (INIS)

    Brammer, H.A.; Jacobson, J.

    1964-01-01

    A control blade design, incorporating boron-carbide (B 4 C) in stainless-steel tubes, was introduced into service in boiling water reactors in April 1961. Since that time this blade has become the standard reference control element in General Electric boiling-water reactors, replacing the 2% boron-stainless-steel blades previously used. The blades consist of a sheathed, cruciform array of small vertical stainless-steel tubes filled with compácted boron-carbide powder. The boron-carbide powder is confined longitudinally into several independent compartments by swaging over ball bearings located inside the tubes. The development and use of boron-carbide control rods is discussed in five phases: 1. Summary of experience with boron-steel blades and reasons for transition to boron-carbide control; 2. Design of the boron-carbide blade, beginning with developmental experiments, including early measurements performed in the AEC ''Control Rod Material and Development Program'' at the Vallecitos Atomic Laboratory, through a description of the final control blade configuration; 3. Fabrication of the blades and quality control procedures; 4. Results of confirmatory pre-operational mechanical and reactivity testing; and 5. Post-operational experience with the blades, including information on the results of mechanical inspection and reactivity testing after two years of reactor service. (author) [fr

  6. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  7. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  8. Canine Copper-Associated Hepatitis

    NARCIS (Netherlands)

    Dirksen, Karen; Fieten, Hille

    2017-01-01

    Copper-associated hepatitis is recognized with increasing frequency in dogs. The disease is characterized by centrolobular hepatic copper accumulation, leading to hepatitis and eventually cirrhosis. The only way to establish the diagnosis is by histologic assessment of copper distribution and copper

  9. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level.

  10. Understanding the Irradiation Behavior of Zirconium Carbide

    International Nuclear Information System (INIS)

    Motta, Arthur; Sridharan, Kumar; Morgan, Dane; Szlufarska, Izabela

    2013-01-01

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450ee)C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800ee)C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  11. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  12. On the melt infiltration of copper coated silicon carbide with an aluminium alloy

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    Pressure-assisted infiltration of porous compacts of Cu coated and uncoated single crystals of platelet shaped alpha (hexagonal) SiC was used to study infiltration dynamics and particulate wettability with a 2014 Al alloy. The infiltration lengths were measured for a range of experimental variables which included infiltration pressure, infiltration time, and SiC size. A threshold pressure (P(th)) for flow initiation through compacts was identified from an analysis of infiltration data; P(th) decreased while penetration lengths increased with increasing SiC size (more fundamentally, due to changes in interparticle pore size) and with increasing infiltration times. Cu coated SiC led to lower P(th) and 60-80 percent larger penetration lengths compared to uncoated SiC under identical processing conditions.

  13. Micromachining with copper lasers

    Science.gov (United States)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  14. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  15. copper(II)

    Indian Academy of Sciences (India)

    Unknown

    bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) ... Abstract. Equilibrium concentrations of various condensed and gaseous phases have been thermodyna- ... phere, over a wide range of substrate temperatures and total reactor pressures.

  16. Bacterial Killing by Dry Metallic Copper Surfaces▿

    OpenAIRE

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2010-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important fir...

  17. Hafnium carbide nanocrystal chains for field emitters

    International Nuclear Information System (INIS)

    Tian, Song; Li, Hejun; Zhang, Yulei; Ren, Jincui; Qiang, Xinfa; Zhang, Shouyang

    2014-01-01

    A hafnium carbide (HfC) nanostructure, i.e., HfC nanocrystal chain, was synthesized by a chemical vapor deposition (CVD) method. X-ray diffractometer, field-emission scanning electron microscope, transmission electron microscope, and energy-dispersive X-ray spectrometer were employed to characterize the product. The synthesized one-dimensional (1D) nanostructures with many faceted octahedral nanocrystals possess diameters of tens of nanometers to 500 nm and lengths of a few microns. The chain-like structures possess a single crystalline structure and preferential growth direction along the [1 0 0] crystal orientation. The growth of the chains occurred through the vapor–liquid–solid process along with a negative-feedback mechanism. The field emission (FE) properties of the HfC nanocrystal chains as the cold cathode emitters were examined. The HfC nanocrystal chains display good FE properties with a low turn-on field of about 3.9 V μm −1 and a high field enhancement factor of 2157, implying potential applications in vacuum microelectronics.

  18. Precision Surface Grinding of Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Mohamed Konneh

    2016-12-01

    Full Text Available Silicon carbide (SiC is well known for its excellent material properties, high durability, high wear resistance, light weight and extreme hardness. Among the engineering applications of this material, it is an excellent candidate for optic mirrors used in an Airbone Laser (ABL device. However, the low fracture toughness and extreme brittleness characteristics of SiC are predominant factors for its poor machinability. This paper presents surface grinding of SiC using diamond cup wheels to assess the performance of diamond grits with respect to the roughness produced on the machined surfaces and also the morphology of the ground work-piece. Resin bonded diamond cup wheels of grit sizes 46 µm, 76 µm and 107 µm; depth of cut of 10 µm, 20 µm and 30 µm; and feed rate of 2 mm/min, 12 mm/min and 22 mm/min were used during this machining investigation. It has been observed that the 76 grit performs better in terms of low surface roughness value and morphology.

  19. Lattice location of impurities in silicon Carbide

    CERN Document Server

    AUTHOR|(CDS)2085259; Correia Martins, João Guilherme

    The presence and behaviour of transition metals (TMs) in SiC has been a concern since the start of producing device-grade wafers of this wide band gap semiconductor. They are unintentionally introduced during silicon carbide (SiC) production, crystal growth and device manufacturing, which makes them difficult contaminants to avoid. Once in SiC they easily form deep levels, either when in the isolated form or when forming complexes with other defects. On the other hand, using intentional TM doping, it is possible to change the electrical, optical and magnetic properties of SiC. TMs such as chromium, manganese or iron have been considered as possible candidates for magnetic dopants in SiC, if located on silicon lattice sites. All these issues can be explored by investigating the lattice site of implanted TMs. This thesis addresses the lattice location and thermal stability of the implanted TM radioactive probes 56Mn, 59Fe, 65Ni and 111Ag in both cubic 3C- and hexagonal 6H SiC polytypes by means of emission cha...

  20. Vapor pressure and thermodynamics of beryllium carbide

    International Nuclear Information System (INIS)

    Rinehart, G.H.; Behrens, R.G.

    1980-01-01

    The vapor pressure of beryllium carbide has been measured over the temperature range 1388 to 1763 K using Knudsen-effusion mass spectrometry. Vaporization occurs incongruently according to the reaction Be 2 C(s) = 2Be(g) + C(s). The equilibrium vapor pressure above the mixture of Be 2 C and C over the experimental temperature range is (R/J K -1 mol -1 )ln(p/Pa) = -(3.610 +- 0.009) x 10 5 (K/T) + (221.43 +- 1.06). The third-law enthalpy change for the above reaction obtained from the present vapor pressures is ΔH 0 (298.15 K) = (740.5 +- 0.1) kJ mol -1 . The corresponding second-law result is ΔH 0 (298.15 K) = (732.0 +- 1.8) kJ mol -1 . The enthalpy of formation for Be 2 C(s) calculated from the present third-law vaporization enthalpy and the enthalpy of formation of Be(g) is ΔH 0 sub(f)(298.15 K) = -(92.5 +- 15.7) kJ mol -1 . (author)

  1. The etching behaviour of silicon carbide compacts

    International Nuclear Information System (INIS)

    Jepps, N.W.; Page, T.F.

    1981-01-01

    A series of microstructural investigations has been undertaken in order to explore the reliability of particular etches in revealing microstructural detail in silicon carbide compacts. A series of specimens has been etched and examined following complete prior microstructural characterization by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffractometry techniques. In particular, the sensitivity of both a molten salt (KOH/KNO 3 ) etch and a commonly-used oxidizing electrolytic 'colour' etch to crystal purity, crystallographic orientation and polytypic structure has been established. The molten salt etch was found to be sensitive to grain boundaries and stacking disorder while the electrolytic etch was found to be primarily sensitive to local purity and crystallographic orientation. Neither etch appeared intrinsically polytype sensitive. Specifically, for the 'colour' etch, the p- or n-type character of impure regions appears critical in controlling etching behaviour; p-type impurities inhibiting, and n-type impurities enhancing, oxidation. The need to interpret etching behaviour in a manner consistent with the results obtained by a variety of other microstructural techniques will be emphasized. (author)

  2. Auger electron spectroscopy studies of boron carbide

    International Nuclear Information System (INIS)

    Madden, H.H.; Nelson, G.C.; Wallace, W.O.

    1986-01-01

    Auger electron spectroscopy has been used to probe the electronic structure of ion bombardment (IB) cleaned surfaces of B 9 C and B 4 C samples. The shapes of the B-KVV and C-KVV Auger lines were found to be relatively insensitive to the bulk stoichiometry of the samples. This indicates that the local chemical environments surrounding B and C atoms, respectively, on the surfaces of the IB cleaned samples do not change appreciably in going from B 9 C to B 4 C. Fracturing the sample in situ is a way of producing a clean representative internal surface to compare with the IB surfaces. Microbeam techniques have been used to study a fracture surface of the B 9 C material with greater spatial resolution than in our studies of IB surfaces. The B 9 C fracture surface was not homogeneous and contained both C-rich and B-rich regions. The C-KVV line for the C-rich regions was graphitic in shape. Much of the C-rich regions was found by IB to be less than 100 nm in thickness. The C-KVV line from the B-rich regions was carbidic and did not differ appreciably in shape from those recorded for the IB cleaned surfaces

  3. Graphene ribbon growth on structured silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Stoehr, Alexander; Link, Stefan; Starke, Ulrich [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Baringhaus, Jens; Aprojanz, Johannes; Tegenkamp, Christoph [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover (Germany); Niu, Yuran [MAX IV Laboratory, Lund University (Sweden); present address: School of Physics and Astronomy, Cardiff University (United Kingdom); Zakharov, Alexei A. [MAX IV Laboratory, Lund University (Sweden); Chen, Chaoyu; Avila, Jose; Asensio, Maria C. [Synchrotron SOLEIL and Universite Paris-Saclay, Gif sur Yvette (France)

    2017-11-15

    Structured Silicon Carbide was proposed to be an ideal template for the production of arrays of edge specific graphene nanoribbons (GNRs), which could be used as a base material for graphene transistors. We prepared periodic arrays of nanoscaled stripe-mesas on SiC surfaces using electron beam lithography and reactive ion etching. Subsequent epitaxial graphene growth by annealing is differentiated between the basal-plane mesas and the faceting stripe walls as monitored by means of atomic force microscopy (AFM). Microscopic low energy electron diffraction (μ-LEED) revealed that the graphene ribbons on the facetted mesa side walls grow in epitaxial relation to the basal-plane graphene with an armchair orientation at the facet edges. The π-band system of the ribbons exhibits linear bands with a Dirac like shape corresponding to monolayer graphene as identified by angle-resolved photoemission spectroscopy (ARPES). (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  5. Copper intoxication in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Gazaryan, V.S.; Sogoyan, I.S.; Agabalov, G.A.; Mesropyan, V.V.

    1966-01-01

    Of 950 sheep fed hay from a vineyard sprayed regularly with copper sulfate, 143 developed clinical copper poisoning and 103 died. The Cu content of the hay was 10.23 mg%, of the liver of dead sheep 17-52 mg%, and of the blood serum of affected sheep 0.86 mg%. The symptoms and the histological findings in kidneys and liver are described.

  6. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  7. Corrosion behavior of porous chromium carbide in supercritical water

    International Nuclear Information System (INIS)

    Dong Ziqiang; Chen Weixing; Zheng Wenyue; Guzonas, Dave

    2012-01-01

    Highlights: ► Corrosion behavior of porous Cr 3 C 2 in various SCW conditions was investigated. ► Cr 3 C 2 is stable in SCW at temperature below 420–430 °C. ► Cracks and disintegration were observed at elevated testing temperatures. ► Degradation of Cr 3 C 2 is related to the intermediate product CrOOH. - Abstract: The corrosion behavior of highly porous chromium carbide (Cr 3 C 2 ) prepared by a reactive sintering process was characterized at temperatures ranging from 375 °C to 625 °C in a supercritical water environment with a pressure of 25–30 MPa. The test results show that porous chromium carbide is stable in SCW environments at temperatures under 425 °C, above which disintegration occurred. The porous carbide was also tested under hydrothermal conditions of pressures between 12 MPa and 50 MPa at constant temperatures of 400 °C and 415 °C, respectively. The pressure showed little effect on the stability of chromium carbide in the tests at those temperatures. The mechanism of disintegration of chromium carbide in SCW environments is discussed.

  8. Optical characterisation of cubic silicon carbide

    International Nuclear Information System (INIS)

    Jackson, S.M.

    1998-09-01

    The varied properties of Silicon Carbide (SiC) are helping to launch the material into many new applications, particularly in the field of novel semiconductor devices. In this work, the cubic form of SiC is of interest as a basis for developing integrated optical components. Here, the formation of a suitable SiO 2 buried cladding layer has been achieved by high dose oxygen ion implantation. This layer is necessary for the optical confinement of propagating light, and hence optical waveguide fabrication. Results have shown that optical propagation losses of the order of 20 dB/cm are obtainable. Much of this loss can be attributed to mode leakage and volume scattering. Mode leakage is a function of the effective oxide thickness, and volume scattering related to the surface layer damage. These parameters have been shown to be controllable and so suggests that further reduction in the waveguide loss is feasible. Analysis of the layer growth mechanism by RBS, XTEM and XPS proves that SiO 2 is formed, and that the extent, of formation depends on implant dose and temperature. The excess carbon generated is believed to exit the oxide layer by a number of varying mechanisms. The result of this appears to be a number of stable Si-C-O intermediaries that, form regions to either depth extreme of the SiO 2 layer. Early furnace tests suggest a need to anneal at, temperatures approaching the melting point of the silicon substrate, and that the quality of the virgin material is crucial in controlling the resulting oxide growth. (author)

  9. Kinetics of niobium carbide precipitation in ferrite

    International Nuclear Information System (INIS)

    Gendt, D.

    2001-01-01

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  10. Carbide process picked for Chinese polyethylene plant

    International Nuclear Information System (INIS)

    Alperowicz, N.

    1993-01-01

    Union Carbide (Danbury, CT) is set to sign up its eighth polyethylene (PE) license in China. The company has been selected to supply its Unipol technology to Jilin Chemical Industrial Corp. (JCIC) for a 100,000-m.t./year linear low-density PE (LLDPE) plant at Jilin. The plant will form part of a $2-billion petrochemical complex, based on a 300,000-m.t./year ethylene unit awarded to a consortium made up of Samsung Engineering (Seoul) and Linde. A 10,000-m.t./year butene-1 unit will also be built. Toyo Engineering, Snamprogetti, Mitsubishi Heavy Industries, and Linde are competing for the contract to supply the LLDPE plant. The signing is expected this spring. Two contenders are vying to supply an 80,000-m.t./year phenol plant for JCIC. They are Mitsui Engineering, offering the Mitsui Petrochemical process, and Chisso, with UOP technology. Four Unipol process PE plants are under construction in China and three are in operation. At Guangzhou, Toyo Engineering is building a 100,000-m.t./year plant, due onstream in 1995, while Snamprogetti is to finish construction of two plants in the same year at Zhonguyan (120,000 m.t./year) and at Maoming (140,000 m.t./year). The Daquing Design Institute is responsible for the engineering of a 60,000-m.t./year Unipol process PE plant, expected onstream early in 1995. Existing Unipol process PE plants are located in Qilu (60,000 m.t./year LLDPE and 120,000 m.t./year HDPE) and at Taching (60,000 m.t./year HDPE)

  11. Effect of carbides on erosion resistance of 23-8-N steel

    Indian Academy of Sciences (India)

    8-N nitronic steel, carbides present in the form of bands are observed to accelerate the erosion rate. Coarse ... lar carbides, precipitating at random boundaries, were more likely to ... 23-8-N nitronic steel is basically austenitic stainless steel.

  12. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Unknown

    tions, they concluded that either reaction sintering or liquid phase .... α-6H silicon carbide single crystal by three different laboratories ... silicon carbide particles by the overall reaction .... layer displacement is likely to occur in such a manner as.

  13. Copper : recession and recovery

    International Nuclear Information System (INIS)

    Warwick-Ching, T.

    2002-01-01

    In 2002, the world output for copper will fall for the first time in nearly a decade because of financial pressure and voluntary constraints. Cutbacks at copper mines amount to 760,000 tonnes per year. These cutbacks have occurred mostly in the United States which holds the largest share of high cost mines. This paper discussed recent developments in both copper supply and demand. The United States is unique as both a large consumer and producer of copper. At 1.35 million tonnes, US mine output in 2001 was at its lowest since 1987. The cutbacks in mining in general were described in this paper with particular reference to the huge loss of mining and metallurgical activity in the United States during a prolonged period of low prices in the mid 1980s. The author noted that this period was followed by an exceptional decade when much of the industry rebounded. Only 8 mines closed outright in the United States and a handful in Canada since the recession of the 1980s, but that is partly because mines got bigger and there are fewer small mines in North America. There are only 4 electrolytic refineries and 3 smelters still active in the entire United States, of which 2 are operating at a fraction of capacity. It was noted that only the buoyancy of China prevented a much bigger decline in copper demand on a global scale

  14. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  15. Supported molybdenum carbide for higher alcohol synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Christensen, Jakob Munkholt; Chiarello, Gian Luca

    2013-01-01

    Molybdenum carbide supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for methanol and higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over...... carbide, while the selectivity to methanol follows the opposite trend. The effect of Mo2C loading on the alcohol selectivity at a fixed K/Mo molar ratio of 0.14 could be related to the amount of K2CO3 actually on the active Mo2C phase and the size, structure and composition of the supported carbide...... alcohols is obtained at a K/Mo molar ratio of 0.21 over the active carbon supported Mo2C (20wt%)....

  16. Development of Gradient Cemented Carbides Through ICME Strategy

    Science.gov (United States)

    Du, Yong; Peng, Yingbiao; Zhang, Weibin; Chen, Weimin; Zhou, Peng; Xie, Wen; Cheng, Kaiming; Zhang, Lijun; Wen, Guanghua; Wang, Shequan

    An integrated computational materials engineering (ICME) including CALPHAD method is a powerful tool for materials process optimization and alloy design. The quality of CALPHAD-type calculations is strongly dependent on the quality of the thermodynamic and diffusivity databases. The development of a thermodynamic database, CSUTDCC1, and a diffusivity database, CSUDDCC1, for cemented carbides is described. Several gradient cemented carbides sintered under vacuum and various partial pressures of N2 have been studied via experiment and simulation. The microstructure and concentration profile of the gradient zones have been investigated via SEM and EPMA. Examples of ICME applications in design and manufacture for different kinds of cemented carbides are shown using the databases and comparing where possible against experimental data, thereby validating its accuracy.

  17. Preparation of hafnium carbide by chemical vapor deposition

    International Nuclear Information System (INIS)

    Hertz, Dominique.

    1974-01-01

    Hard, adhesive coatings of single-phase hafnium carbide were obtained by chemical vapor reaction in an atmosphere containing hafnium tetrachloride, methane and a large excess of hydrogen. By varying the gas phase composition and temperature the zones of formation of the different solid phases were studied and the growth of elementary hafnium and carbon deposits evaluated separately. The results show that the mechanism of hafnium carbide deposition does not hardly involve phenomene of homogeneous-phase methane decomposition or tetrachloride reduction by hydrogen unless the atmosphere is very rich or very poor in methane with respect to tetrachloride. However, hydrogen acting inversely on these two reactions, affects the stoichiometry of the substance deposited. The methane decomposition reaction is fairly slow, the reaction leading to hafnium carbide deposition is faster and that of tetrachloride reduction by hydrogen is quite fast [fr

  18. Synthesis of carbides of refractory metals in salt melts

    International Nuclear Information System (INIS)

    Ilyushchenko, N.G.; Anfinogenov, A.I.; Chebykin, V.V.; Chernov, Ya.B.; Shurov, N.I.; Ryaposov, Yu.A.; Dobrynin, A.I.; Gorshkov, A.V.; Chub, A.V.

    2003-01-01

    The ion-electron melts, obtained through dissolving the alkali and alkali-earth metals in the molten chlorides above the chloride melting temperature, were used for manufacturing the high-melting metal carbides as the transport melt. The lithium, calcium and magnesium chlorides and the mixture of the lithium chloride with the potassium or calcium chloride were used from the alkali or alkali-earth metals. The metallic lithium, calcium, magnesium or the calcium-magnesium mixtures were used as the alkali or alkali-earth metals. The carbon black or sugar was used as carbon. It is shown, that lithium, magnesium or calcium in the molten salts transfer the carbon on the niobium, tantalum, titanium, forming the carbides of the above metals. The high-melting metal carbides are obtained both from the metal pure powders and from the oxides and chlorides [ru

  19. Carbides crystalline structure of AISI M2 high-speed steel

    International Nuclear Information System (INIS)

    Serna, M.M.; Galego, E.; Rossi, J.L.

    2005-01-01

    The aim of this study was to identify the crystallographic structure of the extracted carbides of AISI M2 steel spray formed The structure determination of these carbides. The structure determination of these carbides is a very hard work. Since these structures were formed by atom migration it is not possible to reproduce them by a controlled process with a determined chemical composition. The solution of this problem is to obtain the carbide by chemical extraction from the steel. (Author)

  20. Dilatometry Analysis of Dissolution of Cr-Rich Carbides in Martensitic Stainless Steels

    Science.gov (United States)

    Huang, Qiuliang; Volkova, Olena; Biermann, Horst; Mola, Javad

    2017-12-01

    The dissolution of Cr-rich carbides formed in the martensitic constituent of a 13 pct Cr stainless steel was studied by dilatometry and correlative electron channeling contrast examinations. The dissolution of carbides subsequent to the martensite reversion to austenite was associated with a net volume expansion which in turn increased the dilatometry-based apparent coefficient of thermal expansion (CTEa) during continuous heating. The effects of carbides fraction and size on the CTEa variations during carbides dissolution are discussed.

  1. Plastic deformation of particles of zirconium and titanium carbide subjected to vibration grinding

    Energy Technology Data Exchange (ETDEWEB)

    Kravchik, A.E.; Neshpor, V.S.; Savel' ev, G.A.; Ordan' yan, S.S.

    1976-12-01

    A study is made of the influence of stoichiometry on the characteristics of microplastic deformation in powders of zirconium and titanium carbide subjected to vibration grinding. The carbide powders were produced by direct synthesis from the pure materials: metallic titanium and zirconium and acetylene black. As to the nature of their elastic deformation, zirconium and titanium carbides can be considered elastic-isotropic materials. During vibration grinding, the primary fracture planes are the (110) planes. Carbides of nonstoichiometric composition are more brittle.

  2. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  3. Electrical conduction in composites containing copper core-copper

    Indian Academy of Sciences (India)

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles ...

  4. Nonmetal effect on ordering structures in titanium carbide

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.; Ehm, V.T.; Savenko, B.M.

    1997-01-01

    The effect of oxygen and nitrogen atoms on formation of intermediate, cubic and trigonal ordering structures in the titanium carbide is studied through the roentgenography and neutron radiography methods. Metal atoms in the TiC 0.545 O 0.08 , TiC 0.545 N 0.09 samples under study are shifted from ideal positions in the direction from vacancies to metalloid atoms. In the intermediate cubic phase the values of the titanium atoms free parameter in both samples are identical, but they differ from analogous values in the titanium carbide

  5. Thermodynamic Calculation of Carbide Precipitate in Niobium Microalloyed Steels

    Institute of Scientific and Technical Information of China (English)

    XU Yun-bo; YU Yong-mei; LIU Xiang-hua; WANG Guo-dong

    2006-01-01

    On the basis of regular solution sublattice model, thermodynamic equilibrium of austenite/carbide in Fe-Nb-C ternary system was investigated. The equilibrium volume fraction, chemical driving force of carbide precipitates and molar fraction of niobium and carbon in solution at different temperatures were evaluated respectively. The volume fraction of precipitates increases, molar fraction of niobium dissolved in austenite decreases and molar fraction of carbon increases with decreasing the niobium content. The driving force increases with the decrease of temperature, and then comes to be stable at relatively low temperatures. The predicted ratio of carbon in precipitates is in good agreement with the measured one.

  6. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  7. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    International Nuclear Information System (INIS)

    Diaz Barriga-Arceo, L; Orozco, E; Garibay-Febles, V; Bucio-Galindo, L; Mendoza Leon, H; Castillo-Ocampo, P; Montoya, A

    2004-01-01

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 μm in length and 20-200 nm in diameter and 0.6-1.2 μm in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process

  8. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga-Arceo, L [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Orozco, E [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Garibay-Febles, V [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Bucio-Galindo, L [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Mendoza Leon, H [FM-UPALM, IPN, Apartado Postal 75-395 CP 07300, DF (Mexico); Castillo-Ocampo, P [UAM-Iztapalapa, Apartado Postal 55-334 CP 09340, DF (Mexico); Montoya, A [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico)

    2004-06-09

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 {mu}m in length and 20-200 nm in diameter and 0.6-1.2 {mu}m in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process.

  9. Pilot production of 325 kg of uranium carbide

    International Nuclear Information System (INIS)

    Clozet, C.; Dessus, J.; Devillard, J.; Guibert, M.; Morlot, G.

    1969-01-01

    This report describes the pilot fabrication of uranium carbide rods to be mounted in bundles and assayed in two channels of the EL 4 reactor. The fabrication process includes: - elaboration of uranium carbide granules by carbothermic reduction of uranium dioxide; - electron bombardment melting and continuous casting of the granules; - machining of the raw ingots into rods of the required dimensions; finally, the rods will be piled-up to make the fuel elements. Both qualitative and quantitative results of this pilot production chain are presented and discussed. (authors) [fr

  10. Enhanced optical performance of electrochemically etched porous silicon carbide

    International Nuclear Information System (INIS)

    Naderi, N; Hashim, M R; Saron, K M A; Rouhi, J

    2013-01-01

    Porous silicon carbide (PSC) was successfully synthesized via electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using various current densities. The cyclic voltammograms of SiC dissolution show that illumination is required for the accumulation of carriers at the surface, followed by surface oxidation and dissolution of the solid. The morphological and optical characterizations of PSC were reported. Scanning electron microscopy results demonstrated that the current density can be considered an important etching parameter that controls the porosity and uniformity of PSC; hence, it can be used to optimize the optical properties of the porous samples. (paper)

  11. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together ...

  12. Liquid phase sintering of carbides using a nickel-molybdenum alloy

    International Nuclear Information System (INIS)

    Barranco, J.M.; Warenchak, R.A.

    1987-01-01

    Liquid phase vacuum sintering was used to densify four carbide groups. These were titanium carbide, tungsten carbide, vanadium carbide, and zirconium carbide. The liquid phase consisted of nickel with additions of molybdenum of from 6.25 to 50.0 weight percent at doubling increments. The liquid phase or binder comprised 10, 20, and 40 percent by weight of the pressed powders. The specimens were tested using 3 point bending. Tungsten carbide showed the greatest improvement in bend rupture strength, flexural modulus, fracture energy and hardness using 20 percent binder with lesser amounts of molybdenum (6.25 or 12.5 wt %) added to nickel compared to pure nickel. A refinement in the carbide microstructure and/or a reduction in porosity was seen for both the titanium and tungsten carbides when the alloy binder was used compared to using the nickel alone. Curves depicting the above properties are shown for increasing amounts of molybdenum in nickel for each carbide examined. Loss of binder phase due to evaporation was experienced during heating in vacuum at sintering temperatures. In an effort to reduce porosity, identical specimens were HIP processed at 15 ksi and temperatures averaging 110 C below the sintering g temperature. The tungsten carbide and titanium carbide series containing 80 and 90 weight percent carbide phase respectively showed improvement properties after HIP while properties decreased for most other compositions

  13. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures...

  14. Recovery of pure slaked lime from carbide sludge: Case study of ...

    African Journals Online (AJOL)

    Adaobi

    Carbide sludge is the by-product of reaction between calcium carbide and water in the production of ... soluble in water. The optimum percentage yield was 78.2% at a ratio of 1:1000(w/v) of sludge to water held for 24 h at room temperature. Key words: Carbide, recovery, ..... calcium carbonate and other calcium products.

  15. Study of copper fluorination

    International Nuclear Information System (INIS)

    Gillardeau, J.

    1967-02-01

    This report deals with the action of fluorine on copper. Comprehensive descriptions are given of the particular technological methods and of the preparation of the reactants. This fluorination reaction has been studied at medium and low fluorine pressures. A nucleation and growth phenomenon is described. The influence of a pollution of the gas phase on the fluorination process is described. The solid-state reaction between cupric fluoride and cooper has also been studied. A special study has been made of the growth of copper deposits by thermal decomposition of gaseous fluorides. (author) [fr

  16. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    Science.gov (United States)

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  17. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Chen, Jinwei, E-mail: jwchen@scu.edu.cn; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin, E-mail: rl.wang@scu.edu.cn

    2016-12-15

    Graphical abstract: A hybrid catalyst was prepared via a quite green and simple method to achieve an one-pot synthesis of the N-doping carbon, tungsten carbides, and iron/cobalt carbides. It exhibited comparable electrocatalytic activity, higher durability and ability to methanol tolerance compared with commercial Pt/C to ORR. - Highlights: • A novel type of hybrid Fe/Co/WC@NC catalysts have been successfully synthesized. • The hybrid catalyst also exhibited better durability and methanol tolerance. • Multiple effective active sites of Fe{sub 3}C, Co{sub 3}C, WC, and NC help to improve catalytic performance. - Abstract: This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe{sub 3}C and Co{sub 3}C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe{sub 3}C, and Co{sub 3}C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.

  18. Brazing copper to dispersion-strengthened copper

    Science.gov (United States)

    Ryding, David G.; Allen, Douglas; Lee, Richard H.

    1996-11-01

    The advanced photon source is a state-of-the-art synchrotron light source that will produce intense x-ray beams, which will allow the study of smaller samples and faster reactions and processes at a greater level of detail than has ben possible to date. The beam is produced by using third- generation insertion devices in a 7-GeV electron/positron storage ring that is 1,104 meters in circumference. The heat load from these intense high-power devices is very high, and certain components must sustain total heat loads of 3 to 15 kW and heat fluxes of 30 W/mm$_2). Because the beams will cycle on and off many times, thermal shock and fatigue will be a problem. High heat flux impinging on a small area causes a large thermal gradient that results in high stress. GlidCop, a dispersion-strengthened copper, is the desired design material because of its high thermal conductivity and superior mechanical properties as compared to copper and its alloys. GlidCop is not amenable to joining by fusion welding, and brazing requires diligence because of high diffusivity. Brazing procedures were developed using optical and scanning electron microscopy.

  19. Thermodynamic analysis of thermal plasma process of composite zirconium carbide and silicon carbide production from zircon concentrates

    International Nuclear Information System (INIS)

    Kostic, Z.G.; Stefanovic, P.Lj.; Pavlovic; Pavlovic, Z.N.; Zivkovic, N.V.

    2000-01-01

    Improved zirconium ceramics and composites have been invented in an effort to obtain better resistance to ablation at high temperature. These ceramics are suitable for use as thermal protection materials on the exterior surfaces of spacecraft, and in laboratory and industrial environments that include flows of hot oxidizing gases. Results of thermodynamic consideration of the process for composite zirconium carbide and silicon carbide ultrafine powder production from ZrSiO 4 in argon thermal plasma and propane-butane gas as reactive quenching reagents are presented in the paper. (author)

  20. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  1. Creative Copper Crests

    Science.gov (United States)

    Knab, Thomas

    2011-01-01

    In this article, the author discusses how to create an art activity that would link the computer-created business cards of fourth-grade students with an upcoming school-wide medieval event. Creating family crests from copper foil would be a great connection, since they, like business cards, are an individual's way to identify themselves to others.…

  2. and copper(II)

    Indian Academy of Sciences (India)

    Unknown

    (II) and copper(II)–zinc(II) complexes. SUBODH KUMAR1, R N PATEL1*, P V KHADIKAR1 and. K B PANDEYA2. 1 Department of Chemistry, APS University, Rewa 486 003, India. 2 CSJM University, Kanpur 208 016, India e-mail: (R N Patel) ...

  3. Reagent conditions of the flotation of copper, copper - molybdenum and copper -zinc ores in foreing countries

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1983-01-01

    Reagents-collectors and frothers, used abroad in reagent regimes of flotation of copper, copper-molybdenum and copper zinc ores, have been considered. Xanthogenates, aerofloats, xanthogenformiates, thionocarbamates are mainly used as reagents-collectors. Methylizobutylcarbinol and Daufros are used as reagents-frothers

  4. Hypoxia targeting copper complexes

    International Nuclear Information System (INIS)

    Dearling, J.L.

    1998-11-01

    The importance and incidence of tumour hypoxia, its measurement and current treatments available, including pharmacological and radiopharmacological methods of targeting hypoxia, are discussed. A variety of in vitro and in vivo methods for imposing hypoxia have been developed and are reviewed. Copper, its chemistry, biochemistry and radiochemistry, the potential for use of copper radionuclides and its use to date in this field is considered with particular reference to the thiosemicarbazones. Their biological activity, metal chelation, in vitro and in vivo studies of their radiocopper complexes and the potential for their use as hypoxia targeting radiopharmaceuticals is described. The reduction of the copper(II) complex to copper(l), its pivotal importance in their biological behaviour, and the potential for manipulation of this to effect hypoxia selectivity are described. An in vitro method for assessing the hypoxia selectivity of radiopharmaceuticals is reported. The rapid deoxygenation and high viability of a mammalian cell culture in this system is discussed and factors which may affect the cellular uptake of a radiopharmaceutical are described. The design, synthesis and complexation with copper and radiocopper of a range of bis(thiosemicarbazones) is reported. Synthesis of these compounds is simple giving high yields of pure products. The characteristics of the radiocopper complexes ( 64 Cu) including lipophilicity and redox activity are reported (reduction potentials in the range -0.314 - -0.590 V). High cellular uptakes of the radiocopper complexes of the ligands, in hypoxic and normoxic EMT6 and CHO320 cells, were observed. Extremes of selectivity are shown ranging from the hypoxia selective 64 Cu(II)ATSM to normoxic cell selective 64 Cu(II)GTS. The selectivities observed are compared with the physico chemical characteristics of the complexes. A good correlation exists between selectivity of the complex and its Cu(II)/Cu(I) reduction potential, with hypoxia

  5. Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Jensen, Jens Oluf; Bjerrum, Niels J.

    2014-01-01

    phosphoric acid were investigated in a temperature range from 80 to 170°C. A significant dependence of the activities on temperature was observed for all five carbide samples. Through the entire temperature range Group 6 metal carbides showed higher activity than that of the Group 5 metal carbides......Alternative catalysts based on carbides of Group 5 (niobium and tantalum) and 6 (chromium, molybdenum and tungsten) metals were prepared as films on the metallic substrates. The electrochemical activities of these carbide electrodes towards the hydrogen evolution reaction (HER) in concentrated...

  6. Behavior of tungsten carbide in water stabilized plasma

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Matějíček, Jiří; Neufuss, Karel

    2007-01-01

    Roč. 7, č. 4 (2007), s. 213-220 ISSN 1335-8987 R&D Projects: GA ČR(CZ) GA104/05/0540 Institutional research plan: CEZ:AV0Z20430508 Keywords : water stabilized plasma * tungsten carbide * tungsten hemicarbide * decarburization Subject RIV: BL - Plasma and Gas Discharge Physics

  7. PECVD silicon carbide surface micromachining technology and selected MEMS applications

    NARCIS (Netherlands)

    Rajaraman, V.; Pakula, L.S.; Yang, H.; French, P.J.; Sarro, P.M.

    2011-01-01

    Attractive material properties of plasma enhanced chemical vapour deposited (PECVD) silicon carbide (SiC) when combined with CMOS-compatible low thermal budget processing provides an ideal technology platform for developing various microelectromechanical systems (MEMS) devices and merging them with

  8. Helium generation and diffusion in graphite and some carbides

    International Nuclear Information System (INIS)

    Holt, J.B.; Guinan, M.W.; Hosmer, D.W.; Condit, R.H.; Borg, R.J.

    1976-01-01

    The cross section for the generation of helium in neutron irradiated carbon was found to be 654 mb at 14.4 MeV and 744 mb at 14.9 MeV. Extrapolating to 14.1 MeV (the fusion reactor spectrum) gives 615 mb. The diffusion of helium in dense polycrystalline graphite and in pyrographite was measured and found to be D = 7.2 x 10 -7 m 2 s -1 exp (-80 kJ/RT). It is assumed that diffusion is primarily in the basal plane direction in crystals of the graphite. In polycrystalline graphite the path length is a factor of √2 longer than the measured distance due to the random orientation mismatch between successive grains. Isochronal anneals (measured helium release as the specimen is steadily heated) were run and maximum release rates were found at 200 0 C in polycrystalline graphite, 1000 0 C in pyrographite, 1350 0 C in boron carbide, and 1350 0 and 2400 0 C (two peaks) in silicon carbide. It is concluded that in these candidates for curtain materials in fusion reactors the helium releases can probably occur without bubble formation in graphites, may occur in boron carbide, but will probably cause bubble formation in silicon carbide. 7 figures

  9. Hollow microspheres with a tungsten carbide kernel for PEMFC application.

    Science.gov (United States)

    d'Arbigny, Julien Bernard; Taillades, Gilles; Marrony, Mathieu; Jones, Deborah J; Rozière, Jacques

    2011-07-28

    Tungsten carbide microspheres comprising an outer shell and a compact kernel prepared by a simple hydrothermal method exhibit very high surface area promoting a high dispersion of platinum nanoparticles, and an exceptionally high electrochemically active surface area (EAS) stability compared to the usual Pt/C electrocatalysts used for PEMFC application.

  10. Analysis of carbides and inclusions in high speed tool steels

    DEFF Research Database (Denmark)

    Therkildsen, K.T.; Dahl, K.V.

    2002-01-01

    The fracture surfaces of fatigued specimens were investigated using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The aim was to quantify the distribution of cracked carbides and non-metallic inclusions on the fracturesurfaces as well as on polished cross...

  11. Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbücher, C. [Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-7), JARA-FIT, 52425 Jülich (Germany); Hildebrandt, E.; Sharath, S. U.; Kurian, J.; Komissinskiy, P.; Alff, L. [Technische Universität Darmstadt, Institute of Materials Science, 64287 Darmstadt (Germany); Szot, K. [Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-7), JARA-FIT, 52425 Jülich (Germany); University of Silesia, A. Chełkowski Institute of Physics, 40-007 Katowice (Poland); Breuer, U. [Forschungszentrum Jülich GmbH, Central Institute for Engineering, Electronics and Analytics (ZEA-3), 52425 Jülich (Germany); Waser, R. [Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-7), JARA-FIT, 52425 Jülich (Germany); RWTH Aachen, Institute of Electronic Materials (IWE 2), 52056 Aachen (Germany)

    2016-06-20

    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO{sub 2−x}) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfC{sub x}) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfC{sub x} surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO{sub 2} thin films prepared and measured under identical conditions, the formation of HfC{sub x} was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.

  12. RICE-HUSK ASH-CARBIDE-WASTE STABILIZATION OF ...

    African Journals Online (AJOL)

    This paper present results of the laboratory evaluation of the characteristics of carbide waste and rice husk ash stabilized reclaimed asphalt pavement waste with a ... of 5.7 % and resistance to loss in strength of 84.1 %, hence the recommendation of the mixture for use as sub-base material in flexible pavement construction.

  13. Hydrotreatment activities of supported molybdenum nitrides and carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dolce, G.M.; Savage, P.E.; Thompson, L.T. [University of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1997-05-01

    The growing need for alternative sources of transportation fuels encourages the development of new hydrotreatment catalysts. These catalysts must be active and more hydrogen efficient than the current commercial hydrotreatment catalysts. Molybdenum nitrides and carbides are attractive candidate materials possessing properties that are comparable or superior to those of commercial sulfide catalysts. This research investigated the catalytic properties of {gamma}-Al{sub 2}O{sub 3}-supported molybdenum nitrides and carbides. These catalysts were synthesized via temperature-programmed reaction of supported molybdenum oxides with ammonia or methane/hydrogen mixtures. Phase constituents and compositions were determined by X-ray diffraction, elemental analysis, and neutral activation analysis. Oxygen chemisorption was used to probe the surface properties of the catalysts. Specific activities of the molybdenum nitrides and carbides were competitive with those of a commercial sulfide catalyst for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). For HDN and HDS, the catalytic activity on a molybdenum basis was a strong inverse function of the molybdenum loading. Product distributions of the HDN, HDO and HDS of a variety of heteroatom compounds indicated that several of the nitrides and carbides were more hydrogen efficient than the sulfide catalyst. 35 refs., 8 figs., 7 tabs.

  14. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Unknown

    carbide ceramics. A K MUKHOPADHYAY. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz.

  15. Thermionic emission of cermets made of refractory carbides

    International Nuclear Information System (INIS)

    Samsonow, G.W.; Bogomol, I.W.; Ochremtschuk, L.N.; Podtschernjajewa, I.A.; Fomenko, W.S.

    1975-01-01

    In order to improve the resistance to thermal variations of refractory carbides having good behavior for thermionic emission, they have been combined with transition metals d. Thermionic emission was studied with cermets in compact samples. Following systems were examined: TiC-Nb, TiC-Mo, TiC-W, ZrC-Nb, ZrC-Mo, ZrC-W, WC-Mo with compositions of: 75% M 1 C-25% M 2 , 50%M 1 C-50%M 2 , 25%M 1 C-75%M 2 . When following the variation of electron emission energy phi versus the composition, it appears that in the range of mixed crystals (M 1 M 2 )C, phi decreases and the resistance to thermal variations of these phases is higher than that of individual carbides. The study of obtained cermets shows that their resistance to thermal variations is largely superior to the one of starting carbides; TiC and ZrC carbides, combined with molybdenum and tungsten support the highest number of thermic cycles

  16. Electron microscopy of boron carbide before and after electron irradiation

    International Nuclear Information System (INIS)

    Stoto, T.; Zuppiroli, L.; Beauvy, M.; Athanassiadis, T.

    1984-06-01

    The microstructure of boron carbide has been studied by electron microscopy and related to the composition of the material. After electron irradiations in an usual transmission electron microscope and in a high voltage electron microscope at different temperatures and fluxes no change of these microstructures have been observed but a sputtering of the surface of the samples, which has been studied quantitatively [fr

  17. Ultrafast nonlinear response of silicon carbide to intense THz fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Kaltenecker, Korbinian J.

    2017-01-01

    We demonstrate ultrafast nonlinear absorption induced by strong, single-cycle THz fields in bulk, lightly doped 4H silicon carbide. A combination of Zener tunneling and intraband transitions makes the effect as at least as fast as the excitation pulse. The sub-picosecond recovery time makes...

  18. Influence of nanometric silicon carbide on phenolic resin composites

    Indian Academy of Sciences (India)

    The results highlight the positive effect of the nanometric silicon carbide addition in phenolic resin on mechanical, thermo-mechanical and tribological performance, improving their strength, stiffness and abrasive properties. The best results were obtained for 1 wt% nSiC, proving that this value is the optimum nanometric ...

  19. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  20. Stabilization of Ikpayongo laterite with cement and calcium carbide ...

    African Journals Online (AJOL)

    Laterite obtained from Ikpayongo was stabilized with 2-10 % cement and 2-10 % Calcium Carbide waste, for use as pavement material. Atterberg's limits test, California bearing ratio (CBR) and unconfined compressive strength (UCS) tests were conducted on the natural laterite and the treated soil specimens. The plasticity ...

  1. Production of boron carbide powder by carbothermal synthesis of ...

    Indian Academy of Sciences (India)

    TECS

    weight armour plates etc (Alizadeh et al 2004). It can also be used as a reinforcing material for ceramic matrix composites. It is an excellent neutron absorption material in nuclear industry due to its high neutron absorption co- efficient (Sinha et al 2002). Boron carbide can be prepared by reaction of elemental boron and ...

  2. Mechanistic evaluation of the effect of calcium carbide waste on ...

    African Journals Online (AJOL)

    Calcium Carbide Waste (CCW) was used as an alternative to traditional Portland cement mineral filler in hot mix asphalt concrete to rid its disposal problem. Its effect on mechanical properties of hot mix asphalt was assessed using the Marshall method of mix design. Using the optimum bitumen content determined from ...

  3. Sintering of nano crystalline o silicon carbide doping with

    Indian Academy of Sciences (India)

    Sinterable silicon carbide powders were prepared by attrition milling and chemical processing of an acheson type -SiC. Pressureless sintering of these powders was achieved by addition of aluminium nitride together with carbon. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by ...

  4. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  5. Synthesis and investigation of silicon carbide nanowires by HFCVD ...

    Indian Academy of Sciences (India)

    Silicon carbide (SiC) nanowire has been fabricated by hot filament chemical vapour .... −5. Torr by mechanical and dif- fusion vacuum pumps, then high purity H2 gas was fed into it. ... to standard PDF card numbers of 01-074-2307 and 01-.

  6. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...

  7. Carbon fibre reinforced copper matrix composites: processing routes and properties

    Energy Technology Data Exchange (ETDEWEB)

    Le Petitcorps, Y. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Poueylaud, J.M. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Albingre, L. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB; Berdeu, B. [L`Electrolyse, 33 - Latresne (France); Lobstein, P. [L`Electrolyse, 33 - Latresne (France); Silvain, J.F. [Bordeaux-1 Univ., 33 - Pessac (France). ICMCB

    1997-06-01

    Copper matrix composites are of interest for applications in the electronic field which requires materials with high thermal conductivity properties. The use of carbon fibres can (1) decrease the density and the coefficient of thermal expansion of the material and (2) increase the stiffness and strength to rupture of the resulting composite. In order to produce cheap materials, chemical plating and uniaxial hot pressing processing routes were chosen. 1D-C{sub (P55Thornel)} / Cu prepregs were hot pressed in an argon atmosphere at 750 C during 30 min. The volume fraction of the fibres within the composite was in the range of 10-35%. Physical (density and thermal expansion coefficient) and thermal conductivity properties of the composite were in good agreement with the predictions. However this material exhibits very poor mechanical properties (Young`s modulus and tensile strength). Scanning electron microscopy (SEM) observations of the surfaces of ruptures have shown that (1) a very weak bonding between the graphite fibres and the copper matrix was formed and (2) the rupture of the composite was initiated in the matrix at the copper grain boundaries. In order to overcome these two difficulties, the carbon fibres were pre-coated with a thin layer (100 nm) of cobalt. The aim of the cobalt was to react with the carbon to form carbide compounds and as a consequence to increase the bonding between the metal and the fibre. The tensile properties ({sigma}{sub c}{sup R} and E{sub c}) of this composite were then increased by 50% in comparison with the former material; however the strain to rupture was still too weak ({epsilon}{sub c}{sup R} = 0.5%). In order to explain the role of each constituents, X-ray profiles and TEM analyses were done at the fibre/matrix interface and at the grain boundaries. Some modifications of the chemical plating steps were done to improve the purity of the copper. (orig.)

  8. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  9. Formation mechanism of spheroidal carbide in ultra-low carbon ductile cast iron

    Directory of Open Access Journals (Sweden)

    Bin-guo Fu

    2016-09-01

    Full Text Available The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.

  10. The valve effect of the carbide interlayer of an electric resistance plug

    International Nuclear Information System (INIS)

    Lakomskii, V.

    1998-01-01

    The welded electric resistance plug (ERP) usually contains a carbide interlayer at the plug-carbon material interface. The interlayer forms during welding the contact metallic alloy with the carbon material when the oxide films of the alloy are reduced on the interface surface by carbon to the formation of carbides and the surface layer of the plug material dissolves carbon to saturation. Subsequently, during solidification of the plug material it forms carbides with the alloy components. The structural composition of the carbide interlayer is determined by the chemical composition of the contact alloy. In alloys developed by the author and his colleagues the carbide forming elements are represented in most cases by silicon and titanium and, less frequently, by chromium and manganese. Therefore, the carbide interlayers in the ERP consisted mainly of silicon and titanium carbides

  11. Advances in carbide fuel element development for fast reactor application

    International Nuclear Information System (INIS)

    Dienst, W.; Kleykamp, H.; Muehling, G.; Reiser, H.; Steiner, H.; Thuemmler, F.; Wedermeyer, H.; Weimar, P.

    1977-01-01

    The features of the carbide fuel development programme are reviewed and evaluated. Single pin and bundle irradiations are carried out under thermal, epithermal and fast flux conditions, the latter in the DFR and KNK-II reactors. Several fuel concepts in the region of representative SNR clad temperatures are compared by parameter and performance tests. A conservative concept is based on He-bonded 8 mm pins with (U,Pu)C pellets and a smear density of 75% TD, operating at 800 W/cm rod power and burnup to 70 MWd/kg. The preparation of mixed carbide fuels is carried out by carbothermic reduction of the oxides in different methods supported by equivalent carbon content, grain size and phase distribution analysis. The fuel for subassembly performance tests is produced in a pilot plant of 0,5 t/year capacity. Compatibility studies reveal that cladding carburization is the only chemical interaction with carbide fuels. This effect leads to a reduction in ductility of the stainless steel. Fission products apparently play no role in the compatibility behaviour. Comprehensive studies lead to reliable information on the chemical and thermodynamic state of the fuel under irradiation. The swelling of carbide fuels and the fission gas release are examined and analysed. Cladding plastic strain by fuel swelling occurs during steady-state operation because the irradiation creep is rather slow compared to oxide fuels. The cladding strain observed depends on the fuel porosity and the cladding strength. The development of carbide fuel pins is complemented by the application of comprehensive computer models. In addition to the steady-state tests power cycling and safety tests are under performance. Up to 1980 the results are summarized for the final design and specification. The development target of the present program is to fabricate several subassemblies for test operation in the SNR 300 by 1981

  12. Structure and single-phase regime of boron carbides

    International Nuclear Information System (INIS)

    Emin, D.

    1988-01-01

    The boron carbides are composed of twelve-atom icosahedral clusters which are linked by direct covalent bonds and through three-atom intericosahedral chains. The boron carbides are known to exist as a single phase with carbon concentrations from about 8 to about 20 at. %. This range of carbon concentrations is made possible by the substitution of boron and carbon atoms for one another within both the icosahedra and intericosahedral chains. The most widely accepted structural model for B 4 C (the boron carbide with nominally 20% carbon) has B/sub 11/C icosahedra with C-B-C intericosahedral chains. Here, the free energy of the boron carbides is studied as a function of carbon concentration by considering the effects of replacing carbon atoms within B 4 C with boron atoms. It is concluded that entropic and energetic considerations both favor the replacement of carbon atoms with boron atoms within the intericosahedral chains, C-B-C→C-B-B. Once the carbon concentration is so low that the vast majority of the chains are C-B-B chains, near B/sub 13/C 2 , subsequent substitutions of carbon atoms with boron atoms occur within the icosahedra, B/sub 11/C→B/sub 12/. Maxima of the free energy occur at the most ordered compositions: B 4 C,B/sub 13/C 2 ,B/sub 14/C. This structural model, determined by studying the free energy, agrees with that previously suggested by analysis of electronic and thermal transport data. These considerations also provide an explanation for the wide single-phase regime found for boron carbides

  13. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Daniels, B.K.; Brown, D.W.; Kimock, F.M.

    1997-01-01

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  14. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  15. The Effect of Copper

    African Journals Online (AJOL)

    environment, where fishes are found, stuns them ... of earthen ponds are springing up near cocoa ... farm, which posses toxicological risk to farmed ... Veg. oil. 1.0. 1.0. 1.0. 1.0. 1.0. Copper sulphate 0. 1.0. 2.5. 5.0. 7.5. Total ..... Cellulase Production by Wild Strains of Aspergillus Niger, ... Mangrove Area of Lagos, Nigeria.

  16. Copper Pyrimidine based MOFs

    Indian Academy of Sciences (India)

    Synthesized hydrothermally in a 23-mL Teflon lined stainless steel bomb by heating copper(II) 2-pyrazinecarboxylate (31 mg, 0.1 mmol) and tin(II) iodide (75 mg, 0.2 mmol) in 4 mL water at 150±C for 24 h. The reaction vessel was subsequently cooled to 70±C at 1±C/min and held at that temperature for 6 h before returning ...

  17. Local density measurement of additive manufactured copper parts by instrumented indentation

    Science.gov (United States)

    Santo, Loredana; Quadrini, Fabrizio; Bellisario, Denise; Tedde, Giovanni Matteo; Zarcone, Mariano; Di Domenico, Gildo; D'Angelo, Pierpaolo; Corona, Diego

    2018-05-01

    Instrumented flat indentation has been used to evaluate local density of additive manufactured (AM) copper samples with different relative density. Indentations were made by using tungsten carbide (WC) flat pins with 1 mm diameter. Pure copper powders were used in a selective laser melting (SLM) machine to produce samples to test. By changing process parameters, samples density was changed from the relative density of 63% to 71%. Indentation tests were performed on the xy surface of the AM samples. In order to make a correlation between indentation test results and sample density, the indentation pressure at fixed displacement was selected. Results show that instrumented indentation is a valid technique to measure density distribution along the geometry of an SLM part. In fact, a linear trend between indentation pressure and sample density was found for the selected density range.

  18. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  19. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    International Nuclear Information System (INIS)

    Nagle, Dennis; Zhang, Dajie

    2009-01-01

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm -3 (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  20. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  1. Novel fabrication of silicon carbide based ceramics for nuclear applications

    Science.gov (United States)

    Singh, Abhishek Kumar

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous

  2. Native copper as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1989-12-01

    This paper discusses the occurrence of native copper as found in geological formations as a stability analogue of copper canisters that are planned to be used for the disposal of spent nuclear fuel in the Finnish bedrock. A summary of several publications on native copper occurrences is presented. The present geochemical and geohydrological conditions in which copper is met with in its metallic state show that metallic copper is stable in a wide range of temperatures. At low temperatures native copper is found to be stable where groundwater has moderate pH (about 7), low Eh (< +100 mV), and low total dissolved solids, especially chloride. Microscopical and microanalytical studies were carried out on a dozen of rock samples containing native copper. The results reveal that the metal shows no significant alteration. Only the surface of copper grains is locally coated. In the oldest samples there exist small corrosion cracks; the age of the oldest samples is over 1,000 million years. A review of several Finnish groundwater studies suggests that there are places in Finland where the geohydrological conditions are favourable for native copper stability. (orig.)

  3. Graphite fiber/copper composites prepared by spontaneous infiltration

    Science.gov (United States)

    Wang, Hongbao; Tao, Zechao; Li, Xiangfen; Yan, Xi; Liu, Zhanjun; Guo, Quangui

    2018-05-01

    The major bottleneck in developing graphite fiber reinforced copper (GF/Cu) composites is the poor wettability of Cu/graphite system. Alloying element of chromium (Cr) is introduced to improve the wettability of liquid copper on graphite. Sessile drop method experiments illustrate that the contact angle of liquid Cu-Cr (1.0 wt.%) alloy on graphite substrate decreases to 43° at 1300 °C. The improvement of wettability is related to the formation of chromium carbide layer at interface zone. Based on the wetting experiment, a spontaneous infiltration method for preparing GF/Cu composites is proposed. Unidirectional GF preforms are infiltrated by Cu-Cr alloys without external pressure in a tubular furnace. Results reveal that the GF preform can be fully infiltrated by Cu-Cr alloy (8 wt.%) spontaneously when fiber volume fraction is 40%. The coefficient of thermal expansion (CTE) of GF/Cu-Cr (8.0 wt.%) composites is 4.68 × 10-6/K along the longitudinal direction.

  4. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  5. Copper tolerance in Becium homblei

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, C; Stone, J

    1971-04-09

    Analyses show that Becium homblei has apparently no mechanism for limiting copper uptake. As growth proceeds, the concentration of metal increases in leaves and stems. Much of the copper is bound to structural material of the cells. There is a significant difference between the amount of extractable material in root and leaf tissues. These differences, in conjunction with the extrinsic factor of regular bush fires, were important factors in the evolution of this copper-resistant species of Becium. 9 references.

  6. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    Vast, N.

    1999-01-01

    The atomic structure and the lattice dynamics of α boron and of B 4 C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B 4 C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  7. Epithermal neutron activation analysis using a boron carbide irradiation filter

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Brueckner, J.

    1980-01-01

    The use of boron carbide as a thermal neutron filter in epithermal neutron activation (ENAA) analysis has been investigated. As compared to the use of a cadmium filter, boron provides a greater reduction of activities from elements relatively abundant in terrestrial rocks and fossil fuels, such as Na, La, Sc and Fe. These elements have excitation functions which follow the 1/v law in the 1 to 10 eV lower epithermal region. This enhances the sensitivity of ENAA for elements such as U, Th, Ba and etc. which have strong resonances in the higher epithermal region above 10 eV. In addition, a boron carbide filter has the advantages over cadmium of acquiring a relatively low level of induced activity which poses minimal radiation safety problems, when used for ENAA. (author)

  8. Silicon carbide layer structure recovery after ion implantation

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Demakov, K.D.; Kal'nin, A.A.; Nojbert, F.; Potapov, E.N.; Tairov, Yu.M.

    1984-01-01

    The process of recovery of polytype structure of SiC surface layers in the course of thermal annealing (TA) and laser annealing (LA) upon boron and aluminium implantation is studied. The 6H polytype silicon carbide C face (0001) has been exposed to ion radiation. The ion energies ranged from 80 to 100 keV, doses varied from 5x10 14 to 5x10 16 cm -2 . TA was performed in the 800-2000 K temperature range. It is shown that the recovery of the structure of silicon carbide layers after ion implantation takes place in several stages. Considerable effect on the structure of the annealed layers is exerted by the implantation dose and the type of implanted impurity. The recovery of polytype structure is possible only under the effect of laser pulses with duration not less than the time for the ordering of the polytype in question

  9. Electronic and vibrational hopping transport in boron carbides

    International Nuclear Information System (INIS)

    Emin, D.

    1991-01-01

    General concepts of hopping-type transport and localization are reviewed. Disorder, electronic correlations and atomic displacements, effects ignored in electronic band structure calculations, foster localization of electronic charge carriers. Examples are given that illustrate the efficacy of these effects in producing localization. This introduction is followed by a brief discussion of the relation between hopping-type transport and localization. The fundamentals of the formation, localization, and hopping transport of small polarons and/or bipolarons is then described. Electronic transport in boron carbides is presented as an example of the adiabatic hopping of small bipolarons. Finally, the notion of vibrational hopping is introduced. The high-temperature thermal diffusion in boron carbides is presented as a potential application of this idea

  10. Colloidal characterization of silicon nitride and silicon carbide

    Science.gov (United States)

    Feke, Donald L.

    1986-01-01

    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  11. Phase transformation order-disorder in nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Vlasov, V.A.; Karmo, Yu.S.; Kustova, L.V.

    1986-01-01

    Titanium carbide delta-phase is studied using the methods of electric conductivity and differential thermal analysis (DTA). It is shown on the Ti-C system phase diagram that two regions of TiCsub(0.46-0.60) and TiCsub(0.65-1.00) compositions, different in their properties, correspond to delta-phase. Both ordered and disordered phases exist within the TiCsub(0.046-0.60) concentration range, and in equilibrium heating or cooling one phase converts to another at 590 deg C (the first order phase transformation). Samples of the TiCsub(0.65-1.00) composition are characterized by low electric conductivity stability, that is explained by strong titanium carbide electric conductivity sensitivity to defects and impurities

  12. PREPARATION OF TANTALUM CARBIDE FROM AN ORGANOMETALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    C. P. SOUZA

    1999-03-01

    Full Text Available In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta2O5.nH2O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, TaC, in the powder form at 1000oC. The natural sintering of TaC powder in an inert atmosphere at 1400°C during 10 hours, under inert atmosphere made it possible to densify the carbide to 96% of the theoretical value.

  13. Linear electro-optic effect in cubic silicon carbide

    Science.gov (United States)

    Tang, Xiao; Irvine, Kenneth G.; Zhang, Dongping; Spencer, Michael G.

    1991-01-01

    The first observation is reported of the electrooptic effect of cubic silicon carbide (beta-SiC) grown by a low-pressure chemical vapor deposition reactor using the hydrogen, silane, and propane gas system. At a wavelength of 633 nm, the value of the electrooptic coefficient r41 in beta-SiC is determined to be 2.7 +/- 0.5 x 10 (exp-12) m/V, which is 1.7 times larger than that in gallium arsenide measured at 10.6 microns. Also, a half-wave voltage of 6.4 kV for beta-SiC is obtained. Because of this favorable value of electrooptic coefficient, it is believed that silicon carbide may be a promising candidate in electrooptic applications for high optical intensity in the visible region.

  14. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    FAN; ChangZeng

    2007-01-01

    The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.……

  15. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.

  16. Effect of hydrogen on the microstructure of silicon carbide

    International Nuclear Information System (INIS)

    Fischman, G.S.

    1985-01-01

    The effect of hydrogenation on the microstructure of a pressureless sintered silicon carbide was studied. Samples which were annealed in a 40:60 mole % H 2 :Ar atmosphere at 1400 0 C for 50 hours were microstructurally compared with unannealed samples and samples that had been annealed in a similar manner but using an argon atmosphere. The results were also compared with microstructural results obtained from in situ studies using both hydrogen and argon atmospheres. These results were compared with a thermodynamic model which was constructed using a free energy minimization technique. The observed effects of hydrogenation were surface decarburization and amorphization throughout the silicon carbide material. Other observations include the thermally induced growth of microcrystalline silicon and accelerated amorphization around the silicon microcrystals in samples used in hydrogen in situ studies. An analysis of the microstructure of the reference material was also performed

  17. Mechanism of protective action of surface carbide layers on titanium

    International Nuclear Information System (INIS)

    Chukalovskaya, T.V.; Chebotareva, N.P.; Tomashov, N.D.

    1990-01-01

    The protective action of surface carbide layer on titanium produced in methane atmosphere at 1000 deg C and under 6.7 kPa pressure in H 2 SO 4 solutions is studied through comparison of microsection metallographic specimens prior to and after corrosion testing (after specimen activation); through comparison of anodic characteristics after partial stripping of the layer up to its complete stripping; through analysis of the behaviour of Ti-TiC galvanic couple, and through investigation of corresponding corrosion diagrams under test conditions. It is shown that screening protective mechanism is primarily got involved in highly agressive media (high temperature and concentration of solution), and in less agressive environment the protection of titanium with carbide layer is primarily ensured by electrochemical mechanism

  18. Gas cooled fast breeder reactors using mixed carbide fuel

    International Nuclear Information System (INIS)

    Kypreos, S.

    1976-09-01

    The fast reactors being developed at the present time use mixed oxide fuel, stainless-steel cladding and liquid sodium as coolant (LMFBR). Theoretical and experimental designing work has also been done in the field of gas-cooled fast breeder reactors. The more advanced carbide fuel offers greater potential for developing fuel systems with doubling times in the range of ten years. The thermohydraulic and physics performance of a GCFR utilising this fuel is assessed. One question to be answered is whether helium is an efficient coolant to be coupled with the carbide fuel while preserving its superior neutronic performance. Also, an assessment of the fuel cycle cost in comparison to oxide fuel is presented. (Auth.)

  19. CALCIUM CARBIDE: AN EFFICIENT ALTERNATIVE TO THE USE OF ALUMINUM

    Directory of Open Access Journals (Sweden)

    Amilton Carlos Pinheiro Cardoso Filho

    2013-03-01

    Full Text Available The steel demand for fine applications have increased considerably in the last years, and the criteria for its production are even stricter, mainly in relation to the residual elements content and cleanness required. In relation to the steel cleanness, the main problem faced is the control of the amount and morphology of alumina inclusions, generated in the steel deoxidation with aluminum. Besides harming the products quality, the presence of non metallic inclusions can originate nozzle clogging, and consequently interruptions in the process flux. Aiming to improve the steel cleanness and to minimize nozzle clogging, this study is developed to evaluate the partial substitution of aluminum by calcium carbide in the steel deoxidation. Along the operational procedures, the calcium carbide was applied to 397 heats, through what the improvement in steel cleanness is confirmed, with consequent reduction in the nozzle clogging occurrence.

  20. Determination of soluble carbon in nuclear grade boron carbide

    International Nuclear Information System (INIS)

    Vega Bustillos, J.O.; Gomes, R.; Camaro, J.; Zorzetto, F.; Domingues, P.; Riella, H.

    1990-05-01

    The present work describes two different techniques (manometric and wet chemical) for the soluble carbon determination in nuclear grade boron carbide. The techniques are based on the reaction of the boron carbide with a sulfocromic mixture, generating CO 2 . The techniques differ on the mode they do the measurement of CO 2 produced. By wet chemical technique the CO 2 is absorved in a barium hydroxide solution and is determinated by titration. In the manometric technique the CO 2 gas is measured using a McLeod gauge. The gas produced by the latter technique is analysed by mass spectrometry. The details of the analytical technique and the data obtained are discussed. (author) [pt

  1. Copper toxicity in housed lambs

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, A H; Valks, D A; Appleton, M A; Shaw, W B

    1969-09-27

    Copper toxicity among 170 lambs artificially reared indoors at High Mowthorpe NAAS Experimental Husbandry Farm is reported. Although only three lambs were lost it is not unreasonable to suggest that the liver copper levels of the lambs which were slaughtered would have been high and losses could have been much heavier had there been any further copper supplementation. Even a copper level of 20 ppm in lamb concentrates given to lambs reared artificially indoors is dangerous, and intakes of much less than 38 mg per lamb per day can be fatal if given of a prolonged period. 5 references, 1 table.

  2. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  3. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    International Nuclear Information System (INIS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A.M.; Mosca, H.O.

    2013-01-01

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors’ knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement

  4. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Cientı´ficas y Técnicas (Argentina); Jaroszewicz, S. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Cientı´ficas y Técnicas (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina)

    2013-06-15

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors’ knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement.

  5. Sodium erosion of boron carbide from breached absorber pins

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Baker, D.E.

    1981-03-01

    The purpose of the irradiation experiment was to provide an engineering demonstration of the irradiation behavior of breached boron carbide absorber pins. By building defects into the cladding of prototypic absorber pins, and performing the irradiation under typical FFTF operating conditions, a qualitative assessment of the consequences of a breach was achieved. Additionally, a direct comparison of pin behavior with that of the ex-reactor test could be made

  6. Oxidation of mullite-zirconia-alumina-silicon carbide composites

    International Nuclear Information System (INIS)

    Baudin, C.; Moya, J.S.

    1990-01-01

    This paper reports the isothermal oxidation of mullite-alumina-zirconia-silicon carbide composites obtained by reaction sintering studied in the temperature interval 800 degrees to 1400 degrees C. The kinetics of the oxidation process was related to the viscosity of the surface glassy layer as well as to the crystallization of the surface film. The oxidation kinetics was halted to T ≤ 1300 degrees C, presumably because of crystallization

  7. Correlation for boron carbide helium release in fast reactors

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Pitner, A.L.

    1977-04-01

    An empirical helium correlation for the helium release from boron carbide has been developed. The correlation provides a good fit to the experimental data in the temperature range from 800 to 1350 0 K, and burnup levels up to 80 x 10 20 captures/cm 3 . The correlation has the capability of extrapolation to 2200 0 K (3500 0 F) and 200 x 10 20 captures/cm 3 . In this range the helium release rate will not exceed the generation rate

  8. An electrochemical process for the recycling of tungsten carbide scrap

    International Nuclear Information System (INIS)

    Johns, M.W.

    1984-01-01

    An account is given of the development of a number of designs for electrochemical cells, and the subsequent construction and operation of a vibrating-plate cell capable of oxidizing 15 kilograms of tungsten carbide a day to a crude tungstic acid precipitate, with similtaneous recovery of cobalt metal on the cathode. The effects on the process of the reagent concentration, temperature, current density, and cathode material are discussed

  9. Catalytic Conversion of Syngas into Higher Alcohols over Carbide Catalysts

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Duchstein, Linus Daniel Leonhard; Wagner, Jakob Birkedal

    2012-01-01

    This work investigates the use of the bulk carbides Mo2C, WC, and NbC as catalysts for the conversion of syngas into higher alcohols. K2CO3/WC produces mainly CH3OH and CH4 with a low activity. NbC has a very low activity in CO hydrogenation. K2CO3/Mo2C produces mixed alcohols with a reasonable...

  10. Progress in Studies on Carbon and Silicon Carbide Nanocomposite Materials

    International Nuclear Information System (INIS)

    Xiao, P.; Chen, J.; Xian-feng, X.

    2010-01-01

    Silicon carbide nanofiber and carbon nanotubes are introduced. The structure and application of nanotubers (nanofibers) in carbon/carbon composites are emphatically presented. Due to the unique structure of nanotubers (nanofibers), they can modify the microstructure of pyrocarbon and induce the deposition of pyrocarbon with high text in carbon/carbon composites. So the carbon/carbon composites modified by CNT/CNF have more excellent properties.

  11. Pipe bend wear - is tungsten carbide the answer?

    International Nuclear Information System (INIS)

    Freinkel, D.

    1988-01-01

    The purpose of the investigation was to compare the relative wear resistance of various grades of sintered tungsten carbide liners against a mild steel standard in a full-scale pneumatic conveying testing rig. Speciments ranging in cobalt content from 6 to 30 per cent and in grain size from 0,56 to 2,98 microns, including a mild steel standard, were placed on a specially designed holder which fitted into a tee type 100 mm diameter bend. The specimens were tested under various operating conditions, ie air velocity ranging from 28m/s to 52m/s, impact angles of 30 0 to 70 0 mass flow rates of 35kg/min to 83kg/min and phase densities of 1,2 to 2,9, using a 4 mm nominal size crushed granite rock. The experimental results show that the ultrafine-grained, low cobalt (6 per cent) tungsten carbide displays little sensitivity to varying velocities, impact angles, mass flow rates or phase densities, and consistently gave the best wear resistance under all testing conditions. It consistently showed the least wear resistance under all testing conditions and performed only slightly better than mild steel. The effect of the carbide grain size was found to be small, although the finer grain sizes displayed greater wear resistance than the coarse grains. The effect of cobalt content was such that the lower cobalt specimens (6 per cent range) consistently performed better than the higher cobalt contents (10 per cent, 15 per cent, 30 per cent) under all testing conditions; the wear resistance decreasing with increasing cobalt content. An empirical model for the prediction of wear for each type of material tested has been proposed, given the particular operating conditions. Microstructurally it has been shown that there is a definite relationship between erosion resistance and the inverse of the magnetic coercivity of the tungsten carbide alloys

  12. Reaction of uranium and plutonium carbides with austenitic steels

    International Nuclear Information System (INIS)

    Mouchnino, M.

    1967-01-01

    The reaction of uranium and plutonium carbides with austenitic steels has been studied between 650 and 1050 deg. C using UC, steel and (UPu)C, steel diffusion couples. The steels are of the type CN 18.10 with or without addition of molybdenum. The carbides used are hyper-stoichiometric. Tests were also carried out with UCTi, UCMo, UPuCTi and UPuCMo. Up to 800 deg. C no marked diffusion of carbon into stainless steel is observed. Between 800 and 900 deg. C the carbon produced by the decomposition of the higher carbides diffuses into the steel. Above 900 deg. C, decomposition of the monocarbide occurs according to a reaction which can be written schematically as: (U,PuC) + (Fe,Ni,Cr) → (U,Pu) Fe 2 + Cr 23 C 6 . Above 950 deg. C the behaviour of UPuCMo and that of the titanium (CN 18.12) and nickel (NC 38. 18) steels is observed to be very satisfactory. (author) [fr

  13. Toughness behaviour of tungsten-carbide-cobalt alloys

    International Nuclear Information System (INIS)

    Sigl, L.S.

    1985-05-01

    In the present work the mechanisms of crack propagation in technically important WC-Co alloys are investigated and a model describing the influence of microstructural parameters and of the mechanical properties of the constituents is developed. An energy concept is used for modelling fracture toughness. The energies dissipated in the four crack-paths (trans- and intergranular carbide fracture, fracture across the binder-ligaments, fracture in the binder close to the carbide/binder interface) are summed up using the experimentally determined area-fractions of the crack-paths, the specific energy of brittle fracture in the carbide and of ductile fracture is calculated by integrating the energy to deform a volume element over the plastically deformed region. In contrast to all earlier models, this concept describes fracture toughness of WC-Co alloys only with physically meaningful parameters. The excellent agreement with experimental toughness values and with qualitative observations of crack propagation show that the new model includes all effects which influence toughness. As demonstrated with WC-based hardmetals with a cobalt-nickel binder, the results open new possibilities for optimizing the toughness of composites in which a small amount of a tough phase is embedded in a brittle matrix. (Author, shortened by G.Q.)

  14. Disorder and defects are not intrinsic to boron carbide

    Science.gov (United States)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.

  15. Electrical Characterization of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide

    Science.gov (United States)

    Peterson, George Glenn

    Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon substrates through the use of plasma enhanced chemical vapor deposition (PECVD). Many forms of structural and electrical measurements and analysis have been performed on the p-n heterojunction devices as a function of both He+ ion and neutron irradiation including: transmission electron microscopy (TEM), selected area electron diffraction (SAED), current versus voltage I(V), capacitance versus voltage C(V), conductance versus frequency G(f), and charge carrier lifetime (tau). In stark contrast to nearly all other electronic devices, the electrical performance of these p-n heterojunction diodes improved with irradiation. This is most likely the result of bond defect passivation and resolution of degraded icosahedral based carborane structures (icosahedral molecules missing a B, C, or H atom(s)).

  16. Synthesis of transfer-free graphene on cemented carbide surface.

    Science.gov (United States)

    Yu, Xiang; Zhang, Zhen; Liu, Fei; Ren, Yi

    2018-03-19

    Direct growth of spherical graphene with large surface area is important for various applications in sensor technology. However, the preparation of transfer-free graphene on different substrates is still a challenge. This study presents a novel approach for the transfer-free graphene growth directly on cemented carbide. The used simple thermal annealing induces an in-situ transformation of magnetron-sputtered amorphous silicon carbide films into the graphene matrix. The study reveals the role of Co, a binding phase in cemented carbides, in Si sublimation process, and its interplay with the annealing temperature in development of the graphene matrix. A detailed physico-chemical characterisation was performed by structural (XRD analysis and Raman spectroscopy with mapping studies), morphological (SEM) and chemical (EDS) analyses. The optimal bilayer graphene matrix with hollow graphene spheres on top readily grows at 1000 °C. Higher annealing temperature critically decreases the amount of Si, which yields an increased number of the graphene layers and formation of multi-layer graphene (MLG). The proposed action mechanism involves silicidation of Co during thermal treatment, which influences the existing chemical form of Co, and thus, the graphene formation and variations in a number of the formed graphene layers.

  17. Gravimetric determination of carbon in uranium-plutonium carbide materials

    International Nuclear Information System (INIS)

    Kavanaugh, H.J.; Dahlby, J.W.; Lovell, A.P.

    1979-12-01

    A gravimetric method for determining carbon in uranium-plutonium carbide materials was developed to analyze six samples simultaneously. The samples are burned slowly in an oxygen atmosphere at approximately 900 0 C, and the gases generated are passed through Schuetze's oxidizing reagent (iodine pentoxide on silica gel) to assure quantitative oxidation of the CO to CO 2 . The CO 2 is collected on Ascarite and weighed. This method was tested using a tungsten carbide reference material (NBS-SRM-276) and a (U,Pu)C sample. For 42 analyses of the tungsten carbide, which has a certified carbon content of 6.09%, an average value of 6.09% was obtained with a standard deviation of 0.01 7 % or a relative standard deviation of 0.28%. For 17 analyses of the (U,Pu)C sample, an average carbon content of 4.97% was found with a standard deviation of 0.01 2 % or a relative standard deviation of 0.24%

  18. Kinetics and mechanism of oxidation of carbidized electrolytic chromium coatings

    International Nuclear Information System (INIS)

    Arkharov, V.I.; Yar-Mukhamedov, Sh.Kh.

    1978-01-01

    Thermal stability carbidized electrolytic chromium coatings has been studied depending on the conditions of their formation; the specific features of the mechanism of oxidation at 1200 deg in an air atmosphere have been elucidated. It has been established that kinetics of high temperature oxidation of the coatings depends essentially on the conditions of their formation and on the composition of steel to which the coating is applied. It has been shown that two oxidation mechanisms are possible: by diffusion of the residual chromium through a carbide layer along the carbide grain boundaries outwards or, when there is no residual chromium, by chemical reaction of carbon combustion and oxidation of the liberated chromium. The comparison of oxidation kinetic curves of the samples of 38KhMYuA, 35KhGSA, and DI-22 steels with and without coating has shown that the coatings under study have a better protective effect on 38KhMYuA steel than on 35KhGSA, although without coating oxidability of the first steel is higher than that of the second

  19. Thermal conductivity and emissivity measurements of uranium carbides

    International Nuclear Information System (INIS)

    Corradetti, S.; Manzolaro, M.; Andrighetto, A.; Zanonato, P.; Tusseau-Nenez, S.

    2015-01-01

    Highlights: • Thermal conductivity and emissivity measurements of uranium carbides were performed. • The tested materials are candidates as targets for radioactive ion beam production. • The results are correlated with the materials composition and microstructure. - Abstract: Thermal conductivity and emissivity measurements on different types of uranium carbide are presented, in the context of the ActiLab Work Package in ENSAR, a project within the 7th Framework Program of the European Commission. Two specific techniques were used to carry out the measurements, both taking place in a laboratory dedicated to the research and development of materials for the SPES (Selective Production of Exotic Species) target. In the case of thermal conductivity, estimation of the dependence of this property on temperature was obtained using the inverse parameter estimation method, taking as a reference temperature and emissivity measurements. Emissivity at different temperatures was obtained for several types of uranium carbide using a dual frequency infrared pyrometer. Differences between the analyzed materials are discussed according to their compositional and microstructural properties. The obtainment of this type of information can help to carefully design materials to be capable of working under extreme conditions in next-generation ISOL (Isotope Separation On-Line) facilities for the generation of radioactive ion beams.

  20. Frictional Performance Assessment of Cemented Carbide Surfaces Textured by Laser

    Science.gov (United States)

    Fang, S.; Llanes, L.; Klein, S.; Gachot, C.; Rosenkranz, A.; Bähre, D.; Mücklich, F.

    2017-10-01

    Cemented carbides are advanced engineering materials often used in industry for manufacturing cutting tools or supporting parts in tribological system. In order to improve service life, special attention has been paid to change surface conditions by means of different methods, since surface modification can be beneficial to reduce the friction between the contact surfaces as well as to avoid unintended damage. Laser surface texturing is one of the newly developed surface modification methods. It has been successfully introduced to fabricate some basic patterns on cemented carbide surfaces. In this work, Direct Laser Interference Patterning Technique (DLIP) is implemented to produce special line-like patterns on a cobalt (Co) and nickel (Ni) based cemented tungsten carbide grade. It is proven that the laser-produced patterns have high geometrical precision and quality stability. Furthermore, tribology testing using a nano-tribometer unit shows that friction is reduced by the line-like patterns, as compared to the polished one, under both lubricated and dry testing regimes, and the reduction is more pronounced in the latter case.

  1. Carbide coated fibers in graphite-aluminum composites

    Science.gov (United States)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The NASA-supported program at the Los Alamos Scientific Laboratory (LASL) to develop carbon fiber-aluminum matrix composites is described. Chemical vapor deposition (CVD) was used to uniformly deposit thin, smooth, continuous coats of TiC on the fibers of graphite tows. Wet chemical coating of fibers, followed by high-temperature treatment, was also used, but showed little promise as an alternative coating method. Strength measurements on CVD coated fiber tows showed that thin carbide coats can add to fiber strength. The ability of aluminum alloys to wet TiC was successfully demonstrated using TiC-coated graphite surfaces. Pressure-infiltration of TiC- and ZrC-coated fiber tows with aluminum alloys was only partially successful. Experiments were performed to evaluate the effectiveness of carbide coats on carbon as barriers to prevent reaction between alluminum alloys and carbon. Initial results indicate that composites of aluminum and carbide-coated graphite are stable for long periods of time at temperatures near the alloy solidus.

  2. Emission of blue light from hydrogenated amorphous silicon carbide

    Science.gov (United States)

    Nevin, W. A.; Yamagishi, H.; Yamaguchi, M.; Tawada, Y.

    1994-04-01

    THE development of new electroluminescent materials is of current technological interest for use in flat-screen full-colour displays1. For such applications, amorphous inorganic semiconductors appear particularly promising, in view of the ease with which uniform films with good mechanical and electronic properties can be deposited over large areas2. Luminescence has been reported1 in the red-green part of the spectrum from amorphous silicon carbide prepared from gas-phase mixtures of silane and a carbon-containing species (usually methane or ethylene). But it is not possible to achieve blue luminescence by this approach. Here we show that the use of an aromatic species-xylene-as the source of carbon during deposition results in a form of amorphous silicon carbide that exhibits strong blue luminescence. The underlying structure of this material seems to be an unusual combination of an inorganic silicon carbide lattice with a substantial 'organic' π-conjugated carbon system, the latter dominating the emission properties. Moreover, the material can be readily doped with an electron acceptor in a manner similar to organic semiconductors3, and might therefore find applications as a conductivity- or colour-based chemical sensor.

  3. Effect of Cement Replacement with Carbide Waste on the Strength of Stabilized Clay Subgrade

    Directory of Open Access Journals (Sweden)

    Muntohar A.S.

    2016-03-01

    Full Text Available Cement is commonly used for soil stabilization and many other ground improvement techniques. Cement is believed to be very good to improve the compressive and split-tensile strength of clay subgrades. In some application cement could be partly or fully replaced with carbide waste. This research is to study the effectiveness of the cement replacement and to find the maximum carbide waste content to be allowed for a clay subgrade. The quantities of cement replaced with the carbide waste were 30, 50, 70, 90, and 100% by its mass. The results show that replacing the cement with carbide waste decreased both the compressive and split tensile strength. Replacing cement content with carbide waste reduced its ability for stabilization. The carbide waste content should be less than 70% of the cement to provide a sufficient stabilizing effect on a clay subgrade.

  4. Tantalum and niobium carbides obtention by carbothermic reduction of columbotantalite ores

    International Nuclear Information System (INIS)

    Gordo, E.; Garcia-Carcedo, F.; Torralba, J.M.

    1998-01-01

    Tantalum and niobium carbides are characterized by its high hardness and chemical corrosion resistance. Both carbides, but mainly TaC, are used in hard metals (sintered carbides), together with their carbides, to manufacture cutting tools and dies in special machining applications involving mechanical shock at high temperature. Its use as reinforcement of wear resistant materials through powder metallurgy techniques are being investigated. However, the use of TaC is usually limited because of its high cost. Therefore tantalum carbide with niobium content, which is cheaper, is used. In this work the obtention of complex tantalum and niobium carbides from a Spanish columbotantalite ore is studied through relatively cheap and simple process as it is carbothermic reduction. Concentration of the ore, its reduction and the characterization of products are described. (Author) 11 refs

  5. Microstructural studies of carbides in MAR-M247 nickel-based superalloy

    Science.gov (United States)

    Szczotok, A.; Rodak, K.

    2012-05-01

    Carbides play an important role in the strengthening of microstructures of nickel-based superalloys. Grain boundary carbides prevent or retard grain-boundary sliding and make the grain boundary stronger. Carbides can also tie up certain elements that would otherwise promote phase instability during service. Various types of carbides are possible in the microstructure of nickel-based superalloys, depending on the superalloy composition and processing. In this paper, scanning electron and scanning transmission electron microscopy studies of carbides occurring in the microstructure of polycrystalline MAR-M247 nickel-based superalloy were carried out. In the present work, MC and M23C6 carbides in the MAR-M247 microstructure were examined.

  6. Spectrographic determination of impurities in copper and copper oxide

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1990-11-01

    An emission spectrographic method for the determination of Al, Bi, Ca, Cd, Cr, Fe, Ge, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn and Zn in copper and copper oxide is described. Two mixtures (Graphite and ZnO: graphite and GeO sub(2)) were used as buffers. The standard deviation lies around 10%. (author)

  7. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  8. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    Science.gov (United States)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  9. The preparation of titanium-vanadium carbide/nickel cermets. Technical report

    International Nuclear Information System (INIS)

    Precht, W.; Sprissler, B.

    1976-01-01

    Titanium/vanadium alloy carbide rods were prepared by a zone melting procedure. Wetting studies were carried out using sections of the fused rods and candidate matrix material. It was established that nickel exhibits excellent wetting of (Ti, V) C, and accordingly cermet blends were prepared and liquid phase sintered. Processing parameters are discussed as well as their effect on the final microstructure. Alternate methods for cermet preparation are offered which use as received titanium carbide and vanadium carbide powders

  10. Iron Carbides in Fischer–Tropsch Synthesis: Theoretical and Experimental Understanding in Epsilon-Iron Carbide Phase Assignment

    International Nuclear Information System (INIS)

    Liu, Xing-Wu; Cao, Zhi; Zhao, Shu; Gao, Rui

    2017-01-01

    As active phases in low-temperature Fischer–Tropsch synthesis for liquid fuel production, epsilon iron carbides are critically important industrial materials. However, the precise atomic structure of epsilon iron carbides remains unclear, leading to a half-century of debate on the phase assignment of the ε-Fe 2 C and ε’-Fe 2.2 C. Here, we resolve this decades-long question by a combining theoretical and experimental investigation to assign the phases unambiguously. First, we have investigated the equilibrium structures and thermal stabilities of ε-Fe x C, (x = 1, 2, 2.2, 3, 4, 6, 8) by first-principles calculations. We have also acquired X-ray diffraction patterns and Mössbauer spectra for these epsilon iron carbides, and compared them with the simulated results. These analyses indicate that the unit cell of ε-Fe 2 C contains only one type of chemical environment for Fe atoms, while ε’-Fe 2.2 C has six sets of chemically distinct Fe atoms.

  11. Structural stability, electronic structure and mechanical properties of actinide carbides AnC (An = U, Np)

    International Nuclear Information System (INIS)

    Manikandan, M.; Santhosh, M.; Rajeswarapalanichamy, R.

    2016-01-01

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of actinide carbides AnC (An=U, Np) for three different crystal structures, namely NaCl, CsCl and ZnS. Among the considered structures, NaCl structure is found to be the most stable structure for these carbides at normal pressure. A pressure induced structural phase transition from NaCl to ZnS is observed. The electronic structure reveals that these carbides are metals. The calculated elastic constants indicate that these carbides are mechanically stable at normal pressure.

  12. Formation Energies and Electronic Properties of Vanadium Carbides Found in High Strength Steel Alloys

    Science.gov (United States)

    Limmer, Krista; Medvedeva, Julia

    2013-03-01

    Carbide formation and stabilization in steels is of great interest owing to its effect on the microstructure and properties of the Fe-based alloys. The appearance of carbides with different metal/C ratios strongly depends on the carbon concentration, alloy composition as well as the heat treatment. Strong carbide-forming elements such as Ti, V, and Nb have been used in microalloyed steels; with VC showing an increased solubility in the iron matrix as compared with TiC and NbC. This allows for dissolution of the VC into the steel during heating and fine precipitation during cooling. In addition to VC, the primary vanadium carbide with cubic structure, a wide range of non-stoichiometric compositions VCy with y varying from 0.72 to 0.88, has been observed. This range includes two ordered compounds, V8C7 and V6C5. In this study, first-principles density functional theory (DFT) is employed to examine the stability of the binary carbides by calculating their formation energies. We compare the local structures (atomic coordination, bond distances and angles) and the density of states in optimized geometries of the carbides. Further, the effect of alloying additions, such as niobium and titanium, on the carbide stabilization is investigated. We determine the energetically preferable substitutional atom location in each carbide and study the impurity distribution as well as its role in the carbide formation energy and electronic structure.

  13. MC Carbide Characterization in High Refractory Content Powder-Processed Ni-Based Superalloys

    Science.gov (United States)

    Antonov, Stoichko; Chen, Wei; Huo, Jiajie; Feng, Qiang; Isheim, Dieter; Seidman, David N.; Sun, Eugene; Tin, Sammy

    2018-04-01

    Carbide precipitates in Ni-based superalloys are considered to be desirable phases that can contribute to improving high-temperature properties as well as aid in microstructural refinement of the material; however, they can also serve as crack initiation sites during fatigue. To date, most of the knowledge pertaining to carbide formation has originated from assessments of cast and wrought Ni-based superalloys. As powder-processed Ni-based superalloys are becoming increasingly widespread, understanding the different mechanisms by which they form becomes increasingly important. Detailed characterization of MC carbides present in two experimental high Nb-content powder-processed Ni-based superalloys revealed that Hf additions affect the resultant carbide morphologies. This morphology difference was attributed to a higher magnitude of elastic strain energy along the interface associated with Hf being soluble in the MC carbide lattice. The composition of the MC carbides was studied through atom probe tomography and consisted of a complex carbonitride core, which was rich in Nb and with slight Hf segregation, surrounded by an Nb carbide shell. The characterization results of the segregation behavior of Hf in the MC carbides and the subsequent influence on their morphology were compared to density functional theory calculations and found to be in good agreement, suggesting that computational modeling can successfully be used to tailor carbide features.

  14. On change of vanadium carbide state during 20Kh3MVF steel heat treatment

    International Nuclear Information System (INIS)

    Gitgarts, M.I.; Maksimenko, V.N.

    1975-01-01

    The Xray diffraction study of vanadium carbide MC has been made in the steel-20KH3MVF quenched from 970 and 1040 deg and tempered at 660 deg for 210 hrs. It has been found that the constant of the MC crystal lattice regularly varies with the temperature of isothermal hold-up. In the steel tempered after quenching two vanadium carbides of different content could co-exist simultaneously: carbide formed in the quenching process and carbide formed during tempering. The discovered effect of the temperature dependence of the MC content is, evidently, inherent also to other steels containing vanadium

  15. Direct multielement trace analyses of silicon carbide powders by spark ablation simultaneous inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Kiera, Arne F.; Schmidt-Lehr, Sebastian; Song, Ming; Bings, Nicolas H.; Broekaert, Jose A.C.

    2008-01-01

    A procedure for the direct analysis of silicon carbide powders (SiC) by simultaneous detection inductively coupled plasma optical emission spectrometry using a Spectro-CIROS TM spectrometer (CCD-ICP-OES) and a novel spark ablation system Spectro-SASSy (SA) as sample introduction technique is described. The sample preparation procedure for SA of non-conducting material is based on mixing the sample powders with a conducting matrix, in this case copper and briquetting pellets. Pressing time, pressure and mixing ratio are shown to be important parameters of the pelleting technique with respect to their mechanical stability for the reliability of the analysis results. A mixing ratio of 0.2 g +0.6 g for SiC and Cu, a pressure of 10 t cm -2 and a pressing time of 8 min have been found optimum. It has also been shown that the spark parameters selected are crucial for uniform volatilization. Electron probe micrographs of the burning spots and the analytical signal magnitude showed that a rather hard spark at 100 Hz was optimum. The determination of trace elements in silicon carbide powders is demonstrated using a calibration based on the addition of standard solutions. For Al, Ti, V, Mn and Fe detection limits in the lower μg g -1 range can be achieved. Internal standardization with Y in combination with the addition of standard solutions allows relative standard deviations in the range of 4 to 24% for concentration levels of the order of 3 to 350 μg g -1

  16. Direct multielement trace analyses of silicon carbide powders by spark ablation simultaneous inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kiera, Arne F.; Schmidt-Lehr, Sebastian; Song, Ming [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Bings, Nicolas H. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: bings@chemie.uni-hamburg.de; Broekaert, Jose A.C. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)

    2008-02-15

    A procedure for the direct analysis of silicon carbide powders (SiC) by simultaneous detection inductively coupled plasma optical emission spectrometry using a Spectro-CIROS{sup TM} spectrometer (CCD-ICP-OES) and a novel spark ablation system Spectro-SASSy (SA) as sample introduction technique is described. The sample preparation procedure for SA of non-conducting material is based on mixing the sample powders with a conducting matrix, in this case copper and briquetting pellets. Pressing time, pressure and mixing ratio are shown to be important parameters of the pelleting technique with respect to their mechanical stability for the reliability of the analysis results. A mixing ratio of 0.2 g +0.6 g for SiC and Cu, a pressure of 10 t cm{sup -2} and a pressing time of 8 min have been found optimum. It has also been shown that the spark parameters selected are crucial for uniform volatilization. Electron probe micrographs of the burning spots and the analytical signal magnitude showed that a rather hard spark at 100 Hz was optimum. The determination of trace elements in silicon carbide powders is demonstrated using a calibration based on the addition of standard solutions. For Al, Ti, V, Mn and Fe detection limits in the lower {mu}g g{sup -1} range can be achieved. Internal standardization with Y in combination with the addition of standard solutions allows relative standard deviations in the range of 4 to 24% for concentration levels of the order of 3 to 350 {mu}g g{sup -1}.

  17. Copper: From neurotransmission to neuroproteostasis

    Directory of Open Access Journals (Sweden)

    Carlos M Opazo

    2014-07-01

    Full Text Available Copper is critical for the Central Nervous System (CNS development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of AMPA receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (neuroproteostasis in the CNS with focus in the Ubiquitin Proteasome System, which is particularly relevant to neurological disorders such Alzheimer’s disease (AD where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.

  18. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    Science.gov (United States)

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  19. Copper Powder and Chemicals: edited proceedings of a seminar

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Various papers are presented covering the following topics: Status of Copper Chemical Industry in India, Copper Powder from Industrial Wastes, Manufacture of Copper Hydroxide and High Grade Cement Copper from Low Grade Copper Ore, Manufacture of Copper Sulphate as a By-Product, Hydrometallurgical Treatments of Copper Converter and Smelter Slage for Recovering Copper and other Non-Ferrous Metals, Recovery of Copper from Dilute Solutions, Use of Copper Compounds as Fungicides in India, Copper in Animal Husbandry, and Use of Copper Powder and Chemicals for Marine Applications. The keynote paper given at the Seminar was on Conservation of Copper for Better Use.

  20. GEN IV: Carbide Fuel Elaboration for the 'Futurix Concepts' experiment

    International Nuclear Information System (INIS)

    Vaudez, Stephane; Riglet-Martial, Chantal; Paret, Laurent; Abonneau, Eric

    2008-01-01

    In order to collect information on the behaviour of the future GFR (Gas Fast Reactor) fuel under fast neutron irradiation, an experimental irradiation program, called 'Futurix-concepts' has been launched at the CEA. The considered concept is a composite material made of a fissile fuel embedded in an inert ceramic matrix. Fissile fuel pellets are made of UPuN or UPuC while ceramics are SiC for the carbide fuel and TiN for the nitride fuel. This paper focuses on the description of the carbide composite fabrication. The UPuC pellets are manufactured using a metallurgical powder process. Fabrication and handling of the fuels are carried out in glove boxes under a nitrogen atmosphere. Carbide fuel is synthesized by carbo-thermic reduction under vacuum of a mixture of actinide oxide and graphitic carbon up to 1550 deg. C. After ball milling, the UPuC powder is pressed to create hexagonal or spherical compacts. They are then sintered up to 1750 deg. C in order to obtain a density of 85 % of the theoretical one. The sintered pellets are inserted into an inert and tight capsule of SiC. In order to control the gap between the fuel and the matrix precisely, the pellets are abraded. The inert matrix is then filled with the pellets and the whole system is sealed by a BRASiC R process at high temperature under a helium atmosphere. Fabrication of the sample to be irradiated was done in 2006 and the irradiation began in May 2007 in the Phenix reactor. This presentation will detail and discuss the results obtained during this fabrication phase. (authors)

  1. Irradiation and annealing of p-type silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor' eva, Maria V.; Lebedev, Sergey P. [A.F. Ioffe Physical-Technical Institute, St. Petersburg, 194021 (Russian Federation); Kozlovski, Vitaly V. [St. Petersburg State Polytechnic University, St. Petersburg, 195251 (Russian Federation)

    2014-02-21

    The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ≈ 1.5 × 10{sup 18} cm{sup −3} occurs at an irradiation dose of ∼1.1 × 10{sup 16} cm{sup −2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ≤1000°C. The conductivity is almost completely restored at T ≥ 1200°C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

  2. 21 CFR 73.1647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper. It...

  3. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, van den G.J.; de Goeij, J.J.M.; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendriks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (<1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  4. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  5. NID Copper Sample Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Zhu, Zihua

    2011-09-12

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

  6. In search of amorphization-resistant boron carbide

    International Nuclear Information System (INIS)

    Subhash, Ghatu; Awasthi, Amnaya P.; Kunka, Cody; Jannotti, Phillip; DeVries, Matthew

    2016-01-01

    Despite its superior mechanical properties, boron carbide suffers from amorphization, a pressure-induced phenomenon that disturbs crystalline order and likely reduces shear strength. Numerous experimental and computational studies have investigated the structure and origins of amorphization, yet strategies to mitigate this deleterious phenomenon elude. However, recent investigations have revealed three new research avenues for addressing this issue. First, we identify crystallographic cage spaces that may accommodate foreign atoms to potentially prevent structural collapse. Second, we propose polymorph-level tailoring through strict control of processing conditions. Finally, we demonstrate that reducing grain size to nanometer scale increases hardness and may counter amorphization.

  7. Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2012-01-01

    We report the reduction of transient drifts in the zero pressure offset voltage in silicon carbide (SiC) pressure sensors when operating at 600 C. The previously observed maximum drift of +/- 10 mV of the reference offset voltage at 600 C was reduced to within +/- 5 mV. The offset voltage drifts and bridge resistance changes over time at test temperature are explained in terms of the microstructure and phase changes occurring within the contact metallization, as analyzed by Auger electron spectroscopy and field emission scanning electron microscopy. The results have helped to identify the upper temperature reliable operational limit of this particular metallization scheme to be 605 C.

  8. Growth of Vanadium Carbide by Halide-Activated Pack Diffusion

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Dahl, Kristian Vinter

    The present work investigates growth of vanadium carbide (VC) layers by the pack diffusion method on a Vanadis 6 tool steel. The VC layers were produced by pack diffusion at 1000°C for 1, 4 and 16 hours. The VC layers were characterized with optical and electron microscopy, Vickers hardness tests...... and X-ray diffraction. Homogeneous VC mono-phase layers with Vickers hardness of more than 2400 HV were obtained. Hardening and tempering of the vanadized Vanadis 6 steel did not affect the VC layers....

  9. Joining of cemented carbides to steel by laser beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Barbatti, C.; Garcia, J.; Pyzalla, A. [Max-Planck-Institut fuer Eisenforschung GmbH, 40237 Duesseldorf (Germany); Liedl, G. [TU Wien, Institut fuer Umform- und Hochleistungslasertechnik (IFLT), 1040 Vienna (Austria)

    2007-11-15

    Welding of dissimilar materials such as steel and cemented carbides (hardmetals, cermets) is particularly challenging e.g. because mismatches in their thermal expansion coefficients and thermal conductivities result in residual stress formation and because of the formation of brittle intermetallic phases. Laser beam welding of cemented carbides to steel appears as an attractive complementary technique to conventional brazing processes due to its high precision, high process speed, low heat input and the option of welding without filler. Here a laser welding process including pre-heat treatment and post-heat treatment was applied successfully to joining as-sintered and nitrided hardmetals and cermets to low alloyed steel. The microstructure and mechanical properties of the welds are investigated by microscopy, X-ray diffraction, microhardness measurements, and bending tests. The results reveal that the three-step laser beam welding process produced crack-free and non-porous joints. Nitridation of the cemented carbides results in a significant reduction of the amount of brittle intermetallic phases. The mechanical properties of the joints are competitive to those of the conventional brazed steel-cemented carbide joints. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [German] Das Schweissen von ungleichartigen Werkstoffen wie z. B. Staehlen mit Hartmetallen und Cermets stellt eine erhebliche Herausforderung dar, u. a. infolge der unterschiedlichen thermischen Ausdehnungskoeffizienten und Waermeleitfaehigkeiten, welche die Bildung von Eigenspannungen zur Folge haben, sowie aufgrund der Bildung sproeder intermetallischer Phasen. Das Laserstrahlschweissen von Hartmetallen/Cermets mit Stahl erscheint als attraktives komplementaeres Verfahren zum ueblicherweise verwendeten Loeten, da es die Herstellung von Verbindungen mit hoeherer Praezision, hoeherer Geschwindigkeit sowie geringerem Waermeeintrag erlaubt und die Verwendung eines Zusatzwerkstoffs nicht notwendig ist

  10. Transition metal carbide nanocomposite and amorphous thin films

    OpenAIRE

    Tengstrand, Olof

    2014-01-01

    This thesis explores thin films of binary and ternary transition metal carbides, in the Nb-C, Ti-Si-C, Nb-Si-C, Zr-Si-C, and Nb-Ge-C systems. The electrical and mechanical properties of these systems are affected by their structure and here both nanocomposite and amorphous thin films are thus investigated. By appropriate choice of transition metal and composition the films can be designed to be multifunctional with a combination of properties, such as low electric resistivity, low contact res...

  11. Failure analysis of carbide fuels under transient overpower (TOP) conditions

    International Nuclear Information System (INIS)

    Nguyen, D.H.

    1980-06-01

    The failure of carbide fuels in the Fast Test Reactor (FTR) under Transient Overpower (TOP) conditions has been examined. The Beginning-of-Cycle Four (BOC-4) all-oxide base case, at $.50/sec ramp rate was selected as the reference case. A coupling between the advanced fuel performance code UNCLE-T and HCDA Code MELT-IIIA was necessary for the analysis. UNCLE-T was used to determine cladding failure and fuel preconditioning which served as initial conditions for MELT-III calculations. MELT-IIIA determined the time of molten fuel ejection from fuel pin

  12. Characterization of plastic and boron carbide additive manufactured neutron collimators

    Science.gov (United States)

    Stone, M. B.; Siddel, D. H.; Elliott, A. M.; Anderson, D.; Abernathy, D. L.

    2017-12-01

    Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.

  13. Properties of carbides and hard metals. Pt. 1

    International Nuclear Information System (INIS)

    Nazare, S.; Ondracek, G.

    1977-01-01

    Measurements of the electrical resistivity and of the Young modulus are reported for the carbides TiC, HfC, NbC, and TaC. The investigations included the solid solutions TiC-HfC, HfC-NbC, TaC-NbC, and TiC-NbC. For the solid solutions, measurements of the thermal expansion in the range 293-1173 K are also reported. All the samples were prepared by hot pressing of the commercial powders in graphite dies. The chemical composites are also presented. The measurement results are shown in figures. (GSC) [de

  14. Electrical and thermal transport properties of uranium and plutonium carbides

    International Nuclear Information System (INIS)

    Lewis, H.D.; Kerrisk, J.F.

    1976-09-01

    Contributions of many authors are outlined with respect to the experimental measurement methods used and characteristics of the sample materials. Discussions treat the qualitative effects of sample material composition; oxygen, nitrogen, and nickel concentrations; porosity; microstructural variations; and the variability in transport property values obtained by the various investigators. Temperature-dependent values are suggested for the electrical resistivities and thermal conductivities of selected carbide compositions based on a comparative evaluation of the available data and the effects of variation in the characteristics of sample materials

  15. Investigation of magnetism in aluminum-doped silicon carbide nanotubes

    Science.gov (United States)

    Behzad, Somayeh; Chegel, Raad

    2013-11-01

    The effect of aluminum doping on the structural, electronic and magnetic properties of (8,0) silicon carbide nanotube (SiCNT) is investigated using spin-polarized density functional theory. It is found from the calculation of the formation energies that aluminum substitution for silicon atom is preferred. Our results show that the magnetization depends on the substitutional site, aluminum substitution at silicon site does not introduce any spin-polarization, whereas the aluminum substitution for carbon atom yields a spin polarized, almost dispersionless π band within the original band gap.

  16. Kerma factors in interaction of neutrons with boron carbide

    International Nuclear Information System (INIS)

    Bondarenko, I.M.

    1979-01-01

    Heat generation in neutron interactions with boron carbide B 10 ; B 11 and 12 C is calculated. Kerma-factors (kerma-kinetic energy released in materials) were calculated for neutron energies between 10 -4 eV and 15 MeV. No major simplifying assumptions are introduced, and the accuracy of the calculated kerma-factors depends only on availability and accuracy of the basic nuclear data. The ENDF/B-4 data and recent experimental information are used for the calculation of kerma-factors. Plots of these kerma-factors are presented in units of eVxb/atom and wtxsec/(cmxn) as a function of neutron energy

  17. Boron carbide synthesis by carbothermic reduction of boron oxide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Paschoal, J.O.A.

    1988-01-01

    Boron carbide (B 4 C) is a ceramic material of technological applications due to its extreme hardness and high chemical as well as thermal stability. Some parameters of the process for obtaining B 4 C by carbothermic reduction of B 2 O 3 have been determined. The starting powders and the final products have been analysed by chemical, spectrographic and X-ray diffraction methods. The results show that the B 4 C obtained by the carbothermic reduction process is suitable for applications with a definite determination of the free carbon content. (author) [pt

  18. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-01-01

    Gallium and copper radionuclides have a long history of use in nuclear medicine. Table 1 presents the nuclear properties of several gallium and copper isotopes that either are used in the routine practice of clinical nuclear medicine or exhibit particular characteristics that might make them useful in diagnostic or therapeutic medicine. This paper will provide some historic perspective along with an overview of some current research directions in gallium and copper radiopharmaceutical chemistry. A more extensive review of gallium radiopharmaceutical chemistry has recently appeared and can be consulted for a more in-depth treatment of this topic

  19. Copper complexes as 'radiation recovery' agents

    International Nuclear Information System (INIS)

    Sorenson, J.R.J.

    1989-01-01

    Copper and its compounds have been used for their remedial effects since the beginning of recorded history. As early as 3000 BC the Egyptians used copper as an antiseptic for healing wounds and to sterilise drinking water; and later, ca 1550 BC, the Ebers Papyrus reports the use of copper acetate, copper sulphate and pulverised metallic copper for the treatment of eye infections. These historical uses of copper and its compounds are particularly interesting in the light of modern evidence concerning the use of certain copper complexes for the treatment of radiation sickness and more recently as an adjunct to radiotherapy for cancer patients. (author)

  20. Survey of post-irradiation examinations made of mixed carbide fuels

    International Nuclear Information System (INIS)

    Coquerelle, M.

    1997-01-01

    Post-irradiation examinations on mixed carbide, nitride and carbonitride fuels irradiated in fast flux reactors Rapsodie and DFR were carried out during the seventies and early eighties. In this report, emphasis was put on the fission gas release, cladding carburization and head-end gaseous oxidation process of these fuels, in particular, of mixed carbides. (author). 8 refs, 16 figs, 3 tabs

  1. Method of enhanced lithiation of doped silicon carbide via high temperature annealing in an inert atmosphere

    Science.gov (United States)

    Hersam, Mark C.; Lipson, Albert L.; Bandyopadhyay, Sudeshna; Karmel, Hunter J; Bedzyk, Michael J

    2014-05-27

    A method for enhancing the lithium-ion capacity of a doped silicon carbide is disclosed. The method utilizes heat treating the silicon carbide in an inert atmosphere. Also disclosed are anodes for lithium-ion batteries prepared by the method.

  2. Natural precursor based hydrothermal synthesis of sodium carbide for reactor applications

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Sebastian, Riya; Ambadas, G.; Sankararaman, S.

    2017-12-01

    Carbides are a class of materials with high mechanical strength and refractory nature which finds a wide range of applications in industries and nuclear reactors. The existing synthesis methods of all types of carbides have problems in terms of use of toxic chemical precursors, high-cost, etc. Sodium carbide (Na2C2) which is an alkali metal carbide is the least explored one and also that there is no report of low-cost and low-temperature synthesis of sodium carbide using the eco-friendly, easily available natural precursors. In the present work, we report a simple low-cost, non-toxic hydrothermal synthesis of refractory sodium carbide using the natural precursor—Pandanus. The formation of sodium carbide along with boron carbide is evidenced by the structural and morphological characterizations. The sample thus synthesized is subjected to field emission scanning electron microscopy (FESEM), x-ray powder diffraction (XRD), ultraviolet (UV)—visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, and photoluminescent (PL) spectroscopic techniques.

  3. Advanced technologies of production of cemented carbides and composite materials based on them

    International Nuclear Information System (INIS)

    Bondarenko, V.; Pavlotskaya, E.; Martynova, L.; Epik, I.

    2001-01-01

    The paper presents new technological processes of production of W, WC and (Ti, W)C powders, cemented carbides having a controlled carbon content, high-strength nonmagnetic nickel-bonded cemented carbides, cemented carbide-based composites having a wear-resistant antifriction working layer as well as processes of regeneration of cemented carbide waste. It is shown that these technological processes permit radical changes in the production of carbide powders and products of VK, TK, VN and KKhN cemented carbides. The processes of cemented carbide production become ecologically acceptable and free of carbon black, the use of cumbersome mixers is excluded, the power expenditure is reduced and the efficiency of labor increases. It becomes possible to control precisely the carbon content within a two-phase region -carbide-metal. A high wear resistance of parts of friction couples which are lubricated with water, benzine, kerosene, diesel fuel and other low-viscosity liquids, is ensured with increased strength and shock resistance. (author)

  4. Characterisation of nuclear dispersion fuels. The non-destructive examination of silicon carbide by selenium immersion

    Energy Technology Data Exchange (ETDEWEB)

    Ambler, J.F.R.; Ferguson, I.F.

    1974-07-15

    The non-destructive microscopic examination of silicon-carbide-coated spheres containing uranium carbide, which involves immersing the coated spheres in selenium, is particularly suited for the examination of flaws in the coats but it is not possible to measure coating thicknesses by this method. Some coats are found to be opaque and this is related to their porosity. (auth)

  5. Three-dimensional studies of intergranular carbides in austenitic stainless steel.

    Science.gov (United States)

    Ochi, Minoru; Kawano, Rika; Maeda, Takuya; Sato, Yukio; Teranishi, Ryo; Hara, Toru; Kikuchi, Masao; Kaneko, Kenji

    2017-04-01

    A large number of morphological studies of intergranular carbides in steels have always been carried out in two dimensions without considering their dispersion manners. In this article, focused ion beam serial-sectioning tomography was carried out to study the correlation among the grain boundary characteristics, the morphologies and the dispersions of intergranular carbides in 347 austenitic stainless steel. More than hundred intergranular carbides were characterized in three dimensions and finally classified into three different types, two types of carbides probably semi-coherent to one of the neighboring grains with plate-type morphology, and one type of carbides incoherent to both grains with rod-type morphology. In addition, the rod-type carbide was found as the largest number of carbides among three types. Since large numbers of defects, such as misfit dislocations, may be present at the grain boundaries, which can be ideal nucleation sites for intergranular rod-type carbide precipitation. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved.For permissions, please e-mail: journals.permissions@oup.com.

  6. Evidence for multiple polytypes of semiconducting boron carbide (C2B10) from electronic structure

    International Nuclear Information System (INIS)

    Lunca-Popa, Petru; Brand, J I; Balaz, Snjezana; Rosa, Luis G; Boag, N M; Bai Mengjun; Robertson, B W; Dowben, P A

    2005-01-01

    Boron carbides fabricated via plasma enhanced chemical vapour deposition from different isomeric source compounds with the same C 2 B 10 H 12 closo-icosahedral structure result in materials with very different direct (optical) band gaps. This provides compelling evidence for the existence of multiple polytypes of C 2 B 10 boron carbide and is consistent with electron diffraction results

  7. Effect of carbides on the creep properties of a Ni-base superalloy M963

    International Nuclear Information System (INIS)

    He, L.Z.; Zheng, Q.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.; Tieu, A.K.; Lu, C.; Zhu, H.T.

    2005-01-01

    Effect of carbides on the creep properties of a cast Ni-base superalloy M963 tested at 800 and 900 deg. C over a broad stress range has been investigated. Correlation between the carbides and creep properties of the alloy is enabled through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). During high temperature creep tests, the primary MC carbide decomposes sluggishly and a large amount of secondary carbides precipitate. The cubic and acicular M 6 C carbide precipitates at the dendritic core region. Extremely fine chromium-rich M 23 C 6 carbide precipitates preferentially at grain boundaries. The M 6 C and M 23 C 6 carbides are found to be beneficial to the creep properties of the alloy. At lower temperature (800 deg. C), the interface of MC carbide with matrix is one of the principal sites for crack initiation. At higher temperature (900 deg. C), the oxidation and the precipitation of μ phase are the main factors for significant loss in creep strength of the alloy

  8. Catalytic activity of metall-like carbides in carbon oxide oxidation reaction

    International Nuclear Information System (INIS)

    Kharlamov, A.I.; Kosolapova, T.Ya.; Rafal, A.N.; Kirillova, N.V.

    1980-01-01

    Kinetics of carbon oxide oxidation upon carbides of hafnium, niobium, tantalum, molybdenum, zirconium and chromium is studied. Probable mechanism of the catalysts action is suggested. The established character of the change of the carbide catalytic activity is explained by the change of d-electron contribution to the metal-metal interaction

  9. Carbide Transformation in Haynes 230 during Long-term Exposure at High Temperature

    International Nuclear Information System (INIS)

    Lee, Ho Jung; Kim, Hyunmyung; Hong, Sunghoon; Jang, Changheui

    2014-01-01

    Long-term aging behaviors of a solid solution hardened Ni-base superalloy, Haynes 230 at high temperature have not been fully investigated yet. In this study, long-term aging tests of Haynes 230 was carried out to evaluate microstructure changes especially in carbide evolution. In addition, its consequential effects on tensile property such as tensile strength and elongation were discussed. In Haynes 230, a nucleation of the secondary carbides was dominant at 800 .deg. C ageing while growth at 900 .deg. C ageing. In addition, after aging at 800 .deg. C, transition of primary W-rich M 6 C carbides (break down) were observed and it showed high W content (up to 70 at.% W) compared to un-aged W-rich M 6 C carbides (around 30 at.% W). Coarsened Cr- and Ni-rich phase surrounded by carbide depleted region and high W-rich M 6 C carbide along the grain boundary were formed only at 900 .deg. C after long-term exposure above 10000 h. Tensile strength of aged Haynes 230 increased at 800 .deg. C while decreased at 900 .deg. C due to the formation of secondary carbide within the grains at 800 .deg. C. Decrease in elongation would be resulted from the coarsened and continuous carbides at the grain boundary as well as Cr- and Ni-rich phase along the grain boundary

  10. Microstructural evaluation of the NbC-20Ni cemented carbides during sintering

    International Nuclear Information System (INIS)

    Rodrigues, D.; Cannizza, E.

    2016-01-01

    Full text: Fine carbides in a metallic matrix (binder) form the microstructure of the cemented carbides. Grain size and binder content are the main variables to adjust hardness and toughness. These products are produced by Powder Metallurgy, and traditional route involves mixing carbides with binder by high energy milling, pressing and sintering. During sintering, a liquid phase promotes densification, and a final relative density higher than 99% is expected. Sintering is carried out at high temperatures, and dissolution of the carbides changes the chemical composition of the binder. To control grain growth of the main carbide, which reduces hardness, small quantities of secondary carbides are used. These additives limit dissolution and precipitation of the main carbides reducing the final grain size. This paper focused the structural and chemical evolution during sintering using NbC-20Ni cermets. Mixtures of very fine NbC carbides and carbonyl Ni powders were produce by intense milling. These mixtures were pressed using uniaxial pressures from 50 to 200MPa. Shrinkage was evaluated using dilatometric measurements under an atmosphere of dynamic argon. Samples were also sintered under vacuum in high temperature industrial furnace. The sintered samples were characterized in terms of density hardness, toughness and microstructure. DRX was the main tool used to evaluate the structural evolution of the binder. In situ chemical analysis helped to understand the dissolution mechanisms. (author)

  11. Structure-performance relations of molybdenum- and tungsten carbide catalysts for deoxygenation

    NARCIS (Netherlands)

    Stellwagen, D.R.; Bitter, J.H.

    2015-01-01

    This work demonstrates for the first time that carbide particle size is a critical factor for the activity and stability of carbon supported tungsten- and molybdenum carbide catalysts in (hydro-)deoxygenation reactions. The stability of the catalyst was shown to increase for larger particles due to

  12. Square lattice honeycomb tri-carbide fuels for 50 to 250 KN variable thrust NTP design

    International Nuclear Information System (INIS)

    Anghaie, Samim; Knight, Travis; Gouw, Reza; Furman, Eric

    2001-01-01

    Ultrahigh temperature solid solution of tri-carbide fuels are used to design an ultracompact nuclear thermal rocket generating 950 seconds of specific impulse with scalable thrust level in range of 50 to 250 kilo Newtons. Solid solutions of tri-carbide nuclear fuels such as uranium-zirconium-niobium carbide. UZrNbC, are processed to contain certain mixing ratio between uranium carbide and two stabilizing carbides. Zirconium or niobium in the tri-carbide could be replaced by tantalum or hafnium to provide higher chemical stability in hot hydrogen environment or to provide different nuclear design characteristics. Recent studies have demonstrated the chemical compatibility of tri-carbide fuels with hydrogen propellant for a few to tens of hours of operation at temperatures ranging from 2800 K to 3300 K, respectively. Fuel elements are fabricated from thin tri-carbide wafers that are grooved and locked into a square-lattice honeycomb (SLHC) shape. The hockey puck shaped SLHC fuel elements are stacked up in a grooved graphite tube to form a SLHC fuel assembly. A total of 18 fuel assemblies are arranged circumferentially to form two concentric rings of fuel assemblies with zirconium hydride filling the space between assemblies. For 50 to 250 kilo Newtons thrust operations, the reactor diameter and length including reflectors are 57 cm and 60 cm, respectively. Results of the nuclear design and thermal fluid analyses of the SLHC nuclear thermal propulsion system are presented

  13. Effect of carbide precipitation on the corrosion behavior of Inconel alloy 690

    International Nuclear Information System (INIS)

    Sarver, J.M.; Crum, J.R.; Mankins, W.L.

    1987-01-01

    Intergranular carbide precipitation reactions have been shown to affect the stress corrosion cracking (SCC) resistance of nickel-chromium-iron alloys in environments relative to nuclear steam generators. Carbon solubility curves, time-temperature-sensitization plots and other carbide precipitation data are presented for alloy 690 as an aid in developing heat treatments for improved SCC resistance

  14. Present status of uranium-plutonium mixed carbide fuel development for LMFBRs

    International Nuclear Information System (INIS)

    Handa, Muneo; Suzuki, Yasufumi

    1984-01-01

    The feature of carbide fuel is that it has the doubling time as short as about 13 years, that is, close to one half as compared with oxide fuel. The development of the carbide fuel in the past 10 years has been started in amazement. Especially in the program of new fuel development in USA started in 1974, He and Na bond fuel attained the burnup of 16 a/o without causing the breaking of cladding tubes. In 1984, the irradiation of the assembly composed of 91 fuel pins in the FFTF is expected. On the other hand in Japan, the fuel research laboratory was constructed in 1974 in the Oarai Laboratory, Japan Atomic Energy Research Institute, to carry out the studies on carbide fuel. In the autumn of 1982, two carbide fuel pins with different chemical composition have been successfully made. Accordingly, the recent status of the development is explained. The uranium-plutonium mixed carbide fuel is suitable to liquid metal-cooled fast breeder reactors because of large heat conductivity and the high density of nuclear fission substances. The thermal and nuclear characteristics of carbide fuel, the features of the reactor core using carbide fuel, the chemical and mechanical interaction of fuel and cladding tubes, the selection of bond materials, the manufacturing techniques for the fuel, the development of the analysis code for fuel behavior, and the research and development of carbide fuel in Japan are described. (Kako, I.)

  15. Synthesis of nanoparticles of vanadium carbide in the ferrite of nodular cast iron

    CERN Document Server

    Fras, E; Guzik, E; Lopez, H

    2005-01-01

    The synthesis method of nanoparticles of vanadium carbide in nodular cast iron is presented. After introduction of this method, the nanoparticles with 10-70 nm of diameter was obtained in the ferrite. The diffraction investigations confirmed that these particles are vanadium carbides of type V/sub 3/C/sub 4/.

  16. Influence of structures on fracture and fracture toughness of cemented tungsten carbides

    International Nuclear Information System (INIS)

    Zhao, W.; Zhang, X.

    1987-01-01

    A study was made of the influence of structures on fracture and fracture toughness of cemented tungsten carbides with different compositions and grain sizes. The measurement of the fracture toughness of cemented tungsten carbide was carried out using single edge notched beam. The microstructural parameters and the proportion for each fracture mode on the fracture surface were obtained. The brittle fracture of the alloy is mainly due to the interfacial decohesion fracture following the interface of the carbide crystals. It has been observed that there are localized fractures region ahead of the crack tip. The morphology of the crack propagation path as well as the slip structure in the cobalt phase of the deformed region have been investigated. In addition, a study of the correlation between the plane strain fracture toughness and microstructural parameters, such as mean free path of the cobalt phase, tungsten carbide grain size and the contiguity of tungsten carbide crystals was also made

  17. Characterization of Transition Metal Carbide Layers Synthesized by Thermo-reactive Diffusion Processes

    DEFF Research Database (Denmark)

    Laursen, Mads Brink; Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin

    2015-01-01

    . In this study halide-activated pack cementation techniques were used on tool steel Vanadis 6 and martensitic stainless steel AISI 420 in order to produce hard layers of titanium carbide (TiC), vanadium carbide (V8C7) and chromium carbides (Cr23C6 and Cr7C3). Surface layers were characterized by scanning......Hard wear resistant surface layers of transition metal carbides can be produced by thermo-reactive diffusion processes where interstitial elements from a steel substrate together with external sources of transition metals (Ti, V, Cr etc.) form hard carbide and/or nitride layers at the steel surface...... electron microscopy, X-ray diffraction and Vickers hardness testing. The study shows that porosityfree, homogenous and very hard surface layers can be produced by thermo-reactive diffusion processes. The carbon availability of the substrate influences thickness of obtained layers, as Vanadis 6 tool steel...

  18. Diamond dispersed cemented carbide produced without using ultra high pressure equipment

    International Nuclear Information System (INIS)

    Moriguchi, H.; Tsuzuki, K.; Ikegaya, A.

    2001-01-01

    We have developed a composite material of dispersed diamond particles in cemented carbide without using ultra high pressure equipment. The developed diamond dispersed cemented carbide combines the excellent properties of cemented carbide with diamond and also provides 1.5 times improved fracture toughness over that of cemented carbide. They also show 10 times higher wear resistance over that of cemented carbide in a wear resistance test against bearing steel, and 5 times greater grindability than diamond compacts. Because ultra high pressure equipment is not used to produce the developed material, large compacts over 100 mm in diameter can be manufactured. The developed material showed 10-25 times higher wear resistance in real use as wear-resistant tools such as centerless blades and work-rests. (author)

  19. TEM investigation of aluminium containing precipitates in high aluminium doped silicon carbide

    International Nuclear Information System (INIS)

    Wong-Leung, J.; FitzGerald, J.D.

    2002-01-01

    Full text: Silicon carbide is a promising semiconductor material for applications in high temperature and high power devices. The successful growth of good quality epilayers in this material has enhanced its potential for device applications. As a novel semiconductor material, there is a need for studying its basic physical properties and the role of dopants in this material. In this study, silicon carbide epilayers were grown on 4H-SiC wafers of (0001) orientation with a miscut angle of 8 deg at a temperature of 1550 deg C. The epilayers contained regions of high aluminium doping well above the solubility of aluminium in silicon carbide. High temperature annealing of this material resulted in the precipitation of aluminium in the wafers. The samples were analysed by secondary ion mass spectrometry and transmission electron microscopy. Selected area diffraction studies show the presence of aluminium carbide and aluminium silicon carbide phases. Copyright (2002) Australian Society for Electron Microscopy Inc

  20. The effects of carbide column to swelling potential and Atterberg limit on expansive soil with column to soil drainage

    Science.gov (United States)

    Muamar Rifa'i, Alfian; Setiawan, Bambang; Djarwanti, Noegroho

    2017-12-01

    The expansive soil is soil that has a potential for swelling-shrinking due to changes in water content. Such behavior can exert enough force on building above to cause damage. The use of columns filled with additives such as Calcium Carbide is done to reduce the negative impact of expansive soil behavior. This study aims to determine the effect of carbide columns on expansive soil. Observations were made on swelling and spreading of carbides in the soil. 7 Carbide columns with 5 cm diameter and 20 cm height were installed into the soil with an inter-column spacing of 8.75 cm. Wetting is done through a pipe at the center of the carbide column for 20 days. Observations were conducted on expansive soil without carbide columns and expansive soil with carbide columns. The results showed that the addition of carbide column could reduce the percentage of swelling by 4.42%. Wetting through the center of the carbide column can help spread the carbide into the soil. The use of carbide columns can also decrease the rate of soil expansivity. After the addition of carbide column, the plasticity index value decreased from 71.76% to 4.3% and the shrinkage index decreased from 95.72% to 9.2%.

  1. Copper tailings in stucco mortars

    Directory of Open Access Journals (Sweden)

    Osvaldo Pavez

    Full Text Available Abstract This investigation addressed the evaluation of the use of copper tailings in the construction industry in order to reduce the impact on the environment. The evaluation was performed by a technical comparison between stucco mortars prepared with crushed conventional sand and with copper tailings sand. The best results were achieved with the stucco mortars containing tailings. The tailings presented a fine particles size distribution curve different from that suggested by the standard. The values of compressive strength, retentivity, and adherence in the stucco mortars prepared with copper tailings were much higher than those obtained with crushed sand. According to the results from this study, it can be concluded that the preparation of stucco mortars using copper tailings replacing conventional sand is a technically feasible alternative for the construction industry, presenting the benefit of mitigating the impact of disposal to the environment.

  2. A comparative study of the constitutive models for silicon carbide

    Science.gov (United States)

    Ding, Jow-Lian; Dwivedi, Sunil; Gupta, Yogendra

    2001-06-01

    Most of the constitutive models for polycrystalline silicon carbide were developed and evaluated using data from either normal plate impact or Hopkinson bar experiments. At ISP, extensive efforts have been made to gain detailed insight into the shocked state of the silicon carbide (SiC) using innovative experimental methods, viz., lateral stress measurements, in-material unloading measurements, and combined compression shear experiments. The data obtained from these experiments provide some unique information for both developing and evaluating material models. In this study, these data for SiC were first used to evaluate some of the existing models to identify their strength and possible deficiencies. Motivated by both the results of this comparative study and the experimental observations, an improved phenomenological model was developed. The model incorporates pressure dependence of strength, rate sensitivity, damage evolution under both tension and compression, pressure confinement effect on damage evolution, stiffness degradation due to damage, and pressure dependence of stiffness. The model developments are able to capture most of the material features observed experimentally, but more work is needed to better match the experimental data quantitatively.

  3. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    Science.gov (United States)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  4. Pressure cycling induced modification of a cemented carbide

    International Nuclear Information System (INIS)

    Beste, U.; Engqvist, H.; Jacobson, S.

    2001-01-01

    The wear of cemented carbide rock drill buttons is due to a complex mixture of mechanisms. One important of such mechanism is the surface fatigue that occurs due to the percussive conditions of rock drilling. To isolate the effects of this mechanism, a mechanical pressure cycling test has been performed on a cemented carbide with 11 % Co and 2 μm WC grain size. The test was ended after 60000 pressure cycles. No signs of fatigue crack nucleation were found. The changes in hardness, fracture toughness, erosion resistance, magnetical coercivity and thermal shock resistance were measured. The microstructure of the sample was investigated with x-ray diffraction, plus scanning and transmission electron microscopy. The fracture toughness decreased 14 % due to the pressure cycling while the hardness did not change. In addition, the thermal shock resistance and the erosion resistance decreased. The magnetical coercivity increased 90 % indicating significant phase transformations or high defect density in the Co binder phase. The TEM revealed no deformation of the WC phase, but important alterations of the Co phase. The Co phase was transformed from fcc into a new unidentified phase, characterized by atomic inter planar distance present in fcc and hcp plus an unfamiliar distance of 2.35 Aa. This phase is suggested to be due to a more complex stacking sequence of the close-packed planes than in hcp or fcc. (author)

  5. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon

    Science.gov (United States)

    Pradeepkumar, Aiswarya; Zielinski, Marcin; Bosi, Matteo; Verzellesi, Giovanni; Gaskill, D. Kurt; Iacopi, Francesca

    2018-06-01

    Heteroepitaxial 3C-SiC films on silicon substrates are of technological interest as enablers to integrate the excellent electrical, electronic, mechanical, thermal, and epitaxial properties of bulk silicon carbide into well-established silicon technologies. One critical bottleneck of this integration is the establishment of a stable and reliable electronic junction at the heteroepitaxial interface of the n-type SiC with the silicon substrate. We have thus investigated in detail the electrical and transport properties of heteroepitaxial cubic silicon carbide films grown via different methods on low-doped and high-resistivity silicon substrates by using van der Pauw Hall and transfer length measurements as test vehicles. We have found that Si and C intermixing upon or after growth, particularly by the diffusion of carbon into the silicon matrix, creates extensive interstitial carbon traps and hampers the formation of a stable rectifying or insulating junction at the SiC/Si interface. Although a reliable p-n junction may not be realistic in the SiC/Si system, we can achieve, from a point of view of the electrical isolation of in-plane SiC structures, leakage suppression through the substrate by using a high-resistivity silicon substrate coupled with deep recess etching in between the SiC structures.

  6. Hydrogen chemisorption and oxidation of transition metal carbides

    International Nuclear Information System (INIS)

    Bethin, J.R.

    1979-01-01

    A study was made of the catalytic activity of WC, focusing on the possible influence of point defects. The chemisorption of H on WC and titanium oxycarbides was studied with differential scanning calorimetry. The catalytic activity of these materials for oxidation of H was determined by potentiostatic steady-state and potentiodynamic measurements in acid electrolyte. Compositions of WC surfaces were determined by x-ray photoemission and related to the catalytic behavior. Titanium oxycarbide surfaces were analyzed by Auger electron spectroscopy. Of the carbides tested only one WC preparation was able to chemisorb H. Both WC powders investigated catalyzed H oxidation with similar specific activities. Spectroscopic studies showed that the active surface of WC was a mixture of WO 3 and a carbon-deficient WC phase. This result indicates that carbon vacancies are the active sites in tungsten carbide. Theoretical models of a carbon vacancy surrounded by metal atoms suggested by calculations by other workers support this assignment and identify the important role of the W6s level. The measured value of the heat of chemisorption is consistent with the proposed model

  7. Ion beam figuring of CVD silicon carbide mirrors

    Science.gov (United States)

    Gailly, P.; Collette, J.-P.; Fleury Frenette, K.; Jamar, C.

    2017-11-01

    Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.

  8. Chromium carbide-CNT nanocomposites with enhanced mechanical properties

    International Nuclear Information System (INIS)

    Singh, Virendra; Diaz, Rene; Balani, Kantesh; Agarwal, Arvind; Seal, Sudipta

    2009-01-01

    Chromium carbide is widely used as a tribological coating material in high-temperature applications requiring high wear resistance and hardness. Herein, an attempt has been made to further enhance the mechanical and wear properties of chromium carbide coatings by reinforcing carbon nanotubes (CNTs) as a potential replacement of soft binder matrix using plasma spraying. The microstructures of the sprayed CNT-reinforced Cr 3 C 2 coatings were characterized using transmission electron microscopy and scanning electron microscopy. The mechanical properties were assessed using micro-Vickers hardness, nanoindentation and wear measurements. CNT reinforcement improved the hardness of the coating by 40% and decreased the wear rate of the coating by almost 45-50%. Cr 3 C 2 reinforced with 2 wt.% CNT had an elastic modulus 304.5 ± 29.2 GPa, hardness of 1175 ± 60 VH 0.300 and a coefficient of friction of 0.654. It was concluded that the CNT reinforcement increased the wear resistance by forming intersplat bridges while the improvement in the hardness was attributed to the deformation resistance of CNTs under indentation

  9. Low-temperature synthesis of silicon carbide powder using shungite

    International Nuclear Information System (INIS)

    Gubernat, A.; Pichor, W.; Lach, R.; Zientara, D.; Sitarz, M.; Springwald, M.

    2017-01-01

    The paper presents the results of investigation the novel and simple method of synthesis of silicon carbide. As raw material for synthesis was used shungite, natural mineral rich in carbon and silica. The synthesis of SiC is possible in relatively low temperature in range 1500–1600°C. It is worth emphasising that compared to the most popular method of SiC synthesis (Acheson method where the temperature of synthesis is about 2500°C) the proposed method is much more effective. The basic properties of products obtained from different form of shungite and in wide range of synthesis temperature were investigated. The process of silicon carbide formation was proposed and discussed. In the case of synthesis SiC from powder of raw materials the product is also in powder form and not requires any additional process (crushing, milling, etc.). Obtained products are pure and after grain classification may be used as abrasive and polishing powders. (Author)

  10. Cemented carbide cutting tool: Laser processing and thermal stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S. [Mechanical Engineering Department, KFUPM, Box 1913, Dhahran 31261 (Saudi Arabia)]. E-mail: bsyilbas@kfupm.edu.sa; Arif, A.F.M. [Mechanical Engineering Department, KFUPM, Box 1913, Dhahran 31261 (Saudi Arabia); Karatas, C. [Engineering Faculty, Hacettepe University, Ankara (Turkey); Ahsan, M. [Mechanical Engineering Department, KFUPM, Box 1913, Dhahran 31261 (Saudi Arabia)

    2007-04-15

    Laser treatment of cemented carbide tool surface consisting of W, C, TiC, TaC is examined and thermal stress developed due to temperature gradients in the laser treated region is predicted numerically. Temperature rise in the substrate material is computed numerically using the Fourier heating model. Experiment is carried out to treat the tool surfaces using a CO{sub 2} laser while SEM, XRD and EDS are carried out for morphological and structural characterization of the treated surface. Laser parameters were selected include the laser output power, duty cycle, assisting gas pressure, scanning speed, and nominal focus setting of the focusing lens. It is found that temperature gradient attains significantly high values below the surface particularly for titanium and tantalum carbides, which in turn, results in high thermal stress generation in this region. SEM examination of laser treated surface and its cross section reveals that crack initiation below the surface occurs and crack extends over the depth of the laser treated region.

  11. Electron microscopy study of radiation effects in boron carbide

    International Nuclear Information System (INIS)

    Stoto, T.

    1987-03-01

    Boron carbide is a disordered non-stoechiometric material with a strongly microtwinned polycristallyne microstructure. This ceramic is among the candidate materials for the first wall coating in fusion reactor and is used as a neutron absorber in the control rods of fast breeder reactors. The present work deals with the nature of radiation damage in this solid. Because of helium internal production, neutron irradiated boron carbide is affected by swelling and by a strong microcracking which can break up a pellet in fine powder. These processes are rather intensitive to the irradiation parameters (temperature, flux and even neutron spectrum). Transmission electron microscopy of samples irradiated by the fast neutrons of a reactor, the electrons of a high voltage electron microscope and of samples implanted with helium ions was used to understand the respective roles of helium and point defects in the processes of swelling and microcracking. The design of an irradiation chamber for helium implantation at controlled temperature from 600 to 1700 0 C was an important technical part of this work [fr

  12. Stress envelope of silicon carbide composites at elevated temperatures

    International Nuclear Information System (INIS)

    Nozawa, Takashi; Kim, Sunghun; Ozawa, Kazumi; Tanigawa, Hiroyasu

    2014-01-01

    To identify a comprehensive stress envelope, i.e., strength anisotropy map, of silicon carbide fiber-reinforced silicon carbide matrix composite (SiC/SiC composite) for practical component design, tensile and compressive tests were conducted using the small specimen test technique specifically tailored for high-temperature use. In-plane shear properties were, however, estimated using the off-axial tensile method and assuming that the mixed mode failure criterion, i.e., Tsai–Wu criterion, is valid for the composites. The preliminary test results indicate no significant degradation to either proportional limit stress (PLS) or fracture strength by tensile loading at temperatures below 1000 °C. A similarly good tolerance of compressive properties was identified at elevated temperatures, except for a slight degradation in PLS. With the high-temperature test data of tensile, compressive and in-plane shear properties, the stress envelopes at elevated temperatures were finally obtained. A slight reduction in the design limit was obvious at elevated temperatures when the compressive mode is dominant, whereas a negligibly small impact on the design is expected by considering the tensile loading case

  13. Stress envelope of silicon carbide composites at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, Takashi, E-mail: nozawa.takashi67@jaea.go.jp [Japan Atomic Energy Agency, 2-166 Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Kim, Sunghun [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Ozawa, Kazumi; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166 Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2014-10-15

    To identify a comprehensive stress envelope, i.e., strength anisotropy map, of silicon carbide fiber-reinforced silicon carbide matrix composite (SiC/SiC composite) for practical component design, tensile and compressive tests were conducted using the small specimen test technique specifically tailored for high-temperature use. In-plane shear properties were, however, estimated using the off-axial tensile method and assuming that the mixed mode failure criterion, i.e., Tsai–Wu criterion, is valid for the composites. The preliminary test results indicate no significant degradation to either proportional limit stress (PLS) or fracture strength by tensile loading at temperatures below 1000 °C. A similarly good tolerance of compressive properties was identified at elevated temperatures, except for a slight degradation in PLS. With the high-temperature test data of tensile, compressive and in-plane shear properties, the stress envelopes at elevated temperatures were finally obtained. A slight reduction in the design limit was obvious at elevated temperatures when the compressive mode is dominant, whereas a negligibly small impact on the design is expected by considering the tensile loading case.

  14. Low-temperature synthesis of silicon carbide powder using shungite

    Energy Technology Data Exchange (ETDEWEB)

    Gubernat, A.; Pichor, W.; Lach, R.; Zientara, D.; Sitarz, M.; Springwald, M.

    2017-07-01

    The paper presents the results of investigation the novel and simple method of synthesis of silicon carbide. As raw material for synthesis was used shungite, natural mineral rich in carbon and silica. The synthesis of SiC is possible in relatively low temperature in range 1500–1600°C. It is worth emphasising that compared to the most popular method of SiC synthesis (Acheson method where the temperature of synthesis is about 2500°C) the proposed method is much more effective. The basic properties of products obtained from different form of shungite and in wide range of synthesis temperature were investigated. The process of silicon carbide formation was proposed and discussed. In the case of synthesis SiC from powder of raw materials the product is also in powder form and not requires any additional process (crushing, milling, etc.). Obtained products are pure and after grain classification may be used as abrasive and polishing powders. (Author)

  15. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  16. Detonation Synthesis of Alpha-Variant Silicon Carbide

    Science.gov (United States)

    Langenderfer, Martin; Johnson, Catherine; Fahrenholtz, William; Mochalin, Vadym

    2017-06-01

    A recent research study has been undertaken to develop facilities for conducting detonation synthesis of nanomaterials. This process involves a familiar technique that has been utilized for the industrial synthesis of nanodiamonds. Developments through this study have allowed for experimentation with the concept of modifying explosive compositions to induce synthesis of new nanomaterials. Initial experimentation has been conducted with the end goal being synthesis of alpha variant silicon carbide (α-SiC) in the nano-scale. The α-SiC that can be produced through detonation synthesis methods is critical to the ceramics industry because of a number of unique properties of the material. Conventional synthesis of α-SiC results in formation of crystals greater than 100 nm in diameter, outside nano-scale. It has been theorized that the high temperature and pressure of an explosive detonation can be used for the formation of α-SiC in the sub 100 nm range. This paper will discuss in detail the process development for detonation nanomaterial synthesis facilities, optimization of explosive charge parameters to maximize nanomaterial yield, and introduction of silicon to the detonation reaction environment to achieve first synthesis of nano-sized alpha variant silicon carbide.

  17. The copper deposits of Michigan

    Science.gov (United States)

    Butler, B.S.; Burbank, W.S.

    1929-01-01

    The copper district of Keweenaw Point, in the northern peninsula of Michigan, is the second largest producer of copper in the world.  The output of the district since 1845 has been more than 7,500,000,000 pounds and showed a rather steady and consistent increase from the beginning of production to the end of the World War in 1918, since which there has been a marked decrease.

  18. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  19. Atmospheric corrosion effects on copper

    International Nuclear Information System (INIS)

    Franey, J.P.

    1985-01-01

    Studies have been performed on the naturally formed patina on various copper samples. Samples have been obtained from structures at AT and T Bell Laboratories, Murray Hill, NJ (40,2,1 and <1 yr) and the Statue of Liberty (100 yr). The samples show a distinct layering effect, that is, the copper base material shows separate oxide and basic sulfate layers on all samples, indicating that patina is not a homogeneous mixture of oxides and basic sulfates

  20. Chronic copper poisoning in lambs

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D B

    1964-08-08

    This communication presented evidence of the elevation of plasma GOT (glutamic oxaloacetic transaminase or aspartate transaminase) concentration during the development of copper toxicity in some experimental lambs, and also demonstrated that plasma GOT concentration can be used to assess the course of the disease during treatment. A group of Kerry Hill lambs were fed 1 1/2 lb per day of a proprietary concentrate containing 40 parts of copper per million on a dry-matter basis in addition to hay and water ad lib. Data was included for the plasma GOT concentrations of the lambs, bled weekly after weaning from pasture to this diet. There was some variation between the individual lambs, and in one there was no increase in plasma GOT by the 20th week when all the surviving lambs were slaughtered. The concentrations of copper found in the caudate lobe of the liver and in the kidney cortex post mortem were given. The overall findings showed that the liver gave a reliable indication of the copper status of an animal whereas the kidney cortex copper concentration was a better criterion for the diagnosis of copper poisoning and was in agreement with the results of Eden, Todd, and Grocey and Thompson. Observations demonstrated the benefits resulting from the early diagnosis of chronic copper poisoning in lambs, when treatment of affected animals may be commenced before the haemolytic crisis develops. Treatment included reducing the copper intake and dosing with ammonium molybdate and sodium sulfate, and the plasma GOT concentration may be used to assess the rate of recovery. 4 references, 3 tables.

  1. Copper sulphate poisoning in horses

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, M

    1975-01-01

    In the archives of the Clinic for Internal Diseases of Domestic Animals at the Veterinary Faculty of Zagreb University some thirty cases of horse disease diagnosed as copper sulphate poisoning were noted. The data correspond in many respects to the clinical findings of copper sulphate poisoning in other domestic animals. A series of experimental horse poisonings were undertaken in order to determine the toxicity of copper sulphate. The research results are as follows: Horses are sensitive to copper sulphate. Even a single application of 0.125 g/kg body weight in 1% concentration by means of incubation into the stomach causes stomach and gut disturbances and other poisoning symptoms. Poisoning occurs in two types: acute and chronic. The former appears after one to three applications of copper sulphate solution and is characterized by gastroenteritis, haemolysis, jaundice and haemoglobinuria with signs of consecutive damage of kidney, liver and other organs. The disease, from the first application to death lasts for two weeks. Chronic poisoning is caused by ingestion of dry copper sulphate in food (1% solution dried on hay or clover) for two or more months. There are chronic disturbances of stomach and gut and loss of weight, and consecutive (three to four) haemolytic crises similar to those of acute poisoning. From the beginning of poisoning to death six or more months can elapse.

  2. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  3. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  4. Use of copper radioisotopes in investigating disorders of copper metabolism

    International Nuclear Information System (INIS)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M.; Smith, S.; Mercer, J.

    1998-01-01

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes 64 Cu (t 1/2 = 12.8 hr) and 67 Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  5. NID Copper Sample Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Zhu, Zihua

    2011-02-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  6. NID Copper Sample Analysis

    International Nuclear Information System (INIS)

    Kouzes, Richard T.; Zhu, Zihua

    2011-01-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76 Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76 Ge. The DEMONSTRATOR will utilize 76 Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  7. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  8. EFFECT OF COPPER ON PASSIVITY AND CORROSION ...

    African Journals Online (AJOL)

    2014-06-30

    Jun 30, 2014 ... Fe (Aldrich 99.89%), Cu (99.98%) and graphite. ... sequential polishing with silicon carbide emery paper followed by diamond polishing. ... of these alloys makes the quantity of cementite increase and the structure change.

  9. Renal cortex copper concentration in acute copper poisoning in calves

    Directory of Open Access Journals (Sweden)

    Luis E. Fazzio

    2012-01-01

    Full Text Available The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu concentration in clinical cases of acute copper poisoning (ACP. A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.

  10. Copper metallurgy at the crossroads

    Directory of Open Access Journals (Sweden)

    Habashi F.

    2007-01-01

    Full Text Available Copper technology changed from the vertical to the horizontal furnace and from the roast reaction to converting towards the end of the last century. However, the horizontal furnace proved to be an inefficient and polluting reactor. As a result many attempts were made to replace it. In the past 50 years new successful melting processes were introduced on an industrial scale that were more energy efficient and less polluting. In addition, smelting and converting were conducted in a single reactor in which the concentrate was fed and the raw copper was produced. The standing problem in many countries, however, is marketing 3 tonnes of sulfuric acid per tonne of copper produced as well as emitting large amounts of excess SO2 in the atmosphere. Pressure hydrometallurgy offers the possibility of liberating the copper industry from SO2 problem. Heap leaching technology has become a gigantic operation. Combined with solvent extraction and electrowinning it contributes today to about 20% of copper production and is expected to grow. Pressure leaching offers the possibility of liberating the copper industry from SO2 problem. The technology is over hundred years old. It is applied for leaching a variety of ores and concentrates. Hydrothermal oxidation of sulfide concentrates has the enormous advantage of producing elemental sulfur, hence solving the SO2 and sulfuric acid problems found in smelters. Precipitation of metals such as nickel and cobalt under hydrothermal conditions has been used for over 50 years. It has the advantage of a compact plant but the disadvantage of producing ammonium sulfate as a co-product. In case of copper, however, precipitation takes place without the need of neutralizing the acid, which is a great advantage and could be an excellent substitute for electrowinning which is energy intensive and occupies extensive space. Recent advances in the engineering aspects of pressure equipment design open the door widely for increased

  11. Mixed Uranium/Refractory Metal Carbide Fuels for High Performance Nuclear Reactors

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    2002-01-01

    Single phase, solid-solution mixed uranium/refractory metal carbides have been proposed as an advanced nuclear fuel for advanced, high-performance reactors. Earlier studies of mixed carbides focused on uranium and either thorium or plutonium as a fuel for fast breeder reactors enabling shorter doubling owing to the greater fissile atom density. However, the mixed uranium/refractory carbides such as (U, Zr, Nb)C have a lower uranium densities but hold significant promise because of their ultra-high melting points (typically greater than 3700 K), improved material compatibility, and high thermal conductivity approaching that of the metal. Various compositions of (U, Zr, Nb)C were processed with 5% and 10% metal mole fraction of uranium. Stoichiometric samples were processed from the constituent carbide powders, while hypo-stoichiometric samples with carbon-to-metal (C/M) ratios of 0.92 were processed from uranium hydride, graphite, and constituent refractory carbide powders. Processing techniques of cold uniaxial pressing, dynamic magnetic compaction, sintering, and hot pressing were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid-solution mixed carbide nuclear fuels for testing. This investigation was undertaken to evaluate and characterize the performance of these mixed uranium/refractory metal carbides for high performance, ultra-safe nuclear reactor applications. (authors)

  12. Reduction of metal oxides in metal carbide fusion superheated with plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hedai, L

    1981-01-01

    A significant part of metals is capable of binding a high quantity of carbon in the form of carbide. The carbide fusion produced as a result of smelting and superheating, metal carbides with the use of plasma might be a medium to be utilized for the reduction of different metal oxides, whilst also the original carbide structure of the metal carbides will be reduced to metallic structure. The experiments conducted by making use of plasma equipment, of 20, 55 and 100 kW performances are described. On the basis of the results of the experiments performed, the following statements are to be made. The oxide reductions taking place in the metal carbide fusion might also be carried out in open-hearth furnaces, because reducing atmosphere is not necessitated during this procedure. The quantity of energy required is basically defined by the energy needed for smelting and superheating the metal carbide. The method for producing the metal described may be mainly applied for the allied production of high-purity steels as well as for that of ferro-alloys.

  13. Effect of electroslag remelting on carbides in 8Cr13MoV martensitic stainless steel

    Science.gov (United States)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao

    2015-11-01

    The effect of electroslag remelting (ESR) on carbides in 8Cr13MoV martensitic stainless steel was experimentally studied. Phases precipitated from liquid steel during solidification were calculated using the Thermo-Calc software. The carbon segregation was analyzed by original position analysis (OPA), and the carbides were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that more uniform carbon distribution and less segregation were obtained in the case of samples subjected to the ESR process. After ESR, the amount of netty carbides decreased significantly, and the chromium and vanadium contents in the grain-boundary carbides was reduced. The total area and average size of carbides were obviously smaller after the ESR process. In the sample subjected to ESR, the morphology of carbides changed from lamellar and angular to globular or lump, whereas the types of carbides did not change; both M23C6 and M7C3 were present before and after the ESR process.

  14. Reaction of Oxygen with Chromium and Chromium Carbide at Low O2 Pressures and High Temperatures

    International Nuclear Information System (INIS)

    Hur, Dong O.; Kang, Sung G.; Paik, Young N.

    1984-01-01

    The oxidation rate of chromium carbide has been measured continuously using thermogravimetric analysis at different oxygen pressures ranging from 1.33x10 -2 to 2.67x10 -1 Pa O 2 at 1000-1300 .deg. C. The oxidation of pure chromium has also been studied between 1000-1300 .deg. C under 6.67x10 -2 Pa O 2 and compared with that of chromium carbide. The oxidation of chromium carbide showed a linear behavior which was different from that of chromium. The oxidation rate of chromium carbide increased with increasing temperature and oxygen pressure was lower than of pure chromium. Above 1200 .deg. C, the volatile oxide was formed and evaporated causing a weight loss. The compositions and morphology of the oxide were studied with X-ray diffractometer and scanning electron microscope, respectively. The morphology of oxide changed with varying temperature and pressure. The oxide scale was consisted of mainly two different layers of Cr 2 O 3 and CrO, and the properties of oxide scale were correlated with oxidation behavior. The oxide film formed in the above test condition has been detached from the carbide surface. The crack and pore were thought to be from CO gas evolving at the interface of chromium carbide and its oxide and the major factor of the linear behavior of chromium carbide

  15. Nondestructive ultrasonic characterization of armor grade silicon carbide

    Science.gov (United States)

    Portune, Andrew Richard

    Ceramic materials have traditionally been chosen for armor applications for their superior mechanical properties and low densities. At high strain rates seen during ballistic events, the behavior of these materials relies upon the total volumetric flaw concentration more so than any single anomalous flaw. In this context flaws can be defined as any microstructural feature which detriments the performance of the material, potentially including secondary phases, pores, or unreacted sintering additives. Predicting the performance of armor grade ceramic materials depends on knowledge of the absolute and relative concentration and size distribution of bulk heterogeneities. Ultrasound was chosen as a nondestructive technique for characterizing the microstructure of dense silicon carbide ceramics. Acoustic waves interact elastically with grains and inclusions in large sample volumes, and were well suited to determine concentration and size distribution variations for solid inclusions. Methodology was developed for rapid acquisition and analysis of attenuation coefficient spectra. Measurements were conducted at individual points and over large sample areas using a novel technique entitled scanning acoustic spectroscopy. Loss spectra were split into absorption and scattering dominant frequency regimes to simplify analysis. The primary absorption mechanism in polycrystalline silicon carbide was identified as thermoelastic in nature. Correlations between microstructural conditions and parameters within the absorption equation were established through study of commercial and custom engineered SiC materials. Nonlinear least squares regression analysis was used to estimate the size distributions of boron carbide and carbon inclusions within commercial SiC materials. This technique was shown to additionally be capable of approximating grain size distributions in engineered SiC materials which did not contain solid inclusions. Comparisons to results from electron microscopy

  16. The impact of the presence on global markets of calcium carbide originating from China on other industry role players: the case of sa calcium carbide (PTY LTD

    Directory of Open Access Journals (Sweden)

    Royce Sitshonile Mazo

    2017-12-01

    Full Text Available This research assesses how the presence of calcium carbide originating from China has impacted on the operations of other role players in the industry. SA Calcium Carbide (Pty Ltd. located in Newcastle, South Africa, was used as a case study. The study spanned all markets where the company has a footprint meaning domestically, regionally and internationally. The aim of the study was to discern the extent to which companies like SA Calcium Carbide have been affected by the presence of products from China on the global market with special focus being put on the competitiveness in terms of pricing of products. The study used a survey strategy, and was exploratory in nature. The choice of the survey strategy was motivated by the need to collect both quantitative and qualitative data in order to meet the research objectives. The data was gathered, with an 80 percent response rate, using a questionnaire method from more than 70 current SA Calcium Carbide customers both from the domestic and the export side of the business. In order to consider the different perspectives of the whole scenario, 10 companies involved in either manufacturing or trading of Chinese manufactured calcium carbide were interviewed, some face to face and some telephonically. The study revealed that current customers, who are predominantly from the African continent, buy product from SA Calcium Carbide primarily because of its high quality. It also evident from the results that the export volumes of SA Calcium Carbide were on a gradual downward trend due to loss of market share to Chinese companies

  17. Morphological variants of carbides of solidification origin in the rapidly solidified powder particles of hypereutectic iron alloy

    International Nuclear Information System (INIS)

    Kusy, M.; Grgac, P.; Behulova, M.; Vyrostkova, A.; Miglierini, M.

    2004-01-01

    The paper deals with the analysis of the morphological variants of solidification microstructures and vanadium rich M 4 C 3 carbide phases in the rapidly solidified (RS) powder particles from hypereutectic Fe-C-Cr-V alloy prepared by the nitrogen gas atomisation. Five main types of solidification microstructures were identified in RS particles: microstructure with globular carbides, microstructure with globular and star-like carbides, microstructure with primary carbides in the centres of eutectic colonies, microstructure with eutectic colonies without primary carbides and microstructure with eutectic spherulites. Based on the morphological features of carbide phases and the thermal history of RS particles, the microstructures were divided into two groups - microstructures morphologically affected and non-affected during the post-recalescence period of solidification. Thermophysical reasons for the morphologically different M 4 C 3 carbide phases development in the RS powder particles are discussed

  18. Metallographic detection of carbides in the steel X 41 CrMoV 51 after different austenizing processes

    International Nuclear Information System (INIS)

    Fleer, R.; Rickel, J.; Draugelates, U.

    1979-01-01

    The etchant most suitable for clearly revealing the carbide particles in the developed hardened structure was determined by comparative structural investigations with several etchants in order to be able to undertake the metallographic detection of finely distributed carbides in the structure of the high alloy ultra-high strength steel X 41 CrMoV 51. The characteristic distribution and number of carbides could be revealed as well as the ferrite pearlite matrix. The picric-hydrochloric acid solution which, on a comparative basis, was the most effective, revealed the dependence of the carbide dissolution and structural formation on the temperature. The carbide components of the structure dissolved to an increasing extent at temperatures above 1100 0 C. All carbides up to the large volume mixed carbides appeared to dissolve in the segregation zone after annealing for one hour at 1200 0 C. Considerable grain growth also occurred. (orig./RW) [de

  19. Investigation of copper nuclei

    International Nuclear Information System (INIS)

    Delfini, M.G.

    1983-01-01

    An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64 Cu and 66 Cu. They were obtained by bombarding the 63 Cu and 65 Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64 Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)

  20. Microstructure Characteristics of Fe-Matrix Composites Reinforced by In-Situ Carbide Particulates

    Science.gov (United States)

    Huang, Xiaodong; Song, Yanpei

    2017-10-01

    Carbide particulates reinforced iron-matrix composites were prepared by in-situ synthesis reaction between Ti, V and C on liquid alloys surface. The microstructure of the composite was characterized by SEM, TEM and OM. The results showed that the main phases were α-Fe, carbide particulate; besides, there were small amounts of γ-Fe and graphite (G) in the composite. The carbides were TiVC2 and VC in the shape of short bar and graininess. The matrix consisted of martensite and small amounts of retained austenite.

  1. Features of order-disorder phase transformation in nonstoichiometric transition metals carbides

    International Nuclear Information System (INIS)

    Emel'yanov, A.N.

    1996-01-01

    Measurements of temperature and electric conductivity of nonstoichiometric transition metals carbides TiC χ and NbC χ in the area of order-disorder phase transformation are carried out. There are certain peculiarities on the temperature and electric conductivity curves of the carbides, connected with the carbon sublattice disordering. On the basis of the anomalies observed on the curves of the temperature conductivity of nonstoichiometric carbides of transition metals above the temperature of the order-disorder transition the existence of the second structural transition is supposed

  2. Mechanism of the electrochemical hydrogen reaction on smooth tungsten carbide and tungsten electrodes

    International Nuclear Information System (INIS)

    Wiesener, K.; Winkler, E.; Schneider, W.

    1985-01-01

    The course of the electrochemical hydrogen reaction on smooth tungsten-carbide electrodes in hydrogen saturated 2.25 M H 2 SO 4 follows a electrochemical sorption-desorption mechanism in the potential range of -0.4 to +0.1 V. At potentials greater than +0.1 V the hydrogen oxidation is controlled by a preliminary chemical sorption step. Concluding from the similar behaviour of tungsten-carbide and tungsten electrodes after cathodic pretreatment, different tungsten oxides should be involved in the course of the hydrogen reaction on tungsten carbide electrodes. (author)

  3. SANS and TEM studies of carbide precipitation and creep damage in type 304 stainless steel

    International Nuclear Information System (INIS)

    Yoo, M.H.; Ogle, J.C.; Schneibel, J.H.; Swindeman, R.W.

    1984-01-01

    Small-angle neutron scattering (SANS) and transmission electron microscopy (TEM) studies were performed to characterize the carbide (M 23 C 6 ) precipitation and creep damage induced in type 304 stainless steel in the primary creep stage. The size distribution of matrix carbides evaluated from SANS analyses was consistent with TEM data, and the expected accelerated kinetics of precipitation under applied stress was confirmed. Additional SANS measurements after the postcreep solution annealing were made in order to differentiate cavities from the carbides. Potential advantages and difficulties associated with characterization of creep-induced cavitation by the SANS techniques are discussed

  4. Broadband antireflective silicon carbide surface produced by cost-effective method

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Ou, Yiyu; Ou, Haiyan

    2013-01-01

    A cost-effective method for fabricating antireflective subwavelength structures on silicon carbide is demonstrated. The nanopatterning is performed in a 2-step process: aluminum deposition and reactive ion etching. The effect, of the deposited aluminum film thickness and the reactive ion etching...... conditions, on the average surface reflectance and nanostructure landscape have been investigated systematically. The average reflectance of silicon carbide surface is significantly suppressed from 25.4% to 0.05%, under the optimal experimental conditions, in the wavelength range of 390-784 nm. The presence...... of stochastic nanostructures also changes the wetting properties of silicon carbide surface from hydrophilic (47°) to hydrophobic (108°)....

  5. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  6. Size-scaling of tensile failure stress in boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Kirkland, Timothy Philip [ORNL; Strong, Kevin T [ORNL; Jadaan, Osama M. [University of Wisconsin, Platteville; Thompson, G. A. [U.S. Army Dental and Trauma Research Detachment, Greak Lakes

    2010-01-01

    Weibull strength-size-scaling in a rotary-ground, hot-pressed boron carbide is described when strength test coupons sampled effective areas from the very small (~ 0.001 square millimeters) to the very large (~ 40,000 square millimeters). Equibiaxial flexure and Hertzian testing were used for the strength testing. Characteristic strengths for several different specimen geometries are analyzed as a function of effective area. Characteristic strength was found to substantially increase with decreased effective area, and exhibited a bilinear relationship. Machining damage limited strength as measured with equibiaxial flexure testing for effective areas greater than ~ 1 mm2 and microstructural-scale flaws limited strength for effective areas less than 0.1 mm2 for the Hertzian testing. The selections of a ceramic strength to account for ballistically-induced tile deflection and to account for expanding cavity modeling are considered in context with the measured strength-size-scaling.

  7. Correlative microscopy of a carbide-free bainitic steel.

    Science.gov (United States)

    Hofer, Christina; Bliznuk, Vitaliy; Verdiere, An; Petrov, Roumen; Winkelhofer, Florian; Clemens, Helmut; Primig, Sophie

    2016-02-01

    In this work a carbide-free bainitic steel was examined by a novel correlative microscopy approach using transmission Kikuchi diffraction (TKD) and transmission electron microscopy (TEM). The individual microstructural constituents could be identified by TKD based on their different crystal structure for bainitic ferrite and retained austenite and by image quality for the martensite-austenite (M-A) constituent. Subsequently, the same area was investigated in the TEM and a good match of these two techniques regarding the identification of the area position and crystal orientation could be proven. Additionally, the M-A constituent was examined in the TEM for the first time after preceded unambiguous identification using a correlative microscopy approach. The selected area diffraction pattern showed satellites around the main reflexes which might indicate a structural modulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. ELABORATION OF AN EPOXY COATING REINFORCED WITH ZIRCONIUM CARBIDE NANOSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Lucia G. Díaz-Barriga

    2013-12-01

    Full Text Available This work shows the preparation of a transparent epoxy coating reinforced with 200 PPM of zirconium carbide nanostructures. The nanostructures of ZrC were prepared by mechanosynthesis. The additive characteristics analyzed by X-ray diffraction (XRD and scanning electron microscopy (SEM were presented. Epoxy coating adhesion on a steel plate was analyzed using MEB. Thermogravimetric analysis (TGA was performed to the reinforced paints between 20-700 °C. The reinforced enamel was compared with an enamel without nanostructures. There is not vaporization of reinforced enamel at a 95 y 100 °C with ZrC particles size of 10 µm y 120 nm respectively. The final enamel degradation is slower when there is a 14% by weight of the residue and 426 °C with 120nm diameter particles.

  9. Synthesis and characterisation of star polymer/silicon carbide nanocomposites

    International Nuclear Information System (INIS)

    Majewski, Peter; Choudhury, Namita Roy; Spori, Doris; Wohlfahrt, Ellen; Wohlschloegel, Markus

    2006-01-01

    A new type of composite material's preparation and property are reported in this paper. The composite was formed by solution blending a styrene ethylene butylenes (SEBS) star polymer with silicon carbide at various compositions. The composites were characterised using spectroscopic, microscopic and thermal techniques. Photo-acoustic Fourier transform infrared spectroscopy (PA-FT-IR) and transmission electron microscopy (TEM) results show that the SiC resides uniformly in the organic network. Thermogravimetric analysis (TGA) of the hybrid shows that the thermal stability of the composite is higher than that of the star polymer. The maximum decomposition temperature increases by 73 deg. C. Dynamic mechanical analysis (DMA) of the hybrid shows that the storage modulus of the star polymer increases after the composite formation, indicating the existence of thermodynamically stable SiC nanoparticles mostly in the micro-phase separated multiarm structure of the polymer

  10. Methods and systems for utilizing carbide lime or slag

    Science.gov (United States)

    Devenney, Martin; Fernandez, Miguel; Chen, Irvin; Calas, Guillaume; Weiss, Michael Joseph; Tester, Chantel Cabrera

    2018-02-27

    Provided herein are methods comprising a) treating a slag solid or carbide lime suspension with an ammonium salt in water to produce an aqueous solution comprising calcium salt, ammonium salt, and solids; b) contacting the aqueous solution with carbon dioxide from an industrial process under one or more precipitation conditions to produce a precipitation material comprising calcium carbonate and a supernatant aqueous solution wherein the precipitation material and the supernatant aqueous solution comprise residual ammonium salt; and c) removing and optionally recovering ammonia and/or ammonium salt using one or more steps of (i) recovering a gas exhaust stream comprising ammonia during the treating and/or the contacting step; (ii) recovering the residual ammonium salt from the supernatant aqueous solution; and (iii) removing and optionally recovering the residual ammonium salt from the precipitation material.

  11. Structure and properties of hot-pressed boron carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Koval' chenko, M S; Tkachenko, IU G; Koval' chuk, V V; Iurchenko, D Z; Satanin, S V [Institut Problem Materialovedeniia, Kiev (Ukrainian SSR)

    1990-07-01

    The microstructure and strength of B4C-TiB2-TiO{sub 2} ceramics samples, hot-compacted from a mixture of two types of B4C-TiO2-C powder, are examined. The two types are obtained by combining boric acid with either sucrose or carbon black. The grain-sizes of the two powders are found to be distinctly different from one another both before and after the grinding procedure and the degree of dispersion is not high. The strength tests show 600 MPa, the Vicker's hardness is 34.5 GPa, and the crack resistance coefficient of ceramics containing 15 percent TiB2 by mass is 5 MPa m exp 1/2. The use of soluble boron carbide powder helps achieve higher levels of strength and crack resistance. 5 refs.

  12. Performance of HVOF carbide coatings under erosion/corrosion

    International Nuclear Information System (INIS)

    Simard, S.; Arsenault, B.; Legoux, J.G.; Hawthorne, H.M.

    1999-01-01

    Cermet based materials are known to have an excellent performance under several wear conditions. High velocity oxy-fuel (HVOF) technology allows the deposition of such hard materials in the form of protective coatings onto different surfaces. Under slurry erosion, the performance of the coatings is influenced by the occurrence of corrosion reactions on the metallic matrix. Indeed, wet conditions promote the dissolution of metallic binder resulting in a potential synergic effect between the corrosion and wear mechanisms. The composition of the metallic matrix plays a key role on the stability of the coatings and their degradation rate. In this work, four coatings based on tungsten carbide embedded in different metallic binders were evaluated with regard to corrosion and wear. (author)

  13. First-principles study of point defects in thorium carbide

    International Nuclear Information System (INIS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A.M.; Mosca, H.O.

    2014-01-01

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors’ knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure

  14. Diffusion in thorium carbide: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM–CNEA, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina)

    2015-12-15

    The prediction of the behavior of Th compounds under irradiation is an important issue for the upcoming Generation-IV nuclear reactors. The study of self-diffusion and hetero-diffusion is a central key to fulfill this goal. As a first approach, we obtained, by means of first-principles methods, migration and activation energies of Th and C atoms self-diffusion and diffusion of He atoms in ThC. We also calculate diffusion coefficients as a function of temperature. - Highlights: • Diffusion in thorium carbide by means of first-principles calculations is studied. • The most favorable migration event is a C atom moving through a C-vacancy aided path. • Calculated C atoms diffusion coefficients agree very well with the experimental data. • For He, the energetically most favorable migration path is through Th-vacancies.

  15. First-principles study of point defects in thorium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, (1033) Buenos Aires (Argentina); Jaroszewicz, S. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, (1033) Buenos Aires (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina)

    2014-11-15

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors’ knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure.

  16. Superconductivity in heavily boron-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  17. Body of Knowledge for Silicon Carbide Power Electronics

    Science.gov (United States)

    Boomer, Kristen; Lauenstein, Jean-Marie; Hammoud, Ahmad

    2016-01-01

    Wide band gap semiconductors, such as silicon carbide (SiC), have emerged as very promising materials for future electronic components due to the tremendous advantages they offer in terms of power capability, extreme temperature tolerance, and high frequency operation. This report documents some issues pertaining to SiC technology and its application in the area of power electronics, in particular those geared for space missions. It also serves as a body of knowledge (BOK) in reference to the development and status of this technology obtained via literature and industry survey as well as providing a listing of the major manufacturers and their capabilities. Finally, issues relevant to the reliability of SiC-based electronic parts are addressed and limitations affecting the full utilization of this technology are identified.

  18. Structures of sub-monolayered silicon carbide films

    International Nuclear Information System (INIS)

    Baba, Y.; Sekiguchi, T.; Shimoyama, I.; Nath, Krishna G.

    2004-01-01

    The electronic and geometrical structures of silicon carbide thin films are presented. The films were deposited on graphite by ion-beam deposition using tetramethylsilane (TMS) as an ion source. In the Si K-edge near-edge X-ray absorption fine structure (NEXAFS) spectra for sub-monolayered film, sharp peaks due to the resonance from Si 1s to π*-like orbitals were observed, suggesting the existence of Si=C double bonds. On the basis of the polarization dependencies of the Si 1s → π* peak intensities, it is elucidated that the direction of the π*-like orbitals is just perpendicular to the surface. We conclude that the sub-monolayered SiC x film has a flat-lying hexagonal structure of which configuration is analogous to the single sheet of graphite

  19. Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors

    Science.gov (United States)

    Chmiola, John; Largeot, Celine; Taberna, Pierre-Louis; Simon, Patrice; Gogotsi, Yury

    2010-04-01

    Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.

  20. Dynamic SEM wear studies of tungsten carbide cermets

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined. Etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the WC and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation. The wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  1. Generation of damage cross section for silicon carbide

    International Nuclear Information System (INIS)

    Chang, Jonghwa; Lee, Wonjae

    2013-01-01

    There is practically no cross section library for current reactor physics codes which will be used for DPA calculation. Silicon carbide(SiC) is an important material used in gas-cooled reactor, advanced nuclear fuel, and fusion applications. There are more than 200 polytypes of SiC. However β-SiC, which is produced under 1700 .deg. C, is the polytype interesting for a nuclear application. This work has been carried out under the Korea-US I-NERI program supported by Korea Ministry of Education Science and Technology and US Department of Energy. Authors express gratitude to C. S. Gil of KAERI nuclear data center for NJOY processing

  2. DECODING THE MESSAGE FROM METEORITIC STARDUST SILICON CARBIDE GRAINS

    International Nuclear Information System (INIS)

    Lewis, Karen M.; Lugaro, Maria; Gibson, Brad K.; Pilkington, Kate

    2013-01-01

    Micron-sized stardust grains that originated in ancient stars are recovered from meteorites and analyzed using high-resolution mass spectrometry. The most widely studied type of stardust is silicon carbide (SiC). Thousands of these grains have been analyzed with high precision for their Si isotopic composition. Here we show that the distribution of the Si isotopic composition of the vast majority of stardust SiC grains carries the imprints of a spread in the age-metallicity distribution of their parent stars and of a power-law increase of the relative formation efficiency of SiC dust with the metallicity. This result offers a solution for the long-standing problem of silicon in stardust SiC grains, confirms the necessity of coupling chemistry and dynamics in simulations of the chemical evolution of our Galaxy, and constrains the modeling of dust condensation in stellar winds as a function of the metallicity.

  3. Pulsed laser ablation and deposition of niobium carbide

    International Nuclear Information System (INIS)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J.V.; Galasso, A.; Teghil, R.

    2016-01-01

    Highlights: • We have deposited in vacuum niobium carbide films by fs and ns PLD. • We have compared PLD performed by ultra-short and short laser pulses. • The films deposited by fs PLD of NbC are formed by nanoparticles. • The structure of the films produced by fs PLD at 500 °C corresponds to NbC. - Abstract: NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation–deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  4. High yield silicon carbide pre-ceramic polymers

    International Nuclear Information System (INIS)

    Baney, R.H.

    1982-01-01

    Polysilanes which are substituted with (CH 3 ) 3 SiO-groups are useful for the preparation in high yields of fine grained silicon carbide ceramic materials. They consist of 0 to 60 mole % (CH 3 ) 2 Si units and 100 to 40 mole % CH 3 Si units, all Si valences not satisfied by CH 3 groups or Si atoms being directed to groups (CH 3 ) 3 SiO-, which siloxane groups amount to 23 to 61 weight % of the polysilane. They are prepared by reaction of the corresponding chloro- or bromo-methyl polysilanes with at least the stoichiometric amounts of (CH 3 ) 3 SiOSi(CH 3 ) 3 and water in the presence of a strong acid. (author)

  5. Distribution and characterization of iron in implanted silicon carbide

    International Nuclear Information System (INIS)

    Bentley, J.; Romana, L.J.; Horton, L.L.; McHargue, C.J.

    1991-01-01

    Analytical electron microscopy (AEM) and Rutherford backscattering spectroscopy-ion channeling (RBS-C) have been used to characterize single crystal α-silicon carbide implanted at room temperature with 160 keV 57 Fe ions to fluences of 1, 3, and 6 x 10 16 ions/cm 2 . Best correlations among AEM, RBS, and TRIM calculations were obtained assuming a density of the amorphized implanted regions equal to that of crystalline SiC. No iron-rich precipitates or clusters were detected by AEM. Inspection of the electron energy loss fine structure for iron in the implanted specimens suggests that the iron is not metallically-bonded, supporting conclusions from earlier conversion electron Moessbauer spectroscopy (CEMS) studies. In-situ annealing surprisingly resulted in crystallization at 600 degrees C with some redistribution of the implanted iron

  6. Frequency mixing in boron carbide laser ablation plasmas

    Science.gov (United States)

    Oujja, M.; Benítez-Cañete, A.; Sanz, M.; Lopez-Quintas, I.; Martín, M.; de Nalda, R.; Castillejo, M.

    2015-05-01

    Nonlinear frequency mixing induced by a bichromatic field (1064 nm + 532 nm obtained from a Q-switched Nd:YAG laser) in a boron carbide (B4C) plasma generated through laser ablation under vacuum is explored. A UV beam at the frequency of the fourth harmonic of the fundamental frequency (266 nm) was generated. The dependence of the efficiency of the process as function of the intensities of the driving lasers differs from the expected behavior for four-wave mixing, and point toward a six-wave mixing process. The frequency mixing process was strongly favored for parallel polarizations of the two driving beams. Through spatiotemporal mapping, the conditions for maximum efficiency were found for a significant delay from the ablation event (200 ns), when the medium is expected to be a low-ionized plasma. No late components of the harmonic signal were detected, indicating a largely atomized medium.

  7. Quantum Properties of Dichroic Silicon Vacancies in Silicon Carbide

    Science.gov (United States)

    Nagy, Roland; Widmann, Matthias; Niethammer, Matthias; Dasari, Durga B. R.; Gerhardt, Ilja; Soykal, Öney O.; Radulaski, Marina; Ohshima, Takeshi; Vučković, Jelena; Son, Nguyen Tien; Ivanov, Ivan G.; Economou, Sophia E.; Bonato, Cristian; Lee, Sang-Yun; Wrachtrup, Jörg

    2018-03-01

    Although various defect centers have displayed promise as either quantum sensors, single photon emitters, or light-matter interfaces, the search for an ideal defect with multifunctional ability remains open. In this spirit, we study the dichroic silicon vacancies in silicon carbide that feature two well-distinguishable zero-phonon lines and analyze the quantum properties in their optical emission and spin control. We demonstrate that this center combines 40% optical emission into the zero-phonon lines showing the contrasting difference in optical properties with varying temperature and polarization, and a 100% increase in the fluorescence intensity upon the spin resonance, and long spin coherence time of their spin-3 /2 ground states up to 0.6 ms. These results single out this defect center as a promising system for spin-based quantum technologies.

  8. Deposition of tantalum carbide coatings on graphite by laser interactions

    Science.gov (United States)

    Veligdan, James; Branch, D.; Vanier, P. E.; Barietta, R. E.

    1994-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing involved the use of a CO2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl5 gas near the substrate. The results of preliminary experiments using these techniques are described.

  9. Kerma factors in interaction of neutrons with boron carbide

    International Nuclear Information System (INIS)

    Bondarenko, I.M.

    1986-03-01

    Heat generation in neutron interactions with boron carbide B 10 ; B 11 and 12 C is calculated. Kerma-factors (kerma-kinetic energy released in materials) were calculated for neutron energies between 10 -4 eV and 15 MeV. No major simplifying assumptions are introduced, and the accuracy of the calculated kerma-factors depends only on availability and accuracy of the basic nuclear data. The ENDF/B-4 data and recent experimental information are used for the calculation of kerma-factors. Plots of these kerma-factors are presented in units of eVxb/atom and wtxsec/(cmxn) as a function of neutron energy [fr

  10. Chapter 19: Catalysis by Metal Carbides and Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Schaidle, Joshua A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nash, Connor P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yung, Matthew M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Yuan [Pacific Northwest National Laboratory; Carl, Sarah [University of Michigan; Thompson, Levi [University of Michigan

    2017-08-09

    Early transition metal carbides and nitrides (ETMCNs), materials in which carbon or nitrogen occupies interstitial sites within a parent metal lattice, possess unique physical and chemical properties that motivate their use as catalysts. Specifically, these materials possess multiple types of catalytic sites, including metallic, acidic, and basic sites, and as such, exhibit reactivities that differ from their parent metals. Moreover, their surfaces are dynamic under reaction conditions. This chapter reviews recent (since 2010) experimental and computational investigations into the catalytic properties of ETMCN materials for applications including biomass conversion, syngas and CO2 upgrading, petroleum and natural gas refining, and electrocatalytic energy conversion, energy storage, and chemicals production, and attempts to link catalyst performance to active site identity/surface structure in order to elucidate the present level of understanding of structure-function relationships for these materials. The chapter concludes with a perspective on leveraging the unique properties of these materials to design and develop improved catalysts through a dedicated, multidisciplinary effort.

  11. A review of oxide, silicon nitride, and silicon carbide brazing

    International Nuclear Information System (INIS)

    Santella, M.L.; Moorhead, A.J.

    1987-01-01

    There is growing interest in using ceramics for structural applications, many of which require the fabrication of components with complicated shapes. Normal ceramic processing methods restrict the shapes into which these materials can be produced, but ceramic joining technology can be used to overcome many of these limitations, and also offers the possibility for improving the reliability of ceramic components. One method of joining ceramics is by brazing. The metallic alloys used for bonding must wet and adhere to the ceramic surfaces without excessive reaction. Alumina, partially stabilized zirconia, and silicon nitride have high ionic character to their chemical bonds and are difficult to wet. Alloys for brazing these materials must be formulated to overcome this problem. Silicon carbide, which has some metallic characteristics, reacts excessively with many alloys, and forms joints of low mechanical strength. The brazing characteristics of these three types of ceramics, and residual stresses in ceramic-to-metal joints are briefly discussed

  12. Defect kinetics and resistance to amorphization in zirconium carbide

    International Nuclear Information System (INIS)

    Zheng, Ming-Jie; Szlufarska, Izabela; Morgan, Dane

    2015-01-01

    To better understand the radiation response of zirconium carbide (ZrC), and in particular its excellent resistance to amorphization, we have used density functional theory methods to study the kinetics of point defects in ZrC. The migration barriers and recombination barriers of the simple point defects are calculated using the ab initio molecular dynamics simulation and the nudged elastic band method. These barriers are used to estimate C and Zr interstitial and vacancy diffusion and Frenkel pair recombination rates. A significant barrier for C Frenkel pair recombination is found but it is shown that a large concentration of C vacancies reduces this barrier dramatically, allowing facile healing of radiation damage. The mechanisms underlying high resistance to amorphization of ZrC were analyzed from the perspectives of structural, thermodynamic, chemical and kinetic properties. This study provides insights into the amorphization resistance of ZrC as well as a foundation for understanding general radiation damage in this material

  13. Structural phase transitions in boron carbide under stress

    International Nuclear Information System (INIS)

    Korotaev, P; Pokatashkin, P; Yanilkin, A

    2016-01-01

    Structural transitions in boron carbide B 4 C under stress were studied by means of first-principles molecular dynamics in the framework of density functional theory. The behavior depends strongly on degree of non-hydrostatic stress. Under hydrostatic stress continuous bending of the three-atom C–B–C chain was observed up to 70 GPa. The presence of non-hydrostatic stress activates abrupt reversible chain bending, which is displacement of the central boron atom in the chain with the formation of weak bonds between this atom and atoms in the nearby icosahedra. Such structural change can describe a possible reversible phase transition in dynamical loading experiments. High non-hydrostatic stress achieved in uniaxial loading leads to disordering of the initial structure. The formation of carbon chains is observed as one possible transition route. (paper)

  14. Application of silicon carbide to synchrotron-radiation mirrors

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Hursman, T.L.; Williams, J.T.

    1983-09-01

    Damage to conventional mirror materials exposed to the harsh synchrotron radiation (SR) environment has prompted the SR user community to search for more suitable materials. Next-generation insertion devices, with their attendant flux increases, will make the problem of mirror design even more difficult. A parallel effort in searching for better materials has been underway within the laser community for several years. The technology for dealing with high thermal loads is highly developed among laser manufacturers. Performance requirements for laser heat exchangers are remarkably similar to SR mirror requirements. We report on the application of laser heat exchanger technology to the solution of typical SR mirror design problems. The superior performance of silicon carbide for laser applications is illustrated by various material trades studies, and its superior performance for SR applications is illustrated by means of model calculations

  15. Current trends in copper theft prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mastrofrancesco, A. [Electrical Safety Authority, ON (Canada)

    2009-07-01

    Copper is used in electrical wiring, water and gas piping, currency, and in household items. An increase in the price and demand for copper has made copper theft a profitable venture for some thieves. Copper consumed in North America is typically supplied by recycling. Scrap dealers may pay near-market prices for pure copper wires. However, copper theft poses a serious threat to the safety of utility workers and the public. Power outages caused by copper theft are now affecting grid reliability. This paper examined technologies and techniques used to prevent copper theft as part of a security strategy for utilities. Attempts to steal copper can leave utility substations unsecured and accessible to children. The theft of neutral grounds will cause the local distribution company (LDC) to malfunction and may cause power surges in homes as well as appliance fires. Utilities are now looking at using a hybrid steel and copper alternative to prevent copper theft. Asset identification techniques are also being used to identify the original owners of the copper and more easily prosecute thieves. Automated monitoring techniques are also being used to increase substation security. Utilities are also partnering with law enforcement agencies and pressuring governments to require scrap dealers to record who they buy from. It was concluded that strategies to prevent copper theft should be considered as part of an overall security strategy for utilities. tabs., figs.

  16. Vaporization thermodynamics and enthalpy of formation of aluminum silicon carbide

    International Nuclear Information System (INIS)

    Behrens, R.G.; Rinehart, G.H.

    1984-01-01

    The vaporization thermodynamics of aluminum silicon carbide was investigated using Knudsen effusion mass spectrometry. Vaporization occurred incongruently to give Al(g), SiC(s), and graphite as reaction products. The vapor pressure of aluminum above (Al 4 SiC 4 + SiC + C) was measured using graphite effusion cells with orifice areas between 1.1 X 10 -2 and 3.9 X 10 -4 cm 2 . The vapor pressure of aluminum obtained between 1427 and 1784 K using an effusion cell with the smallest orifice area, 3.9 X 10 -4 cm 2 , is expressed as log p (Pa) = - (18567 + or - 86) (K/T) + (12.143 + or - 0.054) The third-law calculation of the enthalpy change for the reaction Al 4 SiC 4 (s) = 4Al(g) + SiC(hex) + 3C(s) using the present aluminum pressures gives ΔH 0 (298.15 K) = (1455 + or - 79) kJ /SUP ./ mol -1 . The corresponding second-law result is ΔH 0 (298.15 K) = (1456 + or - 47) kJ /SUP ./ mol -1 . The standard enthalpy of formation of Al 4 SiC 4 (s) from the elements calculated from the present vaporization enthalpy (third-law calculation) and the enthalpies of formation of Al(g) and hexagonal SiC is ΔH 0 /SUB f/ (298.15 K) = -(221 + or - 85) kJ /SUP ./ mol -1 . The standard enthalpy of formation of Al 4 SiC 4 (s) from its constituent carbides Al 4 C 3 (s) and SiC(c, hex) is calculated to be ΔH 0 (298.15 K) = (38 + or - 92) KJ /SUP ./ mol -1

  17. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  18. The suitability of silicon carbide for photocatalytic water oxidation

    Science.gov (United States)

    Aslam, M.; Qamar, M. T.; Ahmed, Ikram; Rehman, Ateeq Ur; Ali, Shahid; Ismail, I. M. I.; Hameed, Abdul

    2018-04-01

    Silicon carbide (SiC), owing to its extraordinary chemical stability and refractory properties, is widely used in the manufacturing industry. Despite the semiconducting nature and morphology-tuned band gap, its efficacy as photocatalysts has not been thoroughly investigated. The current study reports the synthesis, characterization and the evaluation of the capability of silicon carbide for hydrogen generation from water splitting. The optical characterization of the as-synthesized powder exposed the formation of multi-wavelength absorbing entities in synthetic process. The structural analysis by XRD and the fine microstructure analysis by HRTEM revealed the cubic 3C-SiC (β-SiC) and hexagonal α-polymorphs (2H-SiC and 6H-SiC) as major and minor phases, respectively. The Mott-Schottky analysis verified the n-type nature of the material with the flat band potential of - 0.7 V. In the electrochemical evaluation, the sharp increase in the peak currents in various potential ranges, under illumination, revealed the plausible potential of the material for the oxidation of water and generation of hydrogen. The generation of hydrogen and oxygen, as a consequence of water splitting in the actual photocatalytic experiments, was observed and measured. A significant increase in the yield of hydrogen was noticed in the presence of methanol as h + scavenger, whereas a retarding effect was offered by the Fe3+ entities that served as e - scavengers. The combined effect of both methanol and Fe3+ ions in the photocatalytic process was also investigated. Besides hydrogen gas, the other evolved gasses such as methane and carbon monoxide were also measured to estimate the mechanism of the process.

  19. New catalysts for coal processing: Metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox

    1999-12-03

    The subject of this research project was to investigate the catalytic properties of a new class of materials, transition metal carbides and nitrides, for treatment of coal liquid and petroleum feedstocks. The main objectives were: (1) preparation of catalysts in unsupported and supported form; (2) characterization of the materials; (3) evaluation of their catalytic properties in HDS and HDN; (4) measurement of the surface properties; and (5) observation of adsorbed species. All of the objectives were substantially carried out and the results will be described in detail below. The catalysts were transition metal carbides and nitrides spanning Groups 4--6 in the Periodic Table. They were chosen for study because initial work had shown they were promising materials for hydrotreating. The basic strategy was first to prepare the materials in unsupported form to identify the most promising catalyst, and then to synthesize a supported form of the material. Already work had been carried out on the synthesis of the Group VI compounds Mo{sub 2}C, Mo{sub 2}N, and WC, and new methods were developed for the Group V compounds VC and NbC. All the catalysts were then evaluated in a hydrotreating test at realistic conditions. It was found that the most active catalyst was Mo{sub 2}C, and further investigations of the material were carried out in supported form. A new technique was employed for the study of the bulk and surface properties of the catalysts, near edge x-ray absorption spectroscopy (NEXAFS), that fingerprinted the electronic structure of the materials. Finally, two new research direction were explored. Bimetallic alloys formed between two transition metals were prepared, resulting in catalysts having even higher activity than Mo{sub 2}C. The performance of the catalysts in hydrodechloration was also investigated.

  20. Degradation of Silicon Carbide Reflective Surfaces in the LEO Environment

    Science.gov (United States)

    Mileti, Sandro; Coluzzi, Plinio; Marchetti, Mario

    2009-01-01

    Space mirrors in Low Earth Orbit (LEO) encounter a degradation problem caused by the impact of atomic oxygen (ATOX) in the space environment. This paper presents an experiment of the atomic oxygen impact degradation and UV synergic effects on ground simulation. The experiment was carried out in a dedicated ATOX simulation vacuum chamber. As target materials, a polished CVD Beta-silicon carbide (SiC) coating was investigated. The selection of silicon carbide is due to its high potential candidate as a mirror layer substrate material for its good reflectance at UV wavelengths and excellent thermal diffusivity. It has highly desirable mechanical and thermal properties and can achieve an excellent surface finish. The deposition of the coatings were on carbon-based material substrate; i.e., silicon impregnated carbon fiber composite (C/SiC). Mechanical and thermal properties of the coatings such as hardness and Coefficient of Thermal Expansion (CTE) were achieved. Several atomic oxygen impact angles were studied tilting the target samples respect to the flux direction. The various impact angles permitted to analyze the different erosion rates and typologies which the mirrors would encounter in LEO environment. The degradation was analyzed in various aspects. Macroscopic mass loss per unit area, surface roughness and morphology change were basically analyzed. The exposed surfaces of the materials were observed through a Scanning Electron Microscope (SEM). Secondly, optical diagnostic of the surfaces were performed in order to investigate their variation in optical properties as the evaluation of reflectance degradation. The presence of micro-cracks caused by shrinkage, grinding, polishing or thermal cycling and the porosity in the coatings, could have led to the undercutting phenomenon. Observation of uprising of undercutting was also conducted. Remarks are given regarding capabilities in short-term mission exposures to the LEO environment of this coating.

  1. Metal-carbide multilayers for molten Pu containment

    International Nuclear Information System (INIS)

    Summers, T.S.E.; Curtis, P.G.; Juntz, R.S.; Krueger, R.L.

    1991-12-01

    Multilayers composed of nine or ten alternating layers of Ta or W and TaC were studied for the feasibility of their use in containing molten plutonium (Pu) at 1200 degrees C. Single layers of W and TaC were also investigated. A two-source electron beam evaporation process was developed to deposit these coatings onto the inside surface of hemispherical Ta cups about 38 mm in diameter. Pu testing was done by melting Pu in the coated hemispherical cups and holding them under vacuum at 1200 degrees C for two hours. Metallographic examination and microprobe analysis of cross sections showed that Pu had penetrated to the Ta substrate in all cases to some extent. Full penetration to the outer surface of the Ta substrate, however, occurred in only a few of the samples. The fact that full penetration occurred in any of the samples suggests that it would have occurred in uncoated Ta under these testing conditions which in turn suggests that the multilayer coatings do afford some protection against Pu attack. The TaC used for these specimens was wet by Pu under these testing conditions, and following testing, Pu was found uniformly distributed throughout the carbide layers which appeared to be rather porous. Pu was seen in the W and Ta layers only when exposed directly to molten Pu during testing or near defects suggesting that Pu penetrated the multilayers at defects in the coating and traveled parallel to the layers along the carbide layers. These results indicate that the use of alternating metal and ceramic layers for Pu containment should be possible through the use of nonporous ceramic that is not wet by molten Pu and defect-free films

  2. Elastic moduli of boron carbide/copper composites from -400C to 8000C by ultrasonic methods

    International Nuclear Information System (INIS)

    Gieske, J.H.

    1980-10-01

    An ultrasonic through-transmission technique for high attenuating materials was developed to determine the ultrasonic longitudinal and shear velocities in B 4 C/Cu composites to 800 0 C. Ultrasonic velocity data was used to calculate Young's modulus, shear modulus, and Poisson's ratio for the composites from -40 0 C to 800 0 C. 5 figures, 1 table

  3. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong

    2002-01-01

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  4. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  5. Copper tolerance of Trichoderma species

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena

    2014-01-01

    Full Text Available Some Trichoderma strains can persist in ecosystems with high concentrations of heavy metals. The aim of this research was to examine the variability of Trichoderma strains isolated from different ecosystems, based on their morphological properties and restriction analysis of ITS fragments. The fungal growth was tested on potato dextrose agar, amended with Cu(II concentrations ranging from 0.25 to 10 mmol/l, in order to identify copper-resistant strains. The results indicate that some isolated strains of Trichoderma sp. show tolerance to higher copper concentrations. Further research to examine the ability of copper bioaccumulation by tolerant Trichoderma strains is needed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31080 i br. III 43010

  6. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    International Nuclear Information System (INIS)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload

  7. Figurines in Pietrele: Copper Age ideology

    Directory of Open Access Journals (Sweden)

    Svend Hansen

    2011-12-01

    Full Text Available Major trends in figurine production of the copper age settlement of Pietrele (Romania are discussed. The bone figurines are seen as an ideological innovation of the Early Copper Age system in the Eastern Balkans.

  8. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  9. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake

    NARCIS (Netherlands)

    Berghe, van den P.V.E; Folmer, D.E.; Malingré, H.E.M.; Beurden, van E.; Klomp, A.E.M.; Sluis, van de B.; Merkx, M.; Berger, R.J.; Klomp, L.W.J.

    2007-01-01

    High-affinity cellular copper uptake is mediated by the CTR (copper transporter) 1 family of proteins. The highly homologous hCTR (human CTR) 2 protein has been identified, but its function in copper uptake is currently unknown. To characterize the role of hCTR2 in copper homoeostasis,

  10. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts

    NARCIS (Netherlands)

    Munnik, P.|info:eu-repo/dai/nl/328228524; Wolters, M.|info:eu-repo/dai/nl/304829560; Gabrielsson, A.; Pollington, S.D.; Headdock, G.; Bitter, J.H.|info:eu-repo/dai/nl/160581435; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2011-01-01

    In order to obtain copper catalysts with high dispersions at high copper loadings, the gas flow rate and gas composition was varied during calcination of silica gel impregnated with copper nitrate to a loading of 18 wt % of copper. Analysis by X-ray diffraction (XRD), N2O chemisorption, and

  11. Copper and Anesthesia: Clinical Relevance and Management of Copper Related Disorders

    OpenAIRE

    Langley, Adrian; Dameron, Charles T.

    2013-01-01

    Recent research has implicated abnormal copper homeostasis in the underlying pathophysiology of several clinically important disorders, some of which may be encountered by the anesthetist in daily clinical practice. The purpose of this narrative review is to summarize the physiology and pharmacology of copper, the clinical implications of abnormal copper metabolism, and the subsequent influence of altered copper homeostasis on anesthetic management.

  12. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color...

  13. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and...

  14. Synthesis of High Purity Sinterable Silicon Carbide Powder

    Science.gov (United States)

    1989-11-01

    10 G-500 TORCH 50 kW (Max) : kW (Derated) BTU/HR (Derated) RE, E-500 »CTOR/AFTERCOOLEP B70" .0X 72" T/T ISO M BTU/HR Copper B-500 DUST...Fourth and Canal Streets Post Office Box 27003 Richmond, VA 23219 137. Stephen C. Danforth Rutgers University Bowser Road Post Office Box 909

  15. Refining processes in the copper casting technology

    OpenAIRE

    Rzadkosz, S.; Kranc, M.; Garbacz-Klempka, A.; Kozana, J.; Piękoś, M.

    2015-01-01

    The paper presents the analysis of technology of copper and alloyed copper destined for power engineering casts. The casts quality was assessed based on microstructure, chemical content analysis and strength properties tests. Characteristic deoxidising (Logas, Cup) and modifying (ODM2, Kupmod2) formulas were used for the copper where high electrical conductivity was required. Chosen examples of alloyed copper with varied Cr and Zr content were studied, and the optimal heat treatment parameter...

  16. 21 CFR 184.1261 - Copper sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a...

  17. The Bauschinger Effect in Copper

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Brown, L .M.; Stobbs, W. M.

    1981-01-01

    A study of the Bauschinger effect in pure copper shows that by comparison with dispersion hardened copper the effect is very small and independent of temperature. This suggests that the obstacles to flow are deformable. A simple composite model based on this principle accounts for the data semi......-quantitatively and also accounts for the stored energy of cold-work. An interesting feature of the model is that it shows very clearly that, although dislocation pile-ups may exist, the flow stress of the composite is entirely due to the resistance to dislocation motion in the tangles of forest dislocations....

  18. Cupriferous peat: embryonic copper ore

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, D C

    1961-07-01

    A Canadian peat was found to contain up to 10% (dry weight) Cu, and a mechanism for Cu accumulation in peat was discussed. Wet chemical techniques and x-ray diffraction were utilized to identify Cu compounds. Copper was organically bound in peat as a chelate complex and did not occur as an oxide, sulfide, or as elemental Cu. Because of the low S content of peat the Cu was assumed to be bound to nitrogen or oxygen-containing components. Copper, having a greater affinity for N, tended to form the more stable Cu-N chelate. The element was concentrated as circulating cupriferous ground waters filtered through the peat.

  19. Tunable synthesis of copper nanotubes

    International Nuclear Information System (INIS)

    Kaniukov, E; Yakimchuk, D; Kozlovsky, A; Shlimas, D; Zdorovets, M; Kadyrzhanov, K

    2016-01-01

    Simple method of tunable synthesis of copper nanotubes based on template synthesis was developed. A comprehensive study of the structural, morphological and electrical characteristics of the obtained nanostructures was carried out. Characterization of structural features was made by methods of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry analysis. Evaluation of wall thickness is made by methods of gas permeability. Electrical conductivity of nanotubes was define in the study of their current-voltage characteristics. The possibility to control of copper nanotubes physical properties by variation of the deposition parameters was shown. (paper)

  20. Electrical conduction in composites containing copper core–copper ...

    Indian Academy of Sciences (India)

    Unknown

    of Mott's small polaron hopping conduction model. ... sample exhibited a metallic conduction confirming the formation of a percolative chain of ..... value of εp. Also the oxide layer formation on the initially unoxidized copper particles will increase the resistivity level of the nanocomposite. This is borne out by results shown in ...

  1. Magnetic susceptibility as a method of investigation of short-range order in strongly nonstoichiometric carbides

    International Nuclear Information System (INIS)

    Nazarova, S.Z.; Gusev, A.I.

    2001-01-01

    Magnetic susceptibility in disordered and ordered carbides of transition metals (M = Ti, Zr, Hf, Nb, Ta) was studied, the results are generalized. It was ascertained that the change in carbide susceptibility induced by deviation from stoichiometry stems from specific features of electronic spectra of the compounds. The use of magnetic susceptibility for determining structural disorder-order transitions is discussed. It is shown that change in the contribution made by orbital paramagnetism, resulting from short-range order formation, is the reason of decrease in susceptibility of nonstoichiometric carbides during the ordering. Experimentally obtained data on susceptibility permitted evaluating short- and far-range order parameters in NbC y , TaC y , TiC y and HfC y carbides [ru

  2. Investigations on the conditions for obtaining high density boron carbide by sintering

    International Nuclear Information System (INIS)

    Kislyj, P.S.; Grabtschuk, B.L.

    1975-01-01

    The results of investigations on kinetics of condensation and mechanisms of mass transfer in the process of sintering of technical, chemically pure and synthesized boron carbide are generalized. Laws on boron carbide densification depending upon temperature, time of isothermic endurance, thermal speed, size of powder particles and variable composition in homogeneity are determined. From the results obtained on condensation kinetics and special experiments on studying the changes in properties after heating under different conditions, the role of dislocation and diffusion processes in mass transfer during boron carbide sintering is exposed. The properties of sintered boron carbide are 15-20% lower than the properties of high-pressed one, that is conditioned by intercrystallite distortion of the first one and transcrystallite of the second one

  3. Present status of uranium-plutonium mixed carbide fuel development for LMFBR

    International Nuclear Information System (INIS)

    Handa, Muneo; Suzuki, Yasufumi.

    One Oarai characteristic of a carbide fuel is that its doubling time is about 13 years which is only about half as long as that of an oxide fuel. The development of carbide fuels in the past ten years has been truly remarkable. Especially, through the new fuel development program initiated in 1974 in the United States, success has been achieved with respect to He- and Na-bond fuels in obtaining a 16 a/o burning rate without damage to cladding tubes. In 1984 at FFTF, a radiation of a fuel assembly consisting 91 fuel pins is contemplated. On the other hand, in Japan, in 1974, a Fuel Research Wing specializing in the study of carbide fuels was constructed in the Oarai Laboratory of the Atomic Energy Research Institute and in the fall of 1982, was successful in fabricating two carbide fuel pins having different chemical compositions

  4. Theoretical study of physical properties and oxygen incorporation effect in nanolaminated ternary carbides 211-MAX phases

    KAUST Repository

    Kanoun, Mohammed; Goumri-Said, Souraya

    2012-01-01

    In this chapter, we employ ab initio approaches to review some important physical properties of nanolaminated ternary carbides MAX phases. We fi rstly use an all electron full-potential linearized augmented plane-wave method within the generalized

  5. Gelcasting of SiC/Si for preparation of silicon nitride bonded silicon carbide

    International Nuclear Information System (INIS)

    Xie, Z.P.; Tsinghua University, Beijing,; Cheng, Y.B.; Lu, J.W.; Huang, Y.

    2000-01-01

    In the present paper, gelcasting of aqueous slurry with coarse silicon carbide(1mm) and fine silicon particles was investigated to fabricate silicon nitride bonded silicon carbide materials. Through the examination of influence of different polyelectrolytes on the Zeta potential and viscosity of silicon and silicon carbide suspensions, a stable SiC/Si suspension with 60 vol% solid loading could be prepared by using polyelectrolyte of D3005 and sodium alginate. Gelation of this suspension can complete in 10-30 min at 60-80 deg C after cast into mold. After demolded, the wet green body can be dried directly in furnace and the green strength will develop during drying. Complex shape parts with near net size were prepared by the process. Effects of the debindering process on nitridation and density of silicon nitride bonded silicon carbide were also examined. Copyright (2000) The Australian Ceramic Society

  6. Novel Manufacturing Process for Unique Mixed Carbide Refractory Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR Phase I project will establish the feasibility of an innovative manufacturing process to fabricate a range of unique hafnium/silicon based carbide...

  7. Tribological behaviors of graphite sliding against cemented carbide in CaCl2 solution

    International Nuclear Information System (INIS)

    Guo, Fei; Tian, Yu; Liu, Ying; Wang, Yuming

    2015-01-01

    The tribological behaviors of graphite sliding against cemented carbide were investigated using a standard tribological tester Plint TE92 in a ring-on-ring contact configuration in both CaCl 2 solution and deionized water. An interesting phenomenon occurred: as the CaCl 2 solution concentration increased, the friction coefficient firstly decreased and was lower than that in the deionized water, and then gradually increased, exceeding the friction coefficient in the deionized water. The wear rate of the ,graphite also presented the same variation trend. According to the polarization curves of cemented carbide, contact angle measurements, Raman spectrum analysis and scanning electron microscope (SEM) images analysis, the above friction and wear behaviors of graphite sliding against cemented carbide were attributed to the graphite surface wettability and the cemented carbide surface corrosion property. (paper)

  8. Atom-vacancy ordering and magnetic susceptibility of nonstoichiometric hafnium carbide

    International Nuclear Information System (INIS)

    Gusev, A.I.; Zyryanova, A.N.

    1999-01-01

    Experimental results on magnetic susceptibility of nonstoichiometric hafnium carbide HfC y (0.6 0.71 , HfC 0.78 and HfC 0.83 in the range of 870-930 K the anomalies are revealed which are associated with superstructure short-range ordering in a non-metallics sublattice. It is shown that a short-range order in HfC 0.71 and HfC 0.78 carbides corresponds to Hf 3 C 2 ordered phase, and in HfC 0.83 carbide - to Hf 6 C 5 ordered phase. HfC 0.78 carbide is found to possesses zero magnetic susceptibility in temperature range 910-980 K [ru

  9. A study on the formation of uranium carbide in an induction furnace

    International Nuclear Information System (INIS)

    Song, In Young; Lee, Yoon Sang; Kim, Eung Soo; Lee, Don Bae; Kim, Chang Kyu

    2005-01-01

    Uranium is a typical carbide-forming element. Three carbides, UC, U 2 C 3 and UC 2 , are formed in the uranium-carbon system. The most important of these as fuel is uranium monocarbide UC. It is well known that Uranium carbides can be obtained by three basic methods: 1) by reaction of uranium metal with carbon; 2) by reaction of uranium metal powder with gaseous hydrocarbons; 3) by reaction of uranium oxides with carbon. The use of uranium monocarbide, or materials based on it, has great prospects as fuel for nuclear reactors. It is quite possible that uranium dicarbide UC 2 may also acquire great importance as a fuel, particularly in dispersion fuel elements with graphite matrix. In the present study, uranium carbides are obtained by direct reaction of uranium metal with graphite in a high frequency induction furnace

  10. Single-Event Effects in Silicon and Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2014-01-01

    NASA Electronics Parts and Packaging program-funded activities over the past year on single-event effects in silicon and silicon carbide power devices are presented, with focus on SiC device failure signatures.

  11. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) Power Processing Unit (PPU) for Hall Effect...

  12. The Affordable Pre-Finishing of Silicon Carbide for Optical Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Creare proposes to develop a novel, laser-assisted, pre-finishing process for chemical vapor deposition (CVD) coated silicon-carbide ceramics. Our innovation will...

  13. Low-Cost, Silicon Carbide Replication Technique for LWIR Mirror Fabrication, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSG proposes an innovative optical manufacturing approach that will enable the low-cost fabrication of lightweighted, Long Wave Infrared (LWIR) Silicon Carbide (SiC)...

  14. The First JFET-based Silicon Carbide Active Pixel Sensor UV Imager, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar-blind ultraviolet (UV) imaging is critically important in the fields of space astronomy, national defense, and bio-chemistry. United Silicon Carbide, Inc....

  15. The First JFET-Based Silicon Carbide Active Pixel Sensor UV Imager, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar-blind ultraviolet (UV) imaging is needed in the fields of astronomy, national defense, and bio-chemistry. United Silicon Carbide, Inc. proposes to develop a...

  16. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  17. Identification of stacking faults in silicon carbide by polarization-resolved second harmonic generation microscopy.

    Science.gov (United States)

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Polychroniadis, Efstathios K; Stanciu, George A

    2017-07-07

    Although silicon carbide is a highly promising crystalline material for a wide range of electronic devices, extended and point defects which perturb the lattice periodicity hold deep implications with respect to device reliability. There is thus a great need for developing new methods that can detect silicon carbide defects which are detrimental to device functionality. Our experiment demonstrates that polarization-resolved second harmonic generation microscopy can extend the efficiency of the "optical signature" concept as an all-optical rapid and non-destructive set of investigation methods for the differentiation between hexagonal and cubic stacking faults in silicon carbide. This technique can be used for fast and in situ characterization and optimization of growth conditions for epilayers of silicon carbide and similar materials.

  18. Formation of Porous Silicon Carbide and its Suitability as a Chemical and Temperature Detector

    National Research Council Canada - National Science Library

    Rittenhouse, Tilghman

    2004-01-01

    .... A novel electroless method of producing porous silicon carbide (PSiC) is presented. Unlike anodic methods of producing PSiC the electroless process does not require electrical contact during etching...

  19. TRANSFORMATIONS IN NANO-DIAMONDS WITH FORMATION OF NANO-POROUS SILICON CARBIDE AT HIGH PRESSURE

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2010-01-01

    Full Text Available The paper contains investigations on regularities of diamond - silicon carbide composite structure formation at impact-wave excitation. It has been determined that while squeezing a porous blank containing Si (SiC nano-diamond by explosive detonation products some processes are taking place such as diamond nano-particles consolidation, reverse diamond transition into graphite, fragments formation from silicon carbide. A method for obtaining high-porous composites with the presence of ultra-disperse diamond particles has been developed. Material with three-dimensional high-porous silicon-carbide structure has been received due to nano-diamond graphitation at impact wave transmission and plastic deformation. The paper reveals nano-diamonds inverse transformation into graphite and its subsequent interaction with the silicon accompanied by formation of silicon-carbide fragments with dimensions of up to 100 nm.

  20. Silicon Carbide Lightweight Optics With Hybrid Skins for Large Cryo Telescopes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) has developed new silicon carbide (SiC) foam-based optics with hybrid skins that are composite, athermal and lightweight (FOCAL) that...

  1. Silicon Carbide Lightweight Optics With Hybrid Skins for Large Cryo Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) proposes to manufacture new silicon carbide (SiC) foam-based optics that are composite, athermal and lightweight (FOCAL) that provide...

  2. 21 CFR 73.2647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.2647 Section 73.2647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The color additive copper powder shall conform in identity and specifications to the requirements of § 73...

  3. Influence of Heat Treatment on Content of the Carbide Phases in the Microstructure of High-Speed Steel

    Directory of Open Access Journals (Sweden)

    Jaworski J.

    2017-09-01

    Full Text Available This article presents the results of investigations of the effect of heat treatment temperature on the content of the carbide phase of HS3-1-2 and HS6-5-2 low-alloy high-speed steel. Analysis of the phase composition of carbides is carried out using the diffraction method. It is determined that with increasing austenitising temperature, the intensification of dissolution of M6C carbide increases. As a result, an increase in the grain size of the austenite and the amount of retained austenite causes a significant reduction in the hardness of hardened steel HS3-1-2 to be observed. The results of diffraction investigations showed that M7C3 carbides containing mainly Cr and Fe carbides and M6C carbides containing mainly Mo and W carbides are dissolved during austenitisation. During austenitisation of HS3-1-2 steel, the silicon is transferred from the matrix to carbides, thus replacing carbide-forming elements. An increase in a degree of tempering leads to intensification of carbide separation and this process reduce the grindability of tested steels.

  4. Ordering effects on structure and specific heat of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Gusev, A.I.

    1999-01-01

    The experimental results on the change in the crystal structure and specific heat of the nonstoichiometric titanium carbide TiC y (0.5 2 C phases with cubic and trigonal symmetry and the rhombic ordered Ti 3 C 2 phase are formed in the titanium carbide at the temperature below 1000 K by the phase transitions mechanism. The temperatures and heats of the order-disorder phase transitions are determined [ru

  5. Influence of nonstoichiometry and ordering on basic structure parameter of cubic titanium carbide

    International Nuclear Information System (INIS)

    Zueva, L.V.; Gusev, A.I.

    1999-01-01

    Effect of nonstoichiometry and phase transformations of the disorder-order type on the basis (B1 type) structure period of TiC y (0.5 y titanium carbide with formation of the Ti 2 C and Ti 3 C 2 superstructures leads to growth of the basic crystal lattice period as compared to disordered carbide. The problem on trends in static atomic displacement near vacancy is discussed with an account of the lattice period change [ru

  6. Evaluation of titanium carbide metal matrix composites deposited via laser cladding

    Science.gov (United States)

    Cavanaugh, Daniel Thomas

    Metal matrix composites have been widely studied in terms of abrasion resistance, but a particular material system may behave differently as particle size, morphology, composition, and distribution of the hardening phase varies. The purpose of this thesis was to understand the mechanical and microstructural effects of combining titanium carbide with 431 series stainless steel to create a unique composite via laser cladding, particularly regarding wear properties. The most predominant effect in increasing abrasion resistance, measured via ASTM G65, was confirmed to be volume fraction of titanium carbide addition. Macrohardness was directly proportional to the amount of carbide, though there was an overall reduction in individual particle microhardness after cladding. The reduction in particle hardness was obscured by the effect of volume fraction carbide and did not substantially contribute to the wear resistance changes. A model evaluating effective mean free path of the titanium carbide particles was created and correlated to the measured data. The model proved successful in linking theoretical mean free path to overall abrasion resistance. The effects of the titanium carbide particle distributions were limited, while differences in particle size were noticeable. The mean free path model did not correlate well with the particle size, but it was shown that the fine carbides were completely removed by the coarse abrasive particles in the ASTM G65 test. The particle morphology showed indications of influencing the wear mode, but no statistical reduction was observed in the volume loss figures. Future studies may more specifically focus on particle morphology or compositional effects of the carbide particles.

  7. Dependence of silicon carbide coating properties on deposition parameters: preliminary report

    International Nuclear Information System (INIS)

    Lauf, R.J.; Braski, D.N.

    1980-05-01

    Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide, which acts as a pressure vessel and provides containment of metallic fission products. The silicon carbide (SiC) is deposited by the thermal decomposition of methyltrichlorosilane (CH 3 SiCl 3 or MTS) in an excess of hydrogen. The purpose of the current study is to determine how the deposition variables affect the structure and properties of the SiC layer

  8. UK irradiation experience relevant to advanced carbide fuel concepts for LMFBR's

    International Nuclear Information System (INIS)

    Bagley, K.Q.; Batey, W.; Paris, R.; Sloss, W.M.; Snape, G.P.

    1977-01-01

    Despite discouraging prognoses of fabrication and reprocessing problems, it is recognized that the quest for a carbide fuel pin design which fully exploits the favourable density and thermal conductivity of (U,Pu) monocarbide must be maintained. Studies in aid of carbide fuel development have, therefore, continued in the UK in parallel with those on oxide, albeit at a substantially lower level of effort, and a sufficient body of irradiation experience has been accumulated to allow discrimination of realistic fuel pin designs

  9. DC characteristics and parameters of silicon carbide high-voltage power BJTs

    International Nuclear Information System (INIS)

    Patrzyk, Joanna; Zarębski, Janusz; Bisewski, Damian

    2016-01-01

    The paper shows the static characteristics and operating parameters of the bipolar power transistors made of silicon carbide and for comparison their equivalents made of classical silicon technology. The characteristics and values of selected operating parameters with special emphasis on the effect of temperature and operating point of considered devices are discussed. Quantitative as well as qualitative differences between the characteristics of the transistor made of silicon and silicon carbide are indicated as well

  10. Preparation of fiber reinforced titanium diboride and boron carbide composite bodies

    International Nuclear Information System (INIS)

    Newkirk, L.R.; Riley, R.E.; Sheinberg, H.; Valencia, F.A.; Wallace, T.C.

    1979-01-01

    A process is described for uniformly infiltrating woven carbon cloth with either titanium diboride or boron carbide at reduced pressure (15 to 25 torr). The effects of deposition temperature on the uniformity of penetration and on coating rate are described for temperatures from 750 to 1000 0 C and deposit loadings from 20 to 43 vol. %. For the boron carbides, boron composition is discussed and evidence is presented suggesting that propene is the dominant rate controlling reactant

  11. Examination of the Combustion Morphology of Ziconium Carbide Using Scanning Electron Microscopy

    OpenAIRE

    Newbold, Brian R.

    1997-01-01

    Calculation of viscous particle damping of acoustic combustion instability in solid propellant motors requires an understanding of the combustion behavior of added particles and oxides. A simple hydrogen/oxygen flame was used to ignite carefully sieved zirconium carbide particles which were impacted on slides at different levels below the burner. Scanning electron microscopy revealed that zirconium carbide has a complex heterogeneous combustion morphology. Initially, particles are partly v...

  12. Pulverization of boron element and proportions of boron carbide in boron

    International Nuclear Information System (INIS)

    Lang, F.M.; Finck, C.

    1956-01-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 μ. Grain sizes smaller than 1μ are required for applying thin layers of such boron. (author) [fr

  13. Precipitation Behavior of Carbides in H13 Hot Work Die Steel and Its Strengthening during Tempering

    Directory of Open Access Journals (Sweden)

    Angang Ning

    2017-02-01

    Full Text Available The properties of carbides, such as morphology, size, and type, in H13 hot work die steel were studied with optical microscopy, transmission electron microscopy, electron diffraction, and energy dispersive X-ray analysis; their size distribution and quantity after tempering, at different positions within the ingot, were analyzed using Image-Pro Plus software. Thermodynamic calculations were also performed for these carbides. The microstructures near the ingot surface were homogeneous and had slender martensite laths. Two kinds of carbide precipitates have been detected in H13: (1 MC and M6C, generally smaller than 200 nm; and (2 M23C6, usually larger than 200 nm. MC and M6C play the key role in precipitation hardening. These are the most frequent carbides precipitating at the halfway point from the center of the ingot, and the least frequent at the surface. From the center of the ingot to its surface, the size and volume fraction of the carbides decrease, and the toughness improves, while the contribution of the carbides to the yield strength increases.

  14. Corrosion behaviour of porous chromium carbide/oxide based ceramics in supercritical water

    International Nuclear Information System (INIS)

    Dong, Z.; Xin, T.; Chen, W.; Zheng, W.; Guzonas, D.

    2011-01-01

    Porous chromium carbide with a high density of open pores was fabricated by a reactive sintering method. Chromium oxide ceramics were obtained by re-oxidizing the porous chromium carbides formed. Some samples were added with yttria at 5 wt. %, prior to reactive sintering to form porous structures. Corrosion tests in SCW were performed at temperatures ranging from 375 o C to 625 o C with a fixed pressure at around 25∼30 MPa. The results show that chromium carbide is stable in SCW environments at temperatures up to 425 o C, above which disintegration of carbides through oxidation occurs. Porous chromium oxide samples show better corrosion resistance than porous chromium carbide, but disintegrate in SCW at around 625 o C. Among all the samples tested, chromium oxide ceramics with added yttria exhibited much better corrosion resistance compared with the pure chromium carbide/oxides. No evidence of weight change or disintegration of porous chromium oxides with 5 wt % added yttria was observed after exposure at 625 o C in SCW for 600 hours. (author)

  15. Microstructure and phase evolution in laser clad chromium carbide-NiCrMoNb

    International Nuclear Information System (INIS)

    Venkatesh, L.; Samajdar, I.; Tak, Manish; Doherty, Roger D.; Gundakaram, Ravi C.; Prasad, K. Satya; Joshi, S.V.

    2015-01-01

    Highlights: • Microstructural development during laser cladding has been studied. • In this multi component system Cr 7 C 3 is found to be the stable carbide phase. • Phases were identified by EBSD since XRD results were not conclusive. • Increase in laser power and/or scanning speed reduced the carbide content. • Hardness seems to depend on phase content as well as microstructure. - Abstract: Microstructural development in laser clad layers of Chromium carbide (Cr x C y )-NiCrMoNb on SA 516 steel has been investigated. Although the starting powder contained both Cr 3 C 2 and Cr 7 C 3 , the clad layers showed only the presence of Cr 7 C 3 . Microtexture measurements by electron back scattered diffraction (EBSD) revealed primary dendritic Cr 7 C 3 with Ni rich FCC metallic phase being present in the interdendritic spaces. Further annealing of the laser clad layers and furnace melting of the starting powder confirmed that Cr 7 C 3 is the primary as well as stable carbide phase in this multi component system. Increase in laser power and scanning speed progressively reduced carbide content in the laser clad layers. Increased scanning speed, which enhances the cooling rate, also led to reduction in the secondary arm spacing (λ 2 ) of the Cr 7 C 3 dendrites. The clad layer hardness increased with carbide content and with decreased dendrite arm spacing.

  16. Flexural strength of proof-tested and neutron-irradiated silicon carbide

    Science.gov (United States)

    Price, R. J.; Hopkins, G. R.

    1982-08-01

    Proof testing before service is a valuable method for ensuring the reliability of ceramic structures. Silicon carbide has been proposed as a very low activation first-wall and blanket structural material for fusion devices, where it would experience a high flux of fast neutrons. Strips of three types of silicon carbide were loaded in four-point bending to a stress sufficient to break about a third of the specimens. Groups of 16 survivors were irradiated to 2 × 10 26n/ m2 ( E>0.05 MeV) at 740°C and bend tested to failure. The strength distribution of chemically vapor-deposited silicon carbide (Texas Instruments) was virtually unchanged by irradiation. The mean strength of sintered silicon carbide (Carborundum Alpha) was reduced 34% by irradiation, while the Weibull modulus and the truncated strength distribution characteristic of proof-tested material were retained. Irradiation reduced the mean strength of reaction-bonded silicon carbide (Norton NC-430) by 58%, and the spread in strength values was increased. We conclude that for the chemically vapor-deposited and the sintered silicon carbide the benefits of proof testing to eliminate low strength material are retained after high neutron exposures.

  17. Effect of magnetic field on the carbide precipitation during tempering of a molybdenum-containing steel

    International Nuclear Information System (INIS)

    Hou, T.P.; Li, Y.; Zhang, J.J.; Wu, K.M.

    2012-01-01

    The influence of a high magnetic field on the carbide precipitation during the tempering of an Fe–2.8C–3.0Mo(wt%) steel was investigated. As-quenched steels were tempered at 200 °C for various times with and without the presence of 12-T magnetic field. The applied field effectively promoted the precipitation of the relatively high-temperature monoclinic χ-Fe 5 C 2 carbide, compared to the usual ε-Fe 2 C and η-Fe 2 C carbides precipitated without magnetic field. It is believed that the effect of applying a magnetic field is due to the reduction in the Gibbs free energy of the relatively higher magnetization phase. The denser distributions of the metastable carbides are attributed to the increased nucleation rate due to additional transformation force. The dispersed precipitation strengthening compensated for the decrease of hardness due to the loss of supersaturation of carbon atoms in the matrix. - Highlights: ► Applied field promoted the precipitation of χ-Fe 5 C 2 carbide. ► Promotion of the transition carbide was attributed to its higher magnetization. ► Increase in hardness was counterbalanced by the reduction in carbon content.

  18. Copper nanoparticles in zeolite Y

    NARCIS (Netherlands)

    Seidel, A.; Loos, J.; Boddenberg, B.

    1999-01-01

    CuCl has been dispersed in the supercages of a Y-type zeolite by heating a mechanical salt/host mixture in vacuo. The occluded salt was subsequently reduced to copper metal in a hydrogen atmosphere. Virtually complete reduction of the salt is achieved at 460°C. Under the same conditions,

  19. Effects of copper on mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Kostal, L

    1971-01-01

    The author deals with the effects of copper on mitosis. He found that a Cu concentration of 1 mg per liter is very toxic and strongly inhibits the course of mitosis in Vicia fabia. The effects of 0.5 mg and 0.25 mg Cu concentrations per liter were similar but a much weaker character.

  20. Copper complexes as chemical nucleases

    Indian Academy of Sciences (India)

    Unknown

    anticancer drug famotidine has been shown as a better catalyst than CuCl2 for sulfite ... Effect of addition of bis-chelate copper(II) complexes (dpq, •; phen, ; ..... Reproduction, Development & Genetics for their help in the DNA cleavage studies ...