WorldWideScience

Sample records for copper cadmium lead

  1. Transfer and accumulation of lead, zinc, cadmium and copper in ...

    African Journals Online (AJOL)

    Transfer and accumulation of lead, zinc, cadmium and copper in plants growing in abandoned mining-district area. HK Chakroun, F Souissi, JL Bouchardon, R Souissi, J Moutte, O Faure, E Remon, S Abdeljaoued ...

  2. Assessment of Copper, Cadmium and Lead in Organical Matrix

    International Nuclear Information System (INIS)

    Gutierrez, Ariel

    2000-08-01

    In this report the electrochemical method of differential pulse anode voltametry redisolution voltametry is used to quantitative assessment of copper, cadmium and lead in solution. The methodology is described in the preparation of samples for measurement

  3. Copper, nickel, zinc, cadmium and lead contamination of soil at ...

    African Journals Online (AJOL)

    This paper discussed heavy metals such as coppper (Cu), nickel (Ni), zinc (Zn), cadmium (Cd) and lead (Pb) in the soil collected from three sites from the solid waste dumping ground at Kureepuzha, very close to Ashtamudi Lake. Also, control samples were collected and analyzed for the said heavy metals. The levels of all ...

  4. Critical loads and excess loads of cadmium, copper and lead for European forest soils

    NARCIS (Netherlands)

    Reinds, G.J.; Bril, J.; Vries, de W.; Groenenberg, J.E.; Breeuwsma, A.

    1995-01-01

    Recently, concern has arisen about the impact of the dispersion of heavy metals in Europe. Therefore, a study (ESQUAD) was initiated to assess critical loads and steady-state concentrations of cadmium, copper and lead for European forest soils. The calculation methods used strongly resemble those

  5. Assessment of levels of copper, cadmium and lead in secretion of ...

    African Journals Online (AJOL)

    The levels of copper, cadmium and lead were determined in milk samples from cows grazed on open fields. The use of H2O2 cleared the residual colours of the metal solutions following digestion with HNO3 acid. The results of the Atomic Absorption Spectrophotometric analysis of the metal solutions from the milk samples ...

  6. Effects of Copper, Cadmium, Lead, and Arsenic in a Live Diet on Juvenile Fish Growth

    Science.gov (United States)

    The effects of dietborne copper, cadmium, lead, and arsenic on juvenile fish were evaluated using a live diet consisting of the oligochaete Lumbriculus variegatus. In 30-d exposures, no effects on growth and survival of rainbow trout, fathead minnow, and channel catfish were obs...

  7. Accumulation of cadmium, copper, lead, zinc and iron in the edible ...

    African Journals Online (AJOL)

    TANIMA

    The permissible limits of heavy metals for food safety set by different countries are shown in Table 3. The present study shows that oysters accumulated a considerable amount of metals in their body cells. The concentration of the metals like cadmium, copper, lead, zinc and iron in oyster tissue collected from Shankarpur.

  8. DISTRIBUTION OF TOTAL LEAD, COPPER, ZINC AND CADMIUM ...

    African Journals Online (AJOL)

    Levels of some heavy metals in soils along the highway from Tafo to Aboaso in Kumasi in the Ashanti region of Ghana were determined by atomic absorption spectrometry. Soil samples were collected at distances of 5 m, 20 m and 50 m from the roadside and at depths of 0-5 cm, 5-10 cm and 10-15 cm. Lead concentrations ...

  9. Kinetic investigation of myeloperoxidase upon interaction with copper, cadmium, and lead ions

    International Nuclear Information System (INIS)

    Shabani, M.; Ani, M.; Movahedian, A.; Samsam Shariat, Z. A.

    2011-01-01

    Myeloperoxidase, which is abundantly expressed in neutrophils, catalyzes the formation of a number of reactive oxidant species. However, evidence has emerged that Myeloperoxidase-derived oxidants contribute to tissue damage and initiation and propagation of inflammatory diseases, particularly, cardiovascular diseases. Therefore, studying the regulatory mechanisms of the enzyme activity is of great importance. For clarifying some possible mechanism of the enzyme activity, kinetic investigations of Myeloperoxidase in the presence of Copper, Cadmium, and Lead ions were carried out in vitro. Methods: Myeloperoxidase was partially purified from human white blood cells using ion-exchange and gel-filtration chromatography techniques. Its activity was measured spectrophotometrically by using tetramethyl benzidine as substrate. Results: Purified enzyme had a specific activity of 21.7 U/mg protein with a purity index of about 0.71. Copper inhibited Myeloperoxidase activity progressively up to a concentration of 60 m M at which about 80% of inhibition achieved. The inhibition was non-competitive with respect to tetramethyl benzidine. An inhibitory constant (Ki) of about 19 m M was calculated from the slope of repot. Cadmium and Lead did not show any significant inhibitory effect on the enzyme activity. Conclusion: The results of the present study may indicate that there are some places on the enzyme and enzyme-substrate complex for Copper ions. Binding of Copper ions to these places result in conformational changes of the enzyme and thus, enzyme inhibition. This inhibitory effect of Copper on the enzyme activity might be considered as a regulatory mechanism on Myeloperoxidase activity.

  10. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus

    International Nuclear Information System (INIS)

    Mata, Y.N.; Blazquez, M.L.; Ballester, A.; Gonzalez, F.; Munoz, J.A.

    2008-01-01

    The recovery of cadmium, lead and copper with the brown alga Fucus vesiculosus was characterized and quantified. The biosorption data fitted the pseudo-second order and Langmuir isotherm models, but did not adjust to the intraparticle diffusion model. The metal uptakes deduced from the pseudo-second order kinetic model and the Langmuir isotherm model followed a similar sequence: Cu > Cd ∼ Pb. The Langmuir maximum metal uptakes were: 0.9626 mmol/g, Pb 1.02 mmol/g, and Cu 1.66 mmol/g. According to the equilibrium constants of this isotherm model, the affinity of metals for the biomass followed this order: Pb > Cu > Cd. Biosorption was accomplished by ion exchange between metals in solution and algal protons, calcium and other light metals, and by complexation of the adsorbed metals with algal carboxyl groups. FTIR spectra showed a shift in the bands of carboxyl, hydroxyl and sulfonate groups

  11. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Y.N. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain); Blazquez, M.L. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain)], E-mail: mlblazquez@quim.ucm.es; Ballester, A.; Gonzalez, F.; Munoz, J.A. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain)

    2008-10-30

    The recovery of cadmium, lead and copper with the brown alga Fucus vesiculosus was characterized and quantified. The biosorption data fitted the pseudo-second order and Langmuir isotherm models, but did not adjust to the intraparticle diffusion model. The metal uptakes deduced from the pseudo-second order kinetic model and the Langmuir isotherm model followed a similar sequence: Cu > Cd {approx} Pb. The Langmuir maximum metal uptakes were: 0.9626 mmol/g, Pb 1.02 mmol/g, and Cu 1.66 mmol/g. According to the equilibrium constants of this isotherm model, the affinity of metals for the biomass followed this order: Pb > Cu > Cd. Biosorption was accomplished by ion exchange between metals in solution and algal protons, calcium and other light metals, and by complexation of the adsorbed metals with algal carboxyl groups. FTIR spectra showed a shift in the bands of carboxyl, hydroxyl and sulfonate groups.

  12. Chemical sensors in natural water: peculiarities of behaviour of chalcogenide glass electrodes for determination of copper, lead and cadmium ions

    International Nuclear Information System (INIS)

    Seleznev, B.L.; Legin, A.V.; Vlasov, Yu.G.

    1996-01-01

    Specific features of chemical sensors (chalcogenide glass and crystal ion-selective electrodes) behaviour have been studied to determine copper (2), lead, cadmium and fluorine in the course of in situ measurements, including long-term uninterrupted testing, for solving the problem of inspection over natural water contamination. 16 refs., 3 figs., 2 tabs

  13. Determining the arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillets from Vietnam.

    Science.gov (United States)

    Molognoni, Luciano; Vitali, Luciano; Ploêncio, Leandro As; Santos, Jacson N; Daguer, Heitor

    2016-07-01

    Pangasius is a fish produced on a large scale in Vietnam and exported to many countries. Since river contamination from human activities can affect the safety of this food, fish consumption can cause exposure to potentially toxic elements for humans. The aim of this study, therefore, was to assess arsenic, cadmium, lead, copper and chromium contents by atomic absorption spectrometry in Pangasius fillet produced in the provinces of Dong Thap and Can Tho (Vietnam) and exported to Brazil. The limits of detection were: arsenic 0.5443 µg kg(-1) , cadmium 0.0040 mg kg(-1) , chromium 0.0004 mg kg(-1) , copper 0.0037 mg kg(-1) and lead 0.0284 mg kg(-1) . Analysis of 20 samples showed results below the limit of detection for arsenic, chromium and lead, while copper average concentration was 0.0234 mg kg(-1) . Cadmium average concentration was 0.0547 mg kg(-1) , with no significant difference between the two regions studied. The samples of Pangasius had no detectable concentrations of arsenic, chromium, copper and lead, and do not represent a hazard to public health. However, cadmium analysis revealed non-compliant samples, demonstrating the importance of monitoring the quality of imported Pangasius fish. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Assessment of cadmium, copper and lead in marine species of the atlantic and pacific oceans of Guatemala by voltametry techniques

    International Nuclear Information System (INIS)

    Chun, Evelyn

    2000-01-01

    In this thesis results of measurements of cooper, lead, and cadmium were made using voltametry. Three points in the pacific ocean and one in the atlantic were selected to obtain samples of fish and shrimp as species that are contaminated with toxic metals. The samples were treated by physical and chemical methods to turn soluble the metals and the chemical determination could be done using voltametry or differential polarography of pulse. The results shown that copper, lead and cadmium are present in the samples in traces level. The precision of measurements was verified measuring certified by the National Institute of Standard and Technology NIST of the Commerce Departmento of the United States

  15. Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV.

    Science.gov (United States)

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

    2014-01-01

    Apart from the breast milk, infant formula and baby weaning food have a special role in infant diet. Infants and young children are very susceptible to amount of trace elements. Copper and zinc are two elements that add in infant food. Lead and cadmium are heavy metals that enter to food chain unavoidably. DPASV is a benefit and applicable method for measurement of trace elements in food products. In this study, concentration of zinc, copper, lead and cadmium in four brands of baby food (rice and wheat based) and powder milk was analyzed with DPASV and polarograph set. Total Mean ± SE of zinc, copper, lead and cadmium in baby foods (n = 240) were 11.86 ± 1.474 mg/100g, 508.197 ± 83.154 μg/100g, 0.445 ± 0.006, 0.050 ± 0.005 mg/Kg respectively. Also these amount in powder milk (n = 240) were 3.621± 0.529 mg/100g, 403.822 ± 133.953 μg/100g, 0.007 ± 0.003, 0.060 ± 0.040 mg/Kg respectively. Zinc level in baby food type I was higher than lablled value (P = 0.030), but in other brands was not difference. Concentration of copper in all of samples was in labeled range (P > 0.05). In each four products, level of lead and cadmium were lower than the standard limit (P baby food I, had difference versus other products. Concentration of zinc, camium in baby food type I, was higher than type II (P = 0.043, 0.001 respectively). Concentration of lead and cadmium in baby food type II, was higher than infant formulas, but are in standard limit.

  16. Electrochemical stripping determination of traces of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide

    International Nuclear Information System (INIS)

    Stulik, K.; Beran, P.; Dolezal, J.; Opekar, F.

    1978-01-01

    Procedures have been developed for the determination of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide, at concentrations of 1ppm or less. Zirconium metal was dissolved in sulphuric acid, and zirconium dioxide decomposed under pressure with hydrofluoric acid. Sample solutions were prepared in dilute sulphuric acid. For the stripping determination, the sample solution was either mixed with a complexing tartrate base electrolyte or the pre-electrolysis was carried out in acid solution, with the acid solution being exchanged for a pure base electrolyte (e.g. an acetate buffer) for the stripping step. The stripping step was monitored by d.c., differential pulse and Kalousek commutator voltammetry and the three methods were compared. A stationary mercury-drop electrode can generally be used for all the methods, whereas a mercury-film electrode is suitable only for the d.c. voltammetric determination of copper, lead and cadmium, as pulse measurements with films are poorly reproducible and the electrodes are easily damaged. The relative standard deviation does not exceed 20%. Some samples contained relatively large amounts of copper, which is best separated by electrodeposition on a platinum electrode. (author)

  17. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb

    International Nuclear Information System (INIS)

    Zhang, Long-Lian; Lu, Ling; Pan, Ya-Juan; Ding, Chun-Guang; Xu, Da-Yong; Huang, Chuan-Feng; Pan, Xing-Fu; Zheng, Wei

    2015-01-01

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu, Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established

  18. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long-Lian, E-mail: Longlian57@163.com [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Lu, Ling [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Pan, Ya-Juan; Ding, Chun-Guang [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Xu, Da-Yong [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Huang, Chuan-Feng; Pan, Xing-Fu [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Zheng, Wei, E-mail: wzheng@purdue.edu [School of Health Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2015-07-15

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu, Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established.

  19. Chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G.; Dorman, Rebecca A.; Brumbaugh, William G.; Mebane, Christopher A.; Kunz, James L.; Hardesty, Douglas K.

    2014-01-01

    Chronic toxicity of cadmium, copper, lead, or zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) was evaluated in water-only exposures started with newly hatched larvae or approximately 1-mo-old juveniles. The 20% effect concentration (EC20) for cadmium from the sturgeon tests was higher than the EC20 from the trout tests, whereas the EC20 for copper, lead, or zinc for the sturgeon were lower than those EC20s for the trout. When the EC20s from the present study were included in compiled toxicity databases for all freshwater species, species mean chronic value for white sturgeon was in a relatively low percentile of the species sensitivity distribution for copper (9th percentile) and in the middle percentile for cadmium (55th percentile), zinc (40th percentile), or lead (50th percentile). However, the species mean chronic value for rainbow trout was in a high percentile for copper, lead, and zinc (∼68th–82nd percentile), but in a low percentile for cadmium (23rd percentile). The trout EC20s for each of the 4 metals and the sturgeon EC20s for cadmium or lead were above US Environmental Protection Agency chronic ambient water quality criteria (AWQC) or Washington State chronic water quality standards (WQS), whereas the sturgeon EC20s for copper or zinc were approximately equal to or below the chronic AWQC and WQS. In addition, acute 50% effect concentrations (EC50s) for copper obtained in the first 4 d of the chronic sturgeon test were below the final acute value used to derive acute AWQC and below acute WQS for copper.

  20. Chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures.

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G; Dorman, Rebecca A; Brumbaugh, William G; Mebane, Christopher A; Kunz, James L; Hardesty, Doug K

    2014-10-01

    Chronic toxicity of cadmium, copper, lead, or zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) was evaluated in water-only exposures started with newly hatched larvae or approximately 1-mo-old juveniles. The 20% effect concentration (EC20) for cadmium from the sturgeon tests was higher than the EC20 from the trout tests, whereas the EC20 for copper, lead, or zinc for the sturgeon were lower than those EC20s for the trout. When the EC20s from the present study were included in compiled toxicity databases for all freshwater species, species mean chronic value for white sturgeon was in a relatively low percentile of the species sensitivity distribution for copper (9th percentile) and in the middle percentile for cadmium (55th percentile), zinc (40th percentile), or lead (50th percentile). However, the species mean chronic value for rainbow trout was in a high percentile for copper, lead, and zinc (∼68th-82nd percentile), but in a low percentile for cadmium (23rd percentile). The trout EC20s for each of the 4 metals and the sturgeon EC20s for cadmium or lead were above US Environmental Protection Agency chronic ambient water quality criteria (AWQC) or Washington State chronic water quality standards (WQS), whereas the sturgeon EC20s for copper or zinc were approximately equal to or below the chronic AWQC and WQS. In addition, acute 50% effect concentrations (EC50s) for copper obtained in the first 4 d of the chronic sturgeon test were below the final acute value used to derive acute AWQC and below acute WQS for copper. Published 2014 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  1. Copper, Cadmium and Lead in superficial sediment, water and the fish Cyprinodon Dearborni, in two Lagoons of Venezuela

    International Nuclear Information System (INIS)

    Toledo, J.; Lemus, M.; Chung, K. S

    2000-01-01

    The concentration of copper, cadmium and lead in superficial sediment, water and the fish Cyprenodon dearborni was determined in two coastal lagoons of Sucre State, Venezuela. Chacopata lagoon is hyper saline while Los Patos Lagoon is hypo saline and receives significant waste water from Cumana city. Water, sediment and fish samples were collected in Frebruary 1998. In the laboratory, samples underwent acid digestion and were analysed by atomic absorption spectrophotometry. The mean values of the metals in C dearborni from the Chacopata lagoon were: 159.26± 210.68 μg/g for Cu, 44.71±45.58 μg/g for Cd, and 9.31±23.34 μg/g for Pb, while for Los Patos lagoon the mean values were: 64.88±16.30, 19.48± 5.81 and 22.85±20.00, respectively. In the water column, the metal concentration ranges were: 2.3-11.6, 3.9-5.4 and 21-32 mg/l for cooper, cadmium and lead, respectively. These results suggest that metal levels in sediment, water column and organisms in both lagoons do not differ, except for lead, even though only Los Patos receives waste water. (Author) [es

  2. Determination of heavy metal traces in foodstuffs by means of inverse polarography. II. Content of lead, cadmium and copper in edible mushrooms

    Energy Technology Data Exchange (ETDEWEB)

    Collet, P.

    1977-03-01

    This paper reports on the lead, cadmium and copper contents in wild-growing edible mushrooms, in fresh cultivated mushrooms and in canned mushrooms. Determination of heavy metals was effected by means of inverse polarography and atomic absorption. In all wild-growing edible mushrooms, an increased content of cadmium was quite conspicuous. It was particularly high in Psalliota arvensis and abruptibula and, with an average of 4.65 ppm based on fresh weight, was 14 times the cadmium content in the other agaric and boletus mushrooms and 330 times that of fresh cultivated mushrooms.

  3. The Role of Blood Lead, Cadmium, Zinc and Copper in Development and Severity of Acne Vulgaris in a Nigerian Population.

    Science.gov (United States)

    Ikaraoha, C I; Mbadiwe, N C; Anyanwu, C J; Odekhian, J; Nwadike, C N; Amah, H C

    2017-04-01

    Acne vulgaris is a very common skin disorder affecting human beings. There is a paucity of report on the role of heavy metals-lead (Pb) and cadmium (Cd)-globally, and trace metals-zinc (Zn) and copper (Cd)-particularly in Nigeria in the development/severity of acne vulgaris. This study is aimed to determine the blood levels of some heavy metals-cadmium and lead-and trace metals-zinc and copper-in acne vulgaris sufferers in a Nigerian population. Venous blood samples were collected from a total number of 90 non-obese female subjects consisting of 30 mild, 30 moderate and 30 severe acne vulgaris sufferers for blood Cd, Pb, Cu and Zn determination. They were age-matched with 60 females without acne vulgaris who served as the control subjects. Acne sufferers had significantly higher blood Cd and Pb (P = 0.0143 and P = 0.0001 respectively) and non-significantly different blood levels of Cu and Zn (P = 0.910 and P = 0.2140 respectively) compared to controls. There were significant progressive increases in blood levels of Cd and Pb (P = 0.0330 and P = 0.0001 respectively) and non-significant differences in the mean blood level of Cu and Zn (P = 0.1821 and P = 0.2728 respectively) from mild to moderate and severe acne vulgaris sufferers. Increases in blood Cd and Pb may play critical roles in the pathogenesis/severity of acne vulgaris, while Cu and Zn seem to play less significant roles in the development of this disorder in this environment.

  4. Electrochemical determination of the levels of cadmium, copper and lead in polluted soil and plant samples from mining areas in Zamfara State, Nigeria

    Directory of Open Access Journals (Sweden)

    Modupe Mabel Ogunlesi

    2017-12-01

    Full Text Available The concentrations of lead, copper and cadmium in soil and plant samples collected from Abare and Dareta villages in Anka local government area of Zamfara State, Nigeria have been electrochemically determined. The study was carried out because of the high mortality of women and children under five, reported for these areas in June 2010. The cause was ascribed to the lead poisoning which has been related to the mining and processing of gold-containing ores. Linear sweep anodic stripping voltammetry technique was used with the glassy carbon working, Ag/AgCl reference and platinum auxiliary electrodes. Voltammetric peaks for lead, copper and cadmium that were observed at -495 mV, -19.4 mV and -675 mV, respectively, have formed a basis for construction of the corresponding calibration plots. The concentrations (in mg/kg of lead, copper and cadmium in the soil samples were found in the ranges of 18.99−26087.70, 2.96−584.60 and 0.00−1354.25, respectively. The concentration values for lead were far above already established USEPA (2002 and WHO (1996 maximum permissible limits for residential areas. The concentrations of lead, copper and cadmium in the food samples ranged between 5.70−79.91, 11.17−41.21 and 0.00−5.74 mg/kg. Several of these values are found well above the FAO/WHO limits of 0.1, 2 and 0.1 mg/kg, respectively. The results indicate that in addition to the lead poisoning, copper and cadmium poisoning may also be responsible for sudden and high mortality in this population.

  5. Potentiometric determination of stability constants of cyanoacetato complexes of cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II) and lead(II).

    Science.gov (United States)

    Matusinović, T; Filipović, I

    1981-03-01

    Stability constants of cyanoacetato complexes of cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II) and lead(II) were determined potentiometrically at 25.0 +/- 0.1 degrees and ionic strength 2M (sodium perchlorate). The stability constants were evaluated by a weighted least-squares method.

  6. Assessment of Four Heavy Metals Mercury, Lead, Copper and Cadmium Levels in Muscles of Import-ed Tilapia to Iran

    Directory of Open Access Journals (Sweden)

    Behsan Hemmatinezhad

    2017-04-01

    Full Text Available This study was conducted to determine the residues of mercury (Hg, lead (Pb, copper (Cu and cadmium (Cd in the imported tilapia fillets. Thirty random samples from imported tilapia fillets were collected from different markets in Isfahan City, central Iran. They were analyzed using Graphite Furnace Atomic Absorption Spectrometer (Perkin Elmer 800 for Pb, Cu, Cd and flow injection mercury system (Perkin Elmer 400 for Hg. Out of the 30 tested samples, concentration of Hg, Pb, Cu and Cd in the tilapia fillets samples as mean± standard deviation were 0.083±.016, 0.638±0.067, 0.521± 0.081 and 0.136 ± 0.025 mg/kg, respectively. Among these, amounts obtained for all metals except for lead were lower than the permissible level specified by WHO (P<1%. The Pb concentrations in all examined samples were higher than WHO standards. The continuous consumption of these contaminated fish regularly for long time may lead to health troubles.

  7. Contents of cadmium, copper, zinc, and lead in organs of Rhizophora mangle in Sevilla River mouth - Cienaga Grande de Santa Marta, Colombian Caribbean

    International Nuclear Information System (INIS)

    Naranjo Sanchez, Yury A; Troncoso, Olivo Walberto

    2008-01-01

    In order to determine the contents of cadmium, copper, zinc, and lead in leaves, stalks, and root of Rhizophora mangle, samples from three parcels located in the river Sevilla mouth - Cienaga Grande de Santa Marta, were taken in October 2003. Measures of metals concentrations were made through the Inductively Coupled Plasma Atomic Emission Spectrometry technique (ICP-AES). The results indicated that lead concentration in R. mangle organs was below method detection limit ≤38 g/g) except the absorbent root (16.3 g/g); and significant differences exist in the contents of cadmium, copper, zinc, and lead into R. mangle organs, following this concentration order: absorbent roots ≥ stalk ≥ young leaves ≥adult leaves ≥ aerial roots

  8. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China

    International Nuclear Information System (INIS)

    Deng, H.; Ye, Z.H.; Wong, M.H.

    2004-01-01

    The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed

  9. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance

    International Nuclear Information System (INIS)

    Lu, W.-B.; Shi, J.-J.; Wang, C.-H.; Chang, J.-S.

    2006-01-01

    This study was undertaken to investigate biosorption kinetics and equilibria of lead (Pb), copper (Cu) and cadmium (Cd) ions using the biomass of Enterobacter sp. J1 isolated from a local industry wastewater treatment plant. Efficiency of metal ion recovery from metal-loaded biomass to regenerate the biosorbent was also determined. The results show that Enterobacter sp. J1 was able to uptake over 50 mg of Pb per gram of dry cell, while having equilibrium adsorption capacities of 32.5 and 46.2 mg/g dry cell for Cu and Cd, respectively. In general, Langmuir and Freundlich models were able to describe biosorption isotherm fairly well, except that prediction of Pb adsorption was relatively poor with Langmuir model, suggesting a different mechanism for Pb biosorption. Adjusting the pH value to 3.0 led to nearly complete desorption of Cd from metal-loaded biomass, while over 90% recovery of Pb and Cu ions was obtained at pH ≤ 2. After four repeated adsorption/desorption cycles, biomass of Enterobacter sp. J1 retained 75, 79 and 90% of original capacity for adsorption of Pb, Cu and Cd, respectively, suggesting good reusability of the biosorbent. A combinative model was proposed to describe the kinetics of heavy-metal adsorption by Enterobacter sp. J1 and the model appeared to have an excellent prediction of the experimental data. The model simulation results also seemed to suggest that intracellular accumulation may occur during the uptake of Pb

  10. Assessing the Mobility of Lead, Copper and Cadmium in a Calcareous Soil of Port-au-Prince, Haiti

    Directory of Open Access Journals (Sweden)

    Urbain Fifi

    2013-11-01

    Full Text Available The presence of heavy metals in the environment constitutes a potential source of both soil and groundwater pollution. This study has focused on the reactivity of lead (Pb, copper (Cu and Cadmium (Cd during their transfer in a calcareous soil of Port-au-Prince (Haiti. Kinetic, monometal and competitive batch tests were carried out at pH 6.0. Two simplified models including pseudo-first-order and pseudo-second-order were used to fit the experimental data from kinetics adsorption batch tests. A good fit of these data was found with pseudo-second-order kinetic model which indicates the applicability of this model to describe the adsorption rates of these metals on the soil. Monometal batch tests indicated that both Langmuir and Freundlich models allowed a good fit for experimental data. On the basis of the maximum adsorption capacity (qmax, the order affinity of Pb, Cu and Cd for the studied soil was Pb2+ > Cu2+ > Cd2+. Competitive sorption has proved that the competition between two or several cations on soils for the same active sites can decrease their qmax. These results show that, at high metal concentrations, Cd may pose more threat in soils and groundwater of Port-au-Prince than Pb and Cu.

  11. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China

    Energy Technology Data Exchange (ETDEWEB)

    Deng, H.; Ye, Z.H.; Wong, M.H

    2004-11-01

    The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed.

  12. The direct determination, by differential pulse anodic-stripping voltammetry at the thin mercury-film electrode, of cadmium, lead and copper

    International Nuclear Information System (INIS)

    Lee, A.F.

    1981-01-01

    This report describes the development and application of a voltammetric procedure for the direct, simultaneous determination of cadmium, lead, and copper in three SAROC reference materials (carbonatite, magnesite, and quartz). The electrolyte was a mixture of 1 M ammonium chloride, 0,1 M citric acid, and 0,025 M ascorbic acid. No interferences were encountered from Fe(III), As(III), Sb(V), Tl(I), or In(III) at the concentrations present in the samples. Intermetallic interferences were eliminated by the use of thin mercury-film electrodes not less than 80nm thick. Limits of detection were determined by the degree to which the supporting electrolyte could be purified, and were estimated to be 10ng/g, 250ng/g, and 150ng/g for cadmium, lead, and copper respectively

  13. Portable Solid Phase Extraction of Copper, Cadmium and Lead Using Analig ME-02 Chelating Resin and Their Determination by Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Mohamed Abousa Gaza

    2014-06-01

    Full Text Available The adsorption of metallic elements on the solid phase chelating resins is probably the most effective separation and preconcentration methods. In this work, portable Solid phase extraction (SPE was constructed using a commercially available plastic syringe containing certain amount of the Analiq ME-02 chelating resin. The ability of this portable SPE was evaluated through adsorption-desorption process of copper, lead, and cadmium prior their determination by atomic absorption spectrometry (AAS. Some parameters affecting the adsorption-desorption of these heavy metal ions on the Analiq ME-02, which include effect of pH and concentration of eluent ((HNO3, were investigated in detail. It was found that quantitative adsorptions (> 90% of copper, lead, and cadmium are obtained at all pHs (4- 8 examined, whereas 1 M HNO3 was found to be effective for the desorption of these metals with the recoveries in the range of 93 -114%. Such results indicated that Analig ME-02 has excellent chelating ability (pH-independent for the adsorption of copper, lead, and cadmium, while portable SPE system provides easiness and effectiveness for collection/preconcentation of metallic elements

  14. Permeability of hair to cadmium, copper and lead in five species of terrestrial mammals and implications in biomonitoring.

    Science.gov (United States)

    Rendón-Lugo, A N; Santiago, P; Puente-Lee, I; León-Paniagua, L

    2017-11-18

    The capacity of mammal hair to absorb toxic metals and its utility in biomonitoring has been broadly studied. Though these metal-binding properties has generally been attributed to the sulphur contained in cysteine, an amino acid that forms part of keratin, there are not many experimental studies that analyze the role of sulphur in the external deposition of potentially toxic metallic elements in order to better understand the potential of hair in biomonitoring and generate better tools for differentiating between internal and external deposition of contaminants. In this study, an experimental analysis is carried out using a scanning electron microscope on hairs of five terrestrial mammal species (Peromyscus furvus, P. maniculatus, Glossophaga soricina, Artibeus jamaicensis and Marmosa mexicana) treated with cadmium, copper and lead salts. We quantified absorbed metals as well as natural elements of the hair by energy dispersive X-ray spectroscopy (EDS) to analyze using simple statistics the role of sulphur in the absorption Cd, Cu and Pb. Given the lack of studies comparing the mechanisms of deposition of metal elements among different orders of Class Mammalia, external morphology was considered to be an important factor in the deposition of metallic particles of Cd, Cu and Pb. Bat species (Glossophaga soricina, Artibeus jamaicensis) showed a high concentration of particles in their scales, however, no between-species differences in metal absorption were observed, and during the exogenous deposition metal particles do not permeate the medulla. These results suggest that the sulphur in hair itself cannot bind metals to hair cuticle and that hair absorption capacity depends on a variety of factors such as aspects of hair morphology.

  15. Acute and chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Ingersoll, Christopher G.; Contributions by Wang, Ning; Calfee, Robin D.; Beahan, Erinn; Brumbaugh, William G.; Dorman, Rebecca A.; Hardesty, Doug K.; Kunz, James L.; Little, Edward E.; Mebane, Christopher A.; Puglis, Holly J.

    2014-01-01

    White sturgeon (Acipenser transmontanus) are experiencing poor recruitment in the trans boundary reach of the upper Columbia River in eastern Washington State. Limited toxicity data indicated that early life stages of white sturgeon are sensitive to metals. In acute 4-day (d) exposures with larval white sturgeon, previous studies have reported that the 4-day median lethal concentrations (LC50) based on biotic ligand model (BLM) normalization for copper were below the U.S. Environmental Protection Agency national recommended acute water-quality criterion. In previously published chronic 66-d exposures starting with newly fertilized eggs of white sturgeon, 20-percent lethal effect concentrations (LC20s) for copper, cadmium, or zinc generally were within a factor of two of the chronic values of the most sensitive fish species in the databases of the U.S. Environmental Protection Agency water-quality criteria (WQC) for the three metals. However, there were some uncertainties in the chronic exposures previously performed with white sturgeon, including (1) low control survival (37 percent), (2) more control fish tested in each replicate compared to other treatments, (3) limited replication of treatments (n=2), (4) lack of reported growth data (such as dry weight), and (5) wide dilution factors for exposure concentrations (6- to 8-fold dilutions). The U.S. Environmental Protection Agency concluded that additional studies are needed to generate more toxicity data to better define lethal and sublethal toxicity thresholds for metals for white sturgeon. The objective of the study was to further evaluate the acute and chronic toxicity of cadmium, copper, lead, or zinc to early life stages of white sturgeon in water-only exposures. Toxicity tests also were performed with commonly tested rainbow trout (Oncorhynchus mykiss) under similar test conditions to determine the relative sensitivity between white sturgeon and rainbow trout to these metals. Toxicity data generated from

  16. Concentrations of arsenic, cadmium, copper, lead, selenium, and zinc in fish from the Mississippi River Basin, 1995

    Science.gov (United States)

    Schmitt, Christopher J.

    2004-01-01

    Fish were collected in late 1995 from 34 National Contaminant Biomonitoring Program (NCBP) stations and 12 National Water Quality Assessment Program (NAWQA) stations in the Mississippi River basin (MRB), and in late 1996 from a reference site in West Virginia. The NCBP sites represented key points (dams, tributaries, etc.) in the largest rivers of the MRB. The NAWQA sites were typically on smaller rivers and were selected to represent dominant land uses in their watersheds. The West Virginia site, which is in an Eastern U.S. watershed adjacent to the MRB, was selected to document elemental concentrations in fish used for other aspects of a larger study and to provide additional contemporaneous data on background elemental concentrations. At each site four samples, each comprising (nominally) 10 adult common carp (Cyprinus carpio, `carp') or black bass (Micropterus spp., `bass') of the same sex, were collected. The whole fish were composited by station, species, and gender for analysis of arsenic (As), lead (Pb), and selenium (Se) by atomic absorption spectroscopy and for cadmium (Cd), copper (Cu), and zinc (Zn) by inductively-coupled plasma emission spectroscopy. Concentrations of most of the elements examined were lower in both carpand bass from the reference site, a small impoundment located in a rural area, than from the NCBP and NAWQA sites on rivers and larger impoundments. In contrast, there were few overall differences between NCBP sites NAWQA sites. The 1995 results generally confirmed the continued weathering and re-distribution of these elemental contaminants in the MRB; concentrations declined or were unchanged from 1984–1986 to 1995 at most NCBP sites, thus continuing two-decade trends. Exceptions were Se at Station 77 (Arkansas R. at John Martin Reservoir, CO), where concentrations have been elevated historically and increased slightly (to 3.8–4.7 μg g-1 in bass and carp); and Pb, Cd, and Zn at Station 67 (Allegheny R. at Natrona, PA), where

  17. The concentration of heavy metals: zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people

    International Nuclear Information System (INIS)

    Wandiga, S.O.; Jumba, I.O.

    1982-01-01

    An intercomparative analysis of the concentration of heavy metals:zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people using the techniques of atomic absorption spectrophotometry (AAS) and differential pulse anodic stripping voltammetry (DPAS) has been undertaken. The percent relative standard deviation for each sample analysed using either of the techniques show good sensitivity and correlation between the techniques. The DPAS was found to be slightly sensitive than the AAs instrument used. The recalculated body burden rations of Cd to Zn, Pb to Fe reveal no unusual health impairement symptoms and suggest a relatively clean environment in Kenya.(author)

  18. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide.

    Science.gov (United States)

    Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Richtera, Lukas; Adam, Vojtech

    2017-08-09

    In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L -1 for Zn(II), 3 and 10 µg·L -1 for Cd(II), 3 and 10 µg·L -1 for Pb(II), 3 and 10 µg·L -1 for Cu(II), and 3 and 10 µg·L -1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L -1 for Zn(II), 25 µg·L -1 for Cd(II), 3 µg·L -1 for Pb(II) and 3 µg·L -1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  19. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III Oxide

    Directory of Open Access Journals (Sweden)

    Zuzana Koudelkova

    2017-08-01

    Full Text Available In this study, the preparation and electrochemical application of a chromium(III oxide modified carbon paste electrode (Cr-CPE and a screen printed electrode (SPE, made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L−1 for Zn(II, 3 and 10 µg·L−1 for Cd(II, 3 and 10 µg·L−1 for Pb(II, 3 and 10 µg·L−1 for Cu(II, and 3 and 10 µg·L−1 for Ag(I, respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L−1 for Zn(II, 25 µg·L−1 for Cd(II, 3 µg·L−1 for Pb(II and 3 µg·L−1 for Cu(II. Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  20. Nutrient composition of selected wheats and wheat products. VI. Distribution of manganese, copper, nickel, zinc, magnesium, lead, tin, cadmium, chromium, and selenium as determined by atomic absorption spectroscopy and colorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Zook, E.G.; Greene, F.E.; Morris, E.R.

    1970-11-01

    Magnesium and eight trace mineral elements, manganese, copper, nickel, zinc, lead, tin, cadmium, and chromium, were determined by atomic absorption spectroscopy in 11 known wheats or wheat blends, 20 commercially prepared flours from these wheats, and 25 specially prepared products from the flours. The same minerals were determined in ten consumer products from ten different cities. There was significant variation among the five hard wheats in their content of nickel, zinc, lead, tin, cadmium, and chromium. Manganese, copper, zinc, cadmium, and chromium varied significantly in the four soft wheat samples, most of the variation being contributed by a single low mineral wheat. The concentration of manganese, copper, zinc, and magnesium were about the same or lower and nickel, tin, cadmium, and chromium higher in the cake and crackers than in the respective flour from which they were made. Although there were significant variations in the lead, cadmium, and chromium concentrations in most of the market samples of consumer products there was no discernible effect of geographic location on the general mineral content of these products. Whole-wheat consumer products contained greater concentrations of manganese, copper, zinc, magnesium, and chromium than did products made from white flour. The selenium content of a small group of wheat blends and products was determined by a colorimetric method. 8 references, 7 tables.

  1. Temporal evolution of cadmium, copper and lead concentration in the Venice Lagoon water in relation with the speciation and dissolved/particulate partition.

    Science.gov (United States)

    Morabito, Elisa; Radaelli, Marta; Corami, Fabiana; Turetta, Clara; Toscano, Giuseppa; Capodaglio, Gabriele

    2017-10-26

    In order to study the role of sediment re-suspension and deposition versus the role of organic complexation, we investigated the speciation of cadmium (Cd), copper (Cu) and lead (Pb) in samples collected in the Venice Lagoon during several campaigns from 1992 to 2006. The increment in Cd and Pb concentration in the dissolved phases, observed in the central and northern basins, can be linked to important alterations inside the lagoon caused by industrial and urban factors. The study focuses on metal partition between dissolved and particulate phases. The analyses carried out in different sites illustrate the complex role of organic matter in the sedimentation process. While Cd concentration in sediments can be correlated with organic matter, no such correlation can be established in the case of Pb, whose particulate concentration is related only to the dissolved concentration. In the case of Cu, the role of organic complexation remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Trophic relationships and transference of cadmium, copper, lead and zinc in a subtropical coastal lagoon food web from SE Gulf of California.

    Science.gov (United States)

    Jara-Marini, M E; Soto-Jiménez, M F; Páez-Osuna, F

    2009-11-01

    Trophic relationships and heavy metal transference in a coastal subtropical lagoon marine food web were investigated through the use of stable isotopes in food sources and biota. A selective extraction scheme was applied to the surface sediments as an indirect way to evaluate the potential of toxicity of metals. Results showed that cadmium, copper, lead and zinc concentrations were within sediment quality guidelines criteria. Concentrations of these metals in organisms varied widely among functional groups and within the same and closely related taxa. delta(13)C values varied significantly among organisms from different functional groups, while the delta(15)N values varied according with their feeding habits. Cd, Cu, Pb, and Zn were not positively transferred (biomagnification factor <1) through entire food web. However, a partial positive transference was observed for Cu and Zn involving three trophic levels (from the phytoplankton to crab as secondary consumer).

  3. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  4. Preconcentration and atomic absorption spectrometric determination of cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in water samples using 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    Khuhawar, M.Y.; Das, P.; Dewani, V.K.

    2005-01-01

    The reagent 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone (MPAPT) has been examined for the pre-concentration of metal ions and determination using air acetylene flame atomic absorption spectrometer. The method is based on the complexation and extraction of cadmium (II), cobalt(III), copper(II), lead(II), nickel(II), iron(II), iron(II), manganese(II) and zinc(II) in chloroform. The metal iron are back extracted in nitric acid (1:1) or after evaporation of solvent the residue is digested in nitric acid. After necessary adjustment of volume the metal ions were determined in aqueous solution. Pre-concentration is obtained 10-25 times. Metal ions recovery was 95.4-100.8% with coefficient of variation 0.2-7.5%. The method used for the determination of metals in canal and sewerage waters, within 2-6433 mu g/L with C. V 0.-5.2%. (author)

  5. Determination of Pb (Lead, Cd (Cadmium, Cr (Chromium, Cu (Copper, and Ni (Nickel in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Wen-Si Zhong

    2016-01-01

    Full Text Available The contents of lead, cadmium, chromium, copper, and nickel were determined in 25 tea samples from China, including green, yellow, white, oolong, black, Pu'er, and jasmine tea products, using high-resolution continuum source graphite furnace atomic absorption spectrometry. The methods used for sample preparation, digestion, and quantificational analysis were established, generating satisfactory analytical precisions (represented by relative standard deviations ranging from 0.6% to 2.5% and recoveries (98.91–101.32%. The lead contents in tea leaves were 0.48–10.57 mg/kg, and 80% of these values were below the maximum values stated by the guidelines in China. The contents of cadmium and chromium ranged from 0.01 mg/kg to 0.39 mg/kg and from 0.27 mg/kg to 2.45 mg/kg, respectively, remaining in compliance with the limits stipulated by China's Ministry of Agriculture. The copper contents were 7.73–63.71 mg/kg; only 64% of these values complied with the standards stipulated by the Ministry of Agriculture. The nickel contents ranged from 2.70 mg/kg to 13.41 mg/kg. Consequently, more attention must be paid to the risks of heavy metal contamination in tea. The quantitative method established in this work lays a foundation for preventing heavy metal toxicity in human from drinking tea and will help establish regulations to control the contents of heavy metals in tea.

  6. Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Zhong, Wen-Si; Ren, Ting; Zhao, Li-Jiao

    2016-01-01

    The contents of lead, cadmium, chromium, copper, and nickel were determined in 25 tea samples from China, including green, yellow, white, oolong, black, Pu'er, and jasmine tea products, using high-resolution continuum source graphite furnace atomic absorption spectrometry. The methods used for sample preparation, digestion, and quantificational analysis were established, generating satisfactory analytical precisions (represented by relative standard deviations ranging from 0.6% to 2.5%) and recoveries (98.91-101.32%). The lead contents in tea leaves were 0.48-10.57 mg/kg, and 80% of these values were below the maximum values stated by the guidelines in China. The contents of cadmium and chromium ranged from 0.01 mg/kg to 0.39 mg/kg and from 0.27 mg/kg to 2.45 mg/kg, respectively, remaining in compliance with the limits stipulated by China's Ministry of Agriculture. The copper contents were 7.73-63.71 mg/kg; only 64% of these values complied with the standards stipulated by the Ministry of Agriculture. The nickel contents ranged from 2.70 mg/kg to 13.41 mg/kg. Consequently, more attention must be paid to the risks of heavy metal contamination in tea. The quantitative method established in this work lays a foundation for preventing heavy metal toxicity in human from drinking tea and will help establish regulations to control the contents of heavy metals in tea. Copyright © 2015. Published by Elsevier B.V.

  7. Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect

    International Nuclear Information System (INIS)

    Rangel-Mendez, J.R.; Monroy-Zepeda, R.; Leyva-Ramos, E.; Diaz-Flores, P.E.; Shirai, K.

    2009-01-01

    The aim of this study was to investigate the selectivity of chitosan for cadmium, copper and lead in the presence and absence of natural organic matter (NOM) in different pH solutions. Adsorption isotherms of one and three adsorbates at initial concentration of 5-100 mg/L were carried out in batch reactors at pH 4, 5, or 7 and 25 deg. C in reactive and clarified water. The chitosan employed had a MW of 107.8 x 10 3 g/mol and degree of acetylation (DA) of 33.7%. The chitosan adsorption capacity at pH 4 in reactive water was 0.036, 0.016, 0.010 mmol/g for Pb 2+ , Cd 2+ , and Cu 2+ , respectively, and it decreased for Pb 2+ and Cd 2+ in clarified water. Conversely, experiments carried out in clarified water showed that the cadmium adsorption capacity of chitosan was enhanced about three times by the presence of NOM at pH 7: an adsorption mechanism was proposed. Furthermore, it was found that the biosorbent selectivity, in both reactive and clarified water at pH 4, was as follows Cu 2+ > Cd 2+ > Pb 2+ . Finally, the preliminary desorption experiments of Cd 2+ conducted at pH 2 and 3 reported 68 and 44.8% of metal desorbed, which indicated that the adsorption mechanism occurred by electrostatic interactions and covalent bonds

  8. Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect

    Energy Technology Data Exchange (ETDEWEB)

    Rangel-Mendez, J.R. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C., Division of Environmental Sciences, Camino a la presa San Jose No. 2055, San Luis Potosi 78210 (Mexico)], E-mail: rene@ipicyt.edu.mx; Monroy-Zepeda, R.; Leyva-Ramos, E. [Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Diaz-Flores, P.E. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C., Division of Environmental Sciences, Camino a la presa San Jose No. 2055, San Luis Potosi 78210 (Mexico); Shirai, K. [Universidad Autonoma Metropolitana, Biotechnology Department, Laboratory of Biopolymers, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Mexico City (Mexico)

    2009-02-15

    The aim of this study was to investigate the selectivity of chitosan for cadmium, copper and lead in the presence and absence of natural organic matter (NOM) in different pH solutions. Adsorption isotherms of one and three adsorbates at initial concentration of 5-100 mg/L were carried out in batch reactors at pH 4, 5, or 7 and 25 deg. C in reactive and clarified water. The chitosan employed had a MW of 107.8 x 10{sup 3} g/mol and degree of acetylation (DA) of 33.7%. The chitosan adsorption capacity at pH 4 in reactive water was 0.036, 0.016, 0.010 mmol/g for Pb{sup 2+}, Cd{sup 2+}, and Cu{sup 2+}, respectively, and it decreased for Pb{sup 2+} and Cd{sup 2+} in clarified water. Conversely, experiments carried out in clarified water showed that the cadmium adsorption capacity of chitosan was enhanced about three times by the presence of NOM at pH 7: an adsorption mechanism was proposed. Furthermore, it was found that the biosorbent selectivity, in both reactive and clarified water at pH 4, was as follows Cu{sup 2+} > Cd{sup 2+} > Pb{sup 2+}. Finally, the preliminary desorption experiments of Cd{sup 2+} conducted at pH 2 and 3 reported 68 and 44.8% of metal desorbed, which indicated that the adsorption mechanism occurred by electrostatic interactions and covalent bonds.

  9. Analyses of soil cadmium and copper contents on a Domérien soil ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... Key words: Atomic absorption spectrophotometer, cadmium availability, copper extraction, Domérien soil series, extracting time, soil analyses. INTRODUCTION. Since cadmium (Cd) occurs in zinc (Zn), lead (Pb) and copper (Cu) ores, the mining and smelting of these metals, particularly Zn and Cu, are now ...

  10. Trace metal detection in Sibenik Bay, Croatia: Cadmium, Lead and Copper with anodic stripping voltammetry and manganese via sonoelectrochemistry. a case study

    International Nuclear Information System (INIS)

    Omanovic, D.; Kwokal, Z.; Goodwin, A.; Lawrence, A.; Banks, C.E.; Compton, R.G.; Komersky-Lovric, S.

    2006-01-01

    The vertical profiles of the concentration of reactive Mn and total concentrations of Cd, Pb, and Cu ions in the water column of the Sibenik Bay (Krka river estuary) were determined. The measured ranges of concentrations are: 60-1300 ng 1 -1f or Mn, 5-13 ng 1 -1 for Cd, 70-230 ng 1 -1f or Pb, and 375-840 ng 1 -1f or Cu. These values are comparable with the concentrations found in the unpolluted estuaries. The Krka river estuary is highly stratified, with the measured salinity gradient of 20% within a half meter of the freshwater-seawater interface . The main changes in the vertical profiles of the measured parameters occur in the freshwater-seawater interface: the temperature increases for 1 d ig C and the pH decreases for 0.1 unit, whereas the metal concentrations show different behaviour. Generally, Mn, Pb, and Cd ions show the increase of concentrations in the freshwater-seawater interface , while copper concentration profile indicates anthropogenic pollution in the brackish layer caused by agriculture activities and by the paint with copper basis used as an antifoulant biocide for the ships. UV-digested samples show an increase in manganese concenbations for at least 3.5 times comparing to non UV-digested. This suggests that in natural water manganese exists mainly in the form of inert complexes and as associated to particulate matter (about 70-80%). UV irradiation has no influence on the concentration of cadmium, while for lead an increase of 50% in the seawater layer is observed. The twofold increase of the copper concentration in the upper freshwater layer and at least the fourfold one in the seawater layer were measured in the UV-digested samples. These results show that copper is strongly bound to inert complexes, and that UV-digestion is necessary step in determination of the total metal concentrations in natural water samples. No significant increase of the metal concentrations in the deeper seawater layer was observed, indicating the absence of the

  11. CADMIUM, COPPER, LEAD AND ZINC CONCENTRATIONS IN LOW QUALITY WINES AND ALCOHOL CONTAINING DRINKS FROM ITALY, BULGARIA AND POLAND

    Directory of Open Access Journals (Sweden)

    Renata Muchacka

    2012-02-01

    Full Text Available We studied Cu, Cd, Pb and Zn concentrations in low quality wines produced in Bulgaria and Italy and in alcohol containing multi-fruit drinks produced in Poland. All the metals were present in tested products. Cadmium was not detected in Italian and Polish products. In one of the Bulgarian wines cadmium was detected in concentration of 0.004 mg•l-1. Italian wines were not contaminated with Pb. Its concentration was the highest in Polish drinks (0.88±0.52 mg•l-1. The largest and statistically significant differences occurred between Cu and Zn contents. Both metals had the highest concetrations in Italian wines (Cu - 0.13±0.05 mg•l-1; Zn - 0.83±0.56 mg•l-1, and the lowest in Polish products (Cu - 0.04±0.001 mg•l-1; Zn -0.18±0.16 mg•l-1.

  12. Cadmium

    NARCIS (Netherlands)

    Meulenbelt, Jan

    2017-01-01

    Together with zinc and mercury, cadmium belongs to group IIb of the periodic table. It can be found in rocks, soil, water, coal, zinc ore, lead ore, and copper ore. In the environment, cadmium is present predominantly as the oxide or as the chloride, sulfide, or sulfate salt. It has no recognizable

  13. Canadian House Dust Study: Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes

    International Nuclear Information System (INIS)

    Rasmussen, Pat E.; Levesque, Christine; Chénier, Marc; Gardner, H. David; Jones-Otazo, Heather; Petrovic, Sanya

    2013-01-01

    The Canadian House Dust Study was designed to obtain nationally representative urban house dust metal concentrations (μg g −1 ) and metal loadings (μg m −2 ) for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Consistent sampling of active dust of known age and provenance (area sampled) also permitted the calculation of indoor loading rates (mg m −2 day −1 for dust and μg m −2 day −1 for metals) for the winter season (from 2007 to 2010) when houses are most tightly sealed. Geomean/median indoor dust loading rates in homes located more than 2 km away from industry of any kind (9.6/9.1 mg m −2 day −1 ; n = 580) were significantly lower (p −2 day −1 ; n = 421). Proximity to industry was characterized by higher indoor metal loading rates (p 100,000. ► Typical indoor dust and metal loading rates and metal concentrations are reported. ► Dust mass is the overriding influence on metal loadings and loading rates. ► This population-scale study contributes to defining the exposome

  14. Uptake of Cadmium, Copper, Lead, and Zinc from Sediments by an Aquatic Macrophyte and by Terrestrial Arthropods in a Freshwater Wetland Ecosystem.

    Science.gov (United States)

    Kim, Heung-Tae; Kim, Jae Geun

    2016-08-01

    The objective of this study was to investigate trace-metal [cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn)] biotransference and biomagnification in terrestrial biota at different trophic levels (primary producer-top predator) of a wetland ecosystem. We investigated whether metal concentrations in the sediment are reflected in terrestrial arthropods and aquatic plants. We sampled the floating-leaved plant Trapa japonica; its species-specific primary consumer, the leaf beetle Galerucella nipponensis; and two predatory arthropods (the water strider Gerris sp. and the wolf spider Arctosa sp.) from three wetlands with different sedimentary metal concentrations. The δ(13)C and δ(15)N signatures in the trophic link between the plants and the leaf beetles supported the specificity of their feeding relationship. The stable isotope signatures indicate that the leaf beetle could be an important link in the trophic transfer of the metals. Transference factors (TFs) were 1 for all biota, and the concentrations were positively correlated with the trophic levels. Thus, there may be Cu and Zn biomagnification in the arthropods. We noted TF 1 among the arthropods. Therefore, Cd is probably not biomagnified between T. japonica and G. nipponensis, but it might be biomagnified in the arthropods. The metal burden in terrestrial arthropods may also be influenced by uptake from the sediment by aquatic plants.

  15. Use of Eichhornia crassipes modified Nano-chitosan as a biosorbent for lead (II), cadmium (II), and copper (II) ion removal from aqueous solutions

    Science.gov (United States)

    Alkaff, A. H.; Hendri, H.; Farozy, I. H.; Annisa, M.; Aritonang, R. P.

    2018-01-01

    Industrial waste in a major city poses a considerable threat to water environment from the accumulation of heavy metals. Additionally, uncontrolled growth of Eichhornia crassipes will also damage the water environment by lowering the levels of dissolved oxygen. Therefore, we conduct research to not only treat industrial waste in water but also reduce the population of E. crassipes in water. We made this biosorbent by mixing E. crassipes with nano-chitosan in various compositions. Its absorptivity was tested against single metal solutions of lead (II), cadmium (II), and copper (II) to get the best biosorbent composition. The chosen biosorbent then went through an adsorptivity test against a mixture of three solutions, with each test was carried at various pH. The best biosorbent composition is the mixture of 1 g of E. crassipes with 30 mL of nano-chitosan 0.01%, while adsorption tests in single or three metals solution show that the biosorbent performs better in neutral pH.

  16. Lead and cadmium in food

    International Nuclear Information System (INIS)

    Gliesmann, S.; Kruse, H.; Kriews, M.; Mangels, H.

    1992-08-01

    The amounts of lead and cadmium produced and processed in these days are considerable. As a result, our environment is increasingly polluted by heavy metals and industrial installations, motor vehicles or incinerating plants appear to be among the main culprits here. Air and water are the media permitting the entry of heavy metals into our natural environment where they accumulate in the soil and then gradually migrate into the plants. Their further transport in the food constitutes the third step in the environmental spread of heavy metals. The consumption of muscle and organ meats, of vegetables, fruits, canned food and drinking water is unavoidably associated with some ingestion of lead and cadmium. The degree to which they are taken up and stored in different tissues is determined by absorption properties and the nutritional state of the organism. Cadmium tends to accumulate in the kidneys, lead is mainly stored in the bones. A continuously increasing uptake finally results in health injuries that range from unspecific complaints to damaged kidneys or bones and disorders of liver function. Children and elderly people are at a particular risk here. The level of food contamination is such that screening for heavy metals must be rigorously carried out once appropriate legal thresholds have been set, which ought to be based on proven detrimental effects of lead and cadmium on our health and also take account of infants and children or any other risk groups, where particular caution must be exercised. It should be pointed out that such thresholds have so far not been determined. (orig./MG) [de

  17. Cadmium in forest ecosystems around lead smelters in Missouri.

    Science.gov (United States)

    Gale, N L; Wixson, B G

    1979-01-01

    The development of Missouri's new lead belt within the past decase has provided an excellent opportunity to study the dissemination and effects of heavy metals in a deciduous forest ecosystem. Primary lead smelters within the new lead belt have been identified as potential sources of cadmium as well as lead, zinc, and copper. Sintering and blast furnace operations tend to produce significant quantities of small particulates highly enriched in cadmium and other heavy metals. At one smelter, samples of stack particulate emissions indicate that as ms accompanied by 0.44 lb zinc, 4.66 lb lead, and 0.01 lb copper/hr. These point-source emissions, as well as a number of other sources of fugitive (wind blown) and waterborne emissions contribute to a significant deposition of cadmium in the surrounding forest and stream beds. Mobilization of vagrant heavy metals may be significantly increased by contact of baghouse dusts or scrubber slurries with acidic effluents emanating from acid plants designed to produce H2SO4 as a smelter by-product. Two separate drainage forks within the Crooked Creek watershed permit some comparisons of the relative contributions of cadmium by air-borne versus water-borne contaminants. Cadmium and other heavy metals have been found to accumulate in the forest litter and partially decomposed litter along stream beds. Greater solubility, lower levels of complexation with organic ligands in the litter, and greater overall mobility of cadmium compared with lead, zinc, and copper result in appreciable contributions of dissolved cadmium to the watershed runoff. The present paper attempts to define the principle sources and current levels of heavy metal contamination and summarizes the efforts undertaken by the industry to curtail the problem. PMID:488037

  18. Cadmium, copper and lead in macroalgae from the Veracruz Reef System, Gulf of Mexico: Spatial distribution and rainy season variability

    International Nuclear Information System (INIS)

    Horta-Puga, Guillermo; Cházaro-Olvera, Sergio; Winfield, Ignacio; Avila-Romero, Marisol; Moreno-Ramírez, Margarita

    2013-01-01

    Highlights: ► Cd, Cu, and Pb were determined in macroalgae from Veracruz Reefs, Gulf of Mexico. ► Mean concentrations were lower or similar to those from other coastal areas. ► Cd and Pb levels are controlled by fluvial discharge. ► Sediment scavenging also controls environmental trace metal levels. ► Pb environmental concentrations have been decreasing in the lasts two decades. -- Abstract: This study focused on the spatial distribution of trace metals in the Veracruz Reef System in the Southern Gulf of Mexico, and its variability in the early (July) and late (September) rainy season of 2008, by analyzing the concentration of Cd, Cu and Pb in benthic macroalgae. Mean concentrations are lower (Pb 295 ± 347 ng g −1 , Cd 17.9 ± 15.0 ng g −1 ), or similar (Cu 3.4 ± 4.5 μg g −1 ) to those reported from other coastal areas. Cd and Pb concentrations are influenced by the discharge of the Jamapa River, evidencing a fluvial control on coastal trace metal levels. Also, Cd and Cu concentrations were lower in the late rainy season, when there is a high load of suspended sediments derived from fluvial discharge, which probably adsorb dissolved metals decreasing their bioavailability. Pb concentrations have been decreasing in the last two decades in the SGM, after the banning of leaded-gasoline in the late 20th century

  19. Understanding the remobilization of copper, zinc, cadmium and lead due to ageing through sequential extraction and isotopic exchangeability.

    Science.gov (United States)

    Kumar, Manish

    2016-06-01

    Artificial infiltration facilities (AIFs) are useful to control urban runoff and regulate combined sewer overflows. Over the years, AIFs accumulate significant amounts of soakaway sediments and organic matter. The prolonged retention of soakaway sediments in AIFs is likely to cause metal remobilization due to ageing processes. The measurement of the individual consequence of ageing demands homogeneity in physical and chemical profiles of samples. This leads to assessment of metal remobilization in a single soil core through solid-phase extractions and isotopic exchangeability (E value). Depth-wise variation in the physicochemical properties and metal content of the underlying soil (below 1 m of AIFs) was created through 2 weeks of continuous leaching with artificial road runoff (ARR). Ten samples obtained from a 50-cm core by sectioning it at 5-cm intervals were subsequently incubated for 18 months. The results suggest that degradation of organic matter and changes in functional groups due to ageing govern metal remobilization. In general, the top segment showed significant alteration due to ageing. Post incubation, Zn increased dramatically in contrast to subdued Cu and Pb levels in exchangeable fractions with concomitant rise in organic-bound fractions. Isotopic exchangeability of Cd and Zn showed pronounced effect of ageing, although the effect of ageing was distinct in chemical partitioning and isotopic exchangeability of metals; a comparative study of short-term versus long-term incubation will benefit assessment of initial dynamics and final equilibrium. Consequently, the outcome from this work is a viable tool in risk prediction related to soakaway sediment accumulation in AIF.

  20. Bioavailability of cadmium, copper, mercury, lead, and zinc in subtropical coastal lagoons from the southeast Gulf of California using mangrove oysters (Crassostrea corteziensis and Crassostrea palmula).

    Science.gov (United States)

    Páez-Osuna, Federico; Osuna-Martínez, Carmen C

    2015-02-01

    Cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) were assessed in the edible tissues of Crassrotrea corteziensis oysters collected during the rainy and dry seasons in 27 sites from 8 coastal lagoons of the southeast Gulf of California. In addition, C. palmula oysters were sampled at 9 sites from the same mangrove roots where C. corteziensis oysters were collected. Metal analyses were performed by flame atomic absorption spectrophotometry (Cd, Cu, and Zn), graphite furnace (Pb), and cold vapor detection (Hg). The obtained mean levels were (µg g(-1) dry weight) as follows: Cd 6.05 ± 2.77, Cu 60.0 ± 33.4, Hg 0.38 ± 0.17, Pb 1.11 ± 0.63, and Zn 777 ± 528 µg g(-1). For all metals except Hg, the concentrations were greater during dry season than during rainy seasons. The high levels, particularly that for Cd, were related to upwelling along the eastern Gulf of California. High Hg levels in the rainy season were associated with the transport of materials from the watershed to the lagoon. Shrimp farming, agriculture, and other sources were considered as potential sources to explain the differences in metal bioavailability in the 8 lagoons. The mean concentrations of Cd (Santa María-La Reforma lagoon), Cu [San Ignacio-Navachiste-El Macapule (SINM), Urías (URI), and Altata-Ensenada del Pabellón lagoons], and zinc (Zn) (URI, Santa María-Ohuira-Topolobampo, El Colorado, and SINM lagoons) during the dry season were greater than the maximum permissible limits. C. palmula collected in 8 sites where they were present simultaneously with C. corteziensis had consistently greater metal levels than C. corteziensis, but correlation analyses showed a high and significant (P < 0.05) correlation between metal concentrations in both species. The correlation equations obtained are useful where the same species is not distributed and is necessary to compare results from distinct regions.

  1. Canadian House Dust Study: Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Pat E. [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Levesque, Christine [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Chénier, Marc; Gardner, H. David [Exposure and Biomonitoring Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON, Canada K1A 0K9 (Canada); Department of Earth Sciences, University of Ottawa, 140 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Jones-Otazo, Heather [Regions and Programs Branch, Health Canada, 180 Queen Street West, Toronto, ON, Canada M5V 3L7 (Canada); Petrovic, Sanya [Contaminated Sites Division, Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave West, Ottawa, ON, Canada K1A 0K9 (Canada)

    2013-01-15

    The Canadian House Dust Study was designed to obtain nationally representative urban house dust metal concentrations (μg g{sup −1}) and metal loadings (μg m{sup −2}) for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Consistent sampling of active dust of known age and provenance (area sampled) also permitted the calculation of indoor loading rates (mg m{sup −2} day{sup −1} for dust and μg m{sup −2} day{sup −1} for metals) for the winter season (from 2007 to 2010) when houses are most tightly sealed. Geomean/median indoor dust loading rates in homes located more than 2 km away from industry of any kind (9.6/9.1 mg m{sup −2} day{sup −1}; n = 580) were significantly lower (p < .001) than geomean (median) dust loading rates in homes located within 2 km of industry (13.5/13.4 mg m{sup −2} day{sup −1}; n = 421). Proximity to industry was characterized by higher indoor metal loading rates (p < .003), but no difference in dust metal concentrations (.29 ≥ p ≤ .97). Comparisons of non-smokers' and smokers' homes in non-industrial zones showed higher metal loading rates (.005 ≥ p ≤ .038) in smokers' homes, but no difference in dust metal concentrations (.15 ≥ p ≤ .97). Relationships between house age and dust metal concentrations were significant for Pb, Cd and Zn (p < .001) but not for the other four metals (.14 ≥ p ≤ .87). All seven metals, however, displayed a significant increase in metal loading rates with house age (p < .001) due to the influence of higher dust loading rates in older homes (p < .001). Relationships between three measures of metals in house dust – concentration, load, and loading rate – in the context of house age, smoking behavior and urban setting consistently show that concentration data is a useful indicator of the presence of metal sources in the home, whereas dust mass is the overriding influence on metal loadings and loading rates

  2. Potentiometric stripping analysis of Cadmium and Lead in superficial waters

    International Nuclear Information System (INIS)

    Arias, Juan Miguel; Marciales Castiblanco, Clara

    2003-01-01

    This paper contains the implementation and validation of an analytical method for determining cadmium and lead in surface waters. This is a valuable tool for the description of actual conditions and qualitative and quantitative control of dangerous heavy metals discharge in water bodies. Test were run for selecting stripping potentiometry conditions that as indicated by results were: sample oxidant concentration 36.4 μg/L Hg 2+ stirring frequency 2400 rpm, electrolysis time 80 s., electrolysis potential -950 mV and pH of 2.0. Interference of Cu 2+ and Fe 2+ showed that copper concentrations larger than 150 μg/L and 500 μg/L negatively influence the analytical response for Cadmium and lead respectively; [Fe 3+ ] larger than 60 μg/L and 400 μg/L cause variations in cadmium and lead read content respectively. Linear concentration range for cadmium lies between 5 and 250 μg/L; for lead range goes from 10 to 250 μg/L. Precision expressed as repeatability for both system and method, exhibit good reproducibility with variation coefficients below 6%. Accuracy, assessed from recuperation, is strongly influenced by concentration level therefore standard addition is recommended for lead and cadmium quantification. Analysis performed on surface waters from Colombian Magdalena and Cauca rivers pointed lead and cadmium contents below detection limits

  3. Influence of diethyldithiocarbamate on cadmium and copper toxicity ...

    African Journals Online (AJOL)

    drinie

    Daphnia magna. Environ. Technol. Lett. 5 109-120. ROBERT W (1984) The toxicity and bioaccumulation of cadmium and copper as affected by humic acid. Aquat. Toxicol. 5 267-274. WHITTON B and SHEHATA F (1982) Influence of cobalt, nickel, copper and cadmium on blue green alga Anacystis nidulans. Environ. Pollut.

  4. Copper-cadmium interaction in mice: effects of copper status on retention and distribution of cadmium after cadmium exposure

    International Nuclear Information System (INIS)

    Bourcier, D.R.

    1982-01-01

    The role of increased dietary copper in altering the accumulation of cadmium and other metals in tissues, was investigated. Female Swiss-Webster mice were pretreated with cadmium or copper in drinking water for three weeks prior to cadmium exposure for an additional nine weeks, with sub groups from each dose level receiving Cu additions to the Cd supplemented water. In Cd pretreated animals, a significant decrease was observed in Cd concentrations in liver and kidney when Cu was added to Cd in drinking water. Cadmium levels in soluble protein fractions of liver of animals administered 5 ppm Cd were approximately three fold greater than that for the same Cd dose when Cu was added. The same was the case for the metallothionein-like protein fraction (MTP) of the liver cytosol. In copper pretreated animals similar trends were noted in that brain, spleen, liver (but not kidney) Cd levels were decreased in animals receiving Cu additions to the Cd dose. Increased binding of Cd to the MTP fraction was observed after both in vivo and in vitro exposure of intestinal mucosal cells to cadmium

  5. Acute toxicity of copper, lead, cadmium, and zinc to early life stages of white sturgeon (Acipenser transmontanus) in laboratory and Columbia River water.

    Science.gov (United States)

    Vardy, David W; Santore, Robert; Ryan, Adam; Giesy, John P; Hecker, Markus

    2014-01-01

    Populations of white sturgeon (Acipenser transmontanus) are in decline in North America. This is attributed, primarily, to poor recruitment, and white sturgeon are listed as threatened or endangered in several parts of British Columbia, Canada, and the United States. In the Columbia River, effects of metals have been hypothesized as possible contributing factors. Previous work has demonstrated that early life stage white sturgeon are particularly sensitive to certain metals, and concerns over the level of protectiveness of water quality standards are justified. Here we report results from acute (96-h) toxicity tests for copper (Cu), cadmium (Cd), zinc (Zn), and lead (Pb) from parallel studies that were conducted in laboratory water and in the field with Columbia River water. Water effect ratios (WERs) and sensitivity parameters (i.e., median lethal accumulations, or LA50s) were calculated to assess relative bioavailability of these metals in Columbia River water compared to laboratory water, and to elucidate possible differences in sensitivity of early life stage white sturgeon to the same concentrations of metals when tested in the different water sources. For Cu and Pb, white sturgeon toxicity tests were initiated at two life stages, 8 and 40 days post-hatch (dph), and median lethal concentrations (LC50s) ranged between 9-25 μg Cu/L and 177-1,556 μg Pb/L. LC50s for 8 dph white sturgeon exposed to Cd in laboratory water and river water were 14.5 and 72 μg/L, respectively. Exposure of 8 dph white sturgeon to Zn in laboratory and river water resulted in LC50s of 150 and 625 μg/L, respectively. Threshold concentrations were consistently less in laboratory water compared with river water, and as a result, WERs were greater than 1 in all cases. In addition, LA50s were consistently greater in river water exposures compared with laboratory exposures in all paired tests. These results, in combination with results from the biotic ligand model, suggest that the observed

  6. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    International Nuclear Information System (INIS)

    Wasserman, R.H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report

  7. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R. H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report.

  8. [A comparative study of cadmium, lead, mercury, arsenic, selenium, manganese, copper and zinc in brown rice and fish by inductively coupled plasma-mass spectrometry (ICP-MS) and atomic absorption spectrometry].

    Science.gov (United States)

    Oshima, Harumi; Ueno, Eiji; Saito, Isao; Matsumoto, Hiroshi

    2004-10-01

    A study was conducted to evaluate the applicability of ICP-MS techniques for determination of metals in brown rice and fish. Cadmium, lead, mercury, arsenic, selenium, manganese, copper and zinc were determined by this method. An open digestion with nitric acid (Method A) and a rapid open digestion with nitric acid and hydrochloric acid (Method B) were used to solubilize analytes in samples, and these procedures were followed by ICP-MS analysis. Recovery of certified elements from standard reference materials by Method A and Method B ranged from 92 to 110% except for mercury (70 to 100%). Analytical results of brown rice and fish samples obtained by this ICP-MS agreed with those obtained by atomic absorption spectrometry (AAS). The results of this study demonstrate that quadrupole ICP-MS provides precise and accurate measurements of the elements tested in brown rice and fish samples.

  9. Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent

    International Nuclear Information System (INIS)

    Yang Guangyu; Fen Weibo; Lei Chun; Xiao Weilie; Sun Handong

    2009-01-01

    A solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent was studied. Trace amounts of chromium, nickel, silver, cobalt, copper, cadmium and lead were reacted with 2-(2-quinolinil-azo)-4-methyl-1,3-dihydroxidobenzene (QAMDHB) followed by adsorption onto MCI GEL CHP 20Y solid phase extraction column, and 1.0 mol L -1 HNO 3 was used as eluent. The metal ions in 300 mL solution can be concentrated to 1.0 mL, representing an enrichment factor of 300 was achieved. The recoveries of analytes at pH 8.0 with 1.0 g of resin were greater than 95% without interference from alkaline, earth alkaline and some metal ions. When detected with graphite furnace atomic absorption spectrometry, the detection limits in the original samples were 1.4 ng L -1 for Cr(III), 1.0 ng L -1 for Ni(II), 0.85 ng L -1 for Ag(I), 1.2 ng L -1 for Co(II), 1.0 ng L -1 for Cu(II), 1.2 ng L -1 for Cd(II) and 1.3 ng L -1 for Pb(II). The validation of the procedure was performed by the analysis of the certified standard reference materials, and the presented procedure was applied to the determination of analytes in biological, water and soil samples with good results (recoveries range from 89 to 104%, and R.S.D.% lower than 3.2%. The results agreed with the standard value or reference method)

  10. Coprecipitation of cadmium with copper 8-hydroxyquinolate from homogeneous solution

    International Nuclear Information System (INIS)

    Takiyama, Kazuyoshi; Kozen, Terumi; Ueki, Yasuyo; Ishida, Hiromi

    1976-01-01

    The coprecipitation of copper and cadmium 8-hydroxyquinolates from homogeneous solution was conducted from the viewpoint of crystal and analytical chemistry. To the mixed solution containing copper and cadmium ions an 8-acetoxyquinoline solution was added by keeping the pH of the solution at 9 and the resulted solution was stirred at 25 0 C. The precipitate formed at each stage of the reaction was analyzed. The precipitates in an initial stage were composed of needle crystals which characterizes copper 8-hydroxyquinolate, and were associated with a slight amount of cadmium. The first half of the coprecipitation curve for the needle crystal formation resembles the logarithmic distribution curve of lambda equal to about 0.01. The precipitation of most of the copper ions was followed by the precipitation of cadmium 8-hydroxyquinolate crystal in the plate form. The needle crystals of copper 8-hydroxyquinolate started to dissolve and transformed to plate crystals. In the second half of the coprecipitation, both crystals, owing to the identical crystal structure, precipitated simultaneously and form a solid solution. When cadmium 8-hydroxyquinolate was precipitated by the PFHS method (precipitation from homogeneous solution) in the presence of the needle crystals of copper 8-hydroxyquinolate, the above mentioned phenomenon was observed. The precipitation of cadmium 8-hydroxyquinolate in the plate form is due to the seeding effect of the plate crystals of copper 8-hydroxyquinolate, which were scantily transformed from the needle crystals. The plate crystals of cadmium compound acts as a seed to transform the needle crystals of copper compound to plate crystals. (auth.)

  11. mangifera indica as a bioindicator of lead, copper and iron in the ...

    African Journals Online (AJOL)

    DJFLEX

    2009-07-16

    Jul 16, 2009 ... The levels of lead, Pb copper Cu and iron Fe in Mangifera indica leaf and bark and the native soil samples in the vicinity of Makeri smelting plant, ... metals such as mercury, copper, cadmium, and lead are known to be very toxic and ... They were then transported to the laboratory in clean polyethylene bags.

  12. Cadmium, copper and nickel levels in vegetables from industrial and ...

    African Journals Online (AJOL)

    The levels of cadmium, copper and nickel in five different edible vegetables viz Talinum triangulare, Celosia trigyna, Corchorus olitorus, Venomia amygydalina and Telfaria accidentalis, and the soils on which they were grown from three industrial and three residential areas of Lagos City, in Nigeria, were determined using ...

  13. Copper and cadmium increase laccase activity in Pleurotus ostreatus

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Gabriel, Jiří

    2002-01-01

    Roč. 206, - (2002), s. 69-74 ISSN 0378-1097 R&D Projects: GA ČR GA204/99/1528 Institutional research plan: CEZ:AV0Z5020903 Keywords : copper * cadmium * water Subject RIV: EE - Microbiology , Virology Impact factor: 1.804, year: 2002

  14. Simultaneous Automatic Electrochemical Detection of Zinc, Cadmium, Copper and Lead Ions in Environmental Samples Using a Thin-Film Mercury Electrode and an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Jiri Kudr

    2014-12-01

    Full Text Available In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II, Cu(II and Pb(II ion quantification, while Zn(II did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933.

  15. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Progress report, January 1, 1979-December 31, 1979

    International Nuclear Information System (INIS)

    Wasserman, R.H.

    1979-01-01

    The purpose of the present studies was to elucidate the mechanism of lead transport, and especially the particular similarities or dissimilarities between lead and calcium in this process. The absorption of these metals was determined in 3-week old White Leghorn cockerels, raised on a commercial diet or on a specified diet, using in vivo ligated loop procedure. The dose administered into the loop contained 0.5 μCi 203 Pb (and/or 0.1 μCi 47 Ca), and 0.01 mM lead acetate (and/or 1 mM CaCl 2 ) in 0.5 ml 0.15 M NaCl,pH 6.5. It was shown that lead is rapidly taken up by the mucosal tissue, and slowly transferred into the body, whereas less calcium is retained by the tissue and the transfer of calcium is many times as effective as that for lead. They appear to respond in a similar manner to a low calcium intake and vitamin D treatment. Certain differences were, however, observed in the absorption process. Increasing luminal stable lead concentration from 0.01 to 1.00 mM Pb, significantly reduced the percentage of radiolead absorbed, but did not affect the absorption of calcium. Also, vitamin D enhanced the transfer of plasma 47 Ca into the lumen but did not affect the transfer of plasma 203 Pb. Intravenous administration of 1,25(OH) 2 CC to rachitic chicks enhanced calcium and lead absorption, but the maximal absorption of these metals occurred at slightly different times after administering this metabolite, and the effect on calcium outlasted that on lead, indicating that two different transport systems may be involved. It was concluded that lead is transported across the epithelial wall by a passive diffusion and this process is affected by vitamin D in a similar manner as this vitamin affects the diffusional component of calcium transport

  16. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Progress report, January 1, 1979-December 31, 1979

    International Nuclear Information System (INIS)

    Wasserman, R.H.

    1979-01-01

    The mechanism of lead transport is presented, and especially the particular similarities or dissimilarities between lead and calcium in this process. The absorption of these metals was determined cockerels, raised on a commercial diet or on a specified diet, using in vivo ligated loop procedure. The dose administered into the loop contained 0.5 μCi 203 Pb (and/or 0.1 μCi 47 Ca), and 0.01 mM lead acetate (and/or mM CaCl 2 ) in 0.5 ml 0.15 M NaCl,pH 6.5. It was shown that lead is rapidly taken up by the mucosal tissue, and slowly transferred into the body, whereas less calcium is retained by the tissue and the transfer of calcium is many times as effective as that for lead. They appear to respond in a similar manner to a low calcium intake and vitamin D treatment. Increasing luminal stable lead concentration significantly reduced the percentage of radiolead significantly reduced the percentage of radiolead absorbed, but did not affect the absorption of calcium. Also, vitamin D enhanced the transfer of plasma 47 Ca into the lumen but did not affect the transfer of plasma 203 Pb. Intravenous administration of 1,25(OH) 2 CC to rachitic chicks enhanced calcium and lead absorption, but the maximal absorption of these metals occurred at slightly different times after administering this metabolite, indicating that two different transport systems may be involved. It was concluded that lead is transported across the epithelial wall by a passive diffusion and this process is affected by vitamin D in a similar manner as this vitamin affects the diffusional component of calcium transport

  17. Levels of Lead, Cadmium and Chromium in Oreochromis Niloticus ...

    African Journals Online (AJOL)

    Lead (Pb), Cadmium (Cd) and Chromium (Cr) levels in Oreochromis niloticus, aquatic plants, water and sawdust were collected and analyzed for Lead, Cadmium and Chromium using atomic absorption spectroscopy. Results obtained showed that sawdust had the highest Lead and Chromium contents of 32.0 + 0.99 μg/g ...

  18. Accumulation of cadmium and copper by the terrestrial snail Arianta arbustorum L. : Kinetics and budgets

    Energy Technology Data Exchange (ETDEWEB)

    Berger, B.; Dallinger, R. (Innsbruck Univ. (Austria). Abt. Zoophysiologie)

    1989-01-01

    Specimens of the terrestrial gastropod Arianta arbustorum were fed on cadmium- or copper-enriched agar plates with the aim of performing an input/output analysis and of studying the distribution of these metals in several organs of the snails. After a feeding period of 20 days about 45% of cadmium were lost. 36% accumulated in the hepatopancreas, where a cadmium concentration of more than 500 {mu}g/g was measured. The efficiency of cadmium assimilation decreased from about 90% at the beginning to about 55% after 20 days. Copper was distributed more evenly than cadmium, but the main site of copper storage seemed to be the foot/mantle tissues, where 49% of the ingested copper were found. The efficiency of copper assimilation always exceeded 95%. The patterns of distribution and assimilation of copper and cadmium are discussed in relation to differences in the cytological and biochemical detoxification mechanisms which exist for these metals in molluscs. (orig.).

  19. Lead and Copper Control 101-slides

    Science.gov (United States)

    This presentation is an overview of the most important water treatment strategies for the control of lead and copper release from drinking water corrosion. In addition to the sections specifically on lead and copper treatment, sections are included that cover sampling to find le...

  20. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    International Nuclear Information System (INIS)

    Koparanova, N.; Simov, S.

    1985-01-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more. (author)

  1. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    Energy Technology Data Exchange (ETDEWEB)

    Koparanova, N.; Simov, S. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fizika na Tvyrdoto Tyalo); Genchev, D. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Metchenov, G. (Research Inst. of Criminalistics and Criminology, Sofia (Bulgaria))

    1985-02-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more.

  2. Cadmium and lead content of packaged water and water boreholes ...

    African Journals Online (AJOL)

    The lead and cadmium concentrations of borehole water samples were significantly (P < 0.01) higher than those from packaged water. The mean cadmium and lead concentrations of packaged water samples were below the WHO drinking water guidelines limits whereas those from boreholes were higher. Packaged water ...

  3. Evaluation of serum levels of cadmium and Lead in occupationally ...

    African Journals Online (AJOL)

    Cadmium and Lead are extremely toxic metals found in industrial workplaces. They are also found in some industrial paints and may represent hazards when sprayed.Exposure to Cadmium fumes may cause flu-like symptoms including chills, fever and muscle ache sometimes reffered to as "the cadium blues." Occupational ...

  4. Lead, mercury, and cadmium in breast milk

    Directory of Open Access Journals (Sweden)

    Kadriye Yurdakök

    2015-10-01

    Full Text Available Toxic heavy metals are the major source of environmental pollution in this new millennium. Lead, mercury, and cadmium are the most common toxic heavy metals in the environment. There is no known function of these toxic heavy metals in the human body. In females, toxic heavy metals can be accumulated in maternal body before pregnancy and may be transferred to fetus through placenta and later, via breast milk. Lead previously accumulated in maternal bones can be mobilized along with calcium in order to meet increased calcium needs of the fetus in pregnant women and for the calcium needs in human milk during lactation. Human fetus and infants are susceptible to heavy metal toxicity passing through placenta and breastmilk due to rapid growth and development of organs and tissues, especially central nervous system. However most of the damage is already done by the time the infant is born. Intrauterine lead exposure can cause growth retardation, cognitive dysfunction, low IQ scores on ability tests, and low performance in school. Biological samples, such as umbilical cord blood and breast milk, and less commonly infant hair, are used for biomonitoring of intra-uterine exposure to these toxic chemicals. Although toxic metals and other pollutants may be excreted into breast milk, their effects are unknown and this topic is subject of a growing body of research. Despite the possibility of harm from environmental contaminants in breast milk, breastfeeding is still recommended as the best infant feeding method. In fact, the species-specific components present in breast milk protect infants against infections; promote immune and neurologic system development; and may decrease the risk of disease, including allergies, obesity, insulin-dependent diabetes mellitus, inflammatory bowel disease, and sudden infant death syndrome. Breastfeeding also facilitates maternal-infant attachment. The potential risk of environmental contaminants that can be transferred from

  5. Study on damage of DNA in mice induced by mercury cadmium and/or lead

    International Nuclear Information System (INIS)

    Hu Xiaopan; Zhou Jianhua; Shi Xijing; Yan Liping

    2004-01-01

    Objective: To explore the joint injury actions of mercury, cadmium and/or lead on DNA in peripheral blood lymphocytes of mice. Methods: The blood specimens were obtained from mice at the 2 day after the peritoneal injections. DNA damages were determined by single cell gel electrophoresis (SCGE) and 3 H-TdR incorporation. Results: Acquired by SCGE technique, tail movement of DNA in mercury-cadmium-lead group was significantly greater than that in the single exposure group, the difference was significant too between mercury-cadmium group and cadmium group, cadmium-lead group and cadmium group. The results of 3 H-TdR incorporation showed: the values of DPM in mercury-cadmium group and cadmium-lead group were lower than that in the single exposure group and the value of DPM lowered more significantly after exposure to mercury-cadmium-lead. Conclusion: The combined effects of mercury, cadmium, lead on DNA damage are more significant. (author)

  6. Lead and cadmium in wild birds in southeastern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fernandez, A.J.; Sanchez-Garcia, J.A.; Luna, A. [Univ. of Murcia (Spain); Jimenez-Montalban, P. [Regional Environmental Agency, Murcia (Spain). Centro de Recuperacion de Fauna Silvestre El Valle

    1995-12-01

    The main purpose of this study was to monitor exposure to lead and cadmium in wild birds in Murcia, a southeastern region of Spain on the Mediterranean coast. This region lies on one of the African-European flyways. Samples of liver, kidney, brain, bone, and whole blood from several species of wild birds were obtained during 1993. The authors found a clear relationship between cadmium and lead concentrations in birds and their feedings habits. Vultures (Gyps fulvus) had the highest concentrations of lead (mean 40 {micro}g/dl in blood), and seagulls (Larus argentatus and Larus ridibundus) the highest concentrations of cadmium (mean 4.43 {micro}g/g in kidney). Insectivores had high concentrations of both metals, and diurnal and nocturnal raptors showed the lowest tissue concentrations. The findings that tissue and blood concentrations were generally not elevated suggests environmental (rather than acute) exposure. Birds from more industrialized areas of the region studied here had higher concentrations of both lead and cadmium.

  7. Phytoextraction potential of cadmium and lead contamination using ...

    African Journals Online (AJOL)

    aghomotsegin

    2014-12-31

    Dec 31, 2014 ... in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut. 197:23-34. Zhivotovskya OP, Kuzovkinaa YA, Schulthessa CP, Morrisa T,. Pettinellia D (2011). Lead uptake and translocation by willows in pot and field experiments. Int. J. Phytoremed.13(8):731-749. Zhu QH, Huang DY ...

  8. Adsorption of Acetic Acid, Cadmium ions, Lead ions and Iodine ...

    African Journals Online (AJOL)

    Michael Horsfall

    Adsorption of Acetic Acid, Cadmium ions, Lead ions and Iodine Using Activated. Carbon from Waste Wood and Rice Husks. GOODHEAD, T O; DAGDE, K K. Department of Chemical/Petrochemical Engineering, Rivers State university of Science and Technology. Port Harcourt, Nigeria. ABSTRACT: This paper presents the ...

  9. Analysis and determination of mercury, cadmium and lead in ...

    African Journals Online (AJOL)

    The objective of this study is to determine mercury, cadmium and lead concentrations in 60 canned tuna fish samples produced and distributed in Iran after digestion by the standard methods of the Association of Official Analytical Chemists. Mercury contents in canned tuna fish were determined by cold vapor atomic ...

  10. Determination of lead and cadmium in biological materials

    International Nuclear Information System (INIS)

    Stoeppler, M.; Backhaus, F.; Dahl, R.; Hagedorn-Goetz, H.; Hilpert, K.; Klahre, P.; Rutzel, H.; Valenta, P.; Nuernberg, H.W.; Dumont, M.

    1975-01-01

    Sampling techniques and experience, and decomposition methods are presented. The processes used in flameless atomic absorption spectrometry (including the method using automatic insertion of samples), pulse polarography and isotope dilution mass spectrometry are described. Finally, the results of lead and cadmium measurements in bovine liver, blood, urine and hair samples are reported and discussed with a comparison of methods in some cases

  11. Differents remediation methodos for lead, chromium and cadmium contaminated soils

    International Nuclear Information System (INIS)

    Trelles, G.; Pochintesta, L.; Ehrlich, S.

    2008-01-01

    The usage of phosphates in the remediation of plots contaminated with heavy metals appears to be a good strategy to lessen the danger of these metals. This study analyses the effect of the mobilization of: Lead, chromium and cadmium by utilizing diverse forms of phosphates in contaminated soils of three different origins with ph modification and without it

  12. Effect of Pyrolysis Temperature on Cadmium and Lead ...

    African Journals Online (AJOL)

    Consumption of tobacco as cigarette or otherwise has been demonstrated to contribute to air pollution via smoke generation resulting in adverse health effect. Therefore, this study investigates the effect of pyrolysis temperature on the concentration, distribution of cadmium and lead between ash residue and smoke in some ...

  13. Adsorption kinetics of cadmium and lead by chitosan

    African Journals Online (AJOL)

    STORAGESEVER

    2010-04-26

    Apr 26, 2010 ... An evaluation of the kinetics and capacity of chitosan to trap lead and cadmium ions in aqueous solution was carried out at 25oC using concentration and contact time as parameters. The experiments were done as batch process. Our results show that the adsorption process is concentration-driven with.

  14. Lead and Cadmium in Vinyl Children's Products. A Greenpeace Expose.

    Science.gov (United States)

    Di Gangi, Joseph

    Polyvinyl chloride (vinyl or PVC) is a substance widely used in children's products. Because children in contact with these products may ingest substantial quantities of potentially harmful chemicals during normal play, especially when they chew on the product, this Greenpeace study examined the levels of lead and cadmium in a variety of consumer…

  15. Cadmium, lead and zinc contents of sporocarps of some ...

    African Journals Online (AJOL)

    Zinc, cadmium and lead concentrations were determined in sporocarps of Ganoderma applanatum (Pers.ex Wallr.), Ganoderma lucidum (Leys.) Fr., Heteroporus biennis (Bull.exFr.), Lycoperdon molle (Pers.: Pers), Lycoperdon pyriforme (Schaeff.ex Pers.), Peniophora incarnata (Fr.) Karst.syn, Pisolithus tinctorius (Mich.ex ...

  16. Levels of Cadmium and Lead in Water, Sediments and Selected ...

    African Journals Online (AJOL)

    Daisy Ouya

    Kenya Marine and Fisheries Research Institute, P. O. Box 81651 Mombasa, Kenya. Key words: heavy metals, cadmium, lead, water, sediment, fish, Kenya coast. Abstract—Flame absorption spectrophotometry was used to ... The pollution of marine ecosystems by heavy metals is a worldwide problem (Bryan, 1976; Ober.

  17. Phytoextraction trials of cadmium and lead contaminated soil using ...

    African Journals Online (AJOL)

    Study on the phytoextraction of cadmium (Cd) and lead (Pb) artificially contaminated soil using 3 weed species (Ageratum conyzoides, Syndrella nodiflora and Cleome rutidosperma) was carried out at the Centre for Ecological Studies, University of Port Harcourt. A Randomized Complete Block Design consisting of 2 sets of ...

  18. Operational speciation of lead, cadmium, and zinc in farmlands ...

    African Journals Online (AJOL)

    This study was undertaken to evaluate the geochemical fractions and risk potential of lead (Pb), cadmium (Cd) and zinc (Zn) in farmlands around a polluted goldmine in Dareta, northern Nigeria. The total heavy metal concentrations were obtained through a mixed acid digestion. A modified sequential extraction procedure ...

  19. The Determination of Lead, Arsenic, Mercury, Cadmium Contents in ...

    African Journals Online (AJOL)

    Objective: The objective of this present study was to measure the contributions of some toxic heavy metals; namely lead, cadmium, arsenic and chromium in some edible fishes of marine origin (seafood) to the overall dietary intake of heavy metals in Ibadan, Nigeria. Materials and Methods: The samples under investigation ...

  20. Adsorption kinetics of cadmium and lead by chitosan | Bamgbose ...

    African Journals Online (AJOL)

    An evaluation of the kinetics and capacity of chitosan to trap lead and cadmium ions in aqueous solution was carried out at 25oC using concentration and contact time as parameters. The experiments were done as batch process. Our results show that the adsorption process is concentration-driven with high capacity of ...

  1. Heavy metals (cadmium and lead) in the estuarine croaker ...

    African Journals Online (AJOL)

    A study to determine the concentrations of cadmium (Cd) and lead (Pb) in the muscles of Pseudotolithus elongatus as well as estimating the condition and growth pattern of the fish was carried out in 2013. Ten samples of the croaker P. elongatus were purchased from the Mile One market, Port Harcourt, Nigeria and their ...

  2. Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams

    International Nuclear Information System (INIS)

    Brune, D.; Gjerdet, N.; Paulsen, G.

    1983-01-01

    Particles of a conventional lathe-cut, a spherical non-gamma 2 and a copper amalgam have been gastrointestinally administered to rats for the purpose of evaluation of the dissolution resistance. The animals were sacrificed after 20 hrs. The contents of copper, cadmium, indium, mercury and zinc in kidney, liver, lung or blood were measured using nuclear tracer techniques. From a copper amalgam an extreme release of copper was demonstrated. This study simulates the clinical conditions of elemental release from swallowed amalgam particles after amalgam insertion or after removal of old amalgam fillings. Specimens of the same types of amalgams were also exposed to artificial saliva for a period of 10 days. The amounts of copper and mercury released were measured with flame and flameless atomic absorption spectrophotometry respectively. The levels of copper and mercury released from the copper amalgam were approximately 50 times those of the two other amalgam types studied. (author)

  3. Study of Sage (Salvia officinalis L. Cultivation in Condition of Using Irrigated Water Polluted By Cadmium and Lead

    Directory of Open Access Journals (Sweden)

    Sh. Amirmoradi

    2017-01-01

    concentrations caused to antagonistic effects of cadmium and lead absorption into shoots of sage. In this experiment cadmium and lead concentrations of all treatments were too below to detect by atomic absorption apparatus. In this study cadmium and lead could not enter to essential oil. Researchers stated that high doses of cadmium, lead, zinc and copper concentrations could not enter into essential oil in sage. Some researchers showed that cadmium, lead and copper were not transferred to essential oil of peppermint, dill and basil during the essential oil distillation process. This finding confirmed that selection of medicinal plants as alternative plants with crops in cadmium and lead contaminated soils. Conclusion: Fresh and dry weight of Sage in the condition of contaminated soil by 100 mg/kg cadmium and 600 mg/kg lead were declined 4.61 and 5.16 % as compare as control, respectively. At the highest doses of cadmium and lead the essential oil of sage were dropped but, these heavy metals were not detected in essential oil. So, it is seems that this medicinal plant may be applied in the contaminated soil or in the condition of using of contaminated irrigated water by cadmium and lead.

  4. Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls.

    Science.gov (United States)

    Wu, Longhua; Li, Zhu; Han, Cunliang; Liu, Ling; Teng, Ying; Sun, Xianghui; Pan, Cheng; Huang, Yujuan; Luo, Yongming; Christie, Peter

    2012-07-01

    A pot experiment and afield trial were conducted to study the remediation of an aged field soil contaminated with cadmium, copper and polychlorinated biphenyls (PCBs) (7.67 +/- 0.51 mg kg(-1) Cd, 369 +/- 1 mg kg(-1) Cu in pot experiment; 8.46 +/- 0.31 mg kg(-1) Cd, 468 +/- 7 mg kg(-1) Cu, 323 +/- 12 microg kg(-1) PCBs for field experiment) under different cropping patterns. In the pot experiment Sedum plumbizincicola showed pronounced Cd phytoextraction. After two periods (14 months) of cropping the Cd removal rates in these two treatments were 52.2 +/- 12.0 and 56.1 +/- 9.1%, respectively. Total soil PCBs in unplanted control pots decreased from 323 +/- 11 to 49.3 +/- 6.6 microg kg(-1), but with no significant difference between treatments. The field microcosm experiment intercropping of three plant species reduced the yield of S. plumbizincicola, with a consequent decrease in soil Cd removal. S. plumbizincicola intercropped with E. splendens had the highest shoot Cd uptake (18.5 +/- 1.8 mg pot(-1)) after 6 months planting followed by intercropping with M. sativa (15.9 +/- 1.9 mg pot(-1)). Liming with S. plumbizincicola intercropped with M. sativa significantly promoted soil PCB degradation by 25.2%. Thus, adjustment of soil pH to 5.56 combined with intercropping with S. plumbizincicola and M. sativagave high removal rates of Cd, Cu, and PCBs.

  5. Toxicity and Bioconcentration of Cadmium and Copper in Artemia Urmiana Nauplii

    Directory of Open Access Journals (Sweden)

    Mohammad Mohiseni

    2017-01-01

    Full Text Available Background: Artemia urmiana are small crustaceans that because of its non-selective filter feeder pattern potentially may absorb high level of heavy metals through their living environment. In this study, the effects of different levels of cadmium and copper on survival, catalase activity and metals bioconcentration rates in A. urmiana nauplii have been investigated. Methods: The research was carried out in February 2012 at University of Tehran, Tehran, Iran. First experiment was conducted in nine concentrations with six replication, then LC50 and probable interactions between experimental metals were evaluated. In the second experiment, concentrations of metals absorbed by Artemia and catalase activity were measured based on the acute toxicity indices, including NOEC, LOEC and LC50 at individual and mixed concentrations. Results: The toxicity of copper sulphate (LC50= 29.87 was 2.5 times greater than cadmium chloride (LC50=79.08 and the toxicity interaction between cadmium and copper was synergistic. The rate of copper uptake in Artemia was higher than cadmium and increased concentration of heavy metals significantly decreased the bioconcentration factor. Comparison of mixed and individual concentrations showed that cadmium significantly decreased copper uptake, while it seems that cadmium bioconcentration was improved consequently. Biochemical analysis showed that the catalase activity was affected undesirably in different individual and mixed concentrations; however, these changes were not significant. Conclusion: A. urmiana nauplia seems to be highly resistant toward cadmium and copper in their culture medium and demonstrated excessive potential for uptake of heavy metals from their rearing environment.

  6. Mechanical characterization based in the impact test of the cadmium-zinc and cadmium-zinc-copper alloys

    International Nuclear Information System (INIS)

    Casolco, S.R.; Torres V, G.

    1999-01-01

    The present work is a study carried out in the Institute for Materials Research of the UNAM, of the alloys cadmium-zinc and cadmium-zinc-copper with the fundamental objective of knowing their behavior to the impact that which will allow to establish structural applications of these alloys. This work consists mainly on impact tests of the type Charpy at different temperatures in a range of - 150 Centigrade to 250 Centigrade and to study their fracture morphologies with the help of a scanning electron microscope to recognize the tendency of the material toward the fracture of the fragile type and to determine the ductile-fragile transition. (Author)

  7. Effect of lead and cadmium on germination and seedling growth of ...

    African Journals Online (AJOL)

    A study was conducted to determine the effect of different concentrations of lead and cadmium on seed germination and seedling growth of Leucaena leucocephala. Seed were grown under laboratory conditions at 25, 50, 75 and 100 ppm of metal ions of lead and cadmium. Both lead and cadmium treatments showed toxic ...

  8. Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium.

    NARCIS (Netherlands)

    Keltjens, W.G.; Beusichem, van M.L.

    1998-01-01

    Abstract

    Heavy metal contaminated soils often show increased levels of more than one metal, e.g. copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb) or nickel (Ni). In case such soils are used for crop production, prediction of yield reduction or quality decline due to heavy metals in the soil

  9. Toxicodynamics of copper and cadmium in Folsomia candida exposed to simulated soil solutions.

    Science.gov (United States)

    Ardestani, Masoud M; van Gestel, Cornelis A M

    2013-12-01

    To improve our understanding of metal bioavailability to soil-living invertebrates, the effect of porewater composition on the toxicodynamics of copper and cadmium in Folsomia candida (Collembola) was investigated. Assuming that porewater is the main exposure route, F. candida was exposed to simulated soil solutions of different composition. Toxicity of copper was slightly lower in a calcium-only solution than in a multication solution. With increasing copper concentrations from 0.005 mM to 1.37 mM, internal copper concentrations similarly increased in both exposure solutions, suggesting that a single cation nutrient solution is suitable for testing F. candida. In the second experiment, animals were exposed for 7 d to copper and cadmium in simplified soil solutions with different calcium (0.2 mM, 0.8 mM, 3.2 mM, 12.8 mM) and pH (5.0, 6.0, 7.0) levels. The median lethal concentration (LC50) values decreased with time in both the calcium and pH series. A hormetic-type effect was observed for copper in the second test, as well as in the calcium-only solution in the first experiment. Because of stronger hormesis, LC50s for copper were higher at lower calcium concentrations. For cadmium, LC50 values were higher at higher calcium concentrations, suggesting competition of calcium with the free cadmium ion. Toxicity of cadmium increased with decreasing pH, while copper was more toxic at intermediate pH. The results show that a toxicodynamics approach can help to improve the interpretation of metal toxicity to soil invertebrates, taking into account soil solution properties. © 2013 SETAC.

  10. Mass spectrometry of submicrogram quantities of lead and cadmium

    International Nuclear Information System (INIS)

    Moraes, Noemia M.P. de; Kakazu, M.H.; Iyer, S.S.

    1980-01-01

    Isotope analyses of submicrogram quantities of lead and cadmium are carried out by single filament solid source mass spectrometry. Thermionic emission of Pb and Cd is enhanced using silica gel as an emitter. Details of the chemical and mass spectrometric techniques are described. The low blank levels are maintained by extra purification of the reagents. The applications of isotope ratios of Pb and Cd in environmental sciences and geochemistry are discussed. (Author) [pt

  11. The role of microRNAs in copper and cadmium homeostasis

    International Nuclear Information System (INIS)

    Ding, Yan-Fei; Zhu, Cheng

    2009-01-01

    Essential heavy metals (e.g., copper) and non-essential metals (e.g., cadmium) are both toxic to plants at high concentrations. Recently, microRNAs (miRNAs) have emerged as important modulators of plants adaptive response to heavy metal stress. Plant miRNAs negatively regulate target mRNAs by post-transcriptional cleavage. miR398 regulates copper homeostasis via down-regulating the expression of Cu,Zn-superoxide dismutase (CSD), a scavenger of superoxide radicals. miR393 and miR171 play an important role in cadmium stress mediation. This review focuses on the recent advance in the involvement of miRNAs in copper and cadmium stress regulatory networks in plants.

  12. Investigations of effects of magnesium, zinc and copper on cadmium excretion in rabbits

    Directory of Open Access Journals (Sweden)

    Bulat Zorica

    2012-01-01

    Full Text Available Cadmium (Cd is today one of the most significant metal poisons, both in the area of professional as well as of eco toxicology. In the organism, cadmium has a harmful effect on the kidneys, liver, bones, testicles, etc., and, based on evidence in humans that it causes lung carcinoma, it has been placed in the first group of carcinogens. In spite of numerous data in literature on the harmful effects of cadmium, the interactions between cadmium and bioelements as a significant mechanism for cadmium toxicity have still not been sufficiently explained. Since the data so far point to a positive effect of supplementation with certain bioelements regarding toxicity and cadmium content in the organism, the objective of this work was to investigate the effect of increased simultaneous intake of magnesium, zinc and copper on urinary elimination of cadmium in rabbits exposed to cadmium. Rabbits were divided into two groups: Cd group - for a period of 28 days the animals received per os 10 mg Cd/kg b.m/day and Cd+(Mg+Zn+Cu group - 10 mg Cd/kg b.m. + 40 mg Mg/kg b.m, 20 mg Zn/kg b.m. and 10 mg Cu/kg b.m/day. Daily urine was collected on days 0, 10, 15, 17, 19, 21, 23, 25, and 28 of the experiment. Following decomposition of urine samples with the help of concentrated HNO3 and HClO4 (4:1, the metal concentration was determined using the method of atomic absorption spectrophotometry. Supplementation with magnesium, zinc and copper did not result in significant changes in the elimination of cadmium through urine in animals poisoned with cadmium, in comparison with the animals that were administered only cadmium, while the concentration of all three applied bioelements in urine was significantly increased. It can be concluded that the simultaneous administration of increased doses of zinc, copper and magnesium does not have a positive effect on the elimination of cadmium in conditions when rabbits are poisoned with cadmium.

  13. YCF1-Mediated Cadmium Resistance in Yeast Is Dependent on Copper Metabolism and Antioxidant Enzymes

    OpenAIRE

    Wei, Wenzhong; Smith, Nathan; Wu, Xiaobin; Kim, Heejeong; Seravalli, Javier; Khalimonchuk, Oleh; Lee, Jaekwon

    2014-01-01

    Aims: Acquisition and detoxification of metal ions are vital biological processes. Given the requirement of metallochaperones in cellular copper distribution and metallation of cuproproteins, this study investigates whether the metallochaperones also deliver metal ions for transporters functioning in metal detoxification. Results: Resistance to excess cadmium and copper of the yeast Saccharomyces cerevisiae, which is conferred by PCA1 and CaCRP1 metal efflux P-type ATPases, respectively, does...

  14. YCF1-mediated cadmium resistance in yeast is dependent on copper metabolism and antioxidant enzymes.

    Science.gov (United States)

    Wei, Wenzhong; Smith, Nathan; Wu, Xiaobin; Kim, Heejeong; Seravalli, Javier; Khalimonchuk, Oleh; Lee, Jaekwon

    2014-10-01

    Acquisition and detoxification of metal ions are vital biological processes. Given the requirement of metallochaperones in cellular copper distribution and metallation of cuproproteins, this study investigates whether the metallochaperones also deliver metal ions for transporters functioning in metal detoxification. Resistance to excess cadmium and copper of the yeast Saccharomyces cerevisiae, which is conferred by PCA1 and CaCRP1 metal efflux P-type ATPases, respectively, does not rely on known metallochaperones, Atx1p, Ccs1p, and Cox17p. Copper deficiency induced by the expression of CaCRP1 encoding a copper exporter occurs in the absence of Atx1p. Intriguingly, CCS1 encoding the copper chaperone for superoxide dismutase 1 (Sod1p) is necessary for cadmium resistance that is mediated by Ycf1p, a vacuolar cadmium sequestration transporter. This is attributed to Ccs1p's role in the maturation of Sod1p rather than its direct interaction with Ycf1p for cadmium transfer. Functional defect in Ycf1p associated with the absence of Sod1p as well as another antioxidant enzyme Glr1p is rescued by anaerobic growth or substitutions of specific cysteine residues of Ycf1p to alanine or serine. This further supports oxidative inactivation of Ycf1p in the absence of Ccs1p, Sod1p, or Glr1p. These results provide new insights into the mechanisms of metal metabolism, interaction among metal ions, and the roles for antioxidant systems in metal detoxification. Copper metabolism and antioxidant enzymes maintain the function of Ycf1p for cadmium defense.

  15. YCF1-Mediated Cadmium Resistance in Yeast Is Dependent on Copper Metabolism and Antioxidant Enzymes

    Science.gov (United States)

    Wei, Wenzhong; Smith, Nathan; Wu, Xiaobin; Kim, Heejeong; Seravalli, Javier; Khalimonchuk, Oleh

    2014-01-01

    Abstract Aims: Acquisition and detoxification of metal ions are vital biological processes. Given the requirement of metallochaperones in cellular copper distribution and metallation of cuproproteins, this study investigates whether the metallochaperones also deliver metal ions for transporters functioning in metal detoxification. Results: Resistance to excess cadmium and copper of the yeast Saccharomyces cerevisiae, which is conferred by PCA1 and CaCRP1 metal efflux P-type ATPases, respectively, does not rely on known metallochaperones, Atx1p, Ccs1p, and Cox17p. Copper deficiency induced by the expression of CaCRP1 encoding a copper exporter occurs in the absence of Atx1p. Intriguingly, CCS1 encoding the copper chaperone for superoxide dismutase 1 (Sod1p) is necessary for cadmium resistance that is mediated by Ycf1p, a vacuolar cadmium sequestration transporter. This is attributed to Ccs1p's role in the maturation of Sod1p rather than its direct interaction with Ycf1p for cadmium transfer. Functional defect in Ycf1p associated with the absence of Sod1p as well as another antioxidant enzyme Glr1p is rescued by anaerobic growth or substitutions of specific cysteine residues of Ycf1p to alanine or serine. This further supports oxidative inactivation of Ycf1p in the absence of Ccs1p, Sod1p, or Glr1p. Innovation: These results provide new insights into the mechanisms of metal metabolism, interaction among metal ions, and the roles for antioxidant systems in metal detoxification. Conclusion: Copper metabolism and antioxidant enzymes maintain the function of Ycf1p for cadmium defense. Antioxid. Redox Signal. 21, 1475–1489. PMID:24444374

  16. Lead and copper removal from aqueous solutions using carbon foam derived from phenol resin.

    Science.gov (United States)

    Lee, Chang-Gu; Jeon, Jun-Woo; Hwang, Min-Jin; Ahn, Kyu-Hong; Park, Chanhyuk; Choi, Jae-Woo; Lee, Sang-Hyup

    2015-07-01

    Phenolic resin-based carbon foam was prepared as an adsorbent for removing heavy metals from aqueous solutions. The surface of the produced carbon foam had a well-developed open cell structure and the specific surface area according to the BET model was 458.59m(2)g(-1). Batch experiments showed that removal ratio increased in the order of copper (19.83%), zinc (34.35%), cadmium (59.82%), and lead (73.99%) in mixed solutions with the same initial concentration (50mgL(-1)). The results indicated that the Sips isotherm model was the most suitable for describing the experimental data of lead and copper. The maximum adsorption capacity of lead and copper determined to Sips model were 491mgg(-1) and 247mgg(-1). The obtained pore diffusion coefficients for lead and copper were found to be 1.02×10(-6) and 2.42×10(-7)m(2)s(-1), respectively. Post-sorption characteristics indicated that surface precipitation was the primary mechanism of lead and copper removal by the carbon foam, while the functional groups on the surface of the foam did not affect metal adsorption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. An Evaluation of Kinetic Parameters of Cadmium and Copper Biosorption by Immobilized Cells

    Directory of Open Access Journals (Sweden)

    Nelly Georgieva

    2007-10-01

    Full Text Available Bioremediation is the use of living organisms to reduce or eliminate environmental hazards resulting from the accumulation of toxic chemicals and other hazardous wastes. This technology is based on the utilization of microorganisms to transform organic and inorganic compounds. The filamentous yeast Trichosporon cutaneum strain R57, immobilized and free cells was cultivated as batch culture on a liquid medium in the presence of various concentrations of cadmium and copper ions. The simultaneous uptake and accumulation of Cd2+ and Cu2+ ions by Tr. cutaneum cells depending on the initial concentration of Cd2+ and Cu2+ in the medium were studied. The potential use of the free and immobilized cells of Trichosporon cutaneum to remove cadmium and copper ions, from aqueous solutions was evaluated. Two important physicochemical aspects for the evaluation of the sorption process as a unit operation are the equilibrium of sorption and the kinetics. The Cd2+ and Cu2+ ions biosorption capacities of all tested adsorbent were presented as a function of the initial concentration of metal ions within the aqueous biosorption medium. The individual, as well as bicomponent sorption kinetics of copper and cadmium ions by immobilised cells of Trichosporon cutaneum R57 is presented. A second order kinetic model obtains kinetic parameters for the copper and cadmium ions.

  18. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems.

    NARCIS (Netherlands)

    Havinga, R; Vonk, RJ; Kuipers, F

    1996-01-01

    In the present study we compared, in vivo in rats, the hepatobiliary transport of monovalent (silver:Ag) and divalent metals (zinc:Zn; cadmium:Cd) with that of copper (Cu). Cu can have two oxidation states in vivo, i.e. Cu(I) and Cu(II). Studies were performed in normal Wistar (NW) rats and mutant

  19. Toxicodynamics of copper and cadmium in Folsomia candida exposed to simulated soil solutions.

    NARCIS (Netherlands)

    Ardestani, M.M.; van Gestel, C.A.M.

    2013-01-01

    To improve our understanding of metal bioavailability to soil-living invertebrates, the effect of porewater composition on the toxicodynamics of copper and cadmium in Folsomia candida (Collembola) was investigated. Assuming that porewater is the main exposure route, F. candida was exposed to

  20. Cadmium and lead retention in fresh and rotten red meat

    OpenAIRE

    Lopes,Mariangela V.; Korn,Mauro; Pereira,Madson de Godoi; Santana,Eliziane Pedra de; Oliveira,Fabio Santos de; Korn,Maria das Graças A.

    2007-01-01

    The metal sorption capacity in fresh and rotten red meat was evaluated for Cd2+ and Pb2+ ions at pH 6 and the process involved in the studied metal retention was discussed. For the experimental set, an eight channels multi-port selection valve was employed to mechanise the sample preparation. The cadmium and lead concentrations were determined by ICP-OES. A high retention (> 80%, m/m) of Cd2+ and Pb2+ ions, in fresh and rotten bovine muscle was found, indicating the potential contamination ri...

  1. Comparative Genotoxicity of Cadmium and Lead in Earthworm Coelomocytes

    Directory of Open Access Journals (Sweden)

    Ptumporn Muangphra

    2011-01-01

    Full Text Available To determine genotoxicity to coelomocytes, Pheretima peguana earthworms were exposed in filter paper studies to cadmium (Cd and lead (Pb for 48 h, at concentrations less than the LC10—Cd: 0.09, 0.19, 0.38, 0.75, and 1.50 μg cm−2; Pb: 1.65, 3.29, 6.58, 13.16, and 26.32 μg cm−2. For Cd at 0.75 μg cm−2, in the micronucleus test (detects chromosomal aberrations, significant increases (<.05 in micronuclei and binucleate cells were observed, and in the comet assay (detects DNA single-strand breaks, tail DNA% was significantly increased. Lead was less toxic with minimal effects on DNA, but the binucleates were significantly increased by Pb at 3.29 μg cm−2. This study shows that Cd is more acutely toxic and sublethally genotoxic than Pb to P. peguana. Cadmium caused chromosomal aberrations and DNA single-strand breaks at 45% of the LC10 concentration. Lead, in contrast, did not induce DNA damage but caused cytokinesis defects.

  2. Interactive studies of potassium and copper with cadmium on seed germination and early seedling growth in maize (Zea mays L.).

    Science.gov (United States)

    Chaudhary, Shikha; Sharma, Yogesh Kumar

    2009-05-01

    In the present study a novel approach has been made to evaluate the toxicity of cadmium in maize (Zea mays L. cv KJ9451) in terms of germination, seedling growth, pigment development and relevant enzyme activity and the possible remedial approach using potassium and copper to reduce cadmium toxicity. For the present investigations maize seeds were sown in petridishes on filter paper in triplicate containing different doses of cadmium viz. 0.05, 0. 10, 0.25, 0.50, 0.75 and 1.0 mM and for interactive studies maize seeds sown in 0.50, 0.75 and 1.00 mM Cd concentration were subjected to 0.50 and 1.00 mM concentration of potassium and copper respectively. At the high cadmium concentrations, germination percentage was decreased. I also showed considerable reduction in plumule length, radicle length and number of lateral roots while the potassium and copper combination with cadmium increased the seedling growth. The calculated values of SVI were found to be decreased with increase in the concentration of cadmium. Decreased GRI values were observed in maize treated with three higher concentrations of cadmium but the combination of potassium and copper showed recovery in GRI values. The fresh weight, dry weight and moisture contents were also found reduced with higher cadmium concentrations but the potassium and copper combination showed recovery when used with higher concentration of cadmium. Declined chlorophyll contents were noticed under the influence of higher cadmium concentrations. Both the combination of potassium and copper used with 0.50, 0.75 and 1.00 mM cadmium concentrations resulted in increased chlorophyll and pheophytin contents and decreased in Cu combination respectively. The potassium and copper (both 0.50 and 1.00 mM) with 0.75 and 1.00 mM cadmium increased the carotenoid contents although lone cadmium decreased it. Amylase activity was found to be gradually reduced at all concentrations of cadmium. The 0.50 mM and 1.00mM potassium combination improved

  3. Toxicity of Cadmium, Copper, and Zinc to the Threatened Chiricahua Leopard Frog (Lithobates [Rana] chiricahuensis).

    Science.gov (United States)

    Calfee, Robin D; Little, Edward E

    2017-12-01

    The Chiricahua leopard frog (Lithobates chiricahuensis) is in decline throughout the western United States, and is particularly sensitive to physical, chemical and biotic changes in their habitat. Acute toxicity tests revealed that among the metals detected in Chiricahua leopard frog habitat, copper was toxic at concentrations lower than those observed in the environment. Developing tadpoles were chronically exposed for 60 days to cadmium, copper and zinc because of the potential for long term exposure to these metals during early development. Cadmium was toxic, but at concentrations above observed environmental levels. Copper was especially toxic to this species at concentrations of about 10% of concentrations observed in their habitats. The onset of toxicity occurred within a few days of exposure, thus pulsed exposures from rain events could potentially be acutely toxic to tadpoles of this species. Zinc did not appear to have a negative impact during the acute or chronic exposures.

  4. Essential elements, cadmium, and lead in raw and pasteurized cow and goat milk

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A.; Collins, W.F.; Williams, H.L.

    1985-08-01

    Fifteen essential elements plus cadmium and lead were determined in raw and pasteurized cow and goat milks by atomic absorption spectrophotometry. When results were compared on a wet weight basis, there were no significant differences between the raw and pasteurized milks except for cobalt, iron, and lead in goat milk. When copper in goat milk was expressed on a dry weight basis, there was a significant difference between raw and pasteurized milk. There were significantly higher amounts of cobalt, copper, iron, lead, magnesium, and phosphorus, wet weight basis, in pasteurized goat milk than in pasteurized cow milk. Significantly more nickel and sodium were in pasteurized cow milk. No difference in the content of chloride, calcium, potassium, and zinc was significant between the two milks. When dry weights of the two milks were compared, statistical differences were the same, except there was significantly more calcium and potassium in pasteurized cow milk than in pasteurized goat milk and there were no significant differences in the content of lead and phosphorus between the two milks. Percentages of the established and estimated recommended daily allowances show both cow and goat milk to be excellent sources of calcium, phosphorus, and potassium and fair sources of iron, magnesium, and sodium.

  5. Arsenic, Cadmium, Lead, and Mercury in Sweat: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Margaret E. Sears

    2012-01-01

    Full Text Available Arsenic, cadmium, lead, and mercury exposures are ubiquitous. These toxic elements have no physiological benefits, engendering interest in minimizing body burden. The physiological process of sweating has long been regarded as “cleansing” and of low risk. Reports of toxicant levels in sweat were sought in Medline, Embase, Toxline, Biosis, and AMED as well as reference lists and grey literature, from inception to March 22, 2011. Of 122 records identified, 24 were included in evidence synthesis. Populations, and sweat collection methods and concentrations varied widely. In individuals with higher exposure or body burden, sweat generally exceeded plasma or urine concentrations, and dermal could match or surpass urinary daily excretion. Arsenic dermal excretion was severalfold higher in arsenic-exposed individuals than in unexposed controls. Cadmium was more concentrated in sweat than in blood plasma. Sweat lead was associated with high-molecular-weight molecules, and in an interventional study, levels were higher with endurance compared with intensive exercise. Mercury levels normalized with repeated saunas in a case report. Sweating deserves consideration for toxic element detoxification. Research including appropriately sized trials is needed to establish safe, effective therapeutic protocols.

  6. Kinetic modelling of cadmium and lead removal by aquatic mosses

    Directory of Open Access Journals (Sweden)

    R. J. E. Martins

    2014-03-01

    Full Text Available Because biosorption is a low cost and effective method for treating metal-bearing wastewaters, understanding the process kinetics is relevant for design purposes. In the present study, the performance of the aquatic moss Fontinalis antipyretica for removing cadmium and lead from simulated wastewaters has been evaluated. Five kinetic models (first-order, pseudo-first-order, Elovich, modified Ritchie second-order and pseudo-second-order were fitted to the experimental data and compared. Previously, the effect of parameters such as the initial solution pH, contact time, and initial metal ion concentration on biosorption was investigated. The initial pH of the solution was found to have an optimum value in the range of 4.0-6.0. The equilibrium sorption capacity of cadmium and lead by Fontinalis antipyretica increased with the initial metal concentration. For an initial metal concentration of 10 mg L-1, the uptake capacity of the moss, at equilibrium, is the same for both metals (4.8 mg g-1. Nevertheless, when the initial concentration increases up to 100 mg L-1, the uptake of Pb(II was higher than 78%. The pseudo-second order biosorption kinetics provided the better correlation with the experimental data (R² ≥ 0.999.

  7. Enzymatic determination of cadmium, zinc, and lead in plant materials

    International Nuclear Information System (INIS)

    Muginova, S.V.; Veselova, I.A.; Parova, L.M.; Shekhovtseva, T.N.

    2008-01-01

    Prospects are outlined for using the following enzymes (native and immobilized on polyurethane foam) in the rapid and highly sensitive determination of cadmium, zinc, and lead ions in plant materials (wild grass, fresh pea, and grape): horseradish peroxidase and alkaline phosphatases isolated from chicken intestine and Greenland seal small intestine. The analytical ranges of the above metals are 1x10 -3 -25; 7x10 -3 -250, and 3x10 -2 -67 mg/kg dry matter, respectively. The enzymatic determination procedures developed are based on the inhibiting effect of metal ions on the catalytic activity of peroxidase in the oxidation of o-dianisidine with hydrogen peroxide and alkaline phosphatases in the hydrolysis of p-nitrophenyl phosphate. The rates of enzymatic reactions were monitored spectrophotometrically or visually. In the analysis of plant extracts, their high acidity was diminished by choosing optimum dilution factors and pH values for test samples and the nature and concentration of a buffer solution. The interference of iron(III) was removed by introducing a 0.1 M tartaric acid solution into the indicator reaction. The accuracy of the results of the enzymatic determination of cadmium, zinc, and lead in plant materials was supported by atomic absorption spectrometry and anodic stripping voltammetry [ru

  8. Levels of lead, cadmium and zinc in vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, G.; Haegglund, J.; Jorhem, L.

    1976-01-01

    The concentrations of lead, cadmium and zinc have been determined in 455 samples of fresh fruit, vegetables and mushrooms by dry ashing and atomic absorption spectrophotometry. The lead content in all samples was in the range < 0.001-0.288 mg/kg, the mean being 0.02 mg/kg. Leaf vegetables (lettuce and spinach) showed higher values, mean 0.04 mg/kg. The mean values of the cadmium content in fruit, green vegetables, potatoes and root vegetables were 0.003, 0.013, 0.016 and 0.038 mg/kg respectively. The zinc contents were in the ppm range. The ratio Zn/Cd was also determined in some samples. All values concern edible parts and are calculated on wet weight basis. The fruit and vegetables were estimated to constitute about 2 percent and 8 percent respectively of the provisional tolerable weekly intake of these metals recommended by an FAO/WHO Expert Committee.

  9. Survey of mercury, cadmium and lead content of household batteries

    International Nuclear Information System (INIS)

    Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-01

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels

  10. Survey of mercury, cadmium and lead content of household batteries

    Energy Technology Data Exchange (ETDEWEB)

    Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Radant, Hendrik [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Kohlmeyer, Regina [German Federal Environment Agency (UBA), Section III 1.6 Extended Producer Responsibility, Wörlitzer Platz 1, D-06844 Dessau-Roßlau (Germany)

    2014-01-15

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.

  11. Surface passivation of high purity granular metals: zinc, cadmium, lead

    Directory of Open Access Journals (Sweden)

    Pirozhenko L. A.

    2017-10-01

    Full Text Available For the high purity metals (99.9999%, such as zinc, cadmium, and lead, which are widely used as initial components in growing semiconductor and scintillation crystals (CdTe, CdZnTe, ZnSe, (Cd, Zn, Pb WO4, (Cd, Zn, Pb MoO4 et al., it is very important to ensure reliable protection of the surface from oxidation and adsorption of impurities from the atmosphere. The specific features of surface passivation of high purity cadmium, lead and zinc are not sufficiently studied and require specific methodologies for further studies. The use of organic solutions in the schemes of chemical passivation of the investigated metals avoids hydrolysis of the obtained protective films. The use of organic solvents with pure cation and anion composition as the washing liquid prevents chemisorption of ions present in the conventionally used distilled water. This keeps the original purity of the granular metals. Novel compositions of etchants and etching scheme providing simultaneous polishing and passivation of high purity granular Zn, Cd and Pb are developed. Chemical passivation allows storing metals in the normal atmospheric conditions for more than half a year for Zn and Cd and up to 30 days for Pb without changing the state of the surface. The use of the glycerol-DMF solution in the processes for obtaining Pb granules provides self-passivation of metal surfaces and eliminates the additional chemical processing while maintaining the quality of corrosion protection.

  12. Cadmium, lead and mercury exposure in non smoking pregnant women

    Energy Technology Data Exchange (ETDEWEB)

    Hinwood, A.L., E-mail: a.hinwood@ecu.edu.au [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Callan, A.C.; Ramalingam, M.; Boyce, M. [Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia); Heyworth, J. [School Population Health, The University of Western Australia, 35 Stirling Highway Crawley, WA 6009 (Australia); McCafferty, P. [ChemCentre, PO Box 1250, Bentley, WA 6983 (Australia); Odland, J.Ø. [Department of Community Medicine, University of Tromsø, N-9037 Tromsø (Norway)

    2013-10-15

    Recent literature suggests that exposure to low concentrations of heavy metals may affect both maternal and child health. This study aimed to determine the biological heavy metals concentrations of pregnant women as well as environmental and dietary factors that may influence exposure concentrations. One hundred and seventy three pregnant women were recruited from Western Australia, each providing a sample of blood, first morning void urine, residential soil, dust and drinking water samples. Participants also completed a questionnaire which included a food frequency component. All biological and environmental samples were analysed for heavy metals using ICP-MS. Biological and environmental concentrations of lead and mercury were generally low (Median Pb Drinking Water (DW) 0.04 µg/L; Pb soil <3.0 µg/g; Pb dust 16.5 µg/g; Pb blood 3.67 µg/L; Pb urine 0.55; µg/L Hg DW <0.03; Hg soil <1.0 µg/g; Hg dust <1.0 µg/g; Hg blood 0.46 µg/L; Hg urine <0.40 µg/L). Cadmium concentrations were low in environmental samples (Median CdDW 0.02 µg/L; Cdsoil <0.30 ug/g; Cddust <0.30) but elevated in urine samples (Median 0.55 µg/L, creatinine corrected 0.70 µg/g (range <0.2–7.06 µg/g creatinine) compared with other studies of pregnant women. Predictors of increased biological metals concentrations in regression models for blood cadmium were residing in the Great Southern region of Western Australia and not using iron/folic acid supplements and for urinary cadmium was having lower household annual income. However, these factors explained little of the variation in respective biological metals concentrations. The importance of establishing factors that influence low human exposure concentrations is becoming critical in efforts to reduce exposures and hence the potential for adverse health effects. -- Highlights: • Biological heavy metals concentrations in women in their 3rd trimester of pregnancy. • Exposure assessment including environmental, lifestyle and activity

  13. Cadmium, lead and mercury exposure in non smoking pregnant women

    International Nuclear Information System (INIS)

    Hinwood, A.L.; Callan, A.C.; Ramalingam, M.; Boyce, M.; Heyworth, J.; McCafferty, P.; Odland, J.Ø.

    2013-01-01

    Recent literature suggests that exposure to low concentrations of heavy metals may affect both maternal and child health. This study aimed to determine the biological heavy metals concentrations of pregnant women as well as environmental and dietary factors that may influence exposure concentrations. One hundred and seventy three pregnant women were recruited from Western Australia, each providing a sample of blood, first morning void urine, residential soil, dust and drinking water samples. Participants also completed a questionnaire which included a food frequency component. All biological and environmental samples were analysed for heavy metals using ICP-MS. Biological and environmental concentrations of lead and mercury were generally low (Median Pb Drinking Water (DW) 0.04 µg/L; Pb soil <3.0 µg/g; Pb dust 16.5 µg/g; Pb blood 3.67 µg/L; Pb urine 0.55; µg/L Hg DW <0.03; Hg soil <1.0 µg/g; Hg dust <1.0 µg/g; Hg blood 0.46 µg/L; Hg urine <0.40 µg/L). Cadmium concentrations were low in environmental samples (Median CdDW 0.02 µg/L; Cdsoil <0.30 ug/g; Cddust <0.30) but elevated in urine samples (Median 0.55 µg/L, creatinine corrected 0.70 µg/g (range <0.2–7.06 µg/g creatinine) compared with other studies of pregnant women. Predictors of increased biological metals concentrations in regression models for blood cadmium were residing in the Great Southern region of Western Australia and not using iron/folic acid supplements and for urinary cadmium was having lower household annual income. However, these factors explained little of the variation in respective biological metals concentrations. The importance of establishing factors that influence low human exposure concentrations is becoming critical in efforts to reduce exposures and hence the potential for adverse health effects. -- Highlights: • Biological heavy metals concentrations in women in their 3rd trimester of pregnancy. • Exposure assessment including environmental, lifestyle and activity

  14. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    Energy Technology Data Exchange (ETDEWEB)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  15. Cadmium and lead in vegetable and fruit produce selected from specific regional areas of the UK

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Gareth J., E-mail: g.norton@abdn.ac.uk [School of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU (United Kingdom); Deacon, Claire M. [School of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU (United Kingdom); Mestrot, Adrien [Soil Science Group, Institute of Geography, Universität Bern, Hallerstrasse 12, 3012 Bern (Switzerland); Feldmann, Joerg [Department of Chemistry, School of Physical Sciences, University of Aberdeen, Meston Building, AB24 3UE (United Kingdom); Jenkins, Paul; Baskaran, Christina [Food Standards Agency, Aviation House, Kingsway, London WC2B 6NH (United Kingdom); Meharg, Andrew A. [Institute for Global Food Security, Queen' s University Belfast, David Keir Building, Malone Road, Belfast BT9 5BN (United Kingdom)

    2015-11-15

    Cadmium and lead were determined in fruit and vegetable produce (~ 1300 samples) collected from a field and market basket study of locally grown produce from the South-West of Britain (Devon and Cornwall). These were compared with similarly locally grown produce from the North-East of Britain (Aberdeenshire). The concentrations of cadmium and lead in the market basket produce were compared to the maximum levels (ML) set by the European Union (EU). For cadmium 0.2% of the samples exceeded the ML, and 0.6% of the samples exceeded the ML for lead. The location of cadmium and lead in potatoes was performed using laser ablation ICP-MS. All tested samples exhibited higher lead concentrations, and most exhibited increased concentrations of cadmium in the potato skin compared to the flesh. The concentrations of cadmium and lead found in fruits and vegetables sampled during this study do not increase concern about risk to human health. - Highlights: • Cadmium and lead concentrations determined in fruit and vegetable produce • 0.2% of the samples exceeded guideline values for cadmium. • 0.6% of the samples exceeded guideline values for lead. • Higher concentrations of cadmium and lead were found in the skins of potatoes.

  16. Effects of blood lead and cadmium levels on homocysteine level in plasma.

    Science.gov (United States)

    Cai, R; Zheng, Y-F; Bu, J-G; Zhang, Y-Y; Fu, S-L; Wang, X-G; Guo, L-L; Zhang, J-R

    2017-01-01

    We studied the effect of non-occupational exposure to lead and cadmium on homocysteine level in plasma. Homocysteine is a marker for plasma folate folic acid metabolism in urban populations. 159 individuals from Beijing, Guangzhou, Shenzhen and Shanghai with no history of close exposure to heavy metals and no history of metabolic diseases were enrolled to participate in this study. Blood lead and cadmium levels were detected using ICP-MS method and the level of homocysteine was also measured using enzyme method. Our results showed that blood lead and cadmium levels in males were significantly higher than those in females. Also, blood lead and cadmium levels in smokers were higher than those in non-smokers; homocysteine level was significantly higher in smokers as well. According to blood lead and cadmium levels, cases were divided into four groups. Our results showed that a surge in blood lead and cadmium levels could result in an increase in homocysteine level. We concluded that in the Chinese population, smoking and gender might be the risk factors for elevated levels of lead and cadmium. Meanwhile, blood lead and cadmium levels may influence the homocysteine levels in the body. It is possible to speculate that non-occupational exposure to lead and cadmium, by increasing the homocysteine levels, negatively affect the cardiovascular and nervous system.

  17. Cadmium and lead in vegetable and fruit produce selected from specific regional areas of the UK

    International Nuclear Information System (INIS)

    Norton, Gareth J.; Deacon, Claire M.; Mestrot, Adrien; Feldmann, Joerg; Jenkins, Paul; Baskaran, Christina; Meharg, Andrew A.

    2015-01-01

    Cadmium and lead were determined in fruit and vegetable produce (~ 1300 samples) collected from a field and market basket study of locally grown produce from the South-West of Britain (Devon and Cornwall). These were compared with similarly locally grown produce from the North-East of Britain (Aberdeenshire). The concentrations of cadmium and lead in the market basket produce were compared to the maximum levels (ML) set by the European Union (EU). For cadmium 0.2% of the samples exceeded the ML, and 0.6% of the samples exceeded the ML for lead. The location of cadmium and lead in potatoes was performed using laser ablation ICP-MS. All tested samples exhibited higher lead concentrations, and most exhibited increased concentrations of cadmium in the potato skin compared to the flesh. The concentrations of cadmium and lead found in fruits and vegetables sampled during this study do not increase concern about risk to human health. - Highlights: • Cadmium and lead concentrations determined in fruit and vegetable produce • 0.2% of the samples exceeded guideline values for cadmium. • 0.6% of the samples exceeded guideline values for lead. • Higher concentrations of cadmium and lead were found in the skins of potatoes

  18. Impairment of metabolic capacities in copper and cadmium contaminated wild yellow perch (Perca flavescens)

    International Nuclear Information System (INIS)

    Couture, Patrice; Rajender Kumar, Puja

    2003-01-01

    This study examined variations in resting oxygen consumption rate (ROCR), post-exercise oxygen consumption rate, relative scope for activity (RSA), liver and muscle aerobic and anaerobic capacities (using citrate synthase (CS) and lactate dehydrogenase, respectively, as indicators), and tissue biosynthetic capacities (using nucleoside diphosphate kinase (NDPK) as an indicator), in wild yellow perch from four lakes varying in copper (Cu) and cadmium (Cd) contamination. Liver Cu and Cd concentrations largely reflected environmental contamination and were positively correlated with liver protein concentrations and NDPK activities. Our results suggest that metal contamination leads to an upregulation of liver protein metabolism, presumably at least in part for the purpose of metal detoxification. In contrast, muscle NDPK activities decreased with increasing liver Cd concentrations and NDPK activities. There was a 25% decrease in ROCR for a doubling of liver Cu concentrations and a 42% decrease in RSA for a doubling of liver Cd concentrations in the range studied. Cu contamination was also associated with lower muscle CS activities. Our results support previous findings of impaired aerobic capacities in the muscle of metal-contaminated fish, and demonstrate that this impairment is also reflected in aerobic capacities of whole fish. The evidence presented suggests that mitochondria may be primary targets for inhibition by Cu, and that Cd may reduce gill respiratory capacity. Muscle aerobic and anaerobic capacities were inversely related. This work indicates that metal exposure of wild yellow perch leads to a wide range of disturbances in metabolic capacities

  19. Food chain transfer of cadmium and lead to cattle in a lead-zinc smelter in Guizhou, China

    International Nuclear Information System (INIS)

    Cai Qiu; Long Meili; Zhu Ming; Zhou Qingzhen; Zhang Ling; Liu Jie

    2009-01-01

    Cadmium (Cd) and Lead (Pb) are environmental pollutants. Environmental samples and bovine tissues were collected from the areas around a lead-zinc smelter in Guizhou, China for Cd, Pb, zinc (Zn) and copper (Cu) analysis. Cd in soil (10 mg/kg) and feed (6.6 mg/kg) from the polluted areas was 10 times higher than the Chinese Standards, resulting in higher Cd in bovine kidney (38 mg/kg) and liver (2.5 mg/kg). Pb in feed (132 mg/kg) from the polluted area was much higher than unpolluted areas, causing higher Pb levels in bovine tissues. Environmental Zn was elevated, but bovine tissue Zn was normal. Cu in bovine liver decreased with increased Cd and Pb. Metals in drinking water and in bovine muscle were within the Standard range. Thus, in the areas of this lead-zinc smelter, the environment has been contaminated with Cd and Pb, which has been transferred to cattle through the food chain. - Cd and Pb from lead-zinc smelters contaminate the environment and accumulate in bovine tissues.

  20. Differences in cadmium transfer from tobacco to cigarette smoke, compared to arsenic or lead

    Directory of Open Access Journals (Sweden)

    J.-J. Piadé

    2015-01-01

    Full Text Available Arsenic, cadmium and lead levels in tobacco filler and cigarette smoke were determined in a 568-sample worldwide survey. Median tobacco levels for arsenic, cadmium and lead were 237, 769 and 397 ng/g respectively, comparable to those previously reported albeit somewhat lower for lead and cadmium. Median mainstream smoke yields for arsenic, cadmium and lead were <3.75, 18.2, and <12.8 ng/cig. under ISO, and <8.71, 75.1 and <45.7 ng/cig. under Health Canada Intense (HCI smoking regime respectively. In the case of cigarettes with activated carbon, a selective retention of cadmium but not lead or arsenic was observed. This effect was more pronounced under ISO than under HCI smoking regimes. Cadmium selective retention by activated carbon was confirmed by testing specially designed prototype cigarettes and the causes for this selective filtration were investigated. The differences between cadmium, arsenic and lead in terms of their speciation in tobaccos and in cigarette smoke could be related to their distribution in the ash, butt, mainstream (in gas-phase and particulate-phase and sidestream smoke of a smoked cigarette. The possible formation of organometallic cadmium derivatives in the smoke gas-phase is discussed, the presence of which could adequately explain the observed cadmium selective filtration.

  1. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the tissues of the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913), from the Vaal Dam, South Africa, and associated consumption risks.

  2. Biosorption of the Copper and Cadmium Ions - a Study through Adsorption Isotherms Analysis

    Directory of Open Access Journals (Sweden)

    Marcia T. Veit

    2007-10-01

    Full Text Available In this work, the biosorption process of copper-cadmium ions binary mixture by using marine algae Sargassum filipendula was investigated. A set of experiments was performed to obtain equilibrium data for the given batch operational conditions - T=30°C, pH=5. The interpretation of equilibrium data was based on the binary adsorption isotherms models in the Langmuir and Freundlich forms. To evaluate the models parameters, nonlinear identification procedure was used based on the Least Square statistical method and SIMPLEX local optimizer. An analysis of the obtained results showed that the marine algae biomass has higher affinity to copper ions than to cadmium ones. The biomass maximum adsorption capacity for the binary system was about 1.16 meq/g.

  3. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  4. Critical loads of Cadmium, Lead and Mercury and their exceedances in Europe

    NARCIS (Netherlands)

    Hettelingh, J.P.; Schutze, G.; Vries, W. de; Denier van der Gon, H.A.C.; Ilyin, I.; Reinds, G.J.; Slootweg, J.; Travnikov, O.

    2015-01-01

    Cadmium (Cd), lead (Pb) and mercury (Hg) are known to be transported over relatively long distances from their sources. Deposited metals may accumulate over time in soils and catchments, and then follow varying pathways to endpoints in humans and the environment. Cadmium and lead, that are emitted

  5. Environmental cadmium and lead exposure and anti-Müllerian hormone in pregnant women

    DEFF Research Database (Denmark)

    Christensen, P. S.; Bonde, J. P.; Bungum, L.

    2016-01-01

    -AMH. MATERIALS AND METHOD: The associations between serum-AMH and whole blood cadmium or lead were investigated by general linear models in a population-based sample of 117 pregnant women. RESULTS: The mean concentrations of blood cadmium and lead were 0.71μg/L and 17.4μg/L, respectively. The mean serum...

  6. Test for Acute Toxicity of Copper, Cadmium, and Mercury in Five Marine Species

    OpenAIRE

    PRATO, Ermelinda; BIANDOLINO, Francesca; SCARDICCHIO, Christian

    2006-01-01

    : The acute toxicity of copper (Cu), cadmium (Cd), and mercury (Hg) to the marine invertebrates Gammarus aequicauda, Corophium insidiosum, Idotea baltica, Sphaeroma serratum, and Mytilus galloprovincialis were evaluated by static bioassays and calculation of the LC50 (lethality concentration for 50%). Hg was more toxic to Gammarus aequicauda, Corophium insidiosum, Idotea baltica, Sphaeroma serratum, and Mytilus galloprovincialis than Cu and Cd. Cu was the least toxic of the metals tested.

  7. Follow up of Treatment of Cadmium and Copper Toxicity in Clarias Gariepinus Using Laser Techniques

    Science.gov (United States)

    Zaghloul, Khalid H.; Ali, Maha F.; El-Bary, Manal G. Abd; Abd El-Harith, Mohamed

    2010-04-01

    Two purified diets were formulated and fed to seven groups of the Nile catfish; Clarias gariepinus for 12 weeks. The formulated diets contained 50 or 500 mg/kg diet of an ascorbic acid equivalent, supplied by L-ascorbyl-2-monophosphate (Mg salt). Laser induced breakdown spectroscopy (LIDS) technique has been used to characterize the bioaccumulation of cadmium, copper and iron in some selected organs (Gills, liver, kidney and muscles) and disturbance in the distribution of sodium, calcium and magnesium in gills and muscles of fish fed the minimum requirement of vitamin C (50 mg/kg diet) and exposed to cadmium (0.165 mg/l) and copper (0.35 mg/l) individually or in combination. Heavy metals bioaccumulation affect histological structure of gills, liver and kidney and consequently, fish exhibited the lowest growth rate and meat quality with a progressive fall in RBCs count, Hb content and haematocrite value. These effects were concomitant with significant increase in the WBCs count, serum glucose, total protein, AST, ALT, creatinine and uric acid. On the contrary, serum total lipids and liver glycogen revealed a significant decrease. However, fish fed 500 mg vitamin C/kg diet and exposed to the same concentrations of cadmium and copper either individually or in mixture showed an improvement in the growth rate and meat quality and a tendency to exhibit close to the control values for most of the other studied physiological, biochemical and histopathological investigations.

  8. [Estimation of maximum acceptable concentration of lead and cadmium in plants and their medicinal preparations].

    Science.gov (United States)

    Zitkevicius, Virgilijus; Savickiene, Nijole; Abdrachmanovas, Olegas; Ryselis, Stanislovas; Masteiková, Rūta; Chalupova, Zuzana; Dagilyte, Audrone; Baranauskas, Algirdas

    2003-01-01

    Heavy metals (lead, cadmium) are possible dashes which quantity is defined by the limiting acceptable contents. Different drugs preparations: infusions, decoctions, tinctures, extracts, etc. are produced using medicinal plants. The objective of this research was to study the impurities of heavy metals (lead, cadmium) in medicinal plants and some drug preparations. We investigated liquid extracts of fruits Crataegus monogyna Jacq. and herbs of Echinacea purpurea Moench., tinctures--of herbs Leonurus cardiaca L. The raw materials were imported from Poland. Investigations were carried out in cooperation with the Laboratory of Antropogenic Factors of the Institute for Biomedical Research. Amounts of lead and cadmium were established after "dry" mineralisation using "Perkin-Elmer Zeeman/3030" model electrothermic atomic absorption spectrophotometer (ETG AAS/Zeeman). It was established that lead is absorbed most efficiently after estimation of absorption capacity of cellular fibers. About 10.73% of lead crosses tinctures and extracts, better cadmium--49.63%. Herbs of Leonurus cardiaca L. are the best in holding back lead and cadmium. About 14.5% of lead and cadmium crosses the tincture of herbs Leonurus cardiaca L. We estimated the factors of heavy metals (lead, cadmium) in the liquid extracts of Crataegus monogyna Jacq. and Echinacea purpurea Moench., tincture of Leonurus cardiaca L. after investigations of heavy metals (lead, cadmium) in drugs and preparations of it. The amounts of heavy metals (lead, cadmium) don't exceed the allowable norms in fruits of Crataegus monogyna Jacq., herbs of Leonurus cardiaca L. and Echinacea purpurea Moench. after estimation of lead and cadmium extraction factors, the maximum of acceptable daily intake and the quantity of drugs consumption in day.

  9. Potentiometric stripping analysis of lead and cadmium leaching from dental prosthetic materials and teeth

    Directory of Open Access Journals (Sweden)

    GORAN M. NIKOLIC

    2004-07-01

    Full Text Available Potentiometric stipping analysis (PSA was applied for the determination of lead and cadmium leaching from dental prosthetic materials and teeth. The soluble lead content in finished dental implants was found to be much lower than that of the individual components used for their preparation. Cadmium was not detected in dental implants and materials under the defined conditions. The soluble lead and cadmium content of teeth was slightly lower than the lead and cadmium content in whole teeth (w/w reported by other researchers, except in the case of a tooth with removed amalgam filling. The results of this work suggest that PSA may be a good method for lead and cadmium leaching studies for investigation of the biocompatibility of dental prosthetic materials.

  10. Stabilize lead and cadmium in contaminated soils using hydroxyapatite and potassium chloride.

    Science.gov (United States)

    Wang, Li; Li, Yonghua; Li, Hairong; Liao, Xiaoyong; Wei, Binggan; Ye, Bixiong; Zhang, Fengying; Yang, Linsheng; Wang, Wuyi; Krafft, Thomas

    2014-12-01

    Combination of hydroxyapatite (HAP) and potassium chloride (KCl) was used to stabilize lead and cadmium in contaminated mining soils. Pot experiments of chilli (Capsicum annuum) and rape (Brassica rapachinensis) were used to evaluate the stabilization efficiency. The results were the following: (1) the optimal combination decreased the leachable lead by 83.3 and 97.27 %, and decreased leachable cadmium by 57.82 and 35.96% for soil HF1 and soil HF2, respectively; (2) the total lead and cadmium concentrations in both plants decreased 69 and 44 %, respectively; (3) The total lead and cadmium concentrations in the edible parts of both vegetables also decreased significantly. This study reflected that potassium chloride can improve the stabilization efficiency of hydroxyapatite, and the combination of hydroxyapatite and potassium chloride can be effectively used to remediate lead and cadmium contaminated mining soil.

  11. Cadmium and lead exposure and risk of cataract surgery in U.S. adults.

    Science.gov (United States)

    Wang, Weiye; Schaumberg, Debra A; Park, Sung Kyun

    2016-11-01

    Cataract is a major cause of visual dysfunction and the leading cause of blindness. Elevated levels of cadmium and lead have been found in the lenses of cataract patients, suggesting these metals may play a role in cataract risk. This study aimed to examine the associations of blood lead, blood cadmium and urinary cadmium with cataract risk. We identified 9763 individuals aged 50 years and older with blood lead and cadmium levels, and a randomly selected subgroup of 3175 individuals with available urinary cadmium levels, from the National Health and Nutrition Examination Surveys (NHANES) from 1999 to 2008 (mean age=63years). Participants were considered to have cataract if they self-reported prior cataract surgery in NHANES's vision examination. Odds ratios (ORs) and 95% confidence intervals (CIs) were computed using survey logistic regression models. We identified 1737 cataract surgery cases (the weighted prevalence=14.1%). With adjustment for age, race/ethnicity, gender, education, diabetes mellitus, body mass index, cigarette smoking (serum cotinine and pack-years) and urine hydration, every 2-fold increase in urinary cadmium was associated with a 23% higher risk of cataract surgery (OR=1.23, 95% CI: 1.04, 1.46, p=0.021). We found no associations of cataract surgery with blood cadmium (OR=0.97, 95% CI: 0.89, 1.07) and blood lead (OR=0.97, 95% CI: 0.88, 1.06). Mediation analysis showed that for the smoking-cadmium-cataract pathway, the ratio of smoking's indirect effect to the total effect through cadmium was more than 50%. These results suggest that cumulative cadmium exposure may be an important under-recognized risk factor for cataract. However, these findings should be interpreted with a caution because of inconsistent results between urinary cadmium and blood cadmium. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Metabolism and toxicity of cadmium, mercury, and lead in animals: a review

    International Nuclear Information System (INIS)

    Neathery, M.W.; Miller, W.J.

    1975-01-01

    Cadmium, mercury, and lead are toxic to humans and animals. Although cadmium and inorganic mercury toxicities occur in humans, they have not been observed in domestic livestock under practical conditions. In contrast, cattle, especially young calves, are extremely susceptible to lead toxicity. Apparently, cattle are more tolerant of cadmium than are other animal species. Due partially to higher absorption and longer retention times in the body, the alkyl mercuries, especially methyl mercury, are more toxic than inorganic mercury compounds. Inorganic forms of cadmium, mercury, and lead are poorly absorbed from the intestine. However, due to lack of effective homeostasis, after absorption retention time is long. Injected cadmium, mercury, and lead are metabolized differently from that naturally absorbed. Most cadmium and mercury are in kidney and liver (50 and 23 percent of total body in goats); but highest total load of methyl mercury is in muscle (72 percent in cows). With low to moderate body burden, most lead is retained in the skeleton. However, beyond a certain point, the kidney accumulates large quantities. Only minute amounts of cadmium and mercury are secreted into milk, but milk is only moderately well protected from dietary lead. Likewise, little cadmium and inorganic mercury pass the placental barrier whereas lead and methyl mercury pass more readily

  13. Surface ordering during underpotential deposition of lead on copper

    Science.gov (United States)

    Vasiljevic, Natasa

    Recently there has been an increased fundamental and practical interest in studies of ultra-thin films in systems with large atomic size mismatch. For those systems interesting surface stress-driven phenomena are observed, such as surface-confined alloying resulting in self-assembly and ordering of domain structures. The system of interest in the present study is the electrochemical deposition of lead on copper that has an atomic size mismatch of 37%. This system shows no bulk alloying and has been thoroughly examined in ultra high vacuum (UHV). Electrodeposition of lead on copper starts by formation of one epitaxial monolayer in the potential region positive with respect to the reversible potential of bulk lead deposition, a phenomenon known in electrochemistry as underpotential deposition (UPD). On copper (111), in-situ STM results have shown (4 x 4) Moire structure of the complete lead monolayer, a structure identical to that observed in UHV. Following stripping of the lead monolayer, STM results revealed nano-organization of the topmost copper layer. Depending on the solution pH value, different types of nanoscale organization have been observed: (i) a Moire pattern of anion-induced reconstruction of the top copper layer, and (ii) a star pattern dislocation network. Additional experiments in lead-free aerated and deaerated solutions at different pH values suggest that observed structures are results of lead-assisted oxy-anion adsorption in which lead plays a catalytic role. On copper (100), the lead UPD process features coverage-dependent phase behavior identical to that observed in UHV. As a function of lead coverage, phases corresponding to a dilute random alloy phase and ordered surface alloy phase that appears at a surface coverage ratio of three lead atoms to eight copper atoms are observed. With increasing lead coverage, lead dealloys from this ordered phase resulting in the formation of a c(2 x 2) lead overlayer phase that transforms with increasing lead

  14. Chelation therapy in intoxications with mercury, lead and copper

    DEFF Research Database (Denmark)

    Cao, yang; Skaug, Marit Aralt; Andersen, Ole

    2015-01-01

    In the present review we provide an update of the appropriate use of chelating agents in the treatment of intoxications with compounds of mercury, lead and copper. The relatively new chelators meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-propanesulphonate (DMPS) can effectively...... or tetrathiomolybdate may be more suitable alternatives today. In copper-toxicity, a free radical scavenger might be recommended as adjuvant to the chelator therapy...

  15. Poplar response to cadmium and lead soil contamination.

    Science.gov (United States)

    Radojčić Redovniković, Ivana; De Marco, Alessandra; Proietti, Chiara; Hanousek, Karla; Sedak, Marija; Bilandžić, Nina; Jakovljević, Tamara

    2017-10-01

    An outdoor pot experiment was designed to study the potential of poplar (Populus nigra 'Italica') in phytoremediation of cadmium (Cd) and lead (Pb). Poplar was treated with a combination of different concentrations of Cd (w = 10, 25, 50mgkg -1 soil) and Pb (400, 800, 1200mgkg -1 soil) and several physiological and biochemical parameters were monitored including the accumulation and distribution of metals in different plant parts (leaf, stem, root). Simultaneously, the changes in the antioxidant system in roots and leaves were monitored to be able to follow synergistic effects of both heavy metals. Moreover, a statistical analysis based on the Random Forests Analysis (RFA) was performed in order to determine the most important predictors affecting growth and antioxidative machinery activities of poplar under heavy metal stress. The study demonstrated that tested poplar could be a good candidate for phytoextraction processes of Cd in moderately contaminated soils, while in heavily contaminated soil it could be only considered as a phytostabilisator. For Pb remediation only phytostabilisation process could be considered. By using RFA we pointed out that it is important to conduct the experiments in an outdoor space and include environmental conditions in order to study more realistic changes of growth parameters and accumulation and distribution of heavy metals. Also, to be able to better understand the interactions among previously mentioned parameters, it is important to conduct the experiments during prolonged time exposure., This is especially important for the long life cycle woody species. Copyright © 2017. Published by Elsevier Inc.

  16. Cadmium and lead in Hong Kong school children.

    Science.gov (United States)

    Chan, Iris H S; Kong, Alice P S; Leung, Ting F; Tsui, Teresa K C; Cheung, Robert C K; Osaki, Risa; Ho, Chung S; Wong, Gary W K; Wong, Chun K; Lam, Christopher W K; Chan, Juliana C N; Chan, Michael H M

    2012-12-01

    Cadmium (Cd) and lead (Pb) are toxic elements in our environment. This study is to determine the reference intervals of Cd and Pb in blood and urine from Hong Kong school children and to identify their determinants. A total of 2209 secondary school children and 893 preschool children were recruited. Cd and Pb in blood and urine were measured by inductively-coupled plasma mass spectrometry. Blood Cd was affected by age, smoking and residential district, while urine Cd was influenced by age and blood Cd. Blood Cd was positively correlated with smoking as confirmed by urinary cotinine (rho  = 0.183, p  <  0.001, n = 2074). Blood Pb was dependent on gender and residential district, while urinary Pb was dependent on gender and blood Pb. Students from schools of lower academic grading had higher blood Cd and Pb than those from higher academic grading schools (p < 0.001, respectively). Urinary albumin was positively associated with urinary Cd and Pb. Using a non-occupationally exposed population, the reference ranges are: blood Cd < 21.9  nmol/L for smokers and < 8.8  nmol/L for non-smokers, and blood Pb < 203.8  nmol/L. Reference intervals for urinary Cd and Pb are also reported.

  17. Associations of lead and cadmium with sex hormones in adult males

    International Nuclear Information System (INIS)

    Kresovich, Jacob K.; Argos, Maria; Turyk, Mary E.

    2015-01-01

    Heavy metal exposures are ubiquitous in the environment and their relation to sex hormones is not well understood. This paper investigates the associations between selected heavy metals (lead and cadmium) and sex hormones (testosterone, free testosterone, estradiol, free estradiol) as well as other major molecules in the steroid biosynthesis pathway (androstanedione glucuronide and sex-hormone binding globulin (SHBG)). Blood lead and cadmium were selected as biomarkers of exposure, and tested for associations in males using National Health and Nutritional Examination Survey (NHANES) data from 1999–2004. After adjustment for age, race, body mass index, smoking status, diabetes and alcohol intake, blood lead was positively associated with testosterone and SHBG while blood cadmium was positively associated with SHBG. After controlling for additional heavy metal exposure, the associations between lead and testosterone as well as cadmium and SHBG remained significant. Furthermore, the association between blood lead and testosterone was modified by smoking status (P for interaction=0.011), diabetes (P for interaction=0.021) and blood cadmium (P for interaction=0.029). The association between blood cadmium and SHBG levels was modified by blood lead (P for interaction=0.004). This study is the most comprehensive investigation to date regarding the association between heavy metals and sex hormones in males. - Highlights: • We used a nationally representative dataset (NHANES) and employed sample weighting. • We examined associations between lead and cadmium with sex-hormone levels. • Blood lead level was positively associated with serum testosterone and SHBG levels. • Blood cadmium level was positively associated with SHBG levels, modified by lead. • Diabetes, smoking and cadmium modified lead and testosterone association.

  18. Cadmium and lead levels in some fish species from Azuabie creek ...

    African Journals Online (AJOL)

    The concentrations of cadmium and lead were determined in seven fish species from the Azuabie creek in the upper Bonny estuary of the Niger Delta, which is associated with industrial and abattoir discharges. Cadmium concentrations ranged from 0.01 to 0.06 mg/kg and show no significant difference between species.

  19. Biosorption of copper and lead ions by waste beer yeast.

    Science.gov (United States)

    Han, Runping; Li, Hongkui; Li, Yanhu; Zhang, Jinghua; Xiao, Huijun; Shi, Jie

    2006-10-11

    Locally available waste beer yeast, a byproduct of brewing industry, was found to be a low cost and promising adsorbent for adsorbing copper and lead ions from wastewater. In this work, biosorption of copper and lead ions on waste beer yeast was investigated in batch mode. The equilibrium adsorptive quantity was determined to be a function of the solution pH, contact time, beer yeast concentration, salt concentration and initial concentration of copper and lead ions. The experimental results were fitted well to the Langmuir and Freundlich model isotherms. According to the parameters of Langmuir isotherm, the maximum biosorption capacities of copper and lead ions onto beer yeast were 0.0228 and 0.0277 mmol g(-1) at 293 K, respectively. The negative values of the standard free energy change (DeltaG degrees ) indicate spontaneous nature of the process. Competitive biosorption of two metal ions was investigated in terms of sorption quantity. The amount of one metal ion adsorbed onto unit weight of biosorbent (q(e)) decreased with increasing the competing metal ion concentration. The binding capacity for lead is more than for copper. Ion exchange is probably one of the main mechanism during adsorptive process.

  20. Lead and cadmium exposure in children living around a coal-mining area in Yataan, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Gulcin Yapici; Gunay Can; Ali Riza Kiziler (and others) [Mersin University, Mersin (Turkey). Department of Public Health

    2006-09-15

    The study was designed to determine asymptomatic lead poisoning prevalence and cadmium exposure of preschool children living in a coal-mining area in Yataan, Mugla, Turkey. The research was conducted between May and June 2002. The study included 236 healthy children (53.4% female and 46.6% male) between the ages of 6 months and 6 years. Assessments of the levels of blood lead and cadmium were performed by an atomic absorption spectrophotometer. Themean blood lead level of the males was higher than the females.There was a negative correlation between blood lead level and age in both sex groups. The blood lead level was found to be > 10 {mu}g/dL in 95.7% and > 20 {mu}g/dL in 87.6% of all children. The mean blood cadmium level of all children was 1.31{+-}0.72 mg/dL. The blood cadmium level was found to be > 0.5 {mu}g/dL, which is considered to be toxic, in 85% of all children. The difference in blood cadmium levels between sexes was not significant. A negative correlation was found between blood cadmium level and age of all children. Although it is not possible to understand from this study what proportion of the biological lead and cadmium burden results from mining waste and what proportion comes from other sources, these results indicate that asymptomatic lead poisoning and cadmium exposure are significant problems in children living in the Yataan area. Environmental lead measurements must be performed, the results must be compared with the normal limits, and precautions must be taken if necessary in the Yataan area. Public health research efforts should focus on reducing the excessive levels of lead and cadmium in the environment.

  1. Speciation study of copper, lead, chromium, cadmium and nickel in ...

    African Journals Online (AJOL)

    Cluster analysis of metals in the pond and stream samples revealed that the metals could have originated from agricultural runoff, activities on the surrounding farmlands, and vehicular emission, on one hand, and leaching from underlying bedrocks on the other hand. Keyword: Speciation analysis, fish pond, water, metals, ...

  2. Transfer and accumulation of lead, zinc, cadmium and copper in ...

    African Journals Online (AJOL)

    TUOYO

    roots (TF < 1); whereas for barley, metals are fairly distributed between the roots and the outer part (TF ≈. 1). These results suggest that the cultivated areas inside the mining district constitute a serious source of contamination of the food chain. Therefore, actions have to be taken in order to remedy this problem. Key words: ...

  3. Impact of environmental cadmium, lead, copper and zinc on quality ...

    African Journals Online (AJOL)

    Pearson's correlation analysis showed significant correlation (p < 0.01) between the metal levels in the heart and kidney, an indication of common source of contamination. The meat quality was found to be impaired by high levels of Zn, Cu and Cd and indicates widespread contamination of the environment by these trace ...

  4. Occupational and Community Exposures to Toxic Metals: Lead, Cadmium, Mercury and Arsenic

    OpenAIRE

    Landrigan, Philip J.

    1982-01-01

    Lead, cadmium, mercury and arsenic are widely dispersed in the environment. Adults are primarily exposed to these contaminants in the workplace. Children may be exposed to toxic metals from numerous sources, including contaminated air, water, soil and food.

  5. Screening of biosorption bacteria tolerance towards copper and cadmium from oil sludge pond

    International Nuclear Information System (INIS)

    Hamzah, A.; Arifin, W.N.W.M.; Khoo, K.S.; Lee, L.J.; Sarmani, S.B.

    2009-01-01

    Certain bacterial strains can be employed in the removal of heavy metals from the environment. The aim of this study was to screen potential bacteria that were tolerant towards Cu and Cd and instrumental neutron activation analysis (INAA) was used to determine the concentrations of heavy metals in the sludge samples. The sludge samples from oil refinery plant in Malaysia contained Cr, Cs, Cu, Eu, Fe, Hg, Mn, Sb, Sc, Th, U and Zn. Seven bacterial isolates were identified to be tolerant to 100 mg/kg of copper and cadmium. (author)

  6. Effect of in vitro exposure to cadmium and copper on sea bass blood cells

    Directory of Open Access Journals (Sweden)

    Vincenzo Arizza

    2010-01-01

    Full Text Available Blood cells freshly collected from sea bass (Dicentrarchus labrax were exposed in vitro to different concentrations of cadmium (Cd and copper (Cu at 10-7 M, 10-5 M, 10-3 M, and exam- ined for neutral red retention capacity and for cell vitality with MTT assay. A relationship between heavy metal exposure and alteration in responses of blood cells in a dose-time-dependent was found. Our results showed that fish blood cells may constitute an interesting biological model for experimen- tal and applied toxicology, especially in the case of environmental pollution.

  7. Sublethal effects of cadmium, manganese, lead, zinc and iron on the ...

    African Journals Online (AJOL)

    The toxicological evaluations of cadmium, iron, manganese, lead and zinc were carried out against albino mice model, Mus musculus. On the basis of 96 hrLC50 value, cadmium (0.47 mM) was found to be the most toxic followed by zinc (2.40 mM), lead (2.42 mM), iron (4.25 mM) and manganese (5.70 mM) was least toxic.

  8. Copper and lead levels in two popular leafy vegetables grown ...

    African Journals Online (AJOL)

    A study was carried out to determine the levels of two heavy metals, Lead (Pb) and Copper (Cu), in two popular leafy vegetables grown around Morogoro Municipality in Tanzania. Vegetable samples of Pumpkin leaves ( Cucurbita moschata) and Chinese cabbage ( Brassica chinensis) were collected from three sites and ...

  9. Factors that Affect the Content of Cadmium, Nickel, Copper and Zinc in Tissues of the Knee Joint.

    Science.gov (United States)

    Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Jakóbik-Kolon, Agata; Kluczka, Joanna; Babuśka-Roczniak, Magdalena

    2017-08-01

    Osteoarthritis causes the degradation of the articular cartilage and periarticular bones. Trace elements influence the growth, development and condition of the bone tissue. Changes to the mineral composition of the bone tissue can cause degenerative changes and fractures. The aim of the research was to determine the content of cadmium (Cd), nickel (Ni), copper (Cu) and zinc (Zn) in the tibia, the femur and the meniscus in men and women who underwent a knee replacement surgery. Samples were collected from 50 patients, including 36 women and 14 men. The determination of trace elements content were performed by ICP-AES method, using Varian 710-ES. Average concentration in the tissues of the knee joint teeth amounted for cadmium 0.015, nickel 0.60, copper 0.89 and zinc 80.81 mg/kg wet weight. There were statistically significant differences in the content of cadmium, copper and zinc in different parts of the knee joint. There were no statistically significant differences in the content of cadmium, nickel, copper and zinc in women and men in the examined parts of the knee joint. Among the elements tested, copper and nickel showed a high content in the connective tissue (the meniscus) compared to the bone tissue (the tibia and the femur).

  10. Calculation of critical loads for cadmium, lead and mercury; background document to a mapping manual on critical loads of cadmium, lead and mercury

    NARCIS (Netherlands)

    Vries, de W.; Schütze, G.; Lofts, S.; Tipping, E.; Meili, M.; Römkens, P.F.A.M.; Groenenberg, J.E.

    2005-01-01

    This report on heavy metals provides up-to-date methodologies to derive critical loads for the heavy metals cadmium (Cd), lead (Pb) and mercury (Hg) for both terrestrial and aquatic ecosystems. It presents background information to a Manual on Critical Loads for those metals. Focus is given to the

  11. ASSESSMENT OF THE BLACK SEA ECOSYSTEM POLLUTION WITH COPPER AND CADMIUM IN SELECTED BAYS OF SEVASTOPOL REGION

    Directory of Open Access Journals (Sweden)

    Marcin Niemiec

    2015-11-01

    Full Text Available A high level of anthropopressure has been registered in Sevastopol region, connected with its strategic role as the main city in the region, but also due to Russian Black Sea Fleet stationing there for many years. A significant source of the Black Sea contamination in Sevastopol area is the industry located in this city, municipal waste and agriculture. Implementing measures aimed at protection of the Black Sea and the evolution of their results requires monitoring conducted in the regions with various levels of anthropopressure. The work was aimed at the assessment of copper and cadmium content in water and algae in selected bays of the Black Sea in the vicinity of Sevastopol. Samples of water and algae were collected in August 2012 from eight Sevastopol bays (Galubaja, Kozacha, Kamyshova, Kruhla, Strieletska, Pishchana, Pivdenna and Sevastopolska and from the open sea in the vicinity of Fiolent. Algae (Cystoseira barbata and Ulva rigida were collected from the same places. Collected water was preserved on the sampling place and brought to the laboratory where its copper and cadmium concentrations were assessed. Collected algae were rinsed in distilled water, dried, then homogenised and mineralised. Copper and cadmium content were determined in the mineralizates using ASA method with electrothermal atomisation. Cadmium concentration in water ranged from 0.13 to 1.74 µg Cd∙dm-3, and copper from 7.07 to 22.56 µg Cd∙dm-3. Considerable differences in the content of the analysed elements were registered in individual bays. The highest content was assessed in Galubaja and Sevastopolska bays, whereas the lowest one in the water collected in the open sea and in Pivdenna bay. Copper concentrations in the analysed algae fluctuated from 3.375 to 14.96 mg Cu∙kg-1 d.m. No differences were noted in this element content between the algae species. Cadmium content in the algae ranged from 0.133 to 1.133 mg Cd∙kg-1 d.m. Higher accumulation of cadmium

  12. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhu [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wu, Longhua, E-mail: lhwu@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Pengjie [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Yantai 264003 (China); Christie, Peter [Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2013-10-15

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola.

  13. Biomarker responses of Peromyscus leucopus exposed to lead and cadmium in the Southeast Missouri Lead Mining District

    Science.gov (United States)

    Beyer, W. Nelson; Casteel, Stan W.; Friedrichs, Kristen R.; Gramlich, Eric; Houseright, Ruth A.; Nichols, John W.; Karouna-Renier, Natalie; Kim, Dae Young; Rangen, Kathleen; Rattner, Barnett A.; Schultz, Sandra

    2018-01-01

    Biomarker responses and histopathological lesions have been documented in laboratory mammals exposed to elevated concentrations of lead and cadmium. The exposure of white-footed mice (Peromyscus leucopus) to these metals and the potential associated toxic effects were examined at three contaminated sites in the Southeast Missouri Lead Mining District and at a reference site in MO, USA. Mice from the contaminated sites showed evidence of oxidative stress and reduced activity of red blood cell δ-aminolevulinic acid dehydratase (ALAD). Histological examinations of the liver and kidney, cytologic examination of blood smears, and biomarkers of lipid peroxidation and DNA damage failed to show indications of toxic effects from lead. The biomagnification factor of cadmium (hepatic concentration/soil concentration) at a site with a strongly acid soil was 44 times the average of the biomagnification factors at two sites with slightly alkaline soils. The elevated concentrations of cadmium in the mice did not cause observable toxicity, but were associated with about a 50% decrease in expected tissue lead concentrations and greater ALAD activity compared to the activity at the reference site. Lead was associated with a decrease in concentrations of hepatic glutathione and thiols, whereas cadmium was associated with an increase. In addition, to support risk assessment efforts, we developed linear regression models relating both tissue lead dosages (based on a previously published a laboratory study) and tissue lead concentrations in Peromyscus to soil lead concentrations.

  14. Association of lead and cadmium exposure with frailty in US older adults

    International Nuclear Information System (INIS)

    García-Esquinas, Esther; Navas-Acien, Ana; Pérez-Gómez, Beatriz; Artalejo, Fernando Rodríguez

    2015-01-01

    Background: Environmental lead and cadmium exposure is associated with higher risk of several age-related chronic diseases, including cardiovascular disease, chronic kidney disease and osteoporosis. These diseases may lead to frailty, a geriatric syndrome characterized by diminished physiologic reserve in multiple systems with decreased ability to cope with acute stressors. However, no previous study has evaluated the association between lead or cadmium exposure and frailty. Methods: Cross-sectional study among individuals aged ≥60 years who participated in the third U.S. National Health and Nutrition Examination Survey and had either blood lead (N=5272) or urine cadmium (N=4887) determinations. Frailty was ascertained with a slight modification of the Fried criteria, so that individuals meeting ≥3 of 5 pre-defined criteria (exhaustion, low body weight, low physical activity, weakness and slow walking speed), were considered as frail. The association between lead and cadmium with frailty was evaluated using logistic regression with adjustment for relevant confounders. Results: Median (intertertile range) concentrations of blood lead and urine cadmium were 3.9 µg/dl (2.9–4.9) and 0.62 µg/l (0.41–0.91), respectively. The prevalence of frailty was 7.1%. The adjusted odds ratios (95% confidence interval) of frailty comparing the second and third to the lowest tertile of blood lead were, respectively, 1.40 (0.96–2.04) and 1.75 (1.33–2.31). Lead concentrations were also associated with the frequency of exhaustion, weakness and slowness. The corresponding odds ratios (95% confidence interval) for cadmium were, respectively, 0.97 (0.68–1.39) and 1.55 (1.03–2.32), but this association did not hold after excluding participants with reduced glomerular filtration rate: 0.70 (0.43–1.14) and 1.09 (0.56–2.11), respectively. Conclusions: In the US older adult population, blood lead but not urine cadmium concentrations showed a direct dose

  15. Association of lead and cadmium exposure with frailty in US older adults

    Energy Technology Data Exchange (ETDEWEB)

    García-Esquinas, Esther, E-mail: esthergge@gmail.com [Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/ IdiPAZ, Madrid (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Navas-Acien, Ana [Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (United States); Pérez-Gómez, Beatriz [CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Environmental Epidemiology and Cancer Unit, National Center for Epidemiology, Carlos III Institute of Health, Madrid (Spain); Artalejo, Fernando Rodríguez [Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid/ IdiPAZ, Madrid (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain)

    2015-02-15

    Background: Environmental lead and cadmium exposure is associated with higher risk of several age-related chronic diseases, including cardiovascular disease, chronic kidney disease and osteoporosis. These diseases may lead to frailty, a geriatric syndrome characterized by diminished physiologic reserve in multiple systems with decreased ability to cope with acute stressors. However, no previous study has evaluated the association between lead or cadmium exposure and frailty. Methods: Cross-sectional study among individuals aged ≥60 years who participated in the third U.S. National Health and Nutrition Examination Survey and had either blood lead (N=5272) or urine cadmium (N=4887) determinations. Frailty was ascertained with a slight modification of the Fried criteria, so that individuals meeting ≥3 of 5 pre-defined criteria (exhaustion, low body weight, low physical activity, weakness and slow walking speed), were considered as frail. The association between lead and cadmium with frailty was evaluated using logistic regression with adjustment for relevant confounders. Results: Median (intertertile range) concentrations of blood lead and urine cadmium were 3.9 µg/dl (2.9–4.9) and 0.62 µg/l (0.41–0.91), respectively. The prevalence of frailty was 7.1%. The adjusted odds ratios (95% confidence interval) of frailty comparing the second and third to the lowest tertile of blood lead were, respectively, 1.40 (0.96–2.04) and 1.75 (1.33–2.31). Lead concentrations were also associated with the frequency of exhaustion, weakness and slowness. The corresponding odds ratios (95% confidence interval) for cadmium were, respectively, 0.97 (0.68–1.39) and 1.55 (1.03–2.32), but this association did not hold after excluding participants with reduced glomerular filtration rate: 0.70 (0.43–1.14) and 1.09 (0.56–2.11), respectively. Conclusions: In the US older adult population, blood lead but not urine cadmium concentrations showed a direct dose

  16. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  17. Cadmium but not lead exposure affects Xenopus laevis fertilization and embryo cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Slaby, Sylvain [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); Lemière, Sébastien [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Hanotel, Julie; Lescuyer, Arlette [Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); Demuynck, Sylvain [Univ. Lille Nord de France, EA 4515 – LGCgE – Laboratoire Génie Civil et géo-Environnement, Université de Lille 1, Cité scientifique, SN3, F-59655 Villeneuve d’Ascq (France); Bodart, Jean-François [Univ. Lille, CNRS, INRA, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille (France); and others

    2016-08-15

    Highlights: • First embryonic steps were studied. • Fertilization success was impacted by cadmium exposures. • Oocytes were most affected instead of spermatozoa by cadmium exposures. • First embryonic cleavages were slown down or stopped by cadmium exposures. • Lead exposures did not affected fertilization and segmentation. - Abstract: Among the toxicological and ecotoxicological studies, few have investigated the effects on germ cells, gametes or embryos, while an impact at these stages will result in serious damage at a population level. Thus, it appeared essential to characterize consequences of environmental contaminant exposures at these stages. Therefore, we proposed to assess the effects of exposure to cadmium and lead ions, alone or in a binary mixture, on early stages of Xenopus laevis life cycle. Fertilization and cell division during segmentation were the studied endpoints. Cadmium ion exposures decreased in the fertilization rates in a concentration-dependent manner, targeting mainly the oocytes. Exposure to this metal ions induced also delays or blockages in the embryonic development. For lead ion exposure, no such effect was observed. For the exposure to the mixture of the two metal ions, concerning the fertilization success, we observed results similar to those obtained with the highest cadmium ion concentration.

  18. Influence of Low Molecular Weight Organic Acids on Transport of Cadmium and Copper Ions across Model Phospholipid Membranes

    Czech Academy of Sciences Publication Activity Database

    Parisová, Martina; Navrátil, Tomáš; Šestáková, Ivana; Jaklová Dytrtová, Jana; Mareček, Vladimír

    2013-01-01

    Roč. 8, č. 1 (2013), s. 27-44 ISSN 1452-3981 R&D Projects: GA AV ČR IAA400400806 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : cadmium * copper * low molecular weight organic acid Subject RIV: CG - Electrochemistry Impact factor: 1.956, year: 2013

  19. Diffusive gradient in thin films technique for assessment of cadmium and copper bioaccessibility to radish (Raphanus sativus)

    Czech Academy of Sciences Publication Activity Database

    Dočekalová, H.; Škarpa, P.; Dočekal, Bohumil

    2015-01-01

    Roč. 134, March (2015), s. 153-157 ISSN 0039-9140 R&D Projects: GA ČR GAP503/10/2002 Institutional support: RVO:68081715 Keywords : radish * cadmium * copper * DGT technique * bioaccesibility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.035, year: 2015

  20. 113Cd-NMR investigation of a cadmium-substituted copper, zinc-containing superoxide dismutase from yeast

    DEFF Research Database (Denmark)

    Kofod, Pauli; Bauer, Rogert; Danielsen, Eva

    1991-01-01

    113Cd nuclear magnetic resonance spectroscopy has been used to investigate the metal binding sites of cadmium-substituted copper,zinc-containing superoxide dismutase from baker's yeast. NMR signals were obtained for 113Cd(II) at the Cu site as well as for 113Cd(II) at the Zn site. The two subunits...

  1. Lead and cadmium levels of commonly administered pediatric syrups in Nigeria: A public health concern?

    Energy Technology Data Exchange (ETDEWEB)

    Orisakwe, Orish Ebere, E-mail: eorish@aol.com [Toxicology Unit, Department of Pharmacology,College of Health Sciences, Nnamdi Azikiwe University,Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Nduka, John Kanayochukwu [Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, P.M.B. 5025, Awka Anambra State (Nigeria)

    2009-11-15

    Fifty different pediatric syrups were randomly sampled from patent medicine stores and pharmaceutical shops within Awka, in Anambra State between November 2007 and May 2008. Syrups were ashed before digestion using conc. aqua regia, HCl:HNO{sub 3} (3:1) and lead and cadmium were assayed with AAS 205A. Results revealed that 60 and 98% of the sample size had lead and cadmium respectively. The lead levels ranged from 0.01 in chloroquine to 1.08 mg/l in magcid suspension. The highest level of cadmium was seen in magcid suspension with concentration of 2.45 mg/l while lowest concentration of 0.01 in emzolyn and colipan. About 41.2% of the locally made syrup had none detectable levels of lead while all the syrup had detectable levels of cadmium. Lead levels ranged from 0.01 mg/l in cadiphen manufactured in Dholka, India to 0.09 in maxiquine made in England. About 68.8% of the imported syrups of the imported syrups had non detectable levels of lead. Chloramphenicol and zentel albendazole syrups had 0.60 and 0.88 mg/l of cadmium respectively. Bellis cough syrup showed the lowest level (0.01 mg/l) of cadmium. Only erythromycin suspension representing 6.3% had non detectable level of cadmium of the imported syrups. Due to the Cd and Pb levels found, we suggest that the behaviour scenario (here, self administration without medical assistance) should be properly taken under control. Along with this, contamination sources or vulnerable practices during syrups preparation should be also assessed in a tiered approach, towards the minimization of noxious presence in syrups and the promotion of quality of Nigerian-made products.

  2. Lead and cadmium levels of commonly administered pediatric syrups in Nigeria: A public health concern?

    International Nuclear Information System (INIS)

    Orisakwe, Orish Ebere; Nduka, John Kanayochukwu

    2009-01-01

    Fifty different pediatric syrups were randomly sampled from patent medicine stores and pharmaceutical shops within Awka, in Anambra State between November 2007 and May 2008. Syrups were ashed before digestion using conc. aqua regia, HCl:HNO 3 (3:1) and lead and cadmium were assayed with AAS 205A. Results revealed that 60 and 98% of the sample size had lead and cadmium respectively. The lead levels ranged from 0.01 in chloroquine to 1.08 mg/l in magcid suspension. The highest level of cadmium was seen in magcid suspension with concentration of 2.45 mg/l while lowest concentration of 0.01 in emzolyn and colipan. About 41.2% of the locally made syrup had none detectable levels of lead while all the syrup had detectable levels of cadmium. Lead levels ranged from 0.01 mg/l in cadiphen manufactured in Dholka, India to 0.09 in maxiquine made in England. About 68.8% of the imported syrups of the imported syrups had non detectable levels of lead. Chloramphenicol and zentel albendazole syrups had 0.60 and 0.88 mg/l of cadmium respectively. Bellis cough syrup showed the lowest level (0.01 mg/l) of cadmium. Only erythromycin suspension representing 6.3% had non detectable level of cadmium of the imported syrups. Due to the Cd and Pb levels found, we suggest that the behaviour scenario (here, self administration without medical assistance) should be properly taken under control. Along with this, contamination sources or vulnerable practices during syrups preparation should be also assessed in a tiered approach, towards the minimization of noxious presence in syrups and the promotion of quality of Nigerian-made products.

  3. Toxicity of Zinc, Copper and Lead to Idotea baltica (Crustacea, Isopoda)

    OpenAIRE

    BAT, Levent; SEZGİN, Murat; GÜNDOĞDU, Ayşe; ÇULHA, Mehmet

    2014-01-01

    The acute toxicity of zinc, copper and lead to the marine invertebrate Idotea baltica (Crustacea, Isopoda) was evaluated by static bioassays, calculating the LT 50 (lethality time for 50%) for males and females. Survival time decreased with increasing concentrations of zinc, copper and lead. Zinc was more toxic to Idotea than copper and lead. Lead was the least toxic of the metals tested.

  4. The cadmium and lead content of the grain produced by leading Chinese rice cultivars.

    Science.gov (United States)

    Xie, L H; Tang, S Q; Wei, X J; Shao, G N; Jiao, G A; Sheng, Z H; Luo, J; Hu, P S

    2017-02-15

    The cadmium (Cd) and lead (Pb) content in both white and wholemeal flour milled from 110 leading rice cultivars was assessed. The white flour Cd content ranged from <0.0025 to 0.2530mg/kg (geometric mean (GM)=0.0150mg/kg), while its Pb content ranged from <0.0250 to 0.3830mg/kg (GM=0.0210mg/kg). The indica types took up higher amounts of Cd and Pb than did the japonica types. Although the heavy metal content of wholemeal flour tended to higher than that of white flour, nevertheless 84.5% (Cd) and 95.4% (Pb) of the entries were compliant with the national maximum allowable concentration of 0.2000mg/kg of each contaminant. An analysis of the Cd content in the white flour of three indica type cultivars grown in two consecutive years at two locations indicated that Cd content may be significantly affected by the conditions prevailing in the growing season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The determination of levels of mercury, cadmium and lead in water samples from Naivasha area, Kenya

    International Nuclear Information System (INIS)

    Muigai, P.G.; Kamau, G.N.; Kinyua, A.M.

    1995-01-01

    The analysis of mercury, cadmium and lead in water samples from different environments (Lake Naivasha, River Malewa boreholes and Olkaria geothermal wells) in Naivasha region and their possible origins are reported. The levels of mercury and lead in the water samples were above the maximum permissible limits of 0.005 mg/1 and 0.1 mg/1 respectively, as stipulated by the WHO. On the other hand, 83.3% of the samples had cadmium levels above the maximum permissible limit of 0.01mg/1 in drinking water by WHO. The mercury and lead levels were also higher than those previously obtained from different regions of Kenya, while those for cadmium were within the corresponding range. Possible sources of elevated values were the geology of the surrounding area, sewage treatment works, use of phosphate rock fertilizers and lead fuels.(author)

  6. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Vimala, R., E-mail: vimararagu@yahoo.co.in [School of Biotechnology, Chemical and Biomedical Engineering, VIT University, Vellore 632014, Tamil Nadu (India); Das, Nilanjana [School of Biotechnology, Chemical and Biomedical Engineering, VIT University, Vellore 632014, Tamil Nadu (India)

    2009-08-30

    Sorption capacity of oyster mushroom (Pleurotus platypus), button mushroom (Agaricus bisporus) and milky mushroom (Calocybe indica) were evaluated on biosorption of heavy metals, viz. cadmium (II) and lead (II) from aqueous solutions. The optimum sorption conditions were studied for each metal separately. The desired pH of the aqueous solution was found to be 6.0 for the removal of cadmium (II) and 5.0 for removal of lead (II) for all the mushrooms. The percent removal of both the metals was found to increase with the increase in biosorbent dosage and contact time. The fitness of the biosorption data for Langmuir and Freundlich adsorption models was investigated. It was found that biosorption of cadmium (II) and lead (II) ions onto the biomass of the three mushrooms were better suitable to Langmuir than Freundlich adsorption model. P. platypus showed the highest metal uptake potential for cadmium (q{sub max} 34.96 mg/g) whereas A. bisporus exhibited maximum potential for lead (q{sub max} 33.78 mg/g). Milky mushroom showed the lowest metal uptake capacity for both the metals. The present data confirms that mushrooms may be used as efficient biosorbent for the removal of cadmium (II) and lead (II) ions from aqueous solution.

  7. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study

    International Nuclear Information System (INIS)

    Vimala, R.; Das, Nilanjana

    2009-01-01

    Sorption capacity of oyster mushroom (Pleurotus platypus), button mushroom (Agaricus bisporus) and milky mushroom (Calocybe indica) were evaluated on biosorption of heavy metals, viz. cadmium (II) and lead (II) from aqueous solutions. The optimum sorption conditions were studied for each metal separately. The desired pH of the aqueous solution was found to be 6.0 for the removal of cadmium (II) and 5.0 for removal of lead (II) for all the mushrooms. The percent removal of both the metals was found to increase with the increase in biosorbent dosage and contact time. The fitness of the biosorption data for Langmuir and Freundlich adsorption models was investigated. It was found that biosorption of cadmium (II) and lead (II) ions onto the biomass of the three mushrooms were better suitable to Langmuir than Freundlich adsorption model. P. platypus showed the highest metal uptake potential for cadmium (q max 34.96 mg/g) whereas A. bisporus exhibited maximum potential for lead (q max 33.78 mg/g). Milky mushroom showed the lowest metal uptake capacity for both the metals. The present data confirms that mushrooms may be used as efficient biosorbent for the removal of cadmium (II) and lead (II) ions from aqueous solution.

  8. Voltammetric determination of cadmium and lead in human hair as healthy indicator

    International Nuclear Information System (INIS)

    Nasser, H.; Kherbik, R.

    2010-01-01

    Cadmium and Lead level were examined in hair of patients and healthy donors. Hair sample were collected and analyzed for their contents of the trace metals (Cd, Pb) by Voltammetry. It was found that the existence of Cadmium and Lead in the hair was significantly higher in the patients (19.7 μg/g - 38.2 μg/g) for lead, (0.4 μg/g - 2.1 μg/g) for cadmium. On the other hand, the healthy had lower concentration (7.8 μg/g - 8.8 μg/g) for Lead, (0.2 μg/g - 0.3 μg/g) for cadmium. In this study, hairs were analyzed to find the effect these elements on health. Correlation coefficients between the levels of the elements in hair found in this study showed that hair is a good indicator of Cadmium and Lead in the hair. The method is applicable as a tool for monitoring pollution level of groups.(author)

  9. Comparative transcriptomic characterization of aluminum, sodium chloride, cadmium and copper rhizotoxicities in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Sakurai Nozomu

    2009-03-01

    Full Text Available Abstract Background Rhizotoxic ions in problem soils inhibit nutrient and water acquisition by roots, which in turn leads to reduced crop yields. Previous studies on the effects of rhizotoxic ions on root growth and physiological functions suggested that some mechanisms were common to all rhizotoxins, while others were more specific. To understand this complex system, we performed comparative transcriptomic analysis with various rhizotoxic ions, followed by bioinformatics analysis, in the model plant Arabidopsis thaliana. Results Roots of Arabidopsis were treated with the major rhizotoxic stressors, aluminum (Al ions, cadmium (Cd ions, copper (Cu ions and sodium (NaCl chloride, and the gene expression responses were analyzed by DNA array technology. The top 2.5% of genes whose expression was most increased by each stressor were compared with identify common and specific gene expression responses induced by these stressors. A number of genes encoding glutathione-S-transferases, peroxidases, Ca-binding proteins and a trehalose-synthesizing enzyme were induced by all stressors. In contrast, gene ontological categorization identified sets of genes uniquely induced by each stressor, with distinct patterns of biological processes and molecular function. These contained known resistance genes for each stressor, such as AtALMT1 (encoding Al-activated malate transporter in the Al-specific group and DREB (encoding dehydration responsive element binding protein in the NaCl-specific group. These gene groups are likely to reflect the common and differential cellular responses and the induction of defense systems in response to each ion. We also identified co-expressed gene groups specific to rhizotoxic ions, which might aid further detailed investigation of the response mechanisms. Conclusion In order to understand the complex responses of roots to rhizotoxic ions, we performed comparative transcriptomic analysis followed by bioinformatics characterization

  10. On the physicochemical states of cadmium and lead in sea water and sediment pollution

    International Nuclear Information System (INIS)

    Aoyama, Isao; Sakai, Takashi; Inoue, Yoriteru

    1976-01-01

    The existence states of cadmium and lead in sea water taken from Wakasa Bay in Japan were experimentally studied and their transfer to bottom sand layer was tested. Sample water was filtered through a glass wool filter and a 0.45 μ-m membrane filter. Cadmium chloride and lead chloride were fed so that the concentrations of the metals became the environmental standard values (0.01 ppm for cadmium and 0.1 ppm for lead). Cd-115m and lead-210 were added to the sample as tracers. The existence states were measured by dialysis, the filtration with a membrane filter and the adsorption on an ion-exchange resin. As a result, the ionic state of cadmium decreased to 85% and the deposition factor on the membrane filter increased to about 30% when pH is 9.6. The distribution factor of the cation exchange resin was 2 - 5, whereas that of the anion exchange resin was 1000 or more at pH 8,4 or less, but was reduced to 541 at pH 9.6. The ion existence ratio of lead was 80% - 90% at pH 8 or less, and was 10% or less at pH 8.8. The deposition factor of lead was higher than that of cadmium. The distribution factor of lead showed similar tendency to that of cadmium. As a result of measuring the radioactivity adsorbed by the bottom sand in the experimental tank, it was found that the transfer of very small amount of heavy metals to the bottom material depended upon the physicochemical existence states of the metals in water. (Iwakiri, K.)

  11. Lead and cadmium sorption mechanisms on magnetically modified biochars

    Czech Academy of Sciences Publication Activity Database

    Trakal, L.; Veselská, V.; Šafařík, Ivo; Vítková, M.; Číhalová, S.; Komárek, M.

    2016-01-01

    Roč. 203, MAR (2016), s. 318-324 ISSN 0960-8524 R&D Projects: GA MŠk(CZ) LD14066 Institutional support: RVO:67179843 Keywords : pyrolysis bio-chars * aqueous-solutions * heavy-metals * removal * adsorption * water * contaminants * pb * temperatures * copper * Magnetic biochar * Fe oxide impregnation * Metal sorption * Cation release * Wastewater treatment Subject RIV: EI - Biotechnology ; Bionics Impact factor: 5.651, year: 2016

  12. Perinatal exposure to lead and cadmium affects anxiety-like behaviour

    International Nuclear Information System (INIS)

    Leret, M.Luisa; Millan, Jose Antonio San; Antonio, M.Teresa

    2003-01-01

    The present study examines the effects of early simultaneous exposure to low level of lead and cadmium on anxiety-like behaviour in the rat, and on monoamine levels in the hypothalamus and hippocampus at weaning and adult animals. Rats were intoxicated with cadmium acetate (10 mg/l) and lead acetate (300 mg/l) in drinking water from the beginning of pregnancy until weaning. Maternal co-exposure to lead and cadmium produced mainly alterations in dopaminergic and serotoninergic systems of hippocampus in both age studied, while noradrenaline content in hypothalamus and hippocampus remained unchanged at 75 days of age. The intoxicated rats showed an increased on indices of anxiety on the elevated plus-maze. These long-term changes in anxiety-like behaviour can be related to dopaminergic and serotoninergic alterations detected in hippocampus

  13. Cadmium-containing waste and recycling possibilities

    International Nuclear Information System (INIS)

    Wiegand, V.; Rauhut, A.

    1981-01-01

    To begin with, the processes of cadmium production from zinc ores in smelting plants or from intermediates of other metal works are described. A considerable amount of the cadmium is obtained in the recycling process in zinc, lead, and copper works. The way of the cadmium-containing intermediaries, processing, enrichment, and disposal of cadmium waste are described. Uses of cadmium and its compounds are mentioned, and cadmium consumption in the years 1973-1977 in West Germany is presented in a table. Further chapters discuss the production and the way of waste during production and processing of cadmium-containing products, the problem of cadmium in household refuse and waste incineration plants, and the problem of cadmium emissions. (IHOE) [de

  14. Sorption and preconcentration of copper and cadmium on silica gel modified with 3-aminopropyltriethoxysilane

    Energy Technology Data Exchange (ETDEWEB)

    Ince, H.; Akman, S.; Koeklue, U. (Istanbul Teknik Univ. (Turkey). Fen-Edebiyat Fakultesi)

    1992-03-01

    3-Aminopropyltriethoxysilane, (C{sub 2}H{sub 5}O){sub 3}Si(CH{sub 2}){sub 3}NH{sub 2}, loaded on silica gel was used as a pre-concentration sorbent for copper and cadmium prior to their determination by flame atomic absorption spectrometry (FAAS). Both batch and column methods were used for the separation of the above metals. The analytes are quantitatively retained on the proposed adsorbent at pH 6.5. The complexation capacity of the collector is 0.032 mmol Cu/g silica. In the batch method, the effects of shaking time and the ratio of metal/silica on the retention by the asorbent were investigated. Columns filled with the collector provided quantitative recovery of the above metals from standardized samples as well as from sodium chloride solutions. (orig.).

  15. Variability of cadmium, copper and zinc levels in molluscs and associated sediments from Chile.

    Science.gov (United States)

    De Gregori, I; Pinochet, H; Gras, N; Muñoz, L

    1996-01-01

    The concentrations of cadmium, copper and zinc in mussel and sediment samples collected together from eight different geographical coastal areas of Chile were determined. The mussels studied were 'Chorito Maico', 'Almejas' and 'Navajuelas Chilenas' (Perumytilus purpuratus, Semelle solida and Tagellus dombeii, respectively). Sampling was carried out in July and September 1992 and January and April 1993 (winter, spring, summer and autumn seasons in Chile, respectively). The metal levels in these mussels varied among species; there were several sites where the metal concentrations in molluscs approached or exceeded the criteria levels for Cd, Cu and Zn in shellfish products: 1, 10 and 50 ppm ww respectively, which are regarded as safe levels for human consumption. The results of metal levels in sediments showed two areas clearly polluted with Cu. Strong relationships between Cu concentrations in the three molluscs and sediments were found; weak correlations were observed for Zn in S. solida.

  16. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil.

    Science.gov (United States)

    Cui, Hongbiao; Fan, Yuchao; Yang, John; Xu, Lei; Zhou, Jing; Zhu, Zhenqiu

    2016-10-01

    Phytoremediation is a potential cost-effective technology for remediating heavy metal-contaminated soils. In this study, we evaluated the biomass and accumulation of copper (Cu) and cadmium (Cd) of plant species grown in a contaminated acidic soil treated with limestone. Five species produced biomass in the order: Pennisetum sinese > Elsholtzia splendens > Vetiveria zizanioides > Setaria pumila > Sedum plumbizincicola. Over one growing season, the best accumulators for Cu and Cd were Pennisetum sinese and Sedum plumbizincicola, respectively. Overall, Pennisetum sinese was the best species for Cu and Cd removal when biomass was considered. However, Elsholtzia splendens soil had the highest enzyme activities and microbial populations, while the biological properties in Pennisetum sinese soil were moderately enhanced. Results would provide valuable insights for phytoremediation of metal-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. EFFECTS OF LEAD AND CADMIUM UPON THE KIDNEY FUNCTION OF THE A TEMPORE NEWBORNS

    Directory of Open Access Journals (Sweden)

    Marina Jonović

    2002-09-01

    Full Text Available The aim of this paper is to examine the subjection of the embryo and the newborn to lead and cadmium as well as the effects of these metals upon the kidney function in the children newly born on time. The hypothetical framework of the paper was that lead and cadmium that are trans placental transmitted to the embryo organism lead to the change of the kidney function in the sence of damages done to the tubular system and to the interstitium along with changes in the urine sediment and in the levels of urea and creatinine in the serum; thus induced effects can be detected in the first week of life of the newborn babies.The examination was done in 1995 at Gynecological and Obstetric Clinic in Niš. The examined and the control group consisted of 30 newborns on time. The clinic examination was done on all the newborns. Regarding the kidney function examination, on the forth day of life all the newborn children were subjected to the determination of the value of urea and creatinine in the vein blood, the urine examination, the physical and physical-chemical features of the urine (outlook, specific weight, color, pH, the chemical status of the urine, the microscopic examination of the urine sediment, the ultrasonic examination of the kidneys. On the basis of the carried out examination and obtained results we came to the following conclusions:The lead concentration in the air at the localities related to the examined group is above G VI while for the control one below GVI. The cadmium concentration in the air from the examined localities in both the groups are above GVI. The lead and cadmium concentrations in the sediment materials at the localities related to the examined and control group are below GVI.The lead concentration in the umbilical cord blood is higher in the control group with respect to the examined one though without statistic significance. The lead concentration in the human milk is higher in the control group than in the examined one

  18. Effects of copper and cadmium spiked-sediments on embryonic development of Japanese medaka (Oryzias latipes).

    Science.gov (United States)

    Barjhoux, Iris; Baudrimont, Magalie; Morin, Bénédicte; Landi, Laure; Gonzalez, Patrice; Cachot, Jérôme

    2012-05-01

    Because of their high capacity to accumulate contaminants such as persistent organic pollutants and heavy metals, aquatic sediments are considered as a long-term source of contamination for aquatic organisms. In compliance with the increasing interest both for sediment quality evaluation and the use of fish early life stage (ELS) toxicity assays, we proposed an embryo-larval test to evaluate embryotoxicity and genotoxicity of sediment-bound contaminants. Pre-blastula stage medaka (Oryzias latipes) embryos were exposed by static sediment contact to two model heavy metals (cadmium and copper) at environmental concentrations during the whole 10-day embryonic development. Lethal and sub-lethal effects were recorded in both embryos and larvae for 20 days post fertilisation (dpf) using several global toxicity and phenotypic endpoints. The comet assay was also performed on medaka prolarvae to evaluate genotoxic effects of the tested chemicals. Environmental concentrations of cadmium (Cd) and copper (Cu) did not affect embryo and larval survival. However, both heavy metals significantly induced morphological abnormalities, particularly spinal and cardiovascular deformities. Cd but not Cu induced tachycardia. Both heavy metals induced a significant increase in DNA damage at all tested concentrations. Resulting LOEC values for Cd and Cu corresponded to 1.9 and 8.5 μg/g d.w. sediment, respectively. Although metal bioavailability is probably lower for naturally contaminated sediments, the relatively low toxicity thresholds for both Cd and Cu raise the question of possible risk for fish embryos developing in direct contact to sediments. This study demonstrates the applicability, sensitivity and relevance of the Japanese medaka embryo-larval assay (MELA) to evaluate sediment hazardous potency at environmental concentrations of heavy metals. Copyright © 2012. Published by Elsevier Inc.

  19. Variation of resistivity of copper doped cadmium telluride prepared by electrodeposition

    International Nuclear Information System (INIS)

    von Windheim, J.A.; Cocivera, M.

    1990-01-01

    Thin film cadmium telluride is an attractive material because its band gap makes it suitable for a number of applications. The authors have prepared this material by electrodeposition both in the dark and under illumination. The resultant films, which are p-type as deposited and after heat treatment, have been used with electrodeposited cadmium sulfide to form pn junction photovoltaic cells. Light-to-electric power conversion efficiencies for a number of samples average around 3.5%. To increase this efficiency, the authors have initiated a program to reduce film resistivity by the incorporation of dopants using electrochemical and vapour techniques. The electrical characterization of electrodeposited thin film materials by Hall effect or resistance measurements is difficult because the sample must be removed from the conducting substrate before studies can be done. In this paper, results are presented for copper incorporated by two methods, electrochemical codeposition and electromigration and the effect is discussed in terms of a model in which the conductivity is controlled by the relative magnitudes of the dopant density and the density of interface states at the grain boundary

  20. Assessment of Lead and Cadmium Levels in Frequently Used Cosmetic Products in Iran

    Science.gov (United States)

    Nourmoradi, H.; Foroghi, M.; Farhadkhani, M.; Vahid Dastjerdi, M.

    2013-01-01

    This study aims to investigate the content of lead and cadmium in most frequently used brands of cosmetic products (lipstick and eye shadow) in Iran. Fifty samples of lipstick (5 colors in 7 brands) and eye shadow (3 colors in 5 brands) were selected taken from large cosmetic stores in Isfahan (Iran) and lead and cadmium of them were analyzed. The results showed that the concentration of lead and cadmium in the lipsticks was within the range of 0.08–5.2 µg/g and 4.08–60.20 µg/g, respectively. The eye shadow samples had a lead level of 0.85–6.90 µg/g and a cadmium level of 1.54–55.59 µg/g. The content range of the heavy metals in the eye shadows was higher than that of the lipsticks. There was significant difference between the average of the lead content in the different brands of the lipsticks and eye shadows. Thus, the continuous use of these cosmetics can increase the absorption of heavy metals, especially Cd and Pb, in the body when swallowing lipsticks or through dermal cosmetic absorption. The effects of heavy metals such as lead can be harmful, especially for pregnant women and children. Therefore, effort must be made to inform the users and the general public about the harmful consequences of cosmetics. PMID:24174937

  1. Maternal blood cadmium, lead and arsenic levels, nutrient combinations, and offspring birthweight

    Directory of Open Access Journals (Sweden)

    Yiwen Luo

    2017-04-01

    Full Text Available Abstract Background Cadmium (Cd, lead (Pb and arsenic (As are common environmental contaminants that have been associated with lower birthweight. Although some essential metals may mitigate exposure, data are inconsistent. This study sought to evaluate the relationship between toxic metals, nutrient combinations and birthweight among 275 mother-child pairs. Methods Non-essential metals, Cd, Pb, As, and essential metals, iron (Fe, zinc (Zn, selenium (Se, copper (Cu, calcium (Ca, magnesium (Mg, and manganese (Mn were measured in maternal whole blood obtained during the first trimester using inductively coupled plasma mass spectrometry. Folate concentrations were measured by microbial assay. Birthweight was obtained from medical records. We used quantile regression to evaluate the association between toxic metals and nutrients due to their underlying wedge-shaped relationship. Ordinary linear regression was used to evaluate associations between birth weight and toxic metals. Results After multivariate adjustment, the negative association between Pb or Cd and a combination of Fe, Se, Ca and folate was robust, persistent and dose-dependent (p < 0.05. However, a combination of Zn, Cu, Mn and Mg was positively associated with Pb and Cd levels. While prenatal blood Cd and Pb were also associated with lower birthweight. Fe, Se, Ca and folate did not modify these associations. Conclusion Small sample size and cross-sectional design notwithstanding, the robust and persistent negative associations between some, but not all, nutrient combinations with these ubiquitous environmental contaminants suggest that only some recommended nutrient combinations may mitigate toxic metal exposure in chronically exposed populations. Larger longitudinal studies are required to confirm these findings.

  2. Isotherms and kinetics of lead and cadmium uptake from the waste leachate by natural and modified clinoptilolite

    Directory of Open Access Journals (Sweden)

    Maryam Faraji

    2012-01-01

    Conclusions: The modified zeolite with surfactant can be used as an appropriate adsorbent for the separation of heavy metals from waste Leachate. Lead and cadmium were absorbed in a single layer on the surface of the modified zeolite with surfactant, comparing different isoterm models, indicated that the capacity of the modified zeolite for lead adsorption was more than cadmium adsorption, but cadmium was absorbed with higher energy.

  3. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II Ions.

    Directory of Open Access Journals (Sweden)

    I Ibrahim

    Full Text Available A photoelectrochemical (PEC sensor with excellent sensitivity and detection toward copper (II ions (Cu2+ was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO nanocomposite on an indium tin oxide (ITO surface, with triethanolamine (TEA used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.

  4. Copper, zinc, and cadmium in various fractions of soil and fungi in a Swedish forest.

    Science.gov (United States)

    Vinichuk, Mykhailo M

    2013-01-01

    Ectomycorrhizal fungi profoundly affect forest ecosystems through mediating nutrient uptake and maintaining forest food webs. The accumulation of metals in each transfer step from bulk soil to fungal sporocarps is not well known. The accumulation of three metals copper (Cu), zinc (Zn) and cadmium (Cd) in bulk soil, rhizosphere, soil-root interface, fungal mycelium and sporocarps of mycorrhizal fungi in a Swedish forest were compared. Concentrations of all three metals increased in the order: bulk soil terms of accumulation, fungi (mycelium and sporocarps) preferred Cd to Zn and Cu. Zinc concentration in sporocarps and to a lesser extent in mycelium depended on the concentration in soil, whereas, the uptake of Cu and Cd by both sporocarps and mycelium did not correlate with metal concentration in soil. Heavy metal accumulation within the fungal mycelium biomass in the top forest soil layer (0-5 cm) might account for ca. 5-9% of the total amount of Cu, 5-11% of Zn, and 16-32% of Cd. As the uptake of zinc and copper by fungi may be balanced, this implied similarities in the uptake mechanism.

  5. Uptake of Cadmium, Lead and Arsenic by Tenebrio molitor and Hermetia illucens from Contaminated Substrates.

    Science.gov (United States)

    van der Fels-Klerx, H J; Camenzuli, L; van der Lee, M K; Oonincx, D G A B

    2016-01-01

    Insects have potential as a novel source of protein in feed and food production in Europe, provided they can be used safely. To date, limited information is available on the safety of insects, and toxic elements are one of the potential hazards of concern. Therefore, we aimed to investigate the potential accumulation of cadmium, lead and arsenic in larvae of two insect species, Tenebrio molitor (yellow mealworm) and Hermetia illucens (black soldier fly), which seem to hold potential as a source of food or feed. An experiment was designed with 14 treatments, each in triplicate, per insect species. Twelve treatments used feed that was spiked with cadmium, lead or arsenic at 0.5, 1 and 2 times the respective maximum allowable levels (ML) in complete feed, as established by the European Commission (EC). Two of the 14 treatments consisted of controls, using non-spiked feed. All insects per container (replicate) were harvested when the first larva in that container had completed its larval stage. Development time, survival rates and fresh weights were similar over all treatments, except for development time and total live weight of the half of the maximum limit treatment for cadmium of the black soldier fly. Bioaccumulation (bioaccumulation factor > 1) was seen in all treatments (including two controls) for lead and cadmium in black soldier fly larvae, and for the three arsenic treatments in the yellow mealworm larvae. In the three cadmium treatments, concentrations of cadmium in black soldier fly larvae are higher than the current EC maximum limit for feed materials. The same was seen for the 1.0 and 2.0 ML treatments of arsenic in the yellow mealworm larvae. From this study, it can be concluded that if insects are used as feed materials, the maximum limits of these elements in complete feed should be revised per insect species.

  6. Trace analysis of lead and cadmium in seafoods by differential pulse anodic stripping voltametry

    International Nuclear Information System (INIS)

    Sumera, F.C.; Verceluz, F.P.; Kapauan, P.A.

    1979-01-01

    A method for the simultaneous determination of cadmium and lead in seafoods is described. The sample is dry ashed in a muffle furnace elevating the temperature gradually up to 500 0 C. The ashed sample is treated with concentrated nitric acid, dried on a heating plate and returned to the muffle furnace for further heating. The treated ash is then dissolved in 1 N HCL acetate buffer and citric acid are added and the pH adjusted to 3.6-4. The resulting solution is analyzed for lead and cadmium by differential pulse anodic stripping voltametry (DPASV) using a wax-impregnated graphite thin film electrode. The average recoveries of 0.4 of cadmium and lead added to 5 fish samples were 97% and 99% respectively. The standard deviations, on a homogenized shark sample for lead and cadmium analysis were 6.7 ppb and 12.3 ppb, respectively, and the relative standard deviations were 21.0% and 15.5% respectively. Studies on instrumental parameters involved in the DPASV step of analysis and methods of measuring peak current signals were also made. (author)

  7. Lead and cadmium in raw buffalo, cow and ewe milk from west Azerbaijan, Iran.

    Science.gov (United States)

    Najarnezhad, Vahid; Jalilzadeh-Amin, Ghader; Anassori, Ehsan; Zeinali, Vahid

    2015-01-01

    In this study, 300 raw buffalo, cow and ewe milk samples from five townships in west Azerbaijan, Iran, were analysed. Lead and cadmium were determined using atomic absorption spectrophotometry. Mean concentration of lead and cadmium in buffalo milk samples was 0.018 ± 0.001 and 0.003 ± 0.001 mg/kg, respectively. Mean concentration of lead and cadmium in cow milk samples was 0.007 ± 0.001 and 0.001 ± 0.001 mg/kg, respectively, and in ewe milk, these mean values were 0.010 ± 0.001 and 0.002 ± 0.001 mg/kg, respectively. Statistical analyses showed that lead and cadmium concentrations in buffalo milk were significantly higher than those in cow and ewe milk. Moreover, the concentration of these heavy metals in ewe milk was significantly higher than that in cow milk. It was also found that concentration of these selected toxic metals in milk increased with increasing age of the animals.

  8. Critical loads of cadmium, lead and mercury and their exceedances in Europe

    NARCIS (Netherlands)

    Hettelingh, J.P.; Schütze, G.; Vries, de W.; Denier van der Gon, H.A.C.; Ilyin, I.; Reinds, G.J.; Slootweg, J.; Travnikov, O.

    2015-01-01

    In this chapter information is summarized on the assessment of the risk of impacts of cadmium, lead and mercury emissions and related depositions of these metals, with an emphasis on natural areas in Europe. Depositions are compared to critical loads to identify areas in Europe where critical loads

  9. European Critical Loads of Cadmium, Lead and Mercury and their Exceedances

    NARCIS (Netherlands)

    Slootweg, J.; Hettelingh, J.P.; Posch, M.; Schutze, G.; Spranger, T.; Vries, de W.; Reinds, G.J.; Zelfde, van 't M.; Dutchak, S.; Ilyin, I.

    2007-01-01

    Critical loads of cadmium, lead and mercury were computed by 18 countries of the LRTAP Convention. These national data were collated into a single database for the purpose of identifying sensitive areas in Europe. Computing exceedances, i.e. comparing the critical loads to atmospheric deposition,

  10. Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, Nejdet [University of Atatuerk, Faculty of Veterinary Medicine, Department of Histology and Embryology, 25700 Erzurum (Turkey); Karadeniz, Ali, E-mail: karadenizali@gmail.com [University of Atatuerk, Faculty of Veterinary Medicine, Department of Physiology, 25700 Erzurum (Turkey); Kalkan, Yildiray; Keles, Osman N.; Unal, Buenyami [University of Atatuerk, Faculty of Medicine, Department of Histology and Embryology, 25240 Erzurum (Turkey)

    2009-05-30

    In the present investigation, the effect of Spirulina platensis (Sp) was undertaken on rats fed with lead and cadmium including diet by using physiological, enzymehistochemical and stereological methods. For this aim, 50 rats were equally divided into five groups as control (C), lead (Pb), Spirulina + lead (Sp + Pb), cadmium (Cd), and Spirulina + cadmium (Sp + Cd). Red blood cell (RBC) and white blood cell (WBC) counts, packed cell volume (PCV), and haemoglobine (Hb) concentrations were determined by haemocytometric methods in blood samples collected on 30th day. Population of T lymphocyte was counted by the {alpha}-naphthyl acetate esterase (ANAE) staining method, and reticulocytes were counted by stereological method. The counts of RBC, WBC, and ANAE positive T lymphocyte, and the values of Hb, PCV, and MCHC were decreased in the Pb and Cd groups compared to control group. Also, the number of reticulocytes (polychromatofilic erythrocyte) increased in the Pb groups, whereas it decreased in the Cd group. On the other hand, these values were ceased by S. platensis in the treated groups. These results suggest that S. platensis supplementation may be useful in adjuvant treatment of leukemia and anemia caused by lead and cadmium toxication.

  11. Screening Technique for Lead and Cadmium in Toys and Other Materials Using Atomic Absorption Spectroscopy

    Science.gov (United States)

    Brouwer, Henry

    2005-01-01

    A simple procedure to quickly screen different consumer products for the presence of lead, cadmium, and other metals is described. This screening technique avoids expending a lot of preparation time on samples known to contain low levels of hazardous metals where only samples testing positive for the desired elements need to be analyzed…

  12. Updated assessment of critical loads of lead and cadmium for European forest soils

    NARCIS (Netherlands)

    Reinds, G.J.; Vries, de W.; Groenenberg, J.E.

    2002-01-01

    At its 20th session the Working Group on Effects (WGE) of the Convention on Long-range Transboundary Air Pollution of the United Nations Economic Commission for Europe (UNECECLRTAP), noted the need to further develop and test the methodology for mapping critical loads for cadmium and lead. To this

  13. Levels of lead and cadmium in hair and saliva of school children in ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the presence of cadmium (Cd) and lead (Pb) in the hair and saliva of schoolchildren (n=265) in Ceres district, rural and agricultural Town. The role of other factors, such as the socio-economic status, and anthropometric data of the children were also investigated including levels ...

  14. Preconcentration system for cadmium and lead determination in environmental samples using polyurethane foam/Me-BTANC

    International Nuclear Information System (INIS)

    Moreira Gama, Ednilton; Silva Lima, Adriana da; Azevedo Lemos, Valfredo

    2006-01-01

    In this work, polyurethane foam (PUF) loaded with 2-(6'-methyl-2'-benzothiazolylazo)chromotropic acid (Me-BTANC) was packed in a minicolumn and it was used in an on-line preconcentration system for cadmium and lead determination. Optimum hydrodynamic and chemical conditions for metal sorption were investigated. The effects of several foreign substances on the adsorption of cadmium and lead were also reported. The enrichment factor obtained was 37 (Cd and Pb) for 180 s preconcentration time. The proposed procedures allowed the determination of metals with detection limits (3σ) of 0.80 and 3.75 μg L -1 (0.10 and 0.47 μg g -1 of solid sample) for cadmium and lead, respectively. The precision of the procedures was also calculated: 3.1 (Cd 10 μg L -1 ) and 4.4% (Pb 100 μg L -1 ). The accuracy of the procedure was checked by analysis of the certified reference materials Spinach Leaves and Fish Tissue. Cadmium and lead contents in environmental samples (black tea, spinach leaves, natural and tap water) were determined by applying the proposed procedure

  15. Method of analysis for the determination of lead and cadmium in fresh meat

    NARCIS (Netherlands)

    Ruig, de W.G.

    1980-01-01

    This report comprises the result of the RIKILT of an intercomparison on the determination of lead and cadmium in bovine liver and bovine kidney. The aim of this round robbin was to check a wet ashing procedure followed by a flame AAS determination as described too in EEC doc. 2266/VI/77. Special

  16. Cadmium and lead contents in drinking milk from selected regions of Poland

    Directory of Open Access Journals (Sweden)

    Renata Pietrzak-Fiećko

    2013-09-01

    Full Text Available Background. Cadmium and lead are classified as toxic metals. Toxicity is attributed to the adverse effect on the human body, and therefore the content of these elements is analyzed in the environment and in food products. Studies conducted by many researchers indicate that more of cadmium and lead accumulate in products of plant origin, however, food products of animal origin are also not free from these compounds. The aim of this study was to determine the content of cadmium and lead in drinking milk originating from four selected milk producers from two different regions. Methods. A total of 28 milk samples were tested. The tested material was mineralized dry. To determine the content of the analyzed elements the Flame Atomic Absorption Spectrometry method was used. There were no significant differences in the content of heavy metals in the analyzed samples of milk. Results. None of the samples revealed the exceedance of the highest permissible level of these elements. Conclusions. Cadmium and lead content in tested drinking milk does not pose a threat to human health

  17. Mushroom contamination by mercury, cadmium and lead; Contaminazione di funghi commestibili con mercurio, cadmio e piombo

    Energy Technology Data Exchange (ETDEWEB)

    Dojmi Di Delupis, G.; Dojmi Di Delupis, F. [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Tossicologia Comparata ed Ecotossicologia

    1996-12-01

    Occurrence and bioaccumulation of mercury, cadmium and lead were found in mushrooms by various researchers. Such mushrooms were often found in polluted areas. Pollution was mainly caused by industrial or mining plants, by some agricultural treatments and by road traffic. Considerations and recommendations concerning food consumption are made.

  18. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    Science.gov (United States)

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  19. Deposition of heavy metal in the environment. Balances of the consumption and fate of lead and cadmium 1984-1989

    International Nuclear Information System (INIS)

    Balzer, D.

    1991-10-01

    The data on the consumption and fate of lead and cadmium as well as their compounds was compiled in a balance for the Federal Republic of Germany for the period between 1984 and 1989. To obtain a general overview of the known mass flows, additional flow sheets for lead and cadmium were drawn up. (orig./BBR) [de

  20. 40 CFR 141.86 - Monitoring requirements for lead and copper in tap water.

    Science.gov (United States)

    2010-07-01

    ... copper in tap water. 141.86 Section 141.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 141.86 Monitoring requirements for lead and copper in tap water. (a) Sample site location. (1) By the... the water system can collect the number of lead and copper tap samples required in paragraph (c) of...

  1. Investigation of Released Cadmium and Lead from Different Colors of Over Glaze Designs to Food Stuff in Different Conditions

    Directory of Open Access Journals (Sweden)

    H. Hashemi-Moghaddam

    2012-03-01

    Full Text Available In this paper, leaching of lead and cadmium was investigated from porcelain over glaze designs between different colors.  Also the effect of microwave heating was considered on leaching of lead and cadmium.  Dishes were selected with a decor with the dominant color of gray, red, yellow, blue, and dark blue. Amounts of cadmium and lead which leached from the container by acetic acid and orange juice were measured according to the standard ASTM C738.  The results showed that especially in the red and dark blue colors cadmium and lead could be released easily by either acetic acid or orange juice, and these amounts were much higher than the permissible standard amount. Also microwave heating could enhance releasing of lead and cadmium from decorated dinnerware. 

  2. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid

    Science.gov (United States)

    Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils. PMID:26087302

  3. Copper, zinc and cadmium in benthic organisms from the Java Sea and estuarine and coastal areas around East Java

    Science.gov (United States)

    Everaarts, J. M.; Boon, J. P.; Kastoro, W.; Fischer, C. V.; Razak, H.; Sumanta, I.

    A study was made of the concentrations of copper, zinc and cadmium in benthic organisms, representing the phyla Mollusca, Arthropoda, Echinodermata and Pisces, from the riverine and estuarine areas of the rivers Brantas and Solo (East Java) and the adjacent coastal area. Moreover, an assessment was made of the contamination of the benthic biota with these elements in the Java Sea and Bali Sea. Benthic organisms show a species-specific uptake pattern for each element. Compared to the same type of animals from estuaries and coastal areas in temperate regions of western Europe, the concentrations of cadmium are considerably higher, while copper and zinc concentrations are somewhat lower. There is no general trend in concentration levels of the metals in specimens from rivers, estuaries, coastal zone and open sea. In some groups of organisms ( e.g. shrimp, starfish) the concentrations of copper and zinc are highest in specimens from rivers and estuaries. In contrast, cadmium concentration levels in e.g. crab, shrimp and squid are lowest in riverine and estuarine areas. Significant differences in metal concentrations in these organisms were found between the dry monsoon period (July, August) and the beginning of the wet monsoon (November, December). No relationship existed between the metal concentration of the organisms and the silt fraction of the sediment (grain size < 63 μm) or the bulk sediment.

  4. The growth inhibitory effects of cadmium and copper on the MDA-MB468 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Mojtaba Panjehpour

    2010-01-01

    Full Text Available Background: Cadmium chloride is an important occupational and environmental pollutant. However, it can also be anti-carcinogenic under certain conditions. Copper, an essential trace element, has the ability to generate reactive oxygen species and induce cell apoptosis. This study was aimed to determine the growth inhibitory effects of cadmium and copper on the MDA-MB468 human breast cancer cells. Methods: By using MTT cell viability test, treatment of monolayer cell cultures with different metal concentrations (1-1000 μM showed a significant dose dependent decrease (p < 0.05 of viable cells in different times. Results: A considerable cytotoxicity was observed for CdCl2 at 200 μM and 1 μM after 48 and 72 hours incubations, respectively. The highest concentration of CuCl2 (1000 μM had little cytotoxic effects after 48 hours incubation period, but 1 μM of CuCl2 revealed a considerable cytotoxicity after 72 hours. The maximum synergic cytotoxic effect was observed at 0.5 μM of both metals. Conclusions: The results of the present study indicate that cytotoxic effect of CuCl2 is somehow lesser than that of CdCl2. This may be due to vital role of copper which is not known for cadmium so far.

  5. Histopathological changes in kidneys of free ranging animals in relation to lead and cadmium residues

    International Nuclear Information System (INIS)

    Beiglboeck, C.

    2000-05-01

    Kidney samples of 234 roe deer and 45 wild boars were collected in Lower Austria and Vienna, and were analyzed for lead and cadmium contents. Samples of the organs were examined histologically, considering 12 different morphological parameters. Influences of age, sex and origin of the animals on heavy metal burdens were assessed, and the possible correlation between histopathological changes and age, sex, origin and heavy metal concentrations in the kidneys was tested. Lead concentrations were low with medians (mg/kg wet tissue) being 0,062 in roe deer and 0,044 in wild boars. Neither age nor sex nor origin influenced the lead contents of the kidneys. Cadmium burden was fairly high, both in roe deer (median: 0,954) and wild boars (median: 3,009). It increased with age in both species, while female roe deer showed higher contents as well. No influence of the animals' origin was found. The correlation between histopathological changes and age, sex, origin and heavy metal concentrations in the kidneys was tested in 208 roe deer and 44 wild boars which showed no signs of kidney related diseases. In roe deer, the frequency of vacuolic degeneration, pycnotic nuclei, caryolysis and necrosis was related with increased cadmium concentrations. Increasing age correlated with lymphohistiocytic infiltration, interstitial fibrosis and swelling of glomeruli. Pigment deposits and thickening of the Bowman's capsule could be related to both cadmium and age. Furthermore, roe deer from Vienna more frequently showed alterations as observed in animals from Lower Austria. No correlation existed between morphological changes and lead concentrations or sex. In wild boars, there was no obvious relationship between all parameters tested and the frequency of histopathologic changes, except changes in pigmentation. Possible nephrotoxic agents in free ranging animals and the demonstrated influence of cadmium on severe kidney damage are discussed. (author)

  6. Lead and Cadmium Levels of Five Commonly and Widely ...

    African Journals Online (AJOL)

    The levels of the hazardous metals (Pb and Cd) in five different leafy vegetable plant samples ( viz: Hibiscus cannabinus, Cassia tora, Vernonia amygdalina, Corchorus olitorius, and Corchorus tridens) consumed by Kano inhabitants were investigated and found to be at concentration below the environmental lead action ...

  7. Comparative Hepatotoxicity Test of Cadmium and Lead in Rats ...

    African Journals Online (AJOL)

    Background: Adverse environmental impacts include contamination of water, soil, and phytotoxicity from excessive heavy metals dispersed from mines and smelter sites leading to potential risk to human health. This study investigated the comparative hepatotoxicity test of mining pond waters used for domestic purposes in ...

  8. Ultrasonic vibration seeds showed improved resistance to cadmium and lead in wheat seedling.

    Science.gov (United States)

    Chen, Yi-ping; Liu, Qiang; Yue, Xiao-zhen; Meng, Zhong-wen; Liang, Jing

    2013-07-01

    Heavy metals have long-term adverse impacts on the health of soil ecosystems and even exhibit hazardous influences on human health. Literatures have shown that heavy metals could result in the reduction of crops growth and development and finally result in crops production decline. To determine whether or not ultrasonic vibration alleviate damage induced by cadmium and lead in crops, the wheat seeds, which is one of the most important agriculture crops in China and other countries in the world, were exposed to 10 min ultrasonic vibration and then the toxicological effects were investigated. Wheat seeds were soaked for 3 h with water and then the seeds were placed in clean beaker with some water, the beaker were placed in ultrasonic apparatus to vibrate (model, KQ-200VDV; frequency, 45 KHz; power, 160 W). Pretreatment seeds of 80 were sown in dishes (Ø 15 cm). After seeds emergence, the seedlings were thinned to 60 per dish. The dishes with seedlings were placed in a growth chamber maintained at 25 °C, 70% relative humidity and 380 μmol mol(-1) CO2 under dark condition. A 400 μmol m(-2) s(-1) photosynthetically active radiation was provided for 8 h (dark for 16 h) after the seed germination. When the seedlings were 2 days old, the seedlings were subjected to cadmium and lead for 4 days and then some selective biochemical and physiological parameters were measured. (1) Although each doses of ultrasonic vibration could improve seed germination, enhance biosynthesis of protein and chlorophyll and seedlings growth, the optimum dosage of ultrasonic vibration was 10 min. (2) Compared with the controls, cadmium and lead stress led to significant increase in the concentrations of malondialdehyde (MDA) and O(-2) and in the conductivity of electrolyte leakage, but the activities of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), the glutathione concentration, and the shoot weight were decreased by Cd and Pb stress. In the case of the seeds

  9. Cadmium and lead availability for rapeseed grown on an artificial ISO soil

    International Nuclear Information System (INIS)

    Baryla, A.; Sahut, C.

    2000-01-01

    Accumulations of heavy metals in soils have become a major concern for food crop production. Of these metals, cadmium and lead are recognized as the most widespread elements, that are non-essential for plant growth. While the toxicity of these metals is often investigated on plants grown in nutrient solution, soil is a complex medium. Metals may be dissolved in the soil solution or chelated to carbonates, to oxides of iron or manganese, or to organic matter. This chemical state of the metal is important because it determines the availability of the metal for the crop. Yet its study is complicated by numerous factors (soil pH, temperature, humidity..) which modify this chemical equilibrium. To standardize the experiments, an artificially reconstituted soil was prepared from clay, sand and peat according to standards ISO 11268-1 (May 1994). Metals (lead and cadmium) were added as nitrate salts. Plants used were rapeseeds. Seeds were sown on 20 cm diameter pots and placed in a controlled growth chamber. At harvest, roots, leaves and stems were separated, dried, and mineralized with concentrated nitric acid. Sequential analysis of the soil was carried out to assess the chemical behavior of the cadmium. The chemical speciation of cadmium is shown. The metal is essentially soluble in the soil and poorly complexed to the organic matter. This indicates that contamination is recent and derives from metal salts; cadmium complexation to organic matter appears only after years of soil evolution. The metal is then essentially available for plants but equilibrium is established between the different forms. Plant growth is shown. Cadmium has a strong effect on biomass production at 50 μg / g in the soil. No toxic effect of lead was observed from 0 to 2000 μg / g in the soil, probably because lead is strongly complexed to the soil and less toxic for plants. Metal concentrations in plants after two months of growth are shown in Figures 4 and 5. Plant cadmium content reached 150

  10. Assessment of copper, cadmium and zinc remobilization in Mediterranean marine coastal sediments

    Science.gov (United States)

    Sakellari, Aikaterini; Plavšić, Marta; Karavoltsos, Sotiris; Dassenakis, Manos; Scoullos, Michael

    2011-01-01

    The remobilization of copper, cadmium and zinc in sediments of three selected coastal microenvironments of the Aegean Sea (Eastern Mediterranean) is assessed. Various analytical methods and techniques were employed providing concentrations, profiles and forms of metals and organic matter in sediments and pore waters. At Loutropyrgos, a non-industrial site located, however, within an intensively industrialized enclosed gulf, an intense resupply of zinc in pore water from sediment was recorded, correlating with the highest value of weakly bound fraction of zinc determined at this area. The comparatively high zinc concentrations measured in the pore waters (394 nM), exceed considerably those in the overlying seawater (12.5 nM determined by DGT; 13.5 nM total), resulting in the formation of a strong concentration gradient at the sediment-water interface. Potential zinc flux at the sediment-water interface at Loutropyrgos (based on 0.4 mm DGT profile) was calculated equal to 0.8 mmol.m -2.d -1. The half lives of trace metals at Loutropyrgos site, based on the aforementioned DGT profiles, amount to 0.1 y (Zn), 2.8 y (Cd), 4.5 y (Cu), 2.2 y (Mn) and 0.4 y (Fe) pointing out to the reactivity of these metals at the sediment-water interface. The concentration of dissolved organic carbon (DOC) in pore waters of the three selected sites (2.7-5.2 mg/L) was up to four times higher compared to that of the corresponding overlying seawater. Similarly, the concentrations of carbohydrates in pore waters (0.20-0.91 mg/L monosaccharides; 0.71-1.6 mg/L polysaccharides) are an order of magnitude higher than those of seawater, forming a concentration gradient at the sediment-water interface. Total carbohydrates contribute between 34 and 48% of the organic carbon of the pore waters, being significantly higher than those of seawater from the corresponding areas, which were in the range of 15-21%. The complexing capacity as for copper ions (CCu) determined in pore water ranges widely, from 0

  11. Disposable sensors for environmental monitoring of lead, cadmium and mercury

    OpenAIRE

    Duarte, Kátia; Justino, Celine I. L.; Freitas, Ana C.; Gomes, Ana M. P.; Duarte, Armando; Rocha-Santos, Teresa A. P.

    2015-01-01

    Miniaturization is an increasing trend in the field of analytical chemistry as a response to the need to develop new analytical techniques for food, clinical, and environmental applications. There is therefore also an increasing trend towards the use of miniaturized disposable sensors, which are inexpensive and designed to be one-shot and do not require pre-treatment prior to use or cleaning between measurements. This review describes disposable sensors for detection of lead, cadm...

  12. Measured radionuclide production from copper, gold and lead spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.; Belian, A.P. [Texas A & M Univ., College Station, TX (United States)

    1995-10-01

    Spallation target materials are chosen so as to produce large numbers of neutrons while at the same time avoiding the creation of long-lived radioactive wastes. While there has been considerable research to determine the number of neutrons produced per incident particle for various target materials, there has been less effort to precisely quantify the types and amounts of radionuclides produced. Accurate knowledge of the radioactive species produced by spallation reactions is important for specifying waste disposal criteria for targets. In order to verify the production rates calculated by LAHET, a study has been conducted using the Texas A&M University (TAMU) Cyclotron to measure radionuclide yields from copper, gold, and lead targets.

  13. Copper and Lead Corrosion in a Full Scale Home Plumbning system Simulation

    Science.gov (United States)

    The corrosion of household or premise plumbing materials (such as copper, brass, and solder) and the metal release that results from that corrosion can cause numerous problems, ranging from elevated lead and copper levels to blue water and copper pinhole leaks. If left untreate...

  14. Assessment of mixture toxicity of copper, cadmium, and phenanthrenequinone to the marine bacterium Vibrio fischeri.

    Science.gov (United States)

    Wang, Wenxi; Lampi, Mark A; Huang, Xiao-Dong; Gerhardt, Karen; Dixon, D George; Greenberg, Bruce M

    2009-04-01

    Transition metals and polycyclic aromatic hydrocarbons (PAHs) are cocontaminants at many sites. Contaminants in mixtures are known to interact with biological systems in ways that can greatly alter the toxicity of individual compounds. The toxicities (individually and as mixtures) of copper (Cu), a redox-active metal; cadmium (Cd), a nonredox active metal; and phenanthrenequinone (PHQ), a redox-active oxygenated PAH, were examined using the bioluminescent bacterium Vibrio fischeri. We found that the cotoxicity of Cu/PHQ was dependent on the ratio of concentrations of each chemical in the mixture. Different interaction types (synergism, antagonism, and additivity) were observed with different combinations of these toxicants. The interaction types changed from antagonism at a low Cu to PHQ ratio (1:4), to additive at an intermediate Cu to PHQ ratio (2:3), to synergistic at higher Cu to PHQ ratios (3:2 and 4:1). In contrast to Cu/PHQ mixtures, the cotoxicity of Cd/PHQ did not change at different mixture ratios and was found for the most part to be additive. For the individual chemicals and their mixtures, reactive oxygen species (ROS) production was observed in V. fischeri, suggesting that individual and mixture toxicity of Cu, Cd, and PHQ to V. fischeri involves ROS-related mechanisms. This study shows that mixture ratios can alter individual chemical toxicity, and should be taken into account in risk assessment. Copyright 2008 Wiley Periodicals, Inc.

  15. Cadmium, Chromium, and Copper Concentration plus Semen-Quality in Environmental Pollution Site, China.

    Science.gov (United States)

    Li, Yan; Gao, Qiaoyan; Li, Mingcai; Li, Mengyang; Gao, Xueming

    2014-01-01

    The environmental pollution is one of the factors contributing to the decrease of sperm quality for human beings. The aim of this study was to assess cadmium (Cd), chromium (Cr), and copper (Cu) concentration of man in environmental pollution site, and explore relationships between men exposure to Cd, Cr, and Cu and semen-quality parameters in environmental pollution site. Ninety five men were recruited through pollution area and controls in 2011. We measured semen quality using Computer-aided Semen Quality Analysis, and Cd, Cr, and Cu levels in seminal plasma using Graphite Gurnace Atomic Absorption Spectroscopy. Spearman rank correlation analysis was used to evaluate the correlation between Cd, Cr and Cu concentration in seminal plasma and semen quality. The mean of seminal plasma Cd, Cr, and Cu values in pollution area was higher than the controls. Seminal plasma Cr values displayed a significant negative correlation with total motility and normomorph sperm rate. Seminal plasma Cu values also displayed a negative correlation with normomorph sperm rate. Male reproductive health may be threatened by environmental pollution, and it may be influence local population diathesis.

  16. Concentrations of Cadmium, Copper, and Zinc in Macrobrachium rosenbergii (Giant Freshwater Prawn) from Natural Environment.

    Science.gov (United States)

    Idrus, Farah Akmal; Basri, Masania Mohd; Rahim, Khairul Adha A; Rahim, Nur Syazwani Abd; Chong, Melissa Dennis

    2018-03-01

    This study analyzed the levels of cadmium (Cd), copper (Cu), and zinc (Zn) by the flame atomic absorption spectrophotometer (FAAS), in the muscle tissues, exoskeletons, and gills from freshwater prawn (Macrobrachium rosenbergii) (n = 20) harvested from natural habitat in Kerang River, Malaysia on 25th November 2015. Significant increase of the metals level in muscle tissue and gill (r > 0.70, p < 0.05) were observed with increase in length except for Cu in gills. No relationship was found between metals level in exoskeleton and length. The concentrations of Cd, Cu and Zn were significantly higher (p < 0.05) in males (muscle tissues and exoskeleton) except for Cd in exoskeleton. In gills, only Cu was significantly higher (p < 0.05) in female than male. All samples contained metals below the permissible limit for human consumption (i.e., Cd < 2.00 mg/kg; Cu < 30.00 mg/kg; Zn < 150 mg/kg). Annual metals monitoring in prawn and environmental samples is recommended to evaluate changes of metals bioaccumulation and cycling in the system, which is useful for resources management.

  17. Single and combined toxicity of copper and cadmium to H. vulgare growth and heavy metal bioaccumulation

    Directory of Open Access Journals (Sweden)

    Žaltauskaitė J.

    2013-04-01

    Full Text Available The single and combined effects of copper (Cu and cadmium (Cd (0.1-10 mg L−1 in spring barley (Hordeum vulgare L. plants grown in hydroponics are investigated. The aim of the study was to investigate the interactive effect of the binary mixture of Cu and Cd to the growth of H. vulgare and accumulation of these metals by the plants. Single and combined metal treatment led to major effects in the growth of roots and shoots and dry weight of barley. Exposure to metals altered the content of photosynthetic pigments and caused lipid peroxidation. It was observed that combined effects of heavy metals to plants are endpoint and concentration depending. The binary mixture Cu+Cd exhibited additive or less than additive interaction for dry weight, root length and shoot height. Analysis of tissue metal concentrations showed that Cu and Cd were mainly accumulated in the roots and the combination of Cu+Cd had less than additive response of metal bioaccumulation in the leaves and roots.

  18. Acute toxicities of copper, cadmium and Cu: Cd mixture to larvae of the shrimp Penaeus Penicillatus

    Science.gov (United States)

    Munshi, A. B.; Su, Yong-Quan; Li, Shao-Jing

    1996-06-01

    This study showed lethal concentrations (LC) of copper for Peneaus penicillatus at various stages of its life cycle were 1000 μg/L for nauplii, 1000 μg/L for Zoea I, 2000 vg/L for Zoea II, 2500 μg/L for Zoea III, 3000 μg/L for Mysis I, II and III and that for almost 100% mortality for postlarvae was 3000 μg/L. For cadmium LC were 100 μg/L for nauplii, 500 μg/L for Zoea I, 1000 μg/L for Zoea II, 2000 μg/L for Zoea III, 2500 μg/L for Mysis I and 3500 μg/L for Mysis II, III and postlarvae. For mixture of both metals, LC were 400 μg/L for nauplii, 1000 μg/L for Zoea I, 2000 μg/L for Zoea II and 3000 μg/L for Mysis I, II, III and post larvae.

  19. Adsorption of cadmium and copper in representative soils of Eastern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Deyvison Andrey Medrado Gonçalves

    2016-10-01

    Full Text Available Studies of heavy metals adsorption in soil play a key role in predicting environmental susceptibility to contamination by toxic elements. The objective of this study was to evaluate cadmium (Cd and copper (Cu adsorption in surface and subsurface soil. Samples of six soils: Xanthic Hapludox (XH1 and XH2, Typic Hapludox (TH, Typic Rhodudalf (TR, Typic Fluvaquent (TF, and Amazonian dark earths (ADE from Eastern Amazonian, Brazil. The soils were selected for chemical, physical and mineralogical characterization and to determine the adsorption by Langmuir and Freundlich isotherms. All soils characterized as kaolinitic, and among them, XH1 and XH2 showed the lowest fertility. The Langmuir and Freundlich isotherms revealed a higher Cu (H curve than Cd (L curve adsorption. Parameters of Langmuir and Freundlich isotherms indicate that soils TR, TF and ADE has the greatest capacity and affinity for metal adsorption. Correlation between the curve adsorption parameters and the soil attributes indicates that the pH, CEC, OM and MnO variables had the best influence on metal retention. The Langmuir and Freundlich isotherms satisfactorily described Cu and Cd soil adsorption, where TR, TF and ADE has a lower vulnerability to metal input to the environment. Besides the pH, CEC and OM the MnO had a significant effect on Cu and Cd adsorption in Amazon soils.

  20. EPR of Cu(II) in sarcosine cadmium chloride: probe into dopant site - symmetry and copper-sarcosine interaction

    CERN Document Server

    Pathinettam-Padiyan, D; Murugesan, R

    2000-01-01

    The electron paramagnetic resonance spectra of Cu(II) doped sarcosine cadmium chloride single crystals have been investigated at room temperature. Experimental results reveal that the Cu(II) ion enters the lattice interstitially. The observed superhyperfine lines indicate the superposition of two sets of quintet structure with interaction of nitrogen atoms and the two isotopes of copper. The spin Hamiltonian parameters are evaluated by Schonland method and the electric field symmetry around the copper ion is rhombic. An admixture of d sub z sup 2 orbital with the d sub x sub sup 2 sub - sub y sub sup 2 ground state is observed. Evaluation of MO coefficients reveals that the in-plane interaction between copper and nitrogen is strong in this lattice.

  1. Effect of Cadmium and Lead on Quantitative and Essential Oil Traits of Peppermint (Mentha piperita L.

    Directory of Open Access Journals (Sweden)

    SH Amirmoradi

    2017-09-01

    Full Text Available **Introduction Industrialization has been the cause of environmental pollution and one of significant pollutant is that of heavy metals. These hazardous elements can cause to water and soil pollution. These metals can accumulate in the food chain and create damages for human and livestock. Researchers revealed that increasing Cd, Pb, Cu, Mn and Zn concentrations caused to decreasing of shoot fresh weight and essential oil yield. Scavroni et al (2005 indicated that peppermint was able to accumulate the heavy metals in shoot tissues but did not enter into essential oil. Therefore study the effect of heavy metals on morphological and quantitative traits of medicinal plants is essential. Material and Method The experiment was done in the research greenhouse of the Agricultural Faculty of Ferdowsi University of Mashhad in 2011.The treatments were arranged basis on a randomized block design with three replications. Treatments were included T1:0, T2:10 ppm cd , T3:20 ppm cd,T4:40 ppm cd,T5:60 ppm cd,T6:80 ppm cd cd,T7:100 ppm cd,T8:100ppm pb, T9:300 ppm pb, T10: 600 ppm pb, T11: 900 ppm pb, T12: 1200 ppm pb and T13: 1500 ppm pb. Peppermint was cultivated with uniform weight rhizomes harvested from the research farm of Ferdowsi University of Mashhad. Every rhizome had two buds and six rhizomes were planted in pots of dimensions 30×50×35 cm. Treatments were irrigated with cdcl2 and pbcl2 with the administered doses and control was irrigated with distilled water. Plants were harvested two times at the first stages of flowering. The essential oil percentage was measured with 30 grams of dried leaves by Clevenger device. Result and Discussion Increasing cadmium and lead concentrations caused a decline of fresh and dry weight, main stem height, leaf area per plant, leaf number per plant, number of nodes per plant and essential oil percentage compared to the control. At the first harvest, increasing doses of Cd caused a decrease of fresh weight. This

  2. In vivo detection of the toxic heavy elements, lead and cadmium

    International Nuclear Information System (INIS)

    Thomas, B.J.; Thomas, B.W.; Davey, J.F.; Baddeley, H.; Summers, V.; Craswell, P.

    1986-01-01

    Portable systems for the in vivo measurement of the toxic heavy elements, cadmium and lead are described. The cadmium concentration in either the liver or left kidney is determined using a technique of thermal neutron capture gamma-ray analysis. X-ray fluorescence analysis is used to measure lead within the bone of the second phalanx of the index finger. Each of the measurements is used as an index of long term exposure to the element and applied to screening of exposed industrial workers. The results of these industrial health applications are presented. Clinical application of the measurements to the study of the involvement of these elements in renal disease is described in brief. (author)

  3. Monitoring of the content of lead and cadmium in the waters of the river Tuis

    International Nuclear Information System (INIS)

    Arce Urbina, Maria Elena; Molina Salazar, Ofelia; Hidalgo Paniagua, David

    2007-01-01

    The content of lead and cadmium was monitored in the waters of the river Tuis for 11 months. The method of digestion most suitable was determined for this type of matrix. The chemical analyses were realized by means of the technique of anodic stripping voltammetry by differential pulse, for which some parameters of measurement were optimized and there decided the limits of detection and quantification. The veracity of the method was evaluated by means of the percentage of recovery for each of the analytes. The limit of detection of the lead is of 0,46 μgL-1 and limit of quantification is 1, 5 μgL-1, the cadmium has a limit of detection of 0,40 μgL-1 and 1,3 μgL-1 of quantification. (author) [es

  4. Determination of Cadmium, Lead and Zinc in Vegetables in Jaipur (India).

    Science.gov (United States)

    Kumar, Ashok; Verma, P S

    2014-01-01

    An atomic absorption spectroscopic method was used for the determination of Lead, Cadmium and Zinc in vegetables grown in and around Jaipur food stuffs irrigated with industrial waste water. Vegetable samples were collected after maturity, and analyzed, such as spinach (Spinacia oleracea), ladyfinger (Abelmoschus esulentus), pepper mint (Menthe pipereta), brinjal (Solanum melongena), coriander (Coriandrum sativum), cauliflower (Brassica oleracea), onion (Allium cepa), radish (Raphanus sativus), pointedgourd (Trichosanthes dioica), bottlegourd (Lagenaria siceraria), chilies (Capsicum annum), ribbedgourd (Luffa acutangula) and pumpkin (Curcurbites pepo). The concentration of Lead ranged between 1.40-71.06 ppm, Cadmium 0.61-34.48 ppm and Zinc 0.39-187.26 ppm in vegetable samples. The results reveal that urban consumers are at greater risk of purchasing fresh vegetables with high levels of heavy metal, beyond the permissible limits, as defined by the Indian Prevention of Food Adulteration Act, 1954 and WHO.

  5. Elements in rice from the Swedish market: 1. Cadmium, lead and arsenic (total and inorganic).

    Science.gov (United States)

    Jorhem, L; Astrand, C; Sundström, B; Baxter, M; Stokes, P; Lewis, J; Grawé, K Petersson

    2008-03-01

    A survey of the levels of cadmium, lead and arsenic in different types of rice available on the Swedish retail market was carried out in 2001--03. The types of rice included long and short grain, brown, white, and parboiled white rice. The mean levels found were as follows: total As: 0.20 mg kg(-1), inorganic As: 0.11 mg kg(-1); Cd: 0.024 mg kg(-1); and Pb: 0.004 mg kg(-1). ICP-MS was used for the determination of As (total and inorganic) after acid digestion. Lead and cadmium were determined using graphite furnace atomic absorption spectrometry (GFAAS) after dry ashing. In countries where rice is a staple food, it may represent a significant contribution in relation to the provisional tolerable weekly intake for Cd and inorganic As.

  6. Serum levels of lead and copper in a group of Egyptian children with ...

    African Journals Online (AJOL)

    Background: Copper and lead are trace elements required for the activity of antioxidant enzymes and changes in their levels may lead to reduction in antioxidant activities in asthma. Objective: Our study aims to investigate the serum levels of copper and lead in asthmatic children in correlation to disease severity to ...

  7. Lead and Cadmium Toxicity in Tile Manufacturing Workers in Assiut, Egypt

    Directory of Open Access Journals (Sweden)

    Ragaa M Abd Elmaaboud

    2016-06-01

    Full Text Available Occupational lead and cadmium exposure are important health issues in developing countries. This study aimed to detect toxic metal contents in raw materials used to make tiles and to assess exposure health impacts on workers. The study sample consisted of 74 tile workers, having a mean age of 35.2 years, in the Industrial City of Arab El Awamer, Assiut (Egypt. Elemental analysis of the raw materials was performed by using scanning electron microscopy. The data collection questionnaire was divided into two parts; the first included demographic data, symptoms attributed to toxic elements and possible sources of exposure to metals. The second part was designated to assess heavy metal exposure health impacts through clinical examination and biological  investigations. Many toxic elements were identified in the raw materials used to make tiles, and the most abundant were lead and cadmium. Analysis of the clinical data revealed that 66% of the workers suffered from headache, constipation (8%, abdominal colic (33.8% and 30% suffered from a variety of respiratory problems such as dyspnea (60%, cough (13% and chest tightness (27%. Fifty percent of the workers complained of weak grip, 33.8% of foot drop, and 54% had tremors. Burton’s line in gums was present in 28% of workers and 28.2% were diagnosed with constrictive lung diseases. Of the 74 workers, 90.5 % showed toxic lead levels and 80% had toxic cadmium levels. 10.8% had abnormal alpha glutathione levels with a positive strong linear correlation between lead and cadmium levels and years of work. It is mandatory to develop and implement measures to prevent these hazardous exposure effects among tile industry workers.

  8. Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Sudip Kumar; Raut, Sangeeta; Dora, Tapas Kumar [Department of Biotechnology, Gandhi Institute of Engineering and Technology, Gunupur, Rayagada 765 022, Odisha (India); Mohapatra, Pradeep Kumar Das, E-mail: pkdmvu@gmail.com [Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal (India)

    2014-01-30

    Highlights: • Adsorption of cadmium and lead using hot spring microbial consortium. • Development of empirical models for % adsorption using ANOVA and response surface methodology. • Fitting of the kinetics of adsorption to Freundlich and Langmuir model. • Optimization of the operating parameters to maximize the % of adsorption. -- Abstract: In the present investigation, a number of experiments have been conducted to isolate microbial strains from Taptapani Hot Spring Odisha, India for bioremediation of cadmium and lead. The strains Stenotrophomonas maltophilia (SS1), Aeromonas veronii (SS2) and Bacillus barbaricus (SS3) have shown better adaptation to metal tolerance test, with different concentrations of cadmium and lead and hence have been selected for further studies of metal microbial interaction and optimization. The results of bioremediation process indicate that consortium of thermophilic isolates adsorbed heavy metals more effectively than the individually treated isolates. Therefore, A 24 full factorial central composite design has been employed to analyze the effect of metal ion concentration, microbial concentration and time on removal of heavy metals with consortium. Analysis of variance (ANOVA) shows a high coefficient of determination value. The kinetic data have been fitted to pseudo-first order and second-order models. The isotherm equilibrium data have been well fitted by the Langmuir and Freundlich models. The optimum removal conditions determined for initial ion concentration was 0.3 g/l; contact time 72 h; microbial concentration, 3 ml/l; and pH 7. At optimum adsorption conditions, the adsorption of cadmium and lead are found to be 92% and 93%, respectively, and presence of metals was confirmed through EDS analysis.

  9. Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS

    OpenAIRE

    Mataveli, Lidiane Raquel Verola; Buzzo, Márcia Liane; Arauz, Luciana Juncioni de; Carvalho, Maria de Fátima Henriques; Arakaki, Edna Emy Kumagai; Matsuzaki, Richard; Tiglea, Paulo

    2016-01-01

    This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD), limit of quantification (LOQ), linearity, relative bias, and rep...

  10. Effects of Cadmium, Lead, Manganese, and Zinc at WHO Safe Limits ...

    African Journals Online (AJOL)

    In the present study, The in vitro availability of chloramphenicol was studied in the presence of lead (Pb), cadmium (Cd), manganese (Mn) and zinc (Zn) at 0.01, 0.003, 0.5 and 3 mg/L respectively corresponding to WHO safe limits in drinking water for each of the metals. The in vitro availability study was carried out in ...

  11. Contamination of Soil, Water, Plant and Dust by Zinc, Lead and Cadmium in Southwest Isfahan

    Directory of Open Access Journals (Sweden)

    Nastaran Esmaeilpourfard

    2016-02-01

    Full Text Available Introduction Due to mining, considerable amounts of heavy metal bearing mineralsare scattered in the atmosphere in the form of dust and make the surrounding air, water and soils polluted.Runoff water movingfrom the mountainstowardsplains may also transport heavy metals from mines to the soils.One type ofpollutions is contamination withheavy metals.The purpose of the present research has been to investigate the effect of heavy metals of mine on soil, water, plant and dust pollution. Materials and Methods: Gushfil mine is located 3 kilometers southwest of Sepahanshahr, Isfahan. Soil profiles were dug 500 meters apart along three parallel transects, between east of Sepahanshahr and Gushfil mine. The profiles were described and samples were collected from their horizons. Ore, wells, plant and dust were sampled as well. Total concentrations of lead, zinc and cadmium were measured in the samples. To find the origin of polluted dust and soil, lead isotopes contents in the samples were measured and regressional relationships between the ratios of these contents were investigated. Results and Discussion Sepahanshahr soils are not contaminated by zinc, lead and cadmium, but within a distance of one to two kilometers from the Gushfil mine, the soils are polluted by zinc and lead. Cadmium contamination was not observed in the studied soils. In all of the soils, the heavy metals content varies downwards irregularly. The reason for this variation trend is that the studied soils are alluvial. In different periods of time, alluvium parent materials have been transported by runoff water from the lead and zinc mines towards the alluvial piedmont plain. The studied heavy metals have been distributed irregularly in different horizons of the soils that have been formed in these parent materials. Lead and cadmium concentrations of drinking water in the studied area are much higher than the maximum amount allowed by the World Health Organization. Cadmium content in

  12. Copper and liquid crystal polymer bonding towards lead sensing

    Science.gov (United States)

    Redhwan, Taufique Z.; Alam, Arif U.; Haddara, Yaser M.; Howlader, Matiar M. R.

    2018-02-01

    Lead (Pb) is a highly toxic and carcinogenic heavy metal causing adverse impacts on environment and human health, thus requiring its careful monitoring. In this work, we demonstrate the integration of copper (Cu) film-based electrodes toward Pb sensing. For this, we developed a direct bonding method for Cu thin film and liquid crystal polymer (LCP) substrate using oxygen plasma treatment followed by contact and heat at 230 °C. The oxygen plasma activation forms hydroxyl groups (OH‑) on Cu and LCP. The activated surfaces further adsorb water molecules when exposed to clean room air during contact. After contact, hydrogen bonds are formed between the OH‑ groups. The interfacial water is removed when the contacted films are heated, leading to shrinkage of OH‑ chain. This results in an intermediate oxide layer linking the Cu and C sites of Cu and LCP respectively. A strong adhesion (670 N·m‑1) is obtained between Cu/LCP that may offer prolonged use of the electrode without delamination in wet sensing applications. Anodic stripping voltammetry of Pb using Cu thin film electrode shows a stronger current peak than sputtered Cu electrode, which implies the significance of the direct bonding approach to integrate thin films. We also studied the electrochemical impedance that will enable modeling of integrated environmental sensors for on-site monitoring of heavy metals.

  13. Determining the content of lead and cadmium in infant food from the Polish market.

    Science.gov (United States)

    Winiarska-Mieczan, Anna; Kiczorowska, Bożena

    2012-09-01

    The present study aimed to analyse the toxic metals in the baby fruit and vegetable desserts, juices and dinners available on the Polish market, and find that these products a less are safe for infants. The average daily intake of cadmium and lead found in one jar of dessert, one bottle of juice and one jar of baby dinner is, respectively, 0.20 μg (2% of PTDI) and 0.82 μg (2.2% of PTDI), 0.15 μg (2% of PTDI) and 4.86 μg (13.6% of PTDI), and 0.98 μg (10% of PTDI) and 2.36 μg (6.7% of PTDI). It was confirmed that all the examined baby food met the requirements regarding lead and cadmium contamination, and the obtained results were lower than the maximum acceptable level of the contamination with these metals. It may be assumed that fruit and vegetable products available on the Polish market are safe for infants. However, in some products, the levels of cadmium and lead were high.

  14. Dietary exposure to cadmium, lead and nickel among students from south-east Poland.

    Science.gov (United States)

    Marzec, Zbigniew; Koch, Wojciech; Marzec, Agnieszka; Żukiewicz-Sobczak, Wioletta

    2014-01-01

    The dietary intake of cadmium, lead and nickel was determined among students from three universities in the city of Lublin in south-east Poland to assess the levels of exposure to these contaminants, compared to PTWI and TDI values. The study was performed in 2006–2010 and involved 850 daily food rations of students. The technique of 24-hour dietary recall and diet duplicates was used. Cadmium, lead and nickel complexes with ammonium-pyrrolidindithiocarbamate were formed and extracted to the organic phase with 4-methylpentan-2-one–MIBK, in which their content was measured by flame atomic absorption spectrometry. The highest intake of the elements studied was observed in 2008. The data show that in none of the cases, the level of intake reached 70% of PTWI/TDI values, and thus the risk of developing diseases related to high exposure to these toxic metals absorbed from foodstuffs was low. The parameters of methods were checked during determinations by adding standard solutions to the samples before mineralization and by using two reference materials: Total diet ARC/CL HDP and Bovine muscle RM NIST 8414. The dietary exposure to lead and cadmium has significantly decreased in recent years, whereas the exposures to nickel remains on a stable level.

  15. Determination of trace amounts of lead and cadmium using a bismuth/glassy carbon composite electrode.

    Science.gov (United States)

    Hwang, Gil-Ho; Han, Won-Kyu; Hong, Seok-Jun; Park, Joon-Shik; Kang, Sung-Goon

    2009-02-15

    We examined the use of a bismuth-glassy carbon (Bi/C) composite electrode for the determination of trace amounts of lead and cadmium. Incorporated bismuth powder in the composite electrode was electrochemically dissolved in 0.1M acetate buffer (pH 4.5) where nanosized bismuth particles were deposited on the glassy carbon at the reduction potential. The anodic stripping voltammetry on the Bi/C composite electrode exhibited well-defined, sharp and undistorted peaks with a favorable resolution for lead and cadmium. Comparing a non-oxidized Bi/C composite electrode with an in-situ plated bismuth film electrode, the Bi/C composite electrode exhibited superior performance due to its much larger surface area. The limit of detection was 0.41 microg/L for lead and 0.49 microg/L for cadmium. Based on this study, we are able to conclude that various types of composite electrodes for electroanalytical applications can be developed with a prudent combination of electrode materials.

  16. Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS.

    Science.gov (United States)

    Mataveli, Lidiane Raquel Verola; Buzzo, Márcia Liane; de Arauz, Luciana Juncioni; Carvalho, Maria de Fátima Henriques; Arakaki, Edna Emy Kumagai; Matsuzaki, Richard; Tiglea, Paulo

    2016-01-01

    This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD), limit of quantification (LOQ), linearity, relative bias, and repeatability. Regarding the sample preparation, recoveries of spiked samples were within the acceptable range from 89.3 to 98.2% for muffle furnace, 94.2 to 103.3% for heating block, 81.0 to 115.0% for hot plate, and 92.8 to 108.2% for microwave. Validation parameters showed that the method fits for its purpose, being the total arsenic, cadmium, and lead within the Brazilian Legislation limits. The method was applied for analyzing 37 rice samples (including polished, brown, and parboiled), consumed by the Brazilian population. The total arsenic, cadmium, and lead contents were lower than the established legislative values, except for total arsenic in one brown rice sample. This study indicated the need to establish monitoring programs for emphasizing the study on this type of cereal, aiming at promoting the Public Health.

  17. Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS

    Directory of Open Access Journals (Sweden)

    Lidiane Raquel Verola Mataveli

    2016-01-01

    Full Text Available This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS. Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD, limit of quantification (LOQ, linearity, relative bias, and repeatability. Regarding the sample preparation, recoveries of spiked samples were within the acceptable range from 89.3 to 98.2% for muffle furnace, 94.2 to 103.3% for heating block, 81.0 to 115.0% for hot plate, and 92.8 to 108.2% for microwave. Validation parameters showed that the method fits for its purpose, being the total arsenic, cadmium, and lead within the Brazilian Legislation limits. The method was applied for analyzing 37 rice samples (including polished, brown, and parboiled, consumed by the Brazilian population. The total arsenic, cadmium, and lead contents were lower than the established legislative values, except for total arsenic in one brown rice sample. This study indicated the need to establish monitoring programs for emphasizing the study on this type of cereal, aiming at promoting the Public Health.

  18. Investigation of heavy metals (Cadmium, Lead in Chironomidae and Gammarus pulex Namrood River – Tehran Province

    Directory of Open Access Journals (Sweden)

    Rezaei M. Kamali A. and Shapoori M.

    2012-01-01

    Full Text Available Marine ecosystem pollution is one of the important problems of today environment. In this study the existence of heavy metal in the Namrood River, situated in Firoozkooh in Tehran province, Iran has been investigated. The Namrood River is located near Firoozkooh route, and is affected by pollutant from tourist centers, entertainment, gas stations, nearby villages’ sewage systems, farming effluent, and hatchery farms. In some areas, its water is heavily polluted possibly by heavy metals. After selecting two stations in upstream and downstream of the river, they were sampled three times in both cold and hot seasons of year (mid-March, and June for Chironomidae, and Gammarus plux sediments. The measured heavy metals were cadmium and lead. The results showed that the concentration of cadmium in measured samples varied from 0.010-0.2033 ppm. The concentration of lead in samples varied from 0.11-2.16 ppm. The results also indicated that sediments of samples taken from the upper station in the cold season had a higher proportion of cadmium and a higher concentration of lead  than  sediments in the lower station during the hot season.

  19. Assessment of a sewage sludge treatment on cadmium, copper and zinc bioavailability in barley, ryegrass and earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Renoux, Agnes Y. [Sanexen Environmental Services Inc., 1471 Lionel-Boulet Boulevard, Varennes, Quebec J3X 1P7 (Canada)]. E-mail: arenoux@sanexen.com; Rocheleau, Sylvie [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada); Sarrazin, Manon [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada); Sunahara, Geoffrey I. [Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2 (Canada)]. E-mail: geoffrey.sunahara@cnrc-nrc.gc.ca; Blais, Jean-Francois [Institut national de la recherche scientifique (INRS-ETE), Centre Eau, Terre et Environnement, 490 rue de la Couronne street, Quebec, Quebec G1K 9A9 (Canada)]. E-mail: blaisjf@ete.inrs.ca

    2007-01-15

    The toxicity and bioavailability of metals were assessed to verify the efficiency of a new chemical leaching process (METIX-AC) to minimize the risk of metals found in municipal sewage sludge. For this purpose, sludge samples were spiked with cadmium, copper and/or zinc before being treated using METIX-AC. The sludge decontamination resulted in a removal of spiked metals (79-89%), in a decrease of the more labile fractions, and in a corresponding increase of the residual fraction. The toxicity observed after exposure of two plant species, barley (Hordeum vulgare) and ryegrass (Lolium perenne), and a terrestrial invertebrate, Eisenia andrei, to sludge-soil mixtures, disappeared after treatment, although the adverse effects were minor before treatment. The sludge treatment also significantly decreased the bioaccumulation of cadmium, copper, and zinc in the exposed species. For cadmium, maximum tissue concentrations of 0.45 {+-} 0.08 mg/kg in barley, 0.79 {+-} 0.27 mg/kg in ryegrass, and 21.82 {+-} 1.85 mg/kg in earthworm exposed to sludge before treatment decreased after treatment to values similar to those observed with negative controls. - Assessment of a sewage sludge treatment on metal bioavailability as measured by metal speciation, toxicity and bioaccumulation.

  20. Assessment of a sewage sludge treatment on cadmium, copper and zinc bioavailability in barley, ryegrass and earthworms.

    Science.gov (United States)

    Renoux, Agnès Y; Rocheleau, Sylvie; Sarrazin, Manon; Sunahara, Geoffrey I; Blais, Jean-François

    2007-01-01

    The toxicity and bioavailability of metals were assessed to verify the efficiency of a new chemical leaching process (METIX-AC) to minimize the risk of metals found in municipal sewage sludge. For this purpose, sludge samples were spiked with cadmium, copper and/or zinc before being treated using METIX-AC. The sludge decontamination resulted in a removal of spiked metals (79-89%), in a decrease of the more labile fractions, and in a corresponding increase of the residual fraction. The toxicity observed after exposure of two plant species, barley (Hordeum vulgare) and ryegrass (Lolium perenne), and a terrestrial invertebrate, Eisenia andrei, to sludge-soil mixtures, disappeared after treatment, although the adverse effects were minor before treatment. The sludge treatment also significantly decreased the bioaccumulation of cadmium, copper, and zinc in the exposed species. For cadmium, maximum tissue concentrations of 0.45+/-0.08 mg/kg in barley, 0.79+/-0.27 mg/kg in ryegrass, and 21.82+/-1.85 mg/kg in earthworm exposed to sludge before treatment decreased after treatment to values similar to those observed with negative controls.

  1. Assessment of a sewage sludge treatment on cadmium, copper and zinc bioavailability in barley, ryegrass and earthworms

    International Nuclear Information System (INIS)

    Renoux, Agnes Y.; Rocheleau, Sylvie; Sarrazin, Manon; Sunahara, Geoffrey I.; Blais, Jean-Francois

    2007-01-01

    The toxicity and bioavailability of metals were assessed to verify the efficiency of a new chemical leaching process (METIX-AC) to minimize the risk of metals found in municipal sewage sludge. For this purpose, sludge samples were spiked with cadmium, copper and/or zinc before being treated using METIX-AC. The sludge decontamination resulted in a removal of spiked metals (79-89%), in a decrease of the more labile fractions, and in a corresponding increase of the residual fraction. The toxicity observed after exposure of two plant species, barley (Hordeum vulgare) and ryegrass (Lolium perenne), and a terrestrial invertebrate, Eisenia andrei, to sludge-soil mixtures, disappeared after treatment, although the adverse effects were minor before treatment. The sludge treatment also significantly decreased the bioaccumulation of cadmium, copper, and zinc in the exposed species. For cadmium, maximum tissue concentrations of 0.45 ± 0.08 mg/kg in barley, 0.79 ± 0.27 mg/kg in ryegrass, and 21.82 ± 1.85 mg/kg in earthworm exposed to sludge before treatment decreased after treatment to values similar to those observed with negative controls. - Assessment of a sewage sludge treatment on metal bioavailability as measured by metal speciation, toxicity and bioaccumulation

  2. Cadmium, lead, and mercury exposure assessment among croatian consumers of free-living game.

    Science.gov (United States)

    Lazarus, Maja; Prevendar Crnić, Andreja; Bilandžić, Nina; Kusak, Josip; Reljić, Slaven

    2014-09-29

    Free-living game can be an important source of dietary cadmium and lead; the question is whether exposure to these two elements is such that it might cause adverse health effects in the consumers. The aim of this study was to estimate dietary exposure to cadmium, lead, and mercury from free-living big game (fallow deer, roe deer, red deer, wild boar, and brown bear), and to mercury from small game (pheasant and hare), hunted in Croatia from 1990 to 2012. The exposure assessment was based on available literature data and our own measurements of metal levels in the tissues of the game, by taking into account different consumption frequencies (four times a year, once a month and once a week). Exposure was expressed as percentage of (provisional) tolerable weekly intake [(P)TWI] values set by the European Food Safety Authority (EFSA). Consumption of game meat (0.002-0.5 % PTWI) and liver (0.005-6 % PTWI) assumed for the general population (four times a year) does not pose a health risk to consumers from the general population, nor does monthly (0.02-6 % PTWI) and weekly (0.1-24 % PTWI) consumption of game meat. However, because of the high percentage of free-living game liver and kidney samples exceeding the legislative limits for cadmium (2-99 %) and lead (1-82 %), people should keep the consumption of certain game species' offal as low as possible. Children and pregnant and lactating women should avoid eating game offal altogether. Free-living game liver could be an important source of cadmium if consumed on a monthly basis (3-74 % TWI), and if consumed weekly (11-297 % TWI), it could even give rise to toxicological concern.

  3. Evaluation of estimated daily intake (EDI) of cadmium and lead for rice (Oryza sativa L.) in calcareous soils.

    Science.gov (United States)

    Chamannejadian, Ali; Sayyad, Gholamabbas; Moezzi, Abdolamir; Jahangiri, Alireza

    2013-04-08

    The excessive amounts of cadmium and lead in food chain can cause health problems for humans and ecosystem. Rice is an important food in human diet. Therefore this study was conducted in order to investigate cadmium and Lead concentrations in seed rice (Oryza saliva) of paddy fields in southwest of Iran. A total of 70 rice seed samples were collected from paddy fields in five regions of Khuzestan province, Southwest Iran, during harvesting time. In the samples cadmium and Lead concentrations were measured. To assess the daily intake of Cadmium and Lead by rice, daily consumption of rice was calculated. The results showed that average concentrations of Cadmium and Lead in rice seeds were 273.6 and 121.8 μg/kg, respectively. Less than 72% of rice seed samples had Cadmium concentrations above 200 μg/kg (i.e. Guide value for cadmium); and less than 3% had Lead concentrations above 150 μg/kg (i.e. Guide value for Lead). The estimated daily intakes of cadmium by the local population was calculated to 0.59 μg/day kg bw, which corresponds to 59% of the tolerable daily intakes (i.e. 1 μg/day kg bw). Eleven out of 70 samples (15.71%) exceed the tolerable daily intakes. The dietary intakes for Lead in the local population ranged from 0.22 to 0.47 μg/day kg bw. Tolerable daily intakes for Lead is 3.6 μg/day kg bw. As a whole, long term consumption of the local rice may bear high risk of heavy metal exposure to the consumer in the study region.

  4. Effects of low level lead and cadmium on reproduction in Peromyscus leucopus and a study of lead concentration in small mammals from old orchards

    OpenAIRE

    Yocum, Susan Marie

    1988-01-01

    Lead and cadmium frequently occur together as contaminants in polluted environments such as roadsides, urban areas, mines, and smelters. Few studies have been conducted to examine the possible interactive effects these metals may have on reproduction of wild species. The first part of this study was directed toward examining the effects of low level dietary lead and cadmium on reproduction in Peromyscus Jeucopus. Two laboratory studies were conducted. Treatment with combinat...

  5. Uptake of arsenic, cadmium, lead and mercury from polluted waters by the water hyacinth Eichornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Chigbo, F.E.; Smith, R.W.; Shore, F.L.

    1982-01-01

    The water hyacinth Eichornia crassipes was studied as a pollution monitor for the simultaneous accumulation of arsenic, cadmium, lead and mecury. After cultivation of the plants for 2 days in tanks containing 10 ppm of each of the metals in aqueous solution, the plants were harvested and rinsed with tap water. The leaves and stems were separated and analysed for each of the metals. The ratio of the concentration of arsenic and mercury in the leaves to the concentrations in the stems was found to be 2:1. Cadmium and lead showed a concentration ratio in leaves to stems of about 1:1. The leaf concentration of arsenic was the lowest of the metals of 0.3428 mg g/sup -1/ of dried plant material whilst the leaf concentration of cadmium was highest at 0.5740 mg g/sup -1/ of dried plant material. Control plants were grown in unpolluted water. Plants grown in Bay St. Louis, Mississippi sewage lagoon were also analysed. The mercury concentrations of the leaves of plants grown in the sewage lagoon were significantly different from the control sample which had a concentration of 0.0700 mg g/sup -1/ of dried plant material.

  6. Determination of Lead and Cadmium in cow’s Milk and Elimination by Using Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Haniyeh Moallem Bandani

    2016-10-01

    Full Text Available Background and Objectives: Heavy metals such as cadmium and lead are the most important toxins spreading through various ways like water, soil, and air in nature and easily enter human food chain. It is essential to determine the cumulative and harmful effects of these metals in nutrients, especially in cow milk because it is a unique source of food for all ages and it contains both essential and nonessential trace elements. Materials and Methods: A total of 100 milk samples were directly collected from healthy cows in Zabol located on east of Iran. The samples were tested to determine lead and cadmium residues. The rates of the heavy metals were determined using a Rayleigh atomic absorption spectrum equipped with hollow cathode lamps (HCL at 283.3 nm for lead (Pb and at 228.8 nm for cadmium (Cd. By using the photo-catalytic titanium dioxide nanoparticles, these toxic metals were removed. Results: The mean ± SD of the concentration of lead and cadmium in raw milk were 9.175± 2.5 and 4.557 ± 1.081 ppb, respectively. Also, the P-values of Kalmogorov– Smiranov test for lead and cadmium were respectively 0.057 ppb (P>0.05 and 0.435 ppb (P>0.05. TiO2 nanoparticles were used to eliminate and remove lead and cadmium in milk samples. The results showed that there was a significant difference between lead and cadmium contents before and after adding TiO2 nanoparticles (P<0.05. Conclusions: According to results of this study, there was a very low amount of toxic metals. So, it seems that it is not necessary to use TiO2 in milk samples but these days it used frequently as an additive to some samples like milk to remove these pollutants. Keywords: lead, cadmium, milk, atomic absorption spectroscopy, TiO2 nanoparticles

  7. Effects of environmental levels of cadmium, lead and mercury on human renal function evaluated by structural equation modeling

    OpenAIRE

    Trzeciakowski, Jerome P.; Gardiner, Lesley; Parrish, Alan R.

    2014-01-01

    A relationship between exposure to heavy metals, including lead and cadmium, and renal dysfunction has long been suggested. However, modeling of the potential additive, or synergistic, impact of metals on renal dysfunction has proven to be challenging. In these studies, we used structural equation modeling (SEM), to investigate the relationship between heavy metal burden (serum and urine levels of lead, cadmium and mercury) and renal function using data from the NHANES database. We were able ...

  8. Exposure to lead and cadmium released from ceramics and glassware intended to come into contact with food.

    Science.gov (United States)

    Rebeniak, Małgorzata; Wojciechowska-Mazurek, Maria; Mania, Monika; Szynal, Tomasz; Strzelecka, Agnieszka; Starska, Krystyna

    2014-01-01

    The dietary intake of harmful elements, particularly lead and cadmium constitutes a health threat and essential measures should be undertaken to reduce consumer exposure. The latest risk assessments by the European Food Safety Authority (EFSA) and Joint FAO/WHO Expert Committee on Food Additives (JECFA) have indicated that the Provisional Tolerable Weekly Intake (PTWI) for lead and cadmium do not ensure health safety and their review had to be undertaken. Migration from ceramics and glassware intended for food contact is an important source of lead and cadmium intake. To study the release of lead and cadmium from ceramics and glassware (including decorated products) intended for food contact that are available on the Polish market and to assess the resulting health risk to the consumer. Ceramics and glassware (mainly decorated) were sampled from the Polish market during 2010- 2012 throughout the country by staff of the Sanitary-Epidemiological Stations in accordance with monitoring procedures and guidelines designed by the National Institute of Public Health-National Institute of Hygiene. Migration of lead and cadmium was measured by incubating the samples with 4% acetic acid for 24 hours at a temperature of 22±2ºC in the dark. Flame Atomic Absorption Spectrometry (FAAS) was used to measure these elements in food simulant according to a validated and accredited method (PN-EN ISO/IEC 17025). 1273 samples of ceramics and glass wares were analysed in 2010-2012. Lead and cadmium release were usually found to be below analytical detection limits. Permissible migration limits (as prescribed by the legislation) of these metals were rarely exceeded and were reported mainly in articles imported from outside the EU. Two imported and decorated ceramic flat plates released lead at 0.9 and 11.9 mg/dm2 (limit 0.8 mg/dm2) and 5 imported deep plates gave migration values of 4.7 mg/L, 4.9 mg/L, 5.6 mg/L, 6.1 mg/L, 8.6 mg/L (limit 4.0 mg/L). Lead migrations from ceramic ware rims

  9. Human exposure to pollutants - part: 1 blood lead and cadmium in a sample of population of Karachi

    International Nuclear Information System (INIS)

    Yousufzai, A.H.K.; Khalid, Q.; Sultana, L.

    1994-01-01

    A study was carried out to see the blood lead and cadmium levels in fifty employees working at PCSIR Laboratories Complex, Karachi. These employees belonged to various socio-economic groups and had their residences in different areas of Karachi. Sixty two percent staff had blood lead level between 100-200 micro g/L. The highest blood lead level(>400 micro g/L) was found in volunteers working as garage staff. No significant difference was found between the blood lead levels of volunteers belonging to different socio-economic and age groups, only 8% of the staff had blood lead levels below 100 micro g/L. Lead in the dust collected from the residences of the volunteers was also estimated for lead and correlated with blood lead levels. Blood cadmium levels were also estimated. These were found to be higher in smokers and tobacco chewers. A definite correlation was observed between blood cadmium levels and smoking habits. (author)

  10. Copper, but not cadmium, is acutely toxic for trout hepatocytes: short-term effects on energetics and ion homeostasis

    International Nuclear Information System (INIS)

    Manzl, Claudia; Ebner, Hannes; Koeck, Guenter; Dallinger, Reinhard; Krumschnabel, Gerhard

    2003-01-01

    The toxic effects of cadmium (Cd) and copper (Cu) on cellular energy metabolism and ion homeostasis were investigated in hepatocytes from the rainbow trout, Oncorhynchus mykiss. The metal content of cells did not increase during incubation with Cu, whereas a dose-dependent increase was seen with Cd. Cell viability was unaffected in the presence of 100 μM Cd and 10 μM Cu but was significantly reduced after 30 min of exposure to 100 μM Cu, both in the presence and absence of extracellular calcium. Oxygen consumption (VO 2 ) was not affected by 100 μM Cd or 10 μM Cu, whereas 100 μM Cu caused a significant and calcium-dependent increase of VO 2 . Lactate production and basal glucose release were not altered by either of the metals. However, the epinephrine-stimulated rate of glucose release was significantly reduced after 2 h of incubation with 100 μM Cu. Hepatocytes exposed to Cd showed only a marginal increase of intracellular free calcium (Ca i 2+ ), whereas with Cu a pronounced and dose-dependent increase of Ca i 2+ was induced after a delay of 10 to 15 min, the calcium being of extracellular origin. Intracellular pH was not altered by Cd but decreased significantly in the presence of Cu. Overall our data demonstrate that Cu, but not Cd, is acutely toxic for trout hepatocytes. Since Cu does not enter the cells in the short term it appears to exert its acutely toxic effects at the cell membrane. Although Cu toxicity is associated with an uptake of calcium from extracellular space, leading to an elevation of cellular respiration, cytotoxicity does not appear to be dependent on the presence of extracellular calcium

  11. Copper and Cadmium Toxicity to Marine Phytoplankton, Chaetoceros gracilis and Isochrysis sp.

    Directory of Open Access Journals (Sweden)

    Suratno Suratno

    2015-07-01

    Full Text Available In Copper (Cu based antifouling (AF paints Cu was largely used as booster biocide after organotin was banned. Cu is micronutrient which is important in photosynthesis process because Cu is an essential metal as component of enzyme and electron transport chain. But in certain dosage, Cu could be toxic to marine organism. Chaetoceros gracilis and Isochrysis sp. are dominant microalgae in aquatic ecosystem. In this study the effect of Cu and Cadmium (Cd on two marine microalgae, C. gracilis and Isochrysis sp. were compared. Toxicity test was based on American Standard for Testing Material (ASTM. IC50-96 h of Cd as reference toxicant was 2,370 mg.L-1 for C. gracilis and 490 mg.L-1 for Isochrysis sp. IC50-96 h of Cu to growth of C. gracilis was 63.75 mg.L-1 and Isochrysis sp. was 31.80 mg.L-1. Both Cd and Cu were inhibited growth of microalgae. Based on IC50-96 h value, it could be concluded that Cu was more toxic than Cd. Toxicity of Cu was 37 times stronger than Cd for C. gracilis and 15 times for Isochrysis sp. It was estimated that at concentration 10 mg.L-1 Cu does not show observable effect (NOEC to C. gracilis and 5 mg.L-1 to Isochrysis sp. The lowest observable effect of Cu (LOEC to C. gracilis was at concentration 17 mg.L-1 and 10 mg.L-1 for Isochrysis sp.

  12. The interactive toxicity of cadmium, copper, and zinc to Ceriodaphnia dubia and rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Naddy, Rami B; Cohen, Adam S; Stubblefield, William A

    2015-04-01

    Traditionally, aquatic toxicity studies examine the toxicity of a single chemical to an organism. Organisms in nature, however, may be exposed to multiple toxicants. Given this is a more realistic exposure scenario in situ, the authors sought to understand the interactive toxicity of multiple metals to aquatic organisms. The authors performed a series of studies using equitoxic mixtures of cadmium, copper, and zinc to 2 aquatic organisms, rainbow trout (Oncorhynchus mykiss) and the waterflea, Ceriodaphnia dubia. Single metal toxicity tests were conducted to determine the acute median lethal concentration (LC50) values for O. mykiss and short-term, chronic median effective concentration (EC50) values for C. dubia. All 3 metals were then combined in equitoxic concentrations for subsequent mixture studies using a toxic unit (TU) approach (i.e., 1 TU = EC50 or LC50). For C. dubia, the mixture study showed greater-than-additive effects in hard water (TU-based EC50 = 0.74 TU), but less-than-additive effects in soft water (TU-based EC50 = 1.93 TU). The mixture effects for O. mykiss showed less-than-additive effects in both hard and soft waters, with TU-based LC50 values of 2.33 total TU and 2.22 total TU, respectively. These data are useful in helping understand metal mixture toxicity in aquatic systems and indicate that although in most situations the assumption of additivity of metal mixture toxicity is valid, under certain conditions it may not be sufficiently protective. © 2014 SETAC.

  13. Analysis of electronic parameters of nanostructure copper doped cadmium oxide/p-silicon heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Karatas, Suekrue, E-mail: skaratas@ksu.edu.tr [Department of Physics, Faculty of Science, Suetcue Imam University, Karamanmaras (Turkey); Yakuphanoglu, Fahrettin [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer The copper doped cadmium oxide (CdO) heterojunction diodes were fabricated by sol-gel method. Black-Right-Pointing-Pointer The electrical properties of Cu doped CdO/p-Si heterojunction diode have been investigated. Black-Right-Pointing-Pointer A strong effect of the Cu-doped content on the I-V characteristics of the diodes was found. Black-Right-Pointing-Pointer It is evaluated that the electrical performance of the CdO/p-Si diode can be controlled by Cu doped. - Abstract: The nanostructure Cu-doped CdO thin film was grown on p-type silicon substrate by sol-gel method. An Al/Cu doped CdO/p-Si heterojunction diode was fabricated. The values of ideality factor and barrier height for the Al/n-type CdO/p-Si heterojunction were obtained as 5.99 and 0.69 eV, respectively. A modified Norde function combined with conventional forward I-V method was used to extract the junction parameters including the ideality factor, barrier height and series resistance. Norde function was compared with the Cheung functions and it is seen that there is a good agreement with both method for the series resistance values. Furthermore, the interface state density (N{sub SS}) as a function of energy distribution (E{sub SS} - E{sub V}) was extracted from the forward-bias I-V measurements by taking into account the bias dependence of the effective barrier height and series resistance.

  14. Binary Component Sorption of Cadmium, and Copper Ions onto Yangtze River Sediments with Different Particle Sizes

    Directory of Open Access Journals (Sweden)

    Jianxin Fan

    2017-11-01

    Full Text Available Sorption is a crucial process that influences immobilization and migration of heavy metals in an aqueous environment. Sediments represent one of the ultimate sinks for heavy metals discharged into water body. Moreover, the particle size of sediments plays an extremely important role in the immobilization of heavy metals. In this study, the sorption and desorption of cadmium (Cd and copper (Cu onto sediments with different particle sizes were investigated to predict the rate and capacity of sorption, to understand their environmental behaviors in an aqueous environment. Batch sorption and kinetic experiments were conducted to obtain the retained amount and rate of Cd and Cu in a binary system. Experimental data were simulated using sorption models to ascertain the sorption capacity and the kinetic rate. Results of European Communities Bureau of Reference (BCR sequential extraction showed the highest concentration of Cd (0.344 mg kg−1, and its distribution varied with sediment particle size and site. Furthermore, most of Cu (approximately 57% to 84% existed as a residual fraction. The sorption of Cu onto six sediments followed a pseudo-first order reaction, whereas that of Cd followed a pseudo-second order reaction. Additionally, the competitive Langmuir model fitted the batch sorption experimental data extremely well. The highest sorption capacities of Cd and Cu reach 0.641 mmol kg−1 and 62.3 mmol kg−1, respectively, on the smallest submerged sediment particles. The amounts of Cu and Cd desorbed (mmol kg−1 increased linearly with the initial concentration increasing. Thus, sediment texture is an important factor that influences the sorption of heavy metal onto sediments.

  15. Suppressive effects of thermal-treated oyster shells on cadmium and copper translocation in maize plants.

    Science.gov (United States)

    Wang, Chunyan; Alidoust, Darioush; Isoda, Akihiro; Li, Maosong

    2017-08-01

    The effect of varied concentrations of thermal-treated oyster shells (TOS) on the suppression of cadmium (Cd) and copper (Cu) uptake and translocation into the shoots of maize plants was examined. Maize plants were grown in Cd- and Cu-contaminated Andosol for 70 days. The concentration of mobile Cd (extracted with 1 M NH 4 NO 3 ) decreased with increasing TOS applications, whereas an increase in the concentration of mobile Cu in soil resulted from cumulative TOS additions. The addition of 2% TOS had no prohibitive effects on Cd uptake in maize shoots, but the 4 and 8% TOS treatments decreased Cd accumulation in shoots by 41 and 59%, respectively. The possible mechanisms underlying Cd suppression in maize shoots were the enhanced Cd adsorption caused by pH-induced increases in the negative charge of the soil and the antagonistic effects of Ca resulting from competition for exchange sites at the root surface. Cu accumulation in maize shoots increased by 34, 51, and 53% with the addition of 2, 4, and 8% TOS, respectively, but this increase was not observed for Cd accumulation. These results suggested that, in multi-metal-contaminated soils, attention should be paid to the potential mobility of target metals and the pH of the contaminated soil. From a plant physiological perspective, contaminated soils slightly reduced photosynthetic performance. However, the addition of TOS to the soil at levels higher than 4% substantially decreased photosynthetic performance, indicating that CaO-based suppressants at critical loads might damage the net photosynthetic rates of sensitive maize plants.

  16. Fact sheet: National primary drinking water regulations for lead and copper

    International Nuclear Information System (INIS)

    1991-05-01

    The Fact Sheet contains a summary of what the regulations will do, establish, and provide; regulatory impact in regards to benefits and costs; treatment technique requirements; tap water monitoring for lead and copper; water quality monitoring (other than lead and copper); monitoring schedules, regulatory schedules for large, medium-sized, and small systems

  17. The sublethal effects of copper and lead on the haematology and ...

    African Journals Online (AJOL)

    Toxicity bioassays were conducted on groovy mullet, Liza dumerili, using copper and lead, in order to assess how these metals affected their blood haematology and acid-base balance. Short-term (96 hours) exposure to lead caused significantly more haematological response [PCO2] than copper, when compared to the ...

  18. Determination of mercury, lead and cadmium in water by the CRA-atomic absorption spectrophotometry with solvent extraction

    International Nuclear Information System (INIS)

    Shim, Y.B.; Won, M.S.; Kim, C.J.

    1980-01-01

    The method of CRA-atomic absorption spectrophotometer with solvent extraction for the determination of mercury, lead and cadmium in water was studied. The optimum extracting conditions for CRA-atomic absorption spectrophotometry were the following: the complexes of mercury, lead and cadmium with dithizone were separated from the aqueous solution and concentrated into the 10 ml chloroform solution. Back extraction was performed; the concentrated mercury, lead and cadmium was extracted from the chloroform solution into the 10 ml 6-normal aqueous hydrochloric acid solution. In this case, recovery ratios were the following: mercury was 94.7%, lead 97.7% and cadmium 103.6%. The optimum operating conditions for the determination of mercury, lead and cadmium by the CRA-atomic absorption spectrophotometry also were investigated to test the dry step, ash step and atomization step for each metal. The experimental results of standard addition method were the following: the determination limit of each metal within 6% relative deviation was that lead was 0.04 ppb, and cadmium 0.01 ppb. Especially, mercury has been known impossible to determine by CRA-atomic absorption spectrophotometry until now. But in this study, mercury can be determined with CRA-atomic absorption spectrophotometer. Its determination limit was 4 ppb within 8% relative deviation. (author)

  19. Contamination by cadmium and lead of some fruits and vegetables exposed to polluted air

    International Nuclear Information System (INIS)

    Nohra, R.

    2004-01-01

    Author.Global air pollution and particularly in the urban cities derives from vehicle transportation (cars, buses, trucks) and electric generators. In Lebanon, many people use fuel diesel and leaded gasoline in the engines of their vehicles. Indeed, the fuel used in our country, contains thirteen times more pollutants than that used legally in the developed countries (Magazine de l'environnement, 2002). This contributes to the pollution of the air that we breathe as well as the fruits and vegetables exposed to air. 762 samples of four kinds of different fruits (peaches, apples, strawberries and grapes) and two kinds of vegetables (parsleys and cucumbers) were taken twice and during different periods from eight different places in laps of time of seven days. The samples were analyzed in the laboratories of IRAL at Fanar and Tal-Amara, using the Spectroscopy Atomic Absorption method. The analysis included two groups of samples: the first one comprises 192 samples of fruits and vegetables without peeling and the second one comprises 570 samples of fruit and vegetables with peeling. The average values of the non washed samples were between 0.13 ±0.012 and 0.6 ppm ± 0.02 for lead and 0.06 ± 0.015 and 0.18 ppm ± 0.02 for cadmium. Those of the non washed peelings were between 0.08 ± 0.015 and 0.38 ppm ±0.025 for lead and 0.03 ±0.006 and 0.11 ppm ± for cadmium. On the other hand, those of the non-washed peeled samples were between 0.05 ± 0.01 and 0.27 ppm ± 0.016 for lead and 0.03 ± 0.016 and lead and 0.03 ± 0.06 and 0.07 ppm ± 0.015 for cadmium. Once these samples were washed , the average values were marked between 0.03 ± 0.006 and 0.15 ppm ± 0.02 for the lead and 0.02 ± 0.006 and 0.06 ppm ± 0.015 for the cadmium. Then, after drying them, concentrations revealed to be comprised between 0.02 ± 0.005 and 0.1 ppm ± 0.02 for the lead and 0.01 and 0.04 ppm ± 0.006 for the cadmium and that of the washing water was concentrated between 0.09 ± 0.016 and 0

  20. Preparation and thermal decomposition of copper(II, zinc(II and cadmium(II chelates with 8-hydroxyquinoline

    Directory of Open Access Journals (Sweden)

    Marisa S. Crespi

    1999-02-01

    Full Text Available When the compounds are heated in an inert atmosphere it can be verified the consecutive partial sublimation, fusion, partial volatilization and partial thermal decomposition of the anhydrous complexes. When in an oxidating atmosphere the above process is only verified to Cu(II chelates. Anhydrous copper(II complexes present a monoclinic structure in the b form and the volatilized compound in a a form. Zinc(II and cadmium(II hydrated complexes are isomorphous and they present different cell dimensions from those reported previously.

  1. Biomonitoring of lead and cadmium in women from industrial regions of eastern Germany; Biomonitoring von Blei und Cadmium bei Frauen aus industriellen Regionen Sachsen-Anhalts

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, I.; Wichmann, H.E. [Univ. Muenchen (Germany). Lehrstuhl fuer Epidemiologie; GSF - Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg (Germany). Inst. fuer Epidemiologie; Becker, K.; Lippold, U.; Meyer, E. [Umweltbundesamt, Berlin (Germany); Heinrich, J. [GSF - Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg (Germany). Inst. fuer Epidemiologie

    2003-07-01

    The aim of this analysis was to detemine the body burden of lead and cadmium in women aged 50 to 59 years from a mining and smelter area (Hettstedt) and two control areas (Bitterfeld, Zerbst) in eastern Germany. In the years 1992-93 1405 women aged 50 to 59 participated in a cross-sectional survey (response rate: 41.6%). 1188 women provided blood and urine samples and in 411 of these samples blood lead levels and cadmium levels in urine (standardised by creatinine) were determined. The geometric mean of blood lead levels among the 50 to 59 year-old woman was 41.5 {mu}g/l with a 95% confidence interval (C.I.) of 39.6-43.6. The geometric mean of cadmium in urine was 0.417 {mu}g/g Cr (95% C.I. 0.390-0.447). Thus the body burden of lead and cadmium differed only slightly, if at all, from the body burden of the general population. The measured body burden did not pose a risk to the evaluated population. Compared to women from the control regions Bitterfeld and Zerbst, women from Hettstedt did not have elevated blood lead levels. Blood lead levels, which reflect mostly the current exposure to lead, were positively influenced by individual behaviours such as smoking and by the distance of the residential area of Hettstedt from the former smelters. Besides this, elevated lead concentrations in tap water and the release of lead from bone after menopause resulted in increased blood lead levels. Compared to women from the control regions women from Hettstedt had significantly increased cadmium excretion in urine. Cadmium levels in urine reflect mainly the cumulative, lifetime exposure to cadmium. (orig.) [German] Die vorliegende Untersuchung hatte zum Ziel, die innere Belastung von Frauen mit Blei und Cadmium in den Regionen Hettstedt (Huettenstandort), Bitterfeld und Zerbst zu untersuchen. 1992/93 nahmen 1405 50- bis 59-jaehrige Frauen an einer Querschnittsuntersuchung teil (Teilnahmerate: 41,6%). In 411 Blut- bzw. Urin-Proben wurden die Bleikonzentration im Blut und die

  2. Arsenic, lead, mercury and cadmium: Toxicity, levels in breast milk and the risks for breastfed infants

    International Nuclear Information System (INIS)

    Rebelo, Fernanda Maciel; Caldas, Eloisa Dutra

    2016-01-01

    Metals are ubiquitous in nature, being found in all environmental compartments, and have a variety of applications in human activities. Metals are transferred by maternal blood to the fetus via the placenta, and exposure continues throughout life. For the general population, exposure comes mainly from water and food consumption, including breast milk. In this paper, we reviewed studies on the toxicity of arsenic, lead, mercury and cadmium, the toxic metals of most concern to human health, focusing on the potential risks to newborns and infants. A total of 75 studies published since 2000 reporting the levels of these metals in breast milk were reviewed. Lead was the metal most investigated in breast milk (43 studies), and for which the highest levels were reported (up to 1515 µg/L). Arsenic was the least investigated (18 studies), with higher levels reported for breast milk (up to 149 µg/L) collected in regions with high arsenic concentrations in water (>10 µg/L). Data from 34 studies on mercury showed that levels in breast milk were generally higher in populations with high fish consumption, where it may be present mainly as MeHg. Cadmium levels in breast milk were the lowest, with means <2 µg/L in most of the 29 studies reviewed. Results of risk assessments indicated that the intake of arsenic, lead and mercury by infants through breastfeeding can be considered a health concern in most regions of the world. Although the potential risks to infants are mostly outweighed by the benefits of breast milk consumption, it is essential that contaminants be continuously monitored, especially in the most critical regions, and that measures be implemented by health authorities to reduce exposure of newborns and infants to these metals, and thus avoid unnecessary health risks. - Highlights: • Review of 75 studies that analyzed arsenic, lead, mercury and/or cadmium levels. • Higher levels of arsenic found in India; of mercury found in Brazil. • Lead was the most

  3. Effects of environmental levels of cadmium, lead and mercury on human renal function evaluated by structural equation modeling.

    Science.gov (United States)

    Trzeciakowski, Jerome P; Gardiner, Lesley; Parrish, Alan R

    2014-07-03

    A relationship between exposure to heavy metals, including lead and cadmium, and renal dysfunction has long been suggested. However, modeling of the potential additive, or synergistic, impact of metals on renal dysfunction has proven to be challenging. In these studies, we used structural equation modeling (SEM), to investigate the relationship between heavy metal burden (serum and urine levels of lead, cadmium and mercury) and renal function using data from the NHANES database. We were able to generate a model with goodness of fit indices consistent with a well-fitting model. This model demonstrated that lead and cadmium had a negative relationship with renal function, while mercury did not contribute to renal dysfunction. Interestingly, a linear relationship between lead and loss of renal function was observed, while the maximal impact of cadmium occurred at or above serum cadmium levels of 0.8 μg/L. The interaction of lead and cadmium in loss of renal function was also observed in the model. These data highlight the use of SEM to model interaction between environmental contaminants and pathophysiology, which has important implications in mechanistic and regulatory toxicology. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. HEAVY METALS ABUNDANCE IN THE SOILS OF THE PANTELIMON – BRĂNEŞTI AREA, ILFOV COUNTY a CADMIUM, COBALT, CHROMIUM, COPPER

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2011-12-01

    Full Text Available More than 20 years later, a new research on heavy metals (cadmium, cobalt, chromium, copper contents in the soil cover of the Pantelimon – Brăneşti area located East of the Bucharest Municipality and exposed for several decades to the influence of industrial emissions from two non-ferrous metallurgy plants is presented. A 5,912.72 ha area was investigated, 544 samples taken by geometric horizons (0-20; 20-40; 40-60 cm from 215 points have been analyzed.The dominant soils are: Preluvosols, Chernozems, Phaeozems. The analytical data showed that all the heavy metals contents are below the maximum allowable limits and of the alarm thresholds. Higher cadmium and copper concentrations have been registered in the 40-60 cm layer and higher chromium and copper concentrations in the 0-20 cm layer. Cadmium and cobalt distributions are non-central, with a right asymmetry, and the chromium and copper ones are slightly symmetric. The surface distribution of the heavy metals shows the presence of some high contents areas distributed insularly, with a higher frequency around the industrial units. The geochemical abundance indexes are higher than 1 for cadmium and lower for cobalt, chromium, and copper, and the pedo-geochemical abundance indexes are lower than 1 only for chromium.

  5. Mercury, cadmium, lead and selenium content of mushroom species belonging to the genus Agaricus

    Energy Technology Data Exchange (ETDEWEB)

    Stijve, T.; Besson, R.

    1976-01-01

    Samples of the mushroom genus Agaricus were collected in areas strongly influenced by human activities, lawns, gardens, parks, etc., and analyzed for mercury methylmercury, selenium, cadmium, and lead. The rate of accumulation of selenium was enormous, but not the maximum possible. Boletus edulis had a concentration factor of approximately 600. The mechanism by which the elements are accumulated is still obsure, but it appears probable that mercury is chelated by reaction with the sulfhydryl groups of protein. It also seems that mercury and selenium concentrations in these fungi are closely related to the methionine fraction. (JTE)

  6. Effect of lead, mercury and cadmium on a sulphate-reducing bacterium

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Sathe, V.; Chandramohan, D.

    Hg and 125·1 Jlg ml- 1 Pb (Hg being 137·1 % and Pb 2320/0 of the weight of the Cd used). Thormann and Weyland (1980), in a study of the effect of Cd and Pb, state that Cd causes a stronger growth inhibition than Pb. Also, the relative importance... Pollution 67 (1990) 361-374 Effect of Lead, Mercury and Cadmium on a Sulphate-Reducing Bacterium P. A. Loka Bharathi, V. Sathe & D. Chandramohan National Institute of Oceanography, Dona Paula, Goa-403004, India (Received 9 March 1990; revised version...

  7. Effect of zinc, lead, and cadmium pollution on the leaf surface mircoflora

    Energy Technology Data Exchange (ETDEWEB)

    Gingell, S.M.; Campbell, R.; Martin, M.H.

    1976-01-01

    A leaf-washing method was used to compare the phylloplane microflora of cabbages and pine saplings exposed to surface contamination by zinc, lead and cadmium from a smelter with that of similar uncontaminated plants. The microflora of contaminated plants was reduced in both abundance and species diversity; pigmented yeasts and bacteria seemed particularly sensitive. The isolates from contaminated plants were more tolerant to heavy metals in artificial media than the isolates from uncontaminated plants. Artificially contaminated and inoculated plants also showed a reduction in the phylloplane microflora.

  8. Lead and cadmium exposures from canned and non-canned beverages in Nigeria: a public health concern.

    Science.gov (United States)

    Maduabuchi, J-M U; Nzegwu, C N; Adigba, E O; Aloke, R U; Ezomike, C N; Okocha, C E; Obi, E; Orisakwe, O E

    2006-08-01

    The lead and cadmium levels of canned and non-canned foods purchased in Nigeria were studied. Fifty samples of these beverages were digested in nitric acid and were analyzed using the Atomic Absorption Spectrophotometer (AAS). The cadmium levels ranged from 0.003-0.081 mg/L for the canned and 0.006-0.071 mg/L for non-canned beverages. About 85.71% of the canned beverages had cadmium levels that exceeded the maximum contaminant level (MCL) of 0.005 mg/L set by US EPA while 82.7% non-canned beverages had cadmium levels exceeding the MCL. The mean and median levels of cadmium exceeded the MCL in both the canned and non-canned beverages. Whereas only 79.3% of the non-canned beverages showed lead levels that exceeded the US EPA's MCL of 0.015 mg/L, 100% of the canned beverages had lead levels that were greater than the MCL. The range of the lead in the canned beverages was 0.002-0.0073 and 0.001-0.092 mg/L for the non-canned beverages. The mean and median values of lead exceeded the MCL in both the canned and non-canned beverages. The calculated amount of lead and cadmium in three beverages were 0.204 mg (204 microg) and 0.177 mg (177 microg), respectively. These represent the estimated intake of a consumer who takes three of the products selected randomly in a week; assuming an average volume of one liter (1 L) for each product. Taken together 86% and 84% of the 50 beverages (canned and non-canned) studied in March, 2005 in Nigeria failed to meet the US EPA criteria for acceptable lead and cadmium levels in consumer products.

  9. Lead and cadmium exposures from canned and non-canned beverages in Nigeria: A public health concern

    Energy Technology Data Exchange (ETDEWEB)

    Maduabuchi, J.-M.U. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Nzegwu, C.N. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Adigba, E.O. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Aloke, R.U. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Ezomike, C.N. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Okocha, C.E. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Obi, E. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria); Orisakwe, O.E. [College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus. P.M.B. 5001, Nnewi, Anambra State (Nigeria)]. E-mail: eorish@aol.com

    2006-08-01

    The lead and cadmium levels of canned and non-canned foods purchased in Nigeria were studied. Fifty samples of these beverages were digested in nitric acid and were analyzed using the Atomic Absorption Spectrophotometer (AAS). The cadmium levels ranged from 0.003-0.081 mg/L for the canned and 0.006-0.071 mg/L for non-canned beverages. About 85.71% of the canned beverages had cadmium levels that exceeded the maximum contaminant level (MCL) of 0.005 mg/L set by US EPA while 82.7% non-canned beverages had cadmium levels exceeding the MCL. The mean and median levels of cadmium exceeded the MCL in both the canned and non-canned beverages. Whereas only 79.3% of the non-canned beverages showed lead levels that exceeded the US EPA's MCL of 0.015 mg/L, 100% of the canned beverages had lead levels that were greater than the MCL. The range of the lead in the canned beverages was 0.002-0.0073 and 0.001-0.092 mg/L for the non-canned beverages. The mean and median values of lead exceeded the MCL in both the canned and non-canned beverages. The calculated amount of lead and cadmium in three beverages were 0.204 mg (204 {mu}g) and 0.177 mg (177 {mu}g), respectively. These represent the estimated intake of a consumer who takes three of the products selected randomly in a week; assuming an average volume of one liter (1 L) for each product. Taken together 86% and 84% of the 50 beverages (canned and non-canned) studied in March, 2005 in Nigeria failed to meet the US EPA criteria for acceptable lead and cadmium levels in consumer products.

  10. Lead and cadmium exposures from canned and non-canned beverages in Nigeria: A public health concern

    International Nuclear Information System (INIS)

    Maduabuchi, J.-M.U.; Nzegwu, C.N.; Adigba, E.O.; Aloke, R.U.; Ezomike, C.N.; Okocha, C.E.; Obi, E.; Orisakwe, O.E.

    2006-01-01

    The lead and cadmium levels of canned and non-canned foods purchased in Nigeria were studied. Fifty samples of these beverages were digested in nitric acid and were analyzed using the Atomic Absorption Spectrophotometer (AAS). The cadmium levels ranged from 0.003-0.081 mg/L for the canned and 0.006-0.071 mg/L for non-canned beverages. About 85.71% of the canned beverages had cadmium levels that exceeded the maximum contaminant level (MCL) of 0.005 mg/L set by US EPA while 82.7% non-canned beverages had cadmium levels exceeding the MCL. The mean and median levels of cadmium exceeded the MCL in both the canned and non-canned beverages. Whereas only 79.3% of the non-canned beverages showed lead levels that exceeded the US EPA's MCL of 0.015 mg/L, 100% of the canned beverages had lead levels that were greater than the MCL. The range of the lead in the canned beverages was 0.002-0.0073 and 0.001-0.092 mg/L for the non-canned beverages. The mean and median values of lead exceeded the MCL in both the canned and non-canned beverages. The calculated amount of lead and cadmium in three beverages were 0.204 mg (204 μg) and 0.177 mg (177 μg), respectively. These represent the estimated intake of a consumer who takes three of the products selected randomly in a week; assuming an average volume of one liter (1 L) for each product. Taken together 86% and 84% of the 50 beverages (canned and non-canned) studied in March, 2005 in Nigeria failed to meet the US EPA criteria for acceptable lead and cadmium levels in consumer products

  11. Cadmium and lead in tissues of Mallards (Anas platyrhynchos) and Wood Ducks (Aix sponsa) using the Illinois River (USA)

    International Nuclear Information System (INIS)

    Levengood, J.M.

    2003-01-01

    Tissue lead and cadmium concentrations were examined in two common, widely distributed species of duck, utilizing a major river system. - Cadmium and lead concentrations were determined in the tissues of Mallards and Wood Ducks collected from two waterfowl management areas along the Illinois River, USA, during the autumn and late winter of 1997-1998. Lead concentrations in livers of Mallards were lower than previously reported, and, along with those in a small sample of Wood Duck livers, were within background levels (<2.0 μg/g wet weight). Mean concentrations of cadmium in the kidneys of Wood Ducks utilizing the Illinois River were four times greater than in after-hatch-year Mallards, and 14 times greater than in hatch-year Mallards. Concentrations of cadmium in the kidneys of Wood Ducks were comparable with those of specimens dosed with cadmium or inhabiting contaminated areas in previous studies. Wood Ducks utilizing wetlands associated with the Illinois River, and presumably other portions of the lower Great Lakes region, may be chronically exposed to cadmium

  12. Adsorption edge study about cadmium, copper, nickel and zinc adsorption by variable charge soils

    Science.gov (United States)

    Casagrande, J. C.; Mouta, E. R.; Soares, M. R.

    2009-04-01

    The improper discharge of industrial and urban residues and the inadvertent use of fertilizers and pesticides can result in soil and water pollution and improve the potential of trace metals to enter in the human food chain. Adsorption reactions occur at the solid/liquid interface and are the most important mechanisms for controlling the activity of metal ions in soil solution. In a complex system with amphoteric behavior, the comprehension of the mobility, availability and fate of pollutants in the soil system is crucial for the prediction of the environmental consequences and for development of prevention/remediation strategies. A comparative study of cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) adsorption by highly weathered soils was carried out. Surface (0-0.2m) and subsoil (B horizon) samples were taken from a Rhodic Kandiudalf (RH), an Anionic "Xanthic" Acrudox (XA) and an Anionic "Rhodic" Acrudox (RA), located in brazilian humid tropical area. As the pH and the ionic strength are important environmental factors influencing the solution chemistry of heavy metals in variable charge systems, adsorption envelopes, in a batch adsorption experiment, were elaborated by reacting, for 24 h, soil samples with individual 0.01, 0.1 and 1.0 mol L-1 Ca(NO3)2 aqueous solutions containing nitrate salts of the adsorptive heavy metal (Cd, Cu, Ni and Zn) at the initial concentration of 5 mg L-1, with an increasing pH value from 3.0 to 8.0. pH50-100%, the difference between the pH of 100 and 50 percent metal adsorption was determined. A sharp increase of adsorption density (adsorption edge) was observed within a very narrow pH range, usually less than two pH units. Commonly, the relative affinity of a soil for a metal cation increases with the tendency of the cation to form inner-sphere surface complexes. This may be caused by differences in extent of hydrolysis of Cu ions and in affinity of adsorption sites for Cu. In general, subsurface samples showed low pH50

  13. Strong positive association of traditional Asian-style diets with blood cadmium and lead levels in the Korean adult population.

    Science.gov (United States)

    Park, Sunmin; Lee, Byung-Kook

    2013-12-01

    Blood lead and cadmium levels are more than twofold to fivefold higher in the Korean population compared to that of the USA. This may be related to the foods consumed. We examined which food categories are related to blood lead and cadmium levels in the Korean adult population using the 2008-2010 Korean National Health and Nutrition Examination Survey (n = 5504). High and moderate consumption of bread and crackers, potatoes, meat and meat products, milk and dairy products, and pizza and hamburger resulted in significantly lower odds ratios for blood lead levels than their low consumption. However, consumption of salted fish, white fish, green vegetables, white and yellow vegetables, coffee, and alcohol resulted in significantly higher odds ratios of blood lead and cadmium. In conclusion, the typical Asian diet based on rice, fish, vegetables, regular coffee, and alcoholic drinks may be associated with higher blood cadmium and lead levels. This study suggests that lead and cadmium contents should be monitored and controlled in agricultural products to reduce health risks from heavy metals.

  14. Removal of Cadmium(II and Lead(II ions from aqueous phase on sodic bentonite

    Directory of Open Access Journals (Sweden)

    Luz Stella Gaona Galindo

    2013-04-01

    Full Text Available This paper describes the adsorption of Cd2+and Pb2+ions using sodic bentonite clay type Fluidgel modified. The Fluidgelbefore and after chemical modification and thermal activation was characterized by different techniques including X-ray diffraction, thermal analysis, Fourier transform infrared, surface area, helium pycnometry, cation exchange capacity and scanning electron microscopy. Pseudo-first order, pseudo-second order and intra-particle diffusion models were used to analyze the kinetic curves. Equilibrium data were analyzed using Langmuir and Freundlich models. The thermodynamic study indicated that lead adsorption process is endothermic and interactions between clays and solutions of lead occurred spontaneously, while cadmium adsorption revealed an exothermic and spontaneous nature. The maximum removal efficiencies were 97.62% for Cd(II using Fluidgelmodified chemically and 91.08% for lead by Fluidgel modified chemical and thermally.

  15. Survey of cosmetics for arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel content.

    Science.gov (United States)

    Hepp, Nancy M; Mindak, William R; Gasper, John W; Thompson, Christopher B; Barrows, Julie N

    2014-01-01

    As part of efforts to assess amounts of inorganic element contamination in cosmetics, the U.S. Food and Drug Administration contracted a private laboratory to determine the total content of seven potentially toxic or allergenic elements in 150 cosmetic products of 12 types (eye shadows, blushes, lipsticks, three types of lotions, mascaras, foundations, body powders, compact powders, shaving creams, and face paints). Samples were analyzed for arsenic, cadmium, chromium, cobalt, lead, and nickel by inductively coupled plasma-mass spectrometry and for mercury by cold vapor atomic fluorescence spectrometry. The methods used to determine the elements were tested for validity by using standard reference materials with matrices similar to the cosmetic types. The cosmetic products were found to contain median values of 0.21 mg/kg arsenic, 3.1 mg/kg chromium, 0.91 mg/kg cobalt, 0.85 mg/kg lead, and 2.7 mg/kg nickel. The median values for cadmium and mercury were below the limits of detection of the methods. The contract requirements, testing procedures, and findings from the survey are described.

  16. Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste.

    Science.gov (United States)

    Martínez, María; Miralles, Núria; Hidalgo, Soraya; Fiol, Núria; Villaescusa, Isabel; Poch, Jordi

    2006-05-20

    The sorption of lead and cadmium from aqueous solutions by grape stalk waste (a by-product of wine production) was investigated. The effects of the contact time, pH of the solution, ionic medium, initial metal concentration, other metal ions present and ligands were studied in batch experiments at 20 degrees C. Maximum sorption for both metals was found to occur at an initial pH of around 5.5. The equilibrium process was described well by the Langmuir isotherm model, with maximum grape stalk sorption capacities of 0.241 and 0.248 mmol g(-1) for Pb(II) and Cd(II), respectively, at pH around 5.5. Kinetic studies showed good correlation coefficients for a pseudo-second-order kinetic model. The presence of NaCl and NaClO(4) in the solution caused a reduction in Pb and Cd sorption, the latter being more strongly suppressed. The presence of other metals in the uptake process did not affect the removal of Pb, while the Cd uptake was much reduced. HCl or EDTA solutions were able to desorb lead from the grape stalks completely, while an approximately 65% desorption yield was obtained for cadmium. From the results obtained it seems that other mechanisms, such as surface complexation and electrostatic interactions, must be involved in the metal sorption in addition to ion exchange.

  17. Flow injection determination of lead and cadmium in hair samples from workers exposed to welding fumes

    Energy Technology Data Exchange (ETDEWEB)

    Cespon-Romero, R.M. [Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, 15782-Santiago de Compostela (Spain); Yebra-Biurrun, M.C. [Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, 15782-Santiago de Compostela (Spain)], E-mail: qncayebi@usc.es

    2007-09-26

    A flow injection procedure involving continuous acid leaching for lead and cadmium determination in hair samples of persons in permanent contact with a polluted workplace environment by flame atomic absorption spectrometry is proposed. Variables such as sonication time, nature and concentration of the acid solution used as leaching solution, leaching temperature, flow-rate of the continuous manifold, leaching solution volume and hair particle size were simultaneously studied by applying a Plackett-Burman design approach. Results showed that nitric acid concentration (leaching solution), leaching temperature and sonication time were statistically significant variables (confidence interval of 95%). These last two variables were finally optimised by using a central composite design. The proposed procedure allowed the determination of cadmium and lead with limits of detection 0.1 and 1.0 {mu}g g{sup -1}, respectively. The accuracy of the developed procedure was evaluated by the analysis of a certified reference material (CRM 397, human hair, from the BCR). The proposed method was applied with satisfactory results to the determination of Cd and Pb in human hair samples of workers exposed to welding fumes.

  18. Electrochemical Microsensors for the Detection of Cadmium(II) and Lead(II) Ions in Plants

    Science.gov (United States)

    Krystofova, Olga; Trnkova, Libuse; Adam, Vojtech; Zehnalek, Josef; Hubalek, Jaromir; Babula, Petr; Kizek, Rene

    2010-01-01

    Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab), a commercially available miniaturized potentiostat (PalmSens) and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II) and lead(II) ions. The lowest detection limits (hundreds of pM) for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM) and the homemade instrument (hundreds of nM). Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract) with artificially added cadmium(II) and lead(II). Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic. PMID:22219663

  19. Electrochemical Microsensors for the Detection of Cadmium(II and Lead(II Ions in Plants

    Directory of Open Access Journals (Sweden)

    Olga Krystofova

    2010-05-01

    Full Text Available Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab, a commercially available miniaturized potentiostat (PalmSens and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II and lead(II ions. The lowest detection limits (hundreds of pM for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM and the homemade instrument (hundreds of nM. Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract with artificially added cadmium(II and lead(II. Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic.

  20. Evaluation of Cadmium, Lead and Zinc Content of Compost Produced in Babol Composting Plant

    Directory of Open Access Journals (Sweden)

    Fatemeh Asgharzadeh

    2014-03-01

    Full Text Available Background and purpose: The most important parameter is heavy metal contents in compost production technology. These heavy metals residue from substances like soap, detergents, cosmetics, packaging, leather and butteries are existed in municipal solid waste. The heavy metals can produce toxin for animal, human and plant. The aim of this research was study of produced compost quality based on heavy metals (Pb, Cd and Zn in Babol compost plant in 2012. Materials and Methods: The present research is a descriptive- cross sectional study in which was performed in six months. Total sample numbers (5 samples were randomly provided from final compost of Babol plant and then after extraction and filtration, the concentration of heavy metals like cadmium, lead and zinc was measured by atomic absorption spectrophotometer PG- 999. Results: In analyzed samples the maximum, minimum and average of cadmium in the final compost were 7.25, 0.47 and 1.9 mg/kg. The maximum, minimum and mean of lead were 239.2, 31.9 and 67.1 mg/kg; in zinc were 972.7, 483.5 and 603.7 mg/kg respectively. Conclusion: The concentration of heavy metals in Babol compost samples was under Iranian national and World Health Organization standards and could be used for different species of plants. However, the usability of compost depends on other parameters such as carbon to nitrogen and other components like glass, plastics and textiles.

  1. Cadmium, lead, and mercury levels in feathers of small passerine birds: noninvasive sampling strategy.

    Science.gov (United States)

    Bianchi, Nicola; Ancora, Stefania; di Fazio, Noemi; Leonzio, Claudio

    2008-10-01

    Bird feathers have been widely used as a nondestructive biological material for monitoring heavy metals. Sources of metals taken up by feathers include diet (metals are incorporated during feather formation), preening, and direct contact with metals in water, air, dust, and plants. In the literature, data regarding the origin of trace elements in feathers are not univocal. Only in the vast literature concerning mercury (as methyl mercury) has endogenous origin been determined. In the present study, we investigate cadmium, lead, and mercury levels in feathers of prey of Falco eleonorae in relation to the ecological characteristics (molt, habitat, and contamination by soil) of the different species. Cluster analysis identified two main groups of species. Differences and correlations within and between groups identified by cluster analysis were then checked by nonparametric statistical analysis. The results showed that mercury levels had a pattern significantly different from those of cadmium and lead, which in turn showed a significant positive correlation, suggesting different origins. Nests of F. eleonorae proved to be a good source for feathers of small trans-Saharan passerines collected by a noninvasive method. They provided abundant feathers of the various species in a relatively small area--in this case, the falcon colony on the Isle of San Pietro, Sardinia, Italy.

  2. Monitoring the sensitivity of selected crops to lead, cadmium and arsenic

    Directory of Open Access Journals (Sweden)

    Piršelová B.

    2011-12-01

    Full Text Available Heavy metals are highly toxic environmental pollutants. In plants, these compounds cause numerous slighter or stronger toxic effects. They inhibit root and shoot growth and yield production, affect nutrient uptake and homeostasis, and are frequently accumulated by agriculturally important crops. Effects of heavy metals on five selected species of agricultural crops were monitored. We focused our attention to general and commonly used stress indicators such as seed germination, weight and length of roots and shoots. Each of these characteristics was dependent on the tested plant species and tested heavy metals. Dosage of lead (500 mg/l had little effect on seed germination, cadmium (300 mg/l significantly affected seed germination of pea and barley, arsenic (100 mg/l caused total inhibition of seed germination in all tested plant species. Plants grow in soil contaminated with heavy metals showed several symptoms of metal toxicity (chlorosis, necrosis of leaf tips, blackening of roots. In general, the highest tolerance to tested metal ions was observed in both varieties of bean, and the lowest sensitivity was observed in soybean plants. The highest degree of toxicity was shown to have tested doses of cadmium and arsenic, the lowest the doses of lead. In general, the lowest tolerance indexes were determined based on the decrease in fresh weight of roots.

  3. Evaluation of the cadmium and lead phytoextraction by castor bean (Ricinus communis L.) in hydroponics

    Science.gov (United States)

    Niu, Z. X.; Sun, L. N.

    2017-06-01

    Phytoextraction has been considered as an innovative method to remove toxic metals from soil; higher biomass plants such as castor bean (Ricinus communis L.) have already been considered as a hyperaccumulating candidate. In the present study, castor bean was used to accumulate the cadmium and lead in hydroponic culture, and the root exudates and biomass changes were analyzed. Results demonstrated that ratios of aerial biomass/ root biomass (AW/RW) in treatments declined with concentrations of Cd or Pb. Optical density (OD) at 190 nm and 280 nm of root exudates observed in Cd and Pb treatments were lower than the control. In single Cd or Pb treatments, bioconcentration factors (BCF) of Cd or Pb increased with time and decreased with concentrations, the highest BCFs appeared in Cd5 (14.36) and Pb50 (6.48), respectively. Cd-BCF or Pb-BCF showed positive correlations with AW/RW ratios and OD values, and they were negative correlated with Cd and Pb concentration. Results in this study may supply useful information for phytoremediation of soil contaminated with cadmium and lead in situ.

  4. Lead and Cadmium: Priorities for action from UNEP’s perspective for addressing risks posed by these two heavy metals

    Directory of Open Access Journals (Sweden)

    Piper D.

    2013-04-01

    Full Text Available The United Nations Environment Programme (UNEP has been focusing on actions with regard to lead and cadmium since 2001 when the work of the Partnership for Clean Fuels and Vehicles (PCFV was initiated. The development and finalization of the reviews of scientific information on lead and cadmium facilitated discussions among Governments in relation to the need for global action with regard to these heavy metals. UNEP continues to address priority areas for focusing to reduce risks posed by lead and cadmium. The Global Alliance to Eliminate Lead Paint (GAELP is a clear example for addressing those risks; however more work is expected to be done in relation to these key issues.

  5. Secondary poisoning of cadmium, copper and mercury: implications for the Maximum Permissible Concentrations and Negligible Concentrations in water, sediment and soil

    NARCIS (Netherlands)

    Smit CE; Wezel AP van; Jager T; Traas TP; CSR

    2000-01-01

    The impact of secondary poisoning on the Maximum Permissible Concentrations (MPCs) and Negligible Concentrations (NCs) of cadmium, copper and mercury in water, sediment and soil have been evaluated. Field data on accumulation of these elements by fish, mussels and earthworms were used to derive

  6. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters

    International Nuclear Information System (INIS)

    Santos, Inês C.; Mesquita, Raquel B.R.; Rangel, António O.S.S.

    2015-01-01

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60–160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11–21 for the metal ions. A LOD of 0.23 μg L −1 for cadmium, 2.39 μg L −1 for zinc, and 0.11 μg L −1 for copper and a sampling rate of 12, 13, and 15 h −1 for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. - Highlights: • Multi-parametric determination of cadmium, zinc, and copper at the μg L −1 level. • In-line metal ions preconcentration using NTA resin. • Minimization of matrix interferences by performing solid phase spectrometry in a SI-LOV platform. • Successful application to metal ions determination in freshwaters.

  7. Immobilization of Trichosporon cutaneum R 57 Cells onto Methylcellulose/SiO2 Hybrids and Biosorption of Cadmium and Copper Ions

    Directory of Open Access Journals (Sweden)

    Georgieva N.

    2009-12-01

    Full Text Available Methylcellulose/Silica (MC/SiO2 hybrids were synthesized via poly step sol-gel method. SiO2 was included into the hybrids from two silica precursors - methyltriethoxysilane (MTES and ethyltrimethoxysilane (ETMS with different quantity of organic part-5, 20 and 50 wt.%. The filamentous yeasts Trichosporon cutaneum strain R 57 was immobilized onto the synthesized MC/SiO2 hybrids. After immobilization the hybrid materials were used in the processes of sorption of cadmium and copper ions. The obtained results of protein content analysis indicated that the amount of protein increased with increasing of MC in the hybrids. It was established that the maximal efficiency of copper and cadmium removal were observed for hybrid materials containing MTES and 50 wt.% MC - 66% and 26% respectively. For ETMS and 50 wt.% MC a high value of copper removal was 56% and for cadmium - 45% removal, respectively. FTIR analysis of free and immobilized cells with metal ions was conducted. SEM images showed successful immobilization of the yeasts cells. Second order model was employed in order to investigate the kinetics of copper and cadmium biosorption.

  8. Health Assessment of Heavy Metal Pollution (Cadmium, Lead, Arsenic in Citrus Marketed in Tehran, Iran, 2015

    Directory of Open Access Journals (Sweden)

    Razieh Saleh

    2017-03-01

    Full Text Available Background & Aims of the Study: Today, the environment pollution with heavy metals has increased. It is important to study various types of pollutions specially those regarding fruits. The effect of pollutions on food safety for human consumption is a global concern.  This study was conducted for health assessment of heavy metals pollution (cadmium, lead, and arsenic in citrus marketed in Tehran, Iran in 2015. Materials & Methods: After collecting and preparing 2 samples from each citrus species (tangerine, grapefruit, sweet lime, sour orange, orange with acid digestion method, the citrus pulp and peel were surveyed. Inductively coupled plasma optical emission spectrometry (ICP-OES was used to determine the concentrations of heavy metals with three replications. Moreover, SPSS version 19 was employed to perform statistical analysis. Results: The results showed that the concentration average of Cadmium, Lead and Arsenic in citrus samples of the pulp parts were 19.73, 42.95 and 2.30 mg/kg and in peel parts were 20.09, 42.71 and 2.12 mg/kg, respectively. The average concentrations of heavy metals were higher than WHO maximum permissible limits. Conclusions: Based on these results, consumption of citrus species has no adverse effect on the consumers’ health (except Sweet lime, Orange, Tangerine and Grapefruit in lead is risky for adults and Sweet lime and Orange that Health Index in Lead and Arsenic and Sour Orange, Tangerine and Grapefruit that Health Index in Lead is more than 1 and is risky for children. Thus, individuals living in Tehran should be cautious about using these citrus fruits and researchers should try to obtain national standards in the field of entering these metals to food in environmental conditions that are in Iran.

  9. Effect of co-exposure to lead and cadmium on antioxidant status in rat ovarian granulose cells

    Energy Technology Data Exchange (ETDEWEB)

    Nampoothiri, Laxmipriya P. [Indian Institute of Sciences, Department of Biochemistry, Bangalore (India); Agarwal, Avnika; Gupta, Sarita [M.S. University of Baroda, Department of Biochemistry, Faculty of Science, Vadodara, Gujarat (India)

    2007-03-15

    The effects of combined exposure to lead and cadmium on granulose cells were studied. Adult female rats were treated i.p. with either lead acetate (LA) or cadmium acetate (CA) both, alone, or in combination at a dose of 0.05 mg/kg body weight on a daily basis for 15 days. Both metals were accumulated in the ovary after metal exposure. Metal exposure caused a decrease in reduced glutathione content along with elevated lipid peroxidation in all groups. Granulose cells of both cadmium as well as combination group demonstrated a maximum increase in lipid peroxides and catalase activity, along with decreased glutathione status and superoxide dismutase activities. Combined treated animals exhibited an intermediate effect in antioxidant status. However, ''in vitro'' exposure showed no significant change in antioxidant enzymes in all metal exposed cells. Data from the present study indicates that lead and cadmium in isolation and in combination cause oxidative stress. Lead and cadmium in combination do not show additive or synergistic effect indicating the competition between them due to similarity in electronic affinities. Present study highlights the effects of toxic metals that disturb membrane integrity of cells via ROS and thereby classifying mechanism for altered receptor binding, steroidogenesis, and hormone production. (orig.)

  10. Heavy metal pollution in Jamaica 1: Survey of cadmium, lead and zinc concentrations in the Kintyre and Hope Flat districts.

    Science.gov (United States)

    Anglin-Brown, B; Armour-Brown, A; Lalor, G C

    1995-06-01

    Despite its being highly mineralised, the Hope Mine area has become a residential district. Composite soil samples taken from 91 allotments show values for cadmium: Water samples from adits contain 52-86 μg kg(-1) of lead and polluted region and epidemiological studies including intelligence testing to define further the effects of lead on children in this environment would be valuable.

  11. Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis.

    Science.gov (United States)

    Han, Hengda; Hu, Song; Syed-Hassan, Syed Shatir A; Xiao, Yiming; Wang, Yi; Xu, Jun; Jiang, Long; Su, Sheng; Xiang, Jun

    2017-07-01

    Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Studies of cadmium, mercury and lead in man. The value of X-ray fluorescence measurements in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, J.

    1996-10-01

    Two XRF methods have been used for in vivo studies of mercury, cadmium and lead. Persons with a history of long-term occupational mercury exposure had elevated mercury concentrations in their kidneys (up to 65 {mu}g/g). The minimum detectable concentration varied between 12 and 45 {mu}g/g. Battery plant workers had elevated cadmium concentrations in their kidneys (up to 350 {mu}g/g) and liver (up to 80 {mu}g/g), with mean values about 3-5 times higher than the general population. The mean ratio between concentrations of cadmium in kidney and liver was 7. Levels in kidney and liver indicated that a simple integration of cadmium in work-place air is not sufficient to describe the body burden. Fingerbone lead in smelters was 6-8 times higher than in members of the general population. The half-time of bone lead in active workers was estimated to about 5 years during the accumulation phase. A model for description of a person`s lead exposure in terms of lead in fingerbone, lead in blood and time of exposure has been developed and can be used, e.g. for retrospective blood lead estimates if the period of exposure and the current fingerbone lead is known. This will be of value for the evaluation of toxic effects of long-term lead exposure when data on previous lead levels are lacking. In total, in vivo measurements of mercury, cadmium and lead give unique information, which has shown to be an important tool for understanding of metal kinetics and toxicity. If the precision and accuracy of the method can be further improved, the technique will also have a given place in the clinical practice. 168 refs, 9 figs, 3 tabs

  13. Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources,

    Energy Technology Data Exchange (ETDEWEB)

    Barregard, Lars, E-mail: lars.barregard@amm.gu.se [Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.O. Box 414, SE 405 30 Gothenburg (Sweden); Fabricius-Lagging, Elisabeth [Department of Nephrology, Sahlgrenska University Hospital and Boras Hospital (Sweden); Lundh, Thomas [Department of Occupational and Environmental Medicine, Lund University Hospital and Lund University (Sweden); Moelne, Johan [Department of Clinical Pathology, Sahlgrenska University Hospital and University of Gothenburg (Sweden); Wallin, Maria [Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.O. Box 414, SE 405 30 Gothenburg (Sweden); Olausson, Michael [Department of Transplantation and Liver Surgery, Sahlgrenska University Hospital and University of Gothenburg (Sweden); Modigh, Cecilia; Sallsten, Gerd [Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, P.O. Box 414, SE 405 30 Gothenburg (Sweden)

    2010-01-15

    Background: Most current knowledge on kidney concentrations of nephrotoxic metals like cadmium (Cd), mercury (Hg), or lead (Pb) comes from autopsy studies. Assessment of metal concentrations in kidney biopsies from living subjects can be combined with information about exposure sources like smoking, diet, and occupation supplied by the biopsied subjects themselves. Objectives: To determine kidney concentrations of Cd, Hg, and Pb in living kidney donors, and assess associations with common exposure sources and background factors. Methods: Metal concentrations were determined in 109 living kidney donors aged 24-70 years (median 51), using inductively coupled plasma-mass spectrometry (Cd and Pb) and cold vapor atomic fluorescence spectrometry (Hg). Smoking habits, occupation, dental amalgam, fish consumption, and iron stores were evaluated. Results: The median kidney concentrations were 12.9 {mu}g/g (wet weight) for cadmium, 0.21 {mu}g/g for mercury, and 0.08 {mu}g/g for lead. Kidney Cd increased by 3.9 {mu}g/g for a 10 year increase in age, and by 3.7 {mu}g/g for an extra 10 pack-years of smoking. Levels in non-smokers were similar to those found in the 1970s. Low iron stores (low serum ferritin) in women increased kidney Cd by 4.5 {mu}g/g. Kidney Hg increased by 6% for every additional amalgam surface, but was not associated with fish consumption. Lead was unaffected by the background factors surveyed. Conclusions: In Sweden, kidney Cd levels have decreased due to less smoking, while the impact of diet seems unchanged. Dental amalgam is the main determinant of kidney Hg. Kidney Pb levels are very low due to decreased exposure.

  14. Assessment of Lead and cadmium contamination and influencing factors in raw milk from regions of Hamadan province

    Directory of Open Access Journals (Sweden)

    A Vahidinia

    2013-11-01

    Full Text Available Regarding the significance of harmful effects of heavy metals in human diet, this study aimed to investigate the concentrations of lead and cadmium in raw milk samples. To achieve this goal, a total number of 48 samples was collected from various regions of Hamadan province during April 2011. The samples were analyzed by atomic absorption spectroscopy. According to the results, the mean concentrations of lead and cadmium estimated at 4.48 and 3.21µg/kg, respectively which were below the approved level determined by WHO as well as FAO. Although, concentrations of Pb and Cd among the various sampling regions revealed a significant (p

  15. Long-Term Survey of Cadmium and Lead Contamination in Japanese Black Bears Captured in Iwate Prefecture, Japan.

    Science.gov (United States)

    Sato, Itaru; Yamauchi, Kiyoshi; Tsuda, Shuji

    2016-12-01

    Cadmium and lead were measured in liver and kidney samples of 242 Japanese black bears (Ursus thibetanus japonicus) captured from 1999 to 2014 from two local populations in Japan. The median concentration of cadmium was 0.54 (mean: 0.80) mg/kg-w.w. in liver and 7.7 (mean: 11.8) mg/kg-w.w. in kidney. The median concentration of lead was 0.24 (mean: 0.40) and 0.21 (mean: 0.32) mg/kg-w.w. in liver and kidney, respectively. Bears in the Kita-ou local population had higher concentrations of cadmium and lead than those in the Kitakami Highlands local population. No chronological change was observed in cadmium levels in tissues, but the percentage of bears whose lead levels exceeded 0.5 mg/kg-w.w. has been decreasing in recent years. Countermeasures against lead poisoning in wildlife, which were instituted in 2002, may have contributed to the decrease in lead contamination of the Japanese black bear.

  16. Capacity of waters in the Magela Creek system, Northern Territory, to complex copper and cadmium

    International Nuclear Information System (INIS)

    Hart, B.T.; Davies, S.H.R.

    1984-08-01

    Two methods were used to determine the concentrations of copper-binding ligand (complexing capacity) and conditional formation constants for waters collected from the Magela Creek system, Northern Territory. These data are particularly important in estimating the concentrations of toxic forms of copper that may result from particular effluent discharge strategies from the Ranger uranium operation

  17. Proteomic analysis of serum of workers occupationally exposed to arsenic, cadmium, and lead for biomarker research: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Kossowska, Barbara, E-mail: barbara@immchem.am.wroc.pl [Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida 44a, 50-345 Wroclaw (Poland); Dudka, Ilona, E-mail: ilona.dudka@pwr.wroc.pl [Medicinal Chemistry and Microbiology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Bugla-Ploskonska, Gabriela, E-mail: gabriela.bugla-ploskonska@microb.uni.wroc.pl [Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw (Poland); Szymanska-Chabowska, Anna, E-mail: aszyman@mp.pl [Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeze L. Pasteura 4, 50-367 Wroclaw (Poland); Doroszkiewicz, Wlodzimierz, E-mail: wlodzimierz.doroszkiewicz@microb.uni.wroc.pl [Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw (Poland); Gancarz, Roman, E-mail: roman.gancarz@pwr.wroc.pl [Medicinal Chemistry and Microbiology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Andrzejak, Ryszard, E-mail: ryszard@chzaw.am.wroc.pl [Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeze L. Pasteura 4, 50-367 Wroclaw (Poland); Antonowicz-Juchniewicz, Jolanta, E-mail: jola@chzaw.am.wroc.pl [Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeze L. Pasteura 4, 50-367 Wroclaw (Poland)

    2010-10-15

    The main factor of environmental contamination is the presence of the heavy metals lead, cadmium, and arsenic. The aim of serum protein profile analysis of people chronically exposed to heavy metals is to find protein markers of early pathological changes. The study was conducted in a group of 389 healthy men working in copper foundry and 45 age-matched non-exposed healthy men. Toxicological test samples included whole blood, serum, and urine. Thirty-seven clinical parameters were measured. Based on the parameters values of the healthy volunteers, the centroid in 37-dimensional space was calculated. The individuals in the metal-exposed and control groups were ordered based on the Euclidean distance from the centroid defined by the first component according to Principal Component Analysis (PCA). Serum samples of two individuals, one from the control and one from the metal-exposed group, were chosen for proteomic analysis. In optimized conditions of two-dimensional gel electrophoresis (2-DE), two protein maps were obtained representing both groups. Twenty-eight corresponding protein spots from both protein maps were chosen and identified based on PDQuest analysis and the SWISS-2DPAGE database. From a panel of six proteins with differences in expression greater than a factor of two, three potential markers with the highest differences were selected: hemoglobin-spot 26 (pI 7.05, Mw 10.53), unidentified protein-spot 27 (pI 6.73, Mw 10.17), and unidentified protein-spot 25 (pI 5.75, Mw 12.07). Further studies are required to prove so far obtained results. Identified proteins could serve as potential markers of preclinical changes and could be in the future included in biomonitoring of people exposed to heavy metals.

  18. Proteomic analysis of serum of workers occupationally exposed to arsenic, cadmium, and lead for biomarker research: A preliminary study

    International Nuclear Information System (INIS)

    Kossowska, Barbara; Dudka, Ilona; Bugla-Ploskonska, Gabriela; Szymanska-Chabowska, Anna; Doroszkiewicz, Wlodzimierz; Gancarz, Roman; Andrzejak, Ryszard; Antonowicz-Juchniewicz, Jolanta

    2010-01-01

    The main factor of environmental contamination is the presence of the heavy metals lead, cadmium, and arsenic. The aim of serum protein profile analysis of people chronically exposed to heavy metals is to find protein markers of early pathological changes. The study was conducted in a group of 389 healthy men working in copper foundry and 45 age-matched non-exposed healthy men. Toxicological test samples included whole blood, serum, and urine. Thirty-seven clinical parameters were measured. Based on the parameters values of the healthy volunteers, the centroid in 37-dimensional space was calculated. The individuals in the metal-exposed and control groups were ordered based on the Euclidean distance from the centroid defined by the first component according to Principal Component Analysis (PCA). Serum samples of two individuals, one from the control and one from the metal-exposed group, were chosen for proteomic analysis. In optimized conditions of two-dimensional gel electrophoresis (2-DE), two protein maps were obtained representing both groups. Twenty-eight corresponding protein spots from both protein maps were chosen and identified based on PDQuest analysis and the SWISS-2DPAGE database. From a panel of six proteins with differences in expression greater than a factor of two, three potential markers with the highest differences were selected: hemoglobin-spot 26 (pI 7.05, Mw 10.53), unidentified protein-spot 27 (pI 6.73, Mw 10.17), and unidentified protein-spot 25 (pI 5.75, Mw 12.07). Further studies are required to prove so far obtained results. Identified proteins could serve as potential markers of preclinical changes and could be in the future included in biomonitoring of people exposed to heavy metals.

  19. Cadmium and lead occurrence in soil and grape from Murfatlar Vineyard

    Directory of Open Access Journals (Sweden)

    Matei Nicoleta

    2015-06-01

    Full Text Available The study investigates the pollution with heavy metals of grapes and soil. The grapes nourish from the respective soil, with all existing substances: either nutrients or toxic materials. This link, between grapes and soil, made mandatory to focus on observing the level of toxic materials in both samples grapes and land. The aim of this research is to analyze the level of Cd and Pb in Vitis vinifera L. grape fruits and soil, by flame atomic absorption spectrometry (FAAS method. The grapes and the soil used in this work were sampled from the Murfatlar City, a nonindustrial area, placed far from the car traffic pollution. Cd and Pb were quantified, after the chemical mineralization of the samples using nitric acid. It can be noticed that the values of cadmium and lead concentrations in grapes were lower than the recommendable maximum limit.

  20. Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Zhilin Wu

    2016-12-01

    Full Text Available The present study investigated the beneficial role of selenium (Se in protecting oilseed rape (Brassica napus L. plants from cadmium (Cd+2 and lead (Pb+2 toxicity. Exogenous Se markedly reduced Cd and Pb concentration in both roots and shoots. Supplementation of the medium with Se (5, 10 and 15 mg kg-1 alleviated the negative effect of Cd and Pb on growth and led to a decrease in oxidative damages caused by Cd and Pb. Furthermore, Se enhanced superoxide free radicals (O2-, hydrogen peroxide (H2O2 and lipid peroxidation, as indicated by malondialdehyde (MDA accumulation, but decreased superoxide dismutase (SOD and glutathione peroxidase (GPx activities. Meanwhile, the presence of Cd and Pb in the medium affected Se speciation in shoots. The results suggest that Se could alleviate Cd and Pb toxicity by preventing oxidative stress in oilseed rape plant.

  1. Indications of Selenium Protection against Cadmium and Lead Toxicity in Oilseed Rape (Brassica napus L.)

    Science.gov (United States)

    Wu, Zhilin; Yin, Xuebin; Bañuelos, Gary S.; Lin, Zhi-Qing; Liu, Ying; Li, Miao; Yuan, Linxi

    2016-01-01

    The present study investigated the beneficial role of selenium (Se) in protecting oilseed rape (Brassica napus L.) plants from cadmium (Cd+2) and lead (Pb+2) toxicity. Exogenous Se markedly reduced Cd and Pb concentration in both roots and shoots. Supplementation of the medium with Se (5, 10, and 15 mg kg-1) alleviated the negative effect of Cd and Pb on growth and led to a decrease in oxidative damages caused by Cd and Pb. Furthermore, Se-enhanced superoxide free radicals (O2•¯), hydrogen peroxide (H2O2), and lipid peroxidation, as indicated by malondialdehyde accumulation, but decreased superoxide dismutase and glutathione peroxidase activities. Meanwhile, the presence of Cd and Pb in the medium affected Se speciation in shoots. The results suggest that Se could alleviate Cd and Pb toxicity by preventing oxidative stress in oilseed rape plant. PMID:28018407

  2. A study on dietary habits, health related lifestyle, blood cadmium and lead levels of college students.

    Science.gov (United States)

    Shin, Nari; Hyun, Whajin; Lee, Hongmie; Ro, Mansoo; Song, Kyunghee

    2012-08-01

    This study was performed in order to investigate dietary habits, health related lifestyle and blood cadmium and lead levels in female college students. 80 college students (43 males and 37 females) participated in the survey questionnaires. Body weight and height, blood pressure, and body composition were measured. The systolic blood pressure of male and female students were 128.9 ± 13.9 and 109.8 ± 12.0, respectively. The diastolic blood pressure of male and female students were 77.1 ± 10.3 and 66.0 ± 6.9, respectively, showing that male students had significantly higher blood pressure than female students (P habits score of female students was significantly higher than that of male students (P improve their dietary and health related living habits.

  3. Pyrolysis of Plants After Phytoremediation of Contaminated Soil with Lead, Cadmium and Zinc.

    Science.gov (United States)

    Özkan, Aysun; Günkaya, Zerrin; Banar, Müfide

    2016-03-01

    The aim of this study was to remediate lead (Pb), cadmium (Cd) and zinc (Zn) from contaminated soil and stabilize to pyrolysis solid product. To accomplish this, phytoremediation of soil contaminated with Pb, Cd and Zn by different plants (sunflower, corn and rape) was performed with and without ethylenediaminetetraacetic acid (EDTA). According to phytoremediation results, rape was the most effective plant with 72 %, 76 % and 77 % removal efficiency for Pb, Cd and Zn, respectively. Also, EDTA addition had no significant effect on translocation of the metals from roots to stems. According to pyrolysis results, Pb, Cd and Zn in the contaminated plants were stabilized in the ash/char fraction. In addition, the solid product can be safely landfilled as inert waste since its toxicity leaching value is lower than the limit values given in the Turkish Regulation on Landfilling of Wastes.

  4. CADMIUM AND LEAD STATUS IN CORN HYBRIDS GROWN ON ACID SOIL OF EASTERN CROATIA

    Directory of Open Access Journals (Sweden)

    V. Kovačević

    2002-06-01

    Full Text Available Twenty corn (Zea mays L. hybrids were grown under field conditions in the west part of Brodsko-posavska county in Eastern Croatia during 2000 and 2001 growing seasons. The field trial was conducted in four replicates. The ear-leaf at beginning of silking stage (the second decade of July was taken for chemical analysis from each plot. Mean soil sample was taken by auger to 30 cm of depth. The total amounts of Cd and Pb in corn leaves were measured by ICP-AES technique after their microwave digestion using concentrated HNO3+H2O2. Mobile fraction of these elements in soil was extracted by ammonium acetate-EDTA solution. The experimental field is acid hydromorphic soil (locality Malino with moderate levels of mobile fractions of calcium, magnesium and aluminum. Also, mobile fraction of cadmium and lead are tolerable for growing of health food. Weather conditions during the study differed from the long-term mean. Low rainfall quantities during 5-months period and the higher air-temperatures characterized the 2000 growing season. Excess of rainfall in June and September, their shortage in July and August, as well as high temperatures in August, are main characteristics of weather during the corn growing seasons in 2001. Mean concentrations of cadmium and lead in corn leaves in our investigations were 0.14 ppm Cd and 0.420 ppm Pb. These amounts are low and not dangerous for plants, because critical concentrations of Cd and Pb in plants ranged from 5 to 10 ppm Cd and 10-20 ppm Pb. Considerable differences of cadmium and lead status in the ear-leaf were found among tested corn hybrids. For example, genetically induced differences from 0.07 to 0.21 ppm Cd were found, while these values for Pb were from 0.241 to 0.569 ppm Pb. Especially low Cd concentrations were found in six corn hybrids (OsSK373, E9917/99, Bc278, OsSK2-191, OsSK382 and Clarica: mean 0.092 ppm Cd, while in three hybrids it was considerably higher, but acceptable from the aspect of plant

  5. Cadmium and lead in cocoa powder and chocolate products in the US Market.

    Science.gov (United States)

    Abt, Eileen; Fong Sam, Jennifer; Gray, Patrick; Robin, Lauren Posnick

    2018-02-01

    Cocoa powder and chocolate products are known to sometimes contain cadmium (Cd) and lead (Pb) from environmental origins. A convenience sample of cocoa powder, dark chocolate, milk chocolate, and cocoa nib products was purchased at retail in the US and analysed using inductively coupled plasma mass spectrometry to assess Cd and Pb concentrations. Cd and Pb were evaluated in relation to the percent cocoa solids and to the reported origin of the cocoa powder and chocolate products. Cd ranged from 0.004 to 3.15 mg/kg and Pb ranged from cocoa, with correlations varying by product type and geographic origin. Geographic variation was observed for Cd, with higher Cd concentrations found in products reported as originating from Latin America than from Africa. The influence of percent cocoa solids and cocoa origin on Cd levels are relevant to international standards for Cd in chocolate products.

  6. Modelling atmospheric dispersion of mercury, lead and cadmium at european scale

    International Nuclear Information System (INIS)

    Roustan, Yelva

    2005-01-01

    Lead, mercury and cadmium are identified as the most worrying heavy metals within the framework of the long range air pollution. Understanding and modeling their transport and fate allow for making effective decisions in order to reduce their impact on people and their environment. The first two parts of this thesis relate to the modeling of these trace pollutants for the impact study at the European scale. While mercury is mainly present under gaseous form and likely to chemically react, the other heavy metals are primarily carried by the fine particles and considered as inert. The third part of this thesis presents a methodological development based on an adjoint approach. It has been used to perform a sensitivity analysis of the model and to carry out inverse modeling to improve boundary conditions which are crucial with a restricted area model. (author) [fr

  7. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Science.gov (United States)

    2010-07-01

    ... processes to extract copper from ores or ore waste materials; and (4) Mills that use the cyanidation process... copper, lead, zinc, gold, silver, and molybdenum ores subcategory. 440.100 Section 440.100 Protection of... DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.100...

  8. Changes of photochemical efficiency and epidermal polyphenols content of Prosopis glandulosa and Prosopis juliflora leaves exposed to cadmium and copper

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mendoza Daniel

    2017-11-01

    Full Text Available The effect of metals on the photosynthetic activities and epidermal polyphenol content of Prosopis glandulosa and Prosopis juliflora leaves was investigated by the tissue tolerance test. Foliar tissues of Prosopis glandulosa and Prosopis juliflora were incubated with Cd2+ (0.001 M or Cu2+ (0.52 M concentrations for 96 h. The results showed that significant reductions (p < 0.05 of photochemical efficiency in P. juliflora leaves were found after 96 h of exposure to 0.52 M Cu2+ compared with Cd-treatments and controls. In contrast, P. glandulosa leaves showed a progressive increase on photochemical efficiency at 72 h after Cu-treatment. The results also showed a significant decrease (p < 0.05 of epidermal polyphenols in P. juliflora leaves after 24 h of exposure to 0.52 M Cu2+ compared with Cd-treatments and control leaves. On the other hand, the values of leaf epidermal polyphenols observed in P. glandulosa exposed to copper and cadmium did not show any difference with respect to control. These findings are very important and suggest that these compounds could be considered as a protection mechanism of P. glandulosa when is treated with these heavy metals. Finally, the results of bioaccumulation showed that the copper concentration in P. glandulosa was higher than the values detected in P. juliflora Nevertheless, the cadmium concentration in foliar tissues of P. juliflora was significantly higher than P. glandulosa after 96 h of exposure to Cu2+ or Cd2+. Therefore, future studies are necessary to elucidate the effects of heavy metals on the biosynthesis of flavonoids and participation of these compounds in the reduction of metal toxicity in Prosopis species.

  9. Influence of chronic cadmium exposure on the tissue distribution of copper and zinc and oxidative stress parameters in rats.

    Science.gov (United States)

    Erdem, Onur; Yazihan, Nuray; Kocak, Mehtap Kacar; Sayal, Ahmet; Akcil, Ethem

    2016-08-01

    The aim of this study was to investigate the effect of oral cadmium (Cd) intoxication on the antioxidant response and its relationship with essential bioelements like copper (Cu) and zinc (Zn). The experimental group was chronically exposed to Cd daily for 8 weeks via consumption of water containing 15 ppm cadmium chloride. Cu, Zn, and Cd concentrations and oxidative stress parameters were analyzed in liver, kidney, and heart tissues. Exposure to Cd led to a significant decrease in the activities of superoxide dismutase in all considered samples while a significant increase in the activity of glutathione peroxidase except for the kidney. We found a significant increase in malondialdehyde concentration in the tissues except for heart. Also oral administration of Cd caused a significant reduction of Zn and Cu in the tissues. Our results allow us to hypothesize that higher Cd concentration in the tissues causes oxidative stress by increasing malondialdehyde as a means of altering antioxidant defense system and deterioration of bioelements in rat liver, kidney, and heart. In addition, further studies are needed to explain the effect of long-term, low-dose exposure to Cd on distribution of bioelements and its relationship with oxidative stress. © The Author(s) 2015.

  10. Effects of different warming patterns on the translocations of cadmium and copper in a soil-rice seedling system.

    Science.gov (United States)

    Ge, Liqiang; Cang, Long; Liu, Hui; Zhou, Dongmei

    2015-10-01

    Heavy-metal-polluted rice poses potential threats to food security and has received great attention in recent years, while how elevated temperature affects the translocation of heavy metals in soil-rice system is unclear. In this study, potting experiments were conducted in plant growth chambers for 24 days to evaluate the effects of different warming patterns on cadmium (Cd) and copper (Cu) migrations in soil-rice seedling system. Rice seedlings were cultivated under four different day/night temperature patterns: 25/18 °C (CK), 25/23 °C (N5), 30/18 °C (D5), and 30/23 °C (DN5), respectively. Non-contaminated soil (CS), Cd/Cu lightly polluted soil (LS), and highly polluted soil (HS) were chosen for experiments. The results showed that different warming patterns decreased soil pH and elevated available soil Cd/Cu concentrations. The shoot and root biomass were increased by 39.0-320 and 28.6-348 %, respectively. Warming induced significant (p cadmium translocation from root to shoot (about -four to nine times of CK), while warming changed the Cu concentration of shoot similarly to that of root and had no significant effects on Cu translocations in rice seedlings. Our study may provide improved understanding for Cd/Cu fates in soil-rice system by warming and imply that heavy metals had the higher environmental risk under the future global warming.

  11. Blood Concentrations of Cadmium and Lead in Multiple Sclerosis Patients from Iran.

    Science.gov (United States)

    Aliomrani, Mehdi; Sahraian, Mohammad Ali; Shirkhanloo, Hamid; Sharifzadeh, Mohammad; Khoshayand, Mohammad Reza; Ghahremani, Mohammad Hossein

    2016-01-01

    Since industrial revolution heavy metals such as lead (Pb) and cadmium (Cd) have been extensively dispersed in environment which, unknown biological effects and prolong biological half-life make them as a major hazard to human health. In addition, the sharp increase in Multiple sclerosis incidence rateshas been recorded in Iran. The propose of this study was to measuring blood lead and cadmium concentration and their correlation with smoking habit in a group of 69 RRMS patients and 74 age/gender-matched healthy individuals resident in Tehran as most polluted city in Iran. All subjects were interviewed regarding age, medical history, possible chemical exposure, acute or chronic diseases, smoking and dietary habits. Blood Pb and Cd levels were measured by double beam GBC plus 932 atomic absorption spectrometer. Our result indicated a significant difference in Cd level (p = 0.006) in which, MS patients had higher blood concentration (1.82 ± 0.13 μg/L) in comparison with healthy individuals (1.47 ± 0.11 μg/L). A comparable blood Cd level to similar recent study (1.78 µg/L vs.1.82 µg/L) was observed. With respect to Pb there was no significant difference between cases and controls, however the geometric means of blood Pb concentration were considerably higher in males than in females in MS patients (57.1 ± 33.7 μg/L vs . 36.7 ± 21.9 μg/L. P = 0.02). Taking into consideration tobacco smoking, an elevated contents of each metal were observed in smoker subjects (p<0.0001). A significant correlation between cigarette smoking and risk of multiple sclerosis was shown before. Thus, high level of Cd in smokers might affect the susceptibility to multiple sclerosis and could increase the risk of disease development.

  12. Determination of tin, chromium, cadmium and lead in canned fruits from the Czech market

    Directory of Open Access Journals (Sweden)

    Pavel Diviš

    2017-01-01

    Full Text Available The global production of metal cans is more than 300 billion cans. Benefits of metal packaging consist mainly from the great strenght, excellent barrier properties and good thermal conductivity. The main problem of used metal packaging are the corrosion processes. The corrosion of metal container causes dissolution of tin which is used as a protective layer of the steel shell of the can and other metallic elements used in the manufacture of cans. In this work 31 samples of canned fruit was analysed and the concentration of tin, chromium, cadmium and lead was determined in fruit and in syrup using ICP-OES and ICP-MS techniques. The results showed no difference between the concentration of analysed elements in fruit and in syrup. In none of the analyzed samples the permitted maximum concentration of tin 200 mg.kg-1 was exceeded. Maximum concentration of tin was measured in canned grepfruit (59.8 ±1.9 mg.kg-1. The age of cans had no significant effect on the concentration of tin in canned fruit. The concentration of tin in fruit packaged in cans with protective layer of lacquer was significantly lower than the concentration of tin in fruit packaged in cans without protective layer of lacquer. Concentration of chromium, cadmium and lead in the analysed samples was very low at the natural levels of occurrence of these metals in fruit and it was impossible to determine unequivocally that the measured concentrations of these metals in canned fruit originate from the corrosion of can. The corrosion of the tinplate was studied using scanning electron microscopy with an energy dispersive spectrometer. By analyzing the SEM pictures and EDS spectra, critical areas of tin plate corrosion were observed. Based on the measured results it can be concluded that the consumption of fresh canned fruit is not a major problem for the inhabitants of the Czech Republic in terms of intake of potentially hazardous metals.

  13. Exposure of Prague's homeless population to lead and cadmium, compared to Prague's general population.

    Science.gov (United States)

    Hrncírová, Dana; Batáriová, Andrea; Cerná, Milena; Procházka, Bohumír; Dlouhý, Pavel; Andel, Michal

    2008-10-01

    Homelessness is a growing problem in the Czech Republic where homeless people represent a specific minority group beset by many problems linked to their divergent lifestyle. It was therefore expected that the homeless population would be at greater risk of exposure to environmental pollutants than the general population. The aim of our study was to compare blood lead (B-Pb) and blood cadmium (B-Cd) levels in the homeless population (HP) with those obtained from the Human Biomonitoring Project (CZ-HBM), which used blood donors considered representative of the general population (GP). We present data obtained between 2004 and 2006 for B-Pb and B-Cd in 257 Prague homeless adults and compare them to B-Pb and B-Cd levels in 104 Prague adult blood donors from the CZ-HBM project in 2005. The mean (geometric) B-Pb levels in men were 36.5 (HP) and 35.4microg/l (GP), which is not significantly different. However, statistically significant differences were observed between men and women in the GP (Phomeless nonsmokers (geometric means 1.06 and 1.18microg/l in men and women, respectively) were more than 2.5 times higher than in the nonsmoking GP (0.36 and 0.38microg/l for men and women, respectively). B-Cd levels were significantly (Phomeless population under study might be exposed to lead and cadmium more extensively than the general population of Prague and that homeless women represent a particularly vulnerable population group.

  14. Concentration of Lead, Mercury, Cadmium, Aluminum, Arsenic and Manganese in Umbilical Cord Blood of Jamaican Newborns

    Science.gov (United States)

    Rahbar, Mohammad H.; Samms-Vaughan, Maureen; Dickerson, Aisha S.; Hessabi, Manouchehr; Bressler, Jan; Coore Desai, Charlene; Shakespeare-Pellington, Sydonnie; Reece, Jody-Ann; Morgan, Renee; Loveland, Katherine A.; Grove, Megan L.; Boerwinkle, Eric

    2015-01-01

    The objective of this study was to characterize the concentrations of lead, mercury, cadmium, aluminum, and manganese in umbilical cord blood of Jamaican newborns and to explore the possible association between concentrations of these elements and certain birth outcomes. Based on data from 100 pregnant mothers and their 100 newborns who were enrolled from Jamaica in 2011, the arithmetic mean (standard deviation) concentrations of cord blood lead, mercury, aluminum, and manganese were 0.8 (1.3 μg/dL), 4.4 (2.4 μg/L), 10.9 (9.2 μg/L), and 43.7 (17.7 μg/L), respectively. In univariable General Linear Models, the geometric mean cord blood aluminum concentration was higher for children whose mothers had completed their education up to high school compared to those whose mothers had any education beyond high school (12.2 μg/L vs. 6.4 μg/L; p < 0.01). After controlling for maternal education level and socio-economic status (through ownership of a family car), the cord blood lead concentration was significantly associated with head circumference (adjusted p < 0.01). Our results not only provide levels of arsenic and the aforementioned metals in cord blood that could serve as a reference for the Jamaican population, but also replicate previously reported significant associations between cord blood lead concentrations and head circumference at birth in other populations. PMID:25915835

  15. Importance of Pipe Deposits to Lead and Copper Rule Compliance

    Science.gov (United States)

    When Madison, WI exceeded the lead Action Level in 1992, residential and off-line tests suggested that lead release into the water was more complex than a simple lead solubility mechanism. In-depth scale analyses (color/texture, mineralogical and elemental composition) of 5 excav...

  16. Blood Metal Concentrations of Manganese, Lead, and Cadmium in Relation to Serum Ferritin Levels in Ohio Residents

    Science.gov (United States)

    The objectives of this study were to assess fcrritin-specific profiles of blood metal concentrations such as manganese, lead, and cadmium and to evaluate whether ferritin may affect the behavior of the blood metals in relation to menstruation, menopause, or sex in Ohio residents....

  17. Decreased lung function with mediation of blood parameters linked to e-waste lead and cadmium exposure in preschool children

    NARCIS (Netherlands)

    Zeng, Xiang; Xu, Xijin; Boezen, H Marike; Vonk, Judith M; Wu, Weidong; Huo, Xia

    2017-01-01

    Blood lead (Pb) and cadmium (Cd) levels have been associated with lower lung function in adults and smokers, but whether this also holds for children from electronic waste (e-waste) recycling areas is still unknown. To investigate the contribution of blood heavy metals and lung function levels, and

  18. The learning machine in quantitative chemical analysis : Part I. Anodic Stripping Voltammetry of Cadmium, Lead and Thallium

    NARCIS (Netherlands)

    Bos, M.; Jasink, G.

    1978-01-01

    The linear learning machine method was applied to the determination of cadmium, lead and thallium down to 10-8 M by anodic stripping voltammetry at a hanging mercury drop electrode. With a total of three trained multicategory classifiers, concentrations of Cd, Pb and Tl could be predicted with an

  19. Heavy Metals (Mercury, Lead and Cadmium Determination in 17 Species of Fish Marketed in Khorramabad City, West of Iran

    Directory of Open Access Journals (Sweden)

    Ali Mortazavi

    2016-01-01

    Full Text Available Heavy metals entrance to fish body tissues and transferring to human body systems after their consuming makes numerous undesirable effects and health problems. The aim of this study was to determine some heavy metals (lead, cadmium and mercury in fresh fishes marketed in Khorramabad City, west of Iran. In this descriptive study, five samples of 17 fish species with high consumption were purchased randomly in 2014. Measurement of mercury, lead and cadmium was performed using atomic absorption spectrometry. All measurements were performed three times for each sample. Lead mean levels in fish samples was in the range 0.736 -1.005 ppm, cadmium range was from 0.196 to 0.015 ppm and mean content of mercury was  0.431 - 0.107 ppm. At present mean concentration of lead, mercury and cadmium in supplied fishes muscle is lower than maximum recommended levels according to WHO, EC and FDA guidelines. Based on the obtained results of this study and the importance of heavy metals in foods and their impacts on human health, continuous monitoring of heavy metals levels in foods is necessary.

  20. Effect of Kiwi Shell and Incubation Time on Mobility of Lead and Cadmium in Contaminated Clay Soil

    Directory of Open Access Journals (Sweden)

    Bahareh Lorestani

    2014-06-01

    Full Text Available In this study, the effectiveness of kiwi shell was investigated to reduce the mobility of Lead and Cadmium in clay soil in different intervals. For this purpose a clay soil sample was contaminated with Lead and Cadmium in distinct dishes with 10 and 600 ppm concentrations respectively and mixed with 5% kiwi shell. Samples were placed in incubator, and then sampling of soil in incubator was performed in intervals 3 hours, 1, 3, 7, 14, 21 and 28 days. Heavy metals concentrations were determined in different fractions of soil including exchangeable, carbonate, Fe-Mn oxides, organic matter, and residual with sequential extraction procedure and atomic absorption spectrophotometry. The results showed that during incubation, Lead concentration in treatments with kiwi shell rather than control soil increased in carbonate from 19.48 to 26.18 and in organic matter from 9.06 to 18.66 percent. Exchangeable, Fe-Mn oxides and residual fractions decreased from 11.48 to 6.69, 45.72 to 39.83 and 14.21 to 7.90 percent respectively. In samples with absorbent compared with control soil, Cadmium concentration in carbonate and organic matter increased from 28.20 to 38.40 and 18.76 to 24.72, while in exchangeable, Fe-Mn oxides and residual decreased from 16.66 to 13.69, 37.25 to 19.65 and 6.24 to 3.61 percent respectively. This study revealed that kiwi shell function in decreasing Cadmium and Lead mobility in studied clay soil were increased with increasing incubation time, but Cadmium compared with Lead required additional time to transfer and mobility to constant and stable soil fractions such as, organic matter and Fe-Mn oxides.

  1. Potential Influence of Selenium, Copper, Zinc and Cadmium on L-Thyroxine Substitution in Patients with Hashimoto Thyroiditis and Hypothyroidism.

    Science.gov (United States)

    Rasic-Milutinovic, Z; Jovanovic, D; Bogdanovic, G; Trifunovic, J; Mutic, J

    2017-02-01

    Background: Besides genetic factors, it is known that some trace elements, as Selenium, Copper, and Zinc are essential for thyroid gland fuction and thyroid hormone metabolism. Moreover, there were some metals effect that suggested patterns associated with overt thyroid disease. Aim of study: Hashimoto thyroiditis (HT), chronic autoimune inflamation of thyroid gland with cosequtive hipothyroidism, is common disease in Serbia, and we thought it is worthwile to explore potential effects of essential and toxic metals and metalloides on thyroid function and ability to restore euthyroid status of them. Results: This cross-sectional, case-control, study investigated the status of essential elements (Selenium,Copper,and Zinc) and toxic metals and metalloides (Al, Cr, Mn, Co, As, Cd, Sb, Ba, Be, Pb and Ni) from the blood of 22 female, patients with Hashimoto thyroiditis and overt hypothyroidism, and compared it with those of 55 female healthy persons. We tried to establish the presence of any correlation between previous mentioned elements and thyroid function in hypothyroid patients and healthy participants. Conclusions: The results of our study suggested that the blood concentration of essential trace elements, especially the ratio of Copper, and Selenium may influence directly thyroid function in patients with HT and overt hypothyroidism.Thus, our findings may have implication to life-long substitution therapy in terms of l-thyroxine dose reduction. Furthermore, for the first time, our study shown potential toxic effect of Cadmium on thyroid function in HT patients, which may implicate the dose of l-thyroxine substitution. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Acute toxicity of copper and cadmium for piauçu, Leporinus macrocephalus, and curimatã, Prochilodus vimboides - DOI: 10.4025/actascibiolsci.v31i3.5069 Acute toxicity of copper and cadmium for piauçu, Leporinus macrocephalus, and curimatã, Prochilodus vimboides - DOI: 10.4025/actascibiolsci.v31i3.5069

    Directory of Open Access Journals (Sweden)

    Luis Fernando Loureiro Fernandes

    2009-07-01

    Full Text Available Ninety-six-hour static bioassays were conducted in the laboratory to determine lethal concentrations (96-h LC50 of copper and cadmium for curimatã (Prochilodus vimboides and piauçu (Leporinus macrocephalus. The 96-h LC50 of copper were 0.047 and 0.090 mg L-1, and of cadmium 3.16 and 7.42 mg L-1 for curimatã and piauçu, respectively. Curimatã is a preferred indigenous species for toxicological studies in the Doce River basin due to its availability in the hatcheries of the region and high sensitivity to metals.Ninety-six-hour static bioassays were conducted in the laboratory to determine lethal concentrations (96-h LC50 of copper and cadmium for curimatã (Prochilodus vimboides and piauçu (Leporinus macrocephalus. The 96-h LC50 of copper were 0.047 and 0.090 mg L-1, and of cadmium 3.16 and 7.42 mg L-1 for curimatã and piauçu, respectively. Curimatã is a preferred indigenous species for toxicological studies in the Doce River basin due to its availability in the hatcheries of the region and high sensitivity to metals.

  3. Influence of titanium dioxide nanoparticles on cadmium and lead bioaccumulations and toxicities to Daphnia magna

    Science.gov (United States)

    Li, Ling; Sillanpää, Markus; Schultz, Eija

    2017-06-01

    Titanium dioxide nanoparticles (TiO2 NPs) have attracted considerable concerns due to the increasing production and widespread applications, while their influences on other co-existing pollutants in real environment are not well studied. In this paper, the colloidal stability of TiO2 NPs in the exposure medium was first evaluated, and then, the medium was modified so that TiO2 NP suspension remained stable over the exposure period. Finally, using the optimized exposure medium, the effects of cadmium (Cd) and lead (Pb) on Daphnia magna both in the absence and presence of TiO2 NPs were investigated. Results showed that 2 mg L-1 of TiO2 NPs was well dispersed in 1:20 diluted Elendt M7 medium without EDTA, and no immobility was observed. The presence of the nanoparticles increased the bioaccumulation and toxicity of Cd to the daphnias. On the contrary, while Pb bioaccumulation was enhanced by three to four times, toxicity of Pb was reduced in the presence of TiO2 NPs. The decreased toxicity of Pb was more likely attributed to the decreased bioavailability of free Pb ion due to adsorption and speciation change of Pb in the presence of TiO2 NPs. Additionally, surface-attached TiO2 NPs combined with adsorbed heavy metals caused adverse effects on daphnia swimming and molting behavior, which is supposed to lead to chronic toxicity.

  4. Lead, copper and zinc biosorption from bicomponent systems modelled by empirical Freundlich isotherm

    Energy Technology Data Exchange (ETDEWEB)

    Sag, Y.; Kaya, A.; Kutsal, T. [Dept. of Chemical Engineering, Hacettepe Univ., Beytepe, Ankara (Turkey)

    2000-07-01

    The biosorption of lead, copper and zinc ions on Rhizopus arrhizus has been studied for three single-component and two binary systems. The equilibrium data have been analysed using the Freundlich adsorption model. The characteristic parameters for the Freundlich adsorption model have been determined and the competition coefficients for the competitive biosorption of Pb(II)-Cu(II) at pH 4.0 and 5.0, and Pb(II)-Zn(II) at pH 5.0 have been calcualted. For the individual single-component isotherms, lead has the highest biosorption capacity followed by copper, then zinc. The capacity of lead in the two binary systems is always significantly greater than those of the other metal ions, in agreement with the single-component data. Only a partial selectivity for copper ions has been obtained at pH 4.0. (orig.)

  5. Comparative acute toxicity of gallium(III), antimony(III), indium(III), cadmium(II), and copper(II) on freshwater swamp shrimp (Macrobrachium nipponense).

    Science.gov (United States)

    Yang, Jen-Lee

    2014-04-01

    Acute toxicity testing were carried out the freshwater swamp shrimp, Macrobrachium nipponense, as the model animal for the semiconductor applied metals (gallium, antimony, indium, cadmium, and copper) to evaluate if the species is an suitable experimental animal of pollution in aquatic ecosystem. The static renewal test method of acute lethal concentrations determination was used, and water temperature was maintained at 24.0 ± 0.5°C. Data of individual metal obtained from acute toxicity tests were determined using probit analysis method. The median lethal concentration (96-h LC50) of gallium, antimony, indium, cadmium, and copper for M. nipponense were estimated as 2.7742, 1.9626, 6.8938, 0.0539, and 0.0313 mg/L, respectively. Comparing the toxicity tolerance of M. nipponense with other species which exposed to these metals, it is obviously that the M. nipponense is more sensitive than that of various other aquatic animals.

  6. Environmental exposures to lead, mercury, and cadmium among South Korean teenagers (KNHANES 2010-2013): Body burden and risk factors.

    Science.gov (United States)

    Kim, Nam-Soo; Ahn, Jaeouk; Lee, Byung-Kook; Park, Jungsun; Kim, Yangho

    2017-07-01

    Limited information is available on the association of age and sex with blood concentrations of heavy metals in teenagers. In addition, factors such as a shared family environment may have an association. We analyzed data from the Korean National Health and Nutrition Examination Survey (KNHANES, 2010-2013) to determine whether blood levels of heavy metals differ by risk factors such as age, sex, and shared family environment in a representative sample of teenagers. This study used data obtained in the KNHANES 2010-2013, which had a rolling sampling design that involved a complex, stratified, multistage, probability-cluster survey of a representative sample of the non-institutionalized civilian population in South Korea. Our cross-sectional analysis was restricted to teenagers and their parents who completed the health examination survey, and for whom blood measurements of cadmium, lead, and mercury were available. The final analytical sample consisted of 1585 teenagers, and 376 fathers and 399 mothers who provided measurements of blood heavy metal concentrations. Male teenagers had greater blood levels of lead and mercury, but sex had no association with blood cadmium level. There were age-related increases in blood cadmium, but blood lead decreased with age, and age had little association with blood mercury. The concentrations of cadmium and mercury declined from 2010 to 2013. The blood concentrations of lead, cadmium, and mercury in teenagers were positively associated with the levels in their parents after adjustment for covariates. Our results show that blood heavy metal concentrations differ by risk factors such as age, sex, and shared family environment in teenagers. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Branchial cadmium and copper binding and intestinal cadmium uptake in wild yellow perch (Perca flavescens) from clean and metal-contaminated lakes.

    Science.gov (United States)

    Klinck, J S; Green, W W; Mirza, R S; Nadella, S R; Chowdhury, M J; Wood, C M; Pyle, G G

    2007-08-30

    Branchial binding kinetics and gastro-intestinal uptake of copper and cadmium where examined in yellow perch (Perca flavescens) from a metal-contaminated lake (Hannah Lake, Sudbury, Ontario, Canada) and an uncontaminated lake (James Lake, North Bay, Ontario, Canada). An in vivo approach was taken for gill binding comparisons while an in vitro gut binding assay was employed for gastro-intestinal tract (GIT) uptake analysis. By investigating metal uptake at the gill and the gut we cover the two main routes of metal entry into fish. Comparisons of water and sediment chemistries, metal burdens in benthic invertebrate, and metal burdens in the livers of perch from the two study lakes clearly show that yellow perch from Hannah L. are chronically exposed to a highly metal-contaminated environment compared to a reference lake. We found that metal-contaminated yellow perch showed no significant difference in gill Cd binding compared to reference fish, but they did show significant decreases in new Cd binding and absorption in their GITs. The results show that gill Cd binding may involve low-capacity, high-affinity binding sites, while gastro-intestinal Cd uptake involves binding sites that are high-capacity, low-affinity. From this we infer that Cd may be more critically controlled at the gut rather than gills. Significant differences in branchial Cu binding (increased binding) were observed in metal-contaminated yellow perch. We suggest that chronic waterborne exposure to Cu (and/or other metals) may be the dominant influence in gill Cu binding rather than chronic exposure to high Cu diets. We give supporting evidence that Cd is taken up in the GIT, at least in part, by a similar pathway as Ca(2+), principally that elevated dietary Ca(2+) reduces Cd binding and uptake. Overall our study reveals that metal pre-exposure via water and diet can alter uptake kinetics of Cu and Cd at the gill and/or the gut.

  8. Secondary poisoning of cadmium, copper and mercury: implications for the Maximum Permissible Concentrations and Negligible Concentrations in water, sediment and soil

    OpenAIRE

    Smit CE; van Wezel AP; Jager T; Traas TP; CSR

    2000-01-01

    The impact of secondary poisoning on the Maximum Permissible Concentrations (MPCs) and Negligible Concentrations (NCs) of cadmium, copper and mercury in water, sediment and soil have been evaluated. Field data on accumulation of these elements by fish, mussels and earthworms were used to derive MPCs and NCs for birds and mammals for which these organisms are a food source. Accumulation by aquatic and terrestrial biota seems to be negatively correlated with external concentrations. The correla...

  9. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Inês C. [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal); Mesquita, Raquel B.R. [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal); Laboratório de Hidrobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto (Portugal); Rangel, António O.S.S., E-mail: arangel@porto.ucp.pt [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal)

    2015-09-03

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60–160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11–21 for the metal ions. A LOD of 0.23 μg L{sup −1} for cadmium, 2.39 μg L{sup −1} for zinc, and 0.11 μg L{sup −1} for copper and a sampling rate of 12, 13, and 15 h{sup −1} for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. - Highlights: • Multi-parametric determination of cadmium, zinc, and copper at the μg L{sup −1} level. • In-line metal ions preconcentration using NTA resin. • Minimization of matrix interferences by performing solid phase spectrometry in a SI-LOV platform. • Successful application to metal ions determination in freshwaters.

  10. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Asselman, Jana, E-mail: jana.asselman@ugent.be [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium); Shaw, Joseph R.; Glaholt, Stephen P. [The School of Public and Environmental Affairs, Indiana University, Bloomington, IN (United States); Colbourne, John K. [School of Biosciences, The University of Birmingham, Birmingham (United Kingdom); De Schamphelaere, Karel A.C. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium)

    2013-10-15

    Highlights: •Transcription patterns of 4 metallothionein isoforms in Daphnia pulex. •Under cadmium and copper stress these patterns are time-dependent. •Under cadmium and copper stress these patterns are homolog-dependent. •The results stress the complex regulation of metallothioneins. -- Abstract: Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species.

  11. Cadmium and lead availability for rapeseed grown on an artificial ISO soil; Transferts de metaux dans les vegetaux et phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Baryla, A.; Sahut, C. [CEA Cadarache, Dept. d' Entreposage et de Stockage des Dechets (DCC/DESD/SEP), 13 - Saint-Paul-lez-Durance (France)

    2000-07-01

    Accumulations of heavy metals in soils have become a major concern for food crop production. Of these metals, cadmium and lead are recognized as the most widespread elements, that are non-essential for plant growth. While the toxicity of these metals is often investigated on plants grown in nutrient solution, soil is a complex medium. Metals may be dissolved in the soil solution or chelated to carbonates, to oxides of iron or manganese, or to organic matter. This chemical state of the metal is important because it determines the availability of the metal for the crop. Yet its study is complicated by numerous factors (soil pH, temperature, humidity..) which modify this chemical equilibrium. To standardize the experiments, an artificially reconstituted soil was prepared from clay, sand and peat according to standards ISO 11268-1 (May 1994). Metals (lead and cadmium) were added as nitrate salts. Plants used were rapeseeds. Seeds were sown on 20 cm diameter pots and placed in a controlled growth chamber. At harvest, roots, leaves and stems were separated, dried, and mineralized with concentrated nitric acid. Sequential analysis of the soil was carried out to assess the chemical behavior of the cadmium. The chemical speciation of cadmium is shown. The metal is essentially soluble in the soil and poorly complexed to the organic matter. This indicates that contamination is recent and derives from metal salts; cadmium complexation to organic matter appears only after years of soil evolution. The metal is then essentially available for plants but equilibrium is established between the different forms. Plant growth is shown. Cadmium has a strong effect on biomass production at 50 {mu}g / g in the soil. No toxic effect of lead was observed from 0 to 2000 {mu}g / g in the soil, probably because lead is strongly complexed to the soil and less toxic for plants. Metal concentrations in plants after two months of growth are shown in Figures 4 and 5. Plant cadmium content reached

  12. Responses of earthworms (Lumbricus rubellus) to copper and cadmium as determined by measurement of juvenile traits in a specifically designed test system.

    Science.gov (United States)

    Spurgeon, D J; Svendsen, C; Kille, P; Morgan, A J; Weeks, J M

    2004-01-01

    In this study, the effects of two metals, copper and cadmium, on the growth and development of juvenile Lumbricus rubellus were measured in a toxicity test in which individuals were grown in isolation. This design had a number of advantages over traditional test systems for earthworms. Importantly, the test is specifically designed to measure two juvenile traits (survival over and length of the juvenile period) that have been shown to have a high sensitivity for determining population growth rate. The test system also maximizes replication, while allowing time-series-based monitoring of individual growth. For both metals, significant exposure-dependent effects on survival, growth, development time, and (less certainly) maturation weight were observed. Comparisons of the relative toxicity of the two metals indicated different concentration-response relationships. For copper, hormesis was found at low levels, while only at the highest soil concentration tested (10.07 micromol g(-1)) were (severe) toxic effects present. For cadmium, hormesis was also evident at the lowest concentration tested; however, at soil levels above this, a graded concentration-dependent toxic effect was apparent. These differences in the exposure response patterns can be (tentatively) explained in terms of the mechanisms for handling copper (an essential metal for earthworms) and cadmium (a putative nonessential element). The applicability of the test for routine measurement of chemical effects on ecologically relevant juvenile traits is also outlined and future developments are discussed.

  13. Slurry analysis of cadmium and copper collected on 11-mercaptoundecanoic acid modified TiO2 core-Au shell nanoparticles by flame atomic absorption spectrometry.

    Science.gov (United States)

    Gunduz, S; Akman, S; Kahraman, M

    2011-02-15

    Separation/preconcentration of copper and cadmium using TiO(2) core-Au shell nanoparticles modified with 11-mercaptoundecanoic acid and their slurry analysis by flame atomic absorption spectrometry were described. For this purpose, at first, titanium dioxide nanoparticles were coated with gold shell by reducing the chloroauric acid with sodium borohydride and then modified with 11-mercaptoundecanoic acid. The characterization of modified nanoparticles was performed using ultra-violet spectroscopy and dynamic light scattering. Copper and cadmium were then collected on the prepared sorbent by batch method. The solid phase loaded with the analytes was separated by centrifugation and the supernatant was removed. Finally, the precipitate was slurried and directly aspirated into the flame for the determination of analytes. Thus, elution step and its all drawbacks were eliminated. The effects of pH, amount of sorbent, slurry volume, sample volume and diverse ions on the recovery were investigated. After optimization of experimental parameters, the analytes in different certified reference materials and spiked water samples were quantitatively recovered with 5% RSD. The analytes were enriched up to 20-fold. Limits of detection (N=10, 3σ) for copper and cadmium were 0.28 and 0.15 ng mL(-1), respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Slurry analysis of cadmium and copper collected on 11-mercaptoundecanoic acid modified TiO{sub 2} core-Au shell nanoparticles by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, S. [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak-Istanbul (Turkey); Akman, S., E-mail: akmans@itu.edu.tr [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak-Istanbul (Turkey); Kahraman, M. [Yeditepe University, Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, 34755 Kayisdagi-Istanbul (Turkey)

    2011-02-15

    Separation/preconcentration of copper and cadmium using TiO{sub 2} core-Au shell nanoparticles modified with 11-mercaptoundecanoic acid and their slurry analysis by flame atomic absorption spectrometry were described. For this purpose, at first, titanium dioxide nanoparticles were coated with gold shell by reducing the chloroauric acid with sodium borohydride and then modified with 11-mercaptoundecanoic acid. The characterization of modified nanoparticles was performed using ultra-violet spectroscopy and dynamic light scattering. Copper and cadmium were then collected on the prepared sorbent by batch method. The solid phase loaded with the analytes was separated by centrifugation and the supernatant was removed. Finally, the precipitate was slurried and directly aspirated into the flame for the determination of analytes. Thus, elution step and its all drawbacks were eliminated. The effects of pH, amount of sorbent, slurry volume, sample volume and diverse ions on the recovery were investigated. After optimization of experimental parameters, the analytes in different certified reference materials and spiked water samples were quantitatively recovered with 5% RSD. The analytes were enriched up to 20-fold. Limits of detection (N = 10, 3{sigma}) for copper and cadmium were 0.28 and 0.15 ng mL{sup -1}, respectively.

  15. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters.

    Science.gov (United States)

    Santos, Inês C; Mesquita, Raquel B R; Rangel, António O S S

    2015-09-03

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60-160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11-21 for the metal ions. A LOD of 0.23 μg L(-1) for cadmium, 2.39 μg L(-1) for zinc, and 0.11 μg L(-1) for copper and a sampling rate of 12, 13, and 15 h(-1) for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Inducibility of metallothionein biosynthesis in the whole soft tissue of zebra mussels Dreissena polymorpha exposed to cadmium, copper, and pentachlorophenol.

    Science.gov (United States)

    Ivanković, Dusica; Pavicić, Jasenka; Beatović, Vanja; Klobucar, Roberta Sauerborn; Klobucar, Göran Igor Vinko

    2010-04-01

    Freshwater mussels Dreissena polymorpha (Pallas, 1771) were exposed to the elevated concentrations of Cd (10, 50, 100, and 500 microg/L), Cu (10, 30, 50, and 80 microg/L), and an organochlorinated pesticide, pentachlorophenol (PCP) (1, 10, and 100 microg/L). Induced synthesis of biomarker metallothionein (MT) and changes in concentrations of cytosolic Cd, Cu, and Zn in the whole soft tissue of mussels were monitored after a 7-day laboratory exposure to the contaminants. A clear dose-dependent elevation in the MT concentration was observed after exposure to Cd at doses of 10-100 microg/L, and this increase of MT content was accompanied with a linear increase of cytosolic Cd. Cd concentration of 500 microg/L caused no additional increase of MT and Cd in mussel cytosol, suggesting possible toxic effects due to exceeding cellular inducible/defense capacity. Cu exposure resulted with variable changes in MT concentrations, with no clear linear relationship between MT and Cu concentrations in water, although a progressive dose-dependent accumulation of Cu in the soluble fraction of mussel tissues was recorded. A decrease of cytosolic Zn was evident at higher exposure concentrations of both metals used. PCP in concentrations applied was unable to induce MT synthesis, but the higher concentrations of PCP influenced the cytosolic metal concentrations. In conclusion, the results obtained confirm the specificity of MT induction in D. polymorpha as an biological response on metal stimulation, especially by cadmium, being more closely correlated to MT than copper within the ecologically relevant concentration range. The strong induction potential of cadmium as well as an absence of MT induction following exposure to PCP as an organic chemical contaminant are supporting evidences for usage of zebra mussel MT as a specific biomarker of Cd exposure in biomonitoring programs.

  17. Arsenic, cadmium, lead, and mercury in surface soils, Pueblo, Colorado: Implications for population health risk

    Science.gov (United States)

    Diawara, D.M.; Litt, J.S.; Unis, D.; Alfonso, N.; Martinez, L.A.; Crock, J.G.; Smith, D.B.; Carsella, J.

    2006-01-01

    Decades of intensive industrial and agricultural practices as well as rapid urbanization have left communities like Pueblo, Colorado facing potential health threats from pollution of its soils, air, water and food supply. To address such concerns about environmental contamination, we conducted an urban geochemical study of the city of Pueblo to offer insights into the potential chemical hazards in soil and inform priorities for future health studies and population interventions aimed at reducing exposures to inorganic substances. The current study characterizes the environmental landscape of Pueblo in terms of heavy metals, and relates this to population distributions. Soil was sampled within the city along transects and analyzed for arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb). We also profiled Pueblo's communities in terms of their socioeconomic status and demographics. ArcGIS 9.0 was used to perform exploratory spatial data analysis and generate community profiles and prediction maps. The topsoil in Pueblo contains more As, Cd, Hg and Pb than national soil averages, although average Hg content in Pueblo was within reported baseline ranges. The highest levels of As concentrations ranged between 56.6 and 66.5 ppm. Lead concentrations exceeded 300 ppm in several of Pueblo's residential communities. Elevated levels of lead are concentrated in low-income Hispanic and African-American communities. Areas of excessively high Cd concentration exist around Pueblo, including low income and minority communities, raising additional health and environmental justice concerns. Although the distribution patterns vary by element and may reflect both industrial and non-industrial sources, the study confirms that there is environmental contamination around Pueblo and underscores the need for a comprehensive public health approach to address environmental threats in urban communities. ?? Springer 2006.

  18. Arsenic, cadmium, lead, and mercury in surface soils, Pueblo, Colorado: implications for population health risk.

    Science.gov (United States)

    Diawara, Moussa M; Litt, Jill S; Unis, Dave; Alfonso, Nicholas; Martinez, Leeanne; Crock, James G; Smith, David B; Carsella, James

    2006-08-01

    Decades of intensive industrial and agricultural practices as well as rapid urbanization have left communities like Pueblo, Colorado facing potential health threats from pollution of its soils, air, water and food supply. To address such concerns about environmental contamination, we conducted an urban geochemical study of the city of Pueblo to offer insights into the potential chemical hazards in soil and inform priorities for future health studies and population interventions aimed at reducing exposures to inorganic substances. The current study characterizes the environmental landscape of Pueblo in terms of heavy metals, and relates this to population distributions. Soil was sampled within the city along transects and analyzed for arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb). We also profiled Pueblo's communities in terms of their socioeconomic status and demographics. ArcGIS 9.0 was used to perform exploratory spatial data analysis and generate community profiles and prediction maps. The topsoil in Pueblo contains more As, Cd, Hg and Pb than national soil averages, although average Hg content in Pueblo was within reported baseline ranges. The highest levels of As concentrations ranged between 56.6 and 66.5 ppm. Lead concentrations exceeded 300 ppm in several of Pueblo's residential communities. Elevated levels of lead are concentrated in low-income Hispanic and African-American communities. Areas of excessively high Cd concentration exist around Pueblo, including low income and minority communities, raising additional health and environmental justice concerns. Although the distribution patterns vary by element and may reflect both industrial and non-industrial sources, the study confirms that there is environmental contamination around Pueblo and underscores the need for a comprehensive public health approach to address environmental threats in urban communities.

  19. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children.

    Science.gov (United States)

    Kim, Stephani; Arora, Monica; Fernandez, Cristina; Landero, Julio; Caruso, Joseph; Chen, Aimin

    2013-10-01

    There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5-8, 9-12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07-5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. © 2013 Published by Elsevier Inc.

  20. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children

    International Nuclear Information System (INIS)

    Kim, Stephani; Arora, Monica; Fernandez, Cristina; Landero, Julio; Caruso, Joseph; Chen, Aimin

    2013-01-01

    Background: There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. Objectives: To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. Methods: We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5–8, 9–12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. Results: Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07–5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Conclusions: Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. -- Highlights: • Blood Pb levels are associated with ADHD diagnosis in children. • No association was found between blood Cd or Hg levels and ADHD. • Children living close to hazardous waste site need to reduce metal exposure

  1. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Stephani [Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (United States); Arora, Monica [Department of Psychiatry, Creighton University School of Medicine, Omaha, NE 68131 (United States); Fernandez, Cristina [Department of Pediatrics, Creighton University School of Medicine, Omaha, NE 68131 (United States); Landero, Julio; Caruso, Joseph [Metallomics Center, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221 (United States); Chen, Aimin, E-mail: aimin.chen@uc.edu [Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267 (United States)

    2013-10-15

    Background: There is limited research examining the relationship between lead (Pb) exposure and medically diagnosed attention deficit hyperactivity disorder (ADHD) in children. The role of mercury (Hg) and cadmium (Cd) exposures in ADHD development is even less clear. Objectives: To examine the relationship between Pb, Hg, and Cd and ADHD in children living inside and outside a Lead Investigation Area (LIA) of a former lead refinery in Omaha, NE. Methods: We carried out a case-control study with 71 currently medically diagnosed ADHD cases and 58 controls from a psychiatric clinic and a pediatric clinic inside and outside of the LIA. The participants were matched on age group (5–8, 9–12 years), sex, race (African American or Caucasians and others), and location (inside or outside LIA). We measured whole blood Pb, total Hg, and Cd using inductively coupled plasma mass spectrometry. Results: Inside the LIA, the 27 cases had blood Pb geometric mean (GM) 1.89 µg/dL and the 41 controls had 1.51 µg/dL. Outside the LIA, the 44 cases had blood Pb GM 1.02 µg/dL while the 17 controls had 0.97 µg/dL. After adjustment for matching variables and maternal smoking, socioeconomic status, and environmental tobacco exposure, each natural log unit blood Pb had an odds ratio of 2.52 with 95% confidence interval of 1.07–5.92. Stratification by the LIA indicated similar point estimate but wider CIs. No associations were observed for Hg or Cd. Conclusions: Postnatal Pb exposure may be associated with higher risk of clinical ADHD, but not the postnatal exposure to Hg or Cd. -- Highlights: • Blood Pb levels are associated with ADHD diagnosis in children. • No association was found between blood Cd or Hg levels and ADHD. • Children living close to hazardous waste site need to reduce metal exposure.

  2. Blood metal concentrations of manganese, lead, and cadmium in relation to serum ferritin levels in Ohio residents.

    Science.gov (United States)

    Kim, Yangho; Lobdell, Danelle T; Wright, Chris W; Gocheva, Vihra V; Hudgens, Edward; Bowler, Rosemarie M

    2015-05-01

    The objectives of this study were to assess ferritin-specific profiles of blood metal concentrations such as manganese, lead, and cadmium and to evaluate whether ferritin may affect the behavior of the blood metals in relation to menstruation, menopause, or sex in Ohio residents. Recruited participants included residents from Marietta, East Liverpool, and Mt. Vernon, OH, USA, who were aged 30-75 years and lived at least 10 years in their respective town. The levels of the neurotoxic metals such as manganese, cadmium, and lead were assayed in whole blood. Serum was analyzed for ferritin level [as a biomarker of iron (Fe) status]. An association between blood metal concentrations and independent variables (age, serum ferritin, manganese exposure status, and sex) by multiple regression analysis was assessed, controlling for various covariates such as BMI, educational level, smoking, and alcohol drinking status. Overall, the geometric means of blood manganese, cadmium, and lead levels of all participants (n = 276) were 9.307 μg/L, 0.393 μg/L, and 1.276 μg/dL, respectively. Log serum ferritin concentrations were inversely associated with log blood manganese concentration (β = -0.061 log ferritin and β = 0.146 categorical ferritin) and log blood cadmium concentrations (β = -0.090 log ferritin and β = 0.256 categorical ferritin). Log serum ferritin concentrations were not associated with log blood lead concentrations. Variables of age, sex, and exposure status were not associated with log manganese concentrations; however, log blood cadmium concentrations were higher in older population, women, and smokers. Log blood lead concentrations were higher in older population, men, and postmenopausal women. Our study showed that iron deficiency is associated with increased levels of blood manganese and cadmium, but not blood lead, in Ohio residents. These metals showed different toxicokinetics in relation to age, sex, and menopausal status despite

  3. Combined impact of lead, cadmium, polychlorinated biphenyls and non-chemical risk factors on blood pressure in NHANES

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Junenette L., E-mail: petersj@bu.edu; Patricia Fabian, M., E-mail: pfabian@bu.edu; Levy, Jonathan I., E-mail: jonlevy@bu.edu

    2014-07-15

    High blood pressure is associated with exposure to multiple chemical and non-chemical risk factors, but epidemiological analyses to date have not assessed the combined effects of both chemical and non-chemical stressors on human populations in the context of cumulative risk assessment. We developed a novel modeling approach to evaluate the combined impact of lead, cadmium, polychlorinated biphenyls (PCBs), and multiple non-chemical risk factors on four blood pressure measures using data for adults aged ≥20 years from the National Health and Nutrition Examination Survey (1999–2008). We developed predictive models for chemical and other stressors. Structural equation models were applied to account for complex associations among predictors of stressors as well as blood pressure. Models showed that blood lead, serum PCBs, and established non-chemical stressors were significantly associated with blood pressure. Lead was the chemical stressor most predictive of diastolic blood pressure and mean arterial pressure, while PCBs had a greater influence on systolic blood pressure and pulse pressure, and blood cadmium was not a significant predictor of blood pressure. The simultaneously fit exposure models explained 34%, 43% and 52% of the variance for lead, cadmium and PCBs, respectively. The structural equation models were developed using predictors available from public data streams (e.g., U.S. Census), which would allow the models to be applied to any U.S. population exposed to these multiple stressors in order to identify high risk subpopulations, direct intervention strategies, and inform public policy. - Highlights: • We evaluated joint impact of chemical and non-chemical stressors on blood pressure. • We built predictive models for lead, cadmium and polychlorinated biphenyls (PCBs). • Our approach allows joint evaluation of predictors from population-specific data. • Lead, PCBs and established non-chemical stressors were related to blood pressure.

  4. Characterization of lead, chromium, and cadmium in dust emitted from municipal solid waste incineration plants

    International Nuclear Information System (INIS)

    Shiota, K; Imai, G; Oshita, K; Takaoka, M

    2013-01-01

    The dust is emitted from municipal solid waste incinerators (MSWIs). Volatile toxic heavy metals are abundant in smaller dust particles and influence the toxicity of particulate matter such as fine particles 2.5 ). However, little is known about the properties of these metals in fine dust particles. Therefore, X-ray absorption fine structure (XAFS) spectroscopy was used to investigate the chemical states of lead (Pb), chromium (Cr), and cadmium (Cd) in MSWI dust collected for nine particle size fractions at the inlet of the dust collector and the stacks of two MSWI plants. XAFS spectroscopy of the dust in the inlet of the dust collectors showed that finer dust contained predominantly Pb as PbCl 2 with some PbSiO 3 , coarser dust consisted of Cr forms, including more toxic Cr(VI) species, and all dust contained CdCl 2 . Although the dust collector removed almost all of the Pb, trace amounts of PbCl 2 remained in the stack gas after passing through the dust collector.

  5. Arsenic, Cadmium and Lead Exposure and Immunologic Function in Workers in Taiwan

    Directory of Open Access Journals (Sweden)

    Chin-Ching Wu

    2018-04-01

    Full Text Available There has been growing concern over the impact of environmental exposure to heavy metals and other trace elements on immunologic functions. This study investigated men’s arsenic (As, cadmium (Cd and lead (Pb contents in hair samples and their associations with immunological indicators, including white blood cell (WBC, lymphocyte and monocyte counts, and the immunoglobulin (Ig levels including IgA, IgG and IgE. We recruited 133 men from one antimony trioxide manufacturing plant, two glass manufacturing plants and two plastics manufacturing plants. The mean concentration of Cd [0.16 (SD = 0.03 ug/g] was lower than means of As [0.86 (SD = 0.16 ug/g] and Pb [0.91 (SD = 0.22 ug/g] in hair samples, exerting no relationship with immunologic functions for Cd. The Spearman’s correlation analysis showed a positive relationship between monocyte counts and hair Pb levels, but negative relations between As and IgG and between As and IgE. In conclusion, findings from these industry workers suggest that As levels in hair may have a stronger relation with immunologic function than Cd and PB have. Further research is needed to confirm the negative relationship.

  6. Cadmium, lead, mercury and arsenic in animal feed and feed materials - trend analysis of monitoring results.

    Science.gov (United States)

    Adamse, Paulien; Van der Fels-Klerx, H J Ine; de Jong, Jacob

    2017-08-01

    This study aimed to obtain insights into the presence of cadmium, lead, mercury and arsenic in feed materials and feed over time for the purpose of guiding national monitoring. Data from the Dutch feed monitoring programme and from representatives of the feed industry during the period 2007-13 were used. Data covered a variety of feed materials and compound feeds in the Netherlands. Trends in the percentage of samples that exceeded the maximum limit (ML) set by the European Commission, and trends in average, median and 90th percentile concentrations of each of these elements were investigated. Based on the results, monitoring should focus on feed material of mineral origin, feed material of marine origin, especially fish meal, seaweed and algae, as well as feed additives belonging to the functional groups of (1) trace elements (notably cupric sulphate, zinc oxide and manganese oxide for arsenic) and (2) binders and anti-caking agents. Mycotoxin binders are a new group of feed additives that also need attention. For complementary feed it is important to make a proper distinction between mineral and non-mineral feed (lower ML). Forage crops in general do not need high priority in monitoring programmes, although for arsenic grass meal still needs attention.

  7. Concentrations of arsenic, cadmium and lead in human hair and typical foods in eleven Chinese cities.

    Science.gov (United States)

    Zhou, Tong; Li, Zhu; Zhang, Fan; Jiang, Xiaosan; Shi, Weiming; Wu, Longhua; Christie, Peter

    2016-12-01

    Concentrations of arsenic (As), cadmium (Cd) and lead (Pb) were determined in 384 human hair samples and 445 purchased food samples from 11 cities in China. The mean concentrations of hair As, Cd and Pb were 0.23, 0.062 and 2.45mgkg -1 , respectively. The As, Cd and Pb concentrations in different foods were lower than the national maximum allowable contaminant levels. By comparison, males had higher hair As concentrations but lower Cd concentrations than females. When the interaction effects of gender and age were considered, males had the higher hair As, Cd and Pb concentrations in the 51-65 year-old age group. Residents of rural areas had higher hair As, Cd and Pb concentrations than people living in urban areas. Further analysis indicates that hair As, Cd and Pb concentrations and their changes with biological and environmental factors cannot be satisfactorily explained by the estimated intakes from purchased food. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E.; Nye, Monica D.; Hoyo, Cathrine; Murphy, Susan K.; Fry, Rebecca C.

    2014-01-01

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, and lead. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology. PMID:24921406

  9. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Directory of Open Access Journals (Sweden)

    Lisa Smeester

    2014-06-01

    Full Text Available Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR, some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  10. Imprinted genes and the environment: links to the toxic metals arsenic, cadmium, lead and mercury.

    Science.gov (United States)

    Smeester, Lisa; Yosim, Andrew E; Nye, Monica D; Hoyo, Cathrine; Murphy, Susan K; Fry, Rebecca C

    2014-06-11

    Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR), some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  11. The influence of cadmium and lead on Ulmus pumila L. seed germination and early seedling growth

    Directory of Open Access Journals (Sweden)

    Đukić Matilda

    2014-01-01

    Full Text Available The aim of this paper was to examine how the heavy metals cadmium (Cd and lead (Pb influence the germination and early growth of seedlings of the fast-growing tree species Ulmus pumila L. Seeds were germinated and seedlings were hydroponically grown in a solution with Cd-nitrate and Pb-nitrate at concentrations of 20 μM, 50 μM and 90 μM. Our results show that seeds can germinate in the presence of these two heavy metals at all of the applied concentrations with no significant reduction in qualitative (germination capacity, germination energy or quantitative (germination intensity, mean germination period germination parameters as compared to the controls. Early seedling development was also possible at higher concentrations of both heavy metals. Cd reduced hypocotyl length, but not significantly the length of radicles. Pb did not influence hypocotyl length and stimulated radicle length significantly (95%. These results could mark a step forward in defining the tolerance of U. pumila to the presence of Cd and Pb, and to the possibility of using this fast-growing tree which is resistant to different abiotic and biotic stresses, for phytoremediation or soil reclamation purposes. [Projekat Ministarstva nauke Republike Srbije, br. 43007

  12. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite

    International Nuclear Information System (INIS)

    Zhang Zizhong; Li Mengyan; Chen Wei; Zhu Shuzhen; Liu Nannan; Zhu Lingyan

    2010-01-01

    The effectiveness and mechanism of nano-hydroxyapatite particles (nHAp) in immobilizing Pb and Cd from aqueous solutions and contaminated sediment were investigated. The maximum sorption amount (Q max ) of Pb and Cd in aqueous solution was 1.17 and 0.57 mmol/g. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) surface and depth analysis indicated that dissolution-precipitation is the primary immobilization mechanism for Pb, while surface complexation and intraparticle diffusion account for Cd sequestration. Different amounts of nHAp (0-10% nHAp/dry weight) were added to the contaminated sediment. Sequential extraction showed that nHAp could effectively reduce the exchangeable fraction of Pb and Cd in the sediment and significantly reduce the concentration in porewater. The results in this study showed that nHAp can immobilize Pb and Cd in sediment effectively. - Nano-hydroxyapatite shows potential and advantages to immobilize lead and cadmium in aqueous solution and sediment.

  13. Evaluation and Determination of Heavy Metals (Mercury, Lead and Cadmium in Human Breast Milk

    Directory of Open Access Journals (Sweden)

    Abdollahi Atousa

    2014-07-01

    Full Text Available Mercury, Lead and Cadmium were determined in 100 samples of human breast milk samples from urban and rural mothers in Isfahan (IRAN. A questionnaire about area of residence, nutrition, smoking habits, and dental fillings was filled out by the lactating mothers. The combination of nitric acid, hydrogen peroxide and perchloric acid was found to be one of the most suitable acids in wet digestion of milk. Cold vapor atomic absorption was used to determine the mercury content in milk after wet digestion. The effect of concentration of nitric acid, influence of flow rate and tin(П chloride were investigated. The mean concentration of mercury in human breast milk samples was 0.96 ppb. Extraction of Pb and Cd were performed with ammonium pyrrolidine dithiocarbamate (APDC to methyl isobutyl ketone (MIBK and were determined by Flame Atomic Absorption Spectrometry. The factors influencing, the complex formation, pH, time and buffer were optimized. The mean concentration of Pb and Cd in human breast milk was 0.0147 and 0.0121 ppm, respectively. The maximum concentrations were found in breast milk of rural mothers.

  14. Lead and cadmium in functional health foods and Korean herbal medicines.

    Science.gov (United States)

    Kim, Wooseok; Lee, Kwang-Geun

    2013-01-01

    Lead (Pb) and cadmium (Cd) in functional health foods (FHF) and Korean herbal medicines (KHM) were analysed by the standard addition method with inductively coupled plasma-mass spectrometry. A total of 672 samples were collected from 2347 people (1015 adults, 557 students and 775 infants and children) who lived in Korea. Pb and Cd concentrations were analysed in the samples (FHF, n = 535; KHM, n = 50). Method validation was carried out using standard reference material (SRM), recovery rate and limits of detection and quantification. Recovery rates for Pb and Cd using three SRMs were 94.9%-101.6% and 96.7%-115.2%, respectively. Mean Pb values in FHF and KHM were 0.146 and 0.349 mg kg⁻¹, respectively. Mean Cd levels in FHF and KHM were 0.035 and 0.056 mg kg⁻¹, respectively. Mean values in Spirulina and yeast products were the highest in the FHF samples (0.940 mg kg⁻¹ for Pb in Spirulina products and 0.115 mg kg⁻¹ for Cd in yeast products).

  15. Lead and cadmium contents in Ipomoea aquatica Forsk. grown in Laguna de Bay

    International Nuclear Information System (INIS)

    Baysa, Marieta C.; Anuncio, Rachelle Rose S.; Chiombon, Maryann Louise G.; Dela Cruz, Julius Paul R.; Ramelb, Jean Rochelle O.

    2006-01-01

    Ipomoea aquatica Forsk. (water spinach) which grows luxuriantly in Laguna de Bay may contain metals that are within the toxic levels for humans. The study was conducted to determine the concentrations of lead (Pb) and cadmium (Cd) in the top, middle, and bottom of the edible portions, and in the different organs of I. aquatica grown in Laguna de Bay. Also to assess if the Pb and Cd concentrations in the plants are within the safe levels for humans. Pb concentrations in the plants were 0.259 to 8.72 mg/kg DW, with decreasing trend from roots to leaves, and from bottom to top subsections of the upper 36cm from the shoot apex. Water spinach had Cd concentrations which were 0.0058 to 0.0466 mg/kg DW. Pb and Cd concentrations in the edible portions (leaves and stems) of the upper 36cm of the shoot were far below the maximum tolerable daily intake for man set by World Health Organization (WHO). The bottom of the edible portion of the plant should be removed to minimize Pb intake. (Author)

  16. Structural and IR-spectroscopic characterization of cadmium and lead(II) acesulfamates

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, Gustavo A.; Piro, Oscar E. [Univ. Nacional de La Plata (Argentina). Dept. de Fisica y Inst. IFLP (CONICET- CCT-La Plata); Parajon-Costa, Beatriz S.; Baran, Enrique J. [Univ. Nacional de La Plata (Argentina). Centro de Quimica Inorganica (CEQUINOR/CONICET- CCT-La Plata)

    2017-07-01

    Cadmium and lead(II) acesulfamate, Cd(C{sub 4}H{sub 4}NO{sub 4}S){sub 2} . 2H{sub 2}O and Pb(C{sub 4}H{sub 4}NO{sub 4}S){sub 2}, were prepared by the reaction of acesulfamic acid and the respective metal carbonates in aqueous solution, and characterized by elemental analysis. Their crystal structures were determined by single crystal X-ray diffraction methods. The Cd(II) compound crystallizes in the monoclinic space group P2{sub 1}/c with Z=4 and the corresponding Pb(II) salt in the triclinic space group P anti 1 with Z=2. In both salts, acesulfamate acts both as a bi-dentate ligand through its nitrogen and carbonyl oxygen atoms and also as a mono-dentate ligand through this same oxygen atom, giving rise to polymeric structures; in the Pb(II) salt the ligand also binds the cation through its sulfoxido oxygen atoms. The FTIR spectra of the compounds were recorded and are briefly discussed. Some comparisons with other related acesulfamate and saccharinate complexes are made.

  17. KINETIC AND EQUILIBRIUM STUDIES OF LEAD AND CADMIUM BIOSORPTION FROM AQUEOUS SOLUTIONS BY SARGASSUM SPP. BIOMASS

    Directory of Open Access Journals (Sweden)

    R. Nabizadeh, K. Naddafi, R. Saeedi, A. H. Mahvi, F. Vaezi, K. Yaghmaeian and S. Nazmara

    2005-07-01

    Full Text Available Contamination of the aqueous environment by heavy metals is a worldwide environmental problem. Biosorption of lead (II and cadmium (II from aqueous solutions by brown algae Sargassum spp.biomass was studied in a batch system. The heavy metals uptake was found to be rapid and reached to 88-96% of equilibrium capacity of biosorption in 15min. The pseudo second-order and saturation rate equations were found in the best fitness with the kinetic data (R2 > 0.99. The data obtained from experiments of single-component biosorption isotherm were analyzed using the Freundlich, Langmuir, Freundlich-Langmuir and Redlich-Peterson isotherm models. The Redlich-Peterson equation described the biosorption isotherm of Pb2+ and Cd2+ with high correlation coefficient (R2 > 0.99 and better than the other equations. The effect of Na+, K+, Mg2+ and Ca2+ on the biosorption of Pb2+ was not significant, but the metal ions affected the biosorption of Cd2+ considerably. According to the Langmuir model, the maximum uptake capacities (qm of Sargassum spp. for Pb2+ and Cd2+ were obtained as 1.70 and 1.02mmol/g, respectively. Although the Sargassum spp. used in this study can be classified as an efficient biosorbent.

  18. Remediation of lead, cadmium and uranium contaminated water and soil by apatite amendment

    International Nuclear Information System (INIS)

    Raicevic, S.; Plecas, I.; Kaludjerovic, T.

    2002-01-01

    During the past years as a consequence of war and some accidents in neighboring countries large areas in Serbia were contaminated by toxic heavy metals, including lead, cadmium and uranium. For example, the concentrations of Pb, Cd, Cu and Cr have been doubled above the allowed maximum value in the Romanian part of the Danube while sediments near the border in Bulgaria have higher concentrations of Pb 3 times, Cu 1400 times and Cd 30 times more than the average long-standing levels. Furthermore, an estimated 10 tons of depleted uranium (DU) was spread mainly throughout the territory of Kosovo. This contamination is a potential source of different chronic diseases including malignant diseases and represents a long-term threat for the population living in the affected areas. For this reason, remediation of contaminated sites represents an urgent need and priority. The standard remediation procedure which includes soil removal, treatment (washing, chelating), conditioning etc. is costly, disruptive and not sustainable. This study was carried out to evaluate apatite from the Lisina deposit as soil amendment for in situ stabilization of toxic heavy metals. Preliminary theoretical and experimentally results presented here point out this natural apatite as an ecological, nontoxic material which can be used for efficient and cost-effective remediation of large areas contaminated with Pb, Cd and U. (author)

  19. Determination of lead and cadmium contamination levels in industrial milk powders produced in Tehran

    Directory of Open Access Journals (Sweden)

    2015-02-01

    Full Text Available Contamination of dairy products with heavy metals, lead (Pb and Cadmium (Cd in particular, induces their toxic effects on humans. Therefore, this study aimed to determine the contamination levels of Pb and Cd levels in milk powders produced in Tehran area. In this study, a total of 25 samples of milk powder was obtained from four different dairy establishments. The samples were digested and extracted prior to analysis. Pb and Cd concentrations was determined using atomic absorption method with graphite furnace. The results were showed a mean value 57.36 ppb (18.99 to112.90 ppb for Pb and 14.11 ppb (5.73 to 39.43 ppb for Cd. According to Codex Alimentarius, approved levels for Pb and Cd in milk are 1000 and 100 ppb, respectively. Based on results, Pb level was less than standard limit in all samples, whereas Cd concentration in 68% of the samples was estimated higher than the standard limit. Since the percentage of Cd-contaminated samples was high, there is a necessity for frequent monitoring of the contamination levels in dairy products as well as to discover the potential contamination sources.

  20. Genotypic differences in arsenic, mercury, lead and cadmium in milled rice (Oryza sativa L.).

    Science.gov (United States)

    Jiang, Shuli; Shi, Chunhai; Wu, Jianguo

    2012-06-01

    The contents of arsenic, mercury, lead and cadmium in milled rice were determined. Among 216 genotypes, the As, Hg, Pb and Cd contents were ranged from 5.06 to 296.45, 2.46 to 65.85, 4.16 to 744.95 and 5.91 to 553.40 ng/g, respectively. Six genotypes with lower contents of toxic metal elements were selected. The averages of As and Pb contents for indica rice were higher than those of japonica rice, while the averages of Hg and Cd contents were in contrast. Compared with white brown rice, the milled rice from black and red brown rice contained lower contents of four elements. Significant negative correlation was found between As content and alkaline spread value. Significant correlations were observed between As and aspartic acid (Asp) content, Hg and Asp or leucine contents, Pb and cysteine or methionine contents. Cd content was significantly negatively correlated with protein and 14 amino acid contents.

  1. Anodic stripping voltammetry of mercury, zinc, cadmium, and lead in a rice farm ecosystem

    International Nuclear Information System (INIS)

    Del Mundo, F.R.; Vicente-Beckett, V.A.

    1990-01-01

    Analytical procedures based on differential pulse anodic stripping voltammetry were developed and applied to the analysis of some trace metals in a rice farm ecosystem. A gold wire served as working electrode for the analysis of mercury in 0.1M HNO 3 ; a hanging mercury drop electrode was used for the simultaneous analyses of zinc, cadmium, and lead in 0.1M sodium acetate buffer (pH 4.5). Mercury was pre-concentrated for five minutes at + 0.20 V vs SCE. The area of the anodic stripping peaks varied linearly over the concentration range 3x10 -10 -2x10 -8 M Hg(II); the limit of detection was 0.06 ppb or 3x10 -10 M Hg(II). The simultaneous analytical method involved pre-electrolysis at -1.2 V vs SCE for ten minutes. The heights of the individual anodic stripping peaks varied linearly with concentration in a mixture of the ions over the concentration range 0.020-0.10 ppm for each ion; the limits of detection were 0.004 ppm, 0.01 ppm, and 0.01 ppm for Cd, Pb, Zn, respectively. The developed procedures were used to determine the baseline levels of these metals in soil, water, and rice plant samples from a one-hectare traditional rice farm in San Pedro, Laguna. (auth.). 26 refs.; 4 tabs.; 6 figs

  2. Cadmium and lead content in several brands of rice grains (Oryza sativa) in central Iran.

    Science.gov (United States)

    Shakerian, A; Rahimi, E; Ahmadi, M

    2012-11-01

    The aim of this study was to investigate the cadmium (Cd) and lead (Pb) content of several commercially available brands of rice grains (Oryza sativa) in central Iran. A total of 67 samples of the most widely consumed brands of rice grains were purchased from local bazaar markets in Shahrekord, Iran. The first step, grains of raw rice were digested by acid digestion method and then were analyzed by atomic absorption spectrometer. The results showed that Cd concentration in rice grains ranged from 0.0378 to 0.1225 ppm dry weight and its average concentration was 0.062 ± 0.019 ppm and Pb content ranged from 0.0405 to 0.1281 ppm dry weight and its average concentration was 0.068 ± 0.0185 ppm. Cd and Pb concentrations in the sampled rice grains were lower in comparison with their upper limits (0.2 and 0.2 ppm for Cd and Pb, respectively) approved by food sanitary standard. Therefore, it can be concluded that there is no health problems due to the consumption of brands of rice grains, for these two elements. The results indicated that weekly intake of Cd and Pb from rice grains was below the provisional tolerable weekly intakes recommended by WHO/FAO.

  3. Assessment of exposure to soils contaminated with lead, cadmium, and arsenic near a zinc smelter, Cassiopée Study, France, 2008.

    Science.gov (United States)

    Durand, Cécile; Sauthier, Nicolas; Schwoebel, Valérie

    2015-06-01

    After 150 years of industrial activity, significant pollution of surface soils in private gardens and locally produced vegetables with lead, cadmium, and arsenic has recently been observed in Viviez (Southern France). A public health intervention was conducted in 2008 to identify individual health risks of Viviez inhabitants and to analyze their environmental exposure to these pollutants. Children and pregnant women in Viviez were screened for lead poisoning. Urinary cadmium testing was proposed to all inhabitants. Those with urinary cadmium levels over 1 μg/g creatinine were then tested for kidney damage. Urinary cadmium and arsenic levels were compared between participants with non-occupational exposure from Viviez and Montbazens, a nearby town not exposed to these two pollutants, in order to identify environmental factors contributing to impregnation. No case of lead poisoning was detected in Viviez, but 23 % of adults had urinary cadmium over 1 μg/g creatinine, 14 % of whom having markers of kidney damage. Viviez adults had higher levels of urinary cadmium, and to a lesser extent, higher levels of urinary arsenic than those from Montbazens. Consumption of local produce (vegetables and animals) and length of residence in Viviez were associated with higher urinary cadmium levels, independently of known confounding factors, suggesting persisting environmental exposure to contaminated soil. To conclude, health risks related to cadmium exposure were identified in the Viviez population living on contaminated soils. Lead and arsenic exposure did not pose health concerns. Interventions were proposed to reduce exposure and limit health consequences.

  4. Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada

    International Nuclear Information System (INIS)

    Butler Walker, Jody; Houseman, Jan; Seddon, Laura; McMullen, Ed; Tofflemire, Karen; Mills, Carole; Corriveau, Andre; Weber, Jean-Philippe; LeBlanc, Alain; Walker, Mike; Donaldson, Shawn G.; Van Oostdam, Jay

    2006-01-01

    Maternal and umbilical cord blood levels of mercury (Hg), lead (Pb), cadmium (Cd), and the trace elements copper (Cu), zinc (Zn), and selenium (Se) are reported for Inuit, Dene/Metis, Caucasian, and Other nonaboriginal participants from Arctic Canada. This is the first human tissue monitoring program covering the entire Northwest Territories and Nunavut for multiple contaminants and establishes a baseline upon which future comparisons can be made. Results for chlorinated organic pesticides and PCBs for these participants have been reported elsewhere. Between May 1994 and June 1999, 523 women volunteered to participate by giving their written informed consent, resulting in the collection of 386 maternal blood samples, 407 cord samples, and 351 cord:maternal paired samples. Geometric mean (GM) maternal total mercury (THg) concentrations ranged from 0.87μg/L (SD=1.95) in the Caucasian group of participants (n=134) to 3.51μg/L (SD=8.30) in the Inuit group (n=146). The GM of the Inuit group was 2.6-fold higher than that of the Dene/Metis group (1.35μg/L, SD=1.60, n=92) and significantly higher than those of all other groups (P 8 cigarettes/day) was 7.4-fold higher and 12.5-fold higher, respectively, than in nonsmokers. The high percentage of smokers among Inuit (77%) and Dene/Metis (48%) participants highlights the need for ongoing public health action directed at tobacco prevention, reduction, and cessation for women of reproductive age. Pb and THg were detected in more than 95% of all cord blood samples, with GMs of 21 μg/L and 2.7μg/L, respectively, and Cd was detected in 26% of all cord samples, with a GM of 0.08μg/L. Cord:maternal ratios from paired samples ranged from 0.44 to 4.5 for THg, from 0.5 to 10.3 for MeHg, and 0.1 to 9.0 for Pb. On average, levels of THg, MeHg, and Zn were significantly higher in cord blood than in maternal blood (P<0.0001), whereas maternal Cd, Pb, Se, and Cu levels were significantly higher than those in cord blood (P<0

  5. Development of a thermodynamic model for zinc, lead and cadmium in saline solutions; Entwicklung eines thermodynamischen Modells fuer Zink, Blei und Cadmium in salinaren Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven

    2012-07-15

    Waters on aboveground and underground landfills often contain high concentrations of pollutants like zinc, lead and cadmium. Interactions between wastes and aqueous solutions could lead to a mobilisation of these elements. If their maximum solubilities are to be predicted by geochemical modelling a thermodynamic data base is needed. Due to the lack of experimental data such a data base could not be developed yet. In order to fill the gaps isopiestic as well as solubility measurements were made at 25 C. Furthermore the complex formation of zinc and cadmium was investigated and quantified by means of Raman spectrometry and evolving factor analysis. It could be proven that only complexes with two and four chlorine atoms achieve significant concentrations. On basis of these results and a critical evaluation of literature data a consistent thermodynamic data base for was developed for the calculation of activity coefficients and solubilities in the system Na, K, Mg, Ca, Zn, Cd, Cl, SO{sub 4}-H{sub 2}O at 298,15 K.

  6. Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic

    International Nuclear Information System (INIS)

    Wang Gensheng; Fowler, Bruce A.

    2008-01-01

    Human exposure to environmental chemicals is most correctly characterized as exposure to mixtures of these agents. The metals/metalloids, lead (Pb), cadmium (Cd), and arsenic (As), are among the leading toxic agents detected in the environment. Exposure to these elements, particularly at chronic low dose levels, is still a major public health concern. Concurrent exposure to Pb, Cd, or As may produce additive or synergistic interactions or even new effects that are not seen in single component exposures. Evaluating these interactions on a mechanistic basis is essential for risk assessment and management of metal/metalloid mixtures. This paper will review a number of individual studies that addressed interactions of these metals/metalloids in both experimental and human exposure studies with particular emphasis on biomarkers. In general, co-exposure to metal/metalloid mixtures produced more severe effects at both relatively high dose and low dose levels in a biomarker-specific manner. These effects were found to be mediated by dose, duration of exposure and genetic factors. While traditional endpoints, such as morphological changes and biochemical parameters for target organ toxicity, were effective measures for evaluating the toxicity of high dose metal/metalloid mixtures, biomarkers for oxidative stress, altered heme biosynthesis parameters, and stress proteins showed clear responses in evaluating toxicity of low dose metal/metalloid mixtures. Metallothionein, heat shock proteins, and glutathione are involved in regulating interactive effects of metal/metalloid mixtures at low dose levels. These findings suggest that further studies on interactions of these metal/metalloid mixtures utilizing biomarker endpoints are highly warranted

  7. Removal of copper (II), iron (III) and lead (II) ions from Mono ...

    African Journals Online (AJOL)

    EJIRO

    Removal of copper (II), iron (III) and lead (II) ions from. Mono-component Simulated Waste Effluent by. Adsorption on Coconut Husk. Oyedeji O. Abdulrasaq* and Osinfade G. Basiru. Department of Science Laboratory Technology, Federal Polytechnic, Ilaro, Ogun State, Nigeria. Accepted 28 April 2010. The use of coconut ...

  8. Concentrations of trace metals (lead, iron, copper and zinc) in crops ...

    African Journals Online (AJOL)

    Concentrations of trace metals (lead, iron, copper and zinc) in crops harvested in some oil prospecting locations in Rivers State, Nigeria. ... These findings give cause for concern, particularly as heavy metals are bio-accumulative in the system and portend a serious health risk to man and animals. Key Words: Trace metals, ...

  9. Acute effects of copper and lead on some blood parameters on ...

    African Journals Online (AJOL)

    user

    2011-04-18

    Apr 18, 2011 ... The present study was to evaluate whether short-term exposures (3 h) to high concentrations of heavy metals may induce blood cells in Coruh trout (Salmo coruhensis). It was investigated that copper and lead have effects on haematocrit, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic.

  10. Serum levels of lead and copper in a group of Egyptian children with ...

    African Journals Online (AJOL)

    Ehab

    47. Serum levels of lead and copper in a group of Egyptian children with bronchial asthma. INTRODUCTION. Asthma is a heterogeneous disease, usually characterized by ... levels were higher among patients with moderate persistent asthma than those with mild ... taking with special attention to intermittent attacks of cough ...

  11. Ion Flotation of Copper(II) and Lead(II) from Environmental Water ...

    African Journals Online (AJOL)

    The present study aims to develop a simple, rapid and economic procedure for copper(II) and lead(II) removal under the optimum conditions investigated. It is based on the complex formation between Cu2+ and Pb2+ ions and diphenylcarbazone (HDPC) followed by flotation with oleic acid (HOL) surfactant. The different ...

  12. Acute effects of copper and lead on some blood parameters on ...

    African Journals Online (AJOL)

    The present study was to evaluate whether short-term exposures (3 h) to high concentrations of heavy metals may induce blood cells in Coruh trout (Salmo coruhensis). It was investigated that copper and lead have effects on haematocrit, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic and pyruvic ...

  13. Determination of the sources of copper and lead used for British bronze age metalwork by lead isotope analysis

    International Nuclear Information System (INIS)

    Rohl, B.M.

    1997-01-01

    This presentation highlights the results of the work carried out by the author during her doctoral research regarding the use of lead isotope analysis to investigate the source of copper and lead for the metalwork during the British Bronze Age. Over 450 new lead isotope analyses of ore samples from England and Wales were compared with published data from Britain, Ireland, France and Germany. In addition, more than 400 pieces of metalwork, representing all phases of the British Bronze Age, were analysed. Many of these pieces of metalwork had previously been analysed for their chemical and impurity content, and supplementary chemical analyses were made to investigate a possible chemical/lead isotope relationship. The ores show overlapping isotopic distributions, while the artefacts show intriguing shifts in the lead isotope signature, with coherent pattern recognizable throughout the Bronze Age phases and regionally

  14. Biosorption of copper(II) and lead(II) onto potassium hydroxide treated pine cone powder.

    Science.gov (United States)

    Ofomaja, A E; Naidoo, E B; Modise, S J

    2010-08-01

    Pine cone powder surface was treated with potassium hydroxide and applied for copper(II) and lead(II) removal from solution. Isotherm experiments and desorption tests were conducted and kinetic analysis was performed with increasing temperatures. As solution pH increased, the biosorption capacity and the change in hydrogen ion concentration in solution increased. The change in hydrogen ion concentration for lead(II) biosorption was slightly higher than for copper(II) biosorption. The results revealed that ion-exchange is the main mechanism for biosorption for both metal ions. The pseudo-first order kinetic model was unable to describe the biosorption process throughout the effective biosorption period while the modified pseudo-first order kinetics gave a better fit but could not predict the experimentally observed equilibrium capacities. The pseudo-second order kinetics gave a better fit to the experimental data over the temperature range from 291 to 347 K and the equilibrium capacity increased from 15.73 to 19.22 mg g(-1) for copper(II) and from 23.74 to 26.27 for lead(II). Activation energy was higher for lead(II) (22.40 kJ mol(-1)) than for copper(II) (20.36 kJ mol(-1)). The free energy of activation was higher for lead(II) than for copper(II) and the values of DeltaH* and DeltaS* indicate that the contribution of reorientation to the activation stage is higher for lead(II) than copper(II). This implies that lead(II) biosorption is more spontaneous than copper(II) biosorption. Equilibrium studies showed that the Langmuir isotherm gave a better fit for the equilibrium data indicating monolayer coverage of the biosorbent surface. There was only a small interaction between metal ions when simultaneously biosorbed and cation competition was higher for the Cu-Pb system than for the Pb-Cu system. Desorption studies and the Dubinin-Radushkevich isotherm and energy parameter, E, also support the ion-exchange mechanism. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Microdetermination of lead, cadmium, zinc and tin in biological and related materials by atomic absorption spectrometry after mineralisation and extraction

    International Nuclear Information System (INIS)

    Boiteau, H.L.; Metayer, C.

    1978-01-01

    Two technics permitting to determine either lead, cadmium and zinc, or tin in any biological material (blood, urines, organs, alimentary products of animal or vegetable origin) are described. Every operation (mineralisation and extraction) is made in the same tube and technics, conceived in a way to simplify the manipulations and to reduce the more possible the contamination risks are suitable for determination in series. By working on trial samples near 250 mg, the lower determination limits are around 2 ppb for cadmium, 40 ppb for lead and tin and 2 ppm for zinc. The repeatability studies of different technical stages show that mineralisation and extraction only have a weak incidence on the acccuracy of the results [fr

  16. Sanitary Risks Connected to the Consumption of Infusion from Senna rotundifolia L. Contaminated with Lead and Cadmium in Cotonou (Benin

    Directory of Open Access Journals (Sweden)

    S. A. Montcho

    2014-01-01

    Full Text Available This study carried out an assessment of sanitary risks connected to the consumption of Senna rotundifolia Linn. contaminated with lead and cadmium. This plant was collected and analyzed by atomic absorption spectrophotometry. The results revealed a contamination of plants from markets of Dantokpa, Vossa, and Godomey with heavy metals. Senna from Vossa was higher in cadmium and lead levels (Pb: 2.733 mg/kg ± 0.356 mg/kg; Cd: 0.58 mg/kg ± 0.044 mg/kg compared to the two other places (Pb: 1.825 mg/kg ± 0.133 mg/kg, Cd: 0.062 mg/kg ± 0.015 mg/kg and Pb: 1.902 mg/kg ± 0.265 mg/kg, Cd: 0.328 mg/kg ± 0.024 mg/kg, respectively, for Dantokpa and Godomey. In terms of risk assessment through the consumption of Senna, the values recorded for lead were nine times higher with children and six times higher with adults than the daily permissive intake (Pb: 3.376 × 10−2 mg/kg/day for children and 2.105 × 10−2 mg/kg/day for adults versus 3.6 × 10−3 mg/kg/day for DPI. With respect to cadmium, there was no significant difference between the recorded values and the DPI (Cd: 1 × 14 10−3 mg/ kg/day for children and Cd: 0.71 × 10−3 mg/ kg/day for adults versus Cd: 1 × 10−3 mg/kg/day for adults. This exposure of the population to lead and cadmium through the consumption of antimalarial healing plants could pose public health problems.

  17. A microwave plasma torch quadrupole mass spectrometer for monitoring trace levels of lead and cadmium in water.

    Science.gov (United States)

    Zhu, Zhiqiang; Jiang, Tao; Xiong, Xiaohong; Zou, Wei

    2016-08-01

    The microwave plasma torch (MPT) is a low power-consumption and easily operated plasma generator. As an ambient ion source, the MPT can be coupled with various mass spectrometers and applied in real-time analysis of metal elements in water for the demands of environmental control and water quality inspection. We constructed a quadrupole mass spectrometer with an MPT as the ion source to detect directly trace levels of lead and cadmium in water. Without any pretreatments,water samples were first pneumatically nebulized with a desolvation unit, then flowed through the central tube of the MPT and finally entered the plasma. After that, the metal ions produced were introduced into the mass spectrometer to be analyzed via an atmospheric inlet of a stainless steel capillary tube. The MPT mass spectra of lead and cadmium ions were characterized with clear unit isotopic resolution. The sensitivity reached levels of 20 ng/L for lead and 72.7 ng/L for cadmium in water, respectively. The linear response range covered at least 2 orders of magnitude. Moreover, a single aqueous sample could be completely analyzed within 3 minutes, providing reasonably relative standard deviation values. Our results demonstrated that this MPT mass spectrometer is a useful tool for the monitoring of lead and cadmium ions in water, which makes it a potential alternative to ICP-MS, to be used in the fields of environmental control and water quality and foodstuff safety inspection. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Comparative study of cadmium and lead accumulations in Cambarus bartoni (Fab. ) (Decapoda, Crustacea) from an acidic and a neutral lake

    Energy Technology Data Exchange (ETDEWEB)

    Keenan, S.; Alikhan, M.A. (Laurentian Univ., Sudbury, Ontario (Canada))

    1991-07-01

    The purpose of the study reported in this paper was to compare concentrations of lead and cadmium in the sediment and water, as well as in the crayfish, Cambarus Bartoni (Fab.) (Decapoda - Crustacea) trapped from an acidic and a neutral lake in the Sudbury district of Northeastern Ontario. Hepatopancreatic, alimentary canal, tail muscles and exoskeletal concentrations in the crayfish are also examined to determine specific tissue sites for these accumulations.

  19. Accumulation of lead and cadmium in the marine prosobranch Nerita saxtilis, chemical analysis, light and electron microscopy.

    Science.gov (United States)

    Abdallah, A T; Moustafa, M A

    2002-01-01

    The potential value of the marine prosobranch Nerita saxtilis as an efficient biological monitor to heavy metal pollution in the Red Sea was investigated. Storage ability of lead and cadmium was compared in shell, headfoot and digestive gland of the marine snail N. saxtilis collected from Al-Hamrauin area at El-kuseir (lead, 300.35 +/- 28.53 microg/l, 1,716 +/- 16.14. cadmium 20.01 +/- 1.8 microg/l, 161.72 +/- 21.4 mean +/- S.D. for water and sediment, respectively) relative to that of inhabiting marine water and sediment employing atomic absorption spectrometry to determine the organ with highest capability of heavy metal accumulation. The influence of metal storage on light microscopic structure of that organ was investigated. Also, the ultrastructure localization of storage sites in the same organ was determined employing transmission electron microscopy. The digestive gland was shown to accumulate both metals at conccntrations that are several orders of magnitude higher than those in the surrounding marine water. The bioaccumulation capability of lead and cadmium was ranked in the following order; digestive gland > headfoot > shell for lead and digestive gland > shell > headfoot for cadmium. In spite of its evident highest metal storage capability, no histopathological changes were observed in the digestive gland of that marine prosobranch. Enlarged electron dense vesicles and many granules were observed in ultrathin sections in digestive cells of these snails and are suggested to be the sites of storage of detoxified metals. The results of that finding indicate the possibility of using the marine prosobranch N. saxtilis as biomonitor for heavy metal contaminants in the Red Sea.

  20. Comparative study between probe focussed sonication and conventional stirring in the evaluation of cadmium and copper in plants

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Sara; Fonseca, Luis P. [Technical University of Lisbon, Centro de Engenharia Quimica e Biologica, Instituto Superior Tecnico, Lisbon (Portugal); Capelo, Jose L. [University of Vigo at Ourense Campus, Analytical and Food Chemistry Department, Science Faculty, Ourense (Spain); Armas, Teresa; Vilhena, Fernanda; Goncalves, Maria L.S.; Mota, A.M. [Technical University of Lisbon, Centro de Quimica Estrutural, Instituto Superior Tecnico, Lisbon (Portugal); Pinto, Ana P. [University of Evora, Herdade Experimental da Mitra, ICAAM-Instituto de Ciencias Agrarias e Ambientais Mediterranicas, Evora (Portugal)

    2010-11-15

    Ultrasound (US)-assisted extraction has been widely used for metal ion extraction in plants due to its unique properties of decreased extraction time, minimal contamination, low reagent consumption and low cost. However, very few papers present a sound comparison between probe-focussed sonication and conventional stirring in the evaluation of metal ion extraction in plants. In this study, ultrasonic-assisted digestion has been evaluated and compared to magnetic stirring for total copper and cadmium determination by atomic absorption spectrometry in biological samples (plants, plankton and mussels). The same experimental conditions of sample amount and particle size, extractant solution and extraction time were applied for both ultrasound and magnetic stirring-assisted extraction methods in order to truly compare their effect on metal ion solubilisation. To gain further insight in this issue, dried and fresh plants were tested. The results obtained indicated that osmotic tension in cell walls, produced when dried and powdered samples were immersed in the extractant solution, had an important contribution to metal ion solubilisation, the enhancement due to US for the same purpose being negligible. (orig.)

  1. Synthesis, characterization and thermal studies of nickel (II), copper (II), zinc (II) and cadmium (II) complexes with some mixed ligands

    International Nuclear Information System (INIS)

    Mitra, Samiran; Kundu, Parimal; Singh, Rajkumar Bhubon

    1998-01-01

    Dichloro-(DCA) and trichloroacetate(TCA) -cyclic ligand morpholine (Morph)/thiomorpholine (Tmorph)/methylmorpholine (Mmorph)/dimethyl-piperazine (DMP) complexes of nickel (II), copper (II), zinc (II) and cadmium (II) with the compositions [Ni(tmorph) 2 (DCA) 2 ], [Ni(tmorph) 2 (TCA) 2 ].2H 2 O, [Cu(DMP) 2 (TCA) 2 ],[ML 2 X 2 ].nH 2 O where M=Zn II or Cd II , L=Morph, DMP or tmorph and X=DCA or TCA and n=O except in case of [Cd (Morph) 2 (TCA) 2 ] where n=1 have been synthesised. Some intermediate complexes have been isolated by temperature arrest technique (pyrolysis) and characterised. Configurational and conformational changes have been studied by elemental analyses, IR and electronic spectra, magnetic moment data (in the case of Ni(II) and Cu(II) complexes) and thermal analysis. E a * , ΔH, and ΔS for the decomposition reaction of these complexes are evaluated and the stability of the complexes with respect to activation energy has also been compared. The linear correlation has been found between E a * and ΔS for the decomposition of the complexes. (author)

  2. Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung-Seok; Lee, Pyeong-Koo [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of). Geologic Environment Div.; Kong, In Chul [Yeungnam Univ., Kyungbuk (Korea, Republic of). Dept. of Environmental Engineering

    2012-09-15

    The sensitivities of four different kinds of bioassays to the toxicities of arsenite, chromate, cadmium, and copper were compared. The different bioassays exhibited different sensitivities, i.e., they responded to different levels of toxicity of each of the different metals. However, with the exception of the {alpha}-glucosidase enzyme activity, arsenite was the most toxic compound towards all the tested organisms, exhibiting the highest toxic effect on the seeds of Lactuca, with an EC{sub 50} value of 0.63 mg/L. The sensitivities of Lactuca and Raphanus were greater than the sensitivities of two other kinds of seeds tested. Therefore, these were the seeds appropriate for use in a seed germination assay. A high revertant mutagenic ratio (5:1) of Salmonella typhimurium was observed with an arsenite concentration of 0.1 {mu}g/plate, indicative of a high possibility of mutagenicity. These different results suggested that a battery of bioassays, rather than one bioassay alone, is needed as a more accurate and better tool for the bioassessment of environmental pollutants. (orig.)

  3. Early defense responses in the freshwater bivalve Corbicula fluminea exposed to copper and cadmium: Transcriptional and histochemical studies.

    Science.gov (United States)

    Bigot, Aurélie; Minguez, Laëtitia; Giambérini, Laure; Rodius, François

    2011-11-01

    The aim of the present study was to measure the early effects of copper (10 and 50 μg L(-1)), cadmium (2, 10, and 50 μg L(-1)) and mixtures of these metals in the freshwater bivalve Corbicula fluminea exposed for 12 h in laboratory. Transcription levels of superoxide dismutase (SOD), catalase (CAT), selenium-dependent glutathione peroxidase (Se-GPx), pi-class glutathione S-transferase (pi-GST), metallothionein (MT) in digestive gland and gills, and response of lysosomal system and neutral lipids in digestive gland were determined after the exposure period. Results showed that lysosomal system, neutral lipids content, and mRNA levels were modified, suggesting their early response against oxidative stress and their important role in cell integrity. The integrated biomarker response was calculated and showed that the effects of the combinations of Cu and Cd on the biomarker responses are additive. MT and pi-GST mRNA expression correspond to the largest ranges of response. As efficient biomarkers should have an early warning capacity, SOD, CAT, Se-GPx, pi-GST, MT transcripts levels, lysosomal system, and neutral lipids could be used as biomarkers of metal contamination in the aquatic environment. Copyright © 2010 Wiley Periodicals, Inc.

  4. Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper

    International Nuclear Information System (INIS)

    Gonzalez-Mendoza, Daniel; Moreno, Adriana Quiroz; Zapata-Perez, Omar

    2007-01-01

    To evaluate the role of phytochelatins and metallothioneins in heavy metal tolerance of black mangrove Avicennia germinans, 3-month-old seedlings were exposed to cadmium or copper for 30 h, under hydroponic conditions. Degenerate Mt2 and PCS primers were synthesized based on amino acid and nucleotide alignment sequences reported for Mt2 and PCS in other plant species found in GenBank. Total RNA was isolated from A. germinans leaves and two partial fragments of metallothionein and phytochelatin synthase genes were isolated. Gene expression was evaluated with reverse transcripatase-polymerase chain reaction (RT-PCR) amplification technique. Temporal analysis showed that low Cd 2+ and Cu 2+ concentrations caused a slight (but not significant) increase in AvMt2 expression after a 16 h exposure time, while AvPCS expression showed a significant increase under the same conditions but only after 4 h. Results strongly suggest that the rapid increase in AvPCS expression may contribute to Cd 2+ and Cu 2+ detoxification. Moreover, we found that A. germinans has the capacity to over-express both genes (AvMt2 and AvPCS), which may constitute a coordinated detoxification response mechanism targeting non-essential metals. Nonetheless, our results confirm that AvPCS was the most active gene involved in the regulation of essential metals (e.g., Cu 2+ ) in A. germinans leaves

  5. The contribution of ecdysis to the fate of copper, zinc and cadmium in grass shrimp, Palaemonetes pugio holthius

    Energy Technology Data Exchange (ETDEWEB)

    Keteles, K.A.; Fleeger, J.W. [Louisiana State Univ., Dept. of Biological Sciences, Baton Rouge, LA (United States)

    2001-07-01

    Depuration through ecdysis by grass shrimp, Palaemonetes pugio, was examined by exposure to a sublethal mixture of copper, zinc and cadmium for 72 h, followed by placement in uncontaminated water to molt. Percent eliminated with the exuviae varied for each metal; of the total intermolt body burden, 11% Cu, 18% Zn and 26% Cd was associated with the exuviae. Cu concentrations of intermolt exoskeletons were significantly higher than of the exuviae of post-ecdysis shrimp suggesting that Cu contained in the exoskeleton was reabsorbed before molting. Exuvial Cd concentration was not significantly different than the concentration of the intermolt exoskeleton, suggesting that most Cd in the exoskeleton was depurated with the exuviae. Although Zn whole-body burdens were lower after a molt, Zn losses were most likely due to excretion because exuvial concentrations were significantly lower than in the intermolt exoskeleton. Cu, Cd and Zn concentrations in exuvaie shed in metal-enriched water were significantly higher due to adsorption than exuvaie produced in uncontaminated water. (Author)

  6. Combined toxicity of cadmium and copper in Avicennia marina seedlings and the regulation of exogenous jasmonic acid.

    Science.gov (United States)

    Yan, Zhongzheng; Li, Xiuzhen; Chen, Jun; Tam, Nora Fung-Yee

    2015-03-01

    Seedlings of Avicennia marina were exposed to single and combined metal treatments of cadmium (Cd) and copper (Cu) in a factorial design, and the combined toxicity of Cu and Cd was tested. The effects of the exogenous jasmonic acid (JA) on chlorophyll concentration, lipid peroxidation, Cd and Cu uptake, antioxidative capacity, endogenous JA concentration, and type-2 metallothionein gene (AmMT2) expression in seedlings of A. marina exposed to combined metal treatments were also investigated. A binary mixture of low-dose Cd (9 µmolL(-1)) and high-dose Cu (900 µmolL(-1)) showed toxicity to the seedlings, indicated by the significant augmentation in leaf malondialdehyde (MDA) and reduction in leaf chlorophylls. The toxicity of the combined metals was significantly alleviated by the addition of exogenous JA at 1 µmolL(-1), and the chlorophyll and MDA contents were found to be restored to levels comparable to those of the control. Compare to treatment with Cd and Cu only, 1 and 10 µmolL(-1) JA significantly enhanced the ascorbate peroxidase activity, and 10 µmolL(-1) JA significantly decreased the uptake of Cd in A. marina leaves. The relative expression of leaf AmMT2 gene was also significantly enhanced by 1 and 10 µmolL(-1) JA, which helped reduce Cd toxicity in A. marina seedlings. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper.

    Science.gov (United States)

    Gonzalez-Mendoza, Daniel; Moreno, Adriana Quiroz; Zapata-Perez, Omar

    2007-08-01

    To evaluate the role of phytochelatins and metallothioneins in heavy metal tolerance of black mangrove Avicennia germinans, 3-month-old seedlings were exposed to cadmium or copper for 30 h, under hydroponic conditions. Degenerate Mt2 and PCS primers were synthesized based on amino acid and nucleotide alignment sequences reported for Mt2 and PCS in other plant species found in GenBank. Total RNA was isolated from A. germinans leaves and two partial fragments of metallothionein and phytochelatin synthase genes were isolated. Gene expression was evaluated with reverse transcripatase-polymerase chain reaction (RT-PCR) amplification technique. Temporal analysis showed that low Cd2+ and Cu2+ concentrations caused a slight (but not significant) increase in AvMt2 expression after a 16 h exposure time, while AvPCS expression showed a significant increase under the same conditions but only after 4h. Results strongly suggest that the rapid increase in AvPCS expression may contribute to Cd2+ and Cu2+ detoxification. Moreover, we found that A. germinans has the capacity to over-express both genes (AvMt2 and AvPCS), which may constitute a coordinated detoxification response mechanism targeting non-essential metals. Nonetheless, our results confirm that AvPCS was the most active gene involved in the regulation of essential metals (e.g., Cu2+) in A. germinans leaves.

  8. Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Mendoza, Daniel [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico); Moreno, Adriana Quiroz [Unidad de biotecnologia, CICY, Merida, Yucatan (Mexico); Zapata-Perez, Omar [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico)]. E-mail: ozapata@mda.cinvestav.mx

    2007-08-01

    To evaluate the role of phytochelatins and metallothioneins in heavy metal tolerance of black mangrove Avicennia germinans, 3-month-old seedlings were exposed to cadmium or copper for 30 h, under hydroponic conditions. Degenerate Mt2 and PCS primers were synthesized based on amino acid and nucleotide alignment sequences reported for Mt2 and PCS in other plant species found in GenBank. Total RNA was isolated from A. germinans leaves and two partial fragments of metallothionein and phytochelatin synthase genes were isolated. Gene expression was evaluated with reverse transcripatase-polymerase chain reaction (RT-PCR) amplification technique. Temporal analysis showed that low Cd{sup 2+} and Cu{sup 2+} concentrations caused a slight (but not significant) increase in AvMt2 expression after a 16 h exposure time, while AvPCS expression showed a significant increase under the same conditions but only after 4 h. Results strongly suggest that the rapid increase in AvPCS expression may contribute to Cd{sup 2+} and Cu{sup 2+} detoxification. Moreover, we found that A. germinans has the capacity to over-express both genes (AvMt2 and AvPCS), which may constitute a coordinated detoxification response mechanism targeting non-essential metals. Nonetheless, our results confirm that AvPCS was the most active gene involved in the regulation of essential metals (e.g., Cu{sup 2+}) in A. germinans leaves.

  9. Dietary exposure to cadmium, lead and nickel among students from the south-east region of Poland

    Directory of Open Access Journals (Sweden)

    Zbigniew Marzec

    2014-11-01

    Full Text Available Dietary intake of cadmium, lead and nickel was determined among students from three universities in Lublin to assess the levels of exposure to these contaminants compared to PTWI and TDI values. The study was performed in 2006–2010 and involved 850 daily food rations of students from the south–east region of Poland. The technique of 24-hour dietary recall and diet duplicates was used. Cadmium, lead and nickel complexes with ammonium-pyrrolidindithiocarbamate were formed and extracted to the organic phase with 4-methylpentan-2-one – MIBK in which their content was measured by flame atomic absorption spectrometry. The highest intake of the elements studied was observed in 2008. The data show that in none of the cases, the level of intake reached 70 % of PTWI/TDI values and thus the risk of developing diseases related to high exposure to these toxic metals absorbed from foodstuffs was low. The parameters of methods were checked during determinations by adding standard solutions to the samples before mineralization and by using two reference materials: Total diet ARC/CL HDP and Bovine muscle RM NIST 8414. The dietary exposure to lead and cadmium has significantly decreased in recent years whereas the exposures to nickel remain on stable levels.

  10. The marine macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II) removal: Kinetic and equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Lodeiro, P. [Departamento de Quimica Fisica e Enxeneria Quimica I, Universidade da Coruna, Alejandro de la Sota 1, 15071 A Coruna (Spain); Barriada, J.L. [Departamento de Quimica Fisica e Enxeneria Quimica I, Universidade da Coruna, Alejandro de la Sota 1, 15071 A Coruna (Spain); Herrero, R. [Departamento de Quimica Fisica e Enxeneria Quimica I, Universidade da Coruna, Alejandro de la Sota 1, 15071 A Coruna (Spain)]. E-mail: erob@udc.es; Sastre de Vicente, M.E. [Departamento de Quimica Fisica e Enxeneria Quimica I, Universidade da Coruna, Alejandro de la Sota 1, 15071 A Coruna (Spain)

    2006-07-15

    This work reports kinetic and equilibrium studies of cadmium(II) and lead(II) adsorption by the brown seaweed Cystoseira baccata. Kinetic experiments demonstrated rapid metal uptake. Kinetic data were satisfactorily described by a pseudo-second order chemical sorption process. Temperature change from 15 to 45 {sup o}C showed small variation on kinetic parameters. Langmuir-Freundlich equation was selected to describe the metal isotherms and the proton binding in acid-base titrations. The maximum metal uptake values were around 0.9 mmol g{sup -1} (101 and 186 mg g{sup -1} for cadmium(II) and lead(II), respectively) at pH 4.5 (raw biomass), while the number of weak acid groups were 2.2 mmol g{sup -1} and their proton binding constant, K {sub H}, 10{sup 3.67} (protonated biomass). FTIR analysis confirmed the participation of carboxyl groups in metal uptake. The metal sorption was found to increase with the solution pH reaching a plateau above pH 4. Calcium and sodium nitrate salts in solution were found to affect considerably the metal biosorption. - Marine macroalgae show promise for biosorption of lead and cadmium.

  11. Effect of Cadmium and Lead on Quantitative and Essential Oil Traits of Peppermint (Mentha piperita L.

    Directory of Open Access Journals (Sweden)

    Shahram AMIRMORADI

    2012-11-01

    Full Text Available Cadmium (Cd and lead (Pb are particularly noteworthy metals that can pollute the air, soil and water contributing to serious environmental problems. Tests were done on concentrations of Pb and Cd; treatments tested in the experiment were as follows; Cd concentrations (10, 20, 40, 60, 80, 100 ppm and concentrations of Pb (100, 300, 600, 900, 1200, 1500 ppm and control. Tests were done on Mentha piperita L. in a greenhouse, arranged as a randomized complete block design with three replications. Rhizomes with uniform weight were planted in pots 30�50�35 cm. Plants were irrigated with Cd and Pb chloride after germination of all rhizomes. Results demonstrated that with increasing concentrations of Cd and Pb there was a decrease in fresh and dry weights, main stem height, leaf area per plant, leaf number, number of nodes per main stem and essential oil of peppermint compared to the control. Fresh weights were decreased at 100 ppm of Cd and 1500 ppm of Pb, 18.16% and 24.55%, respectively compared to the control at the first harvest. At the second harvest, these decreases were 15.24% and 32.72%, respectively. At the highest concentrations of Cd and Pb, dry weight of peppermint was dropped 22.92% and 39.01% at the first harvest. For the second harvest, decreased dry weights were 25.88% and 26.77% respectively. It seems that peppermint can tolerate waste water or soil polluted with medium range of Cd and Pb concentrations and the essential oil percentage was not affected by these concentrations.

  12. A proposed methodology for the assessment of arsenic, nickel, cadmium and lead levels in ambient air

    International Nuclear Information System (INIS)

    Santos, Germán; Fernández-Olmo, Ignacio

    2016-01-01

    Air quality assessment, required by the European Union (EU) Air Quality Directive, Directive 2008/50/EC, is part of the functions attributed to Environmental Management authorities. Based on the cost and time consumption associated with the experimental works required for the air quality assessment in relation to the EU-regulated metal and metalloids, other methods such as modelling or objective estimation arise as competitive alternatives when, in accordance with the Air Quality Directive, the levels of pollutants permit their use at a specific location. This work investigates the possibility of using statistical models based on Partial Least Squares Regression (PLSR) and Artificial Neural Networks (ANNs) to estimate the levels of arsenic (As), cadmium (Cd), nickel (Ni) and lead (Pb) in ambient air and their application for policy purposes. A methodology comprising the main steps that should be taken into consideration to prepare the input database, develop the model and evaluate their performance is proposed and applied to a case of study in Santander (Spain). It was observed that even though these approaches present some difficulties in estimating the individual sample concentrations, having an equivalent performance they can be considered valid for the estimation of the mean values – those to be compared with the limit/target values – fulfilling the uncertainty requirements in the context of the Air Quality Directive. Additionally, the influence of the consideration of input variables related to atmospheric stability on the performance of the studied statistical models has been determined. Although the consideration of these variables as additional inputs had no effect on As and Cd models, they did yield an improvement for Pb and Ni, especially with regard to ANN models. - Highlights: • EU encourages modelling techniques over measurements for air quality assessment. • A methodology for minor pollutants assessment by statistical modelling is presented.

  13. Arsenic, cadmium, lead and mercury in canned sardines commercially available in eastern Kentucky, USA

    International Nuclear Information System (INIS)

    Shiber, John G.

    2011-01-01

    Research highlights: → Total As, Cd, Pb and Hg in canned sardines within ranges of other studies. → As highest in samples from Norway (1.87 μg/g) and Thailand (1.63 μg/g). → Cd highest in Moroccan (0.07 μg/g), Pb in Canadian (0.27 μg/g); Hg not detected. → Lack of established limits for As and Cd in fish restricts interpretation of results. → Rise of small pelagics in human diet warrants more scrutiny on their metal content. - Abstract: Seventeen samples of canned sardines, originating from six countries and sold in eastern Kentucky, USA, were analyzed in composites of 3-4 fish each for total arsenic (As), cadmium (Cd) and lead (Pb) by graphite furnace atomic absorption spectrophotometry (AAS) and for mercury (Hg) by thermal decomposition amalgamation and AAS. Results in μg/g wet: As 0.49-1.87 (mean: 1.06), Cd < 0.01-0.07 (0.03), Pb < 0.06-0.27 (0.11), Hg ND < 0.09. Values fall generally within readings reported by others, but no internationally agreed upon guidelines have yet been set for As or Cd in canned or fresh fish. The incidence of cancers and cardiovascular diseases associated with As ingestion is extraordinarily high here. With the role of food-borne As in human illness presently under scrutiny and its maximum allowable limits in fish being reviewed, more studies of this nature are recommended, especially considering the potential importance of small pelagic fishes as future seafood of choice.

  14. Electrochemical determination of cadmium and lead on pristine single-walled carbon nanotube electrodes.

    Science.gov (United States)

    Bui, Minh-Phuong Ngoc; Li, Cheng Ai; Han, Kwi Nam; Pham, Xuan-Hung; Seong, Gi Hun

    2012-01-01

    A flexible, transparent, single-walled carbon nanotube (SWCNT) film electrode was prepared by vacuum filtering methods, followed by photolithographic patterning of a photoresist polymer on the SWCNT surface. The morphology of the SWCNT film electrode surface was characterized using a field-emission scanning electron microscope coupled to an energy-dispersive X-ray spectrophotometer. The electrodes were successfully used as a mercury-free electrochemical sensor for individual and simultaneous detection of cadmium (Cd(2+)) and lead (Pb(2+)) in 0.02 M HCl by square-wave stripping voltammetry. Some important operational parameters, including deposition time, deposition potential, square-wave amplitude, and square wave-frequency were optimized for the detection of Cd(2+) and Pb(2+). The newly developed sensor showed good linear behavior in the examined concentration. For individual Cd(2+) and Pb(2+) ion detection, the linear range was found from 0.033 to 0.228 ppm with detection limits of 0.7 ppb (R(2) = 0.985) for Cd(2+) and 0.8 ppb (R(2) = 0.999) for Pb(2+). For simultaneous detection, the linear range was found from 0.033 to 0.280 ppm with a limit of detection of 2.2 ppb (R(2) = 0.976) and 0.6 ppb (R(2) = 0.996) for Cd(2+) and Pb(2+), respectively. SWCNT film electrodes offered favorable reproducibility of ± 5.4% and 4.3% for Cd(2+) and Pb(2+), respectively. The experiments demonstrated the applicability of carbon nanotubes, specifically in the preparation of SWCNT films. The results suggest that the proposed flexible SWCNT film electrodes can be applied as simple, efficient, cost-effective, and/or disposable electrodes for simultaneous detection of heavy metal ions.

  15. Determination of lead, cadmium and nickel in hennas and other hair dyes sold in Turkey.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-08-01

    The concentrations of lead, nickel and cadmium in various hennas and synthetic hair dyes were determined by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS). For this purpose, 1 g of sample was digested using 4 mL of hydrogen peroxide (30%) and 8 mL of nitric acid (65%). The digests were diluted to 15 mL and the analytes were determined by HR-CS GFAAS. All determinations of Pb and Cd were performed using NH4H2PO4 as a modifier. The analytes in hair certified reference materials (CRMs) were found within the uncertainty limits of the certified values. In addition, the analyte concentrations added to hair dye were recovered between 95 and 110%. The limits of detection of the method were 48.90, 3.90 and 12.15 ng g(-1) for Pb, Cd and Ni, respectively and the characteristic concentrations were 8.70, 1.42 and 6.30 ng g(-1), respectively. Finally, the concentrations of the three analytes in various synthetic hair dyes with different brands, shades and formulae as well as in two henna varieties were determined using aqueous standards for calibration. The concentrations of Pb, Cd and Ni in hair dyes were in the ranges of LOD-0.56 μg g(-1), LOD-0.011 ng g(-1) and 0.030-0.37 μg g(-1), respectively, whereas those in the two hennas were 0.60-0.93 μg g(-1), 0.033-0.065 ng g(-1) and 0.49-1.06 μg g(-1), respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Simultaneous determination of lead, cadmium and zinc in Metro Manila air particulates by anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Castaneda, Soledad S.

    1999-02-01

    Air particulate samples were collected from two monitoring stations in Metro Manila using a 'Gent' type dichotomous sampler for pollutant source apportionment studies. Samples were collected in two fractions: a fine fraction with aerodynamic diameter, d p p 3 : HCL: HF, 4: 1: 1) for at least 20 minutes with subsequent heating at lower power settings for a total of 20 minutes more, effectively decomposed the sample with complete recovery of the elements. The digests were evaporated to near dryness to eliminate the troublesome effect of HF and HNO 3 and to decrease acidity of the electrolytic solution to pH ≥ 2. At pH 2, the addition of at least 0.01 M KCl was needed to improve sensitivity. The formation of Zn-Cu intermetallic compounds which interfered in the accurate quantitation of zinc was eliminated by addition of gallium as a 'third' element. The amount of gallium needed varied from sample to sample and was affected by the pH of the solution. The DPASV parameters found to be optimum for the analysis of the air particulate samples are as follows: pulse amplitude, 50 mV; scan rate, 10 mV/sec; E dep , - 1.30 V; t dep , 2 min; and RDE rotation rate, 1500 rpm. Detection limits of 0.2 ppb for zinc, 0.6 ppb for lead, and 0.05 ppb for cadmium in the sample matrix were obtained. The standard addition method was found to be reliable for the quantitative determination of the analytes in the sample. All R 2 values obtained were > 0.9900 at 95% confidence level. Validation of the established analytical methodology by analyzing certified reference standards and performing parallel analysis by GF-AAS and flame AAS showed acceptable accuracy of the DPASV measurements. (Author)

  17. Hearing loss in children with e-waste lead and cadmium exposure.

    Science.gov (United States)

    Liu, Yu; Huo, Xia; Xu, Long; Wei, Xiaoqin; Wu, Wengli; Wu, Xianguang; Xu, Xijin

    2018-05-15

    Environmental chemical exposure can cause neurotoxicity and has been recently linked to hearing loss in general population, but data are limited in early life exposure to lead (Pb) and cadmium (Cd) especially for children. We aimed to evaluate the association of their exposure with pediatric hearing ability. Blood Pb and urinary Cd were collected form 234 preschool children in 3-7years of age from an electronic waste (e-waste) recycling area and a reference area matched in Shantou of southern China. Pure-tone air conduction (PTA) was used to test child hearing thresholds at frequencies of 0.25, 0.5, 1, 2, 4 and 8kHz. A PTA≥25dB was defined as hearing loss. A higher median blood Pb level was found in the exposed group (4.94±0.20 vs 3.85±1.81μg/dL, phearing loss (28.8% vs 13.6%, phearing thresholds at average low and high frequency, and single frequency of 0.5, 1 and 2kHz were all increased in the exposed group. Positive correlations of child age and nail biting habit with Pb, and negative correlations of parent education level and child washing hands before dinner with Pb and Cd exposure were observed. Logistic regression analyses showed the adjusted OR of hearing loss for Pb exposure was 1.24 (95% CI: 1.029, 1.486). Our data suggest that early childhood exposure to Pb may be an important risk factor for hearing loss, and the developmental auditory system might be affected in e-waste polluted areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Time trends in burdens of cadmium, lead, and mercury in the population of northern Sweden

    International Nuclear Information System (INIS)

    Wennberg, Maria; Lundh, Thomas; Bergdahl, Ingvar A.; Hallmans, Goeran; Jansson, Jan-Hakan; Stegmayr, Birgitta; Custodio, Hipolito M.; Skerfving, Staffan

    2006-01-01

    The time trends of exposure to heavy metals are not adequately known. This is a worldwide problem with regard to the basis for preventive actions and evaluation of their effects. This study addresses time trends for the three toxic elements cadmium (Cd), mercury (Hg), and lead (Pb). Concentrations in erythrocytes (Ery) were determined in a subsample of the population-based MONICA surveys from 1990, 1994, and 1999 in a total of 600 men and women aged 25-74 years. The study took place in the two northernmost counties in Sweden. To assess the effect of changes in the environment, adjustments were made for life-style factors that are determinants of exposure. Annual decreases of 5-6% were seen for Ery-Pb levels (adjusted for age and changes in alcohol intake) and Ery-Hg levels (adjusted for age and changes in fish intake). Ery-Cd levels (adjusted for age) showed a similar significant decrease in smoking men. It is concluded that for Pb and maybe also Hg the actions against pollution during recent decades have caused a rapid decrease of exposure; for Hg the decreased use of dental amalgam may also have had an influence. For Cd, the decline in Ery-Cd was seen only in smokers, indicating that Cd exposure from tobacco has decreased, while other environmental sources of Cd have not changed significantly. To further improve the health status in Sweden, it is important to decrease the pollution of Cd, and actions against smoking in the community are important

  19. [Evaluation of cadmium and lead intake from vegetables by the consumer in the province of Katowice].

    Science.gov (United States)

    Lorek, E

    1994-01-01

    The amounts of Cd and Pb consumed with vegetables were determined in four groups of households: workmen, workmen-peasants, farmers and pensioned workers and persons receiving disability allowances. The chemical analysis was done, in the first place, of vegetables with edible roots in which Pb and Cd were determined by atomic absorption spectrophotometry. The vegetables were bought in 1986-1987 by the Province Gardeners Cooperative in the Province of Katowice (mining and industrial region) and from the Province of Katowice and Warsaw. The amount of Cd or Pb found in weight unit of a given vegetable multiplied by the amount of this vegetable consumed in a week served as a measure of the amount of these metals taken by the consumer. After comparing of this amount with the acceptable dose the per cent of this dose obtained from vegetables was calculated. The study showed that the vegetables brought from other provinces than Katowice contained several times less Cd and Pb than those grown in the Province of Katowice. The lowest intake of Cd and Pb with vegetables was found in the households of workmen and the highest one in the households of farmers who consumed nearly exclusively vegetables grown on their farms. The vegetables from the Province of Katowice accounted in farmer families for 40% of the acceptable maximal weekly intake of cadmium, and the intake of lead was even above this maximal level. The differences in the weekly intake of these metals between the studied groups of households were due to differences in the amounts of consumed vegetables.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Determination of lead, cadmium and arsenic in infusion tea cultivated in north of Iran

    Directory of Open Access Journals (Sweden)

    Shekoohiyan Sakine

    2012-12-01

    Full Text Available Abstract Tea is one of the most common drinks in all over the world. Rapid urbanization and industrialization in recent decades has increased heavy metals in tea and other foods. In this research, heavy metal contents such as lead (Pb, cadmium (Cd and arsenic (As were determined in 105 black tea samples cultivated in Guilan and Mazandaran Provinces in north of Iran and their tea infusions. The amount of heavy metals in black tea infusions were analyzed using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP - AES. The mean ± SD level of Pb in 5, 15 and 60 min in infusion tea samples were 0.802 ± 0.633, 0.993 ± 0.667 and 1.367 ± 1.06 mg/kg of tea dry weight, respectively. The mean level of Cd in 5, 15 and 60 min in infusion tea samples were 0.135 ± 0.274, 0.244 ± 0.46 and 0.343 ± 0.473 mg/kg of tea dry weight, respectively. The mean level of As in 5, 15 and 60 min in infusion tea samples were 0.277 ± 0.272, 0.426 ± 0.402 and 0.563 ± 0.454 mg/kg of tea dry weight, respectively. Also, the results showed that the locations and the infusion times influenced upon the amount of these metals (P 

  1. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China.

    Science.gov (United States)

    Williams, Paul N; Lei, Ming; Sun, Guoxin; Huang, Qing; Lu, Ying; Deacon, Claire; Meharg, Andrew A; Zhu, Yong-Guan

    2009-02-01

    Paddy rice has been likened to nictiana sp in its ability to scavenge cadmium (Cd) from soil, whereas arsenic (As) accumulation is commonly an order of magnitude higher than in other cereal crops. In areas such as those found in parts of Hunan province in south central China, base-metal mining activities and rice farming coexist. Therefore there is a considerable likelihood that lead (Pb), in addition to Cd and As, will accumulate in rice grown in parts of this region above levels suitable for human consumption. To test this hypothesis, a widespread provincial survey of rice from mine spoilt paddies (n = 100), in addition to a follow-up market grain survey (n = 122) conducted in mine impacted areas was undertaken to determine the safety of local rice supply networks. Furthermore, a specific Cd, As, and Pb biogeochemical survey of paddy soil and rice was conducted within southern China, targeting sites impacted by mining of varying intensities to calibrate rice metal(loid) transfer models and transfer factors that can be used to predict tissue loading. Results revealed a number of highly significant correlations between shoot, husk, bran, and endosperm rice tissue fractions and that rice from mining areas was enriched in Cd, As, and Pb. Sixty-five, 50, and 34% of all the mine-impacted field rice was predicted to fail national food standards for Cd, As, and Pb, respectively. Although, not as elevated as the grains from the mine-impacted field survey, it was demonstrated that metal(loid) tainted rice was entering food supply chains intended for direct human consumption.

  2. Cadmium and lead levels consumed by patients with oral hospital diets prescriptions.

    Science.gov (United States)

    Manzoli de Sá, Júlia S; Fernandes, Isabela C; Moreira, Daniele C F; Milani, Raquel F; Morgano, Marcelo A; Quintaes, Késia Diego

    2014-01-01

    The levels of cadmium (Cd) and lead (Pb) in foods should be monitored as a function of health risks. To evaluate Cd and Pb levels in oral hospital diets and in an oral food complement (OFC) according to their respective consumption by patients, and to estimate the patient's exposition risk. The levels of Cd and Pb were determined by ICP-OES in samples of regular, blend, soft and renal diets and OFC, collected on 6 weekdays. About 14.3% of the diets and OFC served were analyzed. 163 patients participated, with mean weights and ages of 62.7 kg and 56.5 years, respectively, the majority being men (59.5%). The mean Cd content consumed was greater for men fed the regular and blend diets and similar amongst the sexes for the soft diet. The consumption of Cd (max. 21.02 μg/day) was below the provisional tolerable monthly intake (PTMI). The mean Pb ingested (max. 199.49 μg/day) was similar amongst the sexes. The soft diet showed the highest Pb content in September/2010, whereas the other showed no variation according to season. In September/2010 and January/2011, the soft and regular diets associated with the OFC offered 207.50 and 210.50 μg/day of Pb, respectively. The combination of the diet with the OFC increased the risk of an excessive ingestion of Pb, and the vulnerability of the patients to an excessive exposition to Pb could be greater due to water and medications. It was concluded that whereas the calculated ingestion of Cd conformed to the PTMI, the Pb level and ingestion represented a risk to the health of the patients.

  3. Sensitivity of mottled sculpins (Cottus bairdi) and rainbow trout (Onchorhynchus mykiss) to acute and chronic toxicity of cadmium, copper, and zinc.

    Science.gov (United States)

    Besser, John M; Mebane, Christopher A; Mount, David R; Ivey, Chris D; Kunz, James L; Greer, I Eugene; May, Thomas W; Ingersoll, Christopher G

    2007-08-01

    Studies of fish communities of streams draining mining areas suggest that sculpins (Cottus spp.) may be more sensitive than salmonids to adverse effects of metals. We compared the toxicity of zinc, copper, and cadmium to mottled sculpin (C. bairdi) and rainbow trout (Onchorhynchus mykiss) in laboratory toxicity tests. Acute (96-h) and early life-stage chronic (21- or 28-d) toxicity tests were conducted with rainbow trout and with mottled sculpins from populations in Minnesota and Missouri, USA, in diluted well water (hardness = 100 mg/L as CaCO3). Acute and chronic toxicity of metals to newly hatched and swim-up stages of mottled sculpins differed between the two source populations. Differences between populations were greatest for copper, with chronic toxicity values (ChV = geometric mean of lowest-observed-effect concentration and no-observed-effect concentration) of 4.4 microg/L for Missouri sculpins and 37 microg/L for Minnesota sculpins. Cadmium toxicity followed a similar trend, but differences between sculpin populations were less marked, with ChVs of 1.1 microg/L (Missouri) and 1.9 microg/L (Minnesota). Conversely, zinc was more toxic to Minnesota sculpins (ChV = 75 microg/L) than Missouri sculpins (chronic ChV = 219 microg/L). Species-average acute and chronic toxicity values for mottled sculpins were similar to or lower than those for rainbow trout and indicated that mottled sculpins were among the most sensitive aquatic species to toxicity of all three metals. Our results indicate that current acute and chronic water quality criteria for cadmium, copper, and zinc adequately protect rainbow trout but may not adequately protect some populations of mottled sculpins. Proposed water quality criteria for copper based on the biotic ligand model would be protective of both sculpin populations tested.

  4. Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia

    International Nuclear Information System (INIS)

    Petkovšek, Samar Al Sayegh; Pokorny, Boštjan

    2013-01-01

    Cd and Pb contents were determined in 699 samples of fruiting bodies of 55 mushrooms species, collected in the period 2000–2007 in the vicinity of the largest Slovenian thermal power plant (the Šalek Valley) and near an abandoned lead smelter (the Upper Meža Valley). The present study is the first regarding lead and cadmium in mushrooms from those exposed areas. Therefore, there was a significant lack of prior data. Among 55 studied mushroom species 36 species are edible and important from an ecotoxicological perspective. However, the remaining non-edible species are important for bioindication and allowed us to compare our results with other studies carried out in other polluted areas in Europe. The highest contents of Cd were found in Agaricus arvensis Schff.: Fr. (117 mg/kg dw) and Agaricus silvicola L.: Fr. (67.9 mg/kg dw), while the highest contents of Pb were found in Macrolepiota procera (Scop.) Singer (53.8 mg/kg dw) and Lycoperdon perlatum Pers. (50 mg/kg dw), respectively. Considering the high contents of both metals in fruiting bodies of edible fungi, together with FAO/WHO directives on tolerable levels of weekly intake of Pb/Cd by humans, it is evident that consumption of some mushroom species originating from both study areas may pose a significant human health risk. A. arvensis Schff.: Fr., A. silvicola L.: Fr. and Cortinarius caperatus (Pers.) Fr. originating from the Šalek Valley, and Armillaria mellea Vahl. P. Kumm., Boletus edulis Bull., L. perlatum Pers., Leccinum versipelle (Fr. and Hök) Snell, and M. procera (Scop.) Singer originating from the Upper Meža Valley should not be consumed at all. Our findings are consistent with some other studies, which emphasized that mushrooms from heavily polluted areas, such as in the vicinity of smelters, accumulate extremely high amounts of metals, and should therefore be omitted from human consumption. - Highlights: ► The Pb contents were higher in saprophytic fungi in comparison with mycorrhizal

  5. Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Petkovšek, Samar Al Sayegh, E-mail: samar.petkovsek@erico.si; Pokorny, Boštjan

    2013-01-15

    Cd and Pb contents were determined in 699 samples of fruiting bodies of 55 mushrooms species, collected in the period 2000–2007 in the vicinity of the largest Slovenian thermal power plant (the Šalek Valley) and near an abandoned lead smelter (the Upper Meža Valley). The present study is the first regarding lead and cadmium in mushrooms from those exposed areas. Therefore, there was a significant lack of prior data. Among 55 studied mushroom species 36 species are edible and important from an ecotoxicological perspective. However, the remaining non-edible species are important for bioindication and allowed us to compare our results with other studies carried out in other polluted areas in Europe. The highest contents of Cd were found in Agaricus arvensis Schff.: Fr. (117 mg/kg dw) and Agaricus silvicola L.: Fr. (67.9 mg/kg dw), while the highest contents of Pb were found in Macrolepiota procera (Scop.) Singer (53.8 mg/kg dw) and Lycoperdon perlatum Pers. (50 mg/kg dw), respectively. Considering the high contents of both metals in fruiting bodies of edible fungi, together with FAO/WHO directives on tolerable levels of weekly intake of Pb/Cd by humans, it is evident that consumption of some mushroom species originating from both study areas may pose a significant human health risk. A. arvensis Schff.: Fr., A. silvicola L.: Fr. and Cortinarius caperatus (Pers.) Fr. originating from the Šalek Valley, and Armillaria mellea Vahl. P. Kumm., Boletus edulis Bull., L. perlatum Pers., Leccinum versipelle (Fr. and Hök) Snell, and M. procera (Scop.) Singer originating from the Upper Meža Valley should not be consumed at all. Our findings are consistent with some other studies, which emphasized that mushrooms from heavily polluted areas, such as in the vicinity of smelters, accumulate extremely high amounts of metals, and should therefore be omitted from human consumption. - Highlights: ► The Pb contents were higher in saprophytic fungi in comparison with mycorrhizal

  6. The determination of cadmium, lead and vanadium by high resolution ICP-MS in Antarctic snow samples

    Energy Technology Data Exchange (ETDEWEB)

    Lanza, F. [Joh. Gutenberg Univ., Mainz (Germany). Inst. fuer Anorganische und Analytische Chemie; Trincherini, P. [European Union Joint Research Centre, Ispra, VA (Italy). Inst. of Environment

    2000-02-01

    Double focusing ICP-MS was successfully used in this research for the direct determination of the cadmium, lead and vanadium content of a set of Antarctic samples collected during the 11. Italian Expedition to Antarctica. For cadmium and lead measurements the low resolution mode was chosen since it ensured the highest ion sensitivity and it allowed the highest detection limits to be attained; in the case of vanadium the high resolution mode was used to solve the isobaric interference. As far as vanadium and cadmium are concerned by GFAAS coupled with different preconcentration procedures. The vanadium, cadmium and lead content measured in a riverine water reference material (SRLS-3) was found in agreement with the certified values. [Italian] Si e' utilizzato uno spettrometro ICP-MS a doppia focalizzazione per la determinazione diretta di cadmio, piombo e vanadio in una serie di campioni di neve antartica superficiale raccolta durante l'undicesima spedizione italiana in Antartide. Per le determinazioni di cadmio e piombo si e' scelta la procedura a bassa risoluzione, che ha garantito la piu' elevata sensibilita' ed ha permesso di ottenere limiti di determinazione migliori; nel caso del vanadio si e' utilizzata la procedura ad alta risoluzione che ha permesso di risolvere problemi di interferenza isobarica. Per quanto riguarda cadmio e vanadio, i risultati delle determinazioni mediante ICP-MS sono risultati in buon accordo con quelli ottenuti mediante GFAAS accoppiata a diverse procedure di preconcentrazione. Il contenuto di cadmio, piombo e vanadio misurato con le procedure sviluppate in un campione certificato di acqua di fiume (SRLS-3) e' risultato in accordo con i valori certificati.

  7. Estimation of lead, cadmium and nickel content by means of Atomic Absorption Spectroscopy in dry fruit bodies of some macromycetes growing in Poland. II.

    Directory of Open Access Journals (Sweden)

    Jan Grzybek

    2014-08-01

    Full Text Available The content of lead, cadmium, and nickel in dry fruit bodies of 34 species of macromyoetes collected in Poland from 72 natural babitats by means of Atomic Absorption Spectroscopy (AAS was estimated.

  8. Molecular evidence and physiological characterization of iron absorption in isolated enterocytes of rainbow trout (Oncorhynchus mykiss): Implications for dietary cadmium and lead absorption

    International Nuclear Information System (INIS)

    Kwong, Raymond W.M.; Andres, Jose A.; Niyogi, Som

    2010-01-01

    Recent studies suggested the probable involvement of an apical iron (Fe 2+ ) transporter, the divalent metal transporter-1 (DMT1), in the uptake of several divalent metals in fish. The present study examined the gastrointestinal expression of the DMT1 gene, and investigated the kinetics of Fe 2+ uptake and its interactions with cadmium and lead in isolated enterocytes of freshwater rainbow trout (Oncorhynchus mykiss). The expressions of two DMT1 isoforms (Nramp-β and -γ) were recorded along the entire gastrointestinal tract of fish as well as in the enterocytes. Fe 2+ uptake in isolated enterocytes was saturable and sensitive to the proton gradient and membrane potential, suggesting DMT1-mediated transport. Both cadmium and lead inhibited Fe 2+ uptake in isolated enterocytes in a concentration-dependent manner, and lead appeared to be a stronger inhibitor than cadmium. The kinetic characterization of Fe 2+ uptake revealed that the apparent affinity of uptake was significantly decreased (increased K m ) in the presence of either cadmium or lead, whereas the maximum uptake rate (J max ) remained unchanged-indicating that the interaction between Fe 2+ and cadmium or lead is competitive in nature. Overall, our study suggests that the uptake of dietary cadmium and lead may occur via the iron-transporting pathway in fish.

  9. Molecular evidence and physiological characterization of iron absorption in isolated enterocytes of rainbow trout (Oncorhynchus mykiss): Implications for dietary cadmium and lead absorption

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, Raymond W.M. [Toxicology Centre, University of Saskatchewan, Saskatoon, SK., S7N 5B3 (Canada); Andres, Jose A. [Department of Biology, University of Saskatchewan, Saskatoon, SK., S7N 5E2 (Canada); Niyogi, Som, E-mail: som.niyogi@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, SK., S7N 5E2 (Canada)

    2010-09-01

    Recent studies suggested the probable involvement of an apical iron (Fe{sup 2+}) transporter, the divalent metal transporter-1 (DMT1), in the uptake of several divalent metals in fish. The present study examined the gastrointestinal expression of the DMT1 gene, and investigated the kinetics of Fe{sup 2+} uptake and its interactions with cadmium and lead in isolated enterocytes of freshwater rainbow trout (Oncorhynchus mykiss). The expressions of two DMT1 isoforms (Nramp-{beta} and -{gamma}) were recorded along the entire gastrointestinal tract of fish as well as in the enterocytes. Fe{sup 2+} uptake in isolated enterocytes was saturable and sensitive to the proton gradient and membrane potential, suggesting DMT1-mediated transport. Both cadmium and lead inhibited Fe{sup 2+} uptake in isolated enterocytes in a concentration-dependent manner, and lead appeared to be a stronger inhibitor than cadmium. The kinetic characterization of Fe{sup 2+} uptake revealed that the apparent affinity of uptake was significantly decreased (increased K{sub m}) in the presence of either cadmium or lead, whereas the maximum uptake rate (J{sub max}) remained unchanged-indicating that the interaction between Fe{sup 2+} and cadmium or lead is competitive in nature. Overall, our study suggests that the uptake of dietary cadmium and lead may occur via the iron-transporting pathway in fish.

  10. Partitioning and distribution of dissolved copper, cadmium and organic matter in Mediterranean marine coastal areas: The case of a mucilage event

    Science.gov (United States)

    Scoullos, Michael; Plavšić, Marta; Karavoltsos, Sotiris; Sakellari, Aikaterini

    2006-04-01

    Dissolved copper and cadmium partitioning and their interaction with organic matter were investigated in shallow coastal areas of the Aegean Sea (Eastern Mediterranean). The percentage of DGT-labile copper as for total dissolved copper ranged from 13 to 34% during summer and from 23 to 36% during winter, whereas the corresponding percentage for DGT-labile cadmium was higher in summer (38-68%), in comparison to winter (29-44%). The CCu was found to be 100-260 nM during summer while in winter the range was 42-430 nM. The corresponding CCd reached 27 and 45 nM, respectively. The mean TEP value in summer was high (208 μg/L xanthan equiv.), while in winter it reached 441 μg/L xanthan equiv., which indicates significant phytoplankton activity in winter, a feature occasionally observed in the stratified study areas after the breaking down of the thermocline/pycnocline, followed by consequent nutrient enrichment of the surface layers by nutrients accumulated in the sea bottom. A significant fraction of dissolved organic carbon (DOC) exhibited surface active properties and was determined as surface active substances (SAS) in mg/L eq. of nonionic surfactant Triton-X-100. Carbohydrates were also determined and they represented up to 33% of the DOC.

  11. Effects of low oral lead and cadmium exposure and zinc status of heme metabolites in weanling rats.

    Science.gov (United States)

    Panemangalore, M; Bebe, F N

    1996-01-01

    The effects of moderate zinc deficiency and low oral lead and cadmium exposure on metabolites of porphyrin synthesis were investigated in weanling rats. Groups of weanling Sprague-Dawley rats (6/group) were fed diets containing either zinc (Zn) deficient (Zn D), pair-fed (Zn PF), Zn high (Zn H) or control (Zn C) and given sodium (10 micrograms/mL as NaCl), lead (20 micrograms/mL as Pb acetate) or cadmium (5 micrograms/mL as CdCl2) in drinking water for 4 weeks. Porphyrins in tissues were analyzed by HPLC. Feeding of zinc deficient diets decreased food intake and body weight of rats; plasma and erythrocyte zinc levels were 60 and 27% less than the control group, respectively. Kidney was the target organ for lead and cadmium accumulation. The concentration of lead in tissues were about: kidney = 98 micrograms/g; liver = 74 micrograms/g; whole blood = 22 micrograms/mL. Porphyrin intermediates detected in tissues were: heptaporphyrin, pentaporphyrin, coproporphyrin and protoporphyrin. The Zn D diet increased protoporphyrin concentrations in the liver by nearly 100% (P exposure to Pb or Cd decreased protoporphyrin to levels found in the Zn C group. Erythrocyte protoporphyrin concentrations were evaluated by 21% in Zn D rats; other metabolites were unchanged. In the kidney coproporphyrin was slightly higher in ZN D + Pb group. Low oral Cd exposure had no effect on porphyrin metabolites in all tissues. These results suggest that Zn deficiency triggers the accumulation of protoporphyrin in the liver and to some extent in the erythrocytes, and enhances renal coproporphyrin accretion in low lead exposed rats.

  12. Environmental arsenic, cadmium and lead dust emissions from metal mine operations: Implications for environmental management, monitoring and human health.

    Science.gov (United States)

    Taylor, Mark Patrick; Mould, Simon Anthony; Kristensen, Louise Jane; Rouillon, Marek

    2014-11-01

    Although blood lead values in children are predominantly falling globally, there are locations where lead exposure remains a persistent problem. One such location is Broken Hill, Australia, where the percentage of blood lead values >10 μg/dL in children aged 1-4 years has risen from 12.6% (2010), to 13% (2011) to 21% (2012). The purpose of this study was to determine the extent of metal contamination in places accessible to children. This study examines contemporary exposure risks from arsenic, cadmium, lead, silver and zinc in surface soil and dust, and in pre- and post-play hand wipes at six playgrounds across Broken Hill over a 5-day period in September 2013. Soil lead (mean 2,450 mg/kg) and zinc (mean 3,710 mg/kg) were the most elevated metals in playgrounds. Surface dust lead concentrations were consistently elevated (mean 27,500 μg/m(2)) with the highest lead in surface dust (59,900 μg/m(2)) and post-play hand wipes (60,900 μg/m(2)) recorded close to existing mining operations. Surface and post-play hand wipe dust values exceeded national guidelines for lead and international benchmarks for arsenic, cadmium and lead. Lead isotopic compositions ((206)Pb/(207)Pb, (208)Pb/(207)Pb) of surface dust wipes from the playgrounds revealed the source of lead contamination to be indistinct from the local Broken Hill ore body. The data suggest frequent, cumulative and ongoing mine-derived dust metal contamination poses a serious risk of harm to children. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Environmental cadmium and lead exposures and age-related macular degeneration in U.S. adults: The National Health and Nutrition Examination Survey 2005 to 2008

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Erin W. [Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI (United States); Schaumberg, Debra A. [Division of Preventive Medicine, Brigham and Women' s Hospital, Harvard Medical School and Department of Epidemiology, Harvard School of Public Health, Boston, MA (United States); Center for Translational Medicine, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT (United States); Park, Sung Kyun, E-mail: sungkyun@umich.edu [Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2014-08-15

    Age-related macular degeneration (AMD) is a complex disease resulting from the interplay of genetic predisposition and environmental exposures, and has been linked to oxidative stress and inflammatory mechanisms. Lead and cadmium can accumulate in human retinal tissues and may damage the retina through oxidative stress, and may thereby play a role in the development of AMD. We examined associations between blood lead, blood cadmium, and urinary cadmium concentrations and the presence of AMD in 5390 participants aged 40 years and older with blood lead and blood cadmium measures and a subsample of 1548 with urinary cadmium measures in the 2005–2008 National Health and Nutrition Examination Surveys. AMD was identified by grading retinal photographs with a modification of the Wisconsin Age-Related Maculopathy Grading System. The weighted prevalence of AMD was 6.6% (n=426). Controlling for age, gender, race/ethnicity, education and body mass index, adults in the highest blood cadmium quartile had higher odds of AMD compared to the lowest quartile (odds ratio [OR], 1.56; 95% CI, 1.02–2.40), with a significant trend across quartiles (p-trend=0.02). After further adjustment for pack-years of cigarette smoking, estimates were somewhat attenuated (OR, 1.43; 95% CI, 0.91–2.27; p-trend=0.08). Similar associations were found with urinary cadmium. The association between urinary cadmium and AMD was stronger in non-Hispanic whites (NHW) than in non-Hispanic blacks (NHB) (OR, 3.31; 95% CI, 1.37–8.01 for levels above versus below the median among NHW; OR,1.45; 95% CI, 0.40–5.32 for levels above versus below the median among NHB; p-interaction=0.03). We found no association between blood lead levels and AMD. Higher cadmium body burden may increase risk of AMD, particularly among non-Hispanic white individuals; however, additional studies are needed before firm conclusions can be drawn. - Highlights: • We examined the association of cadmium and lead with age

  14. Cadmium induced ROS alters M1 and M3 receptors, leading to SN56 cholinergic neuronal loss, through AChE variants disruption.

    Science.gov (United States)

    Moyano, Paula; de Frias, Mariano; Lobo, Margarita; Anadon, María José; Sola, Emma; Pelayo, Adela; Díaz, María Jesús; Frejo, María Teresa; Del Pino, Javier

    2018-02-01

    Cadmium, an environmental neurotoxic compound, produces cognitive disorders, although the mechanism remains unknown. Previously, we described that cadmium induces a more pronounced cell death on cholinergic neurons from basal forebrain (BF). This effect, partially mediated by M1 receptor blockade, triggering it through AChE splices variants alteration, may explain cadmium effects on learning and memory processes. Cadmium has been also reported to induce oxidative stress generation leading to M2 and M4 muscarinic receptors alteration, in hippocampus and frontal cortex, which are necessary to maintain cell viability and cognitive regulation, so their alteration in BF could also mediate this effect. Moreover, it has been reported that antioxidant treatment could reverse cognitive disorders, muscarinic receptor and AChE variants alterations induced by cadmium. Thus, we hypothesized that cadmium induced cell death of BF cholinergic neurons is mediated by oxidative stress generation and this mechanism could produce this effect, in part, through AChE variants altered by muscarinic receptors disruption. To prove this, we evaluated in BF SN56 cholinergic neurons, whether cadmium induces oxidative stress and alters muscarinic receptors, and their involvement in the induction of cell death through alteration of AChE variants. Our results show that cadmium induces oxidative stress, which mediates partially the alteration of AChE variants and M2 to M4 muscarinic receptors expression and blockage of M1 receptor. In addition, cadmium induced oxidative stress generation by M1 and M3 receptors alteration through AChE variants disruption, leading to cell death. These results provide new understanding of the mechanisms contributing to cadmium harmful effects on cholinergic neurons. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Quantitative in vivo elemental analysis using X-ray fluorescence and scattering techniques. Applications to cadmium, lead and bone mineral

    International Nuclear Information System (INIS)

    Nilsson, Ulf.

    1994-05-01

    The X-ray fluorescence technique for in vivo determination of cadmium concentration in the human body has been considerably improved so that the minimum concentration now is 10 μg/g for a skin-organ distance of 50 mm and a measurement time of 30 minutes. The technique has been used for measurements of cadmium in the kidney cortex of 60 non-occupationally exposed persons, showing twice the concentration (26±9 μg/g) in a sub-group of frequent tobacco smokers compared with a group of non-smokers (10±11 μg/g). Concentrations of lead in the skeleton of 112 persons have been measured at three bone sites (finger bone, tibia, heel bone) using in vivo XRF techniques either based on Co-57 or Cd-109 sources. There was a good correlation between lead levels at the three bone sites as well as to cumulative exposure index. However, the association between the amount of chelatable lead and measured bone lead levels was poor. The retention of lead in the skeleton of 14 retired workers, now studied for up to 18 years after retirement, shows a half-time of 16 years. 43 refs

  16. Investigation of the lead-, mercury- and cadmium concentration found in red deer, deer and chamois in an tyrolian preserve

    International Nuclear Information System (INIS)

    Bischof, E.

    1984-05-01

    The concentrations of heavy metals, lead, mercury and cadmium were tested in liver, kidney and rib samples taken from 43 red deer, 24 deer and 42 chamois between June 1982 and June 1983. Since the free living animals aquire the damaging substances through food, water and air intake, the determined sediments found in the bodies give information on the environmental pollution. The lead content in liver and kidney showed minimal values averraging between 0.001 and 0.014 ppm in all three animal types. Ribs, as well as all bones, due to the effect of time, served as reservoirs for lead with average values of 0.2-0.4ppm. In two chamois livers the maximal values of 3.007 and 1.006 ppm were detected and can be accounted for in a secondary contaminated originating from the lethal projectile. In reference to age and sex, no differences could be seen. A seasonal dependency was determined such that the concentration increased in spring and summer in examined livers and kidneys. The rumen content and grazing habit analysis showed minimal residue amounts as in the indicator organs. This lies in connection with the locality of the hunting grounds compared to the road. The mercury content in liver and kidney was of the maximal value 0.449 ppm. Deer showed the greatest contamination in the kidneys, which were surprisingly high in the fall. After rumen content and grazing analysis, the high value can be accounted for the deer's preference to eat mushrooms in the fall which contained an average 1.029 ppm Hg. Changes in concentrations could not be determined to be sex and age dependet. The cadmium concentration was highest in the kidney cortex in all three animal types. A highly significant dependency should be observed in the cadmium concentration. Deer showed the greatest amounts in each age class, which can be referred back to the grazing habits, to the preferred herbs and mushrooms which have high cadmium contents. Due to the strong influence of the age factor in cadmium storage

  17. Numerical integration of electromagnetic cascade equations, discussion of results for air, copper, iron, and lead

    International Nuclear Information System (INIS)

    Adler, A.; Fuchs, B.; Thielheim, K.O.

    1977-01-01

    The longitudinal development of electromagnetic cascades in air, copper, iron, and lead is studied on the basis of results derived recently by numerical integration of the cascade equations applying rather accurate expressions for the cross-sections involved with the interactions of high energy electrons, positrons, and photons in electromagnetic cascades. Special attention is given to scaling properties of transition curves. It is demonstrated that a good scaling may be achieved by means of the depth of maximum cascade development. (author)

  18. Determining lead, cadmium and mercury in cosmetics using sweeping via dynamic chelation by capillary electrophoresis.

    Science.gov (United States)

    Chen, Kuan-Ling; Jiang, Shiuh-Jen; Chen, Yen-Ling

    2017-03-01

    International limits have been established for metal impurities in cosmetics to prevent overexposure to heavy metal ions. Sweeping via dynamic chelation was developed using capillary electrophoresis to analyze lead (Pb), cadmium (Cd) and mercury (Hg) impurities in cosmetics. The sweeping via dynamic chelation mechanism involves a large volume of metal ions being swept by a small quantity of chelating agents that were electrokinetically injected into the capillary to chelate metal ions and increase the detection sensitivity. The optimized conditions were as follows: Firstly, the capillary was rinsed by a 0.6 mM TTAB solution to reverse the EOF. The sample solution, which was diluted using 25 mM ammonium acetate (pH 6.0), was injected into the capillary using a pressure of 3.5 psi for 99.9 s. Then, EDTA was injected at -25 kV for 1 min from the EDTA buffer (25 mM ammonium acetate containing 0.6 mM TTAB and 5 mM EDTA), and the metal ions were swept and stacked simultaneously. Finally, the separation was performed at -20 kV using a separation buffer (100 mM ammonium acetate (pH 6.0)). A small quantity of chelating agents introduced into the capillary could yield 33-, 50- and 100-fold detection improvements for Pb, Cd and Hg, respectively, more sensitive than conventional capillary zone electrophoresis. Correlation coefficients greater than 0.998 indicated that this method exhibited good linearity. The relative standard deviation and relative error were less than 8.7%, indicating high precision and accuracy. The recovery value of the homemade lotion, which was employed to simulate the real sample matrix, was 93-104%, which indicated that the sample matrix does not affect the quantitative results. Finally, commercial cosmetics were employed to demonstrate the feasibility of the method to determine Pb, Cd and Hg without complicated sample pretreatment. Graphical Abstract The procedure of analyzing metal ions in cosmetics by sweeping via dynamic chelation.

  19. Cadmium and lead determination by ICPMS: Method optimization and application in carabao milk samples

    Directory of Open Access Journals (Sweden)

    Riza A. Magbitang

    2012-06-01

    Full Text Available A method utilizing inductively coupled plasma mass spectrometry (ICPMS as the element-selective detector with microwave-assisted nitric acid digestion as the sample pre-treatment technique was developed for the simultaneous determination of cadmium (Cd and lead (Pb in milk samples. The estimated detection limits were 0.09ìg kg-1 and 0.33ìg kg-1 for Cd and Pb, respectively. The method was linear in the concentration range 0.01 to 500ìg kg-1with correlation coefficients of 0.999 for both analytes.The method was validated using certified reference material BCR 150 and the determined values for Cd and Pb were 18.24 ± 0.18 ìg kg-1 and 807.57 ± 7.07ìg kg-1, respectively. Further validation using another certified reference material, NIST 1643e, resulted in determined concentrations of 6.48 ± 0.10 ìg L-1 for Cd and 21.96 ± 0.87 ìg L-1 for Pb. These determined values agree well with the certified values in the reference materials.The method was applied to processed and raw carabao milk samples collected in Nueva Ecija, Philippines.The Cd levels determined in the samples were in the range 0.11 ± 0.07 to 5.17 ± 0.13 ìg kg-1 for the processed milk samples, and 0.11 ± 0.07 to 0.45 ± 0.09 ìg kg-1 for the raw milk samples. The concentrations of Pb were in the range 0.49 ± 0.21 to 5.82 ± 0.17 ìg kg-1 for the processed milk samples, and 0.72 ± 0.18 to 6.79 ± 0.20 ìg kg-1 for the raw milk samples.

  20. Connecting gastrointestinal cancer risk to cadmium and lead exposure in the Chaoshan population of Southeast China.

    Science.gov (United States)

    Lin, Xueqiong; Peng, Lin; Xu, Xijin; Chen, Yanrong; Zhang, Yuling; Huo, Xia

    2018-04-17

    Cadmium (Cd) and lead (Pb) pose a serious threat to human health because of its carcinogenicity. China ranks first according to the Global Cancer Report for 2014 in newly diagnosed gastrointestinal cancers and cancer deaths. The aim of the present study was to evaluate the association of Cd and Pb burden with the risk of gastrointestinal cancers in a hospital-based case-control study from southern regions of China, Chaoshan area. A total of 279 hospitalized patients were recruited in this study, of which 167 were gastrointestinal cancer cases (70 esophageal cancer, 51 gastric cancer, and 46 colorectal cancer), and 112 controls were recruited from two hospitals in the Chaoshan area of southeast China. Basic clinical data and information on gender, age, and other demographic characteristics were collected from medical records. Blood Cd and Pb levels were detected by graphite furnace atomizer absorption spectrophotometry (GFAAS). Blood Cd/Pb levels and over-limit ratios between cases and controls were compared by Mann-Whitney U and Kruskal-Wallis H tests. We used logistic regression to estimate odds ratios (ORs) as measures of relative risk and explored the relationships between blood Cd/Pb levels and gastrointestinal cancer risk and clinicopathological characteristics. Median levels of blood Cd and Pb in cases (2.12 and 60.03 μg/L, respectively) were significantly higher than those of controls (1.47 and 53.84 μg/L, respectively). The over-limit ratios for Cd (≥ 5 μg/L) and Pb (≥ 100 μg/L) in the cases were both higher than that of controls. Blood Cd levels had a tendency to accumulate in the human body with gender, age, and tobacco smoking, while blood Pb levels only were associated with tobacco smoking. The logistic regression model illustrated that gastrointestinal cancers were significantly associated with blood Cd levels and blood Pb levels. The concentrations of Cd and Pb in patients with T3 + T4 stage were markedly higher than in patients

  1. Non-occupational lead and cadmium exposure of adult women in Bangkok, Thailand

    International Nuclear Information System (INIS)

    Zhang, Z.-W.; Shimbo, S.; Watanabe, T.; Srianujata, S.; Banjong, O.; Chitchumroonchokchai, C.; Nakatsuka, H.; Matsuda-Inoguchi, N.; Higashikawa, K.; Ikeda, M.

    1999-01-01

    This survey was conducted to examine the extent of the exposure of Bangkok citizens to lead (Pb) and cadmium (Cd), and to evaluate the role of rice as the source of these heavy metals. In practice, 52 non-smoking adult women in an institution in the vicinity of Bangkok, volunteered to offer blood, spot urine, boiled rice and 24-h total food duplicate samples. Samples were wet-ashed, and then analyzed for Pb and Cd by ICP-MS. Geometric means for the levels in blood (Pb-B and Cd-B) and urine (Pb-U and Cd-U as corrected for creatinine concentration), and also for dietary intake (Pb-F and Cd-F) were 32.3 μg/l for Pb-B, 0.41 μg/l for Cd-B, 2.06 μg/g creatinine for Pb-U, 1.40 μg/g creatinine for Cd-U, 15.1 μg/day for Pb-F and 7.1 μg/day for Cd-F. Rice contributed 30% and 4% of dietary Cd and Pb burden, respectively. When compared with the counterpart values obtained in four neighboring cities in southeast Asia (i.e. Nanning, Tainan, Manila, and Kuala Lumpur), dietary Pb burden of the women in Bangkok was middle in the order among the values for the five cities. Pb level in the blood was the lowest of the levels among the five cities and Pb in urine was also among the low group. This apparent discrepancy in the order between Pb-B (i.e. the fifth) and Pb-F (the third) might be attributable to recent reduction of Pb levels in the atmosphere in Bangkok. Regarding Cd exposure, Cd levels in blood and urine as well as dietary Cd burden of Bangkok women were either the lowest or the next lowest among those in the five cities. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Breast milk lead and cadmium levels from suburban areas of Ankara

    Energy Technology Data Exchange (ETDEWEB)

    Oruen, Emel, E-mail: emelorun@hotmail.com [Department of Pediatrics, Fatih University Hospital, Ankara (Turkey); Yalcin, S. Songuel, E-mail: siyalcin@hacettepe.edu.tr [Social Pediatric Unit, Hacettepe University Ihsan Dogramaci Children Hospital, Ankara (Turkey); Aykut, Osman; Orhan, Guennur; Morgil, Goeksel Koc [Analytic Toxicology Laboratory, Refik Saydam National Public Health Agency, Ankara (Turkey); Yurdakoek, Kadriye [Social Pediatric Unit, Hacettepe University Ihsan Dogramaci Children Hospital, Ankara (Turkey); Uzun, Ramazan [Analytic Toxicology Laboratory, Refik Saydam National Public Health Agency, Ankara (Turkey)

    2011-06-01

    The objectives of this study were (1) to evaluate levels of lead (Pb) and cadmium (Cd) in the breast milk at 2 months postpartum, (2) to investigate the relationship between Pb and Cd levels in breast milk and some sociodemographic parameters and (3) to detect whether these levels have any influence on the infant's physical status or on postpartum depression in the mothers. Pb and Cd levels in breast milk were determined by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The median breast milk concentrations of Pb and Cd were 20.59 and 0.67 {mu}g/l, respectively. In 125 (87%) of 144 samples, Pb levels were higher than the limit in breast milk reported by the World Health Organization (WHO) (> 5 {mu}g/l). Breast milk Cd levels were > 1 {mu}g/l in 52 (36%) mothers. The mothers with a history of anemia at any time had higher breast milk Pb levels than those without a history of anemia (21.1 versus 17.9 {mu}g/l; p = 0.0052). The median breast milk Cd levels in active and passive smokers during pregnancy were significantly higher than in non-smokers (0.89, 0.00 {mu}g/l, respectively; p = 0.023). The breast milk Cd levels of the mothers who did not use iron and vitamin supplements for 2 months postpartum were found to be higher than in those who did use the supplements (iron: 0.73, 0.00 {mu}g/l, p = 0.023; vitamin: 0.78, 0.00 {mu}g/l, p = 0.004, respectively). Breast milk Cd levels at the 2nd month were correlated negatively with the z scores of head circumference and the weight for age at birth (r = - 0.257, p = 0.041 and r = - 0.251, p = 0.026, respectively) in girls. We found no correlation between the breast milk Pb and Cd levels and the Edinburgh Postpartum Depression Scale scores. Breast milk monitoring programs should be conducted that have tested considerable numbers of women over time in view of the high levels of Pb in breast milk in this study. - Research highlights: {yields} Breast milk Pb levels were higher than the advised safety limits. {yields

  3. Speciation of cadmium, copper, lead and zinc in the waters of River ...

    African Journals Online (AJOL)

    The water of river Mzimbazi and its attributaries are known to contain heavy metals originating from industry and the water is used for domestic and vegetable irrigation purposes. The present study describes chemical forms of some of the heavy metals found in the water. Water samples from different locations along river ...

  4. Detection of copper, lead, cadmium and iron in wine using electronic tongue sensor system.

    Science.gov (United States)

    Simões da Costa, A M; Delgadillo, I; Rudnitskaya, A

    2014-11-01

    An array of 10 potentiometric chemical sensors has been applied to the detection of total Fe, Cu, Pb and Cd content in digested wine. As digestion of organic matter of wine is necessary prior to the trace metal detection using potentiometric sensors, sample preparation procedures have been optimized. Different variants of wet and microwave digestion and dry ashing, 14 conditions in total, have been tested. Decomposition of organic matter was assessed using Fourier transform mid-infrared spectroscopy and total phenolic content. Dry ashing was found to be the most effective method of wine digestion. Measurements with sensors in individual solutions of Fe(III), Cu(II), Pb(II) and Cd(II) prepared on different backgrounds have shown that their detection limits were below typical concentration levels of these metals in wines and, in the case of Cu, Pb and Cd below maximum allowed concentrations. Detection of Fe in digested wine samples was possible using discrete iron-sensitive sensors with chalcogenide glass membranes with RMSEP of 0.05 mmol L(-1) in the concentration range from 0.0786 to 0.472 mmol L(-1). Low concentration levels of Cu, Pb and Cd in wine and cross-sensitivity of respective sensors resulted in the non-linearity of their responses, requiring back-propagation neural network for the calibration. Calibration models have been calculated using measurements in the model mixed solutions containing all three metals and a set of digested wine sample. RMSEP values for Cu, Pb and Cd were 3.9, 39 and 1.2 μmol L(-1) in model solutions and 2, 150 and 1 μmol L(-1) in digested wine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Cadmium, Copper, Lead, and Zinc Contents of Fish Marketed in NW Mexico

    Science.gov (United States)

    Frías-Espericueta, Martín G.; Zamora-Sarabia, Francia K. G.; Osuna-López, J. Isidro; Muy-Rangel, María D.; Rubio-Carrasco, Werner; Aguilar-Juárez, Marisela

    2014-01-01

    To assess if they were within the safety limits for human consumption, the Cd, Cu, Pb, and Zn contents of fish muscles, bought from separate stalls of the fish markets of nine cities of NW Mexico, were determined by atomic absorption spectrophotometry. Considering all fish and markets, the mean contents were Zn: 23.23 ± 5.83, Cu: 1.72 ± 0.63, Cd: 0.27 ± 0.07, and Pb: 0.09 ± 0.04 µg/g (dry weight). Cu, Zn, and Pb did not reach levels of concern for human consumption, but the high Cd values determined in Mazatlán (Mugil cephalus: 0.48 ± 0.15; Diapterus spp.: 0.57 ± 0.33; Lutjanus spp.: 0.72 ± 0.12; small shark: 0.87 ± 0.19 µg/g dry weight) indicate that this was the only metal of concern for human health because the daily individual consumption of fish muscle to reach the PTDI would be within 0.27 and 0.41 kg. PMID:24526908

  6. Cadmium, copper, lead, and zinc in Mugil cephalus from seven coastal lagoons of NW Mexico.

    Science.gov (United States)

    Frías-Espericueta, Martin G; Osuna-López, J Isidro; Jiménez-Vega, Martha A; Castillo-Bueso, Daniel; Muy-Rangel, Maria D; Rubio-Carrasco, Werner; López-López, Gabriel; Izaguirre-Fierro, Gildardo; Voltolina, Domenico

    2011-11-01

    The increasing order of the mean concentrations of Cd, Cu, and Zn in the tissues of Mugil cephalus of seven coastal lagoons of Sinaloa State (NW Mexico) was liver > gills > muscle, while for Pb it was gills > muscle ≥ liver. There were no differences between the mean concentrations of Cd and Pb of the three tissues determined in the samples of the seven lagoons and, although there were some significant differences, there was no indication of a latitude-related trend in the distribution of Cu and Zn: the Cu content of the muscle tended to be higher in the northern than in the southern lagoons, although in the case of the gills the highest and lowest mean values indicated an opposite trend, with the highest and lowest values in one southern and one northern lagoon. In the case of the liver, there were no differences and no indication of a regional trend. There were no differences in the mean Zn contents of muscle and gills; in the case of the liver, one of the lagoons of the central part of the state had a significantly higher value than one of the southern lagoons and all the rest had similar values. In addition, there was no clear indication of season-related differences in any of the three tissues. According to our results, the metal contents of the muscle of this species are not of concern for human health, since the allowable ingestion would be in the order of 0.9 kg/day.

  7. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils

    International Nuclear Information System (INIS)

    Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun

    2015-01-01

    Highlights: • We modify natural diatomite using the facile acid treatment and ultrasonication. • Modification add pore volume, surface area and electronegativity of natural diatomite. • Modified diatomite is superior to natural diatomite in soil heavy metal remediation. • Modified diatomite can be promising for in-situ immobilization of heavy metal in soil. - Abstract: Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm 3 g −1 and 76.9 m 2 g −1 , respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl 2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P < 0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments

  8. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xinxin, E-mail: xxye@issp.ac.cn [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Kang, Shenghong; Wang, Huimin [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Hongying [Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230031 (China); Zhang, Yunxia [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Guozhong, E-mail: gzhwang@issp.ac.cn [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhao, Huijun [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222 (Australia)

    2015-05-30

    Highlights: • We modify natural diatomite using the facile acid treatment and ultrasonication. • Modification add pore volume, surface area and electronegativity of natural diatomite. • Modified diatomite is superior to natural diatomite in soil heavy metal remediation. • Modified diatomite can be promising for in-situ immobilization of heavy metal in soil. - Abstract: Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm{sup 3} g{sup −1} and 76.9 m{sup 2} g{sup −1}, respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl{sub 2} extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P < 0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments.

  9. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils.

    Science.gov (United States)

    Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun

    2015-05-30

    Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm(3) g(-1) and 76.9 m(2) g(-1), respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (Psoils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Cadmium, Copper, Lead, and Zinc Contents of Fish Marketed in NW Mexico

    Directory of Open Access Journals (Sweden)

    Martín G. Frías-Espericueta

    2014-01-01

    Full Text Available To assess if they were within the safety limits for human consumption, the Cd, Cu, Pb, and Zn contents of fish muscles, bought from separate stalls of the fish markets of nine cities of NW Mexico, were determined by atomic absorption spectrophotometry. Considering all fish and markets, the mean contents were Zn: 23.23±5.83, Cu: 1.72±0.63, Cd: 0.27 ± 0.07, and Pb: 0.09 ± 0.04 µg/g (dry weight. Cu, Zn, and Pb did not reach levels of concern for human consumption, but the high Cd values determined in Mazatlán (Mugil cephalus: 0.48±0.15; Diapterus spp.: 0.57±0.33; Lutjanus spp.: 0.72±0.12; small shark: 0.87±0.19 µg/g dry weight indicate that this was the only metal of concern for human health because the daily individual consumption of fish muscle to reach the PTDI would be within 0.27 and 0.41 kg.

  11. Distribution of cadmium, chromium, copper, lead and zinc in marine sediments in Hong Kong waters

    Science.gov (United States)

    Choi, S. C.; Wai, Onyx W. H.; Choi, Thomas W. H.; Li, X. D.; Tsang, C. W.

    2006-11-01

    Partitioning of heavy metals (Cd, Cr, Cu, Pb, Zn) in marine sediments collected from various sites in Hong Kong waters were determined using sequential extraction method. Sediments from Kellette Bank, located in Victoria Harbour, had higher metal concentrations especially Cu and Zn than most other sites. Slightly over 20% of total Cu and Cr existed as readily available forms in Peng Chau and Kellette Bank. At most sampling sites, over 15% of the Cu existed as the exchangeable form indicating that Cu could be readily released into the aqueous phase from sediments. A significantly higher percentage of Pb and Zn was associated with the three non-residual fractions. Hence, there is a greater environmental concern for remobilization of Pb and Zn compared with Cr. The high amount of residual Cd (>50%) and the relatively lower Cd content indicate that little environmental concern is warranted for the remobilization of Cd. Distribution of metals in sediments collected from different depth at Kellette Bank shows that metal concentrations decreased with profile depth. The levels of Pb and Zn associated with the two readily available fractions increased sharply in the surface sediment. These metals represented the pollutants, which were introduced into the area in the mid-eighties through early nineties as a result of rapid economic and industrial development in the territory. As significant portions of these metals were bound to the readily available phases in the surface sediments, metal remobilization could be a concern.

  12. Effects of organic amendments on the toxicity and bioavailability of cadmium and copper in spiked formulated sediments

    Science.gov (United States)

    Besser, J.M.; Brumbaugh, W.G.; May, T.W.; Ingersoll, C.G.

    2003-01-01

    We evaluated the partitioning and toxicity of cadmium (Cd) and copper (Cu) spiked into formulated sediments containing two types of organic matter (OM), i.e., cellulose and humus. Amendments of cellulose up to 12.5% total organic carbon (TOC) did not affect partitioning of Cd or Cu between sediment and pore water and did not significantly affect the toxicity of spiked sediments in acute toxicity tests with the amphipod Hyalella azteca. In contrast, amendments of natural humus shifted the partitioning of both Cd and Cu toward greater concentrations in sediment and lesser concentrations in pore water and significantly reduced toxic effects of both metals. Thresholds for toxicity, based on measured metal concentrations in whole sediment, were greater for both Cd and Cu in sediments amended with a low level of humus (2.9% TOC) than in sediments without added OM. Amendments with a high level of humus (8.9% TOC) eliminated toxicity at the highest spike concentrations of both metals (sediment concentrations of 12.4 ??g Cd/g and 493 ??g Cu/g). Concentrations of Cd in pore water associated with acute toxicity were similar between sediments with and without humus amendments, suggesting that toxicity of Cd was reduced primarily by sorption to sediment OM. However, toxic effects of Cu in humus treatments were associated with greater pore-water concentrations than in controls, suggesting that toxicity of Cu was reduced both by sorption and by complexation with soluble ligands. Both sorption and complexation by OM tend to make proposed sediment quality guidelines (SQGs) based on total metal concentrations more protective for high-OM sediments. Our results suggest that the predictive ability of SQGs could be improved by models of metal interactions with natural OM in sediment and pore water.

  13. Subcellular interactions of dietary cadmium, copper and zinc in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Kamunde, Collins; MacPhail, Ruth

    2011-01-01

    Highlights: Interactions of Cu, Cd and Zn were studied at the subcellular level in rainbow trout. Metals accumulated in the liver were predominantly metabolically active. Cd, Cu and Zn exhibited both competitive and cooperative interactions. The metal–metal interactions altered subcellular metals partitioning. - Abstract: Interactions of Cu, Cd and Zn were studied at the subcellular level in juvenile rainbow trout (Oncorhynchus mykiss) fed diets containing (μg/g) 500 Cu, 1000 Zn and 500 Cd singly and as a ternary mixture for 28 days. Livers were harvested and submitted to differential centrifugation to isolate components of metabolically active metal pool (MAP: heat-denaturable proteins (HDP), organelles, nuclei) and metabolically detoxified metal pool (MDP: heat stable proteins (HSP), NaOH-resistant granules). Results indicated that Cd accumulation was enhanced in all the subcellular compartments, albeit at different time points, in fish exposed to the metals mixture relative to those exposed to Cd alone, whereas Cu alone exposure increased Cd partitioning. Exposure to the metals mixture reduced (HDP) and enhanced (HSP, nuclei and granules) Cu accumulation while exposure to Zn alone enhanced Cu concentration in all the fractions analyzed without altering proportional distribution in MAP and MDP. Although subcellular Zn accumulation was less pronounced than that of either Cu or Cd, concentrations of Zn were enhanced in HDP, nuclei and granules from fish exposed to the metals mixture relative to those exposed to Zn alone. Cadmium alone exposure mobilized Zn and Cu from the nuclei and increased Zn accumulation in organelles and Cu in granules, while Cu alone exposure stimulated Zn accumulation in HSP, HDP and organelles. Interestingly, Cd alone exposure increased the partitioning of the three metals in MDP indicative of enhanced detoxification. Generally the accumulated metals were predominantly metabolically active: Cd, 67–83%; Cu, 68–79% and Zn, 60–76

  14. Subcellular interactions of dietary cadmium, copper and zinc in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada); MacPhail, Ruth [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada)

    2011-10-15

    Highlights: Interactions of Cu, Cd and Zn were studied at the subcellular level in rainbow trout. Metals accumulated in the liver were predominantly metabolically active. Cd, Cu and Zn exhibited both competitive and cooperative interactions. The metal-metal interactions altered subcellular metals partitioning. - Abstract: Interactions of Cu, Cd and Zn were studied at the subcellular level in juvenile rainbow trout (Oncorhynchus mykiss) fed diets containing ({mu}g/g) 500 Cu, 1000 Zn and 500 Cd singly and as a ternary mixture for 28 days. Livers were harvested and submitted to differential centrifugation to isolate components of metabolically active metal pool (MAP: heat-denaturable proteins (HDP), organelles, nuclei) and metabolically detoxified metal pool (MDP: heat stable proteins (HSP), NaOH-resistant granules). Results indicated that Cd accumulation was enhanced in all the subcellular compartments, albeit at different time points, in fish exposed to the metals mixture relative to those exposed to Cd alone, whereas Cu alone exposure increased Cd partitioning. Exposure to the metals mixture reduced (HDP) and enhanced (HSP, nuclei and granules) Cu accumulation while exposure to Zn alone enhanced Cu concentration in all the fractions analyzed without altering proportional distribution in MAP and MDP. Although subcellular Zn accumulation was less pronounced than that of either Cu or Cd, concentrations of Zn were enhanced in HDP, nuclei and granules from fish exposed to the metals mixture relative to those exposed to Zn alone. Cadmium alone exposure mobilized Zn and Cu from the nuclei and increased Zn accumulation in organelles and Cu in granules, while Cu alone exposure stimulated Zn accumulation in HSP, HDP and organelles. Interestingly, Cd alone exposure increased the partitioning of the three metals in MDP indicative of enhanced detoxification. Generally the accumulated metals were predominantly metabolically active: Cd, 67-83%; Cu, 68-79% and Zn, 60-76%. Taken

  15. Exploration of the phycoremediation potential of Laminaria digitata towards diflubenzuron, lindane, copper and cadmium in a multitrophic pilot-scale experiment

    DEFF Research Database (Denmark)

    Anacleto, Patrícia; van den Heuvel, Freek H M; Oliveira, C

    2017-01-01

    The presence of contaminants in aquatic ecosystems can cause serious problems to the environment and marine organisms. This study aims to evaluate the phycoremediation capacity of macroalgae Laminaria digitata for pesticides (diflubenzuron and lindane) and toxic elements (cadmium and copper) in s...... strategy to remove/decrease contaminant levels from the aquatic environment.......) in seawater with the presence or absence of mussels. The photosynthetic activity was monitored in the macroalgae to assess its "physiological status". The results showed that the presence of algae decreased diflubenzuron concentration in mussels by 70% after 120 h of exposure. Additionally, this macroalgae...

  16. A Novel GH-92 Nano-Adsorbent Using the Sponge from the Persian Gulf for Lead and Cadmium Removal

    Directory of Open Access Journals (Sweden)

    Hossein Ghafourian

    2015-05-01

    Full Text Available Removing pollutants from aquatic ecosystems, especially from drinking water, has always been a major concern for scientists. Recent decades have witnessed the widespread application of natural compounds used as adsorbents to remove various pollutants. On the other hand, studies have proved nanotechnology to be an effective way of removing pollutants. A new type of sponge belonging to the family Demospongiae that has nano holes and is native to the Persian Gulf was investigated for the first time in the present study for use as an adsorbent to remove calcium, magnesium, cobalt, cadmium, and lead ions from water. For this purpose, adbsorption in sponges of different aggregate sizes, contact time, particle size, and ambient pH were measured. The results showed that the proposed sponge is capable of adsorbing the above-mentioned metal ions to various degrees. While small amounts of calcium, magnesium, and cobalt were adsorbed by this sponge, cadmium recorded a higher adsorption of 2.37 mg/g at pH=5. The highest adsorption level of 79.19 mg per gram of adsorbent was recorded for lead at a pH range of 4.5-5 with a mesh size of 230. This is the highest adsorption ever recorded for lead in the literature on selective separation of lead from the other ions.

  17. Effects of lead exposure on the concentration of cadmium, selenium and values of morphology in the blood

    Directory of Open Access Journals (Sweden)

    Agnieszka Kozłowska

    2015-06-01

    Full Text Available Introduction. Heavy metals, including cadmium and lead are both environmental and industrial toxins which cause metabolic disorders. Effects of these elements are long lasting and usually take a long time to show themselves. Also of importance is the active and passive exposure to tobacco smoke, which is also a source of heavy metals. Heavy metals exhibit nephrotoxic activity, hepatotoxic and neurotoxic, and mutagenic and carcinogenic activity. This study aimed to determine the relationship between occupational exposure to lead (Pb, cadmium (Cd and the level of selenium (Se, and values of morphology of employees of zinc and lead smelter. Material and methods. 334 occupationally exposed males (tested group and 60 males not exposed (control group were involved in the study. The men were between 19 and 62 years of age. The study population lived and/or worked in the industrial region of Upper Silesia. Blood cadmium concentration (Cd-B, blood lead concentration (Pb-B and serum concentrations of Se (Se-S were studied. The level of elements was determined by flameless atomic absorption spectrometry. Results. The average concentration of each metal in the exposed group was 2.42±2.20 µg/l (Cd-B, 33±9.6 µg/dl (Pb-B and 73.99±20.44 µg/l (Se-S. In the entire study population (exposed and control, a statistically significant negative linear relationship was found between Pb-B and Se-S (r=–0.16, p<0.05. There was no correlation between Cd-B and Se-S, whereas a statistically significant positive correlation was observed between Pb-B and Cd-B (r=0.48, p<0.05. Spearman Rank Correlation analysis showed that in the study population there was observed statistically significant (p<0.05 negative correlation between Se-S in smokers group. Conclusions. Higher concentrations of Cd and Pb were observed in the exposed group compared to the control group. Occupational exposure to cadmium and lead may be a factor lowering the blood Se in the tested group. The most

  18. Significant deposits of gold, silver, copper, lead, and zinc in the United States

    Science.gov (United States)

    Long, K.R.; DeYoung, J.H.; Ludington, S.

    2000-01-01

    Approximately 99 percent of past production and remaining identified resources of gold, silver, copper, lead, and zinc in the United States are accounted for by deposits that originally contained at least 2 metric tonnes (t) gold, 85 t silver, 50,000 t copper, 30,000 t lead, or 50,000 t zinc. The U.S. Geological Survey, beginning with the 1996 National Mineral Resource Assessment, is systematically compiling data on these deposits, collectively known as 'significant' deposits. As of December 31, 1996, the significant deposits database contained 1,118 entries corresponding to individual deposits or mining districts. Maintaining, updating and analyzing a database of this size is much easier than managing the more than 100,000 records in the Mineral Resource Data System and Minerals Availability System/Minerals Industry Location System, yet the significant deposits database accounts for almost all past production and remaining identified resources of these metals in the United States. About 33 percent of gold, 22 percent of silver, 42 percent of copper, 39 percent of lead, and 46 percent of zinc are contained in or were produced from deposits discovered after World War II. Even within a database of significant deposits, a disproportionate share of past production and remaining resources is accounted for by a very small number of deposits. The largest 10 producers for each metal account for one third of the gold, 60 percent of the silver, 68 percent of the copper, 85 percent of the lead, and 75 percent of the zinc produced in the United States. The 10 largest deposits in terms of identified remaining resources of each of the five metals contain 43 percent of the gold, 56 percent of the silver, 48 percent of the copper, 94 percent of the lead, and 72 percent of the zinc. Identified resources in significant deposits for each metal are less than the mean estimates of resources in undiscovered deposits from the 1996 U.S. National Mineral Resource Assessment. Identified

  19. Multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) onto natural bentonite clay.

    Science.gov (United States)

    Alexander, Jock Asanja; Surajudeen, Abdulsalam; Aliyu, El-Nafaty Usman; Omeiza, Aroke Umar; Zaini, Muhammad Abbas Ahmad

    2017-10-01

    The present work was aimed at evaluating the multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) ions onto natural bentonite. The bentonite clay adsorbent was characterized for physical and chemical properties using X-ray diffraction, X-ray fluorescence, Brunauer-Emmett-Teller surface area and cation exchange capacity. The column performance was evaluated using adsorbent bed height of 5.0 cm, with varying influent concentrations (10 mg/L and 50 mg/L) and flow rates (1.4 mL/min and 2.4 mL/min). The result shows that the breakthrough time for all metal ions ranged from 50 to 480 minutes. The maximum adsorption capacity was obtained at initial concentration of 10 mg/L and flow rate of 1.4 mL/min, with 2.22 mg/g of lead(II), 1.71 mg/g of cadmium(II) and 0.37 mg/g of manganese(II). The order of metal ions removal by natural bentonite is lead(II) > cadmium(II) > manganese(II). The sorption performance and the dynamic behaviour of the column were predicted using Adams-Bohart, Thomas, and Yoon-Nelson models. The linear regression analysis demonstrated that the Thomas and Yoon-Nelson models fitted well with the column adsorption data for all metal ions. The natural bentonite was effective for the treatment of wastewater laden with multi-metals, and the process parameters obtained from this work can be used at the industrial scale.

  20. Separation of Lead (Pb2+ and Cadmium (Cd2+ from Single and Binary Salt Aqueous Solutions Using Nanofiltration Membranes

    Directory of Open Access Journals (Sweden)

    Ahmed Abed Mohammed

    2016-04-01

    Full Text Available The present work reports on the performance of three types of nanofiltration membranes in the removal of highly polluting and toxic lead (Pb2+ and cadmium (Cd2+ from single and binary salt aqueous solutions simulating real wastewaters. The effect of the operating variables (pH (5.5-6.5, types of NF membrane and initial ions concentration (10-250 ppm on the separation process and water flux was investigated. It was observed that the rejection efficiency increased with increasing pH of solution and decreasing the initial metal ions concentrations. While the flux decreased with increasing pH of solution and increasing initial metal ions concentrations. The maximum rejection of lead and cadmium ions in single salt solution was 99%, 97.5 % and 98 % at pH 6, 6.5 and 6.2 and 78%, 49.2% and 44% at pH 6.5, 6.2 and 6.5 for NF1, NF2 and NF3 respectively. On the other hand, maximum permeate flux for single NF2 (32.2> NF3 (16.1>NF1 (14.2 (l/m2.h for 100 ppm, higher than binary salt solution was NF2 (23.7 ˃ NF3 (13 ˃ NF1 (8 (l/m2.h for (10 Pb2+/50 Cd2+ ppm. The NF membranes proved able to achieve high separation efficiency of both lead and cadmium ions in very suitable conditions, leaving wastewaters in a condition suitable prior discharged into the environment.

  1. Single and Combined Exposure to Zinc- and Copper-Containing Welding Fumes Lead to Asymptomatic Systemic Inflammation.

    Science.gov (United States)

    Markert, Agnieszka; Baumann, Ralf; Gerhards, Benjamin; Gube, Monika; Kossack, Veronika; Kraus, Thomas; Brand, Peter

    2016-02-01

    Recently, it has been shown that exposure to welding fumes containing both zinc and copper leads to asymptomatic systemic inflammation in humans as shown by an increase of blood C-reactive protein. In the present study, it was investigated which metal is responsible for this effect. Fifteen healthy male subjects were exposed under controlled conditions to welding fumes containing either zinc, or copper, or copper and zinc. For each exposure blood C-reactive protein increased. Copper- and zinc-containing welding fumes are able to induce systemic inflammation.

  2. Assessment of cadmium and lead mobility in the rhizosphere using voltammetry and electrospray ionization mass spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Šestáková, Ivana; Jaklová Dytrtová, Jana; Jakl, M.; Navrátil, Tomáš

    2011-01-01

    Roč. 5, č. 3 (2011), s. 347-355 ISSN 1109-9577 R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40550506 Keywords : cadmium * electrochemical impedance spectroscopy (EIS) * oxalic acid Subject RIV: CG - Electrochemistry http://www.library.sk/i2/i2.entry.cls?ictx=cav&language=2&op=esearch

  3. Acute toxicity of copper and cadmium for piauçu, Leporinus macrocephalus, and curimatã, Prochilodus vimboides - DOI: 10.4025/actascibiolsci.v31i3.5069

    OpenAIRE

    Gomes, Levy Carvalho; UVV; Chippari-Gomes, Adriana Regina; UVV; Oss, Rodrigo Nunes; Fernandes, Luis Fernando Loureiro; UFES; Magris, Rafael de Almeida; UFES

    2009-01-01

    Ninety-six-hour static bioassays were conducted in the laboratory to determine lethal concentrations (96-h LC50) of copper and cadmium for curimatã (Prochilodus vimboides) and piauçu (Leporinus macrocephalus). The 96-h LC50 of copper were 0.047 and 0.090 mg L-1, and of cadmium 3.16 and 7.42 mg L-1 for curimatã and piauçu, respectively. Curimatã is a preferred indigenous species for toxicological studies in the Doce River basin due to its availability in the hatcheries of the region and high s...

  4. Biosorption of lead (II and copper (II by biomass of some marine algae

    Directory of Open Access Journals (Sweden)

    Chaisuksant, Y.

    2004-09-01

    Full Text Available Biosorption of heavy metal ions by algae is a potential technology for treating wastewater contaminated with heavy metals. Adsorption of lead (II and copper (II in aqueous solutions by some marine algae available in large quantities in Pattani Bay including Gracilaria fisheri, Ulva reticulata and Chaetomorpha sp. were investigated. The effect of pH on metal sorption of the algal biomass and the metal uptake capacity of the algal biomass comparing to that of synthetic adsorbents including activated carbon and siliga gel were studied by using batch equilibrium experiments. Each dried adsorbent was stirred in metal ions solutions with different pH or different concentration at room temperature for 24 hours and the residual metal ions were analysed using atomic absorption spectrophotometer. The initial concentrations of lead and copper ionswere 70 µg/l and 20 mg/l, respectively. It was found that the effect of pH on metal sorption was similar in each algal biomass. The metal uptake capacity increased as pH of the solution increased from 2.0 to 4.0 and reached a plateau at pH 5.0-7.0. The metal uptake capacities of each algal biomass were similar. At low concentrations of metal ions, the metal adsorption occurred rapidly while at higher metal concentration less metal adsorption by each algal biomass was observed. The metal adsorption of activated carbon and silica gel occurred gradually and was less than those of algal biomass. The equilibrium data of copper and lead ions fitted well to the Langmuir and Freundlich isotherm models. The maximum sorption capacity (Qm values (mean±SD of Chaetomorpha sp., U. reticulata, G. fisheri, activated carbon and silica gel for lead ions were 1.26±0.14, 1.19±0.14, 1.18±0.15, 1.14±0.11 and 1.15±0.12 mg/g, respectively. For copper adsorption, the Qm values for G. fisheri, U. reticulata and Chaetomorpha biomass were 15.87±1.03, 14.71±1.02 and 12.35± 1.03 mg/g, respectively. While those of activated carbon and

  5. Paired emitter-detector light emitting diodes for the measurement of lead(II) and cadmium(II)

    International Nuclear Information System (INIS)

    Lau, K.-T.; McHugh, Eimear; Baldwin, Susan; Diamond, Dermot

    2006-01-01

    A transmittance mode optical device based on using a reverse biased light emitting diode (LED) as light detector has been developed for colorimetric analysis. This new optical device was validated with bromocresol green dye for absorbance measurements before being employed for detecting cadmium(II) and lead(II) in water. Results show that the performance of this LED-based device is comparable to much more expensive bench top UV-vis instruments, but with the advantages of being low cost, low power and simple to operate

  6. Lead, cadmium and arsenic in human milk and their socio-demographic and lifestyle determinants in Lebanon.

    Science.gov (United States)

    Bassil, Maya; Daou, Farah; Hassan, Hussein; Yamani, Osama; Kharma, Joelle Abi; Attieh, Zouheir; Elaridi, Jomana

    2018-01-01

    Exposure of newborns to toxic metals is of special interest due to their reported contamination in breast milk and potential harm. The aim of this study was to assess the occurrence and factors associated with lead, cadmium and arsenic contamination in breast milk collected from lactating mothers in Lebanon. A total of 74 breast milk samples were collected from primaparas according to guidelines set by the World Health Organization. A survey was administered to determine the demographic and anthropometric characteristics of participating lactating mothers. Dietary habits were assessed using a semi-quantitative food frequency questionnaire. The milk samples were analyzed for the presence of arsenic, cadmium and lead using microwave-assisted digestion and atomic absorption spectrophotometry. Arsenic contamination was found in 63.51% of breast milk samples (mean 2.36 ± 1.95 μg/L) whereas cadmium and lead were detected in 40.54% and 67.61% of samples respectively (means 0.87 ± 1.18 μg/L and 18.18 ± 13.31 μg/L). Regression analysis indicated that arsenic contamination was associated with cereal and fish intake (p = 0.013 and p = 0.042 respectively). Residence near cultivation activities (p = 0.008), smoking status before pregnancy (p = 0.046), potato consumption (p = 0.046) and education level (p = 0.041) were associated with lead contamination. Cadmium contamination was significantly associated with random smoke exposure (p = 0.002). Our study is the first in Lebanon to report toxic metal contamination in breast milk. Although estimated weekly infant intake of these metals from breast milk was found to be lower than the limit set by international guidelines, our results highlight the need for developing strategies to protect infants from exposure to these hazardous substances. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of Red-mud and Organic Fertilizer on Cadmium and Lead Absorption and Distribution in Rice

    OpenAIRE

    FANG Ya-yu; ZOU Hui-ling; YIN Xiao-hui; CHEN Nan; YANG Deng; WEI Xiang-dong

    2016-01-01

    Effects of red mud and organic fertilizer on distribution of cadmium(Cd) and lead (Pb) in soil-rice system were studied in field by orthogonal test. Results showed that after red mud and organic fertilizer added including single and combined, the soil pH value increased 0.36~1.90 units, contents of Cd and Pb in rice rhizosphere soil decreased 2.73%~26.25% and 7.15%~34.26% respectively and contents of Cd and Pb in brown rice decreased 23.24%~55.90% and 11.76%~29.41% respectively. In all treatm...

  8. Levels of Cadmium, Chromium and Lead in dumpsites soil, earthworm (Lybrodrilus Violaceous), Housefly (Musca Domestica) and dragon fly (Libellula luctosa)

    International Nuclear Information System (INIS)

    Adeniyi, A.A.; Okedeyi, O.O.; Idowu, A.B.

    2003-01-01

    Chemical analyses of cadmium, chromium and lead in dumpsites soil, earthworm (Lybrodrilus violaceous), housefly (Musca domestica) and in indigenous dragonfly (Libellula luctosa) were performed by atomic absorption spectrophotometry to estimate the degree of metal pollution in two Lagos dumpsites located at Iba Housing Estate (dumpsite A) and Soluos along LASU - Isheri road (dumpsite B). Soil pH and moisture content were also determined. Chromium was not detected (ND) in most of the samples except in the soil samples whose mean and standard deviation (SD) were 0.43 Plus minus 0.37 micro g/g and 0.23 plus minus 0.37 micro g/g, respectively for dumpsites A and B, and the earthworm samples harvested from dumpsite B (1.00 plus minus 1.41 micro g/g the cadmium levels were 4.00 plus minus 3.16 micro g/g and 7.50 plus minus 6.37 micro g/g for earthwarm; 2.86 plus minus 1.43 micro g/g and 4.29 plus minus 3.74 micro g/g for housefly, 0.75 plus minus 1.26 micro g/g and 1.25 plus minus 0.95 micro g/g for dragonfly, respectively for dumpsites A and B. However, the concentration of lead in the invertebrates were, 130.00 plus minus 112.58 micro g/g and 105.75 plus minus 94.44 micro g/g for earthworm; 145.71 plus minus 101.87 micro g/g and 225.71 plus minus 79.31 micro g/g for housefly; 165.00 plus minus 69.78 micro g/g and 85.00 plus minus 69.73 micro g/g for dragonfly respectively for dumpsites A and B. Cadmium and lead levels were found to be higher in the invertebrates harvested from the dumpsites than those collected from the non-dumpsites. The non-dumpsite values for cadmium were 1.24 plus minus 0,94 micro g/g, 0.45 plus minus 0.56 micro g/g and 0.38 plus minus 0.4 micro g/g for earthworm, housefly and dragonfly, respectively. Similarly, the non-dumpsite lead levels for earthworm, housefly and dragonfly were 23.12 plus minus 10.11 micro g/g, 20.75 plus minus 11.85 micro g/g and 33.62 plus minus 14.95 micro g/g, respectively.(author)

  9. Association of Blood and Seminal Plasma Cadmium and Lead Levels With Semen Quality in Non-Occupationally Exposed Infertile Men in Abakaliki, South East Nigeria

    Directory of Open Access Journals (Sweden)

    Ademola C Famurewa

    2017-10-01

    Full Text Available Objective: To evaluate association of blood and seminal plasma lead and cadmium with sperm quality of non-occupationally exposed male partners of couples with infertility.Materials and methods: A cross-sectional study was conducted on 75 men aged 20-45 years (mean = 37.1 ± 7.0 yrs. with infertility recruited from the Fertility Clinic of a hospital in Abakaliki. Sperm count done in accordance with the WHO guidelines was used to classify the participants as normospamia, oligospermia and azospermia. Atomic absorption spectrophotometer was used to determine lead and cadmium levels in plasma from blood and semen.Results: There were 15 azospermics, 22 oligospermics and 36 normospermics. Seminal and blood plasma cadmium as well as blood plasma lead were significantly (p < 0.01 higher in azospermic and oligospermic men compared to normospermic men. However, while seminal plasma lead was significantly (p < 0.05 higher in oligospermic and normospernic men than in azospermic men, the seminal plasma lead was comparable between oligospermic and normospermic men. Significant inverse associations (p < 0.01 were found between blood and seminal cadmium levels and sperm count, motility and morphology; blood lead was inversely correlated with sperm count only.Conclusion: The study suggests that environmental exposure to cadmium and lead may contribute to development of poor sperm quality and infertility in men of reproductive age in Nigeria.

  10. Association between secondhand smoke exposure and blood lead and cadmium concentration in community dwelling women: the fifth Korea National Health and Nutrition Examination Survey (2010-2012).

    Science.gov (United States)

    Jung, Se Young; Kim, Suyeon; Lee, Kiheon; Kim, Ju Young; Bae, Woo Kyung; Lee, Keehyuck; Han, Jong-Soo; Kim, Sarah

    2015-07-16

    To assess the association between secondhand smoke exposure and blood lead and cadmium concentration in women in South Korea. Population-based cross-sectional study. South Korea (Korea National Health and Nutrition Examination Survey V). 1490 non-smoking women who took part in the fifth Korea National Health and Nutrition Examination Survey (2010-2012), in which blood levels of lead and cadmium were measured. The primary outcome was blood levels of lead and cadmium in accordance with the duration of secondhand smoke exposure. The adjusted mean level of blood cadmium in women who were never exposed to secondhand smoke was 1.21 (0.02) µg/L. Among women who were exposed less than 1 h/day, the mean cadmium level was 1.13 (0.03) µg/L, and for those exposed for more than 1 h, the mean level was 1.46 (0.06) µg/L. In particular, there was a significant association between duration of secondhand smoke exposure at the workplace and blood cadmium concentration. The adjusted mean level of blood cadmium concentration in the never exposed women's group was less than that in the 1 h and more exposed group, and the 1 h and more at workplace exposed group: 1.20, 1.24 and 1.50 µg/L, respectively. We could not find any association between lead concentration in the blood and secondhand smoke exposure status. This study showed that exposure to secondhand smoke and blood cadmium levels are associated. Especially, there was a significant association at the workplace. Therefore, social and political efforts for reducing the exposure to secondhand smoke at the workplace are needed in order to promote a healthier working environment for women. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Standard test method for graphite furnace atomic absorption spectrometric determination of lead and cadmium extracted from ceramic foodware

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method covers procedures for using graphite furnace atomic absorption spectroscopy (GFAAS) to quantitatively determine lead and cadmium extracted by acetic acid at room temperature from the food-contact surface of foodware. The method is applicable to food-contact surfaces composed of silicate-based materials (earthenware, glazed ceramicware, decorated ceramicware, decorated glass, and lead crystal glass) and is capable of determining lead concentrations greater than 0.005 to 0.020 g/mL and cadmium concentrations greater than 0.0005 to 0.002 g/mL, depending on instrument design. 1.2 This test method also describes quality control procedures to check for contamination and matrix interference during GFAAS analyses and a specific sequence of analytical measurements that demonstrates proper instrument operation during the time period in which sample solutions are analyzed. 1.3 Cleaning and other contamination control procedures are described in this test method. Users may modify contamination cont...

  12. Arsenic, Cadmium, Chromium, Lead, Mercury and Selenium Concentrations in Pine Snakes (Pituophis melanoleucus) from the New Jersey Pine Barrens.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Zappalorti, Robert; Pittfield, Taryn; DeVito, Emile

    2017-05-01

    Top trophic level predators are at risk from bioaccumulation of heavy metals from their prey. Using nondestructively collected tissues as a method of assessing metal concentrations in snakes is useful for populations that are threatened or declining. This paper reports concentrations of arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and selenium (Se) in tissues of Northern pine snakes (Pituophis melanoleucus) from the New Jersey Pine Barrens, a relatively pristine, undisturbed habitat. We also determined if skin is an appropriate indicator of internal concentrations and identified the factors (tissue, year of collection, length, sex) that might explain variations in metal concentrations. Because they can grow to 2-m long and live for 25 years, we suggest that these snakes might accumulate heavy metals. Multiple regression models were significant, explaining 16% (lead) to 61% (mercury) of variation by tissue type. For mercury and chromium, size also was significant. The highest concentrations were in liver and kidney for all metals, except chromium and lead. Mercury concentrations in tissues were within the range reported for other snakes and were below effects concentrations in reptiles. The concentrations in skin were correlated with all internal tissues for mercury and for all internal tissues except heart for cadmium. These data show that shed skin can be used as an indicator of metals in pine snakes and that, at present, concentrations of heavy metals in this population are within the range of those found in other snake species from uncontaminated sites.

  13. Lead/cadmium contamination and lead isotopic ratios in vegetables grown in peri-urban and mining/smelting contaminated sites in Nanjing, China.

    Science.gov (United States)

    Hu, Xin; Ding, Zhuhong

    2009-01-01

    Lead/cadmium contamination in vegetables grown in peri-urban area of Nanjing, China was assessed and the route for metals entering into plants was investigated through lead isotopic tracing. Results show that agricultural soils have been polluted with Cd. Contents of Pb (22.1-37.5 mg kg(-1 )dw) and Cd (2.53-4.19 mg kg(-1) dw) in vegetables' edible parts nearby a lead/zinc mining/smelting plant were beyond their maximum allowable limit prescribed in the (EC) No 1881/2006. Pb isotope ratios in plants differed from those in the corresponding soils, suggesting that soils were not the only contamination source of Pb and Cd in plants.

  14. Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey Meadowlands

    Energy Technology Data Exchange (ETDEWEB)

    Tsipoura, Nellie [New Jersey Audubon Society, 11 Hardscrabble Road, Bernardsville, NJ 07924 (United States); Burger, Joanna, E-mail: burger@biology.rutgers.edu [Division of Life Sciences, 604 Allison Road, Piscataway, NJ 08854-8082 (United States); Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 (United States); Newhouse, Michael [NJ Meadowlands Commission, One DeKorte Park Plaza, Lyndhurst, NJ 07071 (United States); Jeitner, Christian [Division of Life Sciences, 604 Allison Road, Piscataway, NJ 08854-8082 (United States); Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 (United States); Gochfeld, Michael [Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, NJ 08854 (United States); Environmental and Occupational Medicine. Robert Wood Johnson Medical School, 170 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Mizrahi, David [New Jersey Audubon Society, 11 Hardscrabble Road, Bernardsville, NJ 07924 (United States)

    2011-08-15

    The New Jersey Meadowlands are located within the heavily urbanized New York/New Jersey Harbor Estuary and have been subject to contamination due to effluent and runoff from industry, traffic, and homes along the Hackensack River and nearby waterways. These extensive wetlands, though heavily impacted by development and pollution, support a wide array of bird and other wildlife species. Persistent contaminants may pose threats to birds in these habitats, affecting reproduction, egg hatchability, nestling survival, and neurobehavioral development. Metals of concern in the Meadowlands include arsenic, cadmium, chromium, lead, and mercury. These metals were analyzed in eggs, feathers, muscle, and liver of Canada geese (Branta canadensis) breeding in four wetland sites. We sampled geese collected during control culling (n=26) and collected eggs from goose nests (n=34). Levels of arsenic were below the minimum quantification level (MQL) in most samples, and cadmium and mercury were low in all tissues sampled. Chromium levels were high in feather samples. Mercury levels in eggs of Canada geese, an almost exclusively herbivorous species, were lower (mean {+-}SE 4.29{+-}0.30 {mu}g/g wet weight) than in eggs of omnivorous mallards (Anas platyrhynchos), and insectivorous red-winged blackbirds (Agelaius phoeniceus) and marsh wrens (Cistothorus palustris) from the Meadowlands, consistent with trophic level differences. However, lead levels were higher in the goose eggs (161{+-}36.7 ng/g) than in the other species. Geese also had higher levels of lead in feathers (1910{+-}386 ng/g) than those seen in Meadowlands passerines. By contrast, muscle and liver lead levels were within the range reported in waterfowl elsewhere, possibly a reflection of metal sequestration in eggs and feathers. Elevated lead levels may be the result of sediment ingestion or ingestion of lead shot and sinkers. Finally, lead levels in goose liver (249{+-}44.7 ng/g) and eggs (161{+-}36.7 ng/g) may pose a

  15. Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of Canada geese of the New Jersey Meadowlands.

    Science.gov (United States)

    Tsipoura, Nellie; Burger, Joanna; Newhouse, Michael; Jeitner, Christian; Gochfeld, Michael; Mizrahi, David

    2011-08-01

    The New Jersey Meadowlands are located within the heavily urbanized New York/New Jersey Harbor Estuary and have been subject to contamination due to effluent and runoff from industry, traffic, and homes along the Hackensack River and nearby waterways. These extensive wetlands, though heavily impacted by development and pollution, support a wide array of bird and other wildlife species. Persistent contaminants may pose threats to birds in these habitats, affecting reproduction, egg hatchability, nestling survival, and neurobehavioral development. Metals of concern in the Meadowlands include arsenic, cadmium, chromium, lead, and mercury. These metals were analyzed in eggs, feathers, muscle, and liver of Canada geese (Branta canadensis) breeding in four wetland sites. We sampled geese collected during control culling (n=26) and collected eggs from goose nests (n=34). Levels of arsenic were below the minimum quantification level (MQL) in most samples, and cadmium and mercury were low in all tissues sampled. Chromium levels were high in feather samples. Mercury levels in eggs of Canada geese, an almost exclusively herbivorous species, were lower (mean ±SE 4.29±0.30μg/g wet weight) than in eggs of omnivorous mallards (Anas platyrhynchos), and insectivorous red-winged blackbirds (Agelaius phoeniceus) and marsh wrens (Cistothorus palustris) from the Meadowlands, consistent with trophic level differences. However, lead levels were higher in the goose eggs (161±36.7ng/g) than in the other species. Geese also had higher levels of lead in feathers (1910±386ng/g) than those seen in Meadowlands passerines. By contrast, muscle and liver lead levels were within the range reported in waterfowl elsewhere, possibly a reflection of metal sequestration in eggs and feathers. Elevated lead levels may be the result of sediment ingestion or ingestion of lead shot and sinkers. Finally, lead levels in goose liver (249±44.7ng/g) and eggs (161±36.7ng/g) may pose a risk if consumed

  16. Geochemical Fractionations and Mobility of Arsenic, Lead and Cadmium in Sediments of the Kanto Plain, Japan.

    Science.gov (United States)

    Hossain, Sushmita; Oguchi, Chiaki T.; Hachinohe, Shoichi; Ishiyama, Takashi; Hamamoto, Hideki

    2014-05-01

    Lowland alluvial and floodplain sediment play a major role in transferring heavy metals and other elements to groundwater through sediment water interaction in changing environmental conditions. However identification of geochemical forms of toxic elements such as arsenic (As), lead (Pb) and cadmium (Cd) requires risk assessment of sediment and subsequent groundwater pollution. A four steps sequential extraction procedure was applied to characterize the geochemical fractionations of As, Pb and Cd for 44 sediment samples including one peat sample from middle basin area of the Nakagawa river in the central Kanto plain. The studied sediment profile extended from the bottom of the river to 44 m depth; sediment samples were collected at 1m intervals from a bored core. The existing sedimentary facies in vertical profile are continental, transitional and marine. There are two aquifers in vertical profile; the upper aquifer (15-20m) contains fine to medium sand whereas medium to coarse sand and gravelly sand contain in lower aquifer (37-44m). The total As and Pb contents were measured by the X-Ray Fluorescence analysis which ranged from 4 to 23 mg/kg of As and 10 to 27 mg/kg of Pb in sediment profile. The three trace elements and major heavy metals were determined by ICP/MS and ICP/AES, and major ions were measured by an ion chromatograph. The marine sediment is mainly Ca-SO4 type. The Geochemical analysis showed the order of mobility trends to be As > Pb > Cd for all the steps. The geochemical fractionations order was determined to be Fe-Mn oxide bound > carbonate bound > ion exchangeable > water soluble for As and Pb whereas the order for Cd is carbonate bound > Fe-Mn oxide bound > ion exchangeable > water soluble. The mobility tendency of Pb and Cd showed high in fine silty sediment of marine environment than for those from continental and transitional environments. In the case of As, the potential mobility is very high (>60%) in the riverbed sediments and clayey silt

  17. Comparative acute toxicity of gallium(III, antimony(III, indium(III, cadmium(II, and copper(II on freshwater swamp shrimp (Macrobrachium nipponense

    Directory of Open Access Journals (Sweden)

    Jen-Lee Yang

    2014-01-01

    Full Text Available BACKGROUND: Acute toxicity testing were carried out the freshwater swamp shrimp, Macrobrachium nipponense, as the model animal for the semiconductor applied metals (gallium, antimony, indium, cadmium, and copper to evaluate if the species is an suitable experimental animal of pollution in aquatic ecosystem. RESULTS: The static renewal test method of acute lethal concentrations determination was used, and water temperature was maintained at 24.0 ± 0.5°C. Data of individual metal obtained from acute toxicity tests were determined using probit analysis method. The median lethal concentration (96-h LC50 of gallium, antimony, indium, cadmium, and copper for M. nipponense were estimated as 2.7742, 1.9626, 6.8938, 0.0539, and 0.0313 mg/L, respectively. CONCLUSIONS: Comparing the toxicity tolerance of M. nipponense with other species which exposed to these metals, it is obviously that the M. nipponense is more sensitive than that of various other aquatic animals.

  18. Perturbations in ROS-related processes of the fish Gambusia holbrooki after acute and chronic exposures to the metals copper and cadmium.

    Science.gov (United States)

    Nunes, Bruno; Caldeira, Carina; Pereira, Joana Luísa; Gonçalves, Fernando; Correia, Alberto Teodorico

    2015-03-01

    Metallic contamination is a widespread phenomena, particularly in areas impacted by human activities, and has become a relevant environmental concern. However, the toxicity of metals on fish requires full characterization in terms of short- and long-term effects. Thus, the purpose of this study was to determine the acute and chronic oxidative stress response in liver and gills of Gambusia holbrooki exposed to copper and cadmium. To assess the effects of these two metals, we adopted a strategy of analyzing the pollution effects caused by salts of the two metallic elements, and we quantified the oxidative stress biomarkers catalase, glutathione reductase, glutathione-S-transferases, and lipid peroxidation after exposure (4 and 28 days) to ecologically relevant concentrations, thus simulating actual conditions of exposure in the wild. Our results showed that copper elicited strong effects in all tested biomarkers for both acute and chronic challenges. Cadmium caused a similar response and was shown to cause significant changes particularly in catalase and glutathione-S-transferases activities. These findings evidence that ecologically relevant concentrations of common anthropogenic contaminants are causative agents of serious imbalances (namely oxidative stress) that are likely to trigger life-threatening events.

  19. Tween 80 coated alumina: An alternative support for solid phase extraction of copper, nickel, cobalt and cadmium prior to flame atomic absorption spectrometric determination

    Directory of Open Access Journals (Sweden)

    S.Z. Mohammadi

    2016-11-01

    Full Text Available The potential of coated alumina as a sorbent for the simultaneous separation and preconcentration of copper, nickel, cobalt and cadmium ions has been investigated. Copper, nickel, cobalt and cadmium were adsorbed quantitatively on coated alumina in the pH of 6. The main factors such as pH, amount sorbent, sample and eluent flow rate, type and volume of elution solution and interfering ions on the sorption of metal ions have been investigated in detail. Under the optimum experimental conditions, the detection limits (3Sb of this method for Cu(II, Ni(II, Co(II and Cd(II ions were 0.4, 1.0, 1.2 and 0.2 ng mL−1 in the original solution, respectively. Seven replicate determinations of a mixture of 5.0 μg of Cu(II, Ni(II, Co(II and 1.0 μg of Cd(II ions in the original solution gave a mean absorbance of 0.093, 0.071, 0.066 and 0.049 with relative standard deviations 1.9%, 2.3%, 2.6% and 2.1%, respectively. The method has been applied for the determination of trace amounts of Cu(II, Ni(II, Co(II and Cd(II ions in tobacco, brewed tea and water samples with satisfactory results.

  20. Relationship between organic matter humification and bioavailability of sludge-borne copper and cadmium during long-term sludge amendment to soil

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongtao, E-mail: liuht@igsnrr.ac.cn

    2016-10-01

    Recycling of sludge as soil amendment poses certain risk of heavy metals contamination. This study investigated the relationship between organic matter in composted sludge and its heavy metals bioavailability over 7 years. Periodic monitoring indicated a gradual increase in organic matter degradation, accompanied by changing degrees of polymerization, i.e., ratio of humic acid (HA)/fulvic acid (FA) coupled with incremental exchangeable fraction of copper (Cu) in sludge, with a growing rate of 74.7%, rather than that in soil. However, cadmium (Cd) in composted sludge exhibited an independent manner. Linear-regression analysis revealed that the total proportion of the Cu active fraction (exchangeable plus carbonate bound) was better correlated with the degree of polymerization (DP) and humification ratio (HR) than the degradation ratio of organic matter. Overall, amount of uptaken Cu was more dependent on the humification degree of organic matter, especially the proportion of HA in humus. - Highlights: • Organic matter in sludge degraded with time goes after sludge was recycled to soil. • DP in sludge is well coupled with incremental uptaken fraction of its borne copper. • Profiles of Cadmium fractions in sludge exhibit an independent manner.

  1. The marine macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II) removal: kinetic and equilibrium studies.

    Science.gov (United States)

    Lodeiro, P; Barriada, J L; Herrero, R; Sastre de Vicente, M E

    2006-07-01

    This work reports kinetic and equilibrium studies of cadmium(II) and lead(II) adsorption by the brown seaweed Cystoseira baccata. Kinetic experiments demonstrated rapid metal uptake. Kinetic data were satisfactorily described by a pseudo-second order chemical sorption process. Temperature change from 15 to 45 degrees C showed small variation on kinetic parameters. Langmuir-Freundlich equation was selected to describe the metal isotherms and the proton binding in acid-base titrations. The maximum metal uptake values were around 0.9 mmol g(-1) (101 and 186 mg g(-1) for cadmium(II) and lead(II), respectively) at pH 4.5 (raw biomass), while the number of weak acid groups were 2.2 mmol g(-1) and their proton binding constant, K(H), 10(3.67) (protonated biomass). FTIR analysis confirmed the participation of carboxyl groups in metal uptake. The metal sorption was found to increase with the solution pH reaching a plateau above pH 4. Calcium and sodium nitrate salts in solution were found to affect considerably the metal biosorption.

  2. What do we know of childhood exposures to metals (arsenic, cadmium, lead, and mercury) in emerging market countries?

    Science.gov (United States)

    Horton, Lindsey M; Mortensen, Mary E; Iossifova, Yulia; Wald, Marlena M; Burgess, Paula

    2013-01-01

    Arsenic, cadmium, lead, and mercury present potential health risks to children who are exposed through inhalation or ingestion. Emerging Market countries experience rapid industrial development that may coincide with the increased release of these metals into the environment. A literature review was conducted for English language articles from the 21st century on pediatric exposures to arsenic, cadmium, lead, and mercury in the International Monetary Fund's (IMF) top 10 Emerging Market countries: Brazil, China, India, Indonesia, Mexico, Poland, Russia, South Korea, Taiwan, and Turkey. Seventy-six peer-reviewed, published studies on pediatric exposure to metals met the inclusion criteria. The reported concentrations of metals in blood and urine from these studies were generally higher than US reference values, and many studies identified adverse health effects associated with metals exposure. Evidence of exposure to metals in the pediatric population of these Emerging Market countries demonstrates a need for interventions to reduce exposure and efforts to establish country-specific reference values through surveillance or biomonitoring. The findings from review of these 10 countries also suggest the need for country-specific public health policies and clinician education in Emerging Markets.

  3. What Do We Know of Childhood Exposures to Metals (Arsenic, Cadmium, Lead, and Mercury in Emerging Market Countries?

    Directory of Open Access Journals (Sweden)

    Lindsey M. Horton

    2013-01-01

    Full Text Available Arsenic, cadmium, lead, and mercury present potential health risks to children who are exposed through inhalation or ingestion. Emerging Market countries experience rapid industrial development that may coincide with the increased release of these metals into the environment. A literature review was conducted for English language articles from the 21st century on pediatric exposures to arsenic, cadmium, lead, and mercury in the International Monetary Fund's (IMF top 10 Emerging Market countries: Brazil, China, India, Indonesia, Mexico, Poland, Russia, South Korea, Taiwan, and Turkey. Seventy-six peer-reviewed, published studies on pediatric exposure to metals met the inclusion criteria. The reported concentrations of metals in blood and urine from these studies were generally higher than US reference values, and many studies identified adverse health effects associated with metals exposure. Evidence of exposure to metals in the pediatric population of these Emerging Market countries demonstrates a need for interventions to reduce exposure and efforts to establish country-specific reference values through surveillance or biomonitoring. The findings from review of these 10 countries also suggest the need for country-specific public health policies and clinician education in Emerging Markets.