WorldWideScience

Sample records for copper binding properties

  1. The copper binding properties of metformin--QCM-D, XPS and nanobead agglomeration.

    Science.gov (United States)

    Quan, Xueling; Uddin, Rokon; Heiskanen, Arto; Parmvi, Mattias; Nilson, Katharina; Donolato, Marco; Hansen, Mikkel F; Rena, Graham; Boisen, Anja

    2015-12-18

    Study of the copper binding properties of metformin is important for revealing its mechanism of action as a first-line type-2 diabetes drug. A quantitative investigation of interactions between metformin and L-cysteine-copper complexes was performed. The results suggest that metformin could interact with biological copper, which plays a key role in mitochondrial function.

  2. The copper binding properties of metformin - QCM-D, XPS and nanobead agglomeration

    DEFF Research Database (Denmark)

    Quan, Xueling; Uddin, Rokon; Heiskanen, Arto

    2015-01-01

    Study of the copper binding properties of metformin is important for revealing its mechanism of action as a first-line type-2 diabetes drug. A quantitative investigation of interactions between metformin and l-cysteine-copper complexes was performed. The results suggest that metformin could inter...

  3. The copper binding properties of metformin - QCM-D, XPS and nanobead agglomeration

    DEFF Research Database (Denmark)

    Quan, Xueling; Uddin, Rokon; Heiskanen, Arto;

    2015-01-01

    Study of the copper binding properties of metformin is important for revealing its mechanism of action as a first-line type-2 diabetes drug. A quantitative investigation of interactions between metformin and l-cysteine-copper complexes was performed. The results suggest that metformin could...

  4. Biomolecular mode of action of metformin in relation to its copper binding properties.

    Science.gov (United States)

    Repiščák, Peter; Erhardt, Stefan; Rena, Graham; Paterson, Martin J

    2014-02-04

    Metformin (Metf), the most commonly used type 2 diabetes drug, is known to affect the cellular housekeeping of copper. Recently, we discovered that the structurally closely related propanediimidamide (PDI) shows a cellular behavior different from that of Metf. Here we investigate the binding of these compounds to copper, to compare their binding strength. Furthermore, we take a closer look at the electronic properties of these compounds and their copper complexes such as molecular orbital interactions and electrostatic potential surfaces. Our results clearly show that the copper binding energies cannot alone be the cause of the biochemical differentiation between Metf and PDI. We conclude that other factors such as pKa values and hydrophilicity of the compounds play a crucial role in their cellular activity. Metf in contrast to PDI can occur as an anion in aqueous medium at moderate pH, forming much stronger complexes particularly with Cu(II) ions, suggesting that biguanides but not PDI may induce easy oxidation of Cu(I) ions extracted from proteins. The higher hydrophobicity and the lack of planarity of PDI may further differentiate it from biguanides in terms of their molecular recognition characteristics. These different properties could hold the key to metformin's mitochondrial activity because they suggest that the drug could act at least in part as a pro-oxidant of accessible protein-bound Cu(I) ions.

  5. Effects of oxidation on copper-binding properties of Aβ1-16 peptide: a pulse radiolysis study.

    Science.gov (United States)

    Ramteke, S N; Ginotra, Y P; Walke, G R; Joshi, B N; Kumbhar, A S; Rapole, S; Kulkarni, P P

    2013-12-01

    The reaction of hydroxyl radicals ((•)OH) with Aβ1-16 peptide was carried out using pulse radiolysis to understand the effect of oxidation of peptide on its copper-binding properties. This reaction produced oxidized, dimeric and trimeric Aβ1-16 peptide species. The formation of these products was established with the help of fluorescence spectroscopy and mass spectrometry. The mass spectral data indicate that the major site of oxidation is at His6, while the site for dimerization is at Tyr10. Diethyl pyrocarbonate-treated Aβ1-16 peptide did not produce any trimeric species upon oxidation with (•)OH. The quantitative chemical modification studies indicated that one of the three histidine residues is covalently modified during pulse radiolysis. The copper-binding studies of the oxidized peptide revealed that it has similar copper-binding properties as the unoxidized peptide. Further, the cytotoxicity studies point out that both oxidized and unoxidized Aβ1-16 peptide are equally efficient in producing free radicals in presence of copper and ascorbate that resulted in comparable cell death.

  6. Impacts of microbial activity on the optical and copper-binding properties of leaf-litter leachate

    Directory of Open Access Journals (Sweden)

    Chad eCuss

    2012-05-01

    Full Text Available Dissolved organic matter (DOM is a universal part of all aquatic systems that largely originates with the decay of plant and animal tissue. Its polyelectrolytic and heterogeneous characters make it an effective metal-complexing agent with highly diverse characteristics. Microbes utilize DOM as a source of nutrients and energy and their enzymatic activity may change its composition, thereby altering the bioavailability and toxicity of metals. This study investigated the impacts of microbial inoculation upon the optical and copper-binding properties of freshly-produced leaf-litter leachate over 168 hours. Copper speciation was measured using voltammetry, and using fluorescence quenching analysis of independent fluorophores determined using parallel factor analysis (PARAFAC. Four distinct components were detected. Thirty-five percent of total protein/polyphenol-like fluorescence was removed after 168-hr of exposure to riverine microbes. Using voltammetry, a 6-fold increase in copper-complexing (CC capacity (130 - 770 μmol Cu/g C was observed over the exposure period, while the conditional binding constant (log K decreased from 7.2 to 5.8. Binding parameters were significantly different for all four PARAFAC components and were generally in agreement with voltammetric results in the microbially-degraded samples, but they were significantly different in leachate. These results suggest that non-fluorescent moieties may exert a significant influence upon binding characteristics. Three of four binding sites corresponding to independent PARAFAC components, which had distinct characteristics in the leachate, retained significantly different log K values (p<0.05 after 168 hours of incubation, while their complexing capacities became similar. It was concluded that the microbial metabolization of maple leaf leachate has a significant impact upon DOM composition and its copper-binding characteristics.

  7. Impacts of microbial activity on the optical and copper-binding properties of leaf-litter leachate.

    Science.gov (United States)

    Cuss, Chad W; Guéguen, Celine

    2012-01-01

    Dissolved organic matter (DOM) is a universal part of all aquatic systems that largely originates with the decay of plant and animal tissue. Its polyelectrolytic and heterogeneous characters make it an effective metal-complexing agent with highly diverse characteristics. Microbes utilize DOM as a source of nutrients and energy and their enzymatic activity may change its composition, thereby altering the bioavailability and toxicity of metals. This study investigated the impacts of microbial inoculation upon the optical and copper-binding properties of freshly produced leaf-litter leachate over 168 h. Copper speciation was measured using voltammetry, and using fluorescence quenching analysis of independent fluorophores determined using parallel factor analysis (PARAFAC). Two protein/polyphenol-like and two fulvic/humic-like components were detected. Thirty-five percent of total protein/polyphenol-like fluorescence was removed after 168-h of exposure to riverine microbes. The microbial humic-like and tryptophan-like PARAFAC components retained significantly different log K values after 168 h of incubation (p complexing capacities were similar. Using voltammetry, a sixfold increase in copper-complexing capacity (CC, from 130 to 770 μmol Cu g C(-1)) was observed over the exposure period, while the conditional binding constant (log K) decreased from 7.2 to 5.8. Overall binding parameters determined using voltammetry and fluorescence quenching were in agreement. However, the electrochemically based binding strength was significantly greater than that exhibited by any of the PARAFAC components, which may be due to the impact of non-fluorescent DOM, or differences in the concentration ranges of metals analyzed (i.e., different analytical windows). It was concluded that the microbial metabolization of maple leaf leachate has a significant impact upon DOM composition and its copper-binding characteristics.

  8. Synthesis, Cytotoxic Activity, and DNA Binding Properties of Copper (II Complexes with Hesperetin, Naringenin, and Apigenin

    Directory of Open Access Journals (Sweden)

    Mingxiong Tan

    2009-01-01

    Full Text Available Complexes of copper (II with hesperetin, naringenin, and apigenin of general composition [CuL2(H2O2]⋅nH2O (1–3 have been synthesized and characterized by elemental analysis, UV-Vis, FT-IR, ESI-MS, and TG-DTG thermal analysis. The free ligands and the metal complexes have been tested in vitro against human cancer cell lines hepatocellular carcinoma (HepG-2, gastric carcinomas (SGC-7901, and cervical carcinoma (HeLa. Complexes 1 and 3 were found to exhibit growth inhibition of SGC-7901 and HepG2 cell lines with respect to the free ligands; the inhibitory rate of complex 1 is 43.2% and 43.8%, while complex 3 is 46% and 36%, respectively. The interactions of complex 1 and its ligand Hsp with calf thymus DNA were investigated by UV-Vis, fluorescence, and CD spectra. Both complex 1 and Hsp were found to bind DNA in intercalation modes, and the binding affinity of complex 1 was stronger than that of free ligand.

  9. Synthesis and Structure of a Ternary Copper(II) Complex with Mixed Ligands of Diethylenetriamine and Picrate: DNA/Protein-Binding Property and In Vitro Anticancer Activity Studies.

    Science.gov (United States)

    Shi, Ya-Ning; Zheng, Kang; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-05-01

    Based on the importance of the design and synthesis of transition metal complexes with noncovalent DNA/protein-binding abilities in the field of metallo pharmaceuticals, a new mononuclear ternary copper(II) complex with mixed ligands of diethylenetriamine (dien) and picrate anion (pic), identified as [Cu(dien)(pic)](pic), was synthesized and characterized by elemental analysis, molar conductivity measurement, infrared spectrum, electronic spectral studies, and single-crystal X-ray diffractometry. The structure analysis reveals that the copper(II) complex crystallizes in the monoclinic space group P21 /c, and the copper(II) ion has a distorted square pyramidal coordination geometry. A two-dimensional supramolecular structure is formed through hydrogen bonds. The DNA/bovine serum albumin (BSA)-binding properties of the complex are explored, indicating that the complex can interact with herring sperm DNA via intercalation mode and bind to BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism. The in vitro anticancer activity shows that the copper(II) complex is active against the selected tumor cell lines.

  10. Copper(II) complexes with 4-hydroxyacetophenone-derived acylhydrazones: Synthesis, characterization, DNA binding and cleavage properties

    Science.gov (United States)

    Gup, Ramazan; Gökçe, Cansu; Aktürk, Selçuk

    2015-01-01

    Two new Cu(II) complexes of Schiff base-hydrazone ligands, hydroxy-N‧-[(1Z)-1-(4-hydroxyphenyl)ethylidene]benzohydrazide [H3L1] and ethyl 2-(4-(1-(2-(4-(2-ethoxy-2-oxoethoxy)benzoyl)hydrazono)ethyl)phenoxy)acetate (HL2) have been synthesized and then characterized by microcopy and spectral studies. X-ray powder diffraction illustrates that [Cu(L2)2] complex is crystalline in nature whereas [Cu(H2L1)2]·2H2O has an amorphous structure. Binding of the copper complexes with Calf thymus DNA (CT-DNA) has been investigated by UV-visible spectra, exhibiting non-covalent binding to CT-DNA. DNA cleavage experiments have been also investigated by agarose gel electrophoresis in the presence and absence of an oxidative agent (H2O2). The effect of complex concentration on the DNA cleavage reaction has been also studied. Both copper complexes show nuclease activity, which significantly depends on concentrations of the complexes, in the presence of H2O2 through oxidative mechanism whereas they slightly cleavage DNA in the absence an oxidative agent.

  11. Synthesis and Characterisation of Copper(II Complexes with Tridentate NNO Functionalized Ligand: Density Function Theory Study, DNA Binding Mechanism, Optical Properties, and Biological Application

    Directory of Open Access Journals (Sweden)

    Madhumita Hazra

    2014-01-01

    Full Text Available The photo physical properties of two mononuclear pentacoordinated copper(II complexes formulated as [Cu(L(Cl(H2O] (1 and [Cu(L(Br(H2O] (2 HL = (1-[(3-methyl-pyridine-2-ylimino-methyl]-naphthalen-2-ol were synthesized and characterized by elemental, physicochemical, and spectroscopic methods. The density function theory calculations are used to investigate the electronic structures and the electronic properties of ligand and complex. The interactions of copper(II complexes towards calf thymus DNA were examined with the help of absorption, viscosity, and fluorescence spectroscopic techniques at pH 7.40. All spectroscopy's result indicates that complexes show good binding activity to calf thymus DNA through groove binding. The optical absorption and fluorescence emission properties of microwires were characterized by fluorescence microscope. From a spectroscopic viewpoint, all compounds strongly emit green light in the solid state. The microscopy investigation suggested that microwires exhibited optical waveguide behaviour which are applicable as fluorescent nanomaterials and can be used as building blocks for miniaturized photonic devices. Antibacterial study reveals that complexes are better antimicrobial agents than free Schiff base due to bacterial cell penetration by chelation. Moreover, the antioxidant study of the ligand and complexes is evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH free-radical assays, which demonstrate that the complexes are of higher antioxidant activity than free ligand.

  12. Synthesis, characterisation and adsorption properties of a porous copper(II) 3D coordination polymer exhibiting strong binding enthalpy and adsorption capacity for carbon dioxide.

    Science.gov (United States)

    Eckold, Pierre; Gee, William J; Hill, Matthew R; Batten, Stuart R

    2012-11-21

    The synthesis and characterisation of microporous coordination polymers containing copper(II) or cobalt(II) and 2-(pyridin-4-yl)malonaldehyde (Hpma) is described and the gas adsorption properties evaluated. Single-crystal X-ray structure determinations identified the structures as [M(pma)(2)]·2X (M = Cu, 1; Co, 2; X = MeOH, MeCN), which contain 3D networks with rutile topology and continuous 1D rectangular channels with diameters ranging from 3 to 4 Å. The materials exhibit low BET surface areas of 143 m(2) g(-1), but possess large capacities for carbon dioxide capture of 14.1 wt%. The small pore channels are shown to account for this, delivering a particularly strong binding enthalpy to adsorbed CO(2) of 38 kJ mol(-1), and a very large adsorption capacity relative to the low surface area.

  13. Peptides derived from the copper-binding region of lysyl oxidase exhibit antiangiogeneic properties by inhibiting enzyme activity: an in vitro study.

    Science.gov (United States)

    Mohankumar, Arun; Renganathan, Bhuvanasundar; Karunakaran, Coral; Chidambaram, Subbulakshmi; Konerirajapuram Natarajan, Sulochana

    2014-11-01

    Despite the rigorous research on abnormal angiogenesis, there is a persistent need for the development of new and efficient therapies against angiogenesis-related diseases. The role of Lysyl oxidase (LOX) in angiogenesis and cancer has been established in prior studies. Copper is known to induce the synthesis of LOX, and hence regulates its activity. Hypoxia-induced metastasis is dependent on LOX expression and activity. It has been believed that the inhibition of LOX would be a therapeutic strategy to inhibit angiogenesis. To explore this, we designed peptides (M peptides) from the copper-binding region of LOX and hypothesized them to modulate LOX. The peptides were characterized, and their copper-binding ability was confirmed by mass spectrometry. The M peptides were found to reduce the levels of intracellular copper when the cells were co-treated with copper. The peptides showed promising effect on aortic LOX, recombinant human LOX and LOX produced by human umbilical vein endothelial cells (HUVECs). The study also explores the effect of these peptides on copper and hypoxia-stimulated angiogenic response in HUVECs. It was found that the M peptides inhibited copper/hypoxia-induced LOX activity and inhibited stimulated HUVEC tube formation and migration. This clearly indicated the potential of M peptides in inhibiting angiogenesis, highlighting their role in the formulation of drugs for the same.

  14. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase.

    Science.gov (United States)

    Paksi, Zoltán; Jancsó, Attila; Pacello, Francesca; Nagy, Nóra; Battistoni, Andrea; Gajda, Tamás

    2008-09-01

    The Cu,Zn superoxide dismutase (Cu,ZnSOD) isolated from Haemophilus ducreyi possesses a His-rich N-terminal metal binding domain, which has been previously proposed to play a copper(II) chaperoning role. To analyze the metal binding ability and selectivity of the histidine-rich domain we have carried out thermodynamic and solution structural analysis of the copper(II) and zinc(II) complexes of a peptide corresponding to the first 11 amino acids of the enzyme (H(2)N-HGDHMHNHDTK-OH, L). This peptide has highly versatile metal binding ability and provides one and three high affinity binding sites for zinc(II) and copper(II), respectively. In equimolar solutions the MHL complexes are dominant in the neutral pH-range with protonated lysine epsilon-amino group. As a consequence of its multidentate nature, L binds zinc and copper with extraordinary high affinity (K(D,Zn)=1.6x10(-9)M and K(D,Cu)=5.0x10(-12)M at pH 7.4) and appears as the strongest zinc(II) and copper(II) chelator between the His-rich peptides so far investigated. These K(D) values support the already proposed role of the N-terminal His-rich region of H. ducreyi Cu,ZnSOD in copper recruitment under metal starvation, and indicate a similar function in the zinc(II) uptake, too. The kinetics of copper(II) transfer from L to the active site of Cu-free N-deleted H. ducreyi Cu,ZnSOD showed significant pH and copper-to-peptide ratio dependence, indicating specific structural requirements during the metal ion transfer to the active site. Interestingly, the complex CuHL has significant superoxide dismutase like activity, which may suggest multifunctional role of the copper(II)-bound N-terminal His-rich domain of H. ducreyi Cu,ZnSOD.

  15. Parameterizing the binding properties of dissolved organic matter with default values skews the prediction of copper solution speciation and ecotoxicity in soil.

    Science.gov (United States)

    Djae, Tanalou; Bravin, Matthieu N; Garnier, Cédric; Doelsch, Emmanuel

    2017-04-01

    Parameterizing speciation models by setting the percentage of dissolved organic matter (DOM) that is reactive (% r-DOM) toward metal cations at a single 65% default value is very common in predictive ecotoxicology. The authors tested this practice by comparing the free copper activity (pCu(2+)  = -log10 [Cu(2+) ]) measured in 55 soil sample solutions with pCu(2+) predicted with the Windermere humic aqueous model (WHAM) parameterized by default. Predictions of Cu toxicity to soil organisms based on measured or predicted pCu(2+) were also compared. Default WHAM parameterization substantially skewed the prediction of measured pCu(2+) by up to 2.7 pCu(2+) units (root mean square residual = 0.75-1.3) and subsequently the prediction of Cu toxicity for microbial functions, invertebrates, and plants by up to 36%, 45%, and 59% (root mean square residuals ≤9 %, 11%, and 17%), respectively. Reparametrizing WHAM by optimizing the 2 DOM binding properties (i.e., % r-DOM and the Cu complexation constant) within a physically realistic value range much improved the prediction of measured pCu(2+) (root mean square residual = 0.14-0.25). Accordingly, this WHAM parameterization successfully predicted Cu toxicity for microbial functions, invertebrates, and plants (root mean square residual ≤3.4%, 4.4%, and 5.8%, respectively). Thus, it is essential to account for the real heterogeneity in DOM binding properties for relatively accurate prediction of Cu speciation in soil solution and Cu toxic effects on soil organisms. Environ Toxicol Chem 2017;36:898-905. © 2016 SETAC. © 2016 SETAC.

  16. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    Directory of Open Access Journals (Sweden)

    Choveaux David L

    2012-11-01

    Full Text Available Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369, containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds.

  17. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    Science.gov (United States)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  18. Copper at synapse: Release, binding and modulation of neurotransmission.

    Science.gov (United States)

    D'Ambrosi, Nadia; Rossi, Luisa

    2015-11-01

    Over the last decade, a piece of the research studying copper role in biological systems was devoted to unravelling a still elusive, but extremely intriguing, aspect that is the involvement of copper in synaptic function. These studies were prompted to provide a rationale to the finding that copper is released in the synaptic cleft upon depolarization. The copper pump ATP7A, which mutations are responsible for diseases with a prominent neurodegenerative component, seems to play a pivotal role in the release of copper at synapses. Furthermore, it was found that, when in the synaptic cleft, copper can control, directly or indirectly, the activity of the neurotransmitter receptors (NMDA, AMPA, GABA, P2X receptors), thus affecting excitability. In turn, neurotransmission can affect copper trafficking and delivery in neuronal cells. Furthermore, it was reported that copper can also modulate synaptic vesicles trafficking and the interaction between proteins of the secretory pathways. Interestingly, proteins with a still unclear role in neuronal system though associated with the pathogenesis of neurodegenerative diseases (the amyloid precursor protein, APP, the prion protein, PrP, α-synuclein, α-syn) show copper-binding domains. They may act as copper buffer at synapses and participate in the interplay between copper and the neurotransmitters receptors. Given that copper dysmetabolism occurs in several diseases affecting central and peripheral nervous system, the findings on the contribution of copper in synaptic transmission, beside its more consolidate role as a neuronal enzymes cofactor, may open new insights for therapy interventions.

  19. Spectroscopic characterization of copper(I) binding to apo and metal-reconstituted zinc finger peptides.

    Science.gov (United States)

    Doku, Reginald T; Park, Grace; Wheeler, Korin E; Splan, Kathryn E

    2013-08-01

    Cu(I) exhibits high affinity for thiolate ligands, suggesting that thiol-rich zinc or iron binding sites may be subject to disruption during copper stress conditions. Zinc fingers constitute a large class of metalloproteins that use a combination of cysteine and histidine residues that bind Zn(II) as a structural element. Despite the shared preference of both copper and zinc for thiolate and amine coordination, the susceptibility of zinc finger domains toward copper substitution is not well studied. We report spectroscopic studies that characterize the Cu(I) binding properties of the zinc finger consensus peptides CP-CCHH, CP-CCHC, and CP-CCCC and the C-terminal zinc finger domain of HIV-1 nucleocapsid protein p7 (NCp7_C). Cu(I) binds to both the apopeptides and the Co(II)-substituted peptides, and the stoichiometry of Cu(I) binding is dependent on the number of cysteine thiols at the metal binding site. Fluorescence studies of the Zn(II)-NCp7_C complex indicate that Cu(I) also effectively competes with Zn(II) at the metal binding site, despite the high affinity of Zn(II) for the CCHC binding motif. Circular dichroism studies on both CP-CCHC and NCp7_C show that the conformations of the Cu(I)-bound complexes differ substantially from those of the Zn(II) species, implying that Cu(I) substitution is likely to impact zinc finger function. These results show that for the peptides studied here, Cu(I) is the thermodynamically favored metal despite the known high Zn(II) affinity of zinc finger domains, suggesting that Cu(I)-substituted zinc finger domains might be relevant in the context of both copper toxicity mechanisms and copper-responsive transcription factors.

  20. Microstructure and Service Properties of Copper Alloys

    OpenAIRE

    Polok-Rubiniec M.; Konieczny J.; Labisz K.; Włodarczyk-Fligier A.

    2016-01-01

    This elaboration shows the effect of combined heat treatment and cold working on the structure and utility properties of alloyed copper. As the test material, alloyed copper CuTi4 was employed. The samples were subjected to treatment according to the following schema: 1st variant – supersaturation and ageing, 2nd variant – supersaturation, cold rolling and ageing. The paper presents the results of microstructure, hardness, and abrasion resistance. The analysis of the wipe profile geometry was...

  1. Pharmacological Properties of Nanometals (Silver, Copper, Iron

    Directory of Open Access Journals (Sweden)

    Chekman, I.S.

    2015-01-01

    Full Text Available The article summarizes the results of studies on the pharmacological, toxicological and specific properties of nanometals (silver, iron, copper. It is established that nanoparticles of silver, copper, iron exhibit antimicrobial action. Acute toxicity of nanometals depends on their nature, administration route and animal sex. Effects on heart activity and hemodynamic status as well as erythrocyte osmotic fragility have dose-dependent nature.

  2. Physical Properties of Copper Based MMC Strengthened with Alumina

    Directory of Open Access Journals (Sweden)

    Kaczmar J. W.

    2014-06-01

    Full Text Available The aim of this work is the development of Cu-Al2O3 composites of copper Cu-ETP matrix composite materials reinforced by 20 and 30 vol.% Al2O3 particles and study of some chosen physical properties. Squeeze casting technique of porous compacts with liquid copper was applied at the pressure of 110 MPa. Introduction of alumina particles into copper matrix affected on the significant increase of hardness and in the case of Cu-30 vol. % of alumina particles to 128 HBW. Electrical resistivity was strongly affected by the ceramic alumina particles and addition of 20 vol. % of particles caused diminishing of electrical conductivity to 20 S/m (34.5% IACS. Thermal conductivity tests were performed applying two methods and it was ascertained that this parameter strongly depends on the ceramic particles content, diminishing it to 100 Wm-1K-1 for the composite material containing 30 vol.% of ceramic particles comparing to 400 Wm-1K-1 for the unreinforced copper. Microstructural analysis was carried out using SEM microscopy and indicates that Al2O3 particles are homogeneously distributed in the copper matrix. EDS analysis shows remains of silicon on the surface of ceramic particles after binding agent used during preparation of ceramic preforms.

  3. Optical properties of stabilized copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohindroo, Jeevan Jyoti, E-mail: jjmdav@gmail.com [Punjab Technical University, Kapurthala Punjab (India); Department of Chemistry, DAV College, Amritsar, Punjab India (India); Garg, Umesh Kumar, E-mail: Umeshkgarg@gmail.com [Punjab Technical University, Kapurthala Punjab (India); Guru Teg Bahadur Khalsa College of IT, Malout, Punjab (India); Sharma, Anshul Kumar [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2016-05-06

    Optical studies involving calculation of Band Gap of the synthesized copper nanoparticles were carried out in the wavelength range of 500 to 650 nm at room temperature, the particles showed high absorption at 550 nm indicating their good absorptive properties. In this method water is used as the medium for reduction of copper ions in to copper Nanoparticles the stabilization of copper Nanoparticles was studied with starch both as a reductant and stabilizer,. The reaction mixture was heated using a kitchen microwave for about 5 minutes to attain the required temp for the reaction. The pH of the solution was adjusted to alkaline using 5% solution of NaOH. Formation of Copper Nanoparticles was indicated by change in color of the solution from blue to yellowish black which is supported by the UV absorption at 570 nm.the synthesized particles were washed with water and alcohol. The optical properties depend upon absorption of radiations which in turn depends upon ratio of electrons and holes present in the material and also on the shape of the nanoparticles. In the present investigation it was observed that optical absorption increases with increase in particle size. The optical band gap for the Nanoparticles was obtained from plots between hv vs. (αhv){sup 2} and hv vs. (αhv){sup 1/2}. The value of Band gap came out to be around 1.98–2.02 eV which is in close agreement with the earlier reported values.

  4. Surface properties of copper based cermet materials

    Energy Technology Data Exchange (ETDEWEB)

    Voinea, M. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)], E-mail: m.voinea@unitbv.ro; Vladuta, C.; Bogatu, C.; Duta, A. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)

    2008-08-25

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO{sub x} cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO{sub x} was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components.

  5. THE EFFECTS OF COPPER AND ZINC IONS DURING THEIR BINDING WITH HUMAN SERUM γ-GLOBULIN

    Directory of Open Access Journals (Sweden)

    S. B. Cheknev

    2006-01-01

    Full Text Available Abstract. Conformational changes of human serum γ-globulin were studied during and after its binding with copper and zinc ions, using molecular ultrafiltration and differential spectrophotometry. The contents of nonbound metals in the filtrate were evaluated, resp., with sodium diethyl thyocarbamate and o-phenanthroline. It has been shown that copper and zinc exhibited common biological properties during their interactions with protein, but the binding differed sufficiently under similar experimental conditions. E.g., it was confirmed that copper was more active at the external sites of γ-globulin molecule, whereas zinc demonstrated tropicity for the areas of protein intraglobular compartments. The metal-binding sites have been described that differ in their parameters of interactions with cations and their spatial location within globular domains. Approaches are suggested for dynamic analysis of saturation for these differently located sites by the metal ions. We discuss the issues of altered conformational state of the γ-globulin molecule during the binding of cations, as well as potential usage of these data in clinical immunology.

  6. Peculiarities of copper binding to alpha-synuclein.

    Science.gov (United States)

    Ahmad, Atta; Burns, Colin S; Fink, Anthony L; Uversky, Vladimir N

    2012-01-01

    Heavy metals have been implicated as the causative agents for the pathogenesis of the most prevalent neurodegenerative disease. Various mechanisms have been proposed to explain the toxic effects of metals ranging from metal-induced oxidation of protein to metal-induced changes in the protein conformation. Aggregation of a-synuclein is implicated in Parkinson's disease (PD), and various metals, including copper, constitute a prominent group of alpha-synuclein aggregation enhancers. In this study, we have systematically characterized the a-synuclein-Cu21 binding sites and analyzed the possible role of metal binding in a-synuclein fibrillation using a set of biophysical techniques, such as electron paramagnetic resonance (EPR), electron spin-echo envelope modulation (ESEEM), circular dichroism (CD), and size exclusion chromatography (SEC). Our analyses indicated that a-synuclein possesses at least two binding sites for Cu21. We have been able to locate one of the binding sites in the N-terminal region. Furthermore, based on the EPR studies of model peptides and Beta-synuclein, we concluded that the suspected His residue did not appear to participate in strong Cu21 binding.

  7. Microstructure and Service Properties of Copper Alloys

    Directory of Open Access Journals (Sweden)

    Polok-Rubiniec M.

    2016-09-01

    Full Text Available This elaboration shows the effect of combined heat treatment and cold working on the structure and utility properties of alloyed copper. As the test material, alloyed copper CuTi4 was employed. The samples were subjected to treatment according to the following schema: 1st variant – supersaturation and ageing, 2nd variant – supersaturation, cold rolling and ageing. The paper presents the results of microstructure, hardness, and abrasion resistance. The analysis of the wipe profile geometry was realized using a Zeiss LSM 5 Exciter confocal microscope. Cold working of the supersaturated solid solution affects significantly its hardness but the cold plastic deformation causes deterioration of the wear resistance of the finally aged CuTi4 alloy.

  8. Tuning of copper nanocrystals optical properties with their shapes.

    Science.gov (United States)

    Salzemann, C; Brioude, A; Pileni, M-P

    2006-04-13

    Copper nanocrystals are obtained by chemical reduction of copper ions in mixed reverse micelles. A large excess of reducing agent favors producing a new generation of shaped copper nanocrystals as nanodisks, elongated nanocrystals, and cubes. By using UV-Visible spectroscopy and numerical optical simulations we demonstrate that the optical properties are tuned by the relative proportions of spheres and nanodisks.

  9. Fixation Property of Copper Triazole Wood Preservatives

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to AWPA E11-2006 standard,copper fixation rates of several copper-based formulations,such as ammoniacal copper,amine copper,and ammoniacal-ethanolamine copper,as well as alkaline copper quaternary(ACQ),were tested and compared in this paper.And the fixation rates of tebuconazole(TEB) and propiconazole(PPZ) in several formulations,such as copper azole,emulsified type and solvent type,were also compared.The determination of copper content in the leachate was analyzed by atomic absorption spectrom...

  10. Copper binding to the Alzheimer’s disease amyloid precursor protein

    OpenAIRE

    Kong, Geoffrey K.-W.; Miles, Luke A.; Crespi, Gabriela A. N.; Morton, Craig J.; Ng, Hooi Ling; Barnham, Kevin J.; McKinstry, William J.; Cappai, Roberto; Michael W. Parker

    2007-01-01

    Alzheimer’s disease is the fourth biggest killer in developed countries. Amyloid precursor protein (APP) plays a central role in the development of the disease, through the generation of a peptide called Aβ by proteolysis of the precursor protein. APP can function as a metalloprotein and modulate copper transport via its extracellular copper binding domain (CuBD). Copper binding to this domain has been shown to reduce Aβ levels and hence a molecular understanding of the interaction between me...

  11. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    OpenAIRE

    Choveaux David L; Przyborski Jude M; Goldring JP

    2012-01-01

    Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper st...

  12. Cellular Responses to the Metal-Binding Properties of Metformin

    Science.gov (United States)

    Logie, Lisa; Harthill, Jean; Patel, Kashyap; Bacon, Sandra; Hamilton, D. Lee; Macrae, Katherine; McDougall, Gordon; Wang, Huan-Huan; Xue, Lin; Jiang, Hua; Sakamoto, Kei; Prescott, Alan R.; Rena, Graham

    2012-01-01

    In recent decades, the antihyperglycemic biguanide metformin has been used extensively in the treatment of type 2 diabetes, despite continuing uncertainty over its direct target. In this article, using two independent approaches, we demonstrate that cellular actions of metformin are disrupted by interference with its metal-binding properties, which have been known for over a century but little studied by biologists. We demonstrate that copper sequestration opposes known actions of metformin not only on AMP-activated protein kinase (AMPK)-dependent signaling, but also on S6 protein phosphorylation. Biguanide/metal interactions are stabilized by extensive π-electron delocalization and by investigating analogs of metformin; we provide evidence that this intrinsic property enables biguanides to regulate AMPK, glucose production, gluconeogenic gene expression, mitochondrial respiration, and mitochondrial copper binding. In contrast, regulation of S6 phosphorylation is prevented only by direct modification of the metal-liganding groups of the biguanide structure, supporting recent data that AMPK and S6 phosphorylation are regulated independently by biguanides. Additional studies with pioglitazone suggest that mitochondrial copper is targeted by both of these clinically important drugs. Together, these results suggest that cellular effects of biguanides depend on their metal-binding properties. This link may illuminate a better understanding of the molecular mechanisms enabling antihyperglycemic drug action. PMID:22492524

  13. Study on the preparation and properties of ultrafine copper powder

    Institute of Scientific and Technical Information of China (English)

    LIU; Wei-ping; HUANG; Lin; YIN; Yan-hong

    2005-01-01

    In the study, the common copper powder is used as sample, the ultrafine copper powder is researched by a new process of high energy ball milling. The influence of the milling time, the milling intensity, the milling medium, the ratio of hall to material, the dry milling and the wet milling on copper powder size are studied and the rule of every factors influencing properties of copper particle size and specific surface area under the best experimental conditions are acquired. By the regressive analysis of experimental results under the best conditions, the characteristic equation of copper particle prepared by high energy milling is confirmed.

  14. Assessment Criteria of Bentonite Binding Properties

    Directory of Open Access Journals (Sweden)

    S. Żymankowska-Kumon

    2012-09-01

    Full Text Available The criteria, with which one should be guided at the assessment of the binding properties of bentonites used for moulding sands, areproposed in the paper. Apart from the standard parameter which is the active bentonite content, the unrestrained growth indicator should be taken into account since it seems to be more adequate in the estimation of the sand compression strength. The investigations performed for three kinds of bentonites, applied in the Polish foundry plants, subjected to a high temperature influences indicate, that the pathway of changes of the unrestrained growth indicator is very similar to the pathway of changes of the sand compression strength. Instead, the character of changes of the montmorillonite content in the sand in dependence of the temperature is quite different. The sand exhibits the significant active bentonite content, and the sand compression strength decreases rapidly. The montmorillonite content in bentonite samples was determined by the modern copper complex method of triethylenetetraamine (Cu(II-TET. Tests were performed for bentonites and for sands with those bentonites subjected to high temperatures influences in a range: 100-700ºC.

  15. A tri-copper(II) complex displaying DNA-cleaving properties and antiproliferative activity against cancer cells.

    Science.gov (United States)

    Suntharalingam, Kogularamanan; Hunt, Douglas J; Duarte, Alexandra A; White, Andrew J P; Mann, David J; Vilar, Ramon

    2012-11-19

    A new disubstituted terpyridine ligand and the corresponding tri-copper(II) complex have been prepared and characterised. The binding affinity and binding mode of this tri-copper complex (as well as the previously reported mono- and di-copper analogues) towards duplex DNA were determined by using UV/Vis spectroscopic titrations and fluorescent indicator displacement (FID) assays. These studies showed the three complexes to bind moderately (in the order of 10(4)  M(-1)) to duplex DNA (ct-DNA and a 26-mer sequence). Furthermore, the number of copper centres and the nature of the substituents were found to play a significant role in defining the binding mode (intercalative or groove binding). The nuclease potential of the three complexes was investigated by using circular plasmid DNA as a substrate and analysing the products by agarose-gel electrophoresis. The cleaving activity was found to be dependent on the number of copper centres present (cleaving potency was in the order: tri-copper>di-copper>mono-copper). Interestingly, the tri-copper complex was able to cleave DNA without the need of external co-reductants. As this complex displayed the most promising nuclease properties, cell-based studies were carried out to establish if there was a direct link between DNA cleavage and cellular toxicity. The tri-copper complex displayed high cytotoxicity against four cancer cell lines. Of particular interest was that it displayed high cytotoxicity against the cisplatin-resistant MOLT-4 leukaemia cell line. Cellular uptake studies showed that the tri-copper complex was able to enter the cell and more importantly localise in the nucleus. Immunoblotting analysis (used to monitor changes in protein levels related to the DNA damage response pathway) and DNA-flow cytometric studies suggested that this tri-copper(II) complex is able to induce cellular DNA damage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of fission neutron irradiation on the tensile and electrical properties of copper and copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fabritsiev, S.A. [D.V. Efremov Institute, St. Petersburg (Russian Federation); Zinkle, S.J.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States)] [and others

    1995-04-01

    The objective of this study is to evaluate the properties of several copper alloys following fission reactor irradiation at ITER-relevant temperatures of 80 to 200{degrees}C. This study provides some of the data needed for the ITER research and development Task T213. These low temperature irradiations caused significant radiation hardening and a dramatic decrease in the work hardening ability of copper and copper alloys. The uniform elongation was higher at 200{degree}C compared to 100{degree}C, but still remained below 1% for most of the copper alloys.

  17. Methanobactin: a copper binding compound having antibiotic and antioxidant activity isolated from methanotrophic bacteria

    Science.gov (United States)

    DiSpirito, Alan A.; Zahn, James A.; Graham, David W.; Kim, Hyung J.; Alterman, Michail; Larive, Cynthia

    2007-04-03

    A means and method for treating bacterial infection, providing antioxidant activity, and chelating copper using a copper binding compound produced by methanotrophic bacteria is described. The compound, known as methanobactin, is the first of a new class of antibiotics having gram-positive activity. Methanobactin has been sequenced, and its structural formula determined.

  18. Electronic transport properties of copper and gold at atomic scale

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadzadeh, Saeideh

    2010-11-23

    The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green's function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. (orig.)

  19. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding.

    Science.gov (United States)

    Tottey, Steve; Waldron, Kevin J; Firbank, Susan J; Reale, Brian; Bessant, Conrad; Sato, Katsuko; Cheek, Timothy R; Gray, Joe; Banfield, Mark J; Dennison, Christopher; Robinson, Nigel J

    2008-10-23

    Metals are needed by at least one-quarter of all proteins. Although metallochaperones insert the correct metal into some proteins, they have not been found for the vast majority, and the view is that most metalloproteins acquire their metals directly from cellular pools. However, some metals form more stable complexes with proteins than do others. For instance, as described in the Irving-Williams series, Cu(2+) and Zn(2+) typically form more stable complexes than Mn(2+). Thus it is unclear what cellular mechanisms manage metal acquisition by most nascent proteins. To investigate this question, we identified the most abundant Cu(2+)-protein, CucA (Cu(2+)-cupin A), and the most abundant Mn(2+)-protein, MncA (Mn(2+)-cupin A), in the periplasm of the cyanobacterium Synechocystis PCC 6803. Each of these newly identified proteins binds its respective metal via identical ligands within a cupin fold. Consistent with the Irving-Williams series, MncA only binds Mn(2+) after folding in solutions containing at least a 10(4) times molar excess of Mn(2+) over Cu(2+) or Zn(2+). However once MncA has bound Mn(2+), the metal does not exchange with Cu(2+). MncA and CucA have signal peptides for different export pathways into the periplasm, Tat and Sec respectively. Export by the Tat pathway allows MncA to fold in the cytoplasm, which contains only tightly bound copper or Zn(2+) (refs 10-12) but micromolar Mn(2+) (ref. 13). In contrast, CucA folds in the periplasm to acquire Cu(2+). These results reveal a mechanism whereby the compartment in which a protein folds overrides its binding preference to control its metal content. They explain why the cytoplasm must contain only tightly bound and buffered copper and Zn(2+).

  20. V-shaped ligand 1,3-bis(1-ethylbenzimidazol-2-yl)-2-thiapropane and manganese(II), cobalt(II) and copper(II) complexes: Synthesis, crystal structure, DNA-binding properties and antioxidant activities.

    Science.gov (United States)

    Wu, Huilu; Yang, Zaihui; Wang, Fei; Peng, Hongping; Zhang, Han; Wang, Cuiping; Wang, Kaitong

    2015-07-01

    A V-shaped ligand 1,3-bis(1-ethylbenzimidazol-2-yl)-2-thiapropane (bebt) and its transition metal complexes, [Mn(bebt)(pic)2]·CH3OH (pic=picrate) 1, [Co(bebt)2](pic)22 and [Cu(bebt)2](pic)2·2DMF 3, have been synthesized and characterized. The coordinate forms of complexes 1 and 2 are basically alike, which can be described as six-coordinated distorted octahedron. The geometric structure around Cu(II) atom can be described as distorted tetrahedral in complex 3. The DNA-binding properties of the ligand bebt and complexes have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that bebt and complexes bind to DNA via an intercalative binding mode and the order of the binding affinity is 1<2<3binding properties are also discussed. Moreover, the complex 3 possess significant antioxidant activity against superoxide and hydroxyl radicals, and the scavenging effects of it are stronger than standard mannitol and vitamin C.

  1. Cu(I) binding properties of a designed metalloprotein.

    Science.gov (United States)

    Xie, Fei; Sutherland, Duncan E K; Stillman, Martin J; Ogawa, Michael Y

    2010-03-01

    The Cu(I) binding properties of the designed peptide C16C19-GGY are reported. This peptide was designed to form an alpha-helical coiled-coil but modified to incorporate a Cys-X-X-Cys metal-binding motif along its hydrophobic face. Absorption, emission, electrospray ionization mass spectrometry (ESI-MS), and circular dichroism (CD) experiments show that a 1:1 Cu-peptide complex is formed when Cu(I) is initially added to a solution of the monomeric peptide. This is consistent with our earlier study in which the emissive 1:1 complex was shown to exist as a peptide tetramer containing a tetranuclear copper cluster Kharenko et al. (2005) [11]. The presence of the tetranuclear copper center is now confirmed by ESI-MS which along with UV data show that this cluster is formed in a cooperative manner. However, spectroscopic titrations show that continued addition of Cu(I) results in the occupation of a second, lower affinity metal-binding site in the metallopeptide. This occupancy does not significantly affect the conformation of the metallopeptide but does result in a quenching of the 600nm emission. It was further found that the exogenous reductant tris(2-carboxyethyl)phosphine (TCEP) can competitively inhibit the binding of Cu(I) to the low affinity site of the peptide, but does not interact with Cu(I) clusters.

  2. Alteration of the Copper-Binding Capacity of Iron-Rich Humic Colloids during Transport from Peatland to Marine Waters.

    Science.gov (United States)

    Muller, François L L; Cuscov, Marco

    2017-02-28

    Blanket bogs contain vast amounts of Sphagnum-derived organic substances which can act as powerful chelators for dissolved iron and thus enhance its export to the coastal ocean. To investigate the variations in quantity and quality of these exports, adsorptive cathodic stripping voltammetry (CSV) was used to characterize the metal binding properties of molecular weight-fractionated dissolved organic matter (MW-fractionated DOM) in the catchment and coastal plume of a small peat-draining river over a seasonal cycle. Within the plume, both iron- and copper-binding organic ligands showed a linear, conservative distribution with increasing salinity, illustrating the high stability of peatland-derived humic substances (HS). Within the catchment, humic colloids lost up to 50% of their copper-binding capacity, expressed as a molar ratio to organic carbon, after residing for 1 week or more in the main reservoir of the catchment. Immediately downstream of the reservoir, the molar ratio [L2]/[Corg], where L2 was the second strongest copper-binding ligand, was 0.75 × 10(-4) when the reservoir residence time was 5 h but 0.34 × 10(-4) when it was 25 days. Residence time did not affect the carbon specific iron-binding capacity of the humic substances which was [L]/[Corg] = (0.80 ± 0.20) × 10(-2). Our results suggest that the loss of copper-binding capacity with increasing residence time is caused by intracolloidal interactions between iron and HS during transit from peat soil to river mouth.

  3. Transport properties of zigzag graphene nanoribbon decorated with copper clusters

    Energy Technology Data Exchange (ETDEWEB)

    Berahman, M.; Sheikhi, M. H., E-mail: msheikhi@shirazu.ac.ir [School of Electrical and Computer Eng, Shiraz University, Shiraz (Iran, Islamic Republic of); Nanotechnology Research Institute, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2014-09-07

    Using non-equilibrium green function with density functional theory, the present study investigates the transport properties of decorated zigzag graphene nanoribbon with a copper cluster. We have represented the decoration of zigzag graphene nanoribbon with single copper atom and cluster containing two and three copper atoms. In all the cases, copper atoms tend to occupy the edge state. In addition, we have shown that copper can alter the current-voltage characteristic of zigzag graphene nanoribbon and create new fluctuations and negative differential resistance. These alternations are made due to discontinuity in the combination of orbitals along the graphene nanoribbon. Decoration alters these discontinuities and creates more visible fluctuations. However, in low bias voltages, the changes are similar in all the cases. The study demonstrates that in the decorated zigzag graphene nanoribbon, the edge states are the main states for transporting electron from one electrode to another.

  4. Copper binding regulates intracellular alpha-synuclein localisation, aggregation and toxicity.

    Science.gov (United States)

    Wang, Xiaoyan; Moualla, Dima; Wright, Josephine A; Brown, David R

    2010-05-01

    Alpha-synuclein is a natively unfolded protein that aggregates and forms inclusions that are associated with a range of diseases that include Parkinson's Disease and Dementia with Lewy Bodies. The mechanism behind the formation of these inclusions and their possible role in disease remains unclear. Alpha-synuclein has also been shown to bind metals including copper and iron. We used a cell culture model of alpha-synuclein aggregation to examine the relationship between metals and formation of aggregates of the protein. While the levels of iron appear to have no role in aggregate formation or localisation of the protein in cells, copper appears to be important for both aggregation and cellular localisation of alpha-synuclein. Reduction in cellular copper resulted in a great decrease in aggregate formation both in terms of large aggregates visible in cells and oligomers observed in western blot analysis of cell extracts. Reduction in copper also resulted in a change in localisation of the protein which became more intensely localised to the plasma membrane in medium with low copper. These changes were reversed when copper was restored to the cells. Mutants of the copper binding domains altered the response to copper. Deletion of either the N- or C-termini resulted in a loss of aggregation while deletion of the C-termini also resulted in a loss of membrane association. Increased expression of alpha-synuclein also increased cell sensitivity to the toxicity of copper. These results suggest that the potential pathological role of alpha-synuclein aggregates is dependent upon the copper binding capacity of the protein.

  5. Sources of strong copper-binding ligands in Antarctic Peninsula surface waters

    Science.gov (United States)

    Bundy, Randelle M.; Barbeau, Katherine A.; Buck, Kristen N.

    2013-06-01

    Copper-binding organic ligands were measured during austral winter in surface waters around the Antarctic Peninsula using competitive ligand exchange-adsorptive cathodic stripping voltammetry with multiple analytical windows. Samples were collected from four distinct water masses including the Antarctic Circumpolar Current, Southern Antarctic Circumpolar Current Front, Bransfield Strait, and the shelf region of the Antarctic Peninsula. Strong copper-binding organic ligands were detected in each water mass. The strongest copper-binding ligands were detected at the highest competition strength in the Antarctic Circumpolar Current, with an average conditional stability constant of logKCuL,Cucond=16.00±0.82. The weakest ligands were found at the lowest competition strength in the shelf region with logKCuL,Cucond=12.68±0.48. No ligands with stability constants less than logKCuL,Cucond=13.5 were detected in the Antarctic Circumpolar Current at any competition strength, suggesting a shelf source of weaker copper-binding ligands. Free, hydrated copper ion concentrations, the biologically available form of dissolved copper, were less than 10-14 M in all samples, approaching levels that may be limiting for some types of inducible iron acquisition.

  6. CorA is a copper repressible surface-associated copper(I)-binding protein produced in Methylomicrobium album BG8.

    Science.gov (United States)

    Johnson, Kenneth A; Ve, Thomas; Larsen, Oivind; Pedersen, Rolf B; Lillehaug, Johan R; Jensen, Harald B; Helland, Ronny; Karlsen, Odd A

    2014-01-01

    CorA is a copper repressible protein previously identified in the methanotrophic bacterium Methylomicrobium album BG8. In this work, we demonstrate that CorA is located on the cell surface and binds one copper ion per protein molecule, which, based on X-ray Absorption Near Edge Structure analysis, is in the reduced state (Cu(I)). The structure of endogenously expressed CorA was solved using X-ray crystallography. The 1.6 Å three-dimensional structure confirmed the binding of copper and revealed that the copper atom was coordinated in a mononuclear binding site defined by two histidines, one water molecule, and the tryptophan metabolite, kynurenine. This arrangement of the copper-binding site is similar to that of its homologous protein MopE* from Metylococcus capsulatus Bath, confirming the importance of kynurenine for copper binding in these proteins. Our findings show that CorA has an overall fold similar to MopE, including the unique copper(I)-binding site and most of the secondary structure elements. We suggest that CorA plays a role in the M. album BG8 copper acquisition.

  7. The Lys1010-Lys1325 fragment of the Wilson's disease protein binds nucleotides and interacts with the N-terminal domain of this protein in a copper-dependent manner.

    Science.gov (United States)

    Tsivkovskii, R; MacArthur, B C; Lutsenko, S

    2001-01-19

    Wilson's disease, an autosomal disorder associated with vast accumulation of copper in tissues, is caused by mutations in a gene encoding a copper-transporting ATPase (Wilson's disease protein, WNDP). Numerous mutations have been identified throughout the WNDP sequence, particularly in the Lys(1010)-Lys(1325) segment; however, the biochemical properties and molecular mechanism of WNDP remain poorly characterized. Here, the Lys(1010)-Lys(1325) fragment of WNDP was overexpressed, purified, and shown to form an independently folded ATP-binding domain (ATP-BD). ATP-BD binds the fluorescent ATP analogue trinitrophenyl-ATP with high affinity, and ATP competes with trinitrophenyl-ATP for the binding site; ADP and AMP appear to bind to ATP-BD at the site separate from ATP. Purified ATP-BD hydrolyzes ATP and interacts specifically with the N-terminal copper-binding domain of WNDP (N-WNDP). Strikingly, copper binding to N-WNDP diminishes these interactions, suggesting that the copper-dependent change in domain-domain contact may represent the mechanism of WNDP regulation. In agreement with this hypothesis, N-WNDP induces conformational changes in ATP-BD as evidenced by the altered nucleotide binding properties of ATP-BD in the presence of N-WNDP. Significantly, the effects of copper-free and copper-bound N-WNDP on ATP-BD are not identical. The implications of these results for the WNDP function are discussed.

  8. Copper(II) and nickel(II) binding sites of peptide containing adjacent histidyl residues.

    Science.gov (United States)

    Grenács, Ágnes; Sanna, Daniele; Sóvágó, Imre

    2015-10-01

    Copper(II) and nickel(II) complexes of the terminally protected nonapeptide Ac-SGAEGHHQK-NH2 modeling the metal binding sites of the (8-16) domain of amyloid-β have been studied by potentiometric, UV-vis, CD and ESR spectroscopic methods. The studies on the mutants containing only one of the histidyl residues (Ac-SGAEGAHQK-NH2, Ac-SGAEGHAQK-NH2) have also been performed. The formation of imidazole and amide coordinated mononuclear complexes is characteristic of all systems with a preference of nickel(II) binding to the His14 site, while the involvement of both histidines in metal binding is suggested in the corresponding copper(II) complexes. The formation of bis(ligand) and dinuclear complexes has also been observed in the copper(II)-Ac-SGAEGHHQK-NH2 system. The results provide further support for the copper(II) binding ability of the (8-16) domain of amyloid-β and support the previous assumptions that via the bis(ligand) complex formation copper(II) ions may promote the formation of the oligomers of amyloid-β.

  9. In vitro copper-chelating properties of flavonoids.

    Science.gov (United States)

    Ríha, Michal; Karlícková, Jana; Filipský, Tomáš; Jahodár, Ludek; Hrdina, Radomír; Mladenka, Premysl

    2014-10-01

    Copper is an indispensable trace element for human body and the association between a disruption of copper homeostasis and a series of pathological states has been well documented. Flavonoids influence the human health in a complex way and the chelation of transient metal ions indisputably contributes to their mechanism of the action, however, the information about their copper-chelating properties have been sparse. This in vitro study was thus aimed at the detailed examination of flavonoids-copper interactions by two spectrophotometric assays at four (patho)physiologically relevant pH conditions (4.5-7.5), with the emphasis on the structure-activity relationship. The tested flavonoids were compared with the clinically used copper chelator, trientine. Most of the 26 flavonoids chelated copper ions, however, in a variable extent. Only flavones and flavonols were able to form stable complexes with both cupric and cuprous ions. The 3-hydroxy-4-keto group and 5,6,7-trihydroxyl group represented the most efficient chelation sites in flavonols and flavones, respectively, and the 2,3-double bond was essential for the stable copper chelation. Interestingly, the 3´,4´-dihydroxyl (catechol) group was associated only with a weak activity. Although none of the tested flavonoids were more potent than trientine at physiological or slightly acidic conditions, 3-hydroxyflavone, kaempferol and partly baicalein surpassed trientine at acidic conditions. Conclusively, flavonoids containing appropriate structural features were efficient copper chelators and some of them were even more potent than trientine under acidic conditions. Copyright © 2014. Published by Elsevier Inc.

  10. Copper(II) binding by dissolved organic matter: importance of the copper-to-dissolved organic matter ratio and implications for the biotic ligand model.

    Science.gov (United States)

    Craven, Alison M; Aiken, George R; Ryan, Joseph N

    2012-09-18

    The ratio of copper to dissolved organic matter (DOM) is known to affect the strength of copper binding by DOM, but previous methods to determine the Cu(2+)-DOM binding strength have generally not measured binding constants over the same Cu:DOM ratios. In this study, we used a competitive ligand exchange-solid-phase extraction (CLE-SPE) method to determine conditional stability constants for Cu(2+)-DOM binding at pH 6.6 and 0.01 M ionic strength over a range of Cu:DOM ratios that bridge the detection windows of copper-ion-selective electrode and voltammetry measurements. As the Cu:DOM ratio increased from 0.0005 to 0.1 mg of Cu/mg of DOM, the measured conditional binding constant ((c)K(CuDOM)) decreased from 10(11.5) to 10(5.6) M(-1). A comparison of the binding constants measured by CLE-SPE with those measured by copper-ion-selective electrode and voltammetry demonstrates that the Cu:DOM ratio is an important factor controlling Cu(2+)-DOM binding strength even for DOM isolates of different types and different sources and for whole water samples. The results were modeled with Visual MINTEQ and compared to results from the biotic ligand model (BLM). The BLM was found to over-estimate Cu(2+) at low total copper concentrations and under-estimate Cu(2+) at high total copper concentrations.

  11. Azide binding to the trinuclear copper center in laccase and ascorbate oxidase

    DEFF Research Database (Denmark)

    Gromov, I; Marchesini, A; Farver, O

    1999-01-01

    Azide binding to the blue copper oxidases laccase and ascorbate oxidase (AO) was investigated by electron paramagnetic resonance (EPR) and pulsed electron-nuclear double resonance (ENDOR) spectroscopies. As the laccase : azide molar ratio decreases from 1:1 to 1:7, the intensity of the type 2 (T2...

  12. Effects of oxidation on redox and cytotoxic properties of copper complex of Aβ1-16 peptide.

    Science.gov (United States)

    Ramteke, S N; Walke, G R; Joshi, B N; Rapole, S; Kulkarni, P P

    2014-12-01

    The effect of oxidation on redox and cytotoxic properties of copper complex of amyloid beta (Aβ) peptide was studied by gamma radiolysis. The oxidation of Aβ1-16 and Aβ1-16/Cu(II) complex was carried out using hydroxyl ((•)OH) radicals produced by gamma radiolysis and the products were analyzed using mass spectrometry. The presence of Cu(II) was found to enhance the oxidation of Aβ1-16 peptide. The oxidation of residues Asp1, His6, and His13 was enhanced due to their involvement in copper binding. The oxidation of His residues of Aβ1-16 peptide, which are chiefly responsible for copper binding, resulted in altered redox properties and subsequently in higher cytotoxicity of the Aβ1-16 peptide in SH-SY5Y cells.

  13. Analysis of Copper-binding Proteins in Rice Radicles Exposed to Excess Copper and Hydrogen Peroxide Stress

    Directory of Open Access Journals (Sweden)

    Hongxiao Zhang

    2016-08-01

    Full Text Available Copper (Cu is an essential micronutrient for plants, but excess Cu can inactivate and disturb the protein function due to unavoidable binding to proteins at the cellular level. As a redox-active metal, Cu toxicity is mediated by the formation of reactive oxygen species (ROS. Cu-binding structural motifs may alleviate Cu-induced damage by decreasing free Cu2+ activity in cytoplasm or scavenging ROS. The identification of Cu-binding proteins involved in the response of plants to Cu or ROS toxicity may increase our understanding the mechanisms of metal toxicity and tolerance in plants. This study investigated change of Cu-binding proteins in radicles of germinating rice seeds under excess Cu and oxidative stress using immobilized Cu2+ affinity chromatography, two-dimensional electrophoresis, and mass spectra analysis. Quantitative image analysis revealed that 26 protein spots showed more than a 1.5-fold difference in abundances under Cu or H2O2 treatment compared to the control. The identified Cu-binding proteins were involved in anti-oxidative defense, stress response and detoxification, protein synthesis, protein modification, and metabolism regulation. The present results revealed that 17 out of 24 identified Cu-binding proteins have a similar response to low concentration Cu and H2O2 stress, and 5 out of 24 were increased under low and high concentration Cu but unaffected under H2O2 stress, which hint Cu ions can regulate Cu-binding proteins accumulation by H2O2 or no H2O2 pathway to cope with excess Cu in cell. The change pattern of these Cu-binding proteins and their function analysis warrant to further study the roles of Cu ions in these Cu-binding proteins of plant cells.

  14. The E1 copper binding domain of full-length amyloid precursor protein mitigates copper-induced growth inhibition in brain metastatic prostate cancer DU145 cells

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Mallory, E-mail: m.gough1@lancaster.ac.uk; Blanthorn-Hazell, Sophee, E-mail: s.blanthorn-hazell@lancaster.ac.uk; Delury, Craig, E-mail: c.delury@lancaster.ac.uk; Parkin, Edward, E-mail: e.parkin@lancaster.ac.uk

    2014-10-31

    Highlights: • Copper levels are elevated in the tumour microenvironment. • APP mitigates copper-induced growth inhibition of DU145 prostate cancer (PCa) cells. • The APP intracellular domain is a prerequisite; soluble forms have no effect. • The E1 CuBD of APP is also a prerequisite. • APP copper binding potentially mitigates copper-induced PCa cell growth inhibition. - Abstract: Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.

  15. Cyclodextrins 3-Functionalized with 8-Hydroxyquinolines: Copper-Binding Ability and Inhibition of Synuclein Aggregation.

    Science.gov (United States)

    Oliveri, Valentina; Sgarlata, Carmelo; Vecchio, Graziella

    2016-09-06

    Neurodegenerative diseases such as Parkinson's and Alzheimer's diseases are multifactorial disorders related to protein aggregation, metal dyshomeostasis, and oxidative stress. To advance understanding in this area and to contribute to therapeutic development, many efforts have been directed at devising suitable agents that can target metal ions associated with relevant biomolecules such as α-synuclein. This paper presents a new cyclodextrin-8-hydroxyquinoline conjugate and discusses the properties of four cyclodextrins 3-functionalized with 8-hydroxyquinoline as copper(II) chelators and inhibitors of copper-induced synuclein aggregation. The encouraging results establish the potential of cyclodextrin-8-hydroxyquinoline conjugates as chelators for the control of copper toxicity.

  16. Research of nonlinear optical properties of copper nanoparticles

    Institute of Scientific and Technical Information of China (English)

    L.Guo; Z.H.Wu; 等

    1999-01-01

    This research reports the preparation and characterization of copper nanoparticles modified by didecyl benzene sulfonate (DBS),The Cu nanoparticles' size was determined to be 40nm by transmission electron microscope(TEM).The X-ray photoelectron spectrometry(XPS) results show that there are interactions between the copper nanoparticles and DBS function group.The nonlinear optical properties were studied by the four-wave mixing method.The value of x(3)/α0 was found to be 6.9×10-11 esucm.

  17. Copper(II) ions and the Alzheimer's amyloid-β peptide: Affinity and stoichiometry of binding

    Science.gov (United States)

    Tõugu, Vello; Friedemann, Merlin; Tiiman, Ann; Palumaa, Peep

    2014-10-01

    Deposition of amyloid beta (Aβ) peptides into amyloid plaques is the hallmark of Alzheimer's disease. According to the amyloid cascade hypothesis this deposition is an early event and primary cause of the disease, however, the mechanisms that cause this deposition remain elusive. An increasing amount of evidence shows that the interactions of biometals can contribute to the fibrillization and amyloid formation by amyloidogenic peptides. From different anions the copper ions deserve the most attention since it can contribute not only toamyloid formation but also to its toxicity due to the generation of ROS. In this thesis we focus on the affinity and stoichiometry of copper(II) binding to the Aβ molecule.

  18. Impact Properties of Copper-Alloyed and Nickel-Copper Alloyed ADI

    Science.gov (United States)

    Batra, Uma; Ray, Subrata; Prabhakar, S. R.

    2007-08-01

    The influence of austenitization and austempering parameters on the impact properties of copper-alloyed and nickel-copper-alloyed austempered ductile irons (ADIs) has been studied. The austenitization temperature of 850 and 900 °C have been used in the present study for which austempering time periods of 120 and 60 min were optimized in an earlier work. The austempering process was carried out for 60 min for three austempering temperatures of 270, 330, and 380 °C to study the effect of austempering temperature. The influence of the austempering time on impact properties has been studied for austempering temperature of 330 °C for time periods of 30-150 min. The variation in impact strength with the austenitization and austempering parameters has been correlated to the morphology, size and amount of austenite and bainitic ferrite in the austempered structure. The fracture surface of ADI failed under impact has been studied using SEM.

  19. Synthesis and characterization of Copper/Cobalt/Copper/Iron nanostructurated films with magnetoresistive properties

    Science.gov (United States)

    Ciupinǎ, Victor; Prioteasa, Iulian; Ilie, Daniela; Manu, Radu; Petrǎşescu, Lucian; Tutun, Ştefan Gabriel; Dincǎ, Paul; MustaÅ£ǎ, Ion; Lungu, Cristian Petricǎ; Jepu, IonuÅ£; Vasile, Eugeniu; Nicolescu, Virginia; Vladoiu, Rodica

    2017-02-01

    Copper/Cobalt/Copper/Iron thin films were synthesized in order to obtain nanostructured materials with special magnetoresistive properties. The multilayer films were deposited on silicon substrates. In this respect we used Thermionic Vacuum Arc Discharge Method (TVA). The benefit of this deposition technique is the ability to have a controlled range of thicknesses starting from few nanometers to hundreds of nanometers. The purity of the thin films was insured by a high vacuum pressure and a lack of any kind of buffer gas inside the coating chamber. The morphology and structure of the thin films were analyzed using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Techniques and Energy Dispersive X-ray Spectroscopy (EDXS). Magnetoresistive measurement results depict that thin films possess Giant Magneto-Resistance Effect (GMR). Magneto-Optic-Kerr Effect (MOKE) studies were performed to characterize the magnetic properties of these thin films.

  20. Copper chaperone Atox1 interacts with the metal-binding domain of Wilson's disease protein in cisplatin detoxification.

    Science.gov (United States)

    Dolgova, Nataliya V; Nokhrin, Sergiy; Yu, Corey H; George, Graham N; Dmitriev, Oleg Y

    2013-08-15

    Human copper transporters ATP7B (Wilson's disease protein) and ATP7A (Menkes' disease protein) have been implicated in tumour resistance to cisplatin, a widely used anticancer drug. Cisplatin binds to the copper-binding sites in the N-terminal domain of ATP7B, and this binding may be an essential step of cisplatin detoxification involving copper ATPases. In the present study, we demonstrate that cisplatin and a related platinum drug carboplatin produce the same adduct following reaction with MBD2 [metal-binding domain (repeat) 2], where platinum is bound to the side chains of the cysteine residues in the CxxC copper-binding motif. This suggests the same mechanism for detoxification of both drugs by ATP7B. Platinum can also be transferred to MBD2 from copper chaperone Atox1, which was shown previously to bind cisplatin. Binding of the free cisplatin and reaction with the cisplatin-loaded Atox1 produce the same protein-bound platinum intermediate. Transfer of platinum along the copper-transport pathways in the cell may serve as a mechanism of drug delivery to its target in the cell nucleus, and explain tumour-cell resistance to cisplatin associated with the overexpression of copper transporters ATP7B and ATP7A.

  1. Copper binding ligands: production by marine plankton and characterization by ESI-MS

    Science.gov (United States)

    Orians, K.; Ross, A.; Lawrence, M.; Ikonomou, M.

    2003-04-01

    Organic complexation affects the bioavailability and distribution of copper in the surface ocean. The cyanobacterium Synechococcus sp. PCC 7002 was cultured in the lab and subjected to near-toxic Cu concentrations. Strong Cu-binding ligands were produced under these conditions, as found for other species of Synechococcus. The copper-binding ligand produced had a log K'cond. (log conditional stability constant) of 12.2, similar to the natural ligands found in the surface ocean. The amount of ligand produced was proportional to the amount of copper present. Isolation and concentration of these compounds for characterization by electrospray mass spectrometry (ESI-MS) provides information about the structure of the organic ligands and their metal-ion complexes. Using model ligands, we'll show that ligands can be characterized by ESI-MS and that the location of the copper binding site can be determined in complex molecules. We'll also present results of copper-complexing ligands extracted from the coastal waters of British Columbia. Ligand concentrations are higher at low salinity and in surface waters, indicating that these ligands are produced in surface waters and/or delivered to the region via the Fraser River. Analysis of the extracts with highest UV absorbance identified two Cu2+ ligands of molecular weight 259 and 264. The mass and isotopic distributions are consistent with dipeptides and tripeptides containing two metal-binding amino groups. This result is consistent with the findings of other studies attempting to characterize Cu2+ ligands in seawater. The structure of the identified ligand is similar to that of rhodotorulic acid (a microbial siderophore), glutathione, and phytochelatins, indicating that small peptides and related compounds can act as strong, specific metal chelators in natural waters

  2. Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Fang Linchuan [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Zhou Chen; Cai Peng [Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Chen Wenli [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Rong Xingmin; Dai Ke; Liang Wei [Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Gu Jidong [Department of Ecology and Biodiversity, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong); Huang Qiaoyun, E-mail: qyhuang@mail.hzau.edu.cn [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China)

    2011-06-15

    Highlights: {yields} The carboxyl groups play a vital role in the binding of Cu(II) and Cd(II) to S. platensis cells. {yields} Ion exchange and complexation are the dominating mechanism for Cu(II) and Cd(II) adsorption. {yields} XAFS analysis provided evidence for the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface. - Abstract: Cyanobacteria are promising biosorbent for heavy metals in bioremediation. Although sequestration of metals by cyanobacteria is known, the actual mechanisms and ligands involved are not very well understood. The binding characteristics of Cu(II) and Cd(II) by the cyanobacterium Spirulina platensis were investigated using a combination of chemical modifications, batch adsorption experiments, Fourier transform infrared (FTIR) spectroscopy and X-ray absorption fine structure (XAFS) spectroscopy. A significant increase in Cu(II) and Cd(II) binding was observed in the range of pH 3.5-5.0. Dramatical decrease in adsorption of Cu(II) and Cd(II) was observed after methanol esterification of the nonliving cells demonstrating that carboxyl functional groups play an important role in the binding of metals by S. platensis. The desorption rate of Cu(II) and Cd(II) from S. platensis surface was 72.7-80.7% and 53.7-58.0% by EDTA and NH{sub 4}NO{sub 3}, respectively, indicating that ion exchange and complexation are the dominating mechanisms for Cu(II) and Cd(II) adsorption. XAFS analysis provided further evidence on the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface.

  3. Effect of cryogenic treatment on thermal conductivity properties of copper

    Science.gov (United States)

    Nadig, D. S.; Ramakrishnan, V.; Sampathkumaran, P.; Prashanth, C. S.

    2012-06-01

    Copper exhibits high thermal conductivity properties and hence it is extensively used in cryogenic applications like cold fingers, heat exchangers, etc. During the realization of such components, copper undergoes various machining operations from the raw material stage to the final component. During these machining processes, stresses are induced within the metal resulting in internal stresses, strains and dislocations. These effects build up resistance paths for the heat carriers which transfer heat from one location to the other. This in turn, results in reduction of thermal conductivity of the conducting metal and as a result the developed component will not perform as per expectations. In the process of cryogenic treatment, the metal samples are exposed to cryogenic temperature for extended duration of time for 24 hours and later tempered. During this process, the internal stresses and strains are reduced with refinement of the atomic structure. These effects are expected to favourably improve thermal conductivity properties of the metal. In this experimental work, OFHC copper samples were cryotreated for 24 hours at 98 K and part of them were tempered at 423K for one hour. Significant enhancement of thermal conductivity values were observed after cryotreating and tempering the copper samples.

  4. Multi-frequency, multi-technique pulsed EPR investigation of the copper binding site of murine amyloid β peptide.

    Science.gov (United States)

    Kim, Donghun; Bang, Jeong Kyu; Kim, Sun Hee

    2015-01-26

    Copper-amyloid peptides are proposed to be the cause of Alzheimer's disease, presumably by oxidative stress. However, mice do not produce amyloid plaques and thus do not suffer from Alzheimer's disease. Although much effort has been focused on the structural characterization of the copper- human amyloid peptides, little is known regarding the copper-binding mode in murine amyloid peptides. Thus, we investigated the structure of copper-murine amyloid peptides through multi-frequency, multi-technique pulsed EPR spectroscopy in conjunction with specific isotope labeling. Based on our pulsed EPR results, we found that Ala2, Glu3, His6, and His14 are directly coordinated with the copper ion in murine amyloid β peptides at pH 8.5. This is the first detailed structural characterization of the copper-binding mode in murine amyloid β peptides. This work may advance the knowledge required for developing inhibitors of Alzheimer's disease.

  5. The E1 copper binding domain of full-length amyloid precursor protein mitigates copper-induced growth inhibition in brain metastatic prostate cancer DU145 cells.

    Science.gov (United States)

    Gough, Mallory; Blanthorn-Hazell, Sophee; Delury, Craig; Parkin, Edward

    2014-10-31

    Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.

  6. Final report on characterization of physical and mechanical properties of copper and copper alloys before and after irradiation

    DEFF Research Database (Denmark)

    Singh, B.N.; Tähtinen, S.

    2002-01-01

    The present report summarizes and highlights the main results of the work carried out during the last 5-6 years on effects of neutron irradiation on physical and mechanical properties of copper and copper alloys. The work was an European contribution toITER Research and Development programme...... amount of further effort is needed to find a realistic and optimum solution....

  7. Copper, iron and the organic ligands that bind them - updates from San Francisco Bay and beyond

    Science.gov (United States)

    Buck, K. N.; Bundy, R.; Biller, D.; Bruland, K. W.; Barbeau, K.

    2015-12-01

    Building on more than 30 years of measurements in San Francisco Bay by Russ Flegal and others, the concentrations of dissolved manganese, iron, cobalt, nickel, copper, zinc, cadmium and lead were determined from a suite of water quality monitoring program stations in North, Central and South Bay using inductively coupled plasma- mass spectrometry following preconcentration on a Nobias-chelate PA1 resin. Given the importance of organic ligands in governing iron solubility and copper bioavailability in natural waters, the organic complexation of dissolved iron and copper in these samples was determined from multiple analytical windows applied to competitive ligand exchange- adsorptive cathodic stripping voltammetry. This study constitutes the first dataset of iron speciation in San Francisco Bay and expands upon prior work evaluating the potential for copper toxicity in this urbanized estuary. Recent advances in voltammetric techniques emerging from a Scientific Committee on Oceanic Research (SCOR) working group on metal-binding ligands in the marine environment, and insights gained from high-resolution ligand measurements from the U.S. GEOTRACES program, highlight how metal-binding ligands in San Francisco Bay compare with those of the coastal and open ocean.

  8. Development of an albumin copper binding (ACuB) assay to detect ischemia modified albumin.

    Science.gov (United States)

    Eom, Ji-Eun; Lee, Eunyoung; Jeon, Kyung-Hwa; Sim, Jeongeun; Suh, Minah; Jhon, Gil-Ja; Kwon, Youngjoo

    2014-01-01

    Myocardial ischemia (MI) induces many changes in the body, including pH decrease and electrolyte imbalance. No obvious symptoms of MI appear until irreversible cellular injuries occur. Since early treatment is critical for recovery from ischemia, the development of reliable diagnostic tool is demanded to detect the early ischemic status. Ischemia modified albumin (IMA), formed by cleavage of the last two amino acids of the human serum albumin (HSA) N-terminus, has been considered so far as the most trustworthy and accurate marker for the investigation of ischemia. IMA levels are elevated in plasma within a few minutes of ischemic onset, and may last for up to 6 h. In the present study, we developed a novel assay for the examination of IMA levels to ameliorate the known albumin cobalt binding (ACB) test established previously. We observed a stronger copper ion bound to the HSA N-terminal peptide than cobalt ion by HPLC and ESI-TOF mass spectrometric analyses. The copper ion was employed with lucifer yellow (LY), a copper-specific reagent to develop a new albumin copper binding (ACuB) assay. The parameters capable of affecting the assay results were optimized, and the finally-optimized ACuB assay was validated. The result of the IMA level measurement in normal versus stroke rat serum suggests that the ACuB assay is likely to be a reliable and sensitive method for the detection of ischemic states.

  9. In situ study of binding of copper by fulvic acid: comparison of differential absorbance data and model predictions.

    Science.gov (United States)

    Yan, Mingquan; Dryer, Deborah; Korshin, Gregory V; Benedetti, Marc F

    2013-02-01

    This study examined the binding of copper(II) by Suwannee River fulvic acid (SRFA) using the method of differential absorbance that was used at environmentally-relevant concentrations of copper and SRFA. The pH- and metal-differential spectra were processed via numeric deconvolution to establish commonalities seen in the changes of absorbance caused by deprotonation of SRFA and its interactions with copper(II) ions. Six Gaussian bands were determined to be present in both the pH- and Cu-differential spectra. Their maxima were located, in the order of increasing wavelengths at 208 nm, 242 nm, 276 nm, 314 nm, 378 nm and 551 nm. The bands with these maxima were denoted as A0, A1, A2, A3, A4 and A5, respectively. Properties of these bands were compared with those existing in the spectra of model compounds such as sulfosalicylic acid (SSA), tannic acid (TA), and polystyrenesulfonic acid-co-maleic acid (PSMA). While none of the features observed in differential spectra of the model compound were identical to those present in the case of SRFA, Gaussian bands A1, A3 and possibly A2 were concluded to be largely attributable to a combination of responses of salicylic- and polyhydroxyphenolic groups. In contrast, bands A4 and A5 were detected in the differential spectra of SRFA only. Their nature remains to be elucidated. To examine correlations between the amount of copper(II) bound by SRFA and changes of its absorbance, differential absorbances measured at indicative wavelengths 250 nm and 400 nm were compared with the total amount of SRFA-bound copper estimated based on Visual MINTEQ calculations. This examination showed that the differential absorbances of SRFA in a wide range of pH values and copper concentrations were strongly correlated with the concentration of SRFA-bound copper. The approach presented in this study can be used to generate in situ information concerning the nature of functional groups in humic substances engaged in interactions with metals ions. This

  10. How Copper Nanowires Grow and How To Control Their Properties.

    Science.gov (United States)

    Ye, Shengrong; Stewart, Ian E; Chen, Zuofeng; Li, Bo; Rathmell, Aaron R; Wiley, Benjamin J

    2016-03-15

    Scalable, solution-phase nanostructure synthesis has the promise to produce a wide variety of nanomaterials with novel properties at a cost that is low enough for these materials to be used to solve problems. For example, solution-synthesized metal nanowires are now being used to make low cost, flexible transparent electrodes in touch screens, organic light-emitting diodes (OLEDs), and solar cells. There has been a tremendous increase in the number of solution-phase syntheses that enable control over the assembly of atoms into nanowires in the last 15 years, but proposed mechanisms for nanowire formation are usually qualitative, and for many syntheses there is little consensus as to how nanowires form. It is often not clear what species is adding to a nanowire growing in solution or what mechanistic step limits its rate of growth. A deeper understanding of nanowire growth is important for efficiently directing the development of nanowire synthesis toward producing a wide variety of nanostructure morphologies for structure-property studies or producing precisely defined nanostructures for a specific application. This Account reviews our progress over the last five years toward understanding how copper nanowires form in solution, how to direct their growth into nanowires with dimensions ideally suited for use in transparent conducting films, and how to use copper nanowires as a template to grow core-shell nanowires. The key advance enabling a better understanding of copper nanowire growth is the first real-time visualization of nanowire growth in solution, enabling the acquisition of nanowire growth kinetics. By measuring the growth rate of individual nanowires as a function of concentration of the reactants and temperature, we show that a growing copper nanowire can be thought of as a microelectrode that is charged with electrons by hydrazine and grows through the diffusion-limited addition of Cu(OH)2(-). This deeper mechanistic understanding, coupled to an

  11. Copper nanoparticles functionalized PE: Preparation, characterization and magnetic properties

    Science.gov (United States)

    Reznickova, A.; Orendac, M.; Kolska, Z.; Cizmar, E.; Dendisova, M.; Svorcik, V.

    2016-12-01

    We report grafting of copper nanoparticles (CuNP) on plasma activated high density polyethylene (HDPE) via dithiol interlayer pointing out to the structural and magnetic properties of those composites. The as-synthesized Cu nanoparticles have been characterized by high-resolution transmission electron microscopy (HRTEM/TEM) and UV-vis spectroscopy. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, energy dispersive X-ray spectroscopy (EDS), zeta potential, electron spin resonance (ESR) and SQUID magnetometry. From TEM and HRTEM analyses, it is found that the size of high purity Cu nanoparticles is (12.2 ± 5.2) nm. It was determined that in the CuNPs, the copper atoms are arranged mostly in the (111) and (200) planes. Absorption in UV-vis region by these nanoparticles is ranging from 570 to 670 nm. EDS revealed that after 1 h of grafting are Cu nanoparticles homogeneously distributed over the whole surface and after 24 h of grafting Cu nanoparticles tend to aggregate slightly. The combined investigation of magnetic properties using ESR spectrometry and SQUID magnetometry confirmed the presence of copper nanoparticles anchored on PE substrate and indicated ferromagnetic interactions.

  12. Copper(I)-α-synuclein interaction: structural description of two independent and competing metal binding sites.

    Science.gov (United States)

    Camponeschi, Francesca; Valensin, Daniela; Tessari, Isabella; Bubacco, Luigi; Dell'Acqua, Simone; Casella, Luigi; Monzani, Enrico; Gaggelli, Elena; Valensin, Gianni

    2013-02-04

    The aggregation of α-synuclein (αS) is a critical step in the etiology of Parkinson's disease. Metal ions such as copper and iron have been shown to bind αS, enhancing its fibrillation rate in vitro. αS is also susceptible to copper-catalyzed oxidation that involves the reduction of Cu(II) to Cu(I) and the conversion of O(2) into reactive oxygen species. The mechanism of the reaction is highly selective and site-specific and involves interactions of the protein with both oxidation states of the copper ion. The reaction can induce oxidative modification of the protein, which generally leads to extensive protein oligomerization and precipitation. Cu(II) binding to αS has been extensively characterized, indicating the N terminus and His-50 as binding donor residues. In this study, we have investigated αS-Cu(I) interaction by means of NMR and circular dichroism analysis on the full-length protein (αS(1-140)) and on two, designed ad hoc, model peptides: αS(1-15) and αS(113-130). In order to identify and characterize the metal binding environment in full-length αS, in addition to Cu(I), we have also used Ag(I) as a probe for Cu(I) binding. Two distinct Cu(I)/Ag(I) binding domains with comparable affinities have been identified. The structural rearrangements induced by the metal ions and the metal coordination spheres of both sites have been extensively characterized.

  13. Copper(II) binding to alpha-synuclein, the Parkinson's protein.

    Science.gov (United States)

    Lee, Jennifer C; Gray, Harry B; Winkler, Jay R

    2008-06-04

    Variations in tryptophan fluorescence intensities confirm that copper(II) interacts with alpha-synuclein, a protein implicated in Parkinson's disease. Trp4 fluorescence decay kinetics measured for the F4W protein show that Cu(II) binds tightly (Kd 100 nM) near the N-terminus at pH 7. Work on a F4W/H50S mutant indicates that a histidine imidazole is not a ligand in this high-affinity site.

  14. Physicochemical properties of copper important for its antibacterial activity and development of a unified model.

    Science.gov (United States)

    Hans, Michael; Mathews, Salima; Mücklich, Frank; Solioz, Marc

    2015-03-16

    Contact killing is a novel term describing the killing of bacteria when they come in contact with metallic copper or copper-containing alloys. In recent years, the mechanism of contact killing has received much attention and many mechanistic details are available. The authors here review some of these mechanistic aspects with a focus on the critical physicochemical properties of copper which make it antibacterial. Known mechanisms of contact killing are set in context to ionic, corrosive, and physical properties of copper. The analysis reveals that the oxidation behavior of copper, paired with the solubility properties of copper oxides, are the key factors which make metallic copper antibacterial. The concept advanced here explains the unique position of copper as an antibacterial metal. Based on our model, novel design criteria for metallic antibacterial materials may be derived.

  15. Thermal characterization and properties of a copper-diamond composite

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chavez, Thomas P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DiAntonio, Christopher Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coker, Eric Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The thermal properties of a commercial copper-diamond composite were measured from below -50°C to above 200°C. The results of thermal expansion, heat capacity, and thermal diffusivity were reported. These data were used to calculate the thermal conductivity of the composite as a function of temperature in the thickness direction. These results are compared with estimated values based on a simple mixing rule and the temperature dependence of these physical properties is represented by curve fitting equations. These fitting equations can be used for thermal modeling of practical devices/systems at their operation temperatures. The results of the mixing rule showed a consistent correlation between the amount of copper and diamond in the composite, based on density, thermal expansion, and heat capacity measurements. However, there was a disparity between measured and estimated thermal diffusivity and thermal conductivity. These discrepancies can be caused by many intrinsic material issues such as lattice defects and impurities, but the dominant factor is attributed to the large uncertainty of the interfacial thermal conductance between diamond and copper.

  16. The tachykinin peptide neurokinin B binds copper forming an unusual [CuII(NKB)2] complex and inhibits copper uptake into 1321N1 astrocytoma cells.

    Science.gov (United States)

    Russino, Debora; McDonald, Elle; Hejazi, Leila; Hanson, Graeme R; Jones, Christopher E

    2013-10-16

    Neurokinin B (NKB) is a member of the tachykinin family of neuropeptides that have neuroinflammatory, neuroimmunological, and neuroprotective functions. In a neuroprotective role, tachykinins can help protect cells against the neurotoxic processes observed in Alzheimer's disease. A change in copper homeostasis is a clear feature of Alzheimer's disease, and the dysregulation may be a contributory factor in toxicity. Copper has recently been shown to interact with neurokinin A and neuropeptide γ and can lead to generation of reactive oxygen species and peptide degradation, which suggests that copper may have a place in tachykinin function and potentially misfunction. To explore this, we have utilized a range of spectroscopic techniques to show that NKB, but not substance P, can bind Cu(II) in an unusual [Cu(II)(NKB)2] neutral complex that utilizes two N-terminal amine and two imidazole nitrogen ligands (from each molecule of NKB) and the binding substantially alters the structure of the peptide. Using 1321N1 astrocytoma cells, we show that copper can enter the cells and subsequently open plasma membrane calcium channels but when bound to neurokinin B copper ion uptake is inhibited. This data suggests a novel role for neurokinin B in protecting cells against copper-induced calcium changes and implicates the peptide in synaptic copper homeostasis.

  17. Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites

    Directory of Open Access Journals (Sweden)

    HONG Qi-hu

    2016-09-01

    Full Text Available Graphene oxide/copper (GO/Cu composites were successfully synthesized through the ball milling and vacuum hot press sintering process. The morphologies of the mixture powders, and the microstructure and mechanical properties of GO/Cu composites were investigated by OM, SEM, XRD, hardness tester and electronic universal testing machine, respectively. The results show that the GO/Cu composites are compact. Graphene oxide with flake morphology is uniformly dispersed and well consolidated with copper matrix. When the mass fraction of graphene oxide is 0.5%, the microhardness and compress strength at RT reach up to 63HV and 276MPa, increased by 8.6% and 28%, respectively. The strengthening mechanism is load transfer effect, dislocation strengthening and fine crystal reinforcing.

  18. Investigations of Interface Properties in Copper-Silicon Carbide Composites

    Directory of Open Access Journals (Sweden)

    Chmielewski M.

    2017-06-01

    Full Text Available This paper analyses the technological aspects of the interface formation in the copper-silicon carbide composite and its effect on the material’s microstructure and properties. Cu-SiC composites with two different volume content of ceramic reinforcement were fabricated by hot pressing (HP and spark plasma sintering (SPS technique. In order to protect SiC surface from its decomposition, the powder was coated with a thin tungsten layer using plasma vapour deposition (PVD method. Microstructural analyses provided by scanning electron microscopy revealed the significant differences at metal-ceramic interface. Adhesion force and fracture strength of the interface between SiC particles and copper matrix were measured. Thermal conductivity of composites was determined using laser flash method. The obtained results are discussed with reference to changes in the area of metal-ceramic boundary.

  19. DNA binding and biological studies of some novel water-soluble polymer-copper(II)-phenanthroline complexes.

    Science.gov (United States)

    Kumar, Rajendran Senthil; Arunachalam, Sankaralingam; Periasamy, Vaiyapuri Subbarayan; Preethy, Christo Paul; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkader

    2008-10-01

    Some novel water-soluble polymer-copper(II)-phenanthroline complex samples, [Cu(phen)2(BPEI)]Cl(2).4H2O (phen=1,10-phenanthroline, BPEI=branched polyethyleneimine), with different degrees of copper complex content in the polymer chain have been prepared by ligand substitution method in water-ethanol medium and characterized by infrared, UV-visible, EPR spectral and elemental analysis methods. The binding of these complex samples with DNA has been investigated by electronic absorption spectroscopy, emission spectroscopy and gel retardation assay. Electrostatic interactions between DNA molecule and polymer-copper(II) complex molecule containing many high positive charges have been observed. Besides these ionic interactions, van der Waals interactions, hydrogen bonding and other partial intercalation binding modes may also exist in this system. The polymer-copper(II) complex with higher degree of copper complex content was screened for its antimicrobial activity and antitumor activity.

  20. Structural Studies of the Alzheimer's Amyloid Precursor Protein Copper-Binding Domain Reveal How It Binds Copper Ions

    Energy Technology Data Exchange (ETDEWEB)

    Kong, G.K.-W.; Adams, J.J.; Harris, H.H.; Boas, J.F.; Curtain, C.C.; Galatis, D.; Master, C.L.; Barnham, K.J.; McKinstry, W.J.; Cappai, R.; Parker, M.W.; /Sydney U.

    2007-07-09

    Alzheimer's disease (AD) is the major cause of dementia. Amyloid {beta} peptide (A {beta}), generated by proteolytic cleavage of the amyloid precursor protein (APP), is central to AD pathogenesis. APP can function as a metalloprotein and modulate copper (Cu) transport, presumably via its extracellular Cu-binding domain (CuBD). Cu binding to the CuBD reduces A{beta} levels, suggesting that a Cu mimetic may have therapeutic potential. We describe here the atomic structures of apo CuBD from three crystal forms and found they have identical Cu-binding sites despite the different crystal lattices. The structure of Cu[2+]-bound CuBD reveals that the metal ligands are His147, His151, Tyrl68 and two water molecules, which are arranged in a square pyramidal geometry. The site resembles a Type 2 non-blue Cu center and is supported by electron paramagnetic resonance and extended X-ray absorption fine structure studies. A previous study suggested that Met170 might be a ligand but we suggest that this residue plays a critical role as an electron donor in CuBDs ability to reduce Cu ions. The structure of Cu[+]-bound CuBD is almost identical to the Cu[2+]-bound structure except for the loss of one of the water ligands. The geometry of the site is unfavorable for Cu[+], thus providing a mechanism by which CuBD could readily transfer Cu ions to other proteins.

  1. Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: Evidence for the presence of nitrogenous binding site

    Science.gov (United States)

    Croue, J.-P.; Benedetti, M.F.; Violleau, D.; Leenheer, J.A.

    2003-01-01

    Humic substances typically constitute 40-60% of the dissolved organic matter (DOM) in surface waters. However, little information is available regarding the metal binding properties of the nonhumic hydrophilic portion of the DOM. In this study, humic and nonhumic DOM samples were isolated from the South Platte River (Colorado, DOC = 2.6 mg??L-1, SUVA254 = 2.4 L/mg??m) using a two-column array of XAD-8 and XAD-4 resins. The three major isolated fractions of DOM, which accounted for 57% of the bulk DOM, were characterized using a variety of analytical tools. Proton and copper binding properties were studied for each fraction. The main objective of this work was to compare the structural and chemical characteristics of the isolated fractions and test models describing DOM reactivity toward metal ions. The characterization work showed significant structural differences between the three isolated fractions of DOM. The hydrophobic acid fraction (i.e., humic substances isolated from the XAD-8 resin) gave the largest C/H, C/O, and C/N ratios and aromatic carbon content among the three isolated fractions. The transphilic acid (TPHA) fraction ("transphilic" meaning fraction of intermediate polarity isolated from the XAD-4 resin) was found to incorporate the highest proportion of polysaccharides, whereas the transphilic neutral (TPHN) fraction was almost entirely proteinaceous. The gradual increase of the charge with pH for the three DOM fractions is most likely caused by a large distribution of proton affinity constants for the carboxylic groups, as well as a second type of group more generally considered to be phenolic. In the case of the DOM fraction enriched in proteinaceous material (i.e., TPHN fraction), the results showed that the amino groups are reponsible for the charge reversal. For low copper concentrations, nitrogen-containing functional groups similar to those of amino acids are likely to be involved in complexation, in agreement with previously published data.

  2. Synthesis,Characterization,and DNA Binding Properties of Dinuclear Copper(Ⅱ)Complex [Cu2(TATP)2(L-Leu)2(CIO4)2]2°2H2O

    Institute of Scientific and Technical Information of China (English)

    GU Qin; LIN Qing-bin; LIU Ying-ju; LE Xue-yi; FENG Xiao-long

    2008-01-01

    A dinuclear copper(Ⅱ) complex [Cu2(TATP)2(L-Leu)2(ClO4)2]2.2H2O was synthesized and characterized,where,TATP=1,4,8,9-tetraazatriphenylene,and L-Leu=L-leucinate,The complex was crystallized in the triclinic space group P1,with two independent molecules in a unit cell,Two Cu(Ⅱ) ions in each complex[Cu2(TATP)2(L-Leu)2(ClO4)2]molecule were found to be in different coordination geometries,i.e.,Cu2 or Cu4 of a distorted square-pyramidal geometry coordinated with two nitrogens of TATP,the amino nitrogen and one carboxylate oxygen of L-Leu and one oxygen of perchlorate,and Cul or Cu3 with an octahedral geometry coordinated with the above stated similar coordinated atoms,and another carboxylate oxygen of L-Leu coordinating to Cu2 or Cu4,The complex can interact with CT-DNA by an intercalative mode and cleave pBR322 DNA in the presence of ascorbate.

  3. Synthesis, structure, DNA binding and cleavage activity of a new copper(Ⅱ) complex of bispyridylpyrrolide

    Institute of Scientific and Technical Information of China (English)

    MIN Rui; HU Xiao-hui; YI Xiao-yi; ZHANG Shou-chun

    2015-01-01

    A copper-bispyridylpyrrolide complex [Cu(PDPH)Cl] (PDPH = 2,5-bis(2′-pyridyl)pyrrole) was synthesized and characterized. The complex crystallizes in the orthorhombic system with space groupPccn,a = 0.9016(3) nm,b = 1.0931(4) nm,c = 2.5319(8) nm, andV = 2.4951(15) nm3. The copper center is situated in a square planar geometry. The interaction of the copper(Ⅱ) complexwith calf thymus DNA (CT-DNA) was investigated by electronic absorption, circular dichroism (CD) and fluorescence spectra. It is proposed that the complex binds to CT-DNA through groove binding mode. Nuclease activity of the complex was also studied by gel electrophoresis method. The complex can efficiently cleave supercoiled pBR322 DNA in the presence of ascorbate (H2A) via oxidative pathway. The preliminary mechanism of DNA cleavage by the complex with different inhibiting reagents indicates that the hydroxyl radicals were involved as the active species in the DNA cleavage process.

  4. Antibacterial and corrosive properties of copper implanted austenitic stainless steel

    Institute of Scientific and Technical Information of China (English)

    Juan Xiong; Bo-fan Xu; Hong-wei Ni

    2009-01-01

    Copper ions were implanted into austenitic stainless steel (SS) by metal vapor vacuum arc with a energy of 100 keV and an ions dose range of (0.5-8.0)x 1017 cm-2. The Cu-implanted SS was annealed in an Ar atmosphere furnace. Glancing X-ray diffraction (GXRD), transmission electron microscopy (TEM) and Auger electron spectroscopy (AES) were used to reveal the phase com-positions, microstructures, and concentration profiles of copper ions in the implanted layer. The results show that the antibacterialproperty of Cu-implanted SS is attributed to Cu9.9Fe0.1 which precipitated as needles. The depth of copper in Cu-implanted SS with annealing treatment is greater than that in Cu-implanted SS without annealing treatment, which improves the antibacterial property against S. Aureus. The salt wetting-drying combined cyclic test was used to evaluate the corrosion-resistance of antibacterial SS, and the results reveal that the antibacterial SS has a level of corrosion-resistance equivalent to that of un-implanted SS.

  5. Cross-talk between the octarepeat domain and the fifth binding site of prion protein driven by the interaction of copper(II) with the N-terminus.

    Science.gov (United States)

    Di Natale, Giuseppe; Turi, Ildikó; Pappalardo, Giuseppe; Sóvágó, Imre; Rizzarelli, Enrico

    2015-03-02

    Prion diseases are a group of neurodegenerative diseases based on the conformational conversion of the normal form of the prion protein (PrP(C)) to the disease-related scrapie isoform (PrP(Sc)). Copper(II) coordination to PrP(C) has attracted considerable interest for almost 20 years, mainly due to the possibility that such an interaction would be an important event for the physiological function of PrP(C). In this work, we report the copper(II) coordination features of the peptide fragment Ac(PEG11)3PrP(60-114) [Ac = acetyl] as a model for the whole N-terminus of the PrP(C) metal-binding domain. We studied the complexation properties of the peptide by means of potentiometric, UV/Vis, circular dichroism and electrospray ionisation mass spectrometry techniques. The results revealed that the preferred histidyl binding sites largely depend on the pH and copper(II)/peptide ratio. Formation of macrochelate species occurs up to a 2:1 metal/peptide ratio in the physiological pH range and simultaneously involves the histidyl residues present both inside and outside the octarepeat domain. However, at increased copper(II)/peptide ratios amide-bound species form, especially within the octarepeat domain. On the contrary, at basic pH the amide-bound species predominate at any copper/peptide ratio and are formed preferably with the binding sites of His96 and His111, which is similar to the metal-binding-affinity order observed in our previous studies.

  6. Effect of Copper Addition on Crystallization and Properties of Hafnium Containing HITPERM Alloys

    Science.gov (United States)

    2010-05-01

    AFRL-RZ-WP-TP-2010-2190 EFFECT OF COPPER ADDITION ON CRYSTALLIZATION AND PROPERTIES OF HAFNIUM CONTAINING HITPERM ALLOYS (POSTPRINT) L...SUBTITLE EFFECT OF COPPER ADDITION ON CRYSTALLIZATION AND PROPERTIES OF HAFNIUM CONTAINING HITPERM ALLOYS (POSTPRINT) 5a. CONTRACT NUMBER In-house...8-98) Prescribed by ANSI Std. Z39-18 Effect of copper addition on crystallization and properties of hafnium containing HITPERM alloys „invited

  7. Cooperative binding of copper(I) to the metal binding domains in Menkes disease protein

    DEFF Research Database (Denmark)

    Jensen, P Y; Bonander, N; Møller, L B

    1999-01-01

    We have optimised the overexpression and purification of the N-terminal end of the Menkes disease protein expressed in Escherichia coli, containing one, two and six metal binding domains (MBD), respectively. The domain(s) have been characterised using circular dichroism (CD) and fluorescence spec...

  8. Copper(II) Binding to α-Synuclein, the Parkinson’s Protein

    OpenAIRE

    Lee, Jennifer C.; Gray, Harry B.; Winkler, Jay R.

    2008-01-01

    Variations in tryptophan fluorescence intensities confirm that copper(II) interacts with α-synuclein, a protein implicated in Parkinson’s disease. Trp4 fluorescence decay kinetics measured for the F4W protein show that Cu(II) binds tightly (K d ∼ 100 nM) near the N-terminus at pH 7. Work on a F4W/H50S mutant indicates that a histidine imidazole is not a ligand in this high-affinity site.

  9. Copper(II) complexes of salicylic acid combining superoxide dismutase mimetic properties with DNA binding and cleaving capabilities display promising chemotherapeutic potential with fast acting in vitro cytotoxicity against cisplatin sensitive and resistant cancer cell lines.

    Science.gov (United States)

    O'Connor, Mark; Kellett, Andrew; McCann, Malachy; Rosair, Georgina; McNamara, Mary; Howe, Orla; Creaven, Bernadette S; McClean, Siobhán; Kia, Agnieszka Foltyn-Arfa; O'Shea, Denis; Devereux, Michael

    2012-03-08

    The complexes [Cu(salH)(2)(H(2)O)] (1), [Cu(dipsH)(2)(H(2)O)] (2), {Cu(3-MeOsal)(H(2)O)(0.75)}(n) (3), [Cu(dipsH)(2)(BZDH)(2)] (4), [Cu(dipsH)(2)(2-MeOHBZDH)(2)]·EtOH (5), [Cu(sal)(phen)] (6), [Cu(dips)(phen)]·H(2)O (7), and [Cu(3-MeOsal)(phen)]·H(2)O (8) (salH(2) = salicylic acid; dipsH(2) = 3,5-diisopropylsalicylic acid; 3-MeOsalH(2) = 3-methoxysalicylic acid; BZDH = benzimidazole; 2-MeOHBZDH = 2 methanolbenzimidazole and phen =1,10-phenanthroline) were prepared and characterized. Structures of 4, 5, and 8 were determined by X-ray crystallography. Compounds 1-8 are potent superoxide dismutase mimetics, and they are inactive as inhibitors of COX-2 activity. Compounds 1, 4, and 5 exhibit moderate inhibition of COX-1. Complexes 6-8 display rapid micromolar cytotoxicity against cisplatin sensitive (breast (MCF-7), prostate (DU145), and colon (HT29)) and cisplatin resistant (ovarian (SK-OV-3)) cell lines compared to 1-5, and they exhibit potent in vitro DNA binding and cleavage capabilities.

  10. Defective copper binding to apo-ceruloplasmin in a rat model and patients with Wilson's disease.

    Science.gov (United States)

    Kojimahara, N; Nakabayashi, H; Shikata, T; Esumi, M

    1995-06-01

    To examine the mechanism of decrease in serum ceruloplasmin (Cp) in Long-Evans Cinnamon (LEC) rats, a proposed model of Wilson's disease, we analyzed Cp products at the stages of transcription and translation. Northern blot analysis and immunoblot analysis showed that the level and the molecular size of Cp mRNA and protein in LEC rats were similar to those in control Long-Evans-Agouti (LEA) rats. However, the ferroxidase activity of Cp was significantly decreased in LEC rats. We separated serum Cp into two forms by native polyacrylamide gel electrophoresis with pH modification: one was a holo-Cp with copper and ferroxidase activity, and the other was an inactive apo-Cp without copper. Holo-Cp was the predominant form in LEA rats and normal humans, whereas apo-Cp was the major form in LEC rats and patients with Wilson's disease. The cosegregation of apo-Cp predominance with the disease in LEC rats was analyzed using backcross rats. Apo-Cp was dominant in 8 of 11 offspring with disease but in none of 19 normal offspring. These results indicate that a genetic disturbance of copper binding to apo-Cp may be closely associated with the pathogenesis in LEC rats, and probably in Wilson's disease.

  11. The Copper concentration variation to physical properties of high copper amalgam alloy

    Directory of Open Access Journals (Sweden)

    Aminatun Aminatun

    2006-09-01

    Full Text Available The function of copper (Cu inside amalgam is to increase hardness and impact force and to decrease thermal expansion coefficient. In general, amalgam which is used in dentistry and available in the market is contain Cu 22%, while the maximum Cu concentration is 30%. It is necessary to determine the concentration Cu does generate the best physical properties to be used as dental restorative agent. Amalgam is made by mixing blended-metal Ag-Sn-Cu (with Cu concentration of 13%, 21%, 22%, and 29% and Hg, stirred manually in a bowl for 15 minutes,leave it in temperature 27°C for 24 hours to become hardened. The result of X-Ray Diffractometer (XRD, analyzed by Rietveld method and Rietica program, shows amalgam with Cu 29% concentration for Cu3Sn compound density is 31.790 sma/Å3, for Ag2Hg3 compound is 41.733 sma/ Å3, a Cu3Sn relative weight percentage of 43.23%, Ag2Hg3 of 54.54%, Cu 7Hg6 of 2.23% and hardness of Cu 29% is 90.700 ± 0.005 kgf/mm2. These numbers are the highest values on Cu 29% concentrations compared to other copper concentration variants. Whereas amalgam thermal expansion coefficient on Cu 29% is (2.17 ± 0.9110-3 mm/°C is the lowest value compared to other Cu concentration. The conclution is that adding Cu concentration into amalgam will increase density value, Cu3Sn relative weight percentage, hardness level and will decrease amalgam thermal expansion coefficient. Amalgam 29% Cu concentration has better physical properties compared to amalgam Cu 22% concentration.

  12. Redox properties of a mononuclear copper(II)-superoxide complex.

    Science.gov (United States)

    Tano, Tetsuro; Okubo, Yuri; Kunishita, Atsushi; Kubo, Minoru; Sugimoto, Hideki; Fujieda, Nobutaka; Ogura, Takashi; Itoh, Shinobu

    2013-09-16

    Redox properties of a mononuclear copper(II) superoxide complex, (L)Cu(II)-OO(•), supported by a tridentate ligand (L = 1-(2-phenethyl)-5-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane) have been examined as a model compound of the putative reactive intermediate of peptidylglycine α-hydroxylating monooxygenase (PHM) and dopamine β-monooxygenase (DβM) (Kunishita et al. J. Am. Chem. Soc. 2009, 131, 2788-2789; Inorg. Chem. 2012, 51, 9465-9480). On the basis of the reactivity toward a series of one-electron reductants, the reduction potential of (L)Cu(II)-OO(•) was estimated to be 0.19 ± 0.07 V vs SCE in acetone at 298 K (cf. Tahsini et al. Chem.-Eur. J. 2012, 18, 1084-1093). In the reaction of TEMPO-H (2,2,6,6-tetramethylpiperidine-N-hydroxide), a simple HAT (hydrogen atom transfer) reaction took place to give the corresponding hydroperoxide complex LCu(II)-OOH, whereas the reaction with phenol derivatives ((X)ArOH) gave the corresponding phenolate adducts, LCu(II)-O(X)Ar, presumably via an acid-base reaction between the superoxide ligand and the phenols. The reaction of (L)Cu(II)-OO(•) with a series of triphenylphosphine derivatives gave the corresponding triphenylphosphine oxides via an electrophilic ionic substitution mechanism with a Hammett ρ value as -4.3, whereas the reaction with thioanisole (sulfide) only gave a copper(I) complex. These reactivities of (L)Cu(II)-OO(•) are different from those of a similar end-on superoxide copper(II) complex supported by a tetradentate TMG3tren ligand (1,1,1-Tris{2-[N(2)-(1,1,3,3-tetramethylguanidino)]ethyl}amine (Maiti et al. Angew. Chem., Int. Ed. 2008, 47, 82-85).

  13. Gradients in Strong and Weak Organic Copper-Binding Ligands in the Eastern Tropical South Pacific

    Science.gov (United States)

    Ruacho, A.; Bundy, R.; Barbeau, K.; Parker, C.; Roshan, S.; Wu, J.

    2014-12-01

    Dissolved organic copper-binding ligands were examined on the U.S. GEOTRACES zonal transect in the Eastern Tropical South Pacific from Peru to Tahiti. All samples were measured using competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV), and a subset were analyzed using multiple competition strengths of the added ligand salicylaldoxime (1, 2.5, 5, 10, and 25 μM). Titration data was processed using newly available multiple analytical window data processing techniques, which unify the multiple window dataset as a whole. Multiple competition strengths of the added ligand enabled the detection of an additional weaker class of copper-binding ligand, compared to the two stronger ligand classes which have been measured previously in the open ocean. The strongest ligand class (L1) ranged in concentration from 1-10 nmol L-1 and had a conditional stability constant (logK) ranging from approximately 15.0-16.0. The weaker ligand classes (L2, and L3) were present in much higher concentrations even in surface waters, with concentrations ranging from 5-50 nmol L-1 and conditional stability constants ranging from 8.6-12.5. The elevated ligand concentrations, both in surface and deep waters, lead to extremely low concentrations of Cu2+ throughout the transect, possibly influencing important biogeochemical processes such as inducible iron acquisition by diatoms, and ammonium oxidation in the oxygen minimum zone.

  14. Determinants for simultaneous binding of copper and platinum to human chaperone Atox1: hitchhiking not hijacking.

    Directory of Open Access Journals (Sweden)

    Maria E Palm-Espling

    Full Text Available Cisplatin (CisPt is an anticancer agent that has been used for decades to treat a variety of cancers. CisPt treatment causes many side effects due to interactions with proteins that detoxify the drug before reaching the DNA. One key player in CisPt resistance is the cellular copper-transport system involving the uptake protein Ctr1, the cytoplasmic chaperone Atox1 and the secretory path ATP7A/B proteins. CisPt has been shown to bind to ATP7B, resulting in vesicle sequestering of the drug. In addition, we and others showed that the apo-form of Atox1 could interact with CisPt in vitro and in vivo. Since the function of Atox1 is to transport copper (Cu ions, it is important to assess how CisPt binding depends on Cu-loading of Atox1. Surprisingly, we recently found that CisPt interacted with Cu-loaded Atox1 in vitro at a position near the Cu site such that unique spectroscopic features appeared. Here, we identify the binding site for CisPt in the Cu-loaded form of Atox1 using strategic variants and a combination of spectroscopic and chromatographic methods. We directly prove that both metals can bind simultaneously and that the unique spectroscopic signals originate from an Atox1 monomer species. Both Cys in the Cu-site (Cys12, Cys15 are needed to form the di-metal complex, but not Cys41. Removing Met10 in the conserved metal-binding motif makes the loop more floppy and, despite metal binding, there are no metal-metal electronic transitions. In silico geometry minimizations provide an energetically favorable model of a tentative ternary Cu-Pt-Atox1 complex. Finally, we demonstrate that Atox1 can deliver CisPt to the fourth metal binding domain 4 of ATP7B (WD4, indicative of a possible drug detoxification mechanism.

  15. Electrodeposition of copper selenide films from acidic bath and their properties

    Science.gov (United States)

    Mane, Rajaram S.; Shaikh, Arif V.; Joo, Oh-Shim; Han, Sung-Hwan; Pathan, Habib M.

    2012-06-01

    Copper selenide thin films are successfully deposited using electrodeposition method by combining copper sulfate and sodiumseleno sulfate precursors at room temperature in acidic bath. The chemical composition was a key factor in preparing high-quality uniform and smooth thin films of the copper selenide. We present indium-tin-oxide as a substrate for depositing copper selenide films which usually exists as copper (I) selenide or copper (II) selenide. Obtained brownish films of copper selenide are examined for their structural, morphological, compositional and optical properties by means of X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques, respectively for the structural, morphological and optical analysis.

  16. Copper(II) complex formation with a linear peptide encompassing the putative cell binding site of angiogenin.

    Science.gov (United States)

    La Mendola, Diego; Magrì, Antonio; Vagliasindi, Laura I; Hansson, Örjan; Bonomo, Raffaele P; Rizzarelli, Enrico

    2010-11-28

    Angiogenin is one of the more potent angiogenic factors known, whose activity may be affected by the presence of copper ions. Copper(II) complexes with the peptides encompassing the putative endothelial cell binding domain of angiogenin, Ac-KNGNPHREN-NH(2) and Ac-PHREN-NH(2), have been characterized by potentiometric, UV-vis, CD and EPR spectroscopic methods. The coordination features of all the copper complex species derived by both peptides are practically the same, as predictable because of the presence of a proline residue within their aminoacidic sequence. In particular, Ac-PHREN-NH(2) is really the aminoacidic sequence involved in the binding to copper(II). Thermodynamic and spectroscopic evidence are given that side chain oxygen donor atom of glutamyl residue is involved in the copper binding up to physiological pH. EPR parameters suggest that the carboxylate group is still involved also in the predominant species [Cu(L)H(-2)], the metal coordination environment being probably formed by N(Im), 2N(-), H(2)O in equatorial plane and an oxygen atom from COO(-) in apical position, or vice versa, with the carboxylate oxygen atom in the copper coordination plane and the water molecule confined to one of the apical positions. Moreover, the comparison with the thermodynamic and spectroscopic results in the case of the copper(ii) complex species formed by the single point mutated peptide, Ac-PHRQN-NH(2), provides further evidence of the presence of carboxylate oxygen atom in the copper coordination sphere.

  17. Ab initio investigation of the mechanical properties of copper

    Institute of Scientific and Technical Information of China (English)

    Liu Yue-Lin; Gui Li-Jiang; Jin Shuo

    2012-01-01

    Employing the ab initio total energy method based on the density functional theory with the generalized gradient approximation,we have systematically investigated the theoretical mechanical properties of copper (Cu).The theoretical tensile strengths are calculated to be 25.3 GPa,5.9 GPa,and 37.6 GPa for the fcc Cu single crystal in the [001],[110],and [111] directions,respectively.Among the three directions,the [110] direction is the weakest one due to the occurrence of structure transition at the lower strain and the weakest interaction of atoms between the (110) planes,while the [111] direction is the strongest direction because of the strongest interaction of atoms between the (111) planes.In terms of the elastic constants of Cu single crystal,we also estimate some mechanical quantities of polycrystalline Cu,including bulk modulus B,shear modulus G,Young's modulus Ep,and Poisson's ratio v.

  18. Drug binding properties of neonatal albumin

    DEFF Research Database (Denmark)

    Brodersen, R; Honoré, B

    1989-01-01

    Neonatal and adult albumin was isolated by gel chromatography on Sephacryl S-300, from adult and umbilical cord serum, respectively. Binding of monoacetyl-diamino-diphenyl sulfone, warfarin, sulfamethizole, and diazepam was studied by means of equilibrium dialysis and the binding data were analyzed...... by the method of several acceptable fitted curves. It was found that the binding affinity to neonatal albumin is less than to adult albumin for monoacetyl-diamino-diphenyl sulfone and warfarin. Sulfamethizole binding to the neonatal protein is similarly reduced when more than one molecule of the drug is bound...

  19. Copper-binding tripeptide motif increases potency of the antimicrobial peptide Anoplin via Reactive Oxygen Species generation.

    Science.gov (United States)

    Libardo, M Daben J; Nagella, Sai; Lugo, Andrea; Pierce, Scott; Angeles-Boza, Alfredo M

    2015-01-02

    Antimicrobial peptides (AMPs) are broad spectrum antimicrobial agents that act through diverse mechanisms, this characteristic makes them suitable starting points for development of novel classes of antibiotics. We have previously reported the increase in activity of AMPs upon addition of the Amino Terminal Copper and Nickel (ATCUN) Binding Unit. Herein we synthesized the membrane active peptide, Anoplin and two ATCUN-Anoplin derivatives and show that the increase in activity is indeed due to the ROS formation by the Cu(II)-ATCUN complex. We found that the ATCUN-Anoplin peptides were up to four times more potent compared to Anoplin alone against standard test bacteria. We studied membrane disruption, and cellular localization and found that addition of the ATCUN motif did not lead to a difference in these properties. When helical content was calculated, we observed that ATCUN-Anoplin had a lower helical composition. We found that ATCUN-Anoplin are able to oxidatively damage lipids in the bacterial membrane and that their activity trails the rate at which ROS is formed by the Cu(II)-ATCUN complexes alone. This study shows that addition of a metal binding tripeptide motif is a simple strategy to increase potency of AMPs by conferring a secondary action.

  20. Nonlinear optical properties of sodium copper chlorophyllin in aqueous solution.

    Science.gov (United States)

    Li, Jiangting; Peng, Yufeng; Han, Xueyun; Guo, Shaoshuai; Liang, Kunning; Zhang, Minggao

    2017-06-16

    Sodium copper chlorophyllin (SCC), as one of the derivatives of chlorophyll - with its inherent green features; good stability for heat, light, acids and alkalies; unique antimicrobial capability; and particular deodori zation performance - is widely applied in some fields such as the food industry, medicine and health care, daily cosmetic industry etc. SCC, as one of the metal porphyrins, has attracted much attention because of its unique electronic band structure and photon conversion performance. To promote the application of SCC in materials science; energy research and photonics, such as fast optical communications; and its use in nonlinear optical materials, solar photovoltaic cells, all-optical switches, optical limiters and saturable absorbers, great efforts should be dedicated to studying its nonlinear optical (NLO) properties. In this study, the absorption spectra and NLO properties of SCC in aqueous solution at different concentrations were measured. The Z-scan technique was used to determine NLO properties. The results indicated that the absorption spectra of SCC exhibit 2 characteristic absorption peaks located at the wavelengths 405 and 630 nm, and the values of the peaks increase with increasing SCC concentration. The results also showed that SCC exhibits reverse saturation absorption and negative nonlinear refraction (self-defocusing). It can be seen that SCC has good optical nonlinearity which will be convenient for applications in materials science, energy research and photonics.

  1. Copper Oxide Nanoparticles for Advanced Refrigerant Thermophysical Properties: Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    S. A. Fadhilah

    2014-01-01

    Full Text Available In modern days, refrigeration systems are important for industrial and domestic applications. The systems consume more electricity as compared to other appliances. The refrigeration systems have been investigated thoroughly in many ways to reduce the energy consumption. Hence, nanorefrigerant which is one kind of nanofluids has been introduced as a superior properties refrigerant that increased the heat transfer rate in the refrigeration system. Many types of materials could be used as the nanoparticles to be suspended into the conventional refrigerants. In this study, the effect of the suspended copper oxide (CuO nanoparticles into the 1,1,1,2-tetrafluoroethane, R-134a is investigated by using mathematical modeling. The investigation includes the thermal conductivity, dynamic viscosity, and heat transfer rate of the nanorefrigerant in a tube of evaporator. The results show enhanced thermophysical properties of nanorefrigerant compared to the conventional refrigerant. These advanced thermophysical properties increased the heat transfer rate in the tube. The nanorefrigerant could be a potential working fluid to be used in the refrigeration system to increase the heat transfer characteristics and save the energy usage.

  2. Involvement of nitrogen functional groups in high-affinity copper binding in tomato and wheat root apoplasts: spectroscopic and thermodynamic evidence.

    Science.gov (United States)

    Guigues, Stéphanie; Bravin, Matthieu N; Garnier, Cédric; Masion, Armand; Chevassus-Rosset, Claire; Cazevieille, Patrick; Doelsch, Emmanuel

    2016-03-01

    Carboxylic groups located in plant cell walls (CW) are generally considered to be the main copper binding sites in plant roots, despite the presence of other functional groups. The aim of this study was to investigate sites responsible for copper binding in root apoplasts, i.e. CW and outer surface of the plasma membrane (PM) continuum. Binding sites in root apoplasts were investigated by comparing isolated CW of a monocotyledon (Triticum aestivum L.) and dicotyledon (Solanum lycopersicum L.) crop with their respective whole roots. Copper speciation was examined by X-ray absorption (XAS) and (13)C-nuclear magnetic resonance spectroscopies while the affinity of ligands involved in copper binding was investigated by modeling copper sorption isotherms. Homogeneous speciation and binding of copper was found in wheat and tomato root apoplasts. Only Cu-N and Cu-O bonds were detected in wheat and tomato root apoplasts. Nitrogen/oxygen ligands were identified in slightly higher proportions (40-70%) than single oxygen ligands. Furthermore, low- and high-affinity binding sites contributed in an almost equivalent proportion to copper binding in root apoplasts. The high-affinity N functional groups embedded in root apoplasts participated in copper binding in the same magnitude than the low-affinity carboxylic groups.

  3. The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion

    Science.gov (United States)

    Giachin, Gabriele; Mai, Phuong Thao; Tran, Thanh Hoa; Salzano, Giulia; Benetti, Federico; Migliorati, Valentina; Arcovito, Alessandro; Longa, Stefano Della; Mancini, Giordano; D'Angelo, Paola; Legname, Giuseppe

    2015-10-01

    The conversion of the prion protein (PrPC) into prions plays a key role in transmissible spongiform encephalopathies. Despite the importance for pathogenesis, the mechanism of prion formation has escaped detailed characterization due to the insoluble nature of prions. PrPC interacts with copper through octarepeat and non-octarepeat binding sites. Copper coordination to the non-octarepeat region has garnered interest due to the possibility that this interaction may impact prion conversion. We used X-ray absorption spectroscopy to study copper coordination at pH 5.5 and 7.0 in human PrPC constructs, either wild-type (WT) or carrying pathological mutations. We show that mutations and pH cause modifications of copper coordination in the non-octarepeat region. In the WT at pH 5.5, copper is anchored to His96 and His111, while at pH 7 it is coordinated by His111. Pathological point mutations alter the copper coordination at acidic conditions where the metal is anchored to His111. By using in vitro approaches, cell-based and computational techniques, we propose a model whereby PrPC coordinating copper with one His in the non-octarepeat region converts to prions at acidic condition. Thus, the non-octarepeat region may act as the long-sought-after prion switch, critical for disease onset and propagation.

  4. Copper-binding peptides from human prion protein and newly designed peroxidative biocatalysts.

    Science.gov (United States)

    Kagenishi, Tomoko; Yokawa, Ken; Kadono, Takashi; Uezu, Kazuya; Kawano, Tomonori

    2011-01-01

    A previous work suggested that peptides from the histidine-containing copper-binding motifs in human prion protein (PrP) function as peroxidase-like biocatalysts catalyzing the generation of superoxide anion radicals in the presence of neurotransmitters (aromatic monoamines) and phenolics such as tyrosine and tyrosyl residues on proteins. In this study, using various phenolic substrates, the phenol-dependent superoxide-generating activities of PrP-derived peptide sequences were compared. Among the peptides tested, the GGGTH pentapeptide was shown to be the most active catalyst for phenol-dependent reactions. Based on these results, we designed a series of oligoglycyl-histidines as novel peroxidative biocatalysts, and their catalytic performances including kinetics, heat tolerance, and freezing tolerance were analysed.

  5. Low concentrations of copper in drinking water increase AP-1 binding in the brain.

    Science.gov (United States)

    Lung, Shyang; Li, Huihui; Bondy, Stephen C; Campbell, Arezoo

    2015-12-01

    Copper (Cu) in trace amounts is essential for biological organisms. However, dysregulation of the redox-active metal has been implicated in different neurological disorders such as Wilson's, Menkes', Alzheimer's, and Parkinson's diseases. Since many households use Cu tubing in the plumbing system, and corrosion causes the metal to leach into the drinking water, there may be adverse effects on the central nervous system connected with low-level chronic exposure. The present study demonstrates that treatment with a biologically relevant concentration of Cu for 3 months significantly increases activation of the redox-modulated transcription factor AP-1 in mouse brains. This was independent of an upstream kinase indicated in AP-1 activation. Another redox-active transcription factor, NF-κB, was not significantly modified by the Cu exposure. These results indicate that the effect of Cu on AP-1 is unique and may involve direct modulation of DNA binding.

  6. Copper(II) interaction with peptide fragments of histidine-proline-rich glycoprotein: Speciation, stability and binding details.

    Science.gov (United States)

    La Mendola, Diego; Magrì, Antonio; Santoro, Anna Maria; Nicoletti, Vincenzo G; Rizzarelli, Enrico

    2012-06-01

    GHHPH is the peptide repeat present in histidine-proline rich glycoprotein (HPRG), a plasma glycoprotein involved in angiogenesis process. The copper(II) ions interaction with mono (Ac-GHHPHG-NH(2)) and its bis-repeat (Ac-GHHPHGHHPHG-NH(2)) was investigated by means of potentiometric and spectroscopic techniques. To single out the copper(II) coordination environments of different species formed with Ac-GHHPHG-NH(2), three single point mutated peptides were also synthesized and their ability to coordinate Cu(2+) investigated. Ac-GHHPHG-NH(2) binds Cu(2+) by the imidazole side chain and the amide nitrogen deprotonation that takes place towards the N-terminus. The bis-repeat is able to bind Cu(2+) more efficiently than Ac-GHHPHG-NH(2). This difference is not only due to the number of His residues in the sequence but also to the different binding sites. In fact, the comparison of the potentiometric and spectroscopic data of the copper(II) complexes with a bis-repeatPeg construct Ac-(GHHPHG)-Peg-(GHHPHG)-NH(2) and those of the metal complexes with Ac-HGHH-NH(2), indicates that the central HGHH amino acid sequence is the main copper(II) binding site.

  7. Potassium and the K+/H+ Exchanger Kha1p Promote Binding of Copper to ApoFet3p Multi-copper Ferroxidase.

    Science.gov (United States)

    Wu, Xiaobin; Kim, Heejeong; Seravalli, Javier; Barycki, Joseph J; Hart, P John; Gohara, David W; Di Cera, Enrico; Jung, Won Hee; Kosman, Daniel J; Lee, Jaekwon

    2016-04-29

    Acquisition and distribution of metal ions support a number of biological processes. Here we show that respiratory growth of and iron acquisition by the yeast Saccharomyces cerevisiae relies on potassium (K(+)) compartmentalization to the trans-Golgi network via Kha1p, a K(+)/H(+) exchanger. K(+) in the trans-Golgi network facilitates binding of copper to the Fet3p multi-copper ferroxidase. The effect of K(+) is not dependent on stable binding with Fet3p or alteration of the characteristics of the secretory pathway. The data suggest that K(+) acts as a chemical factor in Fet3p maturation, a role similar to that of cations in folding of nucleic acids. Up-regulation of KHA1 gene in response to iron limitation via iron-specific transcription factors indicates that K(+) compartmentalization is linked to cellular iron homeostasis. Our study reveals a novel functional role of K(+) in the binding of copper to apoFet3p and identifies a K(+)/H(+) exchanger at the secretory pathway as a new molecular factor associated with iron uptake in yeast.

  8. Binding of transition metal ions [cobalt, copper, nickel and zinc] with furanyl-, thiophenyl-, pyrrolyl-, salicylyl- and pyridyl-derived cephalexins as potent antibacterial agents.

    Science.gov (United States)

    Chohan, Zahid H; Pervez, Humayun; Khan, Khalid Mohammed; Rauf, A; Supuran, Claudiu T

    2004-02-01

    A method is described for the preparation of novel cephalexin-derived furanyl-, thiophenyl-, pyrrolyl-, salicylyl- and pyridyl-containing compounds showing potent antibacterial activity. The binding of these newly synthesized antibacterial agents with metal ions such as cobalt(II), copper(II), nickel(II) and zinc(II) has been studied and their inhibitory properties against various bacterial species such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae are also reported. These results suggest that metal ions to possess an important role in the designing of metal-based antibacterials and that such complexes are more effective against infectious diseases compared to the uncomplexed drugs.

  9. Effect of thickness and temperature of copper phthalocyanine films on their properties

    Directory of Open Access Journals (Sweden)

    Alieva Kh. S.

    2012-06-01

    Full Text Available The research has shown that copper phthalocyanine films, having a set of unique properties, can be successfully used as gas-sensitive coating of resistive structures. The thickness of the film, in contrast to its temperature, is not the determining factor for high sensitivity. Low operating temperature of structures with copper phthalocyanine films allows to exploit them in economy mode.

  10. Dielectric Properties of Reduced Graphene Oxide/Copper Phthalocyanine Nanocomposites Fabricated Through π- π Interaction

    Science.gov (United States)

    Wang, Zicheng; Wei, Renbo; Liu, Xiaobo

    2017-01-01

    Reduced graphene oxide/copper phthalocyanine nanocomposites are successfully prepared through a simple and effective two-step method, involving preferential reduction of graphene oxide and followed by self-assembly with copper phthalocyanine. The results of photographs, ultraviolet visible, x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy show that the in situ blending method can effectively facilitate graphene sheets to disperse homogenously in the copper phthalocyanine matrix through π- π interactions. As a result, the reduction of graphene oxide and restoration of the sp 2 carbon sites in graphene can enhance the dielectric properties and alternating current conductivity of copper phthalocyanine effectively.

  11. DNA binding, DNA cleavage, and cytotoxicity studies of two new copper (II) complexes.

    Science.gov (United States)

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Roshanfekr, Hamideh; Shahabadi, Nahid; Rezvani, Alireza; Mansouri, Ghobad

    2011-05-01

    The DNA binding behavior of [Cu(phen)(phen-dione)Cl]Cl (1) and [Cu(bpy)(phen-dione)Cl]Cl (2) was studied with a series of techniques including UV-vis absorption, circular dichroism spectroscopy, and viscometric methods. Cytotoxicity effect and DNA unwinding properties were also investigated. The results indicate that the Cu(II) complexes interact with calf-thymus DNA by both partially intercalative and hydrogen binding. These findings have been further substantiated by the determination of intrinsic binding constants spectrophotometrically, 12.5 × 10(5) and 5 × 10(5) for 1 and 2, respectively. Our findings suggest that the type of ligands and structure of complexes have marked effect on the binding affinity of complexes involving CT-DNA. Circular dichroism results show that complex 1 causes considerable increase in base stacking of DNA, whereas 2 decreases the base stacking, which is related to more extended aromatic area of 1,10-phenanthroline in 1 rather than bipyridine in 2. Slow decrease in DNA viscosity indicates partially intercalative binding in addition to hydrogen binding on the surface of DNA. The second binding mode was also confirmed by additional tests: interaction in denaturation condition and acidic pH. Also, these new complexes induced cleavage in pUC18 plasmid DNA as indicated in gel electrophoresis and showed excellent antitumor activity against K562 (human chronic myeloid leukemia) cells.

  12. Characterization of the DNA binding properties of polyomavirus capsid protein

    Science.gov (United States)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  13. Leaching behaviour and mechanical properties of copper flotation waste in stabilized/solidified products.

    Science.gov (United States)

    Mesci, Başak; Coruh, Semra; Ergun, Osman Nuri

    2009-02-01

    This research describes the investigation of a cement-based solidification/stabilization process for the safe disposal of copper flotation waste and the effect on cement properties of the addition of copper flotation waste (CW) and clinoptilolite (C). In addition to the reference mixture, 17 different mixtures were prepared using different proportions of CW and C. Physical properties such as setting time, specific surface area and compressive strength were determined and compared to a reference mixture and Turkish standards (TS). Different mixtures with the copper flotation waste portion ranging from 2.5 to 12.5% by weight of the mixture were tested for copper leachability. The results show that as cement replacement materials especially clinoptilolite had clear effects on the mechanical properties. Substitution of 5% copper flotation waste for Portland cement gave a similar strength performance to the reference mixture. Higher copper flotation waste addition such as 12.5% replacement yielded lower strength values. As a result, copper flotation waste and clinoptilolite can be used as cementitious materials, and copper flotation waste also can be safely stabilized/solidified in a cement-based solidification/stabilization system.

  14. Copper Binding and Subsequent Aggregation of α-Synuclein Are Modulated by N-Terminal Acetylation and Ablated by the H50Q Missense Mutation.

    Science.gov (United States)

    Mason, Rebecca J; Paskins, Aimee R; Dalton, Caroline F; Smith, David P

    2016-08-30

    The Parkinson's disease-associated protein α-synuclein exhibits significant conformational heterogeneity. Bacterially expressed α-synuclein is known to bind to copper, resulting in the formation of aggregation-prone compact conformations. However, in vivo, α-synuclein undergoes acetylation at its N-terminus. Here the effect of this modification and the pathological H50Q mutation on copper binding and subsequent conformational transitions were investigated by electrospray ionization-ion mobility spectrometry-mass spectrometry. We demonstrate that acetylation perturbs the ability of α-synuclein to bind copper and that the H50Q missense mutation in the presence of N-terminal acetylation prevents copper binding. These modifications and mutations prevent the formation of the most compact conformations and inhibit copper-induced aggregation.

  15. Antibacterial Properties of Copper Nanoparticle Dispersions: Influence of Synthesis Conditions and Physicochemical Characteristics

    Science.gov (United States)

    Godymchuk, A.; Frolov, G.; Gusev, A.; Zakharova, O.; Yunda, E.; Kuznetsov, D.; Kolesnikov, E.

    2015-11-01

    The production of bactericidal plasters, bandages and medicines with the inclusion of copper nanoparticles and copper ions may have a great potential in terms of their biomedical application. The work considers the influence of the synthesis conditions, size, aggregation status, and charge of nanoparticles in aqueous solutions as well as the type of microorganisms to the antibacterial properties of water suspensions of electroexplosive copper nanoparticles in the conditions in vitro in relation to strains Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus cereus. Water dispersions of copper nanoparticles were shown to inhibit the growth of test cells for both G+ and G- microbacteria but the degree of such an influence strongly depended on the type of a test strain. The authors have demonstrated that use of deeply purified water and alcohol-containing stabilizers at the synthesis of nanoparticles via metals electric erosion in the liquid prevents the copper nanoparticles coagulation and significantly influences on their physicochemical characteristics and, consequently, antibacterial properties.

  16. Metal-binding and redox properties of substituted linear and cyclic ATCUN motifs.

    Science.gov (United States)

    Neupane, Kosh P; Aldous, Amanda R; Kritzer, Joshua A

    2014-10-01

    The amino-terminal copper and nickel binding (ATCUN) motif is a short peptide sequence found in human serum albumin and other proteins. Synthetic ATCUN-metal complexes have been used to oxidatively cleave proteins and DNA, cross-link proteins, and damage cancer cells. The ATCUN motif consists of a tripeptide that coordinates Cu(II) and Ni(II) ions in a square planar geometry, anchored by chelation sites at the N-terminal amine, histidine imidazole and two backbone amides. Many studies have shown that the histidine is required for tight binding and square planar geometry. Previously, we showed that macrocyclization of the ATCUN motif can lead to high-affinity binding with altered metal ion selectivity and enhanced Cu(II)/Cu(III) redox cycling (Inorg. Chem. 2013, 52, 2729-2735). In this work, we synthesize and characterize several linear and cyclic ATCUN variants to explore how substitutions at the histidine alter the metal-binding and catalytic properties. UV-visible spectroscopy, EPR spectroscopy and mass spectrometry indicate that cyclization can promote the formation of ATCUN-like complexes even in the absence of imidazole. We also report several novel ATCUN-like complexes and quantify their redox properties. These findings further demonstrate the effects of conformational constraints on short, metal-binding peptides, and also provide novel redox-active metallopeptides suitable for testing as catalysts for stereoselective or regioselective oxidation reactions.

  17. Characterization of the Binding Properties of Molecularly Imprinted Polymers.

    Science.gov (United States)

    Ansell, Richard J

    2015-01-01

    The defining characteristic of the binding sites of any particular molecularly imprinted material is heterogeneity: that is, they are not all identical. Nonetheless, it is useful to study their fundamental binding properties, and to obtain average properties. In particular, it has been instructive to compare the binding properties of imprinted and non-imprinted materials. This chapter begins by considering the origins of this site heterogeneity. Next, the properties of interest of imprinted binding sites are described in brief: affinity, selectivity, and kinetics. The binding/adsorption isotherm, the graph of concentration of analyte bound to a MIP versus concentration of free analyte at equilibrium, over a range of total concentrations, is described in some detail. Following this, the techniques for studying the imprinted sites are described (batch-binding assays, radioligand binding assays, zonal chromatography, frontal chromatography, calorimetry, and others). Thereafter, the parameters that influence affinity, selectivity and kinetics are discussed (solvent, modifiers of organic solvents, pH of aqueous solvents, temperature). Finally, mathematical attempts to fit the adsorption isotherms for imprinted materials, so as to obtain information about the range of binding affinities characterizing the imprinted sites, are summarized.

  18. Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid).

    Science.gov (United States)

    Kulkarni, Devdatta P; Das, Debendra K; Chukwu, Godwin A

    2006-04-01

    A nanofluid is the dispersion of metallic solid particles of nanometer size in a base fluid such as water or ethylene glycol. The presence of these nanoparticles affects the physical properties of a nanofluid via various factors including shear stress, particle loading, and temperature. In this paper the rheological behavior of copper oxide (CuO) nanoparticles of 29 nm average diameter dispersed in deionized (DI) water is investigated over a range of volumetric solids concentrations of 5 to 15% and various temperatures varying from 278-323 degrees K. These experiments showed that these nanofluids exhibited time-independent pseudoplastic and shear-thinning behavior. The suspension viscosities of nanofluids decrease exponentially with respect to the shear rate. Suspension viscosity follows the correlation in the form ln(mus) = A(1/T)-B, where constants A and B are the functions of volumetric concentrations. The calculated viscosities from the developed correlations and experimental values were found to be within +/- 10% of their values.

  19. The CopC Family: Structural and Bioinformatic Insights into a Diverse Group of Periplasmic Copper Binding Proteins.

    Science.gov (United States)

    Lawton, Thomas J; Kenney, Grace E; Hurley, Joseph D; Rosenzweig, Amy C

    2016-04-19

    The CopC proteins are periplasmic copper binding proteins believed to play a role in bacterial copper homeostasis. Previous studies have focused on CopCs that are part of seven-protein Cop or Pco systems involved in copper resistance. These canonical CopCs contain distinct Cu(I) and Cu(II) binding sites. Mounting evidence suggests that CopCs are more widely distributed, often present only with the CopD inner membrane protein, frequently as a fusion protein, and that the CopC and CopD proteins together function in the uptake of copper to the cytoplasm. In the methanotroph Methylosinus trichosporium OB3b, genes encoding a CopCD pair are located adjacent to the particulate methane monooxygenase (pMMO) operon. The CopC from this organism (Mst-CopC) was expressed, purified, and structurally characterized. The 1.46 Å resolution crystal structure of Mst-CopC reveals a single Cu(II) binding site with coordination somewhat different from that in canonical CopCs, and the absence of a Cu(I) binding site. Extensive bioinformatic analyses indicate that the majority of CopCs in fact contain only a Cu(II) site, with just 10% of sequences corresponding to the canonical two-site CopC. Accordingly, a new classification scheme for CopCs was developed, and detailed analyses of the sequences and their genomic neighborhoods reveal new proteins potentially involved in copper homeostasis, providing a framework for expanded models of CopCD function.

  20. Some properties of copper and selected heavy metal sulfides. A limited literature review

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P. [Studsvik Material AB, Nykoeping (Sweden)

    1995-06-01

    In the SKB proposal for a Swedish nuclear waste repository, copper canisters are used for encapsulating the spent fuel. The chemical and physical behavior of Copper in the repository environment will therefore be of critical importance for the repository integrity. The present work concerns a literature review of Copper and selected heavy metal sulfides as they are expected to play an important role in the repository environment. The interest is focused on their properties as described by crystal structure, electrical properties, atom mobility, solubility in water, mechanisms of sulfidation and selected thermodynamical data. 56 refs, 14 figs, 5 tabs.

  1. A Study of the Preparation and Properties of Antioxidative Copper Inks with High Electrical Conductivity.

    Science.gov (United States)

    Tsai, Chia-Yang; Chang, Wei-Chen; Chen, Guan-Lin; Chung, Cheng-Huan; Liang, Jun-Xiang; Ma, Wei-Yang; Yang, Tsun-Neng

    2015-12-01

    Conductive ink using copper nanoparticles has attracted much attention in the printed electronics industry because of its low cost and high electrical conductivity. However, the problem of easy oxidation under heat and humidity conditions for copper material limits the wide applications. In this study, antioxidative copper inks were prepared by dispersing the nanoparticles in the solution, and then conductive copper films can be obtained after calcining the copper ink at 250 °C in nitrogen atmosphere for 30 min. A low sheet resistance of 47.6 mΩ/□ for the copper film was measured by using the four-point probe method. Importantly, we experimentally demonstrate that the electrical conductivity of copper films can be improved by increasing the calcination temperature. In addition, these highly conductive copper films can be placed in an atmospheric environment for more than 6 months without the oxidation phenomenon, which was verified by energy-dispersive X-ray spectroscopy (EDS). These observations strongly show that our conductive copper ink features high antioxidant properties and long-term stability and has a great potential for many printed electronics applications, such as flexible display systems, sensors, photovoltaic cells, and radio frequency identification.

  2. Polypeptide binding properties of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, C S; Heegaard, N H; Holm, A

    2000-01-01

    to be elucidated. We have investigated the interactions of human calreticulin with denatured ovalbumin, proteolytic digests of ovalbumin, and different available peptides by solid phase assays, size-exclusion chromatography, capillary electrophoresis, and MS. The results show that calreticulin interacts better...... with unfolded ovalbumin than with native ovalbumin, that calreticulin strongly binds components in proteolytic digests of denatured ovalbumin, and that calreticulin interacts strongly with certain synthetic peptides....

  3. DNA binding dynamics and energetics of cobalt, nickel, and copper metallopeptides.

    Science.gov (United States)

    Galindo-Murillo, Rodrigo; Cheatham, Thomas E

    2014-06-01

    We present molecular dynamics (MD) and Quantum Theory of Atoms in Molecules (QTAIM) analysis of the DNA binding properties of three metallopeptides to the Drew-Dickerson dodecamer DNA: Co(II) -Gly(1) -Gly(2) -His, Ni(II) -Gly(1) -Gly(2) -His and Cu(II) -Gly(1) -Gly(2) -His. Fairly extensive MD simulations were run on each system until a stable binding mode for each ligand was sampled. Clustering analysis was used in an attempt to find representative structures for the most populated clusters sampled during the MD, and a QTAIM analysis was performed. Additionally, MM-PBSA analysis was performed to obtain approximate binding energies for each complex. The results suggest that stable DNA-metallopeptide complexes are formed with each of the three ligands, and that the most stable interaction is with Co(GGH), then Ni(GGH), and finally Cu(GGH). Bond Critical Points (BCP) information between the minor groove of the DNA and the metallopeptides shows an increase in electronic density between Gly(1) , the His residues, and the oxygen atoms of the thymine nucleotide. Overall, we present a detailed theoretical study of the specific interactions involved and the binding properties of each complex formed.

  4. Determining copper and lead binding in Larrea tridentata through chemical modification and X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Polette, L.; Gardea-Torresdey, J.L.; Chianelli, R. [Univ. of Texas, El Paso, TX (United States). Dept. of Chemistry; Pickering, I.J.; George, G.N. [Stanford Synchrotron Radiation Lab., Menlo Park, CA (United States)

    1997-12-31

    Metal contamination in soils has become a widespread problem. Emerging technologies, such as phytoremediation, may offer low cost cleanup methods. The authors have identified a desert plant, Larrea tridentata (creosote bush), which naturally grows and uptakes copper and lead from a contaminated area near a smelting operation. They determined, through chemical modification of carboxyl groups with methanol, that these functional groups may be responsible for a portion of copper(II) binding. In contrast, lead binding was minimally affected by modification of carboxyl groups. X-ray absorption spectroscopy studies conducted at Stanford Synchrotron Radiation Laboratory (SSRL) further support copper binding to oxygen-coordinated ligands and also imply that the binding is not solely due to phytochelatins. The EXAFS data indicate the presence of both Cu-O and Cu-S back scatters, no short Cu-Cu interactions, but with significant Cu-Cu back scattering at 3.7 {angstrom} (unlike phytochelatins with predominantly Cu-S coordination and short Cu-Cu interactions at 2.7 {angstrom}). Cu EXAFS of roots and leaves also vary depending on the level of heavy metal contamination in the environment from which the various creosote samples were obtained. In contrast, Pb XANES data of roots and leaves of creosote collected from different contaminated sites indicate no difference in valence states or ligand coordination.

  5. Prion-derived copper-binding peptide fragments catalyze the generation of superoxide anion in the presence of aromatic monoamines

    Directory of Open Access Journals (Sweden)

    Tomonori Kawano

    2007-01-01

    Full Text Available Objectives: Studies have proposed two opposing roles for copper-bound forms of prion protein (PrP as an anti-oxidant supporting the neuronal functions and as a pro-oxidant leading to neurodegenerative process involving the generation of reactive oxygen species. The aim of this study is to test the hypothesis in which putative copper-binding peptides derived from PrP function as possible catalysts for monoamine-dependent conversion of hydrogen peroxide to superoxide in vitro. Materials and methods: Four peptides corresponding to the copper (II-binding motifs in PrP were synthesized and used for analysis of peptide-catalyzed generation of superoxide in the presence of Cu (II and other factors naturally present in the neuronal tissues. Results: Among the Cu-binding peptides tested, the amino acid sequence corresponding to the Cu-binding site in the helical region was shown to be the most active for superoxide generation in the presence of Cu(II, hydrogen peroxide and aromatic monoamines, known precursors or intermediates of neurotransmitters. Among monoamines tested, three compounds namely phenylethylamine, tyramine and benzylamine were shown to be good substrates for superoxide-generating reactions by the Cu-bound helical peptide. Conclusions: Possible roles for these reactions in development of prion disease were suggested.

  6. Coordination and redox properties of copper interaction with α-synuclein.

    Science.gov (United States)

    Valensin, Daniela; Dell'Acqua, Simone; Kozlowski, Henryk; Casella, Luigi

    2016-10-01

    Parkinson's disease (PD) is a severe neurodegenerative disorder affecting movements. After Alzheimer's disease, it is the most common form of neurodegeneration. PD is characterized by the loss of neurons producing dopamine and by the presence of protein aggregates in the brain, known as Lewy bodies. The main constituent of Lewy bodies is the misfolded form of α-synuclein (αSyn), able to form oligomers and fibrils. In addition to protein aggregation, brain damage induced by oxidative stress, is also a frequent phenomenon in PD. αSyn is able to bind Copper ions in both Cu(II) and Cu(I) oxidation states. The metal binding is also maintained when αSyn interacts with membranes. Interestingly, copper binding to αSyn has strong impact either in protein misfolding or in free radical formation, such to provide a link between protein aggregation and oxidative damage. In this review the role of copper and αSyn in PD is discussed with a particular emphasis to elucidate (i) the interaction between copper and αSyn; (ii) the reactivity and (iii) potential toxicity associated with copper-αSyn complexes.

  7. Polypeptide binding properties of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, C S; Heegaard, N H; Holm, A;

    2000-01-01

    Calreticulin is a highly conserved eukaryotic ubiquitious protein located mainly in the endoplasmic reticulum. Two major characteristics of calreticulin are its chaperone activity and its lectin properties, but its precise function in intracellular protein and peptide processing remains to be elu......Calreticulin is a highly conserved eukaryotic ubiquitious protein located mainly in the endoplasmic reticulum. Two major characteristics of calreticulin are its chaperone activity and its lectin properties, but its precise function in intracellular protein and peptide processing remains...

  8. Vibrations of small cobalt clusters on low-index surfaces of copper: Tight-binding simulations

    Science.gov (United States)

    Borisova, S. D.; Eremeev, S. V.; Rusina, G. G.; Stepanyuk, V. S.; Bruno, P.; Chulkov, E. V.

    2008-08-01

    Vibrational properties (frequencies, polarizations, and lifetimes) of a single adatom, dimer, and trimer of Co on low-index Cu surfaces, Cu(111), Cu(001), and Cu(110) are studied by using tight-binding second moment approximation interatomic interaction potentials. We show that structural and vibrational properties of the Co clusters strongly depend on the substrate orientation. The longest lifetimes of 1-2.5 ps have been found for high-frequency z -polarized vibrations in all the Co clusters considered. The shortest lifetimes of 0.1-0.8 ps have been obtained for low-frequency horizontal (frustrated translation) vibrational modes.

  9. Synthesis of Copper Nanoparticles by Thermal Decomposition and Their Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    R. Betancourt-Galindo

    2014-01-01

    Full Text Available Copper nanoparticles were synthesized by thermal decomposition using copper chloride, sodium oleate, and phenyl ether as solvent agents. The formation of nanoparticles was evidenced by the X-ray diffraction and transmission electron microscopy. The peaks in the XRD pattern correspond to the standard values of the face centered cubic (fcc structure of metallic copper and no peaks of other impurity crystalline phases were detected. TEM analysis showed spherical nanoparticles with sizes in the range of 4 to 18 nm. The antibacterial properties of copper nanoparticles were evaluated in vitro against strains of Staphylococcus aureus and Pseudomonas aeruginosa. The antibacterial activity of copper nanoparticles synthesized by thermal decomposition showed significant inhibitory effect against these highly multidrug-resistant bacterial strains.

  10. Predicting copper-, iron- and zinc-binding proteins in pathogenic species of the Paracoccidioides genus

    Directory of Open Access Journals (Sweden)

    Gabriel B Tristao

    2015-01-01

    Full Text Available Approximately one-third of all proteins have been estimated to contain at least one metal cofactor, and these proteins are referred to as metalloproteins. These represent one of the most diverse classes of proteins, containing metal ions that bind to specific sites to perform catalytic, regulatory and structural functions. Bioinformatic tools have been developed to predict metalloproteins encoded by an organism based only on its genome sequence. Its function and the type of metal binder can also be predicted via a bioinformatics approach. Paracoccidioides complex includes termodimorphic pathogenic fungi that are found as saprobic mycelia in the environment and as yeast, the parasitic form, in host tissues. They are the etiologic agents of Paracoccidioidomycosis, a prevalent systemic mycosis in Latin America. Many metalloproteins are important for the virulence of several pathogenic microorganisms. Accordingly, the present work aimed to predict the cooper, iron and zinc proteins encoded by the genomes of three phylogenetic species of Paracoccidioides (Pb01, Pb03 and Pb18. The metalloproteins were identified using bioinformatics approaches based on structure, annotation and domains. Cu-, Fe- and Zn-binding proteins represent 7% of the total proteins encoded by Paracoccidioides spp. genomes. Zinc proteins were the most abundant metalloproteins, representing 5.7% of the fungus proteome, whereas copper and iron proteins represent 0.3% and 1.2%, respectively. Functional classification revealed that metalloproteins are related to many cellular processes. Furthermore, it was observed that many of these metalloproteins serve as virulence factors in the biology of the fungus. Thus, it is concluded that the Cu, Fe and Zn metalloproteomes of the Paracoccidioides spp. are of the utmost importance for the biology and virulence of these particular human pathogens.

  11. Acid-base characterization, coordination properties towards copper(II) ions and DNA interaction studies of ribavirin, an antiviral drug.

    Science.gov (United States)

    Nagaj, Justyna; Starosta, Radosław; Jeżowska-Bojczuk, Małgorzata

    2015-01-01

    We have studied processes of copper(II) ion binding by ribavirin, an antiviral agent used in treating hepatitis C, which is accompanied usually by an increased copper level in the serum and liver tissue. Protonation equilibria and Cu(II) binding were investigated using the UV-visible, EPR and NMR spectroscopic techniques as well as the DFT (density functional theory) calculations. The spectroscopic data suggest that the first complex is formed in the water solution at pH as low as 0.5. In this compound Cu(II) ion is bound to one of the nitrogen atoms from the triazole ring. Above pH6.0, the metal ion is surrounded by two nitrogen and two oxygen atoms from two ligand molecules. The DFT calculations allowed to determine the exact structure of this complex. We found that in the lowest energy isomer two molecules of the ligand coordinate via O and N4 atoms in trans positions. The hypothetical oxidative properties of the investigated system were also examined. It proved not to generate plasmid DNA scission products. However, the calf thymus (CT)-DNA binding studies showed that it reacts with ribavirin and its cupric complex. Moreover, the interaction with the complex is much more efficient.

  12. Effects of zinc on static and dynamic mechanical properties of copper-zinc alloy

    Institute of Scientific and Technical Information of China (English)

    马志超; 赵宏伟; 鲁帅; 程虹丙

    2015-01-01

    The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37% (mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.

  13. Structural, optical and electrical properties of chemically deposited copper selenide films

    Indian Academy of Sciences (India)

    R H Bari; V Ganesan; S Potadar; L A Patil

    2009-02-01

    Stoichiometric and nonstoichiometric thin films of copper selenide have been prepared by chemical bath deposition technique at temperature below 60°C on glass substrate. The effect of nonstoichiometry on the optical, electrical and structural properties of the film was studied. The bandgap energy was observed to increase with the increase in at % of copper in composition. The grain size was also observed to increase with the decrease of at % of copper in composition. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), absorption spectroscopy, and AFM. The results are discussed and interpreted.

  14. Nitrogen Dioxide Sensing Properties and Mechanism of Copper Phthalocyanine Film

    Institute of Scientific and Technical Information of China (English)

    QIU Cheng-Jun; DOU Yan-Wei; ZHAO Quan-Liang; QU Wei; YUAN Jie; SUN Yan-Mei; CAO Mao-Sheng

    2008-01-01

    Copper phthalocyanine film, a p-type organic semiconductor, is synthesized by vacuum sublimation and its surface morphology is characterized by SEM. A silicon-based copper phthalocyanine film gas sensor for NO2 detection is fabricated by MEMS technology. The results show that the resistance and sensitivity of copper phthalocyanine film decrease obviously as the NO2 concentration increases from Oppm to 100ppm. However, the sensitivity nearly keeps a constant of 0.158 between 30ppm and 70ppm. The best working temperature of the gas sensor is 90℃ for NO2 gas concentrations of 10ppm, 20ppm and 30ppm, which is much lower than that of general metal oxide gas sensor.

  15. Synthesis, characterization, and antimicrobial properties of copper nanoparticles

    Science.gov (United States)

    Usman, Muhammad Sani; Zowalaty, Mohamed Ezzat El; Shameli, Kamyar; Zainuddin, Norhazlin; Salama, Mohamed; Ibrahim, Nor Azowa

    2013-01-01

    Copper nanoparticle synthesis has been gaining attention due to its availability. However, factors such as agglomeration and rapid oxidation have made it a difficult research area. In the present work, pure copper nanoparticles were prepared in the presence of a chitosan stabilizer through chemical means. The purity of the nanoparticles was authenticated using different characterization techniques, including ultraviolet visible spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The antibacterial as well as antifungal activity of the nanoparticles were investigated using several microorganisms of interest, including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella choleraesuis, and Candida albicans. The effect of a chitosan medium on growth of the microorganism was studied, and this was found to influence growth rate. The size of the copper nanoparticles obtained was in the range of 2–350 nm, depending on the concentration of the chitosan stabilizer. PMID:24293998

  16. Effects of grain boundaries on electrical property of copper wires

    Institute of Scientific and Technical Information of China (English)

    严文; 陈建; 范新会

    2003-01-01

    By means of annealing at different temperatures, the copper wires with various numbers of grain boundaries were achieved. And the resistivity of copper wires was measured. The results show that with increasing the number of grain boundaries, the resistivity of copper wires increases, the relationship between the number of grain boundaries and the resistivity of cooper wires can be expressed as y=1.86×10-8e-0.90/x. Unlike dislocation and lattice vacant sites, the curve of the grain boundary vs the resistivity is not linear. Grain boundary controls the general trend of the curve, but the type and the quantity of impurity controls the details of the curve.

  17. Core-modified octaphyrins: Syntheses and anion-binding properties

    Indian Academy of Sciences (India)

    Rajneesh Misra; Venkataramanarao G Anand; Harapriya Rath; Tavarekere K Chandrashekar

    2005-03-01

    In this paper, a brief review of the syntheses, characterization and anion-binding properties of core-modified octaphyrins is presented. It has been shown that the core-modified octaphyrins exhibit aromaticity both in solution and in solid state, confirming the validity of the (4 + 2) Huckel rule for larger -electron systems. Solid-state binding characteristics of TFA anions of two core-modified octaphyrins are also described.

  18. Effects of copper vapour on thermophysical properties of CO2-N2 plasma

    Science.gov (United States)

    Zhong, Linlin; Wang, Xiaohua; Rong, Mingzhe; Cressault, Yann

    2016-10-01

    CO2-N2 mixtures are often used as arc quenching medium (to replace SF6) in circuit breakers and shielding gas in arc welding. In such applications, copper vapour resulting from electrode surfaces can modify characteristics of plasmas. This paper therefore presents an investigation of the effects of copper on thermophysical properties of CO2-N2 plasma. The equilibrium compositions, thermodynamic properties (including mass density, specific enthalpy, and specific heat), transport coefficients (including electrical conductivity, viscosity, and thermal conductivity), and four kinds of combined diffusion coefficients due to composition gradients, applied electric fields, temperature gradients, and pressure gradients respectively, were calculated and discussed for CO2-N2 (mixing ratio 7:3) plasma contaminated by different proportions of copper vapour. The significant influences of copper were observed on all the properties of CO2-N2-Cu mixtures. The better ionization ability and larger molar mass of copper and larger collision integrals related to copper, should be responsible for such influences.

  19. Structural and magnetic properties of ball milled copper ferrite

    DEFF Research Database (Denmark)

    Goya, G.F.; Rechenberg, H.R.; Jiang, Jianzhong

    1998-01-01

    The structural and magnetic evolution in copper ferrite (CuFe2O4) caused by high-energy ball milling are investigated by x-ray diffraction, Mössbauer spectroscopy, and magnetization measurements. Initially, the milling process reduces the average grain size of CuFe2O4 to about 6 nm and induces ca...

  20. Synthesis, characterization, and antimicrobial properties of copper nanoparticles

    Directory of Open Access Journals (Sweden)

    Usman MS

    2013-11-01

    Full Text Available Muhammad Sani Usman,1 Mohamed Ezzat El Zowalaty,2,5 Kamyar Shameli,1,3 Norhazlin Zainuddin,1 Mohamed Salama,4 Nor Azowa Ibrahim1 1Department of Chemistry, Faculty of Science, 2Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; 3Materials and Energy, Research Center, Karaj, Iran; 4Faculty of Pharmacy, UiTM, Puncak Alam, Selangor, Malaysia; 5Department of Environmental Health, Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Kingdom of Saudi Arabia Abstract: Copper nanoparticle synthesis has been gaining attention due to its availability. However, factors such as agglomeration and rapid oxidation have made it a difficult research area. In the present work, pure copper nanoparticles were prepared in the presence of a chitosan stabilizer through chemical means. The purity of the nanoparticles was authenticated using different characterization techniques, including ultraviolet visible spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The antibacterial as well as antifungal activity of the nanoparticles were investigated using several microorganisms of interest, including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella choleraesuis, and Candida albicans. The effect of a chitosan medium on growth of the microorganism was studied, and this was found to influence growth rate. The size of the copper nanoparticles obtained was in the range of 2–350 nm, depending on the concentration of the chitosan stabilizer. Keywords: chitosan, copper nanoparticles, antimicrobial activity, chemical synthesis, aqueous medium

  1. Peculiar reactivity of a di-imine copper(II) complex regarding its binding to albumin protein.

    Science.gov (United States)

    Silveira, Vivian C; Abbott, Mariana P; Cavicchioli, Maurício; Gonçalves, Marcos B; Petrilli, Helena M; de Rezende, Leandro; Amaral, Antonia T; Fonseca, David E P; Caramori, Giovanni F; Ferreira, Ana M da Costa

    2013-05-14

    A set of four di-imine copper(II) complexes containing pyridine, pyrazine and/or imidazole moieties, [Cu(apyhist)H2O](2+) 1 (apyhist = 2-(1H-imidazol-4-yl)-N-(1-(pyridin-2-yl)ethylidene)ethanamine), [Cu(apzhist)OH](+) 2 (apzhist = 2-(1H-imidazol-4-yl)-N-(1-(pyrazin-2-yl)ethylidene)ethanamine), [Cu(apyepy)OH](+) 3 (apyepy = 2-(pyridin-2-yl)-N-(1-(pyridin-2-yl)ethylidene)ethanamine), and [Cu(apzepy)H2O](2+) 4 (apzepy = N-(1-(pyrazin-2-yl)ethylidene)-2-(pyridin-2-yl)ethanamine), were investigated regarding their capability of interacting with serum albumin (human, HSA and bovine, BSA), by using spectroscopic techniques, CD, UV/Vis and EPR. Like other similar di-imine copper(II) complexes, most of them showed an expected preferential insertion of the metal ion at the primary N-terminal site of the protein, very selective for copper and characterized by a CD band at 560 nm. Further insertion of the copper ion at a secondary site is expected when using an excess of the metal. However, one of these studied complexes, [Cu(apyhist)H2O](2+) 1, exhibited anomalous behaviour interacting only at this secondary metal binding site of albumin, characterized by a CD band at 370 nm, and attributed to the coordination of copper at the Cys34 pocket. Analogous experiments with HSA previously treated with N-ethyl-maleimide (NEM), that oxidizes the protein Cys34 residue and obstructs the metal coordination, verified these results. Additional data obtained by EPR spectroscopy complemented those results. DFT calculations, considering some structural and electronic characteristics of such series of di-imine ligands and of the corresponding copper complexes, suggested molecular recognition of the apyhist ligand at the protein cavity as a feasible explanation for this unexpected and peculiar behaviour of complex 1.

  2. The amyloid precursor protein copper binding domain histidine residues 149 and 151 mediate APP stability and metabolism.

    Science.gov (United States)

    Spoerri, Loredana; Vella, Laura J; Pham, Chi L L; Barnham, Kevin J; Cappai, Roberto

    2012-08-03

    One of the key pathological hallmarks of Alzheimer disease (AD) is the accumulation of the APP-derived amyloid β peptide (Aβ) in the brain. Altered copper homeostasis has also been reported in AD patients and is thought to increase oxidative stress and to contribute to toxic Aβ accumulation and regulate APP metabolism. The potential involvement of the N-terminal APP copper binding domain (CuBD) in these events has not been investigated. Based on the tertiary structure of the APP CuBD, we examined the histidine residues of the copper binding site (His(147), His(149), and His(151)). We report that histidines 149 and 151 are crucial for CuBD stability and APP metabolism. Co-mutation of the APP CuBD His(149) and His(151) to asparagine decreased APP proteolytic processing, impaired APP endoplasmic reticulum-to-Golgi trafficking, and promoted aberrant APP oligomerization in HEK293 cells. Expression of the triple H147N/H149N/H151N-APP mutant led to up-regulation of the unfolded protein response. Using recombinant protein encompassing the APP CuBD, we found that insertion of asparagines at positions 149 and 151 altered the secondary structure of the domain. This study identifies two APP CuBD residues that are crucial for APP metabolism and suggests an additional role of this domain in APP folding and stability besides its previously identified copper binding activity. These findings are of major significance for the design of novel AD therapeutic drugs targeting this APP domain.

  3. The Amyloid Precursor Protein Copper Binding Domain Histidine Residues 149 and 151 Mediate APP Stability and Metabolism*

    Science.gov (United States)

    Spoerri, Loredana; Vella, Laura J.; Pham, Chi L. L.; Barnham, Kevin J.; Cappai, Roberto

    2012-01-01

    One of the key pathological hallmarks of Alzheimer disease (AD) is the accumulation of the APP-derived amyloid β peptide (Aβ) in the brain. Altered copper homeostasis has also been reported in AD patients and is thought to increase oxidative stress and to contribute to toxic Aβ accumulation and regulate APP metabolism. The potential involvement of the N-terminal APP copper binding domain (CuBD) in these events has not been investigated. Based on the tertiary structure of the APP CuBD, we examined the histidine residues of the copper binding site (His147, His149, and His151). We report that histidines 149 and 151 are crucial for CuBD stability and APP metabolism. Co-mutation of the APP CuBD His149 and His151 to asparagine decreased APP proteolytic processing, impaired APP endoplasmic reticulum-to-Golgi trafficking, and promoted aberrant APP oligomerization in HEK293 cells. Expression of the triple H147N/H149N/H151N-APP mutant led to up-regulation of the unfolded protein response. Using recombinant protein encompassing the APP CuBD, we found that insertion of asparagines at positions 149 and 151 altered the secondary structure of the domain. This study identifies two APP CuBD residues that are crucial for APP metabolism and suggests an additional role of this domain in APP folding and stability besides its previously identified copper binding activity. These findings are of major significance for the design of novel AD therapeutic drugs targeting this APP domain. PMID:22685292

  4. Solvent microenvironments and copper binding alters the conformation and toxicity of a prion fragment.

    Directory of Open Access Journals (Sweden)

    Mohammed Inayathullah

    Full Text Available The secondary structures of amyloidogenic proteins are largely influenced by various intra and extra cellular microenvironments and metal ions that govern cytotoxicity. The secondary structure of a prion fragment, PrP(111-126, was determined using circular dichroism (CD spectroscopy in various microenvironments. The conformational preferences of the prion peptide fragment were examined by changing solvent conditions and pH, and by introducing external stress (sonication. These physical and chemical environments simulate various cellular components at the water-membrane interface, namely differing aqueous environments and metal chelating ions. The results show that PrP(111-126 adopts different conformations in assembled and non-assembled forms. Aging studies on the PrP(111-126 peptide fragment in aqueous buffer demonstrated a structural transition from random coil to a stable β-sheet structure. A similar, but significantly accelerated structural transition was observed upon sonication in aqueous environment. With increasing TFE concentrations, the helical content of PrP(111-126 increased persistently during the structural transition process from random coil. In aqueous SDS solution, PrP(111-126 exhibited β-sheet conformation with greater α-helical content. No significant conformational changes were observed under various pH conditions. Addition of Cu(2+ ions inhibited the structural transition and fibril formation of the peptide in a cell free in vitro system. The fact that Cu(2+ supplementation attenuates the fibrillar assemblies and cytotoxicity of PrP(111-126 was witnessed through structural morphology studies using AFM as well as cytotoxicity using MTT measurements. We observed negligible effects during both physical and chemical stimulation on conformation of the prion fragment in the presence of Cu(2+ ions. The toxicity of PrP(111-126 to cultured astrocytes was reduced following the addition of Cu(2+ ions, owing to binding affinity of

  5. Binding properties of SUMO-interacting motifs (SIMs) in yeast.

    Science.gov (United States)

    Jardin, Christophe; Horn, Anselm H C; Sticht, Heinrich

    2015-03-01

    Small ubiquitin-like modifier (SUMO) conjugation and interaction play an essential role in many cellular processes. A large number of yeast proteins is known to interact non-covalently with SUMO via short SUMO-interacting motifs (SIMs), but the structural details of this interaction are yet poorly characterized. In the present work, sequence analysis of a large dataset of 148 yeast SIMs revealed the existence of a hydrophobic core binding motif and a preference for acidic residues either within or adjacent to the core motif. Thus the sequence properties of yeast SIMs are highly similar to those described for human. Molecular dynamics simulations were performed to investigate the binding preferences for four representative SIM peptides differing in the number and distribution of acidic residues. Furthermore, the relative stability of two previously observed alternative binding orientations (parallel, antiparallel) was assessed. For all SIMs investigated, the antiparallel binding mode remained stable in the simulations and the SIMs were tightly bound via their hydrophobic core residues supplemented by polar interactions of the acidic residues. In contrary, the stability of the parallel binding mode is more dependent on the sequence features of the SIM motif like the number and position of acidic residues or the presence of additional adjacent interaction motifs. This information should be helpful to enhance the prediction of SIMs and their binding properties in different organisms to facilitate the reconstruction of the SUMO interactome.

  6. [Electrooptical properties of soil nitrogen-fixing bacterium Azospirillum brasilense: effect of copper ions].

    Science.gov (United States)

    Ignatov, O V; Kamnev, A A; Markina, L N; Antoniuk, L P; Kolina, M; Ignatov, V V

    2001-01-01

    The effects of copper ions on the uptake of some essential metals in the biomass and the electrooptical properties of cell suspensions of the nitrogen-fixing soil bacterium Azospirillum brasilense sp. 245 were studied. Copper cations were shown to be effectively taken up by the cell biomass from the culture medium. The addition of copper ions increased the rate of uptake of some other metals present in the culture medium. This was accompanied by changes in the electrooptical characteristics of cell suspension as measured within the orienting electric field frequency range of 10 to 10,000 kHz. The effects observed during short-term incubation of A. brasilense in the presence of copper cations were less significant than during long-term incubation. These results can be used for rapid screening of microbial cultures for enhanced efficiency of sorption and uptake of metals.

  7. Superhydrophobic Copper Surfaces with Anticorrosion Properties Fabricated by Solventless CVD Methods.

    Science.gov (United States)

    Vilaró, Ignasi; Yagüe, Jose L; Borrós, Salvador

    2017-01-11

    Due to continuous miniaturization and increasing number of electrical components in electronics, copper interconnections have become critical for the design of 3D integrated circuits. However, corrosion attack on the copper metal can affect the electronic performance of the material. Superhydrophobic coatings are a commonly used strategy to prevent this undesired effect. In this work, a solventless two-steps process was developed to fabricate superhydrophobic copper surfaces using chemical vapor deposition (CVD) methods. The superhydrophobic state was achieved through the design of a hierarchical structure, combining micro-/nanoscale domains. In the first step, O2- and Ar-plasma etchings were performed on the copper substrate to generate microroughness. Afterward, a conformal copolymer, 1H,1H,2H,2H-perfluorodecyl acrylate-ethylene glycol diacrylate [p(PFDA-co-EGDA)], was deposited on top of the metal via initiated CVD (iCVD) to lower the surface energy of the surface. The copolymer topography exhibited a very characteristic and unique nanoworm-like structure. The combination of the nanofeatures of the polymer with the microroughness of the copper led to achievement of the superhydrophobic state. AFM, SEM, and XPS were used to characterize the evolution in topography and chemical composition during the CVD processes. The modified copper showed water contact angles as high as 163° and hysteresis as low as 1°. The coating withstood exposure to aggressive media for extended periods of time. Tafel analysis was used to compare the corrosion rates between bare and modified copper. Results indicated that iCVD-coated copper corrodes 3 orders of magnitude slower than untreated copper. The surface modification process yielded repeatable and robust superhydrophobic coatings with remarkable anticorrosion properties.

  8. Synthesis, micellization behavior, antimicrobial and intercalative DNA binding of some novel surfactant copper(II) complexes containing modified phenanthroline ligands.

    Science.gov (United States)

    Nagaraj, Karuppiah; Ambika, Subramanian; Rajasri, Shanmugasundaram; Sakthinathan, Subramanian; Arunachalam, Sankaralingam

    2014-10-01

    The novel surfactant copper(II) complexes, [Cu(ip)2DA](ClO4)21, [Cu(dpqc)2DA](ClO4)22, [Cu(dppn)2DA](ClO4)23, where ip=imidazo[4,5-f][1,10]phenanthroline, dpqc=dipyrido[3,2-a:2',4'-c](6,7,8,9-tetrahydro)phenazine, dppn=benzo[1]dipyrido[3,2-a':2',3'-c]phenazine and DA-dodecylamine, were synthesized and characterized by physico-chemical and spectroscopic methods. In these complexes 1-3, the geometry of copper metal ions was described as square pyramidal. The critical micelle concentration (CMC) value of these surfactant copper(II) complexes in aqueous solution was found out from conductance measurements. Specific conductivity data at different temperatures served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔGm°, ΔHm° and ΔSm°). The binding interaction of these complexes with DNA (calf thymus DNA) in Tris buffer was studied by physico-chemical techniques. In the presence of the DNA UV-vis spectrum of complexes showed red shift of the absorption band along with significant hypochromicity indicating intercalation of our complexes with nucleic acids. Competitive binding study with ethidium bromide (EB) shows that the complexes exhibit the ability to displace the nucleic acid-bound EB indicating that the complexes bind to nucleic acids in strong competition with EB for the intercalative binding site. Observed changes in the circular dichoric spectra of DNA in the presence of surfactant complexes support the strong binding of complexes with DNA. CV results also confirm this mode of binding. Some significant thermodynamic parameters of the binding of the titled complexes to DNA have also been determined. The results reveal that the extent of DNA binding of 3 was greater than that of 1 and 2. The antibacterial and antifungal screening tests of these complexes have shown good results compared to its precursor chloride complexes.

  9. Cytoprotective properties of a fullerene derivative against copper

    Energy Technology Data Exchange (ETDEWEB)

    Ratnikova, Tatsiana A; Bebber, Mark J; Larcom, Lyndon L; Ke, Pu Chun [Department of Physics and Astronomy, COMSET, Clemson University, Clemson, SC 29634-0978 (United States); Huang, George, E-mail: pcke11@clemson.edu [Department of Biological Sciences, Clemson University, Clemson, SC 29634-0978 (United States)

    2011-10-07

    To delineate the complexity of the response of cells to nanoparticles we have performed a study on HT-29 human colon carcinoma cells exposed first to a fullerene derivative C{sub 60}(OH){sub 20} and then to physiological copper ions. Our cell viability, proliferation, and intracellular reactive oxygen species (ROS) production assays clearly indicated that C{sub 60}(OH){sub 20} suppressed cell damage as well as ROS production induced by copper, probably through neutralization of the metal ions by C{sub 60}(OH){sub 20} in the extracellular space, as well as by adsorption and uptake of the nanoparticles surface-modified by the biomolecular species in the cell medium. This double-exposure study provides new data on the effects of nanoparticles on cell metabolism and may aid the treatment of oxidant-mediated diseases using nanomedicine.

  10. Water-soluble cavitands - synthesis, solubilities and binding properties

    NARCIS (Netherlands)

    Middel, Oskar; Verboom, Willem; Reinhoudt, David N.

    2002-01-01

    Water-soluble cavitand receptors have been obtained by the introduction of ionizable groups (5, 21-28, 39) and neutral hydrophilic tetraethylene glycol based dendritic wedges (19, 20). The synthesis of these cavitands and a study of their water solubilities and binding properties toward neutral orga

  11. Chemical Precipitation Synthesis and Thermoelectric Properties of Copper Sulfide

    Science.gov (United States)

    Wu, Sixin; Jiang, Jing; Liang, Yinglin; Yang, Ping; Niu, Yi; Chen, Yide; Xia, Junfeng; Wang, Chao

    2017-04-01

    Earth-abundant copper sulfide compounds have been intensively studied as potential thermoelectric materials due to their high dimensionless figure of merit ZT values. They have a unique phonon-liquid electron-crystal model that helps to achieve high thermoelectric performance. Many methods, such as melting and ball-milling, have been adopted to synthesize this copper sulfide compound, but they both use expensive starting materials with high purity. Here, we develop a simple chemical precipitation approach to synthesize copper sulfide materials through low-cost analytically pure compounds as the starting materials. A high ZT value of 0.93 at 800 K was obtained from the samples annealed at 1273 K. Its power factor is around 8.0 μW cm-1 K-2 that is comparable to the highest record reported by traditional methods. But, the synthesis here has been greatly simplified with reduced cost, which will be of great benefit to the potential mass production of thermoelectric devices. Furthermore, this method can be applied to the synthesis of other sulfur compound thermoelectric materials.

  12. Mixed ligand copper(II) dicarboxylate complexes: the role of co-ligand hydrophobicity in DNA binding, double-strand DNA cleavage, protein binding and cytotoxicity.

    Science.gov (United States)

    Loganathan, Rangasamy; Ramakrishnan, Sethu; Ganeshpandian, Mani; Bhuvanesh, Nattamai S P; Palaniandavar, Mallayan; Riyasdeen, Anvarbatcha; Akbarsha, Mohamad Abdulkadhar

    2015-06-14

    A few water soluble mixed ligand copper(ii) complexes of the type [Cu(bimda)(diimine)] , where bimda is N-benzyliminodiacetic acid and diimine is 2,2'-bipyridine (bpy, ) or 1,10-phenanthroline (phen, ) or 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, ) or 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-tmp, ) and dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq, ), have been successfully isolated and characterized by elemental analysis and other spectral techniques. The coordination geometry around copper(ii) in is described as distorted square based pyramidal while that in is described as square pyramidal. Absorption spectral titrations and competitive DNA binding studies reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq () > 3,4,7,8-tmp () > 5,6-dmp () > phen () > bpy (). The phen and dpq co-ligands are involved in the π-stacking interaction with DNA base pairs while the 3,4,7,8-tmp/5,6-dmp and bpy co-ligands are involved in respectively hydrophobic and surface mode of binding with DNA. The small enhancement in the relative viscosity of DNA upon binding to supports the DNA binding modes proposed. Interestingly, and are selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that they induce B to A conformational change. In contrast, and show CD responses which reveal their involvement in strong DNA binding. The complexes are unique in displaying prominent double-strand DNA cleavage while effects only single-strand DNA cleavage, and their ability to cleave DNA in the absence of an activator varies as > > > > . Also, all the complexes exhibit oxidative double-strand DNA cleavage activity in the presence of ascorbic acid, which varies as > > > > . The ability of the complexes to bind and cleave the protein BSA varies in the order > > > > . Interestingly, and cleave the protein non-specifically in the presence of H2O2 as an activator suggesting that they can act also as chemical proteases

  13. Impacts of ambient salinity and copper on brown algae: 2. Interactive effects on phenolic pool and assessment of metal binding capacity of phlorotannin.

    Science.gov (United States)

    Connan, Solène; Stengel, Dagmar B

    2011-07-01

    The aim of this study was to establish in laboratory experiments a quantitative link between phenolic pool (production, composition and exudation) in Ascophyllum nodosum and Fucus vesiculosus and their potential to bind metals. Additionally, the copper binding capacity of purified phlorotannin was investigated. A reduction in salinity decreased total phenolic contents, altered phenolic composition by increasing proportion of cell-wall phenolics, and also increased phenolic exudation of the two seaweed species. After 15 days at a salinity of 5, the inhibition of photosynthesis observed previously for A. nodosum coincided with the high exudation of phenolic compounds into the surrounding water of the seaweed tips which resulted in a significant reduction of phenolic contents. Increased copper concentration also reduced total phenolic contents, changed phenolic composition (increase in proportion and level of cell-wall phenolics), and positively affected phenolic exudation of A. nodosum and F. vesiculosus. A decrease in salinity enhanced the copper toxicity and caused the earlier impact on the physiology of seaweed tips. An involvement of phlorotannins in copper binding is also demonstrated; purified phlorotannins from A. nodosum collected from a site with little anthropogenic activity contained all four metals tested. When placed in copper-enriched water, as for the seaweed material, copper contents of the phenolics increased, zinc and cadmium contents decreased, but no change in chromium content was observed. The use of cell-wall phenolic content as biomarker of copper contamination seems promising but needs further investigation. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Impacts of ambient salinity and copper on brown algae: 2. Interactive effects on phenolic pool and assessment of metal binding capacity of phlorotannin

    Energy Technology Data Exchange (ETDEWEB)

    Connan, Solene, E-mail: solene.connan@gmail.com [Botany and Plant Science, School of Natural Sciences, Environmental Change Institute and Martin Ryan Institute, National University of Ireland Galway, Galway (Ireland); Stengel, Dagmar B., E-mail: dagmar.stengel@nuigalway.ie [Botany and Plant Science, School of Natural Sciences, Environmental Change Institute and Martin Ryan Institute, National University of Ireland Galway, Galway (Ireland)

    2011-07-15

    The aim of this study was to establish in laboratory experiments a quantitative link between phenolic pool (production, composition and exudation) in Ascophyllum nodosum and Fucus vesiculosus and their potential to bind metals. Additionally, the copper binding capacity of purified phlorotannin was investigated. A reduction in salinity decreased total phenolic contents, altered phenolic composition by increasing proportion of cell-wall phenolics, and also increased phenolic exudation of the two seaweed species. After 15 days at a salinity of 5, the inhibition of photosynthesis observed previously for A. nodosum coincided with the high exudation of phenolic compounds into the surrounding water of the seaweed tips which resulted in a significant reduction of phenolic contents. Increased copper concentration also reduced total phenolic contents, changed phenolic composition (increase in proportion and level of cell-wall phenolics), and positively affected phenolic exudation of A. nodosum and F. vesiculosus. A decrease in salinity enhanced the copper toxicity and caused the earlier impact on the physiology of seaweed tips. An involvement of phlorotannins in copper binding is also demonstrated; purified phlorotannins from A. nodosum collected from a site with little anthropogenic activity contained all four metals tested. When placed in copper-enriched water, as for the seaweed material, copper contents of the phenolics increased, zinc and cadmium contents decreased, but no change in chromium content was observed. The use of cell-wall phenolic content as biomarker of copper contamination seems promising but needs further investigation.

  15. Photoconductive Properties of Brush Plated Copper Indium Gallium Selenide Films

    OpenAIRE

    Subiramaniyam, N. P.; P. Thirunavukkarasu; Murali, K. R.

    2013-01-01

    Copper indium gallium selenide (CIGS) films were deposited for the first time by the brush electrodeposition technique. X-ray diffraction studies indicated the formation of single phase chalcopyrite CIGS. Lattice parameters, dislocation density, and strain were calculated. Band gap of the films increased from 1.12 eV to 1.63 eV as the gallium concentration increased. Room temperature transport parameters of the films, namely, resistivity increased from 0.10 ohm cm to 12 ohm cm, mobility decre...

  16. Molecular dynamics simulation of thermodynamical properties of copper clusters

    Institute of Scientific and Technical Information of China (English)

    Wu Zhi-Min; Wang Xin-Qiang; Yang Yuan-Yuan

    2007-01-01

    The melting and freezing processes of CuN (N = 180, 256, 360, 408, 500, 628 and 736) nanoclusters are simulated by using micro-canonical molecular dynamics simulation technique. The potential energies and the heat capacities as a function of temperature are obtained. The results reveal that the melting and freezing points increase almost linearly with the atom number in the cluster increasing. All copper nanoclusters have negative heat capacity around the melting and freezing points, and hysteresis effect in the melting/freezing transition is derived in CuN nanoclusters for the first time.

  17. Different types of copper complexes with the quinolone antimicrobial drugs ofloxacin and norfloxacin: structure, DNA- and albumin-binding.

    Science.gov (United States)

    Živec, Petra; Perdih, Franc; Turel, Iztok; Giester, Gerald; Psomas, George

    2012-12-01

    Three novel copper(II) complexes with the second-generation quinolone antibacterial agents norfloxacin (nfH) and ofloxacin (ofloH) have been synthesized resulting in the complexes [Cu(nfH)(phen)Cl]Cl·5H(2)O (1·5H(2)O), [Cu(nfH)(2)]Cl(2)·6H(2)O (2·6H(2)O) and [Cu(II)(ofloH)(2)][(Cu(I)Cl(2))(2)] (3), respectively. The crystal structures of the complexes have been determined by X-ray crystallography revealing that the quinolones act as bidentate ligands coordinated to Cu(II) atom through the pyridone oxygen and a carboxylato oxygen. UV study of the interaction of the quinolones and the complexes with calf-thymus DNA (CT DNA) has shown that they can bind to CT DNA with [Cu(II)(ofloxacin)(2)][(Cu(I)Cl(2))(2)] exhibiting the highest binding constant to CT DNA. The cyclic voltammograms of the complexes in the presence of CT DNA solution have shown that the interaction of the complexes with CT DNA is mainly through electrostatic binding. DNA solution viscosity measurements have shown that the interaction of the compounds with CT DNA by classical intercalation may be ruled out. Competitive studies with ethidium bromide (EB) indicate that the complexes can partially displace the DNA-bound EB suggesting low to moderate competition with EB. Norfloxacin, ofloxacin and their copper complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    Science.gov (United States)

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.

  19. The new generation drug candidate molecules: Spectral, electrochemical, DNA-binding and anticancer activity properties

    Science.gov (United States)

    Gölcü, Ayşegül; Muslu, Harun; Kılıçaslan, Derya; Çeşme, Mustafa; Eren, Özge; Ataş, Fatma; Demirtaş, İbrahim

    2016-09-01

    The new generation drug candidate molecules [Cu(5-Fu)2Cl2H2O] (NGDCM1) and [Zn(5-Fu)2(CH3COO)2] (NGDCM2) were obtained from the reaction of copper(II) and zinc(II) salts with the anticancer drug 5-fluoracil (5-Fu). These compounds have been characterized by spectroscopic and analytical techniques. Thermal behavior of the compounds were also investigated. The electrochemical properties of the compounds have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the NGDCM1 and NGDCM2 has been evaluated by examining their ability to bind to fish sperm double strand DNA (FSdsDNA) with UV spectroscopy. UV studies of the interaction of the 5-Fu and metal derivatives with FSdsDNA have shown that these compounds can bind to FSdsDNA. The binding constants of the compounds with FSdsDNA have also been calculated. Thermal decomposition of the compounds lead to the formation of CuO and ZnO as final products. The effect of proliferation 5-Fu, NGDCM1 and NGDCM2 were examined on the HeLa cells using real-time cell analyzer with three different concentrations.

  20. Physicochemical Properties of Nanocrystallite Copper Ferrite Prepared by a Novel Self Flash Combustion of Acetate Precursors

    Institute of Scientific and Technical Information of China (English)

    M.H. Khedr; A.A.Farghali

    2005-01-01

    Copper ferrite, CuFe2O4, one of the important ferrites due to its interesting electrical, magnetic and structural properties, is obtained by a novel self flash combustion of a homogeneous mixture of one mole copper acetate (89 nm) copper ferrite (less than 100%) is obtained at lower temperatures, whereas 100% copper ferrite is obtained after calcination at 1000℃. Thermal analysis (TG and DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), photo microscopy, magnetic and porosity measurements have been carried out for the specimens obtained after calcinations at 700, 800, 900 and 1000℃ to characterize the conversion efficiency of the powder precursors to copper ferrite. It was found that increasing temperature leads to great improvement in the magnetic properties. By increasing calcination temperature from 700~1000℃ saturation magnetic flux density (Bs) increased from 17.8 to 40.8 emu/g, while remnant magnetic flux density (Br) increased from 10.1 to 17.11 emu/g.

  1. Effect of copper oxide on structure and physical properties of lithium lead borate glasses

    Science.gov (United States)

    Kashif, I.; Ratep, A.

    2015-09-01

    Copper-doped Lead lithium borate glass samples with the composition of (35- x) Pb3O4- xCuO-65Li2B4O7, where x = 5, 10, 15 or 20 mol%, have been prepared by melt quenching technique. Glass-forming ability, density, electrical conductivity, magnetic susceptibility and structural properties of lead lithium borate glasses have been investigated. IR spectroscopic data show that the copper ions play the role of glass modifier. Addition of CuO influences BO3 ↔ BO4 conversion. Density is expressed in terms of the structural modifications that take place in glass matrix. The increase in Tg reflects an increase in bond strength, and samples obtain more rigid glass structure. Electrical conductivity and magnetic susceptibility χ data show a variable behavior with the increase in the copper content in two valance states Cu+ and Cu+2. In addition, optical properties depend on the change of the role of copper ions in the samples' structure. Optical energy band gap E opt and Urbach energy E tail are determined. The increase in E opt and UV cutoff with an increase in CuO content is due to the decrease in non-bridging oxygen concentration. The decrease in E tail at higher concentrations is attributed to the copper ion accumulation in the interstitial positions and to the formation of orthoborate groups. These samples are suitable for the green light longpass filters.

  2. Effects of Copper and Titanium Elements on the Coating's Properties of Hot-Dipping-Aluminum Steel

    Institute of Scientific and Technical Information of China (English)

    JIA Wei-ping; MA Yun-long; HU Lin; KE Wei

    2004-01-01

    The steel plates for testing obtained a clean and fresh surface after degreasing by alkali and acidity and to be protested from reoxidation by being dipped into liquid wax. The results after hot dipping experiments in lab. showed that a complete aluminized coat with a good property could be obtained under a condition of hot-dipping temperature at about 730 ℃, hot -dipping time at about 2 minutes. It was found that the transition layer was mainly composed of Fe2 Al5 intermetallic compound by SEM (Scanning Electronic Microscope) observation. Effects of elements copper and titanium in aluminum coating on adherence quality, corrosion resistance performance and thickness of the transition layer were investigated, the following results were drawn: The adherence quality is strongly enhancedby copper element and gives the best performance at the 2% mass percent content of copper, while it is almost indifferent with titanium content. The corrosion resistance property is enhanced by titanium and is deteriorated by copper, when the mass percent content of titaniumis 0.3% , the coating exhibits the best anti-corrosion performance. At present condition, both copper and titanium make transition layer thinner.

  3. Proteomic analysis of copper-binding proteins in excess copper-stressed rice roots by immobilized metal affinity chromatography and two-dimensional electrophoresis.

    Science.gov (United States)

    Song, Yufeng; Zhang, Hongxiao; Chen, Chen; Wang, Guiping; Zhuang, Kai; Cui, Jin; Shen, Zhenguo

    2014-04-01

    Copper (Cu) is an essential micronutrient required for plant growth and development. However, excess Cu can inactivate and disturb protein structure as a result of unavoidable binding to proteins. To understand better the mechanisms involved in Cu toxicity and tolerance in plants, we developed a new immobilized metal affinity chromatography (IMAC) method for the separation and isolation of Cu-binding proteins extracted from roots of rice seedling exposed to excess Cu. In our method, IDA-Sepharose or EDDS-Sepharose column (referred as pre-chromatography) and Cu-IDA-Sepharose column (referred as Cu-IMAC) were connected in tandem. Namely, protein samples were pre-chromatographed with IDA-Sepharose column to removal metal ions, then protein solution was flowed into Cu-IMAC column for enriching Cu-binding proteins in vitro. Compared with the control (Cu-IMAC without any pre-chromatography), IDA-Sepharose pre-chromatography method markedly increased yield of the Cu-IMAC-binding proteins, and number of protein spots and the abundance of 40 protein spots on two-dimensional electrophoresis (2-DE) gels. Thirteen protein spots randomly selected from 2-DE gel and 11 proteins were identified using MALDI-TOF-TOF MS. These putative Cu-binding proteins included those involved in antioxidant defense, carbohydrate metabolism, nucleic acid metabolism, protein folding and stabilization, protein transport and cell wall synthesis. Ten proteins contained one or more of nine putative metal-binding motifs reported by Smith et al. (J Proteome Res 3:834-840, 2004) and seven proteins contained one or two of top six motifs reported by Kung et al. (Proteomics 6:2746-2758, 2006). Results demonstrated that more proteins specifically bound with Cu-IMAC could be enriched through removal of metal ions from samples by IDA-Sepharose pre-chromatography. Further studies are needed on metal-binding characteristics of these proteins in vivo and the relationship between Cu ions and protein biological

  4. Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mani Menaka, S., E-mail: manimenaka.phy@gmail.com [PG and Research Department of Physics, Government Arts College, Coimbatore, 641018, Tamilnadu (India); Umadevi, G. [PG and Research Department of Physics, Government Arts College, Coimbatore, 641018, Tamilnadu (India); Manickam, M. [SRMV College of Arts and Science, Coimbatore, 641020, Tamilnadu (India)

    2017-04-15

    The spray pyrolysis (SP) technique is an important and powerful method for the preparation of nickel oxide (NiO) and copper-doped nickel oxide thin films. The best films were obtained when the substrate temperature, T{sub s} = 450 °C on glass substrates. Copper (Cu) concentrations in the films were varied from 0 to 8%. The effect of Cu concentration on the structural, morphological, spectral, optical, and electrical properties of the thin films were studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), UV–vis–NIR spectrophotometer, Hot probe and Hall system. The X-ray diffraction result shows the polycrystalline cubic structure of sprayed films with (200) preferred orientation. The variations of the structural parameters such as lattice parameters and grain sizes were investigated. The SEM image displays the surface morphology of the NiO and Cu:NiO thin films. The FTIR of the as-deposited films were associated with chemical identification. The optical transmittance and absorbance spectra of the films were measured by UV–vis–NIR spectrophotometer. The absorption coefficient and band gaps of the films were calculated using the optical method. All the NiO and Cu:NiO films were p-type. The resistivity of the above films decreases with the increase in copper concentration and so the conductivity of the films depend on the precursor concentration. - Highlights: • Pure and Cu:NiO films were deposited by Spray pyrolysis technique. • The XRD result shows the polycrystalline nature of pure and Cu:NiO films. • The formation of pure and Cu:NiO were confirmed by FTIR analysis. • Band gap values of pure and Cu:NiO decreases. • All the pure and Cu:NiO films were p-type.

  5. Electronic properties and orbital-filling mechanism in Rb-intercalated copper phthalocyanine

    NARCIS (Netherlands)

    Evangelista, F.; Gotter, R.; Mahne, N.; Nannarone, S.; Ruocco, A.; Rudolf, P.

    2008-01-01

    The evolution of the electronic properties of a thin film of copper phthalocyanine deposited on Al(100) and progressively intercalated with rubidium atoms was followed by photoemission and X-ray absorption spectroscopies. Electron donation from the Rb atoms to the C32H16N8Cu molecules results in the

  6. Electronic properties and orbital-filling mechanism in Rb-intercalated copper phthalocyanine

    NARCIS (Netherlands)

    Evangelista, F.; Gotter, R.; Mahne, N.; Nannarone, S.; Ruocco, A.; Rudolf, P.

    2008-01-01

    The evolution of the electronic properties of a thin film of copper phthalocyanine deposited on Al(100) and progressively intercalated with rubidium atoms was followed by photoemission and X-ray absorption spectroscopies. Electron donation from the Rb atoms to the C32H16N8Cu molecules results in the

  7. The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate

    DEFF Research Database (Denmark)

    Yanagiya, Shun-ichi; Van Nong, Ngo; Xu, Jianxiao Jackie

    2010-01-01

    Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied...

  8. Synthesis, characterization, biological studies (DNA binding, cleavage, antibacterial and topoisomerase I) and molecular docking of copper(II) benzimidazole complexes.

    Science.gov (United States)

    Arjmand, Farukh; Parveen, Shazia; Afzal, Mohd; Shahid, Mohd

    2012-09-03

    To explore the therapeutic potential of copper-based benzimidazole complexes, tetranuclear Cu(II) complex 1 and dinuclear ternary amino acid complexes 2 and 3 {L-trp and L-val, respectively} were synthesized and thoroughly characterized. In vitro DNA binding studies of complexes 1-3 were carried out employing UV-vis titrations, fluorescence, circular dichroic and viscosity measurements which revealed that the complexes 1-3 bind to CT DNA preferably via groove binding. Complex 1 cleaved pBR322 DNA via hydrolytic pathway (validated by T4 DNA ligase assay), accessible to major groove while 2 followed oxidative mechanism, binding to minor groove of DNA double helix; binding events were further validated by molecular docking studies. Additionally, the complexes 1 and 2 exhibit high Topo-I inhibitory activity at different concentrations. The complexes 1-3 were evaluated for antibacterial activity against Escherichia coli and Staphylococcus aureus, and 2 was found to be most effective against Gram-positive bacteria.

  9. Experimental and molecular modeling studies on the DNA-binding of diazacyclam-based acrocyclic copper complex.

    Science.gov (United States)

    Shahabadi, Nahid; Hakimi, Mohammad; Morovati, Teimoor; Falsafi, Monireh; Fili, Soraya Moradi

    2017-02-01

    The interaction of a new macrocyclic copper complex, [CuL(NO3)2] in which L is 1,3,6,10,12,15-hexaaza tricyclo[13.3.1.1(6,10)] eicosane was investigated in vitro under simulated physiological conditions by multi-spectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated the complex interacted with ct-DNA in a groove binding mode while the binding constant of UV-vis and the number of binding sites were 1.0±0.2×10(4)Lmol(-1) and 1.01, respectively. The fluorometric studies showed that the reaction between the complex with ct-DNA is exothermic (ΔH=14.85kJmol(-1); ΔS=109.54Jmol(-1)K(-1)). Circular dichroism spectroscopy (CD) was employed to measure the conformational change of DNA in the presence of [CuL(NO3)2] complex. Furthermore, the complex induces detectable changes in the viscosity of DNA. The molecular modeling results illustrated that the complex strongly binds to groove of DNA. Experimental and molecular modeling results showed that Cu(II) complex bound to DNA by a groove binding mode.

  10. Effect of Curing Procedure on the Properties of Copper-Powder-Filled Conductive Adhesives

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xiaoling; ZHANG Lulu; YOU Min; WU Jianhao; YU Haizhou; YANG Derong; MAO Yuping

    2008-01-01

    By means of testing the shear strength with single lap joint, measuring electrical resistivity for cured products and the curing strain with strain gauges, the effect of cure parameters on the properties of HT1012 conductive adhesive filled with copper powder was investigated, and the residual stress in the conductive adhesives was also estimated. The experimental results show that the properties such as shear strength of the adhesives, electrical resistivity of products as well as the residual stress of cured HT1012 copper-filled conductive adhesive were evidently affected by curing temperature and time. The diagrams of scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) were also used to determine the properties. The higher mechanical property was achieved under the condition of curing the adhesive 3h at 60℃ as the density of the hydrogen links or linkages existed in the adhesive was relatively higher and the lower electrical resistivity occurred at 80℃.

  11. Photoconductive Properties of Brush Plated Copper Indium Gallium Selenide Films

    Directory of Open Access Journals (Sweden)

    N. P. Subiramaniyam

    2013-01-01

    Full Text Available Copper indium gallium selenide (CIGS films were deposited for the first time by the brush electrodeposition technique. X-ray diffraction studies indicated the formation of single phase chalcopyrite CIGS. Lattice parameters, dislocation density, and strain were calculated. Band gap of the films increased from 1.12 eV to 1.63 eV as the gallium concentration increased. Room temperature transport parameters of the films, namely, resistivity increased from 0.10 ohm cm to 12 ohm cm, mobility decreased from 125 cm2V−1s−1 to 20.9 cm2V−1s−1, and carrier concentration decreased from 4.99 × 1017 cm−3 to 2.49 × 1016 cm−3 as the gallium concentration increased. Photosensitivity of the films increased linearly with intensity of illumination and with increase of applied voltage.

  12. Properties of Copper Doped Neodymium Nickelate Oxide as Cathode Material for Solid Oxide Fuel Cells

    OpenAIRE

    Lee Kyoung-Jin; Choe Yeong-Ju; Hwang Hae-Jin

    2016-01-01

    Mixed ionic and electronic conducting K2NiF4-type oxide, Nd2Ni1-xCuxO4+δ (x=0~1) powders were synthesized by solid state reaction technique and solid oxide fuel cells consisting of a Nd2Ni1-xCuxO4+δ cathode, a Ni-YSZ anode and ScSZ as an electrolyte were fabricated. The effect of copper substitution for nickel on the electrical and electrochemical properties was examined. Small amount of copper doping (x=0.2) resulted in the increased electrical conductivity and decreased polarization resista...

  13. Tensile mechanical properties of nano-layered copper/graphene composite

    Science.gov (United States)

    He, Yezeng; Huang, Feng; Li, Hui; Sui, Yanwei; Wei, Fuxiang; Meng, Qingkun; Yang, Weiming; Qi, Jiqiu

    2017-03-01

    The solidification of two-dimensional liquid copper confined to graphene layers has been studied using molecular dynamics simulations. The results clearly show that the liquid copper undergoes an obvious transition to a crystal film with the decrease of temperature, accompanied by dramatic change in potential energy and radial distribution function. Moreover, five different simulation models are used to investigate the effects of the number of graphene layers on the mechanical properties of the composites. It is found that the strength and plasticity of the composites have been improved significantly.

  14. Alkynyl functionalized iminopyridine copper(I) phosphine complexes: Synthesis, spectroscopic characterization and photophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, A.N.; Chavan, S.S., E-mail: sanjaycha2@rediffmail.com

    2014-04-15

    Some copper(I) complexes of type [Cu(L{sub 1})(PPh{sub 3}){sub 2}/(dppe)]X (1a–6a) and [Cu(L{sub 2})(PPh{sub 3}){sub 2}/(dppe)]X (1b–6b) [where L{sub 1}=N-(2-pyridylmethylene)-4-(trimethylsilylethynyl)aniline, L{sub 2}=N-(2-pyridylmethylene)-4-(phenylethynyl)aniline, PPh{sub 3}=triphenylphosphine, dppe=1,2-bis(diphenylphosphino)ethane, and X=ClO{sub 4}{sup −}, BF{sub 4}{sup −} and PF{sub 6}{sup −}] have been prepared and characterized on the basis of their elemental analyses and spectroscopic studies (IR, UV–visible, {sup 1}H NMR and {sup 31}P NMR). The representative complex of the series [Cu(L{sub 2})(PPh{sub 3}){sub 2}]ClO{sub 4}{sup −} (1b) has been characterized by single crystal X-ray diffraction which reveals that in the complex the central copper(I) ion assumes highly distorted-tetrahedral geometry. The UV–visible spectra indicate that the ancillary phosphine ligands significantly perturb the MLCT state of copper(I) complexes. Room temperature luminescence is observed for all copper(I) complexes in dichloromethane solution, indicating that alkynyl functionality on iminopyridine ligands enhances the emission property of copper(I) complexes and varies considerably with ancillary phosphine ligands. The thermal behavior of complexes revealed that copper(I) complexes with dppe ligand are thermally more stable than PPh{sub 3} complexes. All the complexes exhibit a quasireversible redox behavior corresponding to Cu(I)/Cu(II) couple and are sensitive to phosphine ligand. -- Highlights: • Synthesis of copper(I) complexes of alkynyl functionalized Schiff base. • Characterization by elemental analyses, IR, {sup 1}H NMR and {sup 31}P NMR spectral studies. • Electrochemical properties indicate a quasireversible redox behavior for all copper(I) complexes • All the copper(I) complexes exhibit intraligand (π→π{sup ⁎}) luminescence in dichloromethane.

  15. In vitro DNA binding studies of the sweetening agent saccharin and its copper(II) and zinc(II) complexes.

    Science.gov (United States)

    Icsel, Ceyda; Yilmaz, Veysel T

    2014-01-05

    The interactions of fish sperm DNA (FS-DNA) with the sodium salt of sweetener saccharin (sacH) and its copper and zinc complexes, namely [M(sac)2(H2O)4]·2H2O (M=Cu(II) or Zn(II)) were studied by using UV-Vis titration, fluorometric competition, thermal denaturation, viscosity and gel electrophoresis measurements. The intrinsic binding constants (Kb) obtained from absorption titrations were estimated to be 2.86 (±0.06)×10(4)M(-1) for Na(sac), 6.67 (±0.12)×10(4)M(-1) for Cu-sac and 4.01 (±0.08)×10(4)M(-1) for Zn-sac. The Cu-sac complex binds to FS-DNA via intercalation with a KA value of 50.12 (±0.22)×10(4)M(-1) as evidenced by competitive binding studies with ethidium bromide. Moreover, competition experiments with Hoechst 33258 are indicative of a groove binding mode of Na(sac) and Zn-sac with binding constants of 3.13 (±0.16)×10(4)M(-1) and 5.25 (±0.22)×10(4)M(-1), respectively. The spectroscopic measurements indicate a moderate DNA binding affinity of Na(sac) and its metal complexes. The suggested binding modes are further confirmed by the thermal denaturation and viscosity measurements. In addition, Cu-sac and Zn-sac show weak ability to damage to pBR322 supercoiled plasmid DNA.

  16. Effect of Copper on the Crystallization Process, Microstructure and Selected Properties of CGI

    Directory of Open Access Journals (Sweden)

    Gumienny G.

    2017-03-01

    Full Text Available The paper presents the results of the research on the effect of copper on the crystallization process, microstructure and selected properties of the compacted graphite iron. Compacted graphite in cast iron was obtained using Inmold process. The study involved the cast iron containing copper at a concentration up to approximately 4%. The effect of copper on the temperature of the eutectic crystallization as well as the temperature of start and finish of the austenite transformation was given. It has been shown that copper increases the maximum temperature of the eutectic transformation approximately by 5°C per 1% Cu, and the temperature of the this transformation finish approximately by 8°C per 1% Cu. This element decreases the temperature of the austenite transformation start approximately by 5°C per 1% Cu, and the finish of this transformation approximately by 6°C per 1% Cu. It was found that in the microstructure of the compacted graphite iron containing about 3.8% Cu, there are still ferrite precipitations near the compacted graphite. The effect of copper on the hardness of cast iron and the pearlite microhardness was given. This stems from the high propensity to direct ferritization of this type of cast iron. It has been shown copper increases the hardness of compacted graphite iron both due to its pearlite forming action as well as because of the increase in the pearlite microhardness (up to approx. 3% Cu. The conducted studies have shown copper increases the hardness of the compacted graphite iron approximately by 35 HB per 1% Cu.

  17. The biological properties of the silver- and copper-doped ceramic biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Lysenko, Oleksandr, E-mail: dr.alex.lysenko@gmail.com [Bogomolets National Medical University, Department of Therapeutic Stomatology (Ukraine); Dubok, Oleksii [Institute for Problems of Material Science NASU, Department of Analytical Chemistry and Functional Ceramics (Ukraine); Borysenko, Anatolii [Bogomolets National Medical University, Department of Therapeutic Stomatology (Ukraine); Shinkaruk, Oleksandr [Institute for Problems of Material Science NASU, Department of Analytical Chemistry and Functional Ceramics (Ukraine)

    2015-04-15

    The biological properties of nanostructured bioactive ceramic composite (BCC) granules doped with 0.1–10 at.% silver and 0.05–5 at.% copper have been investigated both in vitro and in vivo to develop effective alloplastic material for infected bone defect substitute. It is assumed that the granules consisting of biphasic calcium phosphate and bioactive glass ceramics due to their nanoscale (15–40 nm) and multiphase structure, bioelement placement in different ceramic phases as well as antimicrobial effect should improve osteogenic properties and biocompatibility. Tests in vitro have been conducted with multipotent mesenchymal stromal cells (MSCs) and test strains of microorganisms. The same biocomposite has been used in vivo to study the repair of bone defects in animal model. The findings indicate that doped BCC leads to antimicrobial activity. Inhibition of MSCs growth has been observed for granules doped with ions of more than 1 at.% silver and 0.5 at.% copper. The results of the in vivo study reveal that BCC implantation significantly improves bone reparation. Differences between bone repair with undoped and doped, with 1 at.% silver and 0.5 at.% copper, ceramic samples were not observed. The BCC doped within 0.5–1 at.% silver and 0.25–0.5 at.% copper stimulates bone tissue repair and has satisfactory biocompatibility and antimicrobial properties.

  18. Synthesis and thermal studies of tetraaza macrocylic ligand and its transition metal complexes. DNA binding affinity of copper complex.

    Science.gov (United States)

    Saif, M; Mashaly, Mahmoud M; Eid, Mohamed F; Fouad, R

    2011-09-01

    A Tetraaza Macrocylic Ligand (H2L) and its complexes, [Cd(H2L)(OH2)2](NO3)(2)·1/2OH2 (I), [Co(H2L)(OH2)](NO3)(2)·1/2OH2 (II), [Cu(H2L)(NO3)2]·3/2OH2 (III) and [Ni(H2L)(NO3)(OH2)]NO3·OH2 (IV), have been synthesized and characterized on the basis of elemental analysis, molar conductivity, 1H NMR, UV-vis, FT-IR and mass spectroscopy. All results confirm that the prepared compounds have 1:1 metal-to-ligand stoichiometry, octahedral configuration and the ligand behaves as a neutral tetradendate towards the metal ions. [CdL(OH2)2] (V), [CoL(OH2)2] (VI), [CuL(OH2)2] (VII) and [Ni(H2L)(NO3)2] (VIII) were synthesized pyrolytically in solid state from corresponding compounds (I-IV). Analytical results of complexes (V-VIII) show that the ligand behaves either as a neutral tetradendate or dianionic tetradentate ligand towards the metal ions. The binding of H2L and its copper complex (III) to DNA has been investigated by ultraviolet absorption spectroscopy. The experiments indicate that H2L and its copper complex (III) can bind to DNA through an intercalative mode. The H2L and its copper complex (III) exhibited anti-tumor activity against Ehrlich Acites Carcinoma (E.A.C) at the concentration of 100 μg/ml.

  19. Synthesis and thermal studies of tetraaza macrocylic ligand and its transition metal complexes. DNA binding affinity of copper complex

    Science.gov (United States)

    Saif, M.; Mashaly, Mahmoud M.; Eid, Mohamed F.; Fouad, R.

    2011-09-01

    A Tetraaza Macrocylic Ligand (H 2L) and its complexes, [Cd(H 2L)(OH 2) 2](NO 3) 2·1/2OH 2 (I), [Co(H 2L)(OH 2)](NO 3) 2·1/2OH 2 (II), [Cu(H 2L)(NO 3) 2]·3/2OH 2 (III) and [Ni(H 2L)(NO 3)(OH 2)]NO 3·OH 2 (IV), have been synthesized and characterized on the basis of elemental analysis, molar conductivity, 1H NMR, UV-vis, FT-IR and mass spectroscopy. All results confirm that the prepared compounds have 1:1 metal-to-ligand stoichiometry, octahedral configuration and the ligand behaves as a neutral tetradendate towards the metal ions. [CdL(OH 2) 2] (V), [CoL(OH 2) 2] (VI), [CuL(OH 2) 2] (VII) and [Ni(H 2L)(NO 3) 2] (VIII) were synthesized pyrolytically in solid state from corresponding compounds (I-IV). Analytical results of complexes (V-VIII) show that the ligand behaves either as a neutral tetradendate or dianionic tetradentate ligand towards the metal ions. The binding of H 2L and its copper complex (III) to DNA has been investigated by ultraviolet absorption spectroscopy. The experiments indicate that H 2L and its copper complex (III) can bind to DNA through an intercalative mode. The H 2L and its copper complex (III) exhibited anti-tumor activity against Ehrlich Acites Carcinoma (E.A.C) at the concentration of 100 μg/ml.

  20. Oligomerization of Mannan-binding Lectin Dictates Binding Properties and Complement Activation.

    Science.gov (United States)

    Kjaer, T R; Jensen, L; Hansen, A; Dani, R; Jensenius, J C; Dobó, J; Gál, P; Thiel, S

    2016-07-01

    The complement system is a part of the innate immune system and is involved in recognition and clearance of pathogens and altered-self structures. The lectin pathway of the complement system is initiated when soluble pattern recognition molecules (PRMs) with collagen-like regions bind to foreign or altered self-surfaces. Associated with the collagen-like stems of these PRMs are three mannan-binding lectin (MBL)-associated serine proteases (MASPs) and two MBL-associated proteins (MAps). The most studied of the PRMs, MBL, is present in serum mainly as trimeric and tetrameric oligomers of the structural subunit. We hypothesized that oligomerization of MBL may influence both the potential to bind to micro organisms and the interaction with the MASPs and MAps, thus influencing the ability to initiate complement activation. When testing binding at 37 °C, we found higher binding of tetrameric MBL to Staphylococcus aureus (S. aureus) than trimeric and dimeric MBL. In serum, we found that tetrameric MBL was the main oligomeric form present in complexes with the MASPs and MAp44. Such preference was confirmed using purified forms of recombinant MBL (rMBL) oligomers, where tetrameric rMBL interacted stronger with all of the MASPs and MAp44, compared to trimeric MBL. As a direct consequence of the weaker interaction with the MASPs, we found that trimeric rMBL was inferior to tetrameric rMBL in activating the complement system. Our data suggest that the oligomeric state of MBL is crucial both for the binding properties and the effector function of MBL.

  1. The anodization synthesis of copper oxide nanosheet arrays and their photoelectrochemical properties

    Science.gov (United States)

    Shu, Xia; Zheng, Hongmei; Xu, Guangqing; Zhao, Jiebo; Cui, Lihua; Cui, Jiewu; Qin, Yongqiang; Wang, Yan; Zhang, Yong; Wu, Yucheng

    2017-08-01

    We studied the growth of copper oxide nanosheet arrays on copper foil via a simple anodization method. The structures, morphologies, and elemental compositions of the specimens were characterized with an X-ray diffractometer, scanning electron microscope, high resolution transmission electron microscope, and X-ray photoelectron spectrometer. The copper oxide (Cu2O and CuO) nanosheet arrays were comprised of 30-nm-thick nanosheets that stand vertically on the Cu substrate. The anodizing parameters, such as the current density, temperature, and polyethylene glycol concentration, were optimized to obtain the regular nanosheet arrays. The optical absorption properties of the anodized products were evaluated using a diffuse reflectance spectrometer, and broad and strong optical absorption bands arising from the UV to visible region were observed. The photoelectrochemical performance of the nanosheet arrays was measured with chronoamperometry and cyclic voltammetry on an electrochemical workstation equipped with a Xe lamp (wavelength >400 nm). A negative photocurrent was obtained due to the p-type semiconductor of the copper oxides. The copper oxide nanosheet arrays achieve the highest photocurrent of 0.4 mA/cm2 at the current density of 1.0 A/dm2, temperature of 70 °C, and polyethylene glycol concentration of 0.5 g/L.

  2. The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts

    Energy Technology Data Exchange (ETDEWEB)

    Ilnicka, Anna, E-mail: annakucinska@o2.pl; Walczyk, Mariusz; Lukaszewicz, Jerzy P.

    2015-07-01

    Renewable raw materials chitin and chitosan (N-deacetylated derivative of chitin) were subjected to action of different copper modifiers that were carbonized in the atmosphere of the N{sub 2} inert gas. As a result of the novel manufacturing procedure, a series of carbon materials was obtained with developed surface area and containing copper derivatives of differentiated form, size, and dispersion. The copper modifier and manufacturing procedure (concentration, carbonization temperature) influence the physical–chemical and fungicide properties of the carbons. The received carbons were chemically characterized using several methods like low-temperature adsorption of nitrogen, X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry, elemental analysis, and bioassay. Besides chemical testing, some biological tests were performed and let to select carbons with the highest fungicidal activity. Such carbons were characteristic of the specific form of copper derivatives occurring in them, i.e., nanocrystallites of Cu{sup 0} and/or Cu{sub 2}O of high dispersion on the surface of carbon. The carbons may find an application as effective contact fungistatic agents in cosmetology, medicine, food industry, etc. - Highlights: • The novel manufacturing procedure yields new functional carbon materials. • Two biopolymers chitin and chitosan can undergo copper(II) ion modification. • The Cu-modified carbon materials exhibit high fungicidal activity. • The fungicidal activity results from the presence of Cu{sup 0} and Cu{sub 2}O nano-crystallites.

  3. Synthesis, Crystal Structure, Spectroscopic Properties and Potential Biological Activities of Salicylate‒Neocuproine Ternary Copper(II Complexes

    Directory of Open Access Journals (Sweden)

    Lenka Kucková

    2015-01-01

    Full Text Available Mixed ligand copper(II complexes containing derivatives of salicylic acid and heterocyclic ligands with nitrogen donor atoms have been the subject of various studies and reviews. In this paper, synthesis and characterization of the ternary copper(II complexes of neocuproine (2,9-dimethyl-1,10-phenanthroline, Neo and salicylate ligands (Sal are reported. In addition, the crystal structures of ([Cu(H2O(5-Cl-Sal(Neo] (1, [Cu(μ-Sal(Neo]2 (2, Cu2(μ-5-Cl-Sal(5-Cl-HSal2(Neo2]·EtOH (3 were determined. In order to compare structural and biological properties of the prepared complexes, spectroscopic and biological studies were performed. Results of X-ray diffraction show that prepared complexes form three types of crystal structures in a given system: monomeric, dimeric and dinuclear complex. The preliminary study on the DNA cleavage activity has shown that the complexes under study behave as the chemical nucleases in the presence of added hydrogen peroxide with slight differences in the activity (1 > 2 > 3. The complexes 1 and 2 exhibited nuclease activity itself indicating the interaction of complexes with the DNA. It has been proposed that the enhanced destructive effect of the complexes 1 and 2 on the DNA is a result of two possible mechanisms of action: (i the conversion of closed circular DNA (form I to the nicked DNA (form II caused by the copper complex itself and (ii damage of DNA by Reactive Oxygen Species (ROS—products of the interaction of copper with hydrogen peroxide by means of Fenton reaction (hydroxyl radicals. Thus the biological activity of the prepared Cu(II complexes containing derivatives of salicylic acid and phenanthroline molecules is substantiated by two independent mechanisms. While derivatives of salicylic acids in the coordination sphere of copper complexes are responsible for radical-scavenging activity (predominantly towards superoxide radical anion, the presence of chelating ligand 2,9-dimethyl-1,10-phenanthroline

  4. Improved bioactivity of antimicrobial peptides by addition of amino-terminal copper and nickel (ATCUN) binding motifs.

    Science.gov (United States)

    Libardo, M Daben; Cervantes, Jorge L; Salazar, Juan C; Angeles-Boza, Alfredo M

    2014-08-01

    Antimicrobial peptides (AMPs) are promising candidates to help circumvent antibiotic resistance, which is an increasing clinical problem. Amino-terminal copper and nickel (ATCUN) binding motifs are known to actively form reactive oxygen species (ROS) upon metal binding. The combination of these two peptidic constructs could lead to a novel class of dual-acting antimicrobial agents. To test this hypothesis, a set of ATCUN binding motifs were screened for their ability to induce ROS formation, and the most potent were then used to modify AMPs with different modes of action. ATCUN binding motif-containing derivatives of anoplin (GLLKRIKTLL-NH2), pro-apoptotic peptide (PAP; KLAKLAKKLAKLAK-NH2), and sh-buforin (RAGLQFPVGRVHRLLRK-NH2) were synthesized and found to be more active than the parent AMPs against a panel of clinically relevant bacteria. The lower minimum inhibitory concentration (MIC) values for the ATCUN-anoplin peptides are attributed to the higher pore-forming activity along with their ability to cause ROS-induced membrane damage. The addition of the ATCUN motifs to PAP also increases its ability to disrupt membranes. DNA damage is the major contributor to the activity of the ATCUN-sh-buforin peptides. Our findings indicate that the addition of ATCUN motifs to AMPs is a simple strategy that leads to AMPs with higher antibacterial activity and possibly to more potent, usable antibacterial agents.

  5. Rheology of Prepreg and Properties of Silica/bismaleimide Matrix Copper Clad Laminate

    Directory of Open Access Journals (Sweden)

    DAI Shankai

    2017-08-01

    Full Text Available The effects of the silica surface treated by coupling agents KH550, KH560 and KH570 on the rheological properties of bismaleimide (BMI resin system were investigated. The rigidity, coefficient of thermal expansion (CTE and thermal stability of the copper clad laminate (CCL were studied by DMA, TMA and TGA. The resin system containing silica surface treated by KH-560, comparing to KH550, KH570 and without surface treatment resin system has better rheological properties and low melt viscosity. The comprehensive properties of the copper clad laminate can be effectively improved by the introduction of silica in the resin system, exhibiting higher storage modulus and lower CTE compare to no silica in the CCL. When the silica mass fraction is 50%, the storage modulus is increased by 83% at 50℃, and the CTE below the glass transition temperature is decreased by 153%.

  6. Tensile and electrical properties of high-strength high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    Electrical conductivity and tensile properties have been measured on an extruded and annealed CuCrNb dispersion strengthened copper alloy which has been developed for demanding aerospace high heat flux applications. The properties of this alloy are somewhat inferior to GlidCop dispersion strengthened copper and prime-aged CuCrZr over the temperature range of 20--500 C. However, if the property degradation in CuCrZr due to joining operations and the anisotropic properties of GlidCop in the short transverse direction are taken into consideration, CuCrNb may be a suitable alternative material for high heat flux structural applications in fusion energy devices. The electrical conductivity and tensile properties of CuCrZr that was solution annealed and then simultaneously aged and diffusion bonded are also summarized. A severe reduction in tensile elongation is observed in the diffusion bonded joint, particularly if a thin copper shim is not placed in the diffusion bondline.

  7. Electrical, Corrosion, and Mechanical Properties of Aluminum-Copper Joints Produced by Explosive Welding

    Science.gov (United States)

    Acarer, Mustafa

    2012-11-01

    This study investigates the microstructure, electrical, corrosion, and mechanical properties of plate-shaped aluminum-copper couple produced using the explosive welding method. Mechanical tests, including hardness, tensile, tensile-shear, and impact test, concluded that the Al-Cu bimetal had an acceptable joint resistance. In this study, local intermetallic regions formed on the interface of the joint of the aluminum-copper bimetal, produced using the explosive welding technique. However, the formed intermetallic regions had no significant effect on the mechanical properties of the joint, except for increasing its hardness. According to electrical conductivity tests, the Al-Cu bimetal had an average electrical conductivity in comparison to the electrical conductivity of aluminum and copper, which were the original materials forming the joint. According to the results of electro-chemical corrosion test, during which galvanic corrosion formed, the Al side of the Al-Cu bimetal was more anodic due to its high electronegativity; as a result, it was exposed to more corrosion in comparison to the copper side.

  8. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Osiry, H.; Cano, A.; Lemus-Santana, A.A.; Rodríguez, A. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional (Mexico); Carbonio, R.E. [INFIQC-CONICET, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba (Argentina); Reguera, E., E-mail: edilso.reguera@gmail.com [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional (Mexico)

    2015-10-15

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π–π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting. - Highlights: • Intercalation of organic molecules in 2D copper (II) nitroprusside. • Molecular properties of intercalation compounds of 2D copper (II) nitroprusside. • Magnetic properties of hybrid inorganic–organic solids. • Hybrid inorganic–organic 3D framework.

  9. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes.

    Science.gov (United States)

    Shebl, Magdy

    2014-01-03

    The 1:1 condensation of o-acetoacetylphenol and 1,2-diaminopropane under condition of high dilution gives the mono-condensed Schiff base, (E)-3-(1-aminopropan-2-ylimino)-1-(2-hydroxyphenyl)butan-1-one. The mono-condensed Schiff base has been used for further condensation with isatin to obtain the new asymmetrical dicompartmental Schiff base ligand, (E)-3-(2-((E)-4-(2-hydroxyphenyl)-4-oxobutan-2-ylideneamino) propylimino)indolin-2-one (H3L) with a N2O3 donor set. Reactions of the ligand with metal salts give a series of new binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H and (13)C NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The analytical and spectroscopic tools showed that the complexes can be formulated as: [(HL)(VO)2(SO4)(H2O)]·4H2O, [(HL)Fe2Cl4(H2O)3]·EtOH, [(HL)Fe2(ox)Cl2(H2O)3]·2H2O, [(L)M2(OAc)(H2O)m]·nH2O; M=Co, Ni or Cu, m=4, 0 and n=2, 3, [(HL)Cu2Cl]Cl·6H2O and [(L)(UO2)2(OAc)(H2O)3]·6H2O. The metal complexes exhibited octahedral geometrical arrangements except copper complexes that exhibited tetrahedral geometries and uranyl complex in which the metal ion is octa-coordinated. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli) and fungi (Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active. The DNA-binding properties of the copper complexes (6 and 7) have been investigated by electronic absorption, fluorescence and viscosity measurements. The results obtained indicate that these complexes bind to DNA via an intercalation binding mode with an intrinsic binding constant, Kb of 1.34×10(4) and 2.5×10(4) M(-1), respectively.

  10. Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori and optical, mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Hwan [School of Materials Science and Engineering, University of Yonsei, Seoul (Korea, Republic of); Choi, Yu-ri; Kim, Kwang-Mahn [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, University of Yonsei, Seoul (Korea, Republic of); Choi, Se-Young, E-mail: sychoi@yonsei.ac.kr [School of Materials Science and Engineering, University of Yonsei, Seoul (Korea, Republic of)

    2012-02-01

    Antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori of copper ion was researched. Also, additional effects of copper ion coating on optical and mechanical properties were researched as well. Copper ion was coated on glass substrate as a thin film to prevent bacteria from growing. Cupric nitrate was used as precursors for copper ion. The copper ion contained sol was deposited by spin coating process on glass substrate. Then, the deposited substrates were heat treated at the temperature range between 200 Degree-Sign C and 250 Degree-Sign C. The thickness of deposited copper layer on the surface was 63 nm. The antibacterial effect of copper ion coated glass on P. aeruginosa, S. typhimurium and H. pylori demonstrated excellent effect compared with parent glass. Copper ion contained layer on glass showed a similar value of transmittance compared with value of parent glass. The 3-point bending strength and Vickers hardness were 209.2 MPa, 540.9 kg/mm{sup 2} which were about 1.5% and 1.3% higher than the value of parent glass. From these findings, it is clear that copper ion coating on glass substrate showed outstanding effect not only in antibacterial activity but also in optical and mechanical properties as well.

  11. Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori and optical, mechanical properties

    Science.gov (United States)

    Kim, Young-Hwan; Choi, Yu-ri; Kim, Kwang-Mahn; Choi, Se-Young

    2012-02-01

    Antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori of copper ion was researched. Also, additional effects of copper ion coating on optical and mechanical properties were researched as well. Copper ion was coated on glass substrate as a thin film to prevent bacteria from growing. Cupric nitrate was used as precursors for copper ion. The copper ion contained sol was deposited by spin coating process on glass substrate. Then, the deposited substrates were heat treated at the temperature range between 200 °C and 250 °C. The thickness of deposited copper layer on the surface was 63 nm. The antibacterial effect of copper ion coated glass on P. aeruginosa, S. typhimurium and H. pylori demonstrated excellent effect compared with parent glass. Copper ion contained layer on glass showed a similar value of transmittance compared with value of parent glass. The 3-point bending strength and Vickers hardness were 209.2 MPa, 540.9 kg/mm2 which were about 1.5% and 1.3% higher than the value of parent glass. From these findings, it is clear that copper ion coating on glass substrate showed outstanding effect not only in antibacterial activity but also in optical and mechanical properties as well.

  12. Copper complexes containing thiosemicarbazones derived from 6-nitropiperonal: Antimicrobial and biophysical properties

    Science.gov (United States)

    Beckford, Floyd A.; Webb, Kelsey R.

    2017-08-01

    A series of four thiosemicarbazones from 6-nitropiperonal along with the corresponding copper complexes were synthesized. The biophysical characteristics of the complexes were investigated by the binding to DNA and human serum albumin. The binding to DNA is moderate; the binding constants run from (0.49-7.50) × 104 M- 1. In relation to HSA, the complexes interact strongly with binding constants on the order of 105 M- 1. The complexes also display antioxidant behavior as determined by the ability to scavenge diphenylpicrylhydrazyl (dpph) and nitric oxide radicals. The antimicrobial profiles of the compounds, tested against a panel of microbes including five of the ESKAPE pathogens (Staphylococcus aureus, MRSA, Escherichia coli, Klebsiella pneumoniae, MDR, Acinetobacter baumannii, Pseudomonas aeruginosa) and two yeasts (Candida albicans and Cryptococcus neoformans var. grubii), are also described. The compounds contain a core moiety that is similar to oxolinic acid, a quinolone antibiotic that targets DNA gyrase and topoisomerase (IV). The binding interaction between the complexes and these important antibacterial targets were studied by computational methods, chiefly docking studies. The calculated dissociation constants for the interaction with DNA gyrase B (from Staphylococcus aureus) range from 4.32 to 24.65 μM; the binding was much stronger to topoisomerase IV, with dissociation constants ranging from 0.37 to 1.27 μM.

  13. Insertion of beta-alanine in model peptides for copper binding to His96 and His111 of the human prion protein.

    Science.gov (United States)

    Rivillas-Acevedo, Lina; Maciel-Barón, Luis; García, Javier E; Juaristi, Eusebio; Quintanar, Liliana

    2013-09-01

    The prion protein coordinates copper with high affinity in the regions encompassing residues 92-99 (GGGTHSQW) and 106-115 (KTNMKHMAGA). Cu(II) binding to these sites involves the coordination of the His96/His111 imidazole ring and backbone deprotonated amides that precede the His residue. Such a coordination arrangement involves the formation of hexa- and penta-membered cycles that provide further stabilization of the metal-peptide complex. The purpose of the present study is to introduce a methylene group in the peptide backbone, to evaluate the impact of increasing the size of these cycles in Cu(II) binding. Thus, a β-alanine residue was inserted at different positions preceding the His residue in these prion fragments, and their Cu(II) coordination properties were assessed by UV-Visible absorption, circular dichroism, and electron paramagnetic resonance. Spectroscopic data show that the insertion of a methylene group leads to a completely different Cu(II) coordination that involves the His96/His111 imidazole ring and nitrogen or oxygen atoms provided by the peptide backbone towards the C-terminal. This study clearly shows that two main factors determine the nature of Cu(II)-peptide complexes involving an anchoring His residue and deprotonated amides from the backbone chain: i) the stabilization of Cu(II)-peptide complexes due to the formation of cyclic structures (i.e. chelate effect) and ii) the nature of the residues associated to the deprotonated amide groups that participate in metal ion coordination.

  14. Geometries, stabilities and electronic properties of copper and selenium doped copper clusters: Density functional theory study

    Science.gov (United States)

    Li, Cheng-Gang; Zhang, Jie; Yuan, Yu-Quan; Tang, Ya-Nan; Ren, Bao-Zeng; Chen, Wei-Guang

    2017-02-01

    The structures properties of Cun+1 and CunSe clusters have been investigated using an unbiased CALYPSO structure searching method. Firstly, an unbiased search relying on several structurally different initial clusters have been undertaken. Subsequently, geometry optimization by means of density functional theory is carried out to determine the relative stability of various candidates for low lying clusters obtained from the unconstrained search. The results shown that the ground state Cu9 cluster is found to prefer a unique and previously unrecognized structure, with the total energies much lower than all structures proposed in the literature so far. The Cu2Se cluster is the most stable geometries for CunSe clusters. Additionally, the calculated HOMO-LUMO gaps ranges from 1.27 to 2.85 eV, which make CunSe clusters suitable candidates in photocatalyst materials. Lastly, the molecular orbital energy and density of states; the adaptive natural density partitioning; the electron localization function, localized orbital locator and Mayer Bond order are also studied for the ground state to develop a deeper understanding on the electronic properties.

  15. Probing the copper(II) binding features of angiogenin. Similarities and differences between a N-terminus peptide fragment and the recombinant human protein.

    Science.gov (United States)

    La Mendola, Diego; Farkas, Daniel; Bellia, Francesco; Magrì, Antonio; Travaglia, Alessio; Hansson, Örjan; Rizzarelli, Enrico

    2012-01-02

    The angiogenin protein (hAng) is a potent angiogenic factor and its cellular activities may be affected by copper ions even if it is yet unknown how this metal ion is able to produce this effect. Among the different regions of hAng potentially able to bind copper ions, the N-terminal domain appears to be an ideal candidate. Copper(II) complexes of the peptide fragments encompassing the amino acid residues 4-17 of hAng protein were characterized by potentiometric, UV-vis, CD, and EPR spectroscopic methods. The results show that these fragments have an unusual copper(II) binding ability. At physiological pH, the prevailing complex species formed by the peptide encompassing the protein sequence 4-17 is [CuHL], in which the metal ion is bound to two imidazole and two deprotonated amide nitrogen atoms disposed in a planar equatorial arrangement. Preliminary spectroscopic (UV-vis, CD, and EPR) data obtained on the copper(II) complexes formed by the whole recombinant hAng protein, show a great similarity with those obtained for the N-terminal peptide fragments. These findings indicate that within the N-terminal domain there is one of the preferred copper(II) ions anchoring site of the whole recombinant hAng protein.

  16. A novel method for thermodynamic study on binding of copper ion with Alzheimer's amyliod β peptide

    Institute of Scientific and Technical Information of China (English)

    BEHBEHANI G. Rezaei

    2009-01-01

    The interaction of Cu2+ with the first 16 residues of the Alzheimer's amyliod β peptide, Afl(1-16), was studied by employing isothermal titration calorimetry at pH 7.2 and 37℃ in aqueous solution. The Gholamreza Rezaei Behbehani (GRB) solvation model was used to reproduce the enthalpies of Cu2++Aβ(1-16) interaction over the whole Cu++concentrations. The binding parameters recovered from the solvation model were attributed to the structural change of Aβ(1-16) due to the metal ion interaction. It was found that there is a set of two identical and non interacting binding sites for Cu2+ ions. The molar enthalpy of binding is △H=27.895 kJ/mol. The association binding constants are 1.895 μM-1 and 1.891 μM-1 for the first and second binding sites respectively.

  17. Specification of properties and design allowables for copper alloys used in HHF components of ITER

    DEFF Research Database (Denmark)

    Kalinin, G.M.; Fabritziev, S.A.; Singh, B.N.;

    2002-01-01

    Two types of copper alloys, precipitation hardened (PH) Cu (CuCrZr-IG) and dispersion strengthened (DS) Cu (CuAl25-IG), are proposed as heat sink materials for the high heat flux (HHF) components of ITER. However, copper alloys are not included in any national codes, and properties of both Cu......CrZr and CuAl25 are not yet fully characterised. The performed R&D gives a basis for the specification of physical and mechanical properties required for the design analysis in accordance with the ITER Structural Design Criteria for In-vessel Components (SDC-IC). For both CuCrZr-IG and CuAl25-IG alloys...

  18. Effect of pulse magnetic field on solidification structure and properties of pure copper

    Institute of Scientific and Technical Information of China (English)

    LIAO Xi-liang; GONG Yong-yong; LI Ren-xing; CHEN Wen-jie; ZHAI Qi-jie

    2007-01-01

    The application of pulse magnetic field to metal solidification is an advanced technique which can remarkably refine solidification structure. In this paper, the effect of pulse magnetic field on solidification structure,mechanical properties and conductivity of pure copper was experimentally investigated. The results showed that the solidification structure transformed from coarse columnar crystal to fine globular crystal with increasing pulse voltage.Increasing pulse voltage also improved the tensile strength. However, with the increase of pulse voltage, the elongation and electrical resistivity firstly decreased, then increased when the pulse voltage beyond a critical value. Moreover,in some conditions, pulse magnetic field can simultaneously improve the conductivity and mechanical property of pure copper.

  19. PROPERTIES OF MgB2 FILMS FABRICATED ON COPPER CATHODES BY ELECTROCHEMICAL TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    H.Z.Yang; X.G.Sun; W.Q.Huang; M.L.Li; X.M.Yu; B.S.Zhang; Y.Qi; Q.Zhao

    2008-01-01

    An electrochemical technique has been introduced and applied to fabricate superconducting MgB2 films in molten salts. MgCl2, Mg(BO2)2, NaCl, and KCl were used as electrolyte, graphite was used as the anode, and copper was used as the cathode, respectively. X-ray diffraction (XRD) analysis was chosen to investigate the phase composition and crystaUinity of the films at different electrolysis temperatures. Stan-dard four-probe technique and SQUID were applied to investigate the temperature dependence of resistance (R-T) properties and magnetic properties of the films, re-spectively. The results indicate that MgB2 films have been fabricated on the copper cathodes, and superconducting transition takes place close to 50 K.

  20. Structural characterization of copper(II) binding to alpha-synuclein: Insights into the bioinorganic chemistry of Parkinson's disease.

    Science.gov (United States)

    Rasia, Rodolfo M; Bertoncini, Carlos W; Marsh, Derek; Hoyer, Wolfgang; Cherny, Dmitry; Zweckstetter, Markus; Griesinger, Christian; Jovin, Thomas M; Fernández, Claudio O

    2005-03-22

    The aggregation of alpha-synuclein (AS) is characteristic of Parkinson's disease and other neurodegenerative synucleinopathies. We demonstrate here that Cu(II) ions are effective in accelerating AS aggregation at physiologically relevant concentrations without altering the resultant fibrillar structures. By using numerous spectroscopic techniques (absorption, CD, EPR, and NMR), we have located the primary binding for Cu(II) to a specific site in the N terminus, involving His-50 as the anchoring residue and other nitrogen/oxygen donor atoms in a square planar or distorted tetragonal geometry. The carboxylate-rich C terminus, originally thought to drive copper binding, is able to coordinate a second Cu(II) equivalent, albeit with a 300-fold reduced affinity. The NMR analysis of AS-Cu(II) complexes reveals the existence of conformational restrictions in the native state of the protein. The metallobiology of Cu(II) in Parkinson's disease is discussed by a comparative analysis with other Cu(II)-binding proteins involved in neurodegenerative disorders.

  1. Luminescence and physical properties of copper doped CdO derived nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Benhaliliba, M., E-mail: bmost_31@yahoo.fr [Physics Department, Sciences Faculty, Oran University of Sciences and Technology USTOMB, BP1505 Oran (Algeria); Benouis, C.E. [Physics Department, Sciences Faculty, Oran University of Sciences and Technology USTOMB, BP1505 Oran (Algeria); Tiburcio-Silver, A. [ITT-DIEE, Apdo, Postal 20, Metepec 3, 52176, Estado de Mexico (Mexico); Yakuphanoglu, F. [Firat University, Physics Department, Faculty of Sciences and Arts, 23119, Elazig (Turkey); Avila-Garcia, A.; Tavira, A. [Cinvestav-IPN, Departamento de Ingenieria Electrica-SEES, Apdo. postal 14-740, 07000 Mexico, D.F. (Mexico); Trujillo, R.R. [Centro de Investigacion en Dispositivos Semiconductores-BUAP 14 Sur y Av. San Claudio, C.U. Puebla, Pue. Mexico (Mexico); Mouffak, Z. [Department of Electrical and Computer Engineering California State University, Fresno, CA (United States)

    2012-10-15

    In this paper, we studied the photoluminescence (PL), the morphological, electrical and optical properties of pure and copper-doped cadmium oxide. CdO films were grown by a facile sol-gel spin coating process at 1200 rpm, and doped with copper at 2 and 3%. A (1 1 1)-oriented cubic structure with a lattice parameter of a=4.69 A was confirmed by X-ray diffraction. Copper was shown to improve the optical transmittance in the short wavelength range of the visible spectrum. The optical band gap of CdO ranged between 2.49 and 2.62 eV as a result of Cu content. At room temperature, resistance fell drastically with Cu doping levels. AFM analysis of samples exhibited nano-mounts and nanowires. Finally, PL results showed a strong blue-violet emission peak at 2.80 eV. Highlights: Black-Right-Pointing-Pointer Pure and copper doped CdO have been synthesized by a facile sol-gel route at fixed speed 1200 rpm. Black-Right-Pointing-Pointer Structural properties of pure and doped CdO were studied in details. Black-Right-Pointing-Pointer Transmittance in UV-vis and IR spectra were investigated. Optical band gaps were determined. Black-Right-Pointing-Pointer Atomic force microscope surface morphology has been analyzed and grain sizes and height were determined. Black-Right-Pointing-Pointer Room temperature resistance was measured. Pure and copper doped CdO photoluminescence has been achieved at ambient. Electrical measurement was complemented by Hall effect measurement in the aim to re-evaluate the resistivity and the carrier mobility.

  2. Effect of combined deformation on the structure and properties of copper and titanium alloys

    Science.gov (United States)

    Stolyarov, V. V.; Pashinskaya, E. G.; Beigel'Zimer, Ya. E.

    2010-10-01

    The effect of a combination scheme of severe plastic deformation and subsequent cold rolling or electroplastic rolling on the deformability, microstructural evolution, and mechanical properties of copper, titanium of various purities, and a titanium alloy of an equiatomic composition is studied. The combined deformation method is shown to create a number of new nanostructured and ultrafine-grained states with a high strength and ductility.

  3. Nanostructured Multifilamentary Carbon-Copper Composites: Fabrication, Microstructural Characterization, and Properties

    Directory of Open Access Journals (Sweden)

    Evarice Yama Nzoma

    2012-01-01

    Full Text Available This work is part of research on the emerging techniques to produce bulk nanostructured composites materials by severe plastic deformation and their characterization. Based on the Levi work, we present a new method to synthesize a composite wire-containing carbon-nanosized filaments (graphite and C60 fullerenes embedded in a copper matrix. The originality of this process is using powder media as fiber. Microstructures and electrical, mechanical, and thermal properties are presented.

  4. Organic Complexation of Dissolved Copper and Iron from Shipboard Incubations in the Central California Current System: Investigating the Impacts of Light Conditions and Phytoplankton Growth on Iron- and Copper-Binding Ligand Characteristics

    Science.gov (United States)

    Mellett, T.; Parker, C.; Brown, M.; Coale, T.; Duckham, C.; Chappell, D.; Maldonado, M. T.; Bruland, K. W.; Buck, K. N.

    2016-02-01

    Two shipboard incubation experiments were carried out in July of 2014 to investigate potential sources and sinks of iron- and copper-binding organic ligands in the surface ocean. Seawater for the experiments was collected from the central California Current System (cCCS) and incubated under varying light conditions and in the presence and absence of natural phytoplankton communities. Incubation treatments were sampled over a period of up to 3 days for measurements of total dissolved copper and iron, and for the concentration and conditional stability constants of copper- and iron-binding organic ligands. Dissolved copper and iron were determined by inductively coupled plasma-mass spectrometry (ICP-MS) following preconcentration on a Nobias PA1 resin. Organic ligand characteristics for iron and copper were determined using a method of competitive ligand exchange-absorptive cathodic stripping voltammetry (CLE-ACSV) with the added competing ligand salicylaldoxime. Trends in ligand concentrations and conditional stability constants across the different treatments and over the course of the incubation experiments will be presented.

  5. Thermal properties of graphene-copper-graphene heterogeneous films.

    Science.gov (United States)

    Goli, Pradyumna; Ning, Hao; Li, Xuesong; Lu, Ching Yu; Novoselov, Konstantin S; Balandin, Alexander A

    2014-03-12

    We demonstrated experimentally that graphene-Cu-graphene heterogeneous films reveal strongly enhanced thermal conductivity as compared to the reference Cu and annealed Cu films. Chemical vapor deposition of a single atomic plane of graphene on both sides of 9 μm thick Cu films increases their thermal conductivity by up to 24% near room temperature. Interestingly, the observed improvement of thermal properties of graphene-Cu-graphene heterofilms results primarily from the changes in Cu morphology during graphene deposition rather than from graphene's action as an additional heat conducting channel. Enhancement of thermal properties of graphene-capped Cu films is important for thermal management of advanced electronic chips and proposed applications of graphene in the hybrid graphene-Cu interconnect hierarchies.

  6. The effect of nanocrystalline Ni-W coating on the tensile properties of copper

    Directory of Open Access Journals (Sweden)

    E. P. Georgiou

    2016-03-01

    Full Text Available Nanostructured Ni-W alloy coatings containing approximately 40 wt.% tungsten were electrodeposited onto copper substrates. The effect of the coatings thickness on the surface topography, microstructure and grain size was investigated with the aid of Atomic Force Microscopy (AFM, Scanning Electron Microscopy (SEM and X-ray Diffraction (XRD techniques respectively. In addition, this research work aims in understanding the influence and correlation between microstructure and thickness of these Ni-W coatings with the bulk mechanical properties of coated specimens. The experimental results indicated that the micro-hardness and Ultimate Tensile Strength (UTS of the Ni-W coated copper were higher than that of bare copper, whereas both slightly increased with increasing coating thickness up to 21 μm. On the other hand, the ductility of Ni-W coated copper decreased significantly with increasing coating thickness. Thus it could be said that when applying Ni-W coatings there are certain limitations not only in terms of their composition, but their thickness, grain size and coating structure should be also taken into consideration, in order to obtain an understanding of their mechanical behavior.

  7. Carbohydrate Binding Modules: Biochemical Properties and Novel Applications

    Science.gov (United States)

    Shoseyov, Oded; Shani, Ziv; Levy, Ilan

    2006-01-01

    Polysaccharide-degrading microorganisms express a repertoire of hydrolytic enzymes that act in synergy on plant cell wall and other natural polysaccharides to elicit the degradation of often-recalcitrant substrates. These enzymes, particularly those that hydrolyze cellulose and hemicellulose, have a complex molecular architecture comprising discrete modules which are normally joined by relatively unstructured linker sequences. This structure is typically comprised of a catalytic module and one or more carbohydrate binding modules (CBMs) that bind to the polysaccharide. CBMs, by bringing the biocatalyst into intimate and prolonged association with its substrate, allow and promote catalysis. Based on their properties, CBMs are grouped into 43 families that display substantial variation in substrate specificity, along with other properties that make them a gold mine for biotechnologists who seek natural molecular “Velcro” for diverse and unusual applications. In this article, we review recent progress in the field of CBMs and provide an up-to-date summary of the latest developments in CBM applications. PMID:16760304

  8. In vitro cytotoxic activities, DNA-, and BSA-binding studies of a new dinuclear copper(II) complex with N-[3-(dimethylamino)propyl]-N'-(2-carboxylatophenyl)-oxamide as ligand.

    Science.gov (United States)

    Jiao, Jing; Jiang, Man; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2014-02-01

    A new dinuclear copper(II) complex bridged by N-[3-(dimethylamino)propyl]-N'- (2-carbo-xylatophenyl)oxamide (H3 dmapob), and endcapped with 2,2'-diamino-4,4'-bithiazole (dabt), namely [Cu₂(dmapob)(dabt)(CH₃OH)(pic)]·(DMF)₀.₇₅ ·(CH₃OH)₀.₂₅ has been synthesized and characterized by elemental analysis, molar conductivity measurement, infrared and electronic spectra studies, and single-crystal X-ray diffraction. In the crystal structure, both copper(II) ions have square-pyramidal coordination geometries. The Cu···Cu separation through the oxamido bridge is 5.176(9) Å. A two-dimensional supramolecular framework is formed through hydrogen bonds and π-π stacking interactions. The reactivities toward herring sperm DNA and bovine serum albumin (BSA) show that the complex can interact with the DNA via intercalation mode and bind to the BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro anticancer activities suggest that the copper(II) complex is active against the selected tumor cell lines. The influence of different bridging ligands in dinuclear complexes on the DNA- and BSA-binding properties as well as anticancer activities is preliminarily discussed.

  9. Surface Functionalization of Thin-Film Composite Membranes with Copper Nanoparticles for Antimicrobial Surface Properties

    KAUST Repository

    Ben-Sasson, Moshe

    2014-01-07

    Biofouling is a major operational challenge in reverse osmosis (RO) desalination, motivating a search for improved biofouling control strategies. Copper, long known for its antibacterial activity and relatively low cost, is an attractive potential biocidal agent. In this paper, we present a method for loading copper nanoparticles (Cu-NPs) on the surface of a thin-film composite (TFC) polyamide RO membrane. Cu-NPs were synthesized using polyethyleneimine (PEI) as a capping agent, resulting in particles with an average radius of 34 nm and a copper content between 39 and 49 wt.%. The positive charge of the Cu-NPs imparted by the PEI allowed a simple electrostatic functionalization of the negatively charged RO membrane. We confirmed functionalization and irreversible binding of the Cu-NPs to the membrane surface with SEM and XPS after exposing the membrane to bath sonication. We also demonstrated that Cu-NP functionalization can be repeated after the Cu-NPs dissolve from the membrane surface. The Cu-NP functionalization had minimal impact on the intrinsic membrane transport parameters. Surface hydrophilicity and surface roughness were also maintained, and the membrane surface charge became positive after functionalization. The functionalized membrane exhibited significant antibacterial activity, leading to an 80-95% reduction in the number of attached live bacteria for three different model bacterial strains. Challenges associated with this functionalization method and its implementation in RO desalination are discussed. © 2013 American Chemical Society.

  10. Synthesis and antibacterial properties of copper nanoparticles for Salmonella typhi

    Science.gov (United States)

    Jaiswal, Anamika; Gaherwal, S.; Lodhi, Pavitra Devi; Singh, Jaiveer; Kaurav, Netram; Shrivastava, M. M. P.

    2016-05-01

    In this study, the antibacterial properties of Cu nanoparitcles (Cu-NPs) were investigated against Salmonella typhi. The Cu-NPs were prepared by the reduction of cupper acetate with the help of ethylene glycol (EG), then sample was characterized by XRD for its average particle size identification. The antibacterial activity assessed by well diffusion and disc diffusion method on different concentration of nanoparticles. It was found that these Cu-NPs showed antibacterial activity in form of zone inhibition, wherein, zone of inhibition increased with increase in concentration of Cu-NPs.

  11. The effect of neutron spectrum on the mechanical and physical properties of pure copper and copper alloys

    DEFF Research Database (Denmark)

    Fabritsiev, S.A.; Pokrovsky, A.S.; Zinkle, S.J.

    1996-01-01

    was independent of displacement dose. The saturation value for Delta rho(rd) was similar to 1.2 n Omega m for pure copper and similar to 1.6 n Omega m for the DS copper alloys irradiated at 100 degrees C in positions with a fast-to-thermal neutron flux ratio of 5, Considerable radiation hardening was observed...

  12. Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates

    Science.gov (United States)

    Nia, Ali Alavi; Shirazi, Ali

    2016-07-01

    Friction stir welding is a new and innovative welding method used to fuse materials. In this welding method, the heat generated by friction and plastic flow causes significant changes in the microstructure of the material, which leads to local changes in the mechanical properties of the weld. In this study, the effects of various welding parameters such as the rotational and traverse speeds of the tool on the microstructural and mechanical properties of copper plates were investigated; additionally, Charpy tests were performed on copper plates for the first time. Also, the effect of the number of welding passes on the aforementioned properties has not been investigated in previous studies. The results indicated that better welds with superior properties are produced when less heat is transferred to the workpiece during the welding process. It was also found that although the properties of the stir zone improved with an increasing number of weld passes, the properties of its weakest zone, the heat-affected zone, deteriorated.

  13. Structure and properties of copper after large strain deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, Kinga; Molak, Rafal M.; Pakiela, Zbigniew

    2010-05-15

    Structure and properties of Cu in dependence on strain (from {epsilon}{proportional_to} 0.9 to {epsilon}{proportional_to} 15) during multi-axial compression processing at room temperature was investigated. The evolution of dislocation structure, misorientation distribution and crystallite size were observed by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipment with electron back scattered diffraction (EBSD) facility. The mechanical properties of yield strength (YS), ultimate tensile strength (UTS) and uniform elongation was performed on MTS QTest/10 machine equipped with digital image correlation method (DIC). The structure-flow stress relationship of multi-axial compression processing material at strains {epsilon}{proportional_to} 3.5 and {epsilon}{proportional_to} 5.5 is discussed. It is found that processing does not produce any drastic changes in deformation structure and the microstructural refinement is slow. These results indicate that dynamic recrystallization plays an important role during multi-axial compression process in this range of deformation (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Glutathione selectively modulates the binding of platinum drugs to human copper chaperone Cox17.

    Science.gov (United States)

    Zhao, Linhong; Wang, Zhen; Wu, Han; Xi, Zhaoyong; Liu, Yangzhong

    2015-12-01

    The copper chaperone Cox17 (cytochrome c oxidase copper chaperone) has been shown to facilitate the delivery of cisplatin to mitochondria, which contributes to the overall cytotoxicity of the drug [Zhao et al. (2014) Chem. Commun. 50: , 2667-2669]. Kinetic data indicate that Cox17 has reactivity similar to glutathione (GSH), the most abundant thiol-rich molecule in the cytoplasm. In the present study, we found that GSH significantly modulates the reaction of platinum complexes with Cox17. GSH enhances the reactivity of three anti-cancer drugs (cisplatin, carboplatin and oxaliplatin) to Cox17, but suppresses the reaction of transplatin. Surprisingly, the pre-formed cisplatin-GSH adducts are highly reactive to Cox17; over 90% platinum transfers from GSH to Cox17. On the other hand, transplatin-GSH adducts are inert to Cox17. These different effects are consistent with the drug activity of these platinum complexes. In addition, GSH attenuates the protein aggregation of Cox17 induced by platination. These results indicate that the platinum-protein interactions could be substantially influenced by the cellular environment.

  15. Structural, morphology and electrical properties of layered copper selenide thin film

    Science.gov (United States)

    Ying Chyi Liew, J.; Talib, Zainal; Mahmood, W.; Yunus, M.; Zainal, Zulkarnain; Halim, Shaari; Moksin, Mohd; Yusoff, Wan; Pah Lim, K.

    2009-06-01

    Thin films of copper selenide (CuSe) were physically deposited layer-by-layer up to 5 layers using thermal evaporation technique onto a glass substrate. Various film properties, including the thickness, structure, morphology, surface roughness, average grain size and electrical conductivity are studied and discussed. These properties are characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), ellipsometer and 4 point probe at room temperature. The dependence of electrical conductivity, surface roughness, and average grain size on number of layers deposited is discussed.

  16. Survey of creep properties of copper intended for nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Oestling, Henrik C.M. (Swerea KIMAB AB, Stockholm (Sweden)); Sandstroem, Rolf (Materials Science and Engineering, School of Industrial Engineering and Management, Royal Inst. of Technology (KTH), Stockholm (Sweden))

    2009-12-15

    Creep in copper for application in canisters for nuclear waste disposal is surveyed. The importance of phosphorus doping to obtain adequate properties is demonstrated experimentally as well as explained theoretically. Creep tests results for electron beam and friction stir welds are compared. The latter type of welds has properties that are close to those of parent metal. The relation between slow strain rate tensile and creep is described. Fundamental constitutive equations are presented that are suitable for finite element modelling. These equations are used to simulate creep deformation in canisters

  17. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiangyu; Huang Xiaobo; Jiang Li; Ma Yong; Fan Ailan [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Tang Bin, E-mail: tangbin@tyut.edu.cn [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2011-12-01

    Bacterial adhesion to stainless steel surfaces is one of the major reason causing the cross-contamination and infection in many practical applications. An approach to solve this problem is to enhance the antibacterial properties on the surface of stainless steel. In this paper, novel antibacterial stainless steel surfaces with different copper content have been prepared by a plasma surface alloying technique at various gas pressures. The microstructure of the alloyed surfaces was investigated using glow discharge optical emission spectroscopy (GDOES) and scanning electron microscopy (SEM). The viability of bacteria attached to the antibacterial surfaces was tested using the spread plate method. The antibacterial mechanism of the alloyed surfaces was studied by X-ray photoelectron spectroscopy (XPS). The results indicate that gas pressure has a great influence on the surface elements concentration and the depth of the alloyed layer. The maximum copper concentration in the alloyed surface obtained at the gas pressure of 60 Pa is about 7.1 wt.%. This alloyed surface exhibited very strong antibacterial ability, and an effective reduction of 98% of Escherichia coli (E. coli) within 1 h was achieved by contact with the alloyed surface. The maximum thickness of the copper alloyed layer obtained at 45 Pa is about 6.5 {mu}m. Although the rate of reduction for E. coli of this alloyed surface was slower than that of the alloyed surface with the copper content about 7.1 wt.% over the first 3 h, few were able to survive more than 12 h and the reduction reached over 99.9%. The XPS analysis results indicated that the copper ions were released when the copper alloyed stainless steel in contact with bacterial solution, which is an important factor for killing bacteria. Based on an overall consideration of bacterial killing rate and durability, the alloyed surface with the copper content of 2.5 wt.% and the thickness of about 6.5 {mu}m obtained at the gas pressure of 45 Pa is

  18. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel

    Science.gov (United States)

    Zhang, Xiangyu; Huang, Xiaobo; Jiang, Li; Ma, Yong; Fan, Ailan; Tang, Bin

    2011-12-01

    Bacterial adhesion to stainless steel surfaces is one of the major reason causing the cross-contamination and infection in many practical applications. An approach to solve this problem is to enhance the antibacterial properties on the surface of stainless steel. In this paper, novel antibacterial stainless steel surfaces with different copper content have been prepared by a plasma surface alloying technique at various gas pressures. The microstructure of the alloyed surfaces was investigated using glow discharge optical emission spectroscopy (GDOES) and scanning electron microscopy (SEM). The viability of bacteria attached to the antibacterial surfaces was tested using the spread plate method. The antibacterial mechanism of the alloyed surfaces was studied by X-ray photoelectron spectroscopy (XPS). The results indicate that gas pressure has a great influence on the surface elements concentration and the depth of the alloyed layer. The maximum copper concentration in the alloyed surface obtained at the gas pressure of 60 Pa is about 7.1 wt.%. This alloyed surface exhibited very strong antibacterial ability, and an effective reduction of 98% of Escherichia coli (E. coli) within 1 h was achieved by contact with the alloyed surface. The maximum thickness of the copper alloyed layer obtained at 45 Pa is about 6.5 μm. Although the rate of reduction for E. coli of this alloyed surface was slower than that of the alloyed surface with the copper content about 7.1 wt.% over the first 3 h, few were able to survive more than 12 h and the reduction reached over 99.9%. The XPS analysis results indicated that the copper ions were released when the copper alloyed stainless steel in contact with bacterial solution, which is an important factor for killing bacteria. Based on an overall consideration of bacterial killing rate and durability, the alloyed surface with the copper content of 2.5 wt.% and the thickness of about 6.5 μm obtained at the gas pressure of 45 Pa is expected

  19. Copper(i) complexes with phosphine derived from sparfloxacin. Part I - structures, spectroscopic properties and cytotoxicity.

    Science.gov (United States)

    Komarnicka, Urszula K; Starosta, Radosław; Kyzioł, Agnieszka; Jeżowska-Bojczuk, Małgorzata

    2015-07-28

    In this paper we present new copper(i) iodide or copper(i) thiocyanate complexes with hydroxymethyldiphenylphosphine (PPh2(CH2OH)) or phosphine derivatives of sparfloxacin, a 3(rd) generation fluoroquinolone antibiotic agent (PPh2(CH2-Sf)) and 2,9-dimethyl-1,10-phenanthroline (dmp) or 2,2'-biquinoline (bq) auxiliary ligands. The synthesised complexes were fully characterised by NMR and UV-Vis spectroscopy as well as by mass spectrometry. Selected structures were additionally analysed using X-ray and DFT methods. All complexes proved to be stable in solution in the presence of water and atmospheric oxygen for several days. The cytotoxic activity of the complexes was tested against two cancer cell lines (CT26 - mouse colon carcinoma and A549 - human lung adenocarcinoma). Applying two different incubation times, the studies enabled a preliminary estimation of the dependence of the selectivity and the mechanism of action on the type of diimine and phosphine ligands. The results obtained showed that complexes with PPh2(CH2-Sf) are significantly more active than those with PPh2(CH2OH). On the other hand, the relative impact of diimine on cytotoxicity is less pronounced. However, the dmp complexes are characterised by strong inhibitory properties, while the bq ones are rather not. This confirms the interesting and promising biological properties of the investigated group of copper(i) complexes, which undoubtedly are worthy of further biological studies.

  20. Identification of the Minimal Copper(II)-binding α-Synuclein Sequence

    OpenAIRE

    Jackson, Mark S.; Lee, Jennifer C.

    2009-01-01

    Parkinson’s disease has been long linked to environmental factors, such as transition metals and recently to α-synuclein, a presynaptic protein. Using tryptophan-containing peptides, we identified the minimal Cu(II)-binding sequence to be within the first four residues, MDV(F/W), anchored by the α-amino terminus. In addition, mutant peptide 1–10 (Lys→Arg) verified that neither Lys6 or Lys10 are necessary for Cu(II) binding. Interestingly, Trp4 excited-state decay kinetics measured for peptide...

  1. Identification of the minimal copper(II)-binding alpha-synuclein sequence.

    Science.gov (United States)

    Jackson, Mark S; Lee, Jennifer C

    2009-10-05

    Parkinson's disease has been long linked to environmental factors, such as transition metals and recently to alpha-synuclein, a presynaptic protein. Using tryptophan-containing peptides, we identified the minimal Cu(II)-binding sequence to be within the first four residues, MDV(F/W), anchored by the alpha-amino terminus. In addition, mutant peptide 1-10 (Lys --> Arg) verified that neither Lys6 nor Lys10 are necessary for Cu(II) binding. Interestingly, Trp4 excited-state decay kinetics measured for peptides and proteins reveal two quenching modes, possibly arising from two distinct Cu(II)-polypeptide structures.

  2. Preparation and properties of copper-oil-based nanofluids

    Directory of Open Access Journals (Sweden)

    Xie Wenjie

    2011-01-01

    Full Text Available Abstract In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanofluids with the surface-modified nanoparticles have higher values than the base fluids do. The composition has more significant effects on the thermal conductivity than on the viscosity. It is valuable to prepare an appropriate oil-based nanofluid for enhancing the heat-transfer capacity of a hydrophobic system. The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids. The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids. Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

  3. Preparation and properties of copper-oil-based nanofluids.

    Science.gov (United States)

    Li, Dan; Xie, Wenjie; Fang, Wenjun

    2011-05-05

    In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanofluids with the surface-modified nanoparticles have higher values than the base fluids do. The composition has more significant effects on the thermal conductivity than on the viscosity. It is valuable to prepare an appropriate oil-based nanofluid for enhancing the heat-transfer capacity of a hydrophobic system. The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids. The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids. Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

  4. Perfect cubic texture, structure, and mechanical properties of nonmagnetic copper-based alloy ribbon substrates

    Science.gov (United States)

    Khlebnikova, Yu. V.; Rodionov, D. P.; Gervas'eva, I. V.; Egorova, L. Yu.; Suaridze, T. R.

    2015-03-01

    A sharp cubic texture is formed in a number of copper alloys subjected to cold deformation by rolling by 98.6-99% followed by recrystallization annealing, which opens up fresh opportunities for long thin ribbons made of these alloys to be used as substrates in the production of second-generation high- T c superconductor (2G HTSC) cables. The possibility of creating ternary alloys based on a binary Cu-30 at % Ni alloy with additional elements that harden its fcc matrix (iron, chromium) is shown. The measurements of the mechanical properties of textured ribbons made of these alloys demonstrate that their yield strength is higher than that of a textured ribbon made of pure copper by a factor of 2.5-4.5.

  5. EFFECT OF UV LASER ON SPECTRAL PROPERTIES OF BORATE GLASSES DOPED WITH COPPER CHLORIDE NANOCRYSTALS

    Directory of Open Access Journals (Sweden)

    A. N. Babkina

    2017-01-01

    Full Text Available We present the results of the pulsed ultraviolet laser effect on the spectral properties of the potassium-aluminium-borate glasses doped with the copper chloride nanocrystals with the average size of 3.1-6.3 nm. We have studied the changes of the exciton absorption spectra of the CuCl nanocrystals induced by different duration of the laser exposure. The results show the possibility of the laser-induced crystallization and growth of the nanocrystals. For the first time the effect of the irreversible photochromism has been obtained in the potassium-aluminium-borate glasses doped with the copper chloride nanocrystals. The effect is associated with the formation of the temperature stable Cu0n colloidal color centers.

  6. Structural and optical properties of copper-coated substrates for solar thermal absorbers

    Science.gov (United States)

    Pratesi, Stefano; De Lucia, Maurizio; Meucci, Marco; Sani, Elisa

    2016-10-01

    Spectral selectivity, i.e. merging a high absorbance at sunlight wavelengths to a low emittance at the wavelengths of thermal spectrum, is a key characteristics for materials to be used for solar thermal receivers. It is known that spectrally selective absorbers can raise the receiver efficiency for all solar thermal technologies. Tubular sunlight receivers for parabolic trough collector (PTC) systems can be improved by the use of spectrally selective coatings. Their absorbance is increased by deposing black films, while the thermal emittance is minimized by the use of properly-prepared substrates. In this work we describe the intermediate step in the fabrication of black-chrome coated solar absorbers, namely the fabrication and characterization of copper coatings on previously nickel-plated stainless steel substrates. We investigate the copper surface features and optical properties, correlating them to the coating thickness and to the deposition process, in the perspective to assess optimal conditions for solar absorber applications.

  7. Synthesis,Structure and Magnetic Properties of a Diphenoxobridged Binuclear Copper(Ⅱ) Complex

    Institute of Scientific and Technical Information of China (English)

    XIE,Yong-Shu(解永树); JIANG,Hui(姜晖); XU,Xiao-Long(徐小龙); LIU,Qing-Liang(刘清亮); DU,Chen-Xia(杜晨霞); ZHU,yu(朱玉)

    2002-01-01

    A mixed-ligand copper(Ⅱ) complex [Cu2(phen)2(HL1)2]-(ClO4)2 (1) was synthesized. X-ray analyses reveal that 1has a bis (μ2-phenoxo)-bridged dicopper (Ⅱ) structure. 2D hydrogen-bonded network is formed utilizing the N-H, O-H and C-H groups of the (HL1)- ligands (H2L1 = N-(2-hy-droxybenzyl)ethanolamine), the C-H groups of the phenanthrolines and the perchlorate anions. Variable temperature magnetic properties of 1 have shown comparatively weak antiferromagnetic interactions with respect to the bridge angles,which have been ascribed to the unfavorable overlaps of the magnetic orbitals for the highly distorted copper coordination polyhedra and the pyramidal distortions at the phenoxo oxygen atoms.

  8. Mixed-ligand binuclear copper(II) complex of 5-methylsalicylaldehyde and 2,2'-bipyridyl: Synthesis, crystal structure, DNA binding and nuclease activity

    Indian Academy of Sciences (India)

    Perumal Gurumoorthy; Jayaram Ravichandran; Aziz Kalilur Rahiman

    2014-05-01

    A new mixed-ligand binuclear copper(II) complex [Cu(MS)(bpy)]2.(ClO4)2, built of 5-methylsalicylaldehyde and 2,2'-bipyridyl has been synthesized and characterized by using elemental analysis, IR and UV-Vis spectroscopy. Crystal structure of the complex shows that copper(II) ion lies in a square pyramidal coordination environment. The structure consists of two symmetrical half units in which the copper(II) ion of one half unit connected with the phenolate oxygen atom of other half unit along with one perchlorate anion in the crystal lattice as free molecule. Presence of uncoordinated perchlorate anion was also confirmed by IR spectroscopy. Absorption spectroscopy exhibits d-d transition at 628 nm, which further supports the square pyramidal geometry around the copper(II) ions. EPR spectrum of the copper(II) complex at room temperature shows a broad signal without any splitting pattern at ∥ = 2.26, ⊥ = 2.03 and the magnetic moment (eff = 1.31 BM) obtained at room temperature indicate an antiferromagnetic interaction between the two copper(II) ions through phenoxide-bridge. Binding studies reveal that the complex possesses good binding propensity (b = 5.2 ± 1.7 × 104 M-1) and bind to nitrogenous bases of DNA through intercalation. Nuclease activity of the complex with pBR322 DNA shows that the effect of hydrolytic cleavage is dose-dependent and the oxidative cleavage indicates the involvement of hydroxyl radical and singlet-oxygen as reactive oxygen species.

  9. Plant coilin: structural characteristics and RNA-binding properties.

    Directory of Open Access Journals (Sweden)

    Valentine Makarov

    Full Text Available Cajal bodies (CBs are dynamic subnuclear compartments involved in the biogenesis of ribonucleoproteins. Coilin is a major structural scaffolding protein necessary for CB formation, composition and activity. The predicted secondary structure of Arabidopsis thaliana coilin (Atcoilin suggests that the protein is composed of three main domains. Analysis of the physical properties of deletion mutants indicates that Atcoilin might consist of an N-terminal globular domain, a central highly disordered domain and a C-terminal domain containing a presumable Tudor-like structure adjacent to a disordered C terminus. Despite the low homology in amino acid sequences, a similar type of domain organization is likely shared by human and animal coilin proteins and coilin-like proteins of various plant species. Atcoilin is able to bind RNA effectively and in a non-specific manner. This activity is provided by three RNA-binding sites: two sets of basic amino acids in the N-terminal domain and one set in the central domain. Interaction with RNA induces the multimerization of the Atcoilin molecule, a consequence of the structural alterations in the N-terminal domain. The interaction with RNA and subsequent multimerization may facilitate coilin's function as a scaffolding protein. A model of the N-terminal domain is also proposed.

  10. High-throughput identification of telomere-binding ligands based on the fluorescence regulation of DNA-copper nanoparticles.

    Science.gov (United States)

    Yang, Luzhu; Wang, Yanjun; Li, Baoxin; Jin, Yan

    2017-01-15

    Formation of the G-quadruplex in the human telomeric DNA is an effective way to inhibit telomerase activity. Therefore, screening ligands of G-quadruplex has potential applications in the treatment of cancer by inhibit telomerase activity. Although several techniques have been explored for screening of telomeric G-quadruplexes ligands, high-throughput screening method for fast screening telomere-binding ligands from the large compound library is still urgently needed. Herein, a label-free fluorescence strategy has been proposed for high-throughput screening telomere-binding ligands by using DNA-copper nanoparticles (DNA-CuNPs) as a signal probe. In the absence of ligands, human telomeric DNA (GDNA) hybridized with its complementary DNA (cDNA) to form double stranded DNA (dsDNA) which can act as an efficient template for the formation of DNA-CuNPs, leading to the high fluorescence of DNA-CuNPs. In the presence of ligands, GDNA folded into G-quadruplex. Single-strdanded cDNA does not support the formation of DNA-CuNP, resulting in low fluorescence of DNA-CuNPs. Therefore, telomere-binding ligands can be high-throughput screened by monitoring the change in the fluorescence of DNA-CuNPs. Thirteen traditional chinese medicines were screened. Circular dichroism (CD) measurements demonstrated that the selected ligands could induce single-stranded telomeric DNA to form G-quadruplex. The telomere repeat amplification protocol (TRAP) assay demonstrated that the selected ligands can effectively inhibit telomerase activity. Therefore, it offers a cost-effective, label-free and reliable high-throughput way to identify G-quadruplex ligands, which holds great potential in discovering telomerase-targeted anticancer drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ion-beam-induced modifications in the structural and electrical properties of copper oxide selenite nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Pallavi, E-mail: prana.phy@gmail.com; Chauhan, R.P.

    2015-04-15

    Highlights: •Nanowires were synthesized via template-assisted electrodeposition method. •Copper oxide selenite nanowires were irradiated with 160 MeV, Ni{sup +12} ion beam. •XRD confirmed no change in phase of irradiated nanowires. •Electrical resistivity of nanowires was found to decrease with the ion fluence. -- Abstract: Irradiation with swift heavy ions (SHIs) with energy in the MeV range is a unique tool for engineering the properties of materials. In this context, the objective of the present work is to study the conduction of charge carriers in pre- and post-ion-irradiated semiconducting nanowires. Copper oxide selenite nanowires were synthesized using a template-assisted electrodeposition technique from an aqueous solution of 0.8 M CuSO{sub 4}·5H{sub 2}O and 8 mM SeO{sub 2}. The synthesized nanowires were observed to have a monoclinic structure with linear I–V characteristics (IVC). The effect of irradiation with 160 MeV Ni{sup +12} ions on the properties of the copper oxide selenite nanowires was investigated for fluences varying from 10{sup 11} to 10{sup 13} ions/cm{sup 2}. XRD spectra confirmed no change in the phase of the swift-heavy-ion-irradiated nanowires, but a modification in the orientation of the planes was observed that depended on the ion fluence. The electrical resistivity of the semiconducting nanowires also varied with the ion fluence. Simultaneous irradiation-induced modifications to the electro-chemical potential gradient and the granular properties of the material may have been the origin of the alteration in the structural and electrical properties of the nanowires.

  12. Synthesis, CMC Determination, Antimicrobial Activity and Nucleic Acid Binding of A Surfactant Copper(II) Complex Containing Phenanthroline and Alanine Schiff-Base.

    Science.gov (United States)

    Nagaraj, Karuppiah; Sakthinathan, Subramanian; Arunachalam, Sankaralingam

    2014-03-01

    A new water-soluble surfactant copper(II) complex [Cu(sal-ala)(phen)(DA)] (sal-ala = salicylalanine, phen = 1,10-phenanthroline, DA = dodecylamine), has been synthesized and characterized by physico-chemical and spectroscopic methods. The critical micelle concentration (CMC) values of this surfactant-copper(II) complex in aqueous solution were obtained from conductance measurements. Specific conductivity data (at 303, 308, 313. 318 and 323 K) served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG(0)m, ΔH(0)m and ΔS(0)m). The interaction of this complex with nucleic acids (DNA and RNA) has been explored by using electronic absorption spectral titration, competitive binding experiment, cyclic voltammetry, circular dichroism (CD) spectra, and viscosity measurements. Electronic absorption studies have revealed that the complex can bind to nucleic acids by the intercalative binding mode which has been verified by viscosity measurements. The DNA binding constants have also been calculated (Kb = 1.2 × 10(5) M(-1) for DNA and Kb = 1.6 × 10(5) M(-1) for RNA). Competitive binding study with ethidium bromide (EB) showed that the complex exhibits the ability to displace the DNA-bound-EB indicating that the complex binds to DNA in strong competition with EB for the intercalative binding site. The presence of hydrophobic ligands, alanine Schiff-base, phenanthroline and long aliphatic chain amine in the complex were responsible for this strong intercalative binding. The surfactant-copper (II) complex was screened for its antibacterial and antifungal activities against various microorganisms. The results were compared with the standard drugs, amikacin(antibacterial) and ketokonazole(antifungal).

  13. MECHANICAL PROPERTIES OF PVA NANOFIBER TEXTILES WITH INCORPORATED NANODIAMONDS, COPPER AND SILVER IONS

    Directory of Open Access Journals (Sweden)

    Kateřina Indrová

    2015-02-01

    Full Text Available The unique properties of nanotextiles based on poly(vinyl-alcohol (PVA manufactured using electrospinning method have been known and exploited for many years. Recently, the enrichment of nanofiber textiles with nanoparticles, such as ions or nanodiamond particles (NDP, has become a popular way to modify the textile mechanical, chemical and physical properties. The aim of our study is to investigate the macromechanical properties of PVA nanotextiles enriched with NDP, silver (Ag and copper (Cu ions. The nanofiber textiles of a various surface weight were prepared from 16% PVA solution, while glyoxal and phosphoric acid were used as cross-linking agents. The copper and silver ions were diluted in aqueous solution and NDP were dispersed into the fibers by ultrasound homogenization. All but one set of samples were exposed to the temperature of 140 °C for 10 minutes. The samples without thermal stabilization exhibited significantly lower elastic stiffness and tensile strength. Moreover, the results of tensile testing indicate that the addition of dispersed nanoparticles has a minor effect on the mechanical properties of textiles and contributes rather to their reinforcement. On the other hand, the lack of thermal stabilization results in a poor interconnection of individual nanofiber layers and the non-stabilized textiles exhibit a lower elastic stiffness and reduced tensile strength.

  14. D-penicillamine prevents ram sperm agglutination by reducing the disulphide bonds of a copper-binding sperm protein.

    Science.gov (United States)

    Leahy, T; Rickard, J P; Aitken, R J; de Graaf, S P

    2016-05-01

    Head-to-head agglutination of ram spermatozoa is induced by dilution in the Tyrode's capacitation medium with albumin, lactate and pyruvate (TALP) and ameliorated by the addition of the thiol d-penicillamine (PEN). To better understand the association and disassociation of ram spermatozoa, we investigated the mechanism of action of PEN in perturbing sperm agglutination. PEN acts as a chelator of heavy metals, an antioxidant and a reducing agent. Chelation is not the main mechanism of action, as the broad-spectrum chelator ethylenediaminetetraacetic acid and the copper-specific chelator bathocuproinedisulfonic acid were inferior anti-agglutination agents compared with PEN. Oxidative stress is also an unlikely mechanism of sperm association, as PEN was significantly more effective in ameliorating agglutination than the antioxidants superoxide dismutase, ascorbic acid, α-tocopherol and catalase. Only the reducing agents cysteine and DL-dithiothreitol displayed similar levels of non-agglutinated spermatozoa at 0 h compared with PEN but were less effective after 3 h of incubation (37 °C). The addition of 10 µM Cu(2+) to 250 µM PEN + TALP caused a rapid reversion of the motile sperm population from a non-agglutinated state to an agglutinated state. Other heavy metals (cobalt, iron, manganese and zinc) did not provoke such a strong response. Together, these results indicate that PEN prevents sperm association by the reduction of disulphide bonds on a sperm membrane protein that binds copper. ADAM proteins are possible candidates, as targeted inhibition of the metalloproteinase domain significantly increased the percentage of motile, non-agglutinated spermatozoa (52.0% ± 7.8) compared with TALP alone (10.6% ± 6.1).

  15. Structure formation and properties of a copper-aluminum joint produced by ultrasound-assisted explosive welding

    Science.gov (United States)

    Kuz'min, E. V.; Peev, A. P.; Kuz'min, S. V.; Lysak, V. I.

    2017-08-01

    The effect of ultrasound-assisted explosive welding on the structure formation and the properties of copper-aluminum joints is studied. Ultrasound-assisted explosive welding improves the quality of formed copper-aluminum joints, i.e., enhances their strength and significantly reduces the amount of fused metal over the entire weldability range. It is shown that ultrasound-assisted explosive welding can noticeably extend the weldability range of the copper-aluminum pair to obtain equal-in-strength joints with minimum structural heterogeneity in the wide welding range.

  16. Literature review on the properties of cuprous oxide Cu{sub 2}O and the process of copper oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Korzhavyi, P. A.; Johansson, B. (Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm (Sweden))

    2011-10-15

    The purpose of the present review is to provide a reference guide to the most recent data on the properties of copper(I) oxide as well as on the atomic processes involved in the initial stages of oxidation of copper. The data on the structure of surfaces, as obtained from atomic-resolution microscopy studies (for example, STM) or from first-principles calculations, are reviewed. Information of this kind may be useful for understanding the atomic mechanisms of corrosion and stress-corrosion cracking of copper

  17. Mechanical properties of metallic nanowires using tight-binding model

    Science.gov (United States)

    Aish, Mohammed; Starostenkov, Mikhail

    2016-01-01

    The mechanical properties of Nickel nanowires have been studied at different temperatures using molecular dynamics simulations. Molecular Dynamics (MD) simulations have been carried out on pure Nickel (Ni) crystal with face-centered cubic (FCC) lattice upon application of uniaxial tension at nanolevel with a speed of 20 m/s. The deformation corresponds to the direction . To the calculated block of crystal, free boundary conditions are applied in the directions , . A many body interatomic potential for Ni within the second moment approximation of the tight binding model (the Cleri-Rosato potentials) was employed to carry out three dimensional molecular dynamics simulations. MD simulation used to investigate the effect of temperature of Ni nanowire on the nature of deformation and fracture. Temperature effect on the extension property of metal nanowire is discussed in detail. The mechanical strengths and the mechanical strain of the nanowires decrease linearly with the increasing temperature. The feature of deformation energy can be divided into four regions: quasi-elastic, plastic, flow and failure. Experiments have shown that when the temperature increases the yielding stress decreases, the first stage of deformation was narrowed, and the second stage was widened. The results showed that breaking position depended on temperature.

  18. Effects of sputtering power on properties of copper oxides thin films deposited on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, P. K.; Ng, S. S.; Abdullah, M. J. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-04-24

    Copper oxides are deposited by radio frequency sputtering using copper target in the mixture of argon and oxygen gasses. The structural and optical properties of the copper oxides deposited at different sputtering powers have been investigated. All the films are single phase polycrystalline. At low RF power (100 W), the film is monoclinic structure of cupric oxide (CuO). Meanwhile, the films are cubic structure of cuprous oxide (Cu2O) at higher RF power. Field emission scanning electron microscopy images show the films have different morphologies with small grain size and consist of a lot of voids. The analysis of energy dispersive X-ray spectroscopy shows that the ratio of Cu to O is increased as the RF power increased. From the ultraviolet–visible spectroscopy, the films have a broad absorption edge in the range of 300–500 nm. The band gap of the films grown at RF power of 100 W, and 120 W and above, were 1.18 eV and 2.16 eV, respectively.

  19. Production and wear properties of copper based MMC strengthened with δ-alumina fibres

    Directory of Open Access Journals (Sweden)

    K. Granat

    2011-04-01

    Full Text Available The investigation was carried out on the production by pressure infiltration (squeeze casting of metal matrix composite materialsbased on pure Cu-ETP copper containing δ-alumina SAFFIL fibres The microstructure of composite specimens and morphology wasexamined using SEM and optical microscopy. Physical properties: Brinell hardness HBW and density were characterized. Preforms with10, 15 and 20 vol. % of fibres were preheated and infiltrated applying the infiltration pressure of 100 MPa. The strengthening of matrix with SAFFIL fibres resulted in significant increase of hardness. Metallographic examinations showed, that SAFFIL fibres are not destroyed in course of the infiltration process and are uniformly distributed in copper matrix. SEM observations confirm the poorwettability of fibres by liquid Cu-ETP. The wear of manufactured MMCs during dry sliding against cast iron applying a pin-on-disc testerwere recorded after 1, 3.5 and 8.5 km of friction distance. Increasing content of SAFFIL fibres in the copper matrix results in the significant decreasing of wear.

  20. Effect of structure, size and copper doping on the luminescence properties of ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, Ch. Satya [Crystal Growth and Nanoscience Research Centre, Government College (A), Rajahmundry, Andhra Pradesh 533 105 (India); Mishra, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Patel, Dinesh K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, 9190401 (Israel); Rao, K. Ramachandra, E-mail: drkrcr@gmail.com [Crystal Growth and Nanoscience Research Centre, Government College (A), Rajahmundry, Andhra Pradesh 533 105 (India); Sudarsan, V., E-mail: vsudar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Vatsa, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-09-15

    Highlights: • Blue and green emission intensity form ZnS is sensitive to crystallographic form. • For ZnS nanoparticles, emission characteristics are not affected by copper doping. • Cu solubility poor in ZnS nanoparticles compared to corresponding bulk. - Abstract: Luminescence properties of wurtzite and cubic forms of bulk ZnS have been investigated in detail and compared with that of ZnS nanoparticles. Blue emission observed in both hexagonal and cubic forms of undoped bulk ZnS is explained based on electron–hole recombination involving electron in conduction band and hole trapped in Zn{sup 2+} vacancies where as green emission arises due to electron hole recombination from Zn{sup 2+} and S{sup 2−} vacancies. Conversion of wurtzite form to cubic form is associated with relative increase in intensity of green emission due to increased defect concentration brought about by high temperature heat treatment. Copper doping in ZnS, initially leads to formation of both Cu{sub Zn} and Cu{sub i} (interstitial copper) centers, and latter to mainly Cu{sub Zn} centers as revealed by variation in relative intensities of blue and green emission from the samples.

  1. Synthesis, characterization, DNA binding, cleavage activity and cytotoxicity of copper(II) complexes.

    Science.gov (United States)

    Li, Mei-Jin; Lan, Tao-Yu; Cao, Xiu-Hui; Yang, Huang-Hao; Shi, Yupeng; Yi, Changqing; Chen, Guo-Nan

    2014-02-21

    Three new mononuclear copper(II) complexes, [Cu(L2)](2+) (1), [Cu(acac)(L)](+) (2), and [Cu(acac-Cl)(L)](+) (3) (L = 2-(4-pyridine)oxazo[4,5-f]1,10-phenanthroline (4-PDOP); acac = acetylacetone; acac-Cl = 3-chloroacetylacetone), have been synthesized and characterized by elemental analysis, high resolution mass spectrometry (Q-TOF), and IR spectroscopy. Two of the complexes were structurally characterized by single-crystal X-ray diffraction techniques. Their interactions with DNA were studied by UV-vis absorption and emission spectra, viscosity, thermal melting, DNA unwinding assay and CD spectroscopy. The nucleolytic cleavage activity of the compounds was carried out on double stranded pBR322 circular plasmid DNA by using a gel electrophoresis experiment in the presence and absence of an oxidant (H2O2). Active oxygen intermediates such as hydroxyl radicals and hydrogen peroxide generated in the presence of L and complexes 1-3 may act as active species for the DNA scission. The cytotoxicity of the complexes against HepG2 cancer cells was also studied.

  2. Differences in the binding of copper(I) to α- and β-synuclein.

    Science.gov (United States)

    De Ricco, Riccardo; Valensin, Daniela; Dell'Acqua, Simone; Casella, Luigi; Gaggelli, Elena; Valensin, Gianni; Bubacco, Luigi; Mangani, Stefano

    2015-01-05

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the presence of abnormal α-synuclein (αS) deposits in the brain. Alterations in homeostasis and metal-induced oxidative stress may play a crucial role in the progression of αS amyloid assembly and pathogenesis of PD. Contrary to αS, β-synuclein (βS) is not involved in the PD etiology. However, it has been suggested that the βS/αS ratio is altered in PD, indicating that a correct balance of these two proteins is implicated in the inhibition of αS aggregation. αS and βS share similar abilities to coordinate Cu(II). In this study, we investigated and compared the interaction of Cu(I) with the N-terminal portion of βS and αS by means of NMR, circular dichroism, and X-ray absorption spectroscopies. Our data show the importance of M10K mutation, which induces different Cu(I) chemical environments. Coordination modes 3S1O and 2S2O were identified for βS and αS, respectively. These new insights into the bioinorganic chemistry of copper and synuclein proteins are a basis to understand the molecular mechanism by which βS might inhibit αS aggregation.

  3. Histatins: salivary peptides with copper(II)- and zinc(II)-binding motifs: perspectives for biomedical applications.

    Science.gov (United States)

    Melino, Sonia; Santone, Celeste; Di Nardo, Paolo; Sarkar, Bibudhendra

    2014-02-01

    Natural antimicrobial peptides represent a primordial mechanism of immunity in both vertebrate and nonvertebrate organisms. Among them, histatins belong to a family of human salivary metal-binding peptides displaying potent antibacterial, antifungal and wound-healing activities. These properties, along with the ability of histatins to inhibit collagenases and cysteine proteases, have attracted much attention for their potential use in the treatment of several oral diseases. This review critically assesses the studies carried out to date in order to provide a comprehensive and systematic vision of the information accumulated so far. In particular, the relationship between metal-binding and peptide activity is extensively analysed. The review provides important clues for developing possible therapeutic applications of histatins and their synthetic peptide analogues by creating a set of necessary resource materials to support investigators and industries interested in exploiting their unique properties.

  4. Copper(II) complexes of terminally free alloferon mutants containing two histidyl binding sites inside peptide chain structure and stability.

    Science.gov (United States)

    Kadej, Agnieszka; Kuczer, Mariola; Kowalik-Jankowska, Teresa

    2015-12-21

    Mononuclear and polynuclear copper(II) complexes of alloferon 1 with point mutations, H1A/H12A H2N-A(1)GVSGH(6)GQH(9)GVA(12)G-COOH, H1A/H9A H2N-A(1)GVSGH(6)GQA(9)GVH(12)G-COOH, and H1A/H6A H2N-A(1)GVSGA(6)GQH(9)GVH(12)G-COOH, have been studied by potentiometric, UV-visible, CD, and EPR spectroscopy, and mass spectrometry (MS) methods. Complete complex speciation at different metal-to-ligand molar ratios ranging from 1 : 1 to 3 : 1 was obtained. Over a wide 6-8 pH range, including physiological pH 7.4, and a 1 : 1 metal-to-ligand molar ratio, the peptides studied formed a CuH-1L complex with the 4N{NH2,N(-),2NIm} coordination mode. The presence of the 4N binding site for the CuH-1L complexes prevented the deprotonation and coordination of the second amide nitrogen atom to copper(II) ions (pK-1/-2 7.83-8.07) compared to that of pentaGly (6.81). The amine nitrogen donor and two imidazole nitrogen atoms (H(6)H(9), H(6)H(12) and H(9)H(12)) can be considered to be independent metal-binding sites in the species formed. As a consequence, di- and trinuclear complexes for the metal-to-ligand 2 : 1 and 3 : 1 molar ratios dominate in the solution, respectively. For the Cu(II)-H1A/H9A and Cu(II)-H1A/H12A systems, the Cu3H-9L complexes are likely formed by the coordination of amide nitrogen atoms towards C-termini with ring sizes (7,5,5).

  5. A new stepped tetranuclear copper(II) complex: synthesis, crystal structure and photoluminescence properties.

    Science.gov (United States)

    Gungor, Elif

    2017-05-01

    Binuclear and tetranuclear copper(II) complexes are of interest because of their structural, magnetic and photoluminescence properties. Of the several important configurations of tetranuclear copper(II) complexes, there are limited reports on the crystal structures and solid-state photoluminescence properties of `stepped' tetranuclear copper(II) complexes. A new Cu(II) complex, namely bis{μ3-3-[(4-methoxy-2-oxidobenzylidene)amino]propanolato}bis{μ2-3-[(4-methoxy-2-oxidobenzylidene)amino]propanolato}tetracopper(II), [Cu4(C11H13NO3)4], has been synthesized and characterized using elemental analysis, FT-IR, solid-state UV-Vis spectroscopy and single-crystal X-ray diffraction. The crystal structure determination shows that the complex is a stepped tetranuclear structure consisting of two dinuclear [Cu2(L)2] units {L is 3-[(4-methoxy-2-oxidobenzylidene)amino]propanolate}. The two terminal Cu(II) atoms are four-coordinated in square-planar environments, while the two central Cu(II) atoms are five-coordinated in square-pyramidal environments. The solid-state photoluminescence properties of both the complex and 3-[(2-hydroxy-4-methoxybenzylidene)amino]propanol (H2L) have been investigated at room temperature in the visible region. When the complex and H2L are excited under UV light at 349 nm, the complex displays a strong blue emission at 469 nm and H2L displays a green emission at 515 nm.

  6. Synthesis and characterization of mononuclear copper(II complex of tetradentate N2S2 donor set and the study of DNA and bovine serum albumin binding

    Directory of Open Access Journals (Sweden)

    Sandipan Sarkar

    2014-12-01

    Full Text Available One mononuclear copper(II complex, containing neutral tetradentate NSSN-type ligands, of formulation [Cu II(L 1Cl]ClO 4 (1, was synthesized and isolated in pure form [where L 1˭ 1,3-bis(3-pyridylmethylthiopropane]. Green-colored copper(II complex was characterized by physicochemical, spectroscopic methods and conductivity measurement. These experimental data matched well with the proposed structure of the complex. Biological activity of the complex (1 toward calf thymus DNA and bovine serum albumin has been examined systematically and groove-binding behavior of the Copper(II complex 1 with calf thymus DNA has been observed from the spectral study.

  7. Structural and binding properties of two paralogous fatty acid binding proteins of Taenia solium metacestode.

    Directory of Open Access Journals (Sweden)

    Seon-Hee Kim

    Full Text Available BACKGROUND: Fatty acid (FA binding proteins (FABPs of helminths are implicated in acquisition and utilization of host-derived hydrophobic substances, as well as in signaling and cellular interactions. We previously demonstrated that secretory hydrophobic ligand binding proteins (HLBPs of Taenia solium metacestode (TsM, a causative agent of neurocysticercosis (NC, shuttle FAs in the surrounding host tissues and inwardly transport the FAs across the parasite syncytial membrane. However, the protein molecules responsible for the intracellular trafficking and assimilation of FAs have remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: We isolated two novel TsMFABP genes (TsMFABP1 and TsMFABP2, which encoded 133- and 136-amino acid polypeptides with predicted molecular masses of 14.3 and 14.8 kDa, respectively. They shared 45% sequence identity with each other and 15-95% with other related-members. Homology modeling demonstrated a characteristic β-barrel composed of 10 anti-parallel β-strands and two α-helices. TsMFABP2 harbored two additional loops between β-strands two and three, and β-strands six and seven, respectively. TsMFABP1 was secreted into cyst fluid and surrounding environments, whereas TsMFABP2 was intracellularly confined. Partially purified native proteins migrated to 15 kDa with different isoelectric points of 9.2 (TsMFABP1 and 8.4 (TsMFABP2. Both native and recombinant proteins bound to 11-([5-dimethylaminonaphthalene-1-sulfonyl]aminoundecannoic acid, dansyl-DL-α-amino-caprylic acid, cis-parinaric acid and retinol, which were competitively inhibited by oleic acid. TsMFABP1 exhibited high affinity toward FA analogs. TsMFABPs showed weak binding activity to retinol, but TsMFABP2 showed relatively high affinity. Isolation of two distinct genes from an individual genome strongly suggested their paralogous nature. Abundant expression of TsMFABP1 and TsMFABP2 in the canal region of worm matched well with the histological distributions

  8. Structural and Binding Properties of Two Paralogous Fatty Acid Binding Proteins of Taenia solium Metacestode

    Science.gov (United States)

    Yang, Hyun-Jong; Shin, Joo-Ho; Diaz-Camacho, Sylvia Paz; Nawa, Yukifumi; Kang, Insug; Kong, Yoon

    2012-01-01

    Background Fatty acid (FA) binding proteins (FABPs) of helminths are implicated in acquisition and utilization of host-derived hydrophobic substances, as well as in signaling and cellular interactions. We previously demonstrated that secretory hydrophobic ligand binding proteins (HLBPs) of Taenia solium metacestode (TsM), a causative agent of neurocysticercosis (NC), shuttle FAs in the surrounding host tissues and inwardly transport the FAs across the parasite syncytial membrane. However, the protein molecules responsible for the intracellular trafficking and assimilation of FAs have remained elusive. Methodology/Principal Findings We isolated two novel TsMFABP genes (TsMFABP1 and TsMFABP2), which encoded 133- and 136-amino acid polypeptides with predicted molecular masses of 14.3 and 14.8 kDa, respectively. They shared 45% sequence identity with each other and 15–95% with other related-members. Homology modeling demonstrated a characteristic β-barrel composed of 10 anti-parallel β-strands and two α-helices. TsMFABP2 harbored two additional loops between β-strands two and three, and β-strands six and seven, respectively. TsMFABP1 was secreted into cyst fluid and surrounding environments, whereas TsMFABP2 was intracellularly confined. Partially purified native proteins migrated to 15 kDa with different isoelectric points of 9.2 (TsMFABP1) and 8.4 (TsMFABP2). Both native and recombinant proteins bound to 11-([5-dimethylaminonaphthalene-1-sulfonyl]amino)undecannoic acid, dansyl-DL-α-amino-caprylic acid, cis-parinaric acid and retinol, which were competitively inhibited by oleic acid. TsMFABP1 exhibited high affinity toward FA analogs. TsMFABPs showed weak binding activity to retinol, but TsMFABP2 showed relatively high affinity. Isolation of two distinct genes from an individual genome strongly suggested their paralogous nature. Abundant expression of TsMFABP1 and TsMFABP2 in the canal region of worm matched well with the histological distributions of lipids

  9. Structure and Magnetoresistive Properties of Thee-layer Film Systems Based on Permalloy and Copper

    Directory of Open Access Journals (Sweden)

    Yu.O. Shkurdoda

    2016-06-01

    Full Text Available Structural and phase composition and magnetoresistive properties of three-layer film systems based on permalloy and copper were investigated. The samples were obtained by layer by layer condensation method with followed heat treatment to the 300-700 K temperature range. Shown that the spin-dependent scattering of electrons realizing in the range of layer thicknesses (dCu = 6-15 nm and dPy = 25-40 nm of the condensed and annealed at 400 K samples. The Maximum GMR observed after annealing the samples at 400 K and annealing to 550 K leads to anisotropic magnetoresistance occurrence.

  10. Synthesis, structural characterization and thermal properties of copper and silver silyl complexes.

    Science.gov (United States)

    Sgro, Michael J; Piers, Warren E; Romero, Patricio E

    2015-02-28

    The synthesis of copper and silver silyl complexes containing either N-heterocyclic carbenes or nitrogen donors is described. Alterations made to both the neutral donor ligands as well as the silyl group provided access to a number of different compounds. Many of the complexes synthesized were studied in the solid state and the effect of the donor ligand on the final structure of the complexes was examined. The thermal properties of the complexes were explored using thermogravimetric analysis, differential scanning calorimetry and sublimations. Some of the complexes synthesized were demonstrated to be promising volatile metal precursors.

  11. Mechanical Properties and Friction/Wear Behavior of Copper Alloyed Powder Composites

    Institute of Scientific and Technical Information of China (English)

    DENG Chen-hong; CHEN Guang-zhi; GE Qi-lu

    2005-01-01

    Copper alloyed powder composites containing nanoparticles were developed by hot pressing. Effects of nanoscale activated sintering aid and fine ceramic particles Al2O3 on hardness, working quality, and behaviors of friction and wear of the composites have been studied, compared with the composites including microscale activated sintering aid and microscale ceramic particles. The microstructures of the samples were analyzed by SEM. The results show that the materials with nanoscale sintering aid and fine ceramic particles have better mechanical properties and abrasive resistance than the materials with microscale activated sintering aid and microceramic particles. Moreover, element mutual transfer occurs between samples (strip) and abrasive wheel (ring).

  12. Estimation of dynamic properties of attractors observed in hollow copper electrode atmospheric pressure arc plasma system

    Indian Academy of Sciences (India)

    S Ghorul; S N Sahasrabudhe; P S S Murthy; A K Das; N Venkatramani

    2002-07-01

    Understanding of the basic nature of arc root fluctuation is still one of the unsolved problems in thermal arc plasma physics. It has direct impact on myriads of thermal plasma applications being implemented at present. Recently, chaotic nature of arc root behavior has been reported through the analysis of voltages, acoustic and optical signals which are generated from a hollow copper electrode arc plasma torch. In this paper we present details of computations involved in the estimation process of various dynamic properties and show how they reflect chaotic behavior of arc root in the system.

  13. Modulation of Mitochondriotropic Properties of Cyanine Dyes by in Organello Copper-Free Click Reaction.

    Science.gov (United States)

    Negwer, Inka; Hirsch, Markus; Kaloyanova, Stefka; Brown, Tom; Peneva, Kalina; Butt, Hans-Jürgen; Koynov, Kaloian; Helm, Mark

    2017-09-19

    Cyanine (Cy) dyes show a general propensity to localize in polarized mitochondria. This mitochondriotropism was used to perform a copper-free click reaction in the mitochondria of living cells. The in organello reaction of dyes Cy3 and Cy5 led to a product that was easily traceable by Förster resonance energy transfer (FRET). As determined by confocal laser scanning microscopy, the Cy3-Cy5 conjugate showed enhanced retention in mitochondria, relative to that of the starting compounds. This enhancement of a favorable property can be achieved by synthesis in organello, but not outside mitochondria. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Explosive scarf welding of aluminum to copper plates and their interface properties

    Energy Technology Data Exchange (ETDEWEB)

    Ashani, J.Z.; Bagheri, S.M. [Mechanical Engineering Department, K. N. Toosi University of Technology, Tehran (Iran)

    2009-09-15

    Explosive welding was used to produce scarf joint between aluminum and copper plates. This process is known as explosive scarf welding (ESW). In a scarf joint, the final bond interface is oblique. In this study, chamfered end of aluminum and copper plates were joined explosively and named scarf joint, employing changes in chamfered angle at different stand-off distance and explosive loading. The geometry of scarf joint enables consideration of both flyer and base plate thickness and explosive loading and the effects on mechanical properties of interface such as bond shear strength and micro-hardness can be investigated. Mathematical models developed on the interface properties of scarf joint to make relationship between the bond shear strength and explosive loading ratio. To check the adequacy of developed models, mechanical properties of interface, such as bond shear strength was predicted and compared with actual values in explosive cladding process. The results show reasonable agreement with theoretical predictions. Consequently, mathematical model which is based on scarf joints, can predict bond shear strength of cladding metals under desired explosive loading and flyer plate thickness. (Abstract Copyright [2009], Wiley Periodicals, Inc.) [German] Sprengschweissen von Aluminium - Kupferplatten und ihre Grenzflaecheneigenschaften. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  15. A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property.

    Science.gov (United States)

    Zhang, Erlin; Li, Fangbing; Wang, Hongying; Liu, Jie; Wang, Chunmin; Li, Muqin; Yang, Ke

    2013-10-01

    Copper element was added in pure titanium by a powder metallurgy to produce a new antibacterial titanium-copper alloy (Ti-Cu alloy). This paper reported the very early stage results, emphasizing on the preparation, mechanical property and antibacterial activity. The phase constitution was analyzed by XRD and the microstructure was observed under SEM equipped with EDS. The hardness, the compressive strength and the corrosion resistance of Ti-Cu alloy were tested in comparison with cp-Ti. The antibacterial property of the Ti-Cu alloy was assessed by two methods: agar diffusion assay and plate-count method, in which Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were used. XRD and SEM results showed that Ti2Cu phase and Cu-rich phase were synthesized in the Ti-Cu sintered alloy, which significantly increases the hardness and the compressive strength compared with cp-Ti and slightly improves the corrosion resistance. No antibacterial activity was detected by the agar diffusion assay on the Ti-Cu alloy, but the plate-count results indicated that the Ti-Cu alloy exhibited strong antibacterial property against both bacteria even after three polishing treatments, which demonstrates strongly that the whole alloy is of antibacterial activity. The antibacterial mechanism was thought to be in associated with the Cu ion released from the Ti-Cu alloy. © 2013.

  16. Heme binding properties of glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Hannibal, Luciana; Collins, Daniel; Brassard, Julie; Chakravarti, Ritu; Vempati, Rajesh; Dorlet, Pierre; Santolini, Jérôme; Dawson, John H; Stuehr, Dennis J

    2012-10-30

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that also functions in transcriptional regulation, oxidative stress, vesicular trafficking, and apoptosis. Because GAPDH is required for the insertion of cellular heme into inducible nitric oxide synthase [Chakravarti, R., et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009], we extensively characterized the heme binding properties of GAPDH. Substoichiometric amounts of ferric heme bound to GAPDH (one heme per GAPDH tetramer) to form a low-spin complex with UV-visible maxima at 362, 418, and 537 nm and when reduced to ferrous gave maxima at 424, 527, and 559 nm. Ferric heme association and dissociation rate constants at 10 °C were as follows: k(on) = 17800 M(-1) s(-1), k(off1) = 7.0 × 10(-3) s(-1), and k(off2) = 3.3 × 10(-4) s(-1) (giving approximate affinities of 19-390 nM). Ferrous heme bound more poorly to GAPDH and dissociated with a k(off) of 4.2 × 10(-3) s(-1). Magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic data on the ferric, ferrous, and ferrous-CO complexes of GAPDH showed that the heme is bis-ligated with His as the proximal ligand. The distal ligand in the ferric complex was not displaced by CN(-) or N(3)(-) but in the ferrous complex could be displaced by CO at a rate of 1.75 s(-1) (for >0.2 mM CO). Studies with heme analogues revealed selectivity toward the coordinating metal and porphyrin ring structure. The GAPDH-heme complex was isolated from bacteria induced to express rabbit GAPDH in the presence of δ-aminolevulinic acid. Our finding of heme binding to GAPDH expands the protein's potential roles. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH are consistent with it performing heme sensing or heme chaperone-like functions in cells.

  17. Long-Term Effects of Legacy Copper Contamination on Microbial Activity and Soil Physical Properties

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Holmstrup, Martin

    Soils heavily contaminated with copper (Cu) are considered unsuitable for agricultural use due to adverse impacts on microbial activity, soil physical properties, and direct toxicity to crops. This study investigated effects of Cu pollution from timber preservation activities between 1911 and 1924......, Denmark. Soil samples obtained from the fallow field were used to determine total microbial activity using fluorescein diacetate and dehydrogenase assays. The physical properties measured included water-dispersible clay, bulk density, air permeability and air-filled porosity. Significant differences...... in microbial activity (for both assays) were observed at Cu concentrations >500 mg kg-1. Although, unfavorable changes in all physical properties were obvious for Cu concentrations >500 mg kg-1, significant increases in bulk density and water dispersible-clay, together with decreases in total porosity, air...

  18. Modified activated carbons with amino groups and their copper adsorption properties in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Mohammad Hassan Mahaninia; Paria Rahimian; Tahereh Kaghazchi

    2015-01-01

    Activated carbons were prepared by two chemical methods and the adsorption of Cu (II) on activated carbons from aqueous solution containing amino groups was studied. The first method involved the chlorination of activated carbon following by substitution of chloride groups with amino groups, and the second involved the nitrilation of activated carbon with reduction of nitro groups to amino groups. Resultant activated carbons were characterized in terms of porous structure, elemental analysis, FTIR spectroscopy, XPS, Boehm titration, and pHzpc. Kinetic and equilibrium tests were performed for copper adsorption in the batch mode. Also, adsorption mechanism and effect of pH on the adsorption of Cu (II) ions were discussed. Adsorption study shows enhanced adsorption for copper on the modified activated carbons, mainly by the presence of amino groups, and the Freundlich model is applicable for the activated carbons. It is suggested that binding of nitrogen atoms with Cu (II) ions is stronger than that with H+ions due to relatively higher divalent charge or stronger electrostatic force.

  19. Synthesis, spectral characterization, DNA binding ability and antibacterial screening of copper(II) complexes of symmetrical NOON tetradentate Schiff bases bearing different bridges

    Science.gov (United States)

    Bahaffi, Saleh O.; Abdel Aziz, Ayman A.; El-Naggar, Maher M.

    2012-08-01

    A novel series of four copper(II) complexes were synthesized by thermal reaction of copper acetate salt with symmetrical tetradentate Schiff bases, N,N'bis(o-vanillin)4,5-dimethyl-l,2-phenylenediamine (H2L1), N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L2), N,N'bis(o-vanillin)4,5-dichloro-1,2-phenylenediamine (H2L3) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L4), respectively. All the new synthesized complexes were characterized by using of microanalysis, FT-IR, UV-Vis, magnetic measurements, ESR, and conductance measurements, respectively. The data revealed that all the Schiff bases (H2L1-4) coordinate in their deprotonated forms and behave as tetradentate NOON coordinated ligands. Moreover, their copper(II) complexes have square planar geometry with general formula [CuL1-4]. The binding of the complexes with calf thymus DNA (CT-DNA) was investigated by UV-Vis spectrophotometry, fluorescence quenching and viscosity measurements. The results indicated that the complexes bind to CT-DNA through an intercalative mode. From the biological activity view, the copper(II) complexes and their parent ligands were screened for their in vitro antibacterial activity against the bacterial species Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosai by well diffusion method. The complexes showed an increased activity in comparison to some standard drugs.

  20. Synthesis of mononuclear copper(II) complexes of acyclic Schiff's base ligands: Spectral, structural, electrochemical, antibacterial, DNA binding and cleavage activity

    Science.gov (United States)

    Jayamani, Arumugam; Thamilarasan, Vijayan; Sengottuvelan, Nallathambi; Manisankar, Paramasivam; Kang, Sung Kwon; Kim, Young-Inn; Ganesan, Vengatesan

    2014-03-01

    The mononuclear copper(II) complexes (1&2) of ligands L1 [N,N";-bis(2-hydroxy-5-methylbenzyl)-1,4-bis(3-iminopropyl)piperazine] or L2 [N,N";-bis(2-hydroxy-5-bromobenzyl)-1,4-bis(3-iminopropyl) piperazine] have been synthesized and characterised. The single crystal X-ray study had shown that ligands L1 and L2 crystallize in a monoclinic crystal system with P21/c space group. The mononuclear copper(II) complexes show one quasireversible cyclic voltammetric response near cathodic region (-0.77 to -0.85 V) in DMF assignable to the Cu(II)/Cu(I) couple. Binding interaction of the complexes with calf thymus DNA (CT DNA) investigated by absorption studies and fluorescence spectral studies show good binding affinity to CT DNA, which imply both the copper(II) complexes can strongly interact with DNA efficiently. The copper(II) complexes showed efficient oxidative cleavage of plasmid pBR322 DNA in the presence of 3-mercaptopropionic acid as reducing agent through a mechanistic pathway involving formation of singlet oxygen as the reactive species. The Schiff bases and their Cu(II) complexes have been screened for antibacterial activities which indicates that the complexes exhibited higher antimicrobial activity than the free ligands.

  1. Final report on characterization of physical and mechanical properties of copper and copper alloys before and after irradiation. (ITER R and D Task no. T213)

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N.; Taehtinen, S. [VTT Manufacturing Technology (Finland)

    2001-12-01

    The present report summarizes and highlights the main results of the work carried out during the last 5 - 6 years on effects of neutron irradiation on physical and mechanical properties of copper and copper alloys. The work was an European contribution to ITER Research and Development programme and was carried out by the Associations Euratom - Risoe and Euratom - Tekes. Details of the investigations carried out within the framework of the present task and the main results have been reported in various reports and journal publication. On the basis of these results some conclusions are drawn regarding the suitability of a copper alloy for its use in the first wall and divertor components of ITER. It is pointed out that the present work has managed only to identify some of the critical problems and limitations of the copper alloys for their employment in the hostile environment of 14 MeV neutrons. A considerable amount of further effort is needed to find a realistic and optimum solution. (au)

  2. Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate

    Science.gov (United States)

    Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Muhammad, Niaz; Shah, Naseer Ali; Sohail, Manzar; Pandarinathan, Vedapriya

    2015-08-01

    A new binuclear O-bridged Cu(II) complex with 4-chlorophenyl acetate and 2,2‧-bipyridine has been synthesized and characterized using FT-IR, powder and single crystal XRD and electrochemical solution studies. The results revealed that the two penta-coordinated Cu(II) centers are linked by two carboxylate ligands in end-on bonding fashion. The coordination geometry is slightly distorted square pyramidal (SP) with bridging oxygen atoms occupying the apical position and other ligands lying in the equatorial plane. The striking difference in Cu-O bond distance of the bridging oxygen atom in the complex may be responsible for the SP geometry of Cu(II) ion. The complex gave rise to metal centered irreversible electro-activity where one electron Cu(II)/Cu(III) oxidation process and a single step two electron Cu(II)/Cu(0) reduction process was observed. The redox processes were found predominantly adsorption controlled. The values of diffusion coefficient and heterogeneous rate constant for oxidation process were 6.98 × 10-7 cm2 s-1 and 4.60 × 10-5 cm s-1 while the corresponding values for reduction were 5.30 × 10-8 cm2 s-1 and 5.41 × 10-6 cm s-1, respectively. The formal potential and charge transfer coefficient were also calculated. The DNA-binding ability was explored through cyclic voltammetry and UV-Visible spectroscopy. Diminution in the value of Do for oxidation indicated the binding of the complex with DNA corresponding to Kb = 8.58 × 104 M-1. UV-Visible spectroscopy yielded ε = 49 L mol-1 cm-1 and Kb = 2.96 × 104 M-1. The data of both techniques support each other. The self-induced redox activation of the complex, as indicated by cyclic voltammetry heralds its potential applications in redox catalysis and anticancer activity.

  3. Corrigendum to "Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate" [J. Mol. Struct. 1093 (2015) 135-143

    Science.gov (United States)

    Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Muhammad, Niaz; Shah, Naseer Ali; Sohail, Manzar; Pandarinathan, Vedapriya

    2017-04-01

    The authors regret to inform that Scheme 1 in the article titled 'Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate' in vol. 1093 of the Journal of Molecular Structure is incorrect. The corrected scheme is as shown in this correction. This is purely a copy error. The error does not affect the conclusion in paper. The authors would like to apologize for any inconvenience caused.

  4. Effects of Nitrogen Concentration on Microstructure and Antibac-terial Property of Copper-Bearing Austenite Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    Zhixia ZHANG; Laizhu JIANG; Gang LIN; Zhou XU

    2008-01-01

    Austenite antibacterial stainless steels have been found to have wide applications in hospitals and food indus-tries. In recent years epsilon copper precipitation in antibacterial stainless steels has obtained much research interest due to its antibacterial action. The objective of this study was to determine the effects of nitro-gen concentration on the precipitation of epsilon copper and antibacterial property. Two kinds of austenite antibacterial stainless steels containing copper and different nitrogen concentration (0.02 and 0.08 wt pct, re-spectively) were prepared and the microstructures were characterized by a combination of electron microscopy and thermodynamic analysis. A mathematical expression was deduced to predict the effect of nitrogen con-centration on the activity coefficient of copper, In(fCu/focu)=0.53524+4.11xN-0.48x2N. Higher nitrogen was found to increase the free energy difference of copper concentration distribution between precipitation phase and austenite matrix, stimulate the aggregation of copper atoms from austenite, increase the precipitation amount and consequently enhance the antibacterial property of steel.

  5. Interaction of Alginate/Copper System on Cotton and Bamboo Fabrics: The Effect on Antimicrobial Activity and Thermophysiological Comfort Properties

    Directory of Open Access Journals (Sweden)

    Muhammet UZUN

    2013-09-01

    Full Text Available Antimicrobialagent treated materials have been widely used clinically as medical devices and articles, in which the active substances, such as antimicrobial molecules, are present on or in the matrix of the surface of the devices and articles.This study aims to treat a selection of fabrics with alginate/copper, and then determine the treated fabrics’antimicrobial activity against two common Gram-positive and Gram-negative bacteria. It is also aimed to analyse and evaluate the thermophysiological properties of the treated fabrics. Cotton, organic cotton and bamboo woven fabrics were employed. The fabrics were applied in 1 %, 3 % and 5 %w/v copper solutions andsubsequentlyspecimens were subjected to 10 min and 20 min ultrasonic energy treatment. The results clearly demonstrated that the cotton and organic cotton fabrics were successfully treatedwith the alginate/copper and the treated fabrics showed considerable zone of inhibitions. The bamboo fabric did not appear to bond effectively with the copper alginate, andas the result,the fabrics did not display any improved bacterial protection against the chosen bacteria. In fact the bamboo fabric lost its natural antimicrobialproperties after the alginate and copper treatment.The thermophysiological comfort properties of the treated cotton fabrics changed significantly; on the other hand, the treated bamboo fabrics were not affected by the copper treatment.  DOI: http://dx.doi.org/10.5755/j01.ms.19.3.1217

  6. POROSITY AND STRENGTH PROPERTIES OF GYPSUM BONDED INVESTMENT USING TERENGGANU LOCAL SILICA FOR COPPER ALLOYS CASTING

    Directory of Open Access Journals (Sweden)

    S. Z. M. NOR

    2015-07-01

    Full Text Available In this study, several formulations of gypsum bonded investment (GBI as a mould for copper alloy casting has been developed and their properties had been investigated. The mould was developed using Terengganu local silica sand with the average particle size of 220–250 µm, acted as a refractory and Plaster of Paris (POP as a binder. The formulations used were 75% local silica, 25% plaster and various amounts (31–37% of water. The compressive strength, tensile strength, porosity, core hardness and mould hardness properties of the prepared GBI were studied. It has been found that both compressive strength and tensile strength reduced with a water content due to an increment of mould porosity which was confirmed via Scanning Electron Microscopy analysis. The mould hardness was found unchanged, but the core hardness was slightly reduced with the increment of water. The compressive strength of GBI moulds developed in this work was in the range of 600–1100 kN/m2, which was sufficient for copper alloy casting.

  7. Characterization and nanomechanical properties of novel dental implant coatings containing copper decorated-carbon nanotubes.

    Science.gov (United States)

    Sasani, N; Vahdati Khaki, J; Mojtaba Zebarjad, S

    2014-09-01

    Fluorapatite-titania coated Ti-based implants are promising for using in dental surgery for restoring teeth. One of the challenges in implantology is to achieve a bioactive coating with appropriate mechanical properties. In this research, simple sol-gel method was developed for synthesis of fluorapatite-titania-carbon nanotube decorated with antibacterial agent. Triethyl phosphate [PO4(C2H5)3], calcium nitrate [Ca(NO3)2] and ammonium fluoride (NH4F) were used as precursors under an ethanol-water based solution for fluorapatite (FA) production. Titanium isopropoxide and isopropanol were used as starting materials for making TiO2 sol-gels. Also, Copper acetate [Cu(C2H3O2)2·H2O] was used as precursor for decoration of multi walled carbon nanotubes (MWCNTs) with wet chemical method. The decorated MWCNTs (CNT(Cu)) were evaluated by transmission electron microscopy (TEM). The phase identification of the FA-TiO2-CNT(Cu) coating was carried out by XRD analysis. Morphology of coated samples was investigated by SEM observations. The surface elastic modulus and hardness of coatings were studied using nanoindentation technique. The results indicate that novel dental implant coating containing FA, TiO2 and copper decorated MWCNTs have proper morphological features. The results of nanoindentation test show that incorporation of CNT(Cu) in FA-TiO2 matrix can improve the nanomechanical properties of composite coating.

  8. Investigation of the antiviral properties of copper iodide nanoparticles against feline calicivirus.

    Science.gov (United States)

    Shionoiri, Nozomi; Sato, Tetsuya; Fujimori, Yoshie; Nakayama, Tsuruo; Nemoto, Michiko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2012-05-01

    This study demonstrated the antiviral properties of copper iodide (CuI) nanoparticles against the non-enveloped virus feline calicivirus (FCV) as a surrogate for human norovirus. The effect of CuI nanoparticles on FCV infectivity to Crandell-Rees feline kidney (CRFK) cells was elucidated. The infectivity of FCV to CRFK cells was greatly reduced by 7 orders of magnitude at 1000μgml(-1) CuI nanoparticles. At the conditions, electron spin resonance (ESR) analysis proved hydroxyl radical production in CuI nanoparticle suspension. Furthermore, amino acid oxidation in the viral capsid protein of FCV was determined by nanoflow liquid chromatography-mass spectrometric (nano LC-MS) analysis. The use of CuI nanoparticles showed extremely high antiviral activity against FCV. The high antiviral property of CuI nanoparticles was attributed to Cu(+), followed by ROS generation and subsequent capsid protein oxidation. CuI nanoparticles could be proposed as useful sources of a continuous supply of Cu(+) ions for efficient virus inactivation. Furthermore, this study brings new insights into toxic actions of copper iodide nanoparticles against viruses. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Influence of binding material of PZT coating on microresonator's electrical and mechanical properties

    Science.gov (United States)

    Janusas, Giedrius; Guobiene, Asta; Palevicius, Arvydas; Brunius, Alfredas; Cekas, Elingas; Baltrusaitis, Valentinas; Sakalys, Rokas

    2017-06-01

    Microresonators are fundamental components integrated in hosts of MEMS applications: covering the automotive sector, the telecommunication industry, electronic equipment for surface/material characterization and motion sensing, and etc. The aim of this paper is to investigate the mechanical and electrical properties of PZT film fabricated with three binding materials: polyvinyl butyral (PVB), polymethyl methacrylate (PMMA) and polystyrene (PS) and to evaluate applicability in control of microresonators Q factor. Micro particles of PZT powder were mixed with 20% solution of PVB, PMMA and PS in benzyl alcohol. For investigation of mechanical and electrical properties multilayer cantilevers were made. Obtained PZT and polymer paste was screen printed on copper (thickness 40 μm) using polyester monofilament screen meshes (layer thickness 50 μm) and dried for 30 min at 100°C. Electric dipoles of the PZT particles in composite material were aligned using high voltage generator (5 kV) and a custom-made holder. Electric field was held for 30 min. Surfaces of the applied films were investigated by Atomic Force Microscope NanoWizard(R)3 NanoScience. Dynamic and electrical characteristics of the multilayer were investigated using laser triangular displacement sensor LK-G3000. The measured vibration amplitude and generated electrical potential was collected with USB oscilloscope PicoScope 3424. As the results showed, these cantilevers were able to transform mechanical strain energy into electric potential and, v.v. However, roughness of PZT coatings with PMMA and PS were higher, what could be the reason of the worse quality of the top electrode. However, the main advantage of the created composite piezoelectric material is the possibility to apply it on any uniform or non-uniform vibrating surface and to transform low frequency vibrations into electricity.

  10. Model Peptide Studies Reveal a Mixed Histidine-Methionine Cu(I) Binding Site at the N-Terminus of Human Copper Transporter 1.

    Science.gov (United States)

    Pushie, M Jake; Shaw, Katharine; Franz, Katherine J; Shearer, Jason; Haas, Kathryn L

    2015-09-08

    Copper is a vital metal cofactor in enzymes that are essential to myriad biological processes. Cellular acquisition of copper is primarily accomplished through the Ctr family of plasma membrane copper transport proteins. Model peptide studies indicate that the human Ctr1 N-terminus binds to Cu(II) with high affinity through an amino terminal Cu(II), Ni(II) (ATCUN) binding site. Unlike typical ATCUN-type peptides, the Ctr1 peptide facilitates the ascorbate-dependent reduction of Cu(II) bound in its ATCUN site by virtue of an adjacent HH (bis-His) sequence in the peptide. It is likely that the Cu(I) coordination environment influences the redox behavior of Cu bound to this peptide; however, the identity and coordination geometry of the Cu(I) site has not been elucidated from previous work. Here, we show data from NMR, XAS, and structural modeling that sheds light on the identity of the Cu(I) binding site of a Ctr1 model peptide. The Cu(I) site includes the same bis-His site identified in previous work to facilitate ascorbate-dependent Cu(II) reduction. The data presented here are consistent with a rational mechanism by which Ctr1 provides coordination environments that facilitate Cu(II) reduction prior to Cu(I) transport.

  11. Binding of copper(II) polypyridyl complexes to DNA and consequences for DNA-based asymmetric catalysis.

    Science.gov (United States)

    Draksharapu, Apparao; Boersma, Arnold J; Leising, Miriam; Meetsma, Auke; Browne, Wesley R; Roelfes, Gerard

    2015-02-28

    The interaction between salmon testes DNA (st-DNA) and a series of Cu(II) polypyridyl complexes, i.e. [Cu(dmbpy)(NO3)2] (1) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine), [Cu(bpy)(NO3)2] (2) (bpy = 2,2'-bipyridine), [Cu(phen)(NO3)2] (3) (phen = phenanthroline), [Cu(terpy)(NO3)2]·H2O (4) (terpy = 2,2':6',2″-terpyridine), [Cu(dpq)(NO3)2] (5) (dpq = dipyrido-[3,2-d:2',3'-f]-quinoxaline) and [Cu(dppz)(NO3)2] (6) (dppz = dipyrido[3,2-a:2',3'-c]phenazine) was studied by UV/Vis absorption, Circular Dichroism, Linear Dichroism, EPR, Raman and (UV and vis) resonance Raman spectroscopies and viscometry. These complexes catalyse enantioselective C-C bond forming reactions in water with DNA as the source of chirality. Complex 1 crystallizes as an inorganic polymer with nitrate ligands bridging the copper ions, which adopt essentially a distorted square pyramidal structure with a fifth bridging nitrate ligand at the axial position. Raman spectroscopy indicates that in solution the nitrate ligands in 1, 2, 3 and 4 are displaced by solvent (H2O). For complex 1, multiple supramolecular species are observed in the presence of st-DNA in contrast to the other complexes, which appear to interact relatively uniformly as a single species predominantly, when st-DNA is present. Overall the data suggest that complexes 1 and 2 engage primarily through groove binding with st-DNA while 5 and 6 undergo intercalation. For complexes 3 and 4 the data indicates that both groove binding and intercalation takes place, albeit primarily intercalation. Although it is tempting to conclude that the groove binders give highest ee and rate acceleration, it is proposed that the flexibility and dynamics in binding of Cu(II) complexes to DNA are key parameters that determine the outcome of the reaction. These findings provide insight into the complex supramolecular structure of these DNA-based catalysts.

  12. Tensile properties of copper alloyed austempered ductile iron: Effect of austempering parameters

    Science.gov (United States)

    Batra, U.; Ray, S.; Prabhakar, S. R.

    2004-10-01

    A ductile iron containing 0.6% copper as the main alloying element was austenitized at 850 °C for 120 min and was subsequently austempered for 60 min at austempering temperatures of 270, 330, and 380 °C. The samples were also austempered at 330 °C for austempering times of 30 150 min. The structural parameters for the austempered alloy austenite (X γ ), average carbon content (C γ ), the product X γ C γ , and the size of the bainitic ferrite needle (d α ) were determined using x-ray diffraction. The effect of austempering temperature and time has been studied with respect to tensile properties such as 0.2% proof stress, ultimate tensile strength (UTS), percentage of elongation, and quality index. These properties have been correlated with the structural parameters of the austempered ductile iron microstructure. Fracture studies have been carried out on the tensile fracture surfaces of the austempered ductile iron (ADI).

  13. Distinct binding properties of TIAR RRMs and linker region.

    Science.gov (United States)

    Kim, Henry S; Headey, Stephen J; Yoga, Yano M K; Scanlon, Martin J; Gorospe, Myriam; Wilce, Matthew C J; Wilce, Jacqueline A

    2013-04-01

    The RNA-binding protein TIAR is an mRNA-binding protein that acts as a translational repressor, particularly important under conditions of cellular stress. It binds to target mRNA and DNA via its RNA recognition motif (RRM) domains and is involved in both splicing regulation and translational repression via the formation of "stress granules." TIAR has also been shown to bind ssDNA and play a role in the regulation of transcription. Here we show, using surface plasmon resonance and nuclear magnetic resonance spectroscopy, specific roles of individual TIAR domains for high-affinity binding to RNA and DNA targets. We confirm that RRM2 of TIAR is the major RNA- and DNA-binding domain. However, the strong nanomolar affinity binding to U-rich RNA and T-rich DNA depends on the presence of the six amino acid residues found in the linker region C-terminal to RRM2. On its own, RRM1 shows preferred binding to DNA over RNA. We further characterize the interaction between RRM2 with the C-terminal extension and an AU-rich target RNA sequence using NMR spectroscopy to identify the amino acid residues involved in binding. We demonstrate that TIAR RRM2, together with its C-terminal extension, is the major contributor for the high-affinity (nM) interactions of TIAR with target RNA sequences.

  14. Ligand effects on the structures and magnetic properties of tricyanomethanide-containing copper(II) complexes.

    Science.gov (United States)

    Yuste, Consuelo; Bentama, Abdeslem; Stiriba, Salah-Eddine; Armentano, Donatella; De Munno, Giovanni; Lloret, Francesc; Julve, Miguel

    2007-11-28

    The preparation, crystal structure and magnetic properties of four heteroleptic copper(II) complexes with the tricyanomethanide (tcm(-)) and the heterocyclic nitrogen donors 3,6-bis(2-pyridyl)pyridazine (dppn), 2,5-bis(2-pyridyl)pyrazine (2,5-dpp), 2,3-bis(2-pyridyl)pyrazine (2,3-dpp) and 2,3-bis(2-pyridyl)quinoxaline (2,3-dpq) are reported, {[Cu(2)(dppn)(OH)(tcm)(2)] x tcm}(n) (1), {[Cu(2,5-dpp)(tcm)] x tcm}(n) (2), {[Cu(2)(2,3-dpp)(2)(tcm)(3)(H(2)O)(0.5)] x tcm x 0.5H(2)O}(n) (3) and [Cu(2,3-dpq)(tcm)(2)](n) (4). 1 has a ladder-like structure with single mu-1,5-tcm ligands forming the sides and a bis-bidentate dppn and a single mu-hydroxo providing the rung. Each copper atom in 1 exhibits a distorted square pyramidal CuN(4)O surrounding: the basal plane is built by the hydroxo-oxygen, a nitrile-nitrogen atom from a tcm group and one pyrazine and a pyridyl nitrogen atoms from the dppn whereas the apical position is filled by a nitrile-nitrogen atom from a symmetry-related tcm ligand. The structures of 2-4 consists of zig-zag (2 and 3)/linear (4) chains of copper(II) ions which are bridged by either bis-bidentate 2,5-dpp (2) and 2,3-dpp (3) molecules or single mu-1,5-tcm (4) groups. The copper atoms in 2 and 4 are five coordinated with distorted trigonal bipyramidal (2) and square pyramidal (4) CuN(5) surroundings. The axial positions in 2 are occupied by two pyridyl-nitrogen atoms from two 2,5-dpp ligands whereas the trigonal plane is built by a nitrile-nitrogen from a terminally bound tcm group and two pyrazine nitrogen atoms from two 2,5-dpp molecules. The basal plane in 4 is defined by a pyridyl and a pyrazine nitrogen atoms from the bidentate 2,3-dpq ligand and two nitrile nitrogen atoms from two tcm groups (one terminal and the other bridging) whereas the apical position is filled by a nitrile nitrogen from another tcm ligand. The crystallographically independent copper atoms in 3 [Cu(1) and Cu(2)] exhibit elongated octahedral geometries being defined by four

  15. Syntheses, characterization and properties of silver, copper and palladium complexes from bis(oxazoline)-containing ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kuai, Hai-Wei, E-mail: hyitshy@126.com; Cheng, Xiao-Chun; Li, Deng-Hao; Hu, Tao; Zhu, Xiao-Hong

    2015-08-15

    The reactions of 2,6-di(2-oxazolyl)pyridine (L{sup 1}) and 2,6-bis[(S)-4-phenyl-2-oxazolyl]pyridine (L{sup 2}) with silver, copper and palladium salts to yield six new complexes: ([Ag{sub 5}(L{sup 1}){sub 5}](BF{sub 4}){sub 5}){sub n} (1), ([Ag(L{sup 1})](SbF{sub 6})){sub n} (2), [Cu{sub 4}I{sub 4}(L{sup 1}){sub 2}] (3), [Cu{sub 6}I{sub 6}(L{sup 1}){sub 2}] (4), [Pd(L′{sup 1})(OAc)] (5), [Pd(L′{sup 2})Cl] (6), which were fully characterized by single-crystal and powder X-ray diffraction, IR, elemental and thermogravimetric analyses. 1 and 2 are a pair of Ag-oxazoline helical chain structure complexes. The spiral directions of chains are opposite in 1, while identical in 2; the measurement of CD spectra can further confirm their meso and chiral structures. Complexes 3 and 4 show eight-nuclear and twelve-nuclear iodine–cuprous cluster structure. Their structural diversity is induced by different molar ratios of CuI:L{sup 1}. Complexes 5 and 6 are discrete mononuclear palladium complexes. In situ oxazolyl-ring-opening reactions take place in the syntheses of them and the L{sup 1} and the L{sup 2} were transformed to their oxazolyl-ring opened derivatives L′{sup 1} and L′{sup 2}. Moreover, fluorescence, non-linear optical properties, and ferroelectric properties have been investigated. - Graphical abstract: 2,6-di(2-oxazolyl)pyridine (L{sup 1}) reacts with silver and copper salts to yield helical and cluster structure complexes. - Highlights: • Helical and cluster structure complexes. • In situ oxazolyl-ring-opening reactions. • Fluorescence, non-linear optical properties, and ferroelectric properties.

  16. Mono-nuclear copper complexes mimicking the intermediates for the binuclear copper center of the subunit II of cytochrome oxidase: a peptide based approach.

    Science.gov (United States)

    Dutta Gupta, Dwaipayan; Usharani, Dandamudi; Mazumdar, Shyamalava

    2016-11-28

    Three stable copper complexes of peptides derived from the copper ion binding loop of the subunit II of cytochrome c oxidase have been prepared and characterized by various spectroscopic techniques. These stable copper complexes of peptides were found to exhibit cysteine, histidine and/or methionine ligation, which has predominant σ-contribution in the Cys-Cu charge transfer. The copper(ii) peptide complexes showed type-2 EPR spectra, which is uncommon in copper-cysteinate complexes. UV-visible spectra, Raman and EPR results support a tetragonal structure of the coordination geometry around the copper ion. The copper complex of the 9-amino acid peptide suggested the formation of a 'red' copper center while the copper complexes of the 12- and 11-amino acid peptides showed the formation of a 'green' copper center. The results provide insights on the first stable models of the copper complexes formed in the peptide scaffold that mimic the mono-nuclear copper bound protein intermediates proposed during the formation of the binuclear Cu2S2 core of the enzyme. These three copper complexes of peptides derived from the metal ion binding loop of the CuA center of the subunit II of cytochrome c oxidase showed novel spectroscopic properties which have not so far been reported in any stable small complex.

  17. Simulative Calculation of Mechanical Property, Binding Energy and Detonation Property of TATB/Fluorine-polymer PBX

    Institute of Scientific and Technical Information of China (English)

    MA, Xiu-Fang; XIAO, Ji-Jun; HUANG, Hui; JU, Xue-Hai; LI, Jin-Shan; XIAO, He-Ming

    2006-01-01

    Molecular dynamics (MD) method was used to simulate 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) coated with fluorine containing polymers. The mechanical properties and binding energies of PBXs were obtained. It was found that when the number of chain monomers of fluorine containing polymers was the same, the elasticity of TATB/F2314 was increased more greatly than others and the binding energy of TATB/F2311 was the largest among four PBXs. Detonation heat and velocity of such four PBXs were calculated according to theoretical and empirical formulas. The results show that the order of detonation heat is TATB>TATB/PVDF>TATB/F2311 >TATB/F2314>TATB/PCTFE while the order of detonation velocity is TATB/PVDF<TATB/F2311 <TATB/F2314<TATB/PCTFE<TATB.

  18. Thermal properties of wood-derived silicon carbide and copper-silicon carbide composites

    Science.gov (United States)

    Pappecena, Kristen E.

    Wood-derived ceramics and composites have been of interest in recent years due to their unique microstructures, which lead to tailorable properties. The porosity and pore size distribution of each wood type is different, which yields variations in properties in the resultant materials. The thermal properties of silicon carbide ceramics and copper-silicon carbide composites derived from wood were studied as a function of their pore structures. Wood was pyrolyzed at temperatures ranging from 300-2400°C to yield porous carbon. The progression toward long-range order was studied as a function of pyrolyzation temperature. Biomorphic silicon carbide (bioSiC) is a porous ceramic material resulting from silicon melt infiltration of these porous carbon materials. BioSiC has potential applicability in many high temperature environments, particularly those in which rapid temperature changes occur. To understand the behavior of bioSiC at elevated temperatures, the thermal and thermo-mechanical properties were studied. The thermal conductivity of bioSiC from five precursors was determined using flash diffusivity at temperatures up to 1100°C. Thermal conductivity results varied with porosity, temperature and orientation, and decreased from 42-13 W/mK for porosities of 43-69%, respectively, at room temperature. The results were compared with to object-oriented finite-element analysis (OOF). OOF was also used to model and understand the heat-flow paths through the complex bioSiC microstructures. The thermal shock resistance of bioSiC was also studied, and no bioSiC sample was found to fail catastrophically after up to five thermal shock cycles from 1400°C to room temperature oil. Copper-silicon carbide composites have potential uses in thermal management applications due to the high thermal conductivity of each phase. Cu-bioSiC composites were created by electrodeposition of copper into bioSiC pores. The detrimental Cu-SiC reaction was avoided by using this room temperature

  19. Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akgul, Funda Aksoy, E-mail: fundaaksoy01@gmail.com [Department of Physics, Nigde University, 51240 Nigde (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Akgul, Guvenc, E-mail: guvencakgul@gmail.com [Bor Vocational School, Nigde University, 51700 Nigde (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Yildirim, Nurcan [Department of Physics Engineering, Ankara University, 06100 Ankara (Turkey); Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara (Turkey); Unalan, Husnu Emrah [Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Turan, Rasit [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey)

    2014-10-15

    In this study, effect of the post-deposition thermal annealing on copper oxide thin films has been systemically investigated. The copper oxide thin films were chemically deposited on glass substrates by spin-coating. Samples were annealed in air at atmospheric pressure and at different temperatures ranging from 200 to 600°C. The microstructural, morphological, optical properties and surface electronic structure of the thin films have been studied by diagnostic techniques such as X-ray diffraction (XRD), Raman spectroscopy, ultraviolet–visible (UV–VIS) absorption spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The thickness of the films was about 520 nm. Crystallinity and grain size was found to improve with annealing temperature. The optical bandgap of the samples was found to be in between 1.93 and 2.08 eV. Cupric oxide (CuO), cuprous oxide (Cu{sub 2}O) and copper hydroxide (Cu(OH){sub 2}) phases were observed on the surface of as-deposited and 600 °C annealed thin films and relative concentrations of these three phases were found to depend on annealing temperature. A complete characterization reported herein allowed us to better understand the surface properties of copper oxide thin films which could then be used as active layers in optoelectronic devices such as solar cells and photodetectors. - Highlights: • Effect of post-deposition annealing on copper oxide thin films was investigated. • Structural, optical, and electronic properties of the thin films were determined. • Oxidation states of copper oxide thin films were confirmed by XPS analysis. • Mixed phases of CuO and Cu{sub 2}O were found to coexist in copper oxide thin films.

  20. Effect of Phosphorylation and Copper(II or Iron(II Ions Enrichment on Some Physicochemical Properties of Spelt Starch

    Directory of Open Access Journals (Sweden)

    Jacek Rożnowski

    Full Text Available ABSTRACT: This paper provides an assessment of the effect of saturation of spelt starch and monostarch phosphate with copper or iron ions on selected physicochemical properties of the resulting modified starches. Native and modified spelt starch samples were analyzed for selected mineral element content using Atomic Absorption Spectroscopy (AAS. Thermodynamic properties were measured using DSC, and pasting properties by RVA. Flow curves of 5% pastes were plotted and described using the Herschel-Bulkley model. The structure recovery ratio was measured. AAS analysis established the presence of iron(II and copper(II ions in the samples of modified starches and that potassium and magnesium ions had leached from them. In comparison to unfortified samples, enriching native starch with copper(II ions decreases value of all temperatures of phase transformation about 1.3-2.7 °C, but in case of monostarch phosphates bigger changes (2.8-3.7 °C were observed. Fortified native spelt starch with copper(II ions caused increasing the final viscosity of paste from 362 to 429 mPa·s. However, presence iron(II ions in samples caused reduced its final viscosity by 170 (spelt starch and 103 mPa·s (monostarch phosphate. Furthermore, enriching monostarch phosphate contributed to reduce degree of structure recovery of pastes from 70.9% to 66.6% in case of copper(II ions and to 59.9% in case of iron(II ions.

  1. Site-specific copper-catalyzed oxidation of α-synuclein: tightening the link between metal binding and protein oxidative damage in Parkinson's disease.

    Science.gov (United States)

    Miotto, Marco C; Rodriguez, Esaú E; Valiente-Gabioud, Ariel A; Torres-Monserrat, Valentina; Binolfi, Andrés; Quintanar, Liliana; Zweckstetter, Markus; Griesinger, Christian; Fernández, Claudio O

    2014-05-05

    Amyloid aggregation of α-synuclein (AS) has been linked to the pathological effects associated with Parkinson's disease (PD). Cu(II) binds specifically at the N-terminus of AS and triggers its aggregation. Site-specific Cu(I)-catalyzed oxidation of AS has been proposed as a plausible mechanism for metal-enhanced AS amyloid formation. In this study, Cu(I) binding to AS was probed by NMR spectroscopy, in combination with synthetic peptide models, site-directed mutagenesis, and C-terminal-truncated protein variants. Our results demonstrate that both Met residues in the motif (1)MDVFM(5) constitute key structural determinants for the high-affinity binding of Cu(I) to the N-terminal region of AS. The replacement of one Met residue by Ile causes a dramatic decrease in the binding affinity for Cu(I), whereas the removal of both Met residues results in a complete lack of binding. Moreover, these Met residues can be oxidized rapidly after air exposure of the AS-Cu(I) complex, whereas Met-116 and Met-127 in the C-terminal region remain unaffected. Met-1 displays higher susceptibility to oxidative damage compared to Met-5 because it is directly involved in both Cu(II) and Cu(I) coordination, resulting in closer exposure to the reactive oxygen species that may be generated by the redox cycling of copper. Our findings support a mechanism where the interaction of AS with copper ions leads to site-specific metal-catalyzed oxidation in the protein under physiologically relevant conditions. In light of recent biological findings, these results support a role for AS-copper interactions in neurodegeneration in PD.

  2. Structures, electronic properties and stability phase diagrams for copper(I/II) bromide surfaces.

    Science.gov (United States)

    Altarawneh, Mohammednoor; Marashdeh, Ali; Dlugogorski, Bogdan Z

    2015-04-14

    This study presents a comprehensive periodic slab DFT investigation into structures, electronic properties and thermodynamic stability of all plausible terminations of CuBr and CuBr2 surfaces. We first estimate lattice constants, formation and cohesive energies for the two bulk copper bromides before proceeding to analyse geometrical and electronic features of CuBr and CuBr2 configurations. Surface geometries exhibit, to a large extent, corresponding bulk structures. Nevertheless, certain CuBr2 surfaces experience a downward displacement of the topmost Cu-containing layers. We plot total and projected density of states for bulk and surface geometries of these two copper bromides and calculate their associated Bader's electronic charges. Electronic structure analysis for the bulk and surfaces of these two copper bromides show that CuBr bulk and its most stable surface (CuBr(001)_Br) do not exhibit any metallic character, whereas CuBr2 bulk and its most stable surface (CuBr2(001)_Br) both exhibit metallic characters. The formalism of the ab initio atomistic thermodynamics affords the construction of energy phase diagrams. We predict that the CuBr(001) surface, truncated with Br atoms, is the most stable structure among the considered CuBr slabs at all physically meaningful ranges of the chemical potential of bromine. This surface resembles a c(2 × 2)-bromine sheet that was characterised experimentally from initial interaction of Br2 with a Cu(100) surface. We find that surfaces terminated with the electronegative bromine atoms, if accompanied by significant relaxation, tend to be more stable. Calculated surface energies predict the shapes of CuBr and CuBr2 nanoparticles as the chemical potential of bromine changes.

  3. Copper(II) coordination properties of the integrin ligand sequence PHSRN and its new β-cyclodextrin conjugates.

    Science.gov (United States)

    Magrì, Antonio; D'Alessandro, Franca; Distefano, Donatella A; Campagna, Tiziana; Pappalardo, Giuseppe; Impellizzeri, Giuseppe; La Mendola, Diego

    2012-08-01

    The peptide sequence PHSRN is the second cell binding site of the human fibronectin protein, a glycoprotein which plays a critical adhesive role during development, tissue repair and angiogenesis. The copper(II) complexes with the peptide fragment PHSRN were characterized by potentiometric and UV-visible, CD, EPR spectroscopic methods. Thermodynamic and spectroscopic evidences indicate that at physiological pH, only one copper(II) complex species, [CuLH(-2)], is present and the metal ion is bound to one imidazole and two amide nitrogen atoms (N(Im), 2N(-)) in a tetrahedral distorted square planar coordination. Two new β-cyclodextrin-ethylendiamino derivatives with the PHSRN covalently attached were synthesized as multitargeting molecules, able to have a site-specific recognition sequence, to interact with copper(II) ions and to be a potential carrier of hydrophobic drugs. Copper(II) complexes with these β-cyclodextrin derivatives were characterized by means of potentiometric and spectroscopic techniques. The comparison of the experimental parameters determined at different pH values with those obtained for the parent peptide complex species, shows that at physiological pH the ethylendiamino-β-CD moiety does not influence the peptide interaction with copper ions and the β-CD hydrophobic cavity is not blocked, being available to host hydrophobic drugs such as naproxen.

  4. Effect of copper precipitates on the stability of microstructures and magnetic properties of non-oriented electrical steels

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng; Zeng, Yanping, E-mail: zengyanping@mater.ustb.edu.cn

    2015-10-01

    Non-oriented electrical steels with different amounts of copper were prepared and the microstructure and magnetic properties of each kind of steel were studied. The results show that there exist a large number of Cu-rich metastable precipitates in the hot-rolled bands of the steels containing copper. They not only can decrease the sensitivity of the microstructures and magnetic properties of the steels to the change of process parameters but also can significantly reduce the core loss of the steels by improving the recrystallization textures without obviously decreasing the magnetic induction. Therefore, it is possible to control the microstructures and then magnetic properties of non-oriented electrical steels by the copper precipitates. - Highlights: • Small quantities of copper were added to non-oriented electrical steels. • A metastable Cu-rich phase precipitated in hot-rolled bands. • These precipitates can increase the microstructure stability of the steel. • These precipitates can also increase the stability of magnetic properties. • The microstructure and magnetic properties can be controlled by these precipitates.

  5. Anti-aggregation property of thymoquinone induced by copper-nanoparticles: A biophysical approach.

    Science.gov (United States)

    Ishtikhar, Mohd; Rahisuddin; Khan, Mohsin Vahid; Khan, Rizwan Hasan

    2016-12-01

    Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized by rosin modified biocompatible cationic surfactant, has various biological applications in the field of pharmacy as well as used as food product additive. Here, we report biophysical insights in to the interaction mechanism of thymoquinone (TQ), copper nanoparticles (Cu-NPs) and QRMAE with bovine serum albumin (BSA) individually and also in complexes forms to determine their competitive binding affinity. We have also studied the aggregation-inhibition effects of Cu-NPs and TQ individually, as well as in complexes form in the presence of QRMAE surfactant which is responsible for induction of amorphous aggregates in BSA within hours of incubation at 65°C and physiological pH. The formation of aggregates was established by using various spectroscopic methods and dye binding assay. The circular dichroism (CD) spectroscopy showed that QRMAE significantly altered the secondary structure of BSA. However, the presence of TQ and Cu-NPs restricted the aggregation process which was observed to be more efficient when TQ and Cu-NPs were present together. This study provides very significant competitive binding results of QRMAE, Cu-NPs, TQ and protein aggregation behavior at higher temperature which was induced by rosin surfactant QRMAE, and protein aggregation process was inhibited by Cu-NPs, TQ individually and together. Therefore, our finding suggested that rosin surfactant QRMAE has high propensity to induce amorphous aggregation in BSA which was favored at elevated temperature and higher concentration of the protein. When BSA-QRMAE sample was incubated in the presence Cu-NPs under similar condition, the aggregation propensity reduced, and drastically inhibited by TQ and Cu-NPs together. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2017-02-01

    Full Text Available We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV–visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifted, and the photoluminescence spectra show emission curves that are red-shifted with respect to the absorption band edges. These shifts are as a result of the small crystallite sizes of the nanoparticles leading to quantum size effects. The structural studies were carried out using powder X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDS, and atomic force microscopy. The XRD patterns indicates that the CuS nanocrystals are in hexagonal covellite crystalline phases with estimated particles sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes, with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microspheres on the surfaces, and EDS spectra confirmed the presence of CuS nanoparticles.

  7. Preparing superhydrophobic copper surfaces with rose petal or lotus leaf property using a simple etching approach

    Science.gov (United States)

    Talesh Bahrami, H. R.; Ahmadi, B.; Saffari, H.

    2017-05-01

    A facile chemical etching process is developed to fabricate superhydrophobic copper surfaces. In the first step, cleaned copper surfaces immersed in ferric chloride (FeCl3) solutions with specific concentrations for different times. Etched surfaces exhibit the maximum contact angle of 140°. They have large sliding angle and water droplets stuck to the surface even if they were turned upside down which is well-known as rose petal effect. After stearic acid modification of etched surfaces, their contact angle slightly increased to above 150° and sliding angle decreased to smaller than 10° in some cases, which is same as lotus plant leaves property against water. Inspecting SEM images of etched surfaces reveals that many micro-nano structures forming blossom like buildings with curved petals of nanoscale thicknesses are formed. The micro-nano structures sizes and shapes affecting surface hydrophobicity are regulated by controlling reaction times and etchant solution concentrations. X-ray diffraction (XRD) analysis is done on a sample before and after of the etching process where patterns indicate that the same compositions present on the sample.

  8. Thermal stability and electrical properties of copper nitride with In or Ti

    Science.gov (United States)

    Du, Yun; Gao, Lei; Li, Chao-Rong; Ji, Ai-Ling

    2013-06-01

    Thin films of ternary compounds CuxInyN and CuxTiyN were grown by magnetron sputtering to improve the thermal stability of Cu3N, a material that decomposes below 300 °C, and thus promises many interesting applications in direct-writing. The effect of In or Ti incorporation in altering the structure and physical properties of copper nitride was evaluated by characterizing the film structure, surface morphology, and temperature dependence of electrical resistivity. More Ti than In can be accommodated by copper nitride without completely deteriorating the Cu3N lattice. A small amount of In or Ti can improve the crystallinity, and consequently the surface morphology. While the decomposition temperature is rarely influenced by In, the Ti-doped sample, Cu59.31Ti2.64N38.05, shows an X-ray diffraction pattern dominated by characteristic Cu3N peaks, even after annealing at 500 °C. Both In and Ti reduce the bandgap of the original Cu3N phase, resulting in a smaller electrical resistivity at room temperature. The samples with more Ti content manifest metal-semiconductor transition when cooled from room temperature down to 50 K. These results can be useful in improving the applicability of copper—nitride-based thin films.

  9. Peripheral benzodiazepine binding sites on striated muscles of the rat: Properties and effect of denervation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W.E.; Ickstadt, A. (Mainz Univ. (Germany, F.R.). Pharmakologisches Inst.); Hopf, H.Ch. (Mainz Univ. (Germany, F.R.))

    1985-01-01

    In order to test the hypothesis that peripheral benzodiazepine binding sites mediate some direct effects of benzodiazepines on striated muscles, the properties of specific /sup 3/H-Ro 5-4864 binding to rat biceps and rat diaphragm homogenates were investigated. In both tissues a single population of sites was found with a Ksub(D) value of 3 nmol/l. The density of these sites in both muscles was higher than the density in rat brain, but was considerably lower than in rat kidney. Competition experiments indicate a substrate specificity of specific /sup 3/H-Ro 5-4864 binding similar to the properties already demonstrated for the specific binding of this ligand to peripheral benzodiazepine binding sites in many other tissues. The properties of these sites in the rat diaphragm are not changed after motoric denervation by phrenicectomy. It is concluded that peripheral benzodiazepine binding sites are not involved in direct effects of benzodiazepines on striated muscles.

  10. Influence of organic matter decomposition on soluble carbon and its copper-binding capacity.

    Science.gov (United States)

    Merritt, Karen A; Erich, M Susan

    2003-01-01

    Bulk and low molecular weight (LMW) (complexation parameters were determined for both bulk and LMW water-extractable C for both plant materials in a separate 1-wk incubation. Humification progressed through increasing molar absorptivity (A285) and phenolic and total acidity (TA), and through an increase in average molecular size and degree of polymerization as determined by ultrafiltration and changes in fluorescence peak locations. Such dynamic transformations demonstrate that while humification is a bulk property, with C breakdown and stabilization occurring simultaneously and continuously in soil, its early stages can be effectively monitored for fresh plant residues. Significant changes consistently occurred during the first 7 d of the incubation and were more pronounced for LMW fractions than bulk extracts. For both residues, water-extractable C extracted initially and following a 7-d incubation desorbed and complexed 0.11 to 0.55 mmol resin-bound Cu g(-1) C. Low molecular weight water-extractable C generated the higher values within this range, and values increased consistently following incubation. Potential concerns regarding LMW soluble Cu complexes include percolation through soils or runoff into adjacent water bodies as well as effects on plant root development.

  11. Uncovering the Transmembrane Metal Binding Site of the Novel Bacterial Major Facilitator Superfamily-Type Copper Importer CcoA

    Directory of Open Access Journals (Sweden)

    Bahia Khalfaoui-Hassani

    2016-01-01

    Full Text Available Uptake and trafficking of metals and their delivery to their respective metalloproteins are important processes. Cells need precise control of each step to avoid exposure to excessive metal concentrations and their harmful consequences. Copper (Cu is a required micronutrient used as a cofactor in proteins. However, in large amounts, it can induce oxidative damage; hence, Cu homeostasis is indispensable for cell survival. Biogenesis of respiratory heme-Cu oxygen (HCO reductases includes insertion of Cu into their catalytic subunits to form heme-Cu binuclear centers. Previously, we had shown that CcoA is a major facilitator superfamily (MFS-type bacterial Cu importer required for biogenesis of cbb3-type cytochrome c oxidase (cbb3-Cox. Here, using Rhodobacter capsulatus, we focused on the import and delivery of Cu to cbb3-Cox. By comparing the CcoA amino acid sequence with its homologues from other bacterial species, we located several well-conserved Met, His, and Tyr residues that might be important for Cu transport. We determined the topology of the transmembrane helices that carry these residues to establish that they are membrane embedded, and substituted for them amino acids that do not ligand metal atoms. Characterization of these mutants for their uptake of radioactive 64Cu and cbb3-Cox activities demonstrated that Met233 and His261 of CcoA are essential and Met237 and Met265 are important, whereas Tyr230 has no role for Cu uptake or cbb3-Cox biogenesis. These findings show for the first time that CcoA-mediated Cu import relies on conserved Met and His residues that could act as metal ligands at the membrane-embedded Cu binding domain of this transporter.

  12. Properties of Opiate-Receptor Binding in Rat Brain

    Science.gov (United States)

    Pert, Candace B.; Snyder, Solomon H.

    1973-01-01

    [3H]Naloxone, a potent opiate antagonist, binds stereospecifically to opiate-receptor sites in rat-brain tissue. The binding is time, temperature, and pH dependent and saturable with respect to [3H]naloxone and tissue concentration. The [3H]naloxone-receptor complex formation is bimolecular with a dissociation constant of 20 nM. 15 Opiate agonists and antagonists compete for the same receptors, whose density is 30 pmol/g. Potencies of opiates and their antagonists in displacing [3H]naloxone binding parallel their pharmacological potencies. PMID:4525427

  13. Synthesis, characterization, and X-ray crystal structures of cyclam derivatives. 5. Copper(II) binding studies of a pyridine-strapped 5,12-dioxocyclam-based macrobicycle.

    Science.gov (United States)

    Meyer, Michel; Frémond, Laurent; Espinosa, Enrique; Guilard, Roger; Ou, Zhongping; Kadish, Karl M

    2004-09-06

    The copper(II) binding properties of the macrobicyclic diamide 1,9,12,18,22-pentaazatricyclo[7.6.6.1(3,7)]docosa-3,5,7(22)-triene-13,19-dione (L1) have been fully investigated by spectroscopic (IR, UV-vis, EPR, MALDI-TOF MS), X-ray diffraction, potentiometric, electrochemical, and spectroelectrochemical methods. This constrained receptor possesses a hemispherical cavity created by cross-bridging the 1 and 8 positions of trans-dioxocyclam (1,4,8,11-tetraazacyclotetradecane-5,12-dione, L2) with a 2,6-pyridyl strap. Treatment of L1 with a copper salt in methanol produces a red complex of [Cu(L1H(-1))]+ formula in which the copper atom is embedded in a 13-membered ring and coordinated by both amines as well as the pyridine and one deprotonated amide nitrogen atoms. Infrared spectroscopy provides evidence for protonation of the carbonyl oxygen atom belonging to the copper-bound amide of [Cu(L1H(-1))]+ under strongly acidic conditions. The resulting conversion of the amidate into an iminol group highlights the inert character of the corresponding complexes, which do not dissociate at low pH values. In contrast, both secondary amides of L1 deprotonate in the presence of a weak base, thus affording a blue pentacoordinated [Cu(L1H(-2))] compound where the copper atom sits in the center of the 14-membered dioxocyclam fragment. In aqueous solution, both complexes undergo a pH-driven (pK(a) = 8.73(2)) molecular reorganization, which is reminiscent of a glider motion. The copper(II) cation switches rapidly and reversibly from a four-coordinate flattened tetrahedral arrangement of the donor atoms in the red species to a five-coordinate environment in the blue species, which is intermediate between a square pyramid and a trigonal bipyramid. Conversion of the red to the blue form was also demonstrated to occur upon reduction of [Cu(L1H(-1))]+ by cyclic voltammetry (E(pc) = -0.64 V/SCE in CH(3)CN).

  14. Binding Properties of General Odorant Binding Proteins from the Oriental Fruit Moth, Grapholita molesta (Busck (Lepidoptera: Tortricidae.

    Directory of Open Access Journals (Sweden)

    Guangwei Li

    Full Text Available The oriental fruit moth Grapholita molesta is a host-switching pest species. The adults highly depend on olfactory cues in locating optimal host plants and oviposition sites. Odorant binding proteins (OBPs are thought to be responsible for recognizing and transporting hydrophobic odorants across the aqueous sensillum lymph to stimulate the odorant receptors (ORs within the antennal sensilla and activate the olfactory signal transduction pathway. Exploring the physiological function of these OBPs could facilitate understanding insect chemical communications.Two antennae-specific general OBPs (GOBPs of G. molesta were expressed and purified in vitro. The binding affinities of G. molesta GOBP1 and 2 (GmolGOBP1 and 2 for sex pheromone components and host plant volatiles were measured by fluorescence ligand-binding assays. The distribution of GmolGOBP1 and 2 in the antennal sensillum were defined by whole mount fluorescence immunohistochemistry (WM-FIHC experiments. The binding sites of GmolGOBP2 were predicted using homology modeling, molecular docking and site-directed mutagenesis. Both GmolGOBP1 and 2 are housing in sensilla basiconica and with no differences in male and female antennae. Recombinant GmolGOBP1 (rGmolGOBP1 exhibited broad binding properties towards host plant volatiles and sex pheromone components; rGmolGOBP2 could not effectively bind host plant volatiles but showed specific binding affinity with a minor sex pheromone component dodecanol. We chose GmolGOBP2 and dodecanol for further homology modeling, molecular docking, and site-directed mutagenesis. Binding affinities of mutants demonstrated that Thr9 was the key binding site and confirmed dodecanol bonding to protein involves a hydrogen bond. Combined with the pH effect on binding affinities of rGmolGOBP2, ligand binding and release of GmolGOBP2 were related to a pH-dependent conformational transition.Two rGmolGOBPs exhibit different binding characteristics for tested ligands. r

  15. DNA binding, cytotoxicity and apoptosis induction activity of a mixed-ligand copper(II) complex with taurine Schiff base and imidazole

    Science.gov (United States)

    Li, Mei; kong, Lin Lin; Gou, Yi; Yang, Feng; Liang, Hong

    2014-07-01

    A novel binuclear copper(II) complex (complex 1) with taurine Schiff base and imidazole has been synthesized and structurally characterized by single crystal X-ray diffraction, elemental analysis, ESI-MS spectrometry, UV-vis and IR spectroscopy. Single-crystal analysis revealed that 1 displays the sulfonate-bridged dinuclear copper(II) centers. Both copper atoms are five-coordinated and exhibit slightly distorted square pyramidal geometries. Each of copper atom is surrounded by three oxygen atoms and one nitrogen atom from different taurine Schiff base ligands, and one nitrogen atom from one imidazole ligand. The interaction between 1 and calf thymus DNA (CT-DNA) was investigated by UV-vis, fluorescence, circular dichroism (CD) spectra and agarose gel electrophoresis. The experimental results indicated that 1 could bind to CT-DNA via an intercalative mode and show efficient cleavage activity. In addition, 1 showed an antitumor effect on cell cycle and apoptosis. Flow cytometric analysis revealed that MGC-803 cells were arrested in the S phase after treatment with 1. Fluorescence microscopic observation indicated that 1 could induce apoptosis of MGC-803 cells.

  16. DNA binding, cytotoxicity and apoptosis induction activity of a mixed-ligand copper(II) complex with taurine Schiff base and imidazole.

    Science.gov (United States)

    Li, Mei; Kong, Lin Lin; Gou, Yi; Yang, Feng; Liang, Hong

    2014-07-15

    A novel binuclear copper(II) complex (complex 1) with taurine Schiff base and imidazole has been synthesized and structurally characterized by single crystal X-ray diffraction, elemental analysis, ESI-MS spectrometry, UV-vis and IR spectroscopy. Single-crystal analysis revealed that 1 displays the sulfonate-bridged dinuclear copper(II) centers. Both copper atoms are five-coordinated and exhibit slightly distorted square pyramidal geometries. Each of copper atom is surrounded by three oxygen atoms and one nitrogen atom from different taurine Schiff base ligands, and one nitrogen atom from one imidazole ligand. The interaction between 1 and calf thymus DNA (CT-DNA) was investigated by UV-vis, fluorescence, circular dichroism (CD) spectra and agarose gel electrophoresis. The experimental results indicated that 1 could bind to CT-DNA via an intercalative mode and show efficient cleavage activity. In addition, 1 showed an antitumor effect on cell cycle and apoptosis. Flow cytometric analysis revealed that MGC-803 cells were arrested in the S phase after treatment with 1. Fluorescence microscopic observation indicated that 1 could induce apoptosis of MGC-803 cells.

  17. Substituent Effects on Cytotoxic Activity, Spectroscopic Property, and DNA Binding Property of Naphthalimide Derivatives.

    Science.gov (United States)

    Wang, Ke-Rang; Qian, Feng; Sun, Qian; Ma, Cui-Lan; Rong, Rui-Xue; Cao, Zhi-Ran; Wang, Xiao-Man; Li, Xiao-Liu

    2016-05-01

    A series of novel naphthalimide derivatives NI1-5 containing piperazine moieties (N-(2-hydroxyethyl)piperazine and 1-piperazinepropanol) and piperidine moieties (4-piperidinemethanol, 4-hydroxypiperidine and 4-piperidineethanol) have been synthesized and evaluated for their cytotoxic activity, spectroscopic property, and DNA binding behaviors. It was found that substituents at the 4-position remarkably influence the various activities of this series of compound. Compounds NI3-5 modified with piperidines exhibited potent cytotoxic activities against Hela, SGC-7901, and A549 cells with the IC50 values from 0.73 μm to 6.80 μm, which are better than NI1-2 functionalized with piperazines. Compounds NI1-2 showed higher binding capacity with Ct-DNA than compounds NI3-5 based on studies of UV-vis, fluorescence and CD spectra. Furthermore, compounds NI3-5, as DNA intercalators, showed fluorescence enhancement upon binding with Ct-DNA. More interestingly, fluorescence imaging studies of compound NI4 with A549 cells showed that the fluorescence predominantly appeared in the cytoplasm. These results provided a potential application of NI3-5 as anticancer therapeutic and cancer cell imaging agents.

  18. The Effect of (Ag, Ni, Zn-Addition on the Thermoelectric Properties of Copper Aluminate

    Directory of Open Access Journals (Sweden)

    Jianxiao Xu

    2010-01-01

    Full Text Available Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied. The addition of Ag and Zn was found to enhance the formation of CuAlO2 phase and to increase the electrical conductivity. The addition of Ag or Ag and Ni on the other hand decreases the electrical conductivity. The highest power factor of 1.26 × 10-4 W/mK2 was obtained for the addition of Ag and Zn at 1,060 K, indicating a significant improvement compared with the non-doped CuAlO2 sample.

  19. Friction Wear Property of Brake Materials by Copper-based Powder Metallurgy With Various Brake Speeds

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-xiu; GAO Hong-xia; WEI Xiu-lan

    2004-01-01

    The experiment is conducted on MM-1000 friction test machine, which tests friction wear property of copper-based brake materials by powder metallurgy at different brake speeds. It shows that the coefficient of friction and wear volume are greatly influenced by brake speed. When the brake speed is 4000 r/min, which is a bit higher, the material still has a higher coefficient of friction with 0.47. When the brake speed is over 4000r/min, the coefficient of friction decreased rapidly. When the brake speed is 3000r/min, the material's wear is in its minimum. That is to say no matter how higher or lower the brake speed is the wear volume is bigger relatively. With the brake speed of the lower one it mainly refers to fatigue wear; while of higher one it mainly refers to abradant and oxidation wear.

  20. Structures and photovoltaic properties of copper oxides/fullerene solar cells

    Science.gov (United States)

    Oku, Takeo; Motoyoshi, Ryosuke; Fujimoto, Kazuya; Akiyama, Tsuyoshi; Jeyadevan, Balachandran; Cuya, John

    2011-11-01

    Copper oxide (CuOx) thin films were produced by spin-coating and electrodeposition methods, and their microstructures and photovoltaic properties were investigated. Thin film solar cells based on the Cu2O/C60 and CuO/C60 heterojunction or bulk heterojunction structures were fabricated on F-doped or In-doped SnO2, which showed photovoltaic activity under air mass 1.5 simulated sunlight conditions. Microstructures of the CuOx thin films were examined by X-ray diffraction and transmission electron microscopy, which indicated the presence of Cu2O and CuO nanoparticles. The energy levels of the present solar cells were also discussed.

  1. Physical and electrical properties of copper oxide doped bismuth borate glasses

    Science.gov (United States)

    Dhiman, R. L.; Kundu, Virender Singh; Arora, Susheel; Maan, A. S.

    2013-06-01

    The role of CuO on the physical and electrical properties in x CuO.(25-x)Bi2O3.75B2O3;(5≤x≤20) glass system has been investigated. The glasses were prepared by normal melt quench technique. The density and molar volume of the glasses decreases with increase in CuO (mol %). The dc conductivity was measured in the temperature range 413-513 K. The conduction mechanism in these glasses was discussed in terms of small polaron hopping (SPH) theory proposed by Mott. The activation energy is found to decrease with increasing copper oxide content. The dc conductivity increases with increase in CuO content and ranging from 6.02×10-12 (Ωm)-1 to 1.096×10-10 (Ωm)-1 at 450K.

  2. Structural and electrical properties of copper-nickel-aluminum alloys obtained by conventional powder metallurgy method

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Waldemar A.; Carrio, Juan A.G.; Silveira, C.R. da; Pertile, H.K.S., E-mail: fisica.cch@mackenzie.br [Universidade Presbiteriana Mackenzie (UPM/CCH), Sao Paulo, SP (Brazil). Centro de Ciencias e Humanidades. Dept. de Fisica; Silva, L.C.E. da; Buso, S.J., E-mail: jgcarrio@mackenzie.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    This work looked for to search out systematically, in scale of laboratory, copper-nickel-aluminum alloys (Cu-Ni-Al) with conventional powder metallurgy processing, in view of the maintenance of the electric and mechanical properties with the intention of getting electric connectors of high performance or high mechanical damping. After cold uniaxial pressing (1000 kPa), sintering (780 deg C) and convenient homogenization treatments (500 deg C for different times) under vacuum (powder metallurgy), the obtained Cu-Ni-Al alloys were characterized by optical microscopy, electrical conductivity, Vickers hardness. X rays powder diffraction data were collected for the sintered samples in order to a structural and microstructural analysis. The comparative analysis is based on the sintered density, hardness, macrostructures and microstructures of the samples. (author)

  3. Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation

    Science.gov (United States)

    Liang, Shih-Wei; Wang, Chih-Hao; Fang, Te-Hua

    2016-09-01

    Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method.

  4. Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation.

    Science.gov (United States)

    Liang, Shih-Wei; Wang, Chih-Hao; Fang, Te-Hua

    2016-12-01

    Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method.

  5. Effect of the strain rate on the properties of electrical copper

    Science.gov (United States)

    Loginov, Yu. N.; Demakov, S. L.; Illarionov, A. G.; Popov, A. A.

    2011-03-01

    The effect of the strain rate on the texture and strength characteristics of electrical copper is analyzed using an industrial experiment on low- and high-speed wire drawing. The mechanical properties of the product are determined. The strength of the wire drawn at a high speed is found to be about 20 MPa higher than that of the wire drawn at a low speed. Metallographic analysis shows no differences in the wire structures, and texture analysis reveals differences in the behavior of dominant texture components. The directions of the dominant texture components are found to rotate near the periphery of the workpiece (i.e., at the workpiece surface). The solution of the drawing problem by the finite element method demonstrates an analogous rotation of the principal elongation directions.

  6. Magnetic properties of copper(II) complexes containing peptides. Crystal structure of [Cu(phe-leu)

    Science.gov (United States)

    Sanchiz, J.; Kremer, C.; Torre, M. H.; Facchin, G.; Kremer, E.; Castellano, E. E.; Ellena, J.

    2006-09-01

    A novel copper(II) complex containing the peptide phe-leu has been prepared and characterized. The crystal structure of [Cu(phe-leu)] ( 1) was determined by X-ray diffraction. The presence of carboxylate and amido bridges allows the formation of an extended 2D arrangement. This structure is similar to those found in [Cu(gly-val)] · 1/2H 2O ( 2), [Cu(val-gly)] ( 3), [Cu(val-phe)] ( 4), and [Cu(phe-phe)] ( 5). The magnetic properties of compounds 1- 5 were studied and analyzed comparatively. The experimental data show that the magnetic interactions are mainly transmitted through μ 2-COO - bridges, being ferromagnetic for 1 and 3, and antiferromagnetic for 2, 4 and 5.

  7. Evaluation of Copper, Aluminum and Nickel Interatomic Potentials on Predicting the Elastic Properties

    CERN Document Server

    Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    2016-01-01

    Choice of appropriate force field is one of the main concerns of any atomistic simulation that needs to be seriously considered in order to yield reliable results. Since, investigations on mechanical behavior of materials at micro/nanoscale has been becoming much more widespread, it is necessary to determine an adequate potential which accurately models the interaction of the atoms for desired applications. In this framework, reliability of multiple embedded atom method based interatomic potentials for predicting the elastic properties was investigated. Assessments were carried out for different copper, aluminum and nickel interatomic potentials at room temperature which is considered as the most applicable case. Examined force fields for the three species were taken from online repositories of National Institute of Standards and Technology (NIST), as well as the Sandia National Laboratories, the LAMMPS database. Using molecular dynamic simulations, the three independent elastic constants, C11, C12 and C44 we...

  8. Synthesis, CMC determination, and intercalative binding interaction with nucleic acid of a surfactant-copper(II) complex with modified phenanthroline ligand (dpq).

    Science.gov (United States)

    Nagaraj, Karuppiah; Ambika, Subramanian; Arunachalam, Sankaralingam

    2015-01-01

    A surfactant-copper(II) complex, [Cu(dpq)2DA](ClO4)2 (dpq = dipyrido[3,2-d:2'-3'-f]quinoxaline; DA-dodecylamine), was synthesized and characterized on the basis of elemental analyses, UV-vis, IR, and EPR spectra. The critical micelle concentration (CMC) value of this surfactant-copper(II) complex in aqueous solution was found out from conductance measurements. Specific conductivity data at different temperature served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG°(m), ΔH°(m) and ΔS°(m)). In addition, the complex has been examined by its ability to bind to nucleic acids (DNA and RNA) in tris-HCl buffer by UV-vis absorption, emission spectroscopy techniques, and viscosity measurements. The complex has been found to bind strongly to nucleic acids with apparent binding constants at DNA and RNA is 4.3 × 10(5), 9.0 × 10(5) M(-1), respectively. UV-vis studies of the interaction of the complex with DNA/RNA have revealed that the complex can bind to both DNA and RNA by the intercalative binding mode via ligand dpq into the base pairs of DNA and RNA which has been verified by viscosity measurements. The presence of long aliphatic chain in the surfactant complex increases this hydrophobic interaction. The binding constants have been calculated. The cytotoxic activity of this complex on human liver carcinoma cancer cells was determined by adopting 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyl tetrazolium bromide assay and specific staining techniques. The antimicrobial and antifungal screening tests of this complex have shown good results.

  9. Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties

    Science.gov (United States)

    Winter, Jan; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2017-09-01

    In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy laser fluences in the vicinity of the ablation threshold. The measured refractive index n and extinction coefficient k are supported by a simulation including the two-temperature model with an accurate description of thermal and optical properties and a thermomechanical model. Comparison of the measured time resolved optical properties with results of the simulation reveals underlying physical mechanisms in three distinct time delay regimes. It is found that in the early stage (-5 ps to 0 ps) the thermally excited d-band electrons make a major contribution to the laser pulse absorption and create a steep increase in transient optical properties n and k. In the second time regime (0-10 ps) the material expansion influences the plasma frequency, which is also reflected in the transient extinction coefficient. In contrast, the refractive index n follows the total collision frequency. Additionally, the electron-ion thermalization time can be attributed to a minimum of the extinction coefficient at ∼10 ps. In the third time regime (10-20 ps) the transient extinction coefficient k indicates the surface cooling-down process.

  10. Small pH and salt variations radically alter the thermal stability of metal-binding domains in the copper transporter, Wilson disease protein.

    Science.gov (United States)

    Nilsson, Lina; Ådén, Jörgen; Niemiec, Moritz S; Nam, Kwangho; Wittung-Stafshede, Pernilla

    2013-10-24

    Although strictly regulated, pH and solute concentrations in cells may exhibit temporal and spatial fluctuations. Here we study the effect of such changes on the stability, structure, and dynamics in vitro and in silico of a two-domain construct (WD56) of the fifth and sixth metal-binding domains of the copper transport protein, ATP7B (Wilson disease protein). We find that the thermal stability of WD56 is increased by 40 °C when increasing the pH from 5.0 to 7.5. In contrast, addition of salt at pH 7.2 decreases WD56 stability by up to 30 °C. In agreement with domain-domain coupling, fractional copper loading increases the stability of both domains. HSQC chemical shift changes demonstrate that, upon lowering the pH from 7.2 to 6, both His in WD6 as well as the second Cys of the copper site in each domain become protonated. MD simulations reveal increased domain-domain fluctuations at pH 6 and in the presence of high salt concentration, as compared to at pH 7 and low salt concentration. Thus, the surface charge distribution at high pH contributes favorably to overall WD56 stability. By introducing more positive charges by lowering the pH, or by diminishing charge-charge interactions by salt, fluctuations among the domains are increased and thereby overall stability is reduced. Copper transfer activity also depends on pH: delivery of copper from chaperone Atox1 to WD56 is more efficient at pH 7.2 than at pH 6 by a factor of 30. It appears that WD56 is an example where the free energy landscapes for folding and function are linked via structural stability.

  11. Nucleic acid binding and other biomedical properties of artificial oligolysines

    Directory of Open Access Journals (Sweden)

    Roviello GN

    2016-11-01

    Full Text Available Giovanni N Roviello,1 Caterina Vicidomini,1 Vincenzo Costanzo,1 Valentina Roviello2 1CNR Istituto di Biostrutture e Bioimmagini, Via Mezzocannone site and Headquarters, 2Centro Regionale di Competenza (CRdC Tecnologie, Via Nuova Agnano, Napoli, Italy Abstract: In the present study, we report the interaction of an artificial oligolysine (referred to as AOL realized in our laboratory with targets of biomedical importance. These included polyinosinic acid (poly rI and its complex with polycytidylic acid (poly I:C, RNAs with well-known interferon-inducing ability, and double-stranded (ds DNA. The ability of the peptide to bind both single-stranded poly rI and ds poly I:C RNAs emerged from our circular dichroism (CD and ultraviolet (UV studies. In addition, we found that AOL forms complexes with dsDNA, as shown by spectroscopic binding assays and UV thermal denaturation experiments. These findings are encouraging for the possible use of AOL in biomedicine for nucleic acid targeting and oligonucleotide condensation, with the latter being a key step preceding their clinical application. Moreover, we tested the ability of AOL to bind to proteins, using serum albumin as a model protein. We demonstrated the oligolysine–protein binding by CD experiments which suggested that AOL, positively charged under physiological conditions, binds to the protein regions rich in anionic residues. Finally, the morphology characterization of the solid oligolysine, performed by scanning electron microscopy, showed different crystal forms including cubic-shaped crystals confirming the high purity of AOL. Keywords: nucleic acid binding, polyinosinic acid, double-stranded nucleic acids, oligolysine, circular dichroism

  12. Investigation of Structure and Physico-Mechanical Properties of Composite Materials Based on Copper - Carbon Nanoparticles Powder Systems

    Directory of Open Access Journals (Sweden)

    Kovtun V.

    2015-04-01

    Full Text Available Physico-mechanical and structural properties of electrocontact sintered copper matrix- carbon nanoparticles composite powder materials are presented. Scanning electron microscopy revealed the influence of preliminary mechanical activation of the powder system on distribution of carbon nanoparticles in the metal matrix. Mechanical activation ensures mechanical bonding of nanoparticles to the surface of metal particles, thus giving a possibility for manufacture of a composite with high physico-mechanical properties.

  13. Influence of Surface Coatings of Filler Wires on Weld Seam Properties of Laser Beam Welded Copper Connections

    Science.gov (United States)

    Mann, Vincent; Holzer, Matthias; Hofmann, Konstantin; Özkaya, Esra; Hugger, Florian; Roth, Stephan; Schmidt, Michael

    In laser beam welding of copper its material properties require high intensities of the laser beam for a stable process, which are often realized by small focal diameters. Thus conventional laser beam welding of copper is accompanied by small bridgeable gap widths. A way to increase tolerable gap widths is the use of filler wires, which leads to higher energy consumption per unit length of the process, as extra energy is necessary to melt the filler wire. As some surface coatings are known to reduce energy consumption in laser beam welding of copper, this paper investigates the influence of surface coated filler wires on weld seam properties of laser beam welded of copper alloys with the aim of improved usage of the energy provided for the process. For this reason different coating materials and thicknesses of the filler wires are used within the experiments. The resulting weld seams are evaluated by means of geometrical, electrical and mechanical properties of the joints, e.g. seam width, cross-sectional area, electrical resistance, tensile strength and strain.

  14. Effect of Red Mud and Copper Slag Particles on Physical and Mechanical Properties of Bamboo-Fiber-Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Sandhyarani Biswas

    2012-01-01

    Full Text Available In the present work, a series of bamboo-fiber-reinforced epoxy composites are fabricated by using red mud and copper slag particles as filler materials. A filler plays an important role in determining the properties and behavior of particulate composites. The effects of these two fillers on the mechanical properties of bamboo-epoxy composites are investigated. Comparative analysis shows that with the incorporation of these fillers, the tensile strength of the composites increases significantly, whereas the flexural strength and impact strength decrease with increase in filler content (red mud and copper slag fillers in the epoxy-bamboo fiber composites. The density and hardness are also affected by the type and content of filler particles. It is found that the addition of copper slag filler improves the hardness of the bamboo-epoxy composites, whereas the addition of red mud filler reduces the hardness value of bamboo-epoxy composites. The study reveals that the addition of copper slag filler in bamboo-epoxy composites shows better physical and mechanical properties as compared to the red-mud-filled composites.

  15. Comparing the heterogeneity of copper-binding characteristics for two different-sized soil humic acid fractions using fluorescence quenching combined with 2D-COS.

    Science.gov (United States)

    Hur, Jin; Lee, Bo-Mi

    2011-01-01

    Heterogeneous distributions of copper-binding characteristics were compared for two ultrafiltered size fractions of a soil HA using fluorescence quenching combined with two-dimensional correlation spectroscopy (2D-COS). The apparent shapes of the original synchronous fluorescence spectra and the extent of the fluorescence quenching upon the addition of copper were similar for the two fractions. The stability constants calculated at their highest peaks were not significantly different. However, the 2D-COS results revealed that the fluorescence quenching behaviors were strongly affected by the associated wavelengths and the fraction's size. The spectral change preferentially occurred in the wavelength order of 467 nm → 451 nm → 357 nm for the 1-10 K fraction and of 376 nm → 464 nm for the >100 K fraction. The extent of the binding affinities exactly followed the sequential orders interpreted from the 2D-COS, and they exhibited the distinctive ranges of the logarithmic values from 5.86 to 4.91 and from 6.48 to 5.95 for the 1-10 K and the >100 K fractions, respectively. Our studies demonstrated that fluorescence quenching combined with 2D-COS could be successfully utilized to give insight into the chemical heterogeneity associated with metal-binding sites within the relatively homogeneous HA size fractions.

  16. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein

    DEFF Research Database (Denmark)

    Rolf, B; Oudenampsen-Krüger, E; Börchers, T

    1995-01-01

    The coding part of the cDNA for bovine liver-type fatty acid binding protein (L-FABP) has been amplified by RT-PCR, cloned and used for the construction of an Escherichia coli (E. coli) expression system. The recombinant protein made up to 25% of the soluble E. coli proteins and could be isolated...

  17. The study on microstructure and microwave-absorbing properties of lithium zinc ferrites doped with magnesium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Cao Xiaofei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Engineering Ceramics Key Laboratory of Shandong Province, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Sun Kangning [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Engineering Ceramics Key Laboratory of Shandong Province, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China)], E-mail: xiaowenhoulvbu1@yahoo.com.cn; Sun Chang; Leng Liang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Engineering Ceramics Key Laboratory of Shandong Province, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China)

    2009-09-15

    Lithium zinc ferrites doped with magnesium and copper were prepared by means of a combination of sol-gel method and subsequent calcination. The crystalline phase and microstructure of different doped lithium zinc ferrites were measured by X-ray powder diffraction and scanning electronic microscopy analysis. The results indicate that there are no remarkable differences in phase composition between pure lithium zinc ferrite and the as-doped lithium zinc ferrites. The effects of magnesium and copper dopants on microwave absorption in low-frequency region were investigated by the transmission/reflection coaxial line method. It was found from the present work that doping with copper improved microwave-absorbing properties, while doping with magnesium had little effect on microwave absorption of pure lithium zinc ferrite.

  18. Microstructures and properties analysis of dissimilar metal joint in the friction stir welded copper to aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Wang Xijing; Zhang Zhongke; Da Chaobing; Li Jing

    2007-01-01

    This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (T2) and a preliminary analysis of welding parameters influencing on the microstructures and properties of joint was carried out. The results indicated that the thickness of workpiece played an important role in the welding parameters which could succeed in the friction stir welding of dissimilar metal of copper to aluminum alloy, and the parameters were proved to be a narrow choice. The interfacial region between copper and aluminum in the dissimilar joint was not uniformly mixed, constituted with part of incomplete mixing zone, complete mixing zone, dispersion zone and the most region's boundary was obvious. Meantime a kind banded structure with inhomogeneous width was formed. The intermetallic compounds generated during friction stir welding in the interfacial region were mainly Cu9Al4 , Al2Cu etc, and their hardness was higher than others.

  19. Barium carbonate as an agent to improve the electrical properties of neodymium-barium-copper system at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, J.P. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Duarte, G.W. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Research Group in Technology and Information, Centro Universitário Barriga Verde (UNIBAVE), Santa Catarina, SC (Brazil); Caldart, C. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Kniess, C.T. [Post-Graduate Program in Professional Master in Management, Universidade Nove de Julho, São Paulo, SP (Brazil); Montedo, O.R.K.; Rocha, M.R. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, 88806-000 (Brazil); Riella, H.G. [Post-Graduate Program in Chemical Engineering, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, 88040-900 (Brazil); Fiori, M.A., E-mail: fiori@unochapeco.edu.br [Post-Graduate Program in Environmental Science, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil); Post-Graduate Program in Technology and Management of the Innovation, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, SC, 89809-000 (Brazil)

    2015-11-15

    Specialized ceramics are manufactured under special conditions and contain specific elements. They possess unique electrical and thermal properties and are frequently used by the electronics industry. Ceramics containing neodymium-barium-copper (NBC) exhibit high conductivities at low temperatures. NBC-based ceramics are typically combined with oxides, i.e., NBCo produced from neodymium oxide, barium oxide and copper oxide. This study presents NBC ceramics that were produced with barium carbonate, copper oxide and neodymium oxide (NBCa) as starting materials. These ceramics have good electrical conductivities at room temperature. Their conductivities are temperature dependent and related to the starting amount of barium carbonate (w%). - Highlights: • The new crystalline structure were obtained due presence of the barium carbonate. • The NBCa compound has excellent electrical conductivity at room temperature. • The grain crystalline morphology was modified by presence of the barium carbonate. • New Phases α and β were introduced by carbonate barium in the NBC compound.

  20. Synthesis, crystallographic characterization and electrochemical property of a copper(II) complex of the anticancer agent elesclomol.

    Science.gov (United States)

    Vo, Nha Huu; Xia, Zhiqiang; Hanko, Jason; Yun, Tong; Bloom, Steve; Shen, Jianhua; Koya, Keizo; Sun, Lijun; Chen, Shoujun

    2014-01-01

    Elesclomol is a novel anticancer agent that has been evaluated in a number of late stage clinical trials. A new and convenient synthesis of elesclomol and its copper complex is described. X-ray crystallographic characterization and the electrochemical properties of the elesclomol copper(II) complex are discussed. The copper(II) cation is coordinated in a highly distorted square-planar geometry to each of the sulphur and amide nitrogen atoms of elesclomol. Electrochemical measurements demonstrate that the complex undergoes a reversible one-electron reduction at biologically accessible potentials. In contrast the free elesclomol is found electrochemically inactive. This evidence is in strong support of the mechanism of action we proposed for the anticancer activity of elesclomol.

  1. Influence of copper nanoparticles on the physical-chemical properties of activated sludge.

    Science.gov (United States)

    Chen, Hong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun; Li, Xiang

    2014-01-01

    The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS), play vital roles in the normal operation of wastewater treatment plants (WWTPs). The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs) on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm), but different observation were made at higher CuNPs concentrations (30 and 50 ppm). At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity.

  2. Binding properties of beetal recombinant caprine growth hormone to ...

    African Journals Online (AJOL)

    SAM

    2014-07-23

    Jul 23, 2014 ... 2Institute of Molecular Biology and Biotechnology, the University of ... This study provides data for beetal rcGH .... obtained; big and small peak showing the purified tracer and free 125I, respectively. ... analysis of rcGH binding to Bovidae receptors was analyzed by ..... science to commercial application.

  3. spectral characterization and dna binding properties of lanthanide(iii)

    African Journals Online (AJOL)

    The complexes undergo quasi-reversible one electron reduction. The binding interaction ... cleavage activities of transition metal complex, herein we report synthesis, spectral ... instruments 660C Electrochemical analyzer and a conventional three electrode, Ag/AgCl reference ..... F.19-106/2013(BSR)] for financial support.

  4. Dependence Properties of Sol-Gel Derived CuO@SiO2 Nanostructure to Diverse Concentrations of Copper Oxide

    Directory of Open Access Journals (Sweden)

    V. Homaunmir

    2013-01-01

    Full Text Available Various concentrations of copper oxide were embedded into silica matrix of xerogel forms using copper source Cu(NO32·3H2O. The xerogel samples were prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS with determination of new molar ratios of the components by the sol-gel method. In this paper, three samples of copper oxide were doped into silica matrices using different concentrations. We obtained 10, 20, and 30 wt.% of copper oxide in silica matrices labeled as A, B, and C, respectively. The absorption and transmittance spectra of the gel matrices were treated at different concentrations by Uv-vis spectrophotometer. Quantities of water and transparency in the silica network change the spectral characteristics of Cu2+ ions in the host silica. Absorption spectra of the samples heated to higher concentration complete the conversion of Cu2+ ions to Cu+ ions. The effects of concentration of copper oxide were characterized by X-ray diffraction (XRD patterns, and the transmission electron microscope (TEM micrographs. Also, textural properties of samples were studied by surface area analysis (BET method at different concentrations.

  5. Study of the structure and electrical properties of the copper nitride thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo-Vega, C. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Km. 107 Carretera Tijuana-Ensenada, A. Postal 2732, 22860, Ensenada B.C. (Mexico)]. E-mail: gallardo@ccmc.unam.mx; Cruz, W. de la [Centro de Ciencias de la Materia Condensada, UNAM, Km. 107 Carretera Tijuana-Ensenada, A. Postal 2681, 22860, Ensenada B.C. (Mexico)

    2006-09-15

    Copper nitride thin films were prepared on glass and silicon substrates by ablating a copper target at different pressure of nitrogen. The films were characterized in situ by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and ex situ by X-ray diffraction (XRD). The nitrogen content in the samples, x = [N]/[Cu], changed between 0 and 0.33 for a corresponding variation in nitrogen pressure of 9 x 10{sup -2} to 1.3 x 10{sup -1} Torr. Using this methodology, it is possible to achieve sub-, over- and stoichiometric films by controlling the nitrogen pressure. The XPS results show that is possible to obtain copper nitride with x = 0.33 (Cu{sub 3}N) and x = 0.25 (Cu{sub 4}N) when the nitrogen pressure is 1.3 x 10{sup -1} and 5 x 10{sup -2} Torr, respectively. The lattice constants obtained from XRD results for copper nitride with x = 0.25 is of 3.850 A and with x = 0.33 have values between 3.810 and 3.830 A. The electrical properties of the films were studied as a function of the lattice constant. These results show that the electrical resistivity increases when the lattice parameter is decreasing. The electrical resistivity of copper nitride with x = 0.25 was smaller than samples with x = 0.33.

  6. Synthesis, characterization, magnetic and electrochemical properties of a new 3D hexa-copper-substituted germanotungstate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanzhou; Luo, Jie; Zhang, Yanting [Institute of Molecular and Crystal Engineering, Henan Key Lab of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Zhao, Junwei, E-mail: zhaojunwei@henu.edu.cn [Institute of Molecular and Crystal Engineering, Henan Key Lab of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Basic Experiment Teaching Center, Henan University, Kaifeng, Henan 475004 (China); Chen, Lijuan, E-mail: ljchen@henu.edu.cn [Institute of Molecular and Crystal Engineering, Henan Key Lab of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Ma, Pengtao; Niu, Jingyang [Institute of Molecular and Crystal Engineering, Henan Key Lab of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China)

    2013-09-15

    An inorganic–organic hybrid hexa-copper-substituted germanotungstate Na{sub 2}[Cu(dap){sub 2}]{sub 2}[Cu(dap){sub 2}] ([Cu{sub 6}(H{sub 2}O){sub 2}(dap){sub 2}][B-α-GeW{sub 9}O{sub 34}]{sub 2})·4H{sub 2}O (1) (dap=1,2-diaminopropane) has been hydrothermally prepared and characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP–AES) analyses, IR spectra, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) and single-crystal X-ray diffraction. 1 displays the six-connected 3D network with the long topological (O′Keefe) vertex symbol is 4·4·6{sub 4}·4·4·4·4·6{sub 4}·4·4·4·6{sub 4}·4·4·4 and the short vertex (Schläfli) symbol of 4{sup 12}6{sup 3}. Magnetic measurements indicate that there are the overall ferromagnetic exchange interactions in the belt-like hexa-Cu{sup II} cluster in 1. Furthermore, the electrochemical behavior and electrocatalysis of 1 modified carbon paste electrode (1-CPE) have been studied. The reductions of nitrite, bromate and hydrogen peroxide are principally mediated by the W{sup VI}-based wave. - Graphical abstract: A hexa-Cu{sup II} sandwiched germanotungstate has been synthesized and structurally characterized. The magnetic, solid-state electrochemical and electrocatalytic properties have been investigated. Display Omitted - Highlights: • Transition-metal substituted polyoxometalates. • Hexa-copper-substituted germanotungstate. • Six-connected 3D network. • Electrocatalytic reduction of nitrite, bromate and hydrogen peroxide.

  7. In Vitro DNA-Binding, Anti-Oxidant and Anticancer Activity of Indole-2-Carboxylic Acid Dinuclear Copper(II) Complexes

    OpenAIRE

    Xiangcong Wang; Maocai Yan; Qibao Wang; Huannan Wang; Zhengyang Wang; Jiayi Zhao; Jing Li; Zhen Zhang

    2017-01-01

    Indole-2-carboxylic acid copper complex (ICA-Cu) was successfully prepared and characterized through elemental analysis, IR, UV-Vis, 1H-NMR, TG analysis, and molar conductance, and its molecular formula was [Cu2(C9H6O2N)4(H2O)2]·2H2O. The binding ability of ICA-Cu to calf thymus DNA (CT-DNA) was examined by fluorescence spectrometry and the viscosity method. The results indicated that, upon the addition of increasing amounts of CT-DNA, the excitation and emission intensity of ICA-Cu decreased...

  8. Planarization properties of an alkaline slurry without an inhibitor on copper patterned wafer CMP

    Institute of Scientific and Technical Information of China (English)

    Wang Chenwei; Liu Yuling; Tian Jianying; Niu Xinhuan; Zheng Weiyan; Yue Hongwei

    2012-01-01

    The chemical mechanical polishing/planarization (CMP) performance of an inhibitor-free alkaline copper slurry is investigated.The results of the Cu dissolution rate (DR) and the polish rate (PR) show that the alkaline slurry without inhibitors has a relatively high copper removal rate and considerable dissolution rate.Although the slurry with inhibitors has a somewhat low DR,the copper removal rate was significantly reduced due to the addition of inhibitors (Benzotriazole,BTA).The results obtained from pattern wafers show that the alkaline slurry withoutinhibitors has a better planarization efficacy; it can planarize the uneven patterned surface during the excess copper removal.These results indicate that the proposed inhibitor-free copper slurry has a considerable planarization capability for CMP of Cu pattern wafers,it can be applied in the first step ofCu CMP for copper bulk removal.

  9. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    Science.gov (United States)

    Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang

    2016-08-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

  10. Cortisol levels, binding, and properties of corticosteroid-binding globulin in the serum of primates.

    Science.gov (United States)

    Klosterman, L L; Murai, J T; Siiteri, P K

    1986-01-01

    New World primates have exceptionally high plasma levels of cortisol and other steroid hormones when compared with humans and other primates. It has been suggested that this difference can be explained by either low affinity or concentration of cellular steroid receptors. We have assessed cortisol availability in serum from several species of New and Old World primates under physiological conditions (whole serum at 37 degrees C). Measurements were made of total and free cortisol, corticosteroid-binding globulin (CBG) binding capacity and affinity for cortisol, distribution of cortisol in serum, and its binding to albumin. In agreement with earlier reports, plasma free cortisol levels in Old World primates, prosimians, and humans range from 10-300 nM. However, very high total plasma cortisol together with low CBG binding capacity and affinity result in free cortisol concentrations of 1-4 microM in some New World primates (squirrel monkey and marmosets) but not in others such as the titi and capuchin. In squirrel monkeys, free cortisol levels are far greater than might be predicted from the affinity of the glucocorticoid receptor estimated in cultured skin fibroblasts. In addition to low affinity, CBG from squirrel monkeys and other New World primates exhibits differences in electrophoretic mobility and sedimentation behavior in sucrose density ultracentrifugation, suggestive of a molecular weight that is approximately twice that of CBG from other species. Together with other data these results indicate that the apparent glucocorticoid resistance found in New World primates is a complex phenomenon that is not easily explained by present concepts of glucocorticoid action.

  11. First-principles study of the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube

    Science.gov (United States)

    Ma, Liang-Cai; Ma, Ling; Zhang, Jian-Min

    2017-07-01

    By using first-principles calculations based on density-functional theory, the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube are systematically investigated. The binding energies of the hybrid structures are remarkably higher than those of corresponding freestanding TM chains, indicating the TM chains are significantly stabilized after encapsulating into copper nanotube. The formed bonds between outer Cu and inner TM atoms show some degree of covalent bonding character. The magnetic ground states of Fe@CuNW and Co@CuNW hybrid structures are ferromagnetic, and both spin and orbital magnetic moments of inner TM atoms have been calculated. The magnetocrystalline anisotropy energies (MAE) of the hybrid structures are enhanced by nearly fourfold compared to those of corresponding freestanding TM chains, indicating that the hybrid structures can be used in ultrahigh density magnetic storage. Furthermore, the easy magnetization axis switches from that along the axis in freestanding Fe chain to that perpendicular to the axis in Fe@CuNT hybrid structure. The large spin polarization at the Fermi level also makes the hybrid systems interesting as good potential materials for spintronic devices.

  12. Oxygen binding properties of non-mammalian nerve globins

    DEFF Research Database (Denmark)

    Hundahl, Christian; Fago, Angela; Dewilde, Sylvia

    2006-01-01

    Oxygen-binding globins occur in the nervous systems of both invertebrates and vertebrates. While the function of invertebrate nerve haemoglobins as oxygen stores that extend neural excitability under hypoxia has been convincingly demonstrated, the physiological role of vertebrate neuroglobins...... is less well understood. Here we provide a detailed analysis of the oxygenation characteristics of nerve haemoglobins from an annelid (Aphrodite aculeata), a nemertean (Cerebratulus lacteus) and a bivalve (Spisula solidissima) and of neuroglobin from zebrafish (Danio rerio). The functional differences...... temperatures investigated and exhibited large enthalpies of oxygenation, the hexacoordinate globins showed reverse Bohr effects (at least at low temperature) and approximately twofold lower oxygenation enthalpies. Only S. solidissima nerve haemoglobin showed apparent cooperativity in oxygen binding, suggesting...

  13. Effect of cold rolling on properties and microstructures of dispersion strengthened copper alloys

    Institute of Scientific and Technical Information of China (English)

    GUO Ming-xing; WANG Ming-pu; SHEN Kun; CAO Ling-fei; LEI Ruo-shan; LI Shu-mei

    2008-01-01

    Mechanical properties and microstructures of unidirectionally and tandem rolled alumina dispersion strengthened copper(ADSC) alloys under different conditions were investigated by tensile test, optical microscopy(OM), transmission electron microscopy(TEM) and scanning electron microscopy(SEM). For unidirectionally rolled ADSC alloys, their strengths and elongations in the longitudinal direction are higher than those in the transverse direction under both cold rolling and annealing conditions. Once fracture appears in their longitudinal stress-strain curves, sudden reduction of overall stress level before complete fracture can be observed in the transverse tensile curves. The anisotropy of mechanical properties for the ADSC alloy can be greatly improved by tandem cold rolling. And no sudden reduction of overall stress level appears in the stress-strain curves for tandem rolled ADSC alloys. The differences of their microstructures and tensile fractures were analyzed. In order to compare the differences of tensile fracture mechanism in different directions, longitudinal and transverse fracture models for unidirectionally rolled ADSC alloys were also introduced.

  14. Novel structural and magnetic properties of Mg doped copper nanoferrites prepared by conventional and wet methods

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.A., E-mail: moala47@hotmail.com [Materials Science Lab. (1), Physics Department, Cairo University, Giza (Egypt); Afify, H.H.; El Zawawia, I.K.; Azab, A.A. [Solid State Physics Department, National Research Center, Dokki, Cairo (Egypt)

    2012-07-15

    Nanoferrites of the general formula Cu{sub 1-x}Mg{sub x}Fe{sub 2}O{sub 4} with 0{<=}x{<=}0.6 were prepared by standard ceramic and wet methods. The structure was studied by X-ray diffraction and IR spectroscopy. The density and lattice constant were calculated and reported. The particle size of the prepared nanoferrites ranged from 8.7 to 41.1 nm. It was found that the lattice parameter decreases with increasing cation substitution of Mg{sup 2+} due to the difference of ionic radius and atomic mass. The dc magnetic susceptibility was measured out using Faraday's method. The magnetic hysteresis measurement was performed using a vibrating sample magnetometer. Magnetic constants such as Curie temperature, effective magnetic moment, saturation magnetization, remanent magnetization and corecivicty were obtained and reported. The magnetic constants decrease with increasing Mg{sup 2+}, except the remanent magnetization which increased. - Highlights: Black-Right-Pointing-Pointer We study the effect of Mg{sup 2+} on structural and magnetic properties of copper ferrite prepared by the different methods. Black-Right-Pointing-Pointer To determine which method gives the smallest particle size and optimize the physical properties. Black-Right-Pointing-Pointer To determine which sample is suitable for different applications.

  15. Thermo-physical Properties of Continuous Carbon Fiber Reinforced Copper Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    曹金华; 黄俊波; 陈先有

    2007-01-01

    Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction)of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE)and thermal conductivity.Thermo-physical properties have been measured in both, longitudinal and transversal directions to the fiber orientation.The results showed that Cf/Cu composites may be a suitable candidate for heat sinks because of its good thermo-physical properties e.g.the low CTE(4.18×10-6/K)in longitudinal orientation and(14.98×10-6/K)in transversal orientation at the range of 20-50℃,a good thermal conductivity(87.2 W/m·K)in longitudinal orientation and(58.2 W/m·K)in transversal orientation.Measured CTE and thermal conductivity values are compared with those predicted by several well-known models.Eshelby model gave better results for prediction of the CTE and thermal conductivity of the unidirectional composites.

  16. Structure and Magnetic Property Control of Copper Hydroxide Acetate by Non-Classical Crystallization.

    Science.gov (United States)

    Song, RuiQi; Krasia-Christoforou, Theodora; Debus, Christian; Cölfen, Helmut

    2017-03-01

    Copper hydroxide acetate (CHA), one layered hydroxide compound with tunable magnetism, attracts great interest because of its potential applications in memory devices. However, ferromagnetism for CHA is only demonstrated by means of GPa pressure. Herein, a new method is reported, involving the combination of different crystallization pathways to control crystallization of amorphous CHA toward the formation of CHA/polymer composites with tunable magnetic properties and even a tunability that can be tested at room temperature. By using poly[(ethylene glycol)6 methyl ether methacrylate]-block-poly[2-(acetoacetoxy) ethyl methacrylate] (PEGMA-b-PAEMA) diblock copolymers as additives in combination with a post-treatment process by ultracentrifugation, it is demonstrated that CHA and PEGMA-b-PAEMA form composites exhibiting different magnetic properties, depending on CHA in-plane nanostructures. Analytical characterization reveals that crystallization of CHA is induced by ultracentrifugation, during which CHA nanostructures can be well controlled by changing the degrees of polymerization of the PEGMA and PAEMA blocks and their block length ratios. These findings not only present the first example of using crystallization from polymer stabilized amorphous precursors toward the generation of magnetic nanomaterials with tunable magnetism but also pave the way for the future design of functional composite materials.

  17. Influence of different deposition potential on the structural and optical properties of copper selenide nanowires

    Science.gov (United States)

    Kaur, Harmanmeet; Kaur, Jaskiran; Singh, Lakhwant

    2016-09-01

    In this paper, nanowires were successfully fabricated from the aqueous solution containing 0.2 M/l CuSO4.5H2O, 0.1 M/l SeO2, 1 g/l PVP and a few drops of H2SO4 in Milli-Q water using electrodeposition technique at room temperature. Influence of different deposition potential on structural and optical properties of copper selenide nanowires has been investigated here. Morphological, structural and optical properties were monitored through field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD) and UV-visible 1800 spectrophotometer. From the XRD analysis, it was found that the stoichiometric (CuSe) nanowires are formed at deposition potential (-0.6 V) and (+0.6 V). Band gap of nanowires were found to be maximum around 3.13 eV for deposition potential (-0.8 V) and minimum of 2.81 eV for deposition potential (-0.6 V).

  18. Synthesis and metal binding properties of N-alkylcarboxyspiropyrans

    OpenAIRE

    Perry, Alexis; Kousseff, Christina J

    2017-01-01

    Spiropyrans bearing an N-alkylcarboxylate tether are a common structure in dynamic, photoactive materials and serve as colourimetric/fluorimetric cation receptors. In this study, we describe an efficient synthesis of spiropyrans with 2–12 carbon atom alkylcarboxylate substituents, and a systematic analysis of their interactions with metal cations using 1H NMR and UV-visible spectroscopy. All N-alkylcarboxyspiropyrans in this study displayed a strong preference for binding divalent metal catio...

  19. Fluorescence properties of porcine odorant binding protein Trp 16 residue

    Energy Technology Data Exchange (ETDEWEB)

    Albani, Jihad Rene, E-mail: Jihad-Rene.Albani@univ-lille1.f [Laboratoire de Biophysique Moleculaire, Universite des Sciences et Technologies de Lille, F-59655 Villeneuve d' Ascq Cedex (France)

    2010-11-15

    Summary: The present work deals with fluorescence studies of adult porcine odorant binding protein at pH=7.5. At this pH, the protein is a dimer, each monomer contains one tryptophan residue. Our results show that tryptophan residue displays significant motions and emits with three fluorescence lifetimes. Decay associated spectra showed that the three lifetime's components emanate from sub-structures surrounded by the same microenvironment.

  20. Preparation and electrical properties of dense micro-cermets made of nickel ferrite and metallic copper

    Science.gov (United States)

    Baco-Carles, Valérie; Pasquet, Isabelle; Laurent, Véronique; Gabriel, Armand; Tailhades, Philippe

    2009-08-01

    Dense micro-cermets made of nickel ferrites and copper micrometric particles were obtained from partial reduction under hydrogenated atmosphere at 350 °C of mixed copper nickel ferrites, and sintering in nitrogen at 980 °C. The small copper particles are homogeneous in size and well dispersed in the spinel oxide matrix. No exudation of copper metal was observed after sintering. The micro-cermets prepared are semi-conducting materials with electrical conductivity lying from 44 to 130 S/cm at 980 °C. Their overall characteristics make them interesting for inert anodes dedicated to aluminium electrolysis in melted cryolite.

  1. Interfacial Effects on the Thermal and Mechanical Properties of Graphite/Copper Composites. Final Contractor Report Ph.D. Thesis

    Science.gov (United States)

    Devincent, Sandra Marie

    1995-01-01

    Graphite surfaces are not wet by pure copper. This lack of wetting has been responsible for a debonding phenomenon that has been found in continuous graphite fiber reinforced copper matrix composites subjected to elevated temperatures. By suitably alloying copper, its ability to wet graphite surfaces can be enhanced. Information obtained during sessile drop testing has led to the development of a copper-chromium alloy that suitably wets graphite. Unidirectionally reinforced graphite/copper composites have been fabricated using a pressure infiltration casting procedure. P100 pitch-based fibers have been used to reinforce copper and copper-chromium alloys. X-ray radiography and optical microscopy have been used to assess the fiber distribution in the cast composites. Scanning electron microscopy and Auger electron spectroscopy analyses were conducted to study the distribution and continuity of the chromium carbide reaction phase that forms at the fiber/matrix interface in the alloyed matrix composites. The effects of the chromium in the copper matrix on the mechanical and thermal properties of P100Gr/Cu composites have been evaluated through tensile testing, three-point bend testing, thermal cycling and thermal conductivity calculations. The addition of chromium has resulted in an increased shear modulus and essentially zero thermal expansion in the P100Gr/Cu-xCr composites through enhanced fiber/matrix bonding. The composites have longitudinal tensile strengths in excess of 700 MPa with elastic moduli of 393 GPa. After 100 hr at 760 deg C 84 percent of the as-cast strength is retained in the alloyed matrix composites. The elastic moduli are unchanged by the thermal exposure. It has been found that problems with spreading of the fiber tows strongly affect the long transverse tensile properties and the short transverse thermal conductivity of the P100Gr/Cu-xCr composites. The long transverse tensile strength is limited by rows of touching fibers which are paths of

  2. Microstructural Evolution and Mechanical Property Development of Selective Laser Melted Copper Alloys

    Science.gov (United States)

    Ventura, Anthony Patrick

    Selective Laser Melting (SLM) is an additive manufacturing technology that utilizes a high-power laser to melt metal powder and form a part layer-by-layer. Over the last 25 years, the technology has progressed from prototyping polymer parts to full scale production of metal component. SLM offers several advantages over traditional manufacturing techniques; however, the current alloy systems that are researched and utilized for SLM do not address applications requiring high electrical and thermal conductivity. This work presents a characterization of the microstructural evolution and mechanical property development of two copper alloys fabricated via SLM and post-process heat treated to address this gap in knowledge. Tensile testing, conductivity measurement, and detailed microstructural characterization was carried out on samples in the as-printed and heat treated conditions. A single phase solid solution strengthened binary alloy, Cu-4.3Sn, was the first alloy studied. Components were selectively laser melted from pre-alloyed Cu-4.3Sn powder and heat treated at 873 K (600 °C) and 1173 K (900 °C) for 1 hour. As-printed samples were around 97 percent dense with a yield strength of 274 MPa, an electrical conductivity of 24.1 %IACS, and an elongation of 5.6%. Heat treatment resulted in lower yield strength with significant increases in ductility due to recrystallization and a decrease in dislocation density. Tensile sample geometry and surface finish also showed a significant effect on measured yield strength but a negligible change in measured ductility. Microstructural characterization indicated that grains primarily grow epitaxially with a sub-micron cellular solidification sub-structure. Nanometer scale tin dioxide particles identified via XRD were found throughout the structure in the tin-rich intercellular regions. The second alloy studied was a high-performance precipitation hardening Cu-Ni-Si alloy, C70250. Pre-alloyed powder was selectively laser melted to

  3. New insights into metal interactions with the prion protein: EXAFS analysis and structure calculations of copper binding to a single octarepeat from the prion protein.

    Science.gov (United States)

    McDonald, Alex; Pushie, M Jake; Millhauser, Glenn L; George, Graham N

    2013-11-07

    Copper coordination to the prion protein (PrP) has garnered considerable interest for almost 20 years, due in part to the possibility that this interaction may be part of the normal function of PrP. The most characterized form of copper binding to PrP has been Cu(2+) interaction with the conserved tandem repeats in the N-terminal domain of PrP, termed the octarepeats, with many studies focusing on single and multiple repeats of PHGGGWGQ. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used in several previous instances to characterize the solution structure of Cu(2+) binding into the peptide backbone in the HGGG portion of the octarepeats. All previous EXAFS studies, however, have benefitted from crystallographic structure information for [Cu(II) (Ac-HGGGW-NH2)(-2H)] but have not conclusively demonstrated that the complex EXAFS spectrum represents the same coordination environment for Cu(2+) bound to the peptide backbone. Density functional structure calculations as well as full multiple scattering EXAFS curve fitting analysis are brought to bear on the predominant coordination mode for Cu(2+) with the Ac-PHGGGWGQ-NH2 peptide at physiological pH, under high Cu(2+) occupancy conditions. In addition to the structure calculations, which provide a thermodynamic link to structural information, methods are also presented for extensive deconvolution of the EXAFS spectrum. We demonstrate how the EXAFS data can be analyzed to extract the maximum structural information and arrive at a structural model that is significantly improved over previous EXAFS characterizations. The EXAFS spectrum for the chemically reduced form of copper binding to the Ac-PHGGGWGQ-NH2 peptide is presented, which is best modeled as a linear two-coordinate species with a single His imidazole ligand and a water molecule. The extent of in situ photoreduction of the copper center during standard data collection is also presented, and EXAFS curve fitting of the photoreduced species

  4. Binding interactions of dissolved organic matter with iron and copper: Effects of source and pH

    Science.gov (United States)

    Du, Y.; Jaffe, R.

    2014-12-01

    Dissolved organic matter(DOM) fluxes from terrestrial to marine environments have increased as a result of anthropogenic activities and climate change, and DOM is known to facilitate the transport of both metals and trace organics. The nature and composition of DOM may influence its binding properties to metals and thus affect their mobility and fate in aquatic environments. Humic substances make up the majority of DOM in many aquatic ecosystems. Metals such as Fe and Cu are not only important as nutrients in aquatic systems, but also in controlling biogeochemical and ecotoxicological processes respectively. Thus, gaining a better understanding on the interaction of humic substances with Fe or Cu is important in the assessment of the bioavailability of such metals in aquatic systems. In this study, the binding processes of two different DOM samples (Suwanee River humic acid, SRHA and Nordic Lake fulvic acid, NLFA)with Fe(III) and Cu(II) were examined. With the assistance of excitation-emission matrix fluorescence (EEM) and parallel factor analysis (PARAFAC), three humic-like components (C1, C2 and C4), and one microbial humic-like component (C3), were identified in the characterization of the samples. The quenching rates of C2 and C4 fluorescence in the presence of Cu were similar, which were slightly faster than that forC1. In contrast, the C3 fluorescence was significantly less affected by the addition of metals. In the presence of Fe, the most significant quenching was also observed for C2, and the behavior of C4 fluorescence was dependent on the pH value. Some differences in the fluorescence quenching were also observed between the two humic acid standards (one more higher-plant/terrestrially derived vs. the other more microbial/aquatic derived). In addition, pH had a significant effect on the metal binding with significantly lower quenching at lower pH values. Some variations where observed for the higher pH conditions particularly for Cu(II). A modified

  5. Structural Analysis Uncovers Lipid-Binding Properties of Notch Ligands

    Directory of Open Access Journals (Sweden)

    Chandramouli R. Chillakuri

    2013-11-01

    Full Text Available The Notch pathway is a core cell-cell signaling system in metazoan organisms with key roles in cell-fate determination, stem cell maintenance, immune system activation, and angiogenesis. Signals are initiated by extracellular interactions of the Notch receptor with Delta/Serrate/Lag-2 (DSL ligands, whose structure is highly conserved throughout evolution. To date, no structure or activity has been associated with the extreme N termini of the ligands, even though numerous mutations in this region of Jagged-1 ligand lead to human disease. Here, we demonstrate that the N terminus of human Jagged-1 is a C2 phospholipid recognition domain that binds phospholipid bilayers in a calcium-dependent fashion. Furthermore, we show that this activity is shared by a member of the other class of Notch ligands, human Delta-like-1, and the evolutionary distant Drosophila Serrate. Targeted mutagenesis of Jagged-1 C2 domain residues implicated in calcium-dependent phospholipid binding leaves Notch interactions intact but can reduce Notch activation. These results reveal an important and previously unsuspected role for phospholipid recognition in control of this key signaling system.

  6. DNA binding properties of the small cascade subunit Csa5.

    Directory of Open Access Journals (Sweden)

    Michael Daume

    Full Text Available CRISPR-Cas systems provide immunity against viral attacks in archaeal and bacterial cells. Type I systems employ a Cas protein complex termed Cascade, which utilizes small CRISPR RNAs to detect and degrade the exogenic DNA. A small sequence motif, the PAM, marks the foreign substrates. Previously, a recombinant type I-A Cascade complex from the archaeon Thermoproteus tenax was shown to target and degrade DNA in vitro, dependent on a native PAM sequence. Here, we present the biochemical analysis of the small subunit, Csa5, of this Cascade complex. T. tenax Csa5 preferentially bound ssDNA and mutants that showed decreased ssDNA-binding and reduced Cascade-mediated DNA cleavage were identified. Csa5 oligomerization prevented DNA binding. Specific recognition of the PAM sequence was not observed. Phylogenetic analyses identified Csa5 as a universal member of type I-A systems and revealed three distinct groups. A potential role of Csa5 in R-loop stabilization is discussed.

  7. EFFECT OF COPPER ADDITION ON MECHANICAL PROPERTIES OF 4Cr16Mo

    Institute of Scientific and Technical Information of China (English)

    H.M. Geng; X.C. Wu; Y.A. Min; H.B. Wang; H.K. Zhang

    2008-01-01

    Experiments conducted to determine the effect of copper addition on the machinability of plastic mold steel, 4Cr16Mo, were presented. The machinability of mold steel 4Cr16Mo was visibly improved by adding Cu. The top wear of 4Cr16Mo with copper was less than that without copper. The Cu-rich phase had the effect of a lubricant and the heat conductivity, which reduced cutting-tool wear, improved machinability, and increased the service life of the cutting-tool. Increasing of copper addition decreased the hot-working character of 4Cr16Mo. The optimal hot-working parameters for 4Cr16Mo with copper were determined by the tensile test and the compression test. The rate of deformation should be adopted as 0.6 s-1. The heating-up temperature, initial forging temperature, and terminal forging temperature were 1200℃, 1150℃, and 950℃, respectively.

  8. SOLUBILITIES AND PHYSICAL PROPERTIES OF SATURATED SOLUTIONS IN THE COPPER SULFATE + SULFURIC ACID + SEAWATER SYSTEM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    F. J. Justel

    2015-09-01

    Full Text Available AbstractIn Chile, the most important economic activity is mining, concentrated in the north of the country. This is a desert region with limited water resources; therefore, the mining sector requires research and identification of alternative sources of water. One alternative is seawater, which can be a substitute of the limited fresh water resources in the region. This work determines the influence of seawater on the solid-liquid equilibrium for acid solutions of copper sulfate at different temperatures (293.15 to 318.15 K, and its effect on physical properties (density, viscosity, and solubility. Knowledge of these properties and solubility data are useful in the leaching process and in the design of copper sulfate pentahydrate crystallization plants from the leaching process using seawater by means of the addition of sulfuric acid.

  9. Dielectric properties of copper-ethanolamine treated Chinese fir (Cunninghamia lanceolata Hook. )

    Institute of Scientific and Technical Information of China (English)

    Cao Jin-zhen; Yu Li-li; You Xiao-di; Kamdem D. Pascal

    2007-01-01

    In order to clarify the interaction between copper and wood substances in wood treated with copper containing water-borne wood preservatives,the dielectric constant ε'and dielectric loss factorε" of untreated wood and wood treated with four concentration levels of copper-ethanolamine (Cu-EA) solutions were determined within a temperature range from-100 to 40℃ and a frequency range from 100 to 1 MHz. Three dielectric relaxation processes were observed in the ε" spectrum;among them R-I is based on the reorientation of methylol groups in the amorphous region of wood cell walls and R-Ⅱis related to wood extractives. R-Ⅲ appeared in Cu-EA treated wood,and its magnitude decreases with the concentration of Cu-EA solutions used in this experiment. This relaxation process was considered to be based on the reorientation of copper-ethanolamine-wood complexes in wood cell walls. At low copper retention, the hydrogen in the complex Can form hydrogen bonding with adjacent hydroxyl groups,which results in a strong bonding state between copper and wood;at high copper retention, the numerous copper-ethanolamine complexes not only hinder them from forming hydrogen bonding with adjacent wood molecules due to steric hindrance,but also weaken the interaction between wood molecules themselves,which corresponds to reducing ε" values of both R-I and R-Ⅲ processes. The results explain the fact of increasing copper leaching in wood treated with high concentration copper-based water-borne preservatives.

  10. Copper and copper proteins in Parkinson's disease.

    Science.gov (United States)

    Montes, Sergio; Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  11. Mechanical properties and crack growth behavior of polycrystalline copper using molecular dynamics simulation

    Science.gov (United States)

    Qiu, Ren-Zheng; Li, Chi-Chen; Fang, Te-Hua

    2017-08-01

    This study investigated the mechanical properties and crack propagation behavior of polycrystalline copper using a molecular dynamics simulation. The effects of temperature, grain size, and crack length were evaluated in terms of atomic trajectories, slip vectors, common neighbor analysis, the material’s stress-strain diagram and Young’s modulus. The simulation results show that the grain boundary of the material is more easily damaged at high temperatures and that grain boundaries will combine at the crack tip. From the stress-strain diagram, it was observed that the maximum stress increased as the temperature decreased. In contrast, the maximum stress was reduced by increasing the temperature. With regard to the effect of the grain size, when the grain size was too small, the structure of the sample deformed due to the effect of atomic interactions, which caused the grain boundary structure to be disordered in general. However, when the grain size was larger, dislocations appeared and began to move from the tip of the crack, which led to a new dislocation phenomenon. With regards to the effect of the crack length, the tip of the crack did not affect the sample’s material when the crack length was less than 5 nm. However, when the crack length was above 7.5 nm, the grain boundary was damaged, and twinning structures and dislocations appeared on both sides of the crack tip. This is because the tip of the crack was blunt at first before sharpening due to the dislocation effect.

  12. Study of size dependent photoluminescence properties of copper doped sodium hexametaphosphate capped ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A., E-mail: ashish_chem@yahoo.in [Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009 (India); Khan, S.A. [Government College Seepat, Bilaspur 495555 (India); Kher, R.S. [Department of Physics, Government E.R.R. PG Science College, Bilaspur 495006 (India)

    2012-06-15

    Copper doped ZnS nanoparticles stabilized by sodium hexametaphosphate (SHMP) have been prepared via the wet chemical method using thiourea and sodium sulphide as chalcogenide sources. The XRD pattern showed that ZnS nanoparticles had zinc blende structure and line broadening suggests the formation of an amorphous compound. Absorption measurements were done for three different concentrations of dopant concentrations. The PL spectrum for the sample synthesized using Na{sub 2}S{center_dot}9H{sub 2}O showed a sharp emission peak around 510 nm with full width at half maximum (FWHM)<10 nm. The role of the capping agent and sulphide source on optical properties of as synthesized nanoparticles by steady-state photoluminescence (PL) spectroscopy has been studied. - Highlights: Black-Right-Pointing-Pointer SHMP capped ZnS:Cu nanoparticles were prepared by wet the chemical method. Black-Right-Pointing-Pointer Particle size depended on the chalcogenide source. Black-Right-Pointing-Pointer PL spectrum shows variation with different chalcogenide sources. Black-Right-Pointing-Pointer Luminescence mechanism arises due to complex interaction between host-dopant and capping agent.

  13. Unravelling the properties of supported copper oxide: can the particle size induce acidic behaviour?

    Science.gov (United States)

    Zaccheria, Federica; Scotti, Nicola; Marelli, Marcello; Psaro, Rinaldo; Ravasio, Nicoletta

    2013-02-07

    There is a renewed interest in designing solid acid catalysts particularly due to the significance of Lewis acid catalyzed processes such as Friedel-Crafts acylation and alkylation and cellulose hydrolysis for the development of sustainable chemistry. This paper reports a new focus point on the properties of supported CuO on silica, a material that up to now has been considered only as the precursor of an effective hydrogenation catalyst. Thus, it deals with a re-interpretation of some of our results with supported copper oxide aimed to unveil the root of acidic activity exhibited by this material, e.g. in alcoholysis reactions. Several techniques were used to highlight the very high dispersion of the oxide phase on the support allowing us to ascribe the acidic behavior to coordinative unsaturation of the very small CuO particles. In turn this unsaturation makes the CuO particles prone to coordinate surrounding molecules present in the reaction mixture and to exchange them according to their nucleophilicity.

  14. IMPROVING THE MECHANICAL PROPERTIES OF COPPER ALLOYS BY THERMO-MECHANICAL PROCESSING

    Institute of Scientific and Technical Information of China (English)

    M.C.Somani; L.P.Karjalainen

    2004-01-01

    Systematic physical simulation of thermo-mechanical processing routes has been applied on a Gleeble 1500 simulator to four copper alloys(mass %)Cu-0.57Co-0.32Si,Cu-0.55Cr-0.065P,Cu-0.22Zr-0.035Si and Cu-1.01Ni-0.43Si aimed at clarifying the influences of processing conditions on their final properties,strength and electrical conductivity.Flow curves were determined over wide temperature and strain rate ranges.Hardness was used as a measure of the strength level achieved.High hardness was obtained as using equal amounts(strains 0.5)of cold deformation before and after the precipitation annealing stage.The maximum values achieved for the Cu-Co-Si,Cu-Cr-P,Cu-Zr-Si and Cu-Ni-Si alloys were 190,165,178 and 193 HV5,respectively.A thermo-mechanical schedule involving the hot deformation-ageing-cold deformation stages showed even better results for the Cu-Zr-Si alloy.Consequently,the processing routes were designed based on simulation test results and wires of 5 and 2mm in diameters have been successfully processed in the industrial scale.

  15. The tachykinin peptide neurokinin B binds copper(I) and silver(I) and undergoes quasi-reversible electrochemistry: towards a new function for the peptide in the brain.

    Science.gov (United States)

    Grosas, Aidan B; Kalimuthu, Palraj; Smith, Alison C; Williams, Peter A; Millar, Thomas J; Bernhardt, Paul V; Jones, Christopher E

    2014-05-01

    The tachykinin neuropeptide family, which includes substance P and neurokinin B, is involved in a wide array of biological functions. Among these is the ability to protect against the neurotoxic processes in Alzheimer's Disease, but the mechanisms driving neuroprotection remain unclear. Dysregulation of metal ions, particularly copper, iron and zinc is a common feature of Alzheimer's Disease, and other amyloidogenic disorders. Copper is known to be released from neurons and recent work has shown that some tachykinins can bind Cu(II) ions, and that neurokinin B can inhibit copper uptake into astrocytes. We have now examined whether neurokinin B is capable of binding Cu(I), which is predicted to be available in the synapse. Using a combination of spectroscopic techniques including cyclic voltammetry and magnetic resonance we show that neurokinin B can bind Cu(I) either directly from added CuCl or by reduction of Cu(II)-bound neurokinin B. The results showed that the Cu(I) binding site differs greatly to that of Cu(II) and involves thioether coordination via Met2 and Met10 and an imidazole nitrogen ligand from His3. The Cu(I) coordination is also different to the site adopted by Ag(I). During changes in oxidation state, copper remains bound to neurokinin B despite large changes to the inner coordination sphere. We predict that neurokinin B may be involved in synaptic copper homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Iron-binding properties of sugar cane yeast peptides.

    Science.gov (United States)

    de la Hoz, Lucia; Ponezi, Alexandre N; Milani, Raquel F; Nunes da Silva, Vera S; Sonia de Souza, A; Bertoldo-Pacheco, Maria Teresa

    2014-01-01

    The extract of sugar-cane yeast (Saccharomyces cerevisiae) was enzymatically hydrolysed by Alcalase, Protex or Viscozyme. Hydrolysates were fractionated using a membrane ultrafiltration system and peptides smaller than 5kDa were evaluated for iron chelating ability through measurements of iron solubility, binding capacity and dialyzability. Iron-chelating peptides were isolated using immobilized metal affinity chromatography (IMAC). They showed higher content of His, Lys, and Arg than the original hydrolysates. In spite of poor iron solubility, hydrolysates of Viscozyme provided higher iron dialyzability than those of other enzymes. This means that more chelates of iron or complexes were formed and these kept the iron stable during simulated gastro-intestinal digestion in vitro, improving its dialyzability.

  17. Synthesis and anion binding properties of porphyrins and related compounds

    KAUST Repository

    Figueira, Flávio

    2016-12-02

    Over the last two decades the preparation of pyrrole-based receptors for anion recognition has attracted considerable attention. In this regard porphyrins, phthalocyanines and expanded porphyrins have been used as strong and selective receptors while the combination of those with different techniques and materials can boost their applicability in different applications as chemosensors and extracting systems. Improvements in the field, including the synthesis of this kind of compounds, can contribute to the development of efficient, cheap, and easy-to-prepare anion receptors. Extensive efforts have been made to improve the affinity and selectivity of these compounds and the continuous expansion of related research makes this chemistry even more promising. In this review, we summarize the most recent developments in anion binding studies while outlining the strategies that may be used to synthesize and functionalize these type of macrocycles. © 2016 World Scientific Publishing Company.

  18. A recombinant triblock protein polymer with dispersant and binding properties for digital printing.

    Science.gov (United States)

    Qi, Min; O'Brien, John P; Yang, Jianjun

    2008-01-01

    A structured triblock protein was designed to explore the potential of engineered peptides to function as high-performance ink dispersants and binders. The protein consists of three functional elements, including a pigment binding domain, a hydrophilic linker, and a printing surface binding domain. To construct such a chimeric protein, a carbon black binding peptide, FHENWPS, and a cellulose binding peptide, THKTSTQRLLAA, were identified from phage display libraries through biopanning, based on their strong and specific binding affinities to carbon black and cellulose. They were used as carbon black and cellulose binding domains, respectively, in a recombinant triblock protein. A linker sequence, PTPTPTPTPTPTPTPTPTPTPTP, was adapted from endoglucanase A of the bacterium Cellulomonas fimi, as a small, rigid, and hydrophilic interdomain linker. When incorporated into the triblock structure between the carbon black and cellulose binding sequences, the linker sufficiently isolates these two elements and allows dual binding activity. The structured triblock protein was shown to disperse carbon black particles and attach it to paper surfaces. Thus, the utility of structured proteins having useful dispersant and binding properties for digital printing inks was demonstrated.

  19. Spectroscopic studies of copper enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-05-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present.

  20. In vitro DNA and BSA-binding, cell imaging and anticancer activity against human carcinoma cell lines of mixed ligand copper(II) complexes.

    Science.gov (United States)

    Anjomshoa, Marzieh; Torkzadeh-Mahani, Masoud

    2015-01-01

    Binding studies of two water soluble copper(II) complexes of the type [Cu(phen-dion)(diimine)Cl]Cl, where phen-dione is 1,10-phenanthroline-5,6-dione and diimine is 1,10-phenanthroline (1) and 2,2'-bipyridine (2), with fish sperm DNA (FS-DNA) and bovine serum albumin (BSA) have been examined under physiological conditions by a series of experimental methods (UV-Vis absorption, fluorescence, viscosity, cyclic voltammetry (CV) and circular dichroism (CD) spectroscopic techniques). The experimental results indicate that the complexes interact with FS-DNA by electrostatic and partial insertion of pyridyl rings between the base stacks of double-stranded DNA. The complexes could quench the intrinsic fluorescence of BSA with the binding constants (Kbin) of 32×10(5) M(-1) (1) and 1.7×10(5) M(-1) (2) at 290 K. The quenching mechanism, thermodynamic parameters, the number of binding sites and the effect of the Cu(II) complexes on the secondary structure of BSA have been explored. The in vitro anticancer chemotherapeutic potential of two copper(II) complexes against the three human carcinoma cell lines (MCF-7, A-549, and HT-29) and one normal cell line (DPSC) were evaluated by MTT assay. The results of in vitro cytotoxicity indicate that the complex (1) has greater cytotoxicity activity against all of the cell lines, especially HT-29 with IC50 values of 1.8 μM. Based on the IC50 values, these complexes did not display an apparent cyto-selective profile, because it would appear that two complexes are toxic to all four model cell lines. The microscopic analyses of the cancer cells confirm results of cytotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Substrate binding properties of potato tuber ADP-glucose pyrophosphorylase as determined by isothermal titration calorimetry.

    Science.gov (United States)

    Cakir, Bilal; Tuncel, Aytug; Green, Abigail R; Koper, Kaan; Hwang, Seon-Kap; Okita, Thomas W; Kang, ChulHee

    2015-06-04

    Substrate binding properties of the large (LS) and small (SS) subunits of potato tuber ADP-glucose pyrophosphorylase were investigated by using isothermal titration calorimetry. Our results clearly show that the wild type heterotetramer (S(WT)L(WT)) possesses two distinct types of ATP binding sites, whereas the homotetrameric LS and SS variant forms only exhibited properties of one of the two binding sites. The wild type enzyme also exhibited significantly increased affinity to this substrate compared to the homotetrameric enzyme forms. No stable binding was evident for the second substrate, glucose-1-phosphate, in the presence or absence of ATPγS suggesting that interaction of glucose-1-phosphate is dependent on hydrolysis of ATP and supports the Theorell-Chance bi bi reaction mechanism. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Ca2+ does not affect the binding properties of ITSN1 EH domains

    Directory of Open Access Journals (Sweden)

    Morderer D. Ye.

    2014-11-01

    Full Text Available ITSN1 is an endocytic scaffold protein implicated in synaptic functioning. Ca2+ is known to be important for endo- cytosis in both pre- and post-synaptic terminals. ITSN1 contains two EH (Eps15 homology domains which possess putative Ca2+-binding EF-hand motifs. Aim. To test the effect of Ca2+ on the EH domain binding properties. Methods. His-tag pulldown, Western blotting. Results. Addition of 1.5 mM Ca2+ does not affect the binding of the ITSN1 EH domains to the C-terminal fragment of the endocytic protein Epsin 1. Conclusions. The data obtained indicate that Ca2+ has no effect on the binding properties of the ITSN1 EH domains.

  3. Nitroxide spin labels as EPR reporters of the relaxation and magnetic properties of the heme-copper site in cytochrome bo3, E. coli.

    Science.gov (United States)

    Oganesyan, Vasily S; White, Gaye F; Field, Sarah; Marritt, Sophie; Gennis, Robert B; Yap, Lai Lai; Thomson, Andrew J

    2010-11-01

    A nitroxide spin label (SL) has been used to probe the electron spin relaxation times and the magnetic states of the oxygen-binding heme-copper dinuclear site in Escherichia coli cytochrome bo(3), a quinol oxidase (QO), in different oxidation states. The spin lattice relaxation times, T(1), of the SL are enhanced by the paramagnetic metal sites in QO and hence show a strong dependence on the oxidation state of the latter. A new, general form of equations and a computer simulation program have been developed for the calculation of relaxation enhancement by an arbitrary fast relaxing spin system of S ≥ 1/2. This has allowed us to obtain an accurate estimate of the transverse relaxation time, T (2), of the dinuclear coupled pair Fe(III)-Cu(B)(II) in the oxidized form of QO that is too short to measure directly. In the case of the F' state, the relaxation properties of the heme-copper center have been shown to be consistent with a ferryl [Fe(IV)=O] heme and Cu(B)(II) coupled by approximately 1.5-3 cm(-1) to a radical. The magnitude suggests that the coupling arises from a radical form of the covalently linked tyrosine-histidine ligand to Cu(II) with unpaired spin density primarily on the tyrosine component. This work demonstrates that nitroxide SLs are potentially valuable tools to probe both the relaxation and the magnetic properties of multinuclear high-spin paramagnetic active sites in proteins that are otherwise not accessible from direct EPR measurements.

  4. Copper complexes relevant to the catalytic cycle of copper nitrite reductase: electrochemical detection of NO(g) evolution and flipping of NO2 binding mode upon Cu(II) → Cu(I) reduction.

    Science.gov (United States)

    Maji, Ram Chandra; Barman, Suman Kumar; Roy, Suprakash; Chatterjee, Sudip K; Bowles, Faye L; Olmstead, Marilyn M; Patra, Apurba K

    2013-10-07

    Copper complexes of the deprotonated tridentate ligand, N-2-methylthiophenyl-2'-pyridinecarboxamide (HL1), were synthesized and characterized as part of our investigation into the reduction of copper(II) o-nitrito complexes into the related copper nitric oxide complexes and subsequent evolution of NO(g) such as occurs in the enzyme copper nitrite reductase. Our studies afforded the complexes [(L1)Cu(II)Cl]n (1), [(L1)Cu(II)(ONO)] (2), [(L1)Cu(II)(H2O)](ClO4)·H2O (3·H2O), [(L1)Cu(II)(CH3OH)](ClO4) (4), [(L1)Cu(II)(CH3CO2)]·H2O (5·H2O), and [Co(Cp)2][(L1)Cu(I)(NO2)(CH3CN)] (6). X-ray crystal structure determinations revealed distorted square-pyramidal coordination geometry around Cu(II) ion in 1-5. Substitution of the H2O of 3 by nitrite quantitatively forms 2, featuring the κ(2)-O,O binding mode of NO2(-) to Cu(II). Reduction of 2 generates two Cu(I) species, one with κ(1)-O and other with the κ(1)-N bonded NO2(-) group. The Cu(I) analogue of 2, compound 6, was synthesized. The FTIR spectrum of 6 reveals the presence of κ(1)-N bonded NO2(-). Constant potential electrolysis corresponding to Cu(II) → Cu(I) reduction of a CH3CN solution of 2 followed by reaction with acids, CH3CO2H or HClO4 generates 5 or 3, and NO(g), identified electrochemically. The isolated Cu(I) complex 6 independently evolves one equivalent of NO(g) upon reaction with acids. Production of NO(g) was confirmed by forming [Co(TPP)NO] in CH2Cl2 (λ(max) in CH2Cl2: 414 and 536 nm, ν(NO) = 1693 cm(-1)).

  5. Different antagonist binding properties of rat pancreatic and cardiac muscarinic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Waelbroeck, M.; Camus, J.; Winand, J.; Christophe, J.

    1987-11-09

    The antagonist binding properties of rat pancreatic and cardiac muscarinic receptors were compared. In both tissues pirenzepine (PZ) had a low affinity for muscarinic receptors labelled by (/sup 3/H)N-methylscopolamine ((/sup 3/)NMS) (K/sub D/ values of 140 and 280nM, respectively, in pancreatic and cardiac homogenates). The binding properties of pancreatic and cardiac receptors were, however, markedly different. This was indicated by different affinities for dicyclomine, (11-(/(2-((diethylamino)-methyl)-1-piperidinyl/acetyl)-5, 11-dihydro-6H-pyrido(2,3-b)(1,4) benzodiazepin-6-on)(AFDX-116), 4-diphenylacetoxy-N-methyl-piperidine methobromide (4-DAMP) and hexahydrosiladifenidol (HHSiD). Pancreatic and cardiac muscarinic receptros also showed different (/sup 3/H)NMS association and dissociation rates. These results support the concept of M2 receptor subtypes have different binding kinetic properties. 20 references, 3 figures, 1 table.

  6. Silica glasses with nanoparticles of copper compounds: spectroscopy properties and laser passive shutter application

    Science.gov (United States)

    Yumashev, Konstantin V.; Prokoshin, Pavel V.; Zolotovskaya, Svetlana A.; Gurin, Valerij S.; Alexeenko, Alexander A.

    2003-11-01

    Sol-gel glasses containing copper selenide nanoparticles and having absorption band at 1.1?2.2 ?m can be used as saturable absorber passive shutter for Q-switching and mode-locking of the solid-state lasers operating in the wavelength range of 1.0?1.5 ?m. The bleaching relaxation time of the glasses was measured to be 0.46?1.4 ns in dependence on copper selenide stoichiometry.

  7. Microstructure & Other Properties of Pulse-Plated Copper for Electroforming Applications

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Jensen, Jens Dahl; Dam, H.C.;

    2002-01-01

    Microstructure, hardness, material distribution and current efficiency were studied for various pulse patterns (both direct current, on/off and pulse reverse plating) and different bath compositions of copper sulfate and sulfuric acid, with additions of chloride. The objective was to develop a re...... a reliable copper electroforming process to provide a fine-grained and hard (above HV 125) deposit with good micro- and macrothrowing power. Potential applications include solar cell panels, tools for micro injection molding and various microelectromechanical systems (MEMS)....

  8. Microstructure & Other Properties of Pulse-Plated Copper for Electroforming Applications

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Jensen, Jens Dahl; Dam, H.C.

    2002-01-01

    Microstructure, hardness, material distribution and current efficiency were studied for various pulse patterns (both direct current, on/off and pulse reverse plating) and different bath compositions of copper sulfate and sulfuric acid, with additions of chloride. The objective was to develop a re...... a reliable copper electroforming process to provide a fine-grained and hard (above HV 125) deposit with good micro- and macrothrowing power. Potential applications include solar cell panels, tools for micro injection molding and various microelectromechanical systems (MEMS)....

  9. Humidity and temperature sensing properties of copper oxide-Si-adhesive nanocomposite.

    Science.gov (United States)

    Khan, Sher Bahadar; Chani, Muhammad Tariq Saeed; Karimov, Kh S; Asiri, Abdullah M; Bashir, Mehran; Tariq, Rana

    2014-03-01

    Smart and professional humidity and temperature sensors have been fabricated by utilizing copper oxide-Si-adhesive composite and pure copper oxide nanosheets. Copper oxide nanosheets are synthesized by low temperature stirring method and characterized by field emission scanning electron microscopy, which reveals that synthesized product is composed of randomly oriented nanosheets, which are grown in high density with an average thickness of~80±10 nm. X-ray diffraction confirms that the grown nanosheets consist of well crystalline monoclinic CuO. X-ray photoelectron spectroscopy and Fourier transform infrared (FTIR) spectroscopy also confirm that the synthesized nanomaterial is pure CuO without any impurity. The fabricated sensors exhibit good temperature sensitivity of -4.0%/°C and -5.2%/°C and humidity sensitivity of -2.9%/%RH and -4.88%/%RH, respectively for copper oxide-Si-adhesive composite and pure copper oxide nanosheets. The average initial resistance of the sensors is equal to 250 MΩ and 55 MΩ for the composite and pure copper oxide based sensors, respectively.

  10. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    Institute of Scientific and Technical Information of China (English)

    Long Wan; Yong-xian Huang; Shi-xiong L; Ti-fang Huang; Zong-liang L

    2016-01-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liq-uid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region ap-peared when shear movement was from copper to iron.

  11. Microstructure and properties of copper composite containing in situ NbC reinforcement: Effects of milling speed

    Energy Technology Data Exchange (ETDEWEB)

    Zuhailawati, Hussain, E-mail: zuhaila@eng.usm.m [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Salihin, Hassin Mohd; Mahani, Yusoff [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2010-01-21

    This paper presents a study on the effects of milling speed on the properties of in situ copper-based composite produced by mechanical alloying followed by cold pressing and sintering. A powdered mixture of copper, niobium and graphite with the composition of Cu-30%NbC was milled at various speeds (100, 200, 300 and 400 rpm). The NbC phase started to precipitate in the as-milled powder after 30 h milling at 400 rpm and the formation was completed after sintering at 950 {sup o}C. Enhancements of NbC phase formation with a reduction in Cu crystallite size were observed with the increase of milling speed. Density, hardness and electrical conductivity of the sintered composite were evaluated. An increase in milling speed resulted in an increase in sintered density and hardness but a reduction of electrical conductivity. The changes in the properties were correlated to the formation of NbC phase and refinement of copper and niobium carbide crystallite size since higher milling speed is associated with higher kinetic energy per hit.

  12. Microstructure and Mechanical Properties of Ultrafine-Grained Copper Produced Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing

    Science.gov (United States)

    Lu, Jianxun; Wu, Xiaoyu; Liu, Zhiyuan; Chen, Xiaoqiang; Xu, Bin; Wu, Zhaozhi; Ruan, Shuangchen

    2016-09-01

    We proposed intermittent ultrasonic-assisted equal-channel angular pressing (IU-ECAP) and used it to produce ultrafine-grained copper. The main aim of this work was to investigate the microstructure and mechanical properties of copper processed by IU-ECAP. We performed experiments with two groups of specimens: group 1 used conventional ECAP, and group 2 combined ECAP with intermittent ultrasonic vibration. The extrusion forces, microstructure, mechanical properties, and thermal stability of the two groups were compared. It was revealed that more homogeneous microstructure with smaller grains could be obtained by IU-ECAP compared with copper obtained using the traditional ECAP method. Mechanical testing showed that IU-ECAP significantly reduced the extrusion force and increased both the hardness and ultimate tensile stress owing to the higher dislocation density and smaller grains. IU-ECAP promotes conversion from low-angle grain boundaries to high-angle grain boundaries, and it increases the fractions of subgrains and dynamic recrystallized grains. Group 2 statically recrystallized at a higher temperature or longer duration than group 1, showing that group 2 had better thermal stability.

  13. Hydrothermal alteration and its effects on the magnetic properties of Los Pelambres, a large multistage porphyry copper deposit

    Science.gov (United States)

    Tapia, Joseline; Townley, Brian; Córdova, Loreto; Poblete, Fernando; Arriagada, César

    2016-09-01

    The Los Pelambres porphyry copper deposit is located 190 km north of Santiago, Chile. A paleomagnetic and mineralogical study was conducted at this deposit to determine the effects of hydrothermal alteration on the magnetic properties and minerals of rocks within the deposit when compared to the surrounding country rock. In the Los Pelambres deposit, magnetic properties of rocks are carried by titano-hematite and titano-magnetite solid solution minerals, where the former commonly indicates the exsolution of rutile. Magnetic minerals of intrusive rocks from the greater Los Pelambres region show that magmatic titano-magnetites and magnetites are the main magnetization carriers. The hydrothermal fluid associated with rutile exsolution textures could have played an important role in the mineralization of Cu in this deposit. The paleomagnetic properties in the Los Pelambres deposit can be divided in three main groups: (i) HMRG (high magnetic remanence group), (ii) HMSG (high magnetic susceptibility group), and (iii) LMSG (low magnetic susceptibility/remanence group). In-situ magnetic properties of the HMSG and LMSG are similar to the formations and units present regionally, however HRMG samples clearly differ from the country rocks. The high variability of in-situ magnetic properties presented in the Los Pelambres deposit has also been characteristic of other porphyry copper deposits in Chile (e.g., Chuquicamata and El Teniente). Regarding the field of exploration geophysics and porphyry copper deposits, this study suggests that phyllic, chloritic, and potassic alterations are related to low, intermediate, and high in-situ NRM, respectively, suggesting that geophysical methods must target a noisy magnetic signal depending on the scale of the study. The knowledge and results obtained are especially meaningful because magnetic surveys conducted for exploration do not commonly allow for the detection of ore mineralization.

  14. Effect of Fe content on the friction and abrasion properties of copper base overlay on steel substrate by TIG welding

    Institute of Scientific and Technical Information of China (English)

    Lü Shixiong; Song Jianling; Liu Lei; Yang Shiqin

    2009-01-01

    Copper base alloy was overlaid onto 35CrMnSiA steel plate by tungsten inert gas (TIG) welding method. The heat transfer process was simulated, the microstructures of the copper base overlay were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), and the friction and abrasion properties of the overlay were measured. The results show that the Fe content increases in the overlay with increasing the welding current. And with the increase of Fe content in the overlay, the friction coefficient increases and the wear mechanism changes from oxidation wear to abrasive wear and plough wear, which is related to the size and quantity of Fe grains in the overlay. While with the increase of Fe content in the overlay, the protection of oxidation layer against the oxidation wear on the melted metal decreases.

  15. Contribution of MoS{sub 2} additives to the microstructure and properties of PM copper based brake material

    Energy Technology Data Exchange (ETDEWEB)

    Uzunsoy, Deniz; Kelesoglu, Erguen; Erarslan, Yaman [Yildiz Technical Univ. (Turkey). Metallurgical and Materials Engineering Dept.

    2009-07-01

    The effect of a MoS{sub 2} additive on the microstructural evolution and properties of copper based brake linings has been investigated in this study. It was found that the quantity of additive as well as sintering cycle has significant effect on the density and hardness values of the produced material. The microstructure of designed brake lining materials showed that copper based matrix was surrounded by MoS{sub 2} particles. The microstructural investigation also proved that the lower boiling point elements such as Pb in the as-supplied powder vaporise during sintering from the structure, and this result in an increase in the porosity amount by lowering the overall density of brake linings. The Vickers hardness of brake linings decreased with the addition of molybdenum disulphide particles. MoS{sub 2} addition reduces wear rate of samples due to the solid lubrication effect. (orig.)

  16. Sonochemical Synthesis and Characterization of the Copper(II) Nanocomplex: DNA- and BSA-Binding, Cell Imaging, and Cytotoxicity Against the Human Carcinoma Cell Lines.

    Science.gov (United States)

    Anjomshoa, Marzieh; Torkzadeh-Mahani, Masoud; Dashtrazmi, Ebrahim; Adeli-Sardou, Mahboubeh

    2016-03-01

    The focus of the present work is the preparation of new metal-based nanodrug to overcome limitations of chemotherapy such as poor water solubility of most common chemotherapeutic drugs. The copper(II) complex of 1,2,4-triazine derivatives, [Cu(dppt)2(H2O)2](2+) (dppt is 5,6-diphenyl- 3- (2-pyridyl)-1,2,4-triazine), has been synthesized at nano-size by sonochemical method and characterized by FTIR, zetasizer, and scanning electron microscopy (SEM). The interaction of the complex and nanocomplex with fish sperm DNA (FS-DNA) and BSA have been investigated under physiological conditions by a series of experimental methods. The results have indicated that the complex binds to FS-DNA by two biding modes, viz., electrostatic and intercalates into the base pairs of DNA. The competitive study with ethidium bromide (EB) shows that the complex and nanocomplex competes for the DNA-binding sites with EB. Protein binding studies show that the complex and nanocomplex could bind with BSA. The results of synchronous fluorescence of BSA show that additions of the complex affect the microenvironment of both tyrosine and tryptophan residues during the binding process. The in vitro cytotoxicity of the complex (solution in DMSO) and nanocomplex (colloid in H2O) against the human carcinoma cell lines (MCF-7 and A-549) was evaluated by MTT assay. The results of in vitro cytotoxicity indicate that the complex and nanocomplex have excellent cytotoxicity activity against MCF-7 and A-549. Results of the microscopic analyses of the cancer cells confirm the results of the cytotoxicity.

  17. Magnesium-zinc ferrite nanoparticles: effect of copper doping on the structural, electrical and magnetic properties.

    Science.gov (United States)

    Zaki, H M; Al-Heniti, S; Umar, Ahmad; Al-Marzouki, F; Abdel-Daiem, A; Elmosalami, T A; Dawoud, H A; Al-Hazmi, F S; Ata-Allah, S S

    2013-06-01

    In this paper, Mg0.5Zn0.5-Cu(x)Fe2O4 ferrites nanoparticles were synthesized by facile co-precipitation route and characterized in detail in terms of their structural, electrical and magnetic properties as a function of Cu concentration. The prepared samples have cubic spinel phase as confirmed by X-ray diffraction patterns. The decrease of the lattice constant and increase of X-ray density indicate the solubility of Cu ions in the spinel lattice. The AC conductivity measurements between 300 K and 773 K at different frequencies 1 KHz up to 1 MHz, showed two different behaviors as semiconductor-like at high temperature and frequency depending behavior associated with dispersion phenomena at low temperatures. The conduction mechanism in the system is influenced by Cu concentration and the dominant one is the hopping conduction mechanism. Dielectric measurements at the same conditions of temperatures and frequencies exhibited that the dielectric loss increases with increasing the temperature and decreasing the frequency indicating the semiconducting nature of the ferrite compounds. An anomalous behavior of the dielectric loss is observed in samples with high Cu content which explained in terms of resonance between frequency accompanied the electronic hopping and the frequency of the external electric field. The analysis of Mössbauer spectra revealed that copper free compound is super-paramagnetically relaxed in nature and zinc free compound demonstrates ferrimagnetic order. Moreover, hyperfine field spectrum shows the migration of Cu ions from octahedral to tetrahedral site in zinc free compound.

  18. Synthesis, structural, dielectric and magnetic properties of polyol assisted copper ferrite nano particles

    Science.gov (United States)

    Pavithradevi, S.; Suriyanarayanan, N.; Boobalan, T.

    2017-03-01

    Nanocrystalline copper ferrite CuFe2O4 is synthesized by co-precipitation method in ethylene glycol as chelating agent, using sodium Hydroxide as precipitator at pH 8. The as synthesized CuFe2O4 is annealed at temperatures of 350 °C, 700 °C, and 1050 °C for 2 h respectively. The thermal analysis of the synthesized sample is done by TG technique. It is shown that at 260 °C ethylene glycol has evaporated completely and after 715 °C, spinel ferrite is formed with a cubic structure. The calculated lattice parameters are in agreement with the reported values. FTIR spectra of CuFe2O4 nano particles are as synthesized and annealed at 1050 °C and recorded between 400 cm-1 and 4000 cm-1. It shows that when the temperature increases ethylene glycol gradually evaporates. Finally, nano crystalline single phase spinel ferrite is obtained. X-ray diffraction (XRD) and electron diffraction (EDS) studies show that the sample is indexed as the face centered cubic spinel structure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the particles are flaky and spherical with the crystallite size in the range of 25-34 nm. From the dielectric studies, the dielectric constant decreases as the frequency increases. Low value of dielectric loss at higher frequencies suggests that the material is suitable for high frequency applications. AC conductivity increases with frequency. The magnetic properties of the samples are measured using a vibrating sample magnetometer (VSM) at room temperature, which shows that the sample exhibited a typical super paramagnetic behavior at low temperature. The saturation magnetization, remanant magnetism, and coercivity increases with applied field.

  19. Copper stressed anaerobic fermentation: biogas properties, process stability, biodegradation and enzyme responses.

    Science.gov (United States)

    Hao, He; Tian, Yonglan; Zhang, Huayong; Chai, Yang

    2017-07-15

    The effect of copper (added as CuCl2) on the anaerobic co-digestion of Phragmites straw and cow dung was studied in pilot experiments by investigating the biogas properties, process stability, substrate degradation and enzyme activities at different stages of mesophilic fermentation. The results showed that 30 and 100 mg/L Cu(2+) addition increased the cumulative biogas yields by up to 43.62 and 20.77% respectively, and brought forward the daily biogas yield peak, while 500 mg/L Cu(2+) addition inhibited biogas production. Meanwhile, the CH4 content in the 30 and 100 mg/L Cu(2+)-added groups was higher than that in the control group. Higher pH values (close to pH 7) and lower oxidation-reduction potential (ORP) values in the Cu(2+)-added groups after the 8th day indicated better process stability compared to the control group. In the presence of Cu(2+), the degradation of volatile fatty acids (VFAs) and other organic molecules (represented by chemical oxygen demand, COD) generated from hydrolysis was enhanced, and the ammonia nitrogen (NH4(+)-N) concentrations were more stable than in the control group. The contents of lignin and hemicellulose in the substrate declined in the Cu(2+)-added groups while the cellulose contents did not. Neither the cellulase nor the coenzyme F420 activities could determine the biogas producing efficiency. Taking the whole fermentation process into account, the promoting effect of Cu(2+) addition on biogas yields was mainly attributable to better process stability, the enhanced degradation of lignin and hemicellulose, the transformation of intermediates into VFA, and the generation of CH4 from VFA.

  20. The BiCu{sub 1−x}OS oxysulfide: Copper deficiency and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Berthebaud, D.; Guilmeau, E.; Lebedev, O.I. [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN/UCBN, 6 bd du Maréchal Juin, F-14050 CAEN Cedex 4 (France); Maignan, A., E-mail: antoine.maignan@ensicaen.fr [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN/UCBN, 6 bd du Maréchal Juin, F-14050 CAEN Cedex 4 (France); Gamon, J.; Barboux, P. [Institut de Recherche de Chimie de Paris, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 09 France (France)

    2016-05-15

    An oxysulfide series of nominal compositions BiCu{sub 1−x}OS with x<0.20 has been prepared and its structural properties characterized by combining powder X-ray diffraction and transmission electron microscopy techniques. It is found that this oxysulfide, crystallizing in the P4/nmm space group, tends to adopt a constant amount of copper vacancy corresponding to x=0.05 in the BiCu{sub 1−x}OS formula. The presence of Cu vacancies is confirmed by HAADF-STEM analysis showing, in the Cu atomic columns, alternating peaks of different intensities in some very localized regions. For larger Cu deficiencies (x>0.05 in the nominal composition), other types of structural nanodefects are evidenced such as bismuth oxysulfides of the “BiOS” ternary system which might explain the report of superconductivity for the BiCu{sub 1−x}OS oxysulfide. Local epitaxial growth of the BiCuOS oxysulfide on top of CuO is also observed. In marked contrast to the BiCu{sub 1−x}OSe oxyselenide, these results give an explanation to the limited impact of Cu deficiency on the Seebeck coefficient in BiCu{sub 1−x}OS compounds. - Graphical abstract: High resolution TEM image showing a Bi(Cu)OS/Bi{sub 2}O{sub 2}S interface and corresponding dislocation region. The Bi(Cu)OS structure adopts a rather constant Cu content (near 0.95); starting from BiCuOS leads to the formation of defects such as the Bi{sub 2}O{sub 2}S oxysulfide.

  1. Thermodynamic properties of copper compounds with oxygen and hydrogen from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Korzhavyi, P.A.; Johansson, B. (Applied Materials Physics, Dept. of Materials Science and Engineering, Royal Inst. of Technology, Stockholm (Sweden))

    2010-02-15

    We employ quantum-mechanical calculations (based on density functional theory and linear response theory) in order to test the mechanical and chemical stability of several solid-state configurations of Cu1+, Cu2+, O2-, H1-, and H1+ ions. We begin our analysis with cuprous oxide (Cu{sub 2}O, cuprite structure), cupric oxide (CuO, tenorite structure), and cuprous hydride (CuH, wurtzite and sphalerite structures) whose thermodynamic properties have been studied experimentally. In our calculations, all these compounds are found to be mechanically stable configurations. Their formation energies calculated at T = 0 K (including the energy of zero-point and thermal motion of the ions) and at room temperature are in good agreement with existing thermodynamic data. A search for other possible solid-state conformations of copper, hydrogen, and oxygen ions is then performed. Several candidate structures for solid phases of cuprous oxy-hydride (Cu{sub 4}H{sub 2}O) and cupric hydride (CuH{sub 2}) have been considered but found to be dynamically unstable. Cuprous oxy-hydride is found to be energetically unstable with respect to decomposition onto cuprous oxide and cuprous hydride. Metastability of cuprous hydroxide (CuOH) is established in our calculations. The free energy of CuOH is calculated to be some 50 kJ/mol higher than the average of the free energies of Cu{sub 2}O and water. Thus, cuprite Cu{sub 2}O is the most stable of the examined Cu(I) compounds

  2. [Copper pathology (author's transl)].

    Science.gov (United States)

    Mallet, B; Romette, J; Di Costanzo, J D

    1982-01-30

    Copper is an essential dietary component, being the coenzyme of many enzymes with oxidase activity, e.g. ceruloplasmin, superoxide dismutase, monoamine oxidase, etc. The metabolism of copper is complex and imperfectly known. Active transport of copper through the intestinal epithelial cells involves metallothionein, a protein rich in sulfhydryl groups which also binds the copper in excess and probably prevents absorption in toxic amounts. In hepatocytes a metallothionein facilitates absorption by a similar mechanism and regulates copper distribution in the liver: incorporation in an apoceruloplasmin, storage and synthesis of copper-dependent enzymes. Metallothioneins and ceruloplasmin are essential to adequate copper homeostasis. Apart from genetic disorders, diseases involving copper usually result from hypercupraemia of varied origin. Wilson's disease and Menkes' disease, although clinically and pathogenetically different, are both marked by low ceruloplasmin and copper serum levels. The excessive liver retention of copper in Wilson's disease might be due to increased avidity of hepatic metallothioneins for copper and decreased biliary excretion through lysosomal dysfunction. Menkes' disease might be due to low avidity of intestinal and hepatic metallothioneins for copper. The basic biochemical defect responsible for these two hereditary conditions has not yet been fully elucidated.

  3. Copper binding and redox chemistry of the Aβ16 peptide and its variants: insights into determinants of copper-dependent reactivity.

    Science.gov (United States)

    Yako, Nineveh; Young, Tessa R; Cottam Jones, Jade M; Hutton, Craig A; Wedd, Anthony G; Xiao, Zhiguang

    2017-02-01

    The metal-binding sites of Aβ peptides are dictated primarily by the coordination preferences of the metal ion. Consequently, Cu(i) is typically bound with two His ligands in a linear mode while Cu(ii) forms a pseudo-square planar stereochemistry with the N-terminal amine nitrogen acting as an anchoring ligand. Several distinct combinations of other groups can act as co-ligands for Cu(ii). A population of multiple binding modes is possible with the equilibrium position shifting sensitively with solution pH and the nature of the residues in the N-terminal region. This work examined the Cu(ii) chemistry of the Aβ16 peptide and several variants that targeted these binding modes. The results are consistent with: (i) at pH < 7.8, the square planar site in Cu(II)-Aβ16 consists primarily of a bidentate ligand provided by the carboxylate sidechain of Asp1 and the N-terminal amine supported by the imidazole sidechains of two His residues (designated here as component IA); it is in equilibrium with a less stable component IB in which the carboxylate ligand is substituted by the Asp1-Ala2 carbonyl oxygen. (ii) Both IA and IB convert to a common component II (apparent transition pKa ∼7.8 for IA and ∼6.5 for IB, respectively) featuring a tridentate ligand consisting of the N-terminal amine, the Asp1-Ala2 amide and the Ala2-Pro3 carbonyl; this stereochemistry is stabilized by two five-membered chelate rings. (iii) Component IA is stabilized for variant Aβ16-D1H, components I (both IA and IB) are imposed on Aβ16-A2P while the less stable IB is enforced on Aβ16-D1A (which is converted to component II at pH ∼6.5); (iv) components IA and IB share two His ligands with Cu(i) and are more reactive in redox catalysis than component II that features a highly covalent and less reactive amide N(-) ligand. The redox activity of IA is further enhanced for peptides with a His1 N-terminus that may act as a ligand for either Cu(i) or Cu(ii) with lower re-organization energy required

  4. Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza sativa L. Varieties with Different Cu Tolerances.

    Directory of Open Access Journals (Sweden)

    Chen Chen

    Full Text Available To better understand the mechanisms involved in the heavy metal stress response and tolerance in plants, a proteomic approach was used to investigate the differences in Cu-binding protein expression in Cu-tolerant and Cu-sensitive rice varieties. Cu-binding proteins from Cu-treated rice roots were separated using a new IMAC method in which an IDA-sepharose column was applied prior to the Cu-IMAC column to remove metal ions from protein samples. More than 300 protein spots were reproducibly detected in the 2D gel. Thirty-five protein spots exhibited changes greater than 1.5-fold in intensity compared to the control. Twenty-four proteins contained one or more of nine putative metal-binding motifs reported by Smith et al., and 19 proteins (spots contained one to three of the top six motifs reported by Kung et al. The intensities of seven protein spots were increased in the Cu-tolerant variety B1139 compared to the Cu-sensitive variety B1195 (p<0.05 and six protein spots were markedly up-regulated in B1139, but not detectable in B1195. Four protein spots were significantly up-regulated in B1139, but unchanged in B1195 under Cu stress. In contrast, two protein spots were significantly down-regulated in B1195, but unchanged in B1139. These Cu-responsive proteins included those involved in antioxidant defense and detoxification (spots 5, 16, 21, 22, 28, 29 and 33, pathogenesis (spots 5, 16, 21, 22, 28, 29 and 33, regulation of gene transcription (spots 8 and 34, amino acid synthesis (spots 8 and 34, protein synthesis, modification, transport and degradation (spots 1, 2, 4, 10, 15, 19, 30, 31, 32 and 35, cell wall synthesis (spot 14, molecular signaling (spot 3, and salt stress (spots 7, 9 and 27; together with other proteins, such as a putative glyoxylate induced protein, proteins containing dimeric alpha-beta barrel domains, and adenosine kinase-like proteins. Our results suggest that these proteins, together with related physiological processes, play

  5. Copper(II) complexes with peptides based on the second cell binding site of fibronectin: metal coordination and ligand exchange kinetics.

    Science.gov (United States)

    Pizzanelli, Silvia; Forte, Claudia; Pinzino, Calogero; Magrì, Antonio; La Mendola, Diego

    2016-02-07

    Copper(ii) complexes with short peptides based on the second cell binding site of fibronectin, PHSFN and PHSEN, have been characterized by potentiometric, UV-vis, CD, EPR and NMR spectroscopic methods. The histidine imidazole nitrogen is the anchoring site for the metal ion binding. Thermodynamic and spectroscopic evidence is given that the side chain oxygen donor atom of glutamyl residue in Ac-PHSEN-NH2 is also involved in the binding up to physiological pH. To determine ligand exchange kinetic parameters after the imidazole nitrogen anchoring, proton relaxation enhancement NMR data have been collected for the two hydrogen atoms of the imidazole ring in the temperature range 293-315 K at pH 5.2 and globally treated within different kinetic models for ligand exchange. The best fitting model involves two steps. In the first one, which is slow, a water molecule disengages a carbonyl or a carboxylate group coordinated to the metal ion in the complex formed by PHSFN or PHSEN, respectively. This stage is one order of magnitude slower for PHSEN, due to entropic effects. In the second step, which is fast, the complex just formed exchanges with the ligand. In this step, no appreciable differences are found for the two cases examined.

  6. Microstructural Features and Properties of High-hardness and Heat-resistant Dispersion Strengthened Copper by Reaction Milling

    Institute of Scientific and Technical Information of China (English)

    YAN Peng; LIN Chenguang; CUI Shun; LU Yanjie; ZHOU Zenglin; LI Zengde

    2011-01-01

    The oxide dispersion strengthened copper alloys are attractive due to their excellent combination of thermal and electrical conductivities,high-temperature strength and microstructure stability.To date,the state-of-art to fabrication of them was the intemal oxidation (IO) process.In this paper,alumina dispersion strengthened copper (ADSC) powders of nominal composition of Cu-2.5 vo1%Al2O3 were produced by reaction milling (RM) process which was an in-situ gas-solid reaction process.The bulk ADSC alloys for electrical and mechanical properties investigation were obtained by sintering and thereafter hot extrusion.After the hot consolidation processes,the fully densified powder compacts can be obtained.The single y-Al2O3 phase and profile broaden effects are evident in accordance with the results of X-ray diffraction (XRD); the HRB hardness of the ADSC can be as high as 95; the outcomes should be attributed to the pinning effect ofnano γ-Al2O3 on dislocations and grain boundaries in the copper matrix.The electrical conductivity of the ADSC alloy is 55%IACS (International Annealing Copper Standard).The room temperature hardness of the hot consolidated material was approximately maintained after annealing for l h at 900 ℃ in hydrogen atmosphere.In terms of the above merits,the RM process to fabricating ADSC alloys is a promising method to improve heat resistance,hardness,electrical conductivity and wear resistance properties etc.

  7. Evaluation of the Mechanical Properties of Multi-nano Layered Copper-Nickel Thin Film by the Dynamic-Nano Indentation Method

    Science.gov (United States)

    Choi, Yong

    2016-11-01

    The dynamic nano-indentation method was applied to study the effect of interface moving behavior with heat treatment on the nano-mechanical properties of multi-nano-layered copper-nickel thin film. Layer-by-layer depositions of copper and nickel of nano-sized thickness were prepared by two-step pulse electro-deposition in a modified copper-nickel sulfate bath at 25°C. The multi-layered copper-nickel thin sheet was composed of a 20-nm-thick copper-rich nickel phase, and a 25-nm-thick nickel-rich copper phase. Thermal vacuum annealing influenced the interface morphology between copper and nickel nano-layers. Inter-diffusion mainly occurred after annealing at 500°C for 6 h. The interface disappeared after annealing at 600°C to form a completely solid solution. Thermal annealing reduced the nano-hardness and elastic recovery. The average nano-hardness of the multi-layered nano-copper-nickel thin film for the specimens of as-received, 300°C, 500°C and 600°C were 7.9 Gpa, 6.1 Gpa, 4.7 Gpa and 3.0 GPa, respectively. The elastic stiffness was 15.77 × 104 Nm-1 for the as-received specimen, which finally became 2.98 × 104 Nm-1 for the specimen after annealing at 600°C for 6 h.

  8. Binding properties of HABA-type azo derivatives to avidin and avidin-related protein 4.

    Science.gov (United States)

    Repo, Susanna; Paldanius, Tiina A; Hytönen, Vesa P; Nyholm, Thomas K M; Halling, Katrin K; Huuskonen, Juhani; Pentikäinen, Olli T; Rissanen, Kari; Slotte, J Peter; Airenne, Tomi T; Salminen, Tiina A; Kulomaa, Markku S; Johnson, Mark S

    2006-10-01

    The chicken genome encodes several biotin-binding proteins, including avidin and avidin-related protein 4 (AVR4). In addition to D-biotin, avidin binds an azo dye compound, 4-hydroxyazobenzene-2-carboxylic acid (HABA), but the HABA-binding properties of AVR4 are not yet known. Differential scanning calorimetry, UV/visible spectroscopy, and molecular modeling were used to analyze the binding of 15 azo molecules to avidin and AVR4. Significant differences are seen in azo compound preferences for the two proteins, emphasizing the importance of the loop between strands beta3 and beta4 for azo ligand recognition; information on these loops is provided by the high-resolution (1.5 A) X-ray structure for avidin reported here. These results may be valuable in designing improved tools for avidin-based life science and nanobiotechnology applications.

  9. Identification of fluorescent compounds with non-specific binding property via high throughput live cell microscopy.

    Directory of Open Access Journals (Sweden)

    Sangeeta Nath

    Full Text Available INTRODUCTION: Compounds exhibiting low non-specific intracellular binding or non-stickiness are concomitant with rapid clearing and in high demand for live-cell imaging assays because they allow for intracellular receptor localization with a high signal/noise ratio. The non-stickiness property is particularly important for imaging intracellular receptors due to the equilibria involved. METHOD: Three mammalian cell lines with diverse genetic backgrounds were used to screen a combinatorial fluorescence library via high throughput live cell microscopy for potential ligands with high in- and out-flux properties. The binding properties of ligands identified from the first screen were subsequently validated on plant root hair. A correlative analysis was then performed between each ligand and its corresponding physiochemical and structural properties. RESULTS: The non-stickiness property of each ligand was quantified as a function of the temporal uptake and retention on a cell-by-cell basis. Our data shows that (i mammalian systems can serve as a pre-screening tool for complex plant species that are not amenable to high-throughput imaging; (ii retention and spatial localization of chemical compounds vary within and between each cell line; and (iii the structural similarities of compounds can infer their non-specific binding properties. CONCLUSION: We have validated a protocol for identifying chemical compounds with non-specific binding properties that is testable across diverse species. Further analysis reveals an overlap between the non-stickiness property and the structural similarity of compounds. The net result is a more robust screening assay for identifying desirable ligands that can be used to monitor intracellular localization. Several new applications of the screening protocol and results are also presented.

  10. The effect of copper concentration on structural, optical and dielectric properties of Cu xZn 1 - xS thin films

    Science.gov (United States)

    Ali Yıldırım, M.

    2012-03-01

    Cu xZn 1 - xS ( x = 0, 0.25, 0.50, 0.75, 1) thin films were deposited on glass substrates using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature and ambient pressure. The copper concentration ( x) effect on the structural, morphological and optical properties of Cu xZn 1 - xS thin films was investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that all the films exhibit polycrystalline nature and are covered well with glass substrates. The crystalline and surface properties of the films improved with increasing copper concentration. The energy bandgap values were changed from 2.07 to 3.67 eV depending on the copper concentration. The refractive index ( n), optical static and high frequency dielectric constants ( ɛo, ɛ∞) values were calculated by using the energy bandgap values as a function of the copper concentration.

  11. Characterisation of the Rab binding properties of Rab coupling protein (RCP) by site-directed mutagenesis.

    Science.gov (United States)

    Lindsay, Andrew J; McCaffrey, Mary W

    2004-07-30

    Rab coupling protein (RCP) is a member of the Rab11-family of interacting proteins (Rab11-FIPs). Family members are characterised by their ability to interact with Rab11. This property is mediated by a conserved Rab binding domain (RBD) located at their carboxy-termini. Several Rab11-FIPs can also interact with other small GTPases. RCP interacts with Rab4 in addition to Rab11. To dissect out the individual properties of the Rab4 and Rab11 interactions with RCP, conserved amino acids within the RBD of RCP were mutated by site-directed mutagenesis. The effect of these mutations on Rab4 and Rab11 binding, and the intracellular localisation of RCP, was examined. Our results indicate that Rab11, rather than Rab4, mediates the intracellular localisation of RCP, and that the class I Rab11-FIPs compete for binding to Rab11.

  12. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions.

    Science.gov (United States)

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen

    2014-07-15

    The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu(2+)). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied.

  13. Structure and binding properties of a cameloid nanobody raised against KDM5B

    DEFF Research Database (Denmark)

    Wiuf, Anders; Kristensen, Line Hyltoft; Kristensen, Ole

    2015-01-01

    The histone demethylase KDM5B is considered to be a promising target for anticancer therapy. Single-chain antibodies from llama (nanobodies) have been raised to aid in crystallization and structure determination of this enzyme. The antigen-binding properties of 15 of these nanobodies have been...

  14. Effect of laser surface melting treatment on properties of electric copper busbar joints

    Institute of Scientific and Technical Information of China (English)

    梁工英; 宋晓平; 顾林喻

    2001-01-01

    Electrical conductance and temperature of electric copper busbar joints were measured under different torque moments. Experimental results show that laser surface melting can increase hardness and refine structure of the copper, and it does not deteriorate electric resistance. Meanwhile, the temperature of laser treated joints under electric current is slightly lower than that of original sample. Salt spray test shows that laser treated sample has better salt spray corrosion resistance than the original sample does. The electric resistance of both laser-treated and original samples are increased with salt spray time. For the same salt spray time, the electric resistance of busbar joint is decreased with increasing torque moment.

  15. Guanine-containing copper(II) complexes: synthesis, X-ray structures and magnetic properties.

    Science.gov (United States)

    Mastropietro, Teresa F; Armentano, Donatella; Grisolia, Ettore; Zanchini, Claudia; Lloret, Francesc; Julve, Miguel; De Munno, Giovanni

    2008-01-28

    Three new compounds of formula {[Cu(gua)(H(2)O)(3)](BF(4))(SiF(6))(1/2)}(n) (1), {[Cu(gua)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(n) (2) and [Cu(gua)(2)(H(2)O)(HCOO)]ClO(4).H(2)O.1/2HCOOH] (3) [gua = 2-amino-1H-purin-6(9H)-one] showing the unprecedented coordination of neutral guanine, have been synthesised and structurally characterized. The structures of the compounds 1 and 2 contain uniform copper(II) chains of formula [Cu(gua)(H(2)O)(3)](n)(2n+), where the copper atoms are bridged by guanine ligands coordinated via N(3) and N(7). The electroneutrality is achieved by uncoordinated tetrafluoroborate and hexafluorosilicate (1) and triflate (2). Each copper atom in 1 and 2 is five-coordinated in a distorted square pyramidal environment: two water molecules in trans positions and the N(3) and N(7a) nitrogen atoms of two guanine ligands build the basal plane whereas a water molecule fills the axial position. The values of the copper-copper separation across the bridging guanine ligand are 7.183(1) (1) and 7.123(1) A (2). is an ionic salt whose structure is made up of mononuclear [Cu(gua)(2)(H(2)O)(HCOO)](+) cations and perchlorate anions plus water and formic acid as crystallization molecules. The two guanine ligands in the cation are coordinated to the copper centre through the N(9) atom. The copper atom in 3 is four-coordinated with two monodentate guanine molecules in the trans position, a water molecule and a monodenate formate ligand building a quasi square planar surrounding. Magnetic susceptibility measurements for 1 and 2 in the temperature range 1.9-300 K show the occurrence of significant intrachain antiferromagnetic interactions between the copper(ii) ions across the guanine bridge [J = -9.6(1) (1) and -10.3(1) cm(-1) (2) with H = -J summation operator(i)S(i).S(i+1)].

  16. Evaluation of immobilized metal-ion affinity chromatography and electrospray ionization tandem mass spectrometry for recovery and identification of copper(II-binding ligands in seawater using the model ligand 8-hydroxyquinoline

    Directory of Open Access Journals (Sweden)

    Richard L Nixon

    2016-11-01

    Full Text Available Complexation by organic ligands dominates the speciation of iron (Fe, copper (Cu, and other bioactive trace metals in seawater, controlling their bioavailability and distribution in the marine environment. Several classes of high-affinity Fe-binding ligands (siderophores have been identified in seawater but the chemical structures of marine Cu-complexing ligands remain unknown. Immobilized metal-ion affinity chromatography (IMAC allows Cu ligands to be isolated from bulk dissolved organic matter (DOM in seawater and separated into fractions which can be characterized independently using electrochemical and spectroscopic techniques. Attempts have been made to combine IMAC with electrospray ionization mass spectrometry (ESI-MS to characterize marine Cu ligands, but results have proven inconclusive due to the lack of tandem mass spectrometry (MS/MS data to confirm ligand recovery. We used 8-hydroxyquinoline (8-HQ, a well-characterized model ligand that forms strong 1:2 metal:ligand complexes with Cu2+ at pH 8 (log β2 = 18.3, to evaluate Cu(II-IMAC and ESI-MS/MS for recovery and identification of copper(II-complexing ligands in seawater. One-litre samples of 0.45µm-filtered surface seawater were spiked with 8-HQ at low concentrations (up to 100 nM and fractionated by IMAC. Fractions eluted with acidified artificial seawater were desalted and re-suspended in methanol via solid-phase extraction (SPE to obtain extracts suitable for ESI-MS analysis. Recovery of 8-HQ by Cu(II-IMAC was confirmed unambiguously by MS/MS and found to average 81% based upon accurate quantitation via multiple reaction monitoring (MRM. Cu(II-IMAC fractionation of unspiked seawater using multiple UV detection wavelengths suggests an optimal fraction size of 2 mL for isolating and analyzing Cu ligands with similar properties.

  17. Effect of continuous induction annealing on the microstructure and mechanical properties of copper-clad aluminum flat bars

    Science.gov (United States)

    Liu, Xin-hua; Jiang, Yan-bin; Zhang, Hong-jie; Xie, Jian-xin

    2016-12-01

    Copper-clad aluminum (CCA) flat bars produced by the continuous casting-rolling process were subjected to continuous induction heating annealing (CIHA), and the effects of induction heating temperature and holding time on the microstructure, interface, and mechanical properties of the flat bars were investigated. The results showed that complete recrystallization of the copper sheath occurred under CIHA at 460°C for 5 s, 480°C for 3 s, or 500°C for 1 s and that the average grain size in the copper sheath was approximately 10.0 μm. In the case of specimens subjected to CIHA at 460-500°C for longer than 1 s, complete recrystallization occurred in the aluminum core. In the case of CIHA at 460-500°C for 1-5 s, a continuous interfacial layer with a thickness of 2.5-5.5 μm formed and the thickness mainly increased with increasing annealing temperature. After CIHA, the interfacial layer consisted primarily of a Cu9Al4 layer and a CuAl2 layer; the average interface shear strength of the CCA flat bars treated by CIHA at 460-500°C for 1-5 s was 45-52 MPa. After full softening annealing, the hardness values of the copper sheath and the aluminum core were HV 65 and HV 24, respectively, and the hardness along the cross section of the CCA flat bar was uniform.

  18. Electrical Properties Analysis of Copper doped CdTe/CdS Deposited Thin Films on ITO Coated Glass Substrates

    Science.gov (United States)

    Lesinski, Darren; Flaherty, James; Sahiner, M. Alper

    CdTe proves to be a viable source for renewable energy in the form of photovoltaic conversion. While CdTe/CdS naturally provide interesting results adding dopants to the cell can yield higher conversion efficiencies. Copper, famous for its electrical properties, can be used as a dopant in the CdTe layer. In conjunction with its dopant characteristics Copper also improves cell performance by acting as a low resistant and high current back contact. All thin films were synthesized using pulsed laser deposition onto ITO coated glass substrates. The CdS layer across all cells has an approximate thickness of 1500 Angstroms. The following CdTe layer has an approximate thickness of 5500 Angstroms. This created the base cell that was then doped. Cu, typically deposited using sublimation or vapor deposition, was done by PLD as well. Two of the three base cells were treated with Cu using the same deposition parameters. The third cell also received a CdCl treatment on top of the Cu layer to understand the effect when the oxygen layer is deferred. Ellipsometer measurements were used to confirm layer thickness. XRD analysis was used to confirm the presence of Cu and the crystal structure of the thin films. A Hall Effect Measurement system was used to measure active charge carrier concentration introduced by dopant. Also, a Keithley sourcemeter was utilized to determine photovoltaic properties. Notable results discussed will be the effects of Copper dopant on the electrical properties of CdS/CdTe based solar cells.

  19. Effect of bonding and bakeout thermal cycles on the properties of copper alloys irradiated at 350 degrees C

    DEFF Research Database (Denmark)

    Singh, B.N.; Edwards, D.J.; Eldrup, Morten Mostgaard

    2001-01-01

    Screening experiments were carried out to determine the effect of bonding and bakeout thermal cycles on microstructure, mechanical properties and electrical resistivity of the oxide dispersion strengthened (GlidCop, CuAl-25) and the precipitation hardened (CuCrZr, CuNiBe) copper alloys. Tensile...... results are described and their salient features discussed. The most significant effect of neutron irradiation is a severe loss of ductility in the case of CuNiBe alloys. (C) 2001 Elsevier Science B.V. All rights reserved....

  20. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Quesnel, David J. [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the

  1. Structural Characteristics and Properties of Precious Metal Powders and Copper Powder Prepared by High-speed Centrifugal Atomization Technique

    Institute of Scientific and Technical Information of China (English)

    XIE Ming; YANG You-cai; LI Yu-shen; ZHANG Jian-kan; FU Shi-ji; SHI Qing-nan

    2007-01-01

    The principle and characteristics of the rapidly solidified centrifugal atomization technique are studied in present paper. It has been widely used to make fine, rapidly solidified precious metal powders for application as the electrical engineering materials, conductive coatings for electromagnetic shielding and brazing alloys. The silver powder, copper powder and some precious metal alloys powders are prepared by the new method. A comparative analysis is carried out with the conventional electrolytic silver powder and chemical deposition silver powder. The results show that rapidly solidified powders are fine and have higher solid solubility of the alloying elements, and their alloys have excellent properties in various aspects.

  2. Effect of copper stress on growth characteristics and fermentation properties of Saccharomyces cerevisiae and the pathway of copper adsorption during wine fermentation.

    Science.gov (United States)

    Sun, Xiangyu; Liu, Lingling; Zhao, Yu; Ma, Tingting; Zhao, Fang; Huang, Weidong; Zhan, Jicheng

    2016-02-01

    The effect of copper stress on the fermentation performance of Saccharomyces cerevisiae and its copper adsorption pathway during alcoholic fermentation were investigated in this study. At the limits imposed by the regulations of the European Union and South African (⩽ 20 mg/l), copper had no effect on the cell growth of S. cerevisiae, but its fermentation performance was inhibited to a certain extent. Therefore, the regulated limit should be further reduced (⩽ 12.8 mg/l). Under 9.6-19.2 mg/l copper stress, S. cerevisiae could absorb copper; the copper removal ratio and the unit strain adsorption were 60-81% and 2.72-9.65 mg/g, respectively. S. cerevisiae has a non-biological adsorption of copper, but compared with biological (living yeast) adsorption, the non-biological adsorption was very low. The copper adsorption way of S. cerevisiae was primarily via biological (living yeast) adsorption, which was a two-step process.

  3. Structural properties of metal-organic frameworks within the density-functional based tight-binding method

    Energy Technology Data Exchange (ETDEWEB)

    Lukose, Binit; Supronowicz, Barbara; Kuc, Agnieszka B.; Heine, Thomas [School of Engineering and Science, Jacobs University Bremen (Germany); Petkov, Petko S.; Vayssilov, Georgi N. [Faculty of Chemistry, University of Sofia (Bulgaria); Frenzel, Johannes [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum (Germany); Seifert, Gotthard [Physikalische Chemie, Technische Universitaet Dresden (Germany)

    2012-02-15

    Density-functional based tight-binding (DFTB) is a powerful method to describe large molecules and materials. Metal-organic frameworks (MOFs), materials with interesting catalytic properties and with very large surface areas, have been developed and have become commercially available. Unit cells of MOFs typically include hundreds of atoms, which make the application of standard density-functional methods computationally very expensive, sometimes even unfeasible. The aim of this paper is to prepare and to validate the self-consistent charge-DFTB (SCC-DFTB) method for MOFs containing Cu, Zn, and Al metal centers. The method has been validated against full hybrid density-functional calculations for model clusters, against gradient corrected density-functional calculations for supercells, and against experiment. Moreover, the modular concept of MOF chemistry has been discussed on the basis of their electronic properties. We concentrate on MOFs comprising three common connector units: copper paddlewheels (HKUST-1), zinc oxide Zn{sub 4}O tetrahedron (MOF-5, MOF-177, DUT-6 (MOF-205)), and aluminum oxide AlO{sub 4}(OH){sub 2} octahedron (MIL-53). We show that SCC-DFTB predicts structural parameters with a very good accuracy (with less than 5% deviation, even for adsorbed CO and H{sub 2}O on HKUST-1), while adsorption energies differ by 12 kJ mol{sup -1} or less for CO and water compared to DFT benchmark calculations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. A machine learning approach for the identification of odorant binding proteins from sequence-derived properties

    Directory of Open Access Journals (Sweden)

    Suganthan PN

    2007-09-01

    Full Text Available Abstract Background Odorant binding proteins (OBPs are believed to shuttle odorants from the environment to the underlying odorant receptors, for which they could potentially serve as odorant presenters. Although several sequence based search methods have been exploited for protein family prediction, less effort has been devoted to the prediction of OBPs from sequence data and this area is more challenging due to poor sequence identity between these proteins. Results In this paper, we propose a new algorithm that uses Regularized Least Squares Classifier (RLSC in conjunction with multiple physicochemical properties of amino acids to predict odorant-binding proteins. The algorithm was applied to the dataset derived from Pfam and GenDiS database and we obtained overall prediction accuracy of 97.7% (94.5% and 98.4% for positive and negative classes respectively. Conclusion Our study suggests that RLSC is potentially useful for predicting the odorant binding proteins from sequence-derived properties irrespective of sequence similarity. Our method predicts 92.8% of 56 odorant binding proteins non-homologous to any protein in the swissprot database and 97.1% of the 414 independent dataset proteins, suggesting the usefulness of RLSC method for facilitating the prediction of odorant binding proteins from sequence information.

  5. Copper Alginate-Cotton Cellulose (CACC Fibers with Excellent Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Navin Chand, Ph.D.

    2009-09-01

    Full Text Available The present work describes synthesis of copper alginate-cotton cellulose (CACC composite fibers and detailed investigation of antimicrobial action against the model bacteria E.coli. The CACC fibers were prepared by immersing cotton fibers in aqueous solution of sodium alginate, followed by ionic crosslinking of alginate chains within the cotton cellulose fibers with Cu(II ions to yield CACC composite fibers. The resulting CACC fibers were investigated for their biocidal action against E.coli, by using zone inhibition and colonies counting method. Finally, CACC fibers were reduced with sodium borohydride to yield copper nanoparticles- loaded composite fibers and investigated for biocidal action. It was found that CACC fibers possessed both, the fair mechanical strength and antibacterial action. The extent of biocidal action was found to depend upon the amount of Cu(II loaded and concentration of alginate into cotton- cellulose fibers. The fibers showed higher Cu(II release in physiological fluid as compared to distilled water. Copper alginate-cotton cellulose (CACC fibers show fair mechanical strength and release copper ions in the presence of physiological fluid and protein solution. These fibers have great potential to be used as dressing materials.

  6. Tensile and electrical properties of copper alloys irradiated in a fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fabritsiev, S.A. [D.V. Efremov Inst., St. Petersburg (Russian Federation); Pokrovsky, A.S. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Zinkle, S.J.; Rowcliffe, A.F. [Oak Ridge National Laboratory, TN (United States)] [and others

    1996-04-01

    Postirradiation electrical sensitivity and tensile measurements have been completed on pure copper and copper alloy sheet tensile specimens irradiated in the SM-2 reactor to doses of {approx}0.5 to 5 dpa and temperatures between {approx}80 and 400{degrees}C. Considerable radiation hardening and accompanying embrittlement was observed in all of the specimens at irradiation temperature below 200{degrees}C. The radiation-induced electrical conductivity degradation consisted of two main components: solid transmutation effects and radiation damage (defect cluster and particle dissolution) effects. The radiation damage component was nearly constant for the doses in this study, with a value of {approx}1.2n{Omega}m for pure copper and {approx}1.6n{Omega}m for dispersion strengthened copper irradiated at {approx}100{degrees}C. The solid transmutation component was proportional to the thermal neutron flux, and became larger than the radiation damage component for fluences larger than {approx}5 10{sup 24} n.m{sup 2}. The radiation hardening and electrical conductivity degradation decreased with increasing irradiation temperature, and became negligible for temperatures above {approx}300{degrees}C.

  7. Synthesis, Characterization and Fluorescence Properties of Zn(II) and Cu(II) Complexes: DNA Binding Study of Zn(II) Complex.

    Science.gov (United States)

    Lavaee, Parirokh; Eshtiagh-Hosseini, Hossein; Housaindokht, Mohammad Reza; Mague, Joel T; Esmaeili, Abbas Ali; Abnous, Khalil

    2016-01-01

    Zinc(II) and copper(II) complexes containing Schiff base, 2- methoxy-6((E)-(phenylimino) methyl) phenol ligand (HL) were synthesized and characterized by elemental analysis, IR, NMR, and single crystal X-ray diffraction technique. The fluorescence properties and quantum yield of zinc complex were studied. Our data showed that Zn complex could bind to DNA grooves with Kb = 10(4) M(-1). Moreover, Zn complex could successfully be used in staining of DNA following agarose gel electrophoresis. MTT assay showed that Zn complex was not cytotoxic in MCF-7 cell line. Here, we introduce a newly synthesized fluorescence probe that can be used for single and double stranded DNA detection in both solution and agarose gels.

  8. Syntheses, DNA binding and anticancer profiles of L-glutamic acid ligand and its copper(II) and ruthenium(III) complexes.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Saleem, Kishwar; Wesselinova, Diana

    2013-02-01

    A new multidentate ligand (L) has been synthesized by the controlled condensation of L-glutamic acid with formaldehyde and ethylenediamine. Cu(II) and Ru(III) metal ion complexes of the synthesized ligand have also been prepared. The ligand and the metal complexes were purified by chromatography and characterized by spectroscopy and other techniques. Molar conductance measurements suggested ionic nature of the complexes. The ligand and the complexes are soluble in water with quite good stabilities; essential requirements for effective anticancer drugs. DNA binding constants (Kbs) for copper and ruthenium complexes were 1.8 x 103 and 2.6 x 103 M-1 while their Ksv values were 7.9 x 103, and 7.3 x 103; revealing strong binding of these complexes with DNA. Hemolytic assays of the reported compounds indicated their significantly less toxicity to RBCs than the standard anticancer drug letrazole. Anticancer profiles of all the compounds were determined on HepG2, HT-29, MDA-MB-231 and HeLa human cancer cell lines. All the compounds have quite good activities on HeLa cell lines but the best results were of CuL on HepG2, HT-29 and MDA-MB-231 cell lines.

  9. A new ternary copper(II) complex derived from 2-(2'-pyridyl)benzimidazole and glycylglycine: synthesis, characterization, DNA binding and cleavage, antioxidation and HSA interaction.

    Science.gov (United States)

    Fu, Xia-Bing; Lin, Zi-Hua; Liu, Hai-Feng; Le, Xue-Yi

    2014-03-25

    A new ternary copper(II)-dipeptide complex [Cu(glygly)(HPB)(Cl)]⋅2H2O (glygly=glycylglycine anion, HPB=2-(2'-pyridyl)benzimidazole) has been synthesized and characterized. The DNA interaction of the complex was studied by spectroscopic methods, viscosity, and electrophoresis measurements. The antioxidant activity was also investigated using the pyrogallol autoxidation assay. Besides, the interaction of the complex with human serum albumin (HSA) in vitro was examined by multispectroscopic techniques. The complex partially intercalated to CT-DNA with a high binding constant (Kb=7.28×10(5) M(-1)), and cleaved pBR322 DNA efficiently via an oxidative mechanism in the presence of Vc, with the HO· and O2(-) as the active species, and the SOD as a promoter. Furthermore, the complex shows a considerable SOD-like activity with the IC50 value of 3.8386 μM. The complex exhibits desired binding affinity to HSA, in which hydrogen bond or vander Waals force played a major role. The alterations of HSA secondary structure induced by the complex were confirmed by UV-visible, CD, synchronous fluorescence and 3D fluorescence spectroscopy.

  10. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels

    2009-01-01

    techniques and tight-binding calculations to illustrate these materials' transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy we find a strong reduction in electron transmission due to localized states in certain regions of the structure......Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab initio...

  11. Carrageenans as a New Source of Drugs with Metal Binding Properties

    Directory of Open Access Journals (Sweden)

    Yuri S. Khotimchenko

    2010-04-01

    Full Text Available Carrageenans are abundant and safe non-starch polysaccharides exerting their biological effects in living organisms. Apart from their known pro-inflammation properties and some pharmacological activity, carrageenans can also strongly bind and hold metal ions. This property can be used for creation of the new drugs for elimination of metals from the body or targeted delivery of these metal ions for healing purposes. Metal binding activity of different carrageenans in aqueous solutions containing Y3+ or Pb2+ ions was studied in a batch sorption system. The metal uptake by carrageenans is not affected by the change of the pH within the range from 2.0 to 6.0. The rates and binding capacities of carrageenans regarding metal ions were evaluated. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and constants, and the sorption isothermal data could be explained well by the Langmuir equation. The results obtained through the study suggest that κ-, ι-, and λ-carrageenans are favorable sorbents. The largest amount of Y3+ and Pb2+ ions are bound by i-carrageenan. Therefore, it can be concluded that this type of polysaccharide is the more appropriate substance for elaboration of the drugs with high selective metal binding properties.

  12. Non-vacuum processed Cu{sub 2}ZnSnS{sub 4} thin films: Influence of copper precursor on structural, optical and morphological properties

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Ferhat, E-mail: ferhataslan@harran.edu.tr; Tumbul, Ahmet

    2014-11-05

    Highlights: • Non-vacuum sol–gel prepared CZTS thin films. • CZTS has been prepared with different copper precursors. • The remarkable effect of copper precursor on the CZTS films was identified. • The CZTS films exhibited kesterite phase with a (1 1 2) plane preferred orientation. - Abstract: In this study, thin film of Cu{sub 2}ZnSnS{sub 4} (CZTS) has been successfully deposited by sol–gel dip-coating method on glass substrates. In the sol–gel process, glacial acetic acid, ethanol and triethanolamine were used as solvent and stabilizer. Three different copper precursors of copper (III) nitrate hemipentahydrate, copper (II) 2-ethylhexanoate and copper (II) acetate in the solution were used to obtain CZTS thin films. Effect of copper precursor on the structural, morphological and optical properties was investigated. X-ray diffraction (XRD) and Raman spectroscopy studies showed that CZTS thin films exhibited kesterite structure with a (1 1 2) plane preferred orientation and Raman shift of 336 cm{sup −1}, respectively.

  13. Modification of Thin Film Composite (TFC) Membrane by Incorporation with Copper Nanoparticles (Cu-NPs) for Antibacterial Properties

    Science.gov (United States)

    Zhong, Chen

    Membrane biofouling has been a challenging problem restricting the application of reverse osmosis (RO) desalination process. Copper is known for its antimicrobial properties and is easily available with low cost. In this paper, copper nanoparticles (Cu-NPs) with a mean diameter of 15nm were synthesized by the reduction of copper (II) chloride with sodium borohydride (NaBH4), using cetyl trimethylammonium bromide ((C16H33)N(CH3) 3Br, CTAB) as a capping agent. After purification of Cu-NPs by dialysis, the particles were successfully immobilized onto the surface of thin film composite (TFC) membranes via either electrostatic interactions or by covalent bonding with cysteamine as a linker. The electrostatic method was simply to immerse the newly made TFC membranes to the Cu-NPs suspension. Since the CTAB had formed cationic bilayer outside the Cu-NPs, the Cu-NPs was not only adsorbed on the membranes but also attached to the surface because of the electrostatic effect with the negatively charged membrane surface. The covalent bonding method utilized cysteamine (C4H12N2S 2) to activate the thin film layer with thiol functional groups first and then incorporated the metallic copper nanoparticles to form the stable covalent chemical bonding in between. The resulting membranes by these two methods were labeled as TFC-CuNPs and TFC-S-CuNPs, respectively, in this study. Scanning electron microscopy (SEM) imaging and associated energy-dispersive X-ray spectroscopy (EDS) showed that large amounts of Cu-NPs existed on both types of membranes. Surface hydrophilicity of the membranes was enhanced by the presence of Cu-NPs, as indicated by the measured contact angle of 63.25 +/- 0.75 for TFC, 38.63 +/- 2.16 for TFC-CuNPs, and 58.00 +/- 3.39 for TFC-S-CuNPs. Consistently, the water flux obtained from the RO desalination system was increased from 47.07 +/- 0.84 for TFC, 49.10 +/- 0.22 for TFC-CuNPs, and 69.13 +/- 1.43 for TFC-S-CuNPs, with this increase in hydrophilicity. The salt

  14. Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide: Morphological, optical and electrical properties

    Directory of Open Access Journals (Sweden)

    Priscilla Vasthi Quintana-Ramirez

    2014-09-01

    Full Text Available Copper sulfide is a promising p-type inorganic semiconductor for optoelectronic devices such as solar cells, due its small band gap energy and its electrical properties. In this work nanocrystalline copper sulfide (CuxS, with two stoichiometric ratios (x = 2, 1.8 was obtained by one-pot synthesis at 220, 230, 240 and 260 °C in an organic solvent and amorphous CuxS was obtained in aqueous solution. Nanoparticle-like nucleation centers are formed at lower temperatures (220 °C, mixtures of morphologies (nanorods, nanodisks and nanoprisms are seen at 230 and 240 °C, in which the nanodisks are predominant, while big hexagonal/prismatic crystals are obtained at 260 °C according to TEM results. A mixture of chalcocite and digenite phases was found at 230 and 240 °C, while a clear transition to a pure digenite phase was seen at 260 °C. The evolution of morphology and transition of phases is consistent to the electrical, optical, and morphological properties of the copper sulfide. In fact, digenite Cu1.8S is less resistive (346 Ω/sq and has a lower energy band gap (1.6 eV than chalcocite Cu2S (5.72 × 105 Ω/sq, 1.87 eV. Low resistivity was also obtained in CuxS synthesized in aqueous solution, despite its amorphous structure. All CuxS products could be promising for optoelectronic applications.

  15. 化学镀铜短碳纤维-铜-石墨复合材料的性能研究%Properties of Electroless Copper Plating on Short Carbon Fiber-Copper-Graphite Composite

    Institute of Scientific and Technical Information of China (English)

    许少凡; 许少平; 霍金元; 顾斌

    2012-01-01

    The surfaces of short carbon fibers were coated by electroless copper plating method, and the long carbon fibers coated by continuous electroplating copper method were cut short. The carbon fiber-copper-graphite composites with the two kinds of short carbon fibers and the copper-graphite composite without short carbon fibers were prepared by the powder metallurgy method. Their physical and mechanical properties were tested. The dry friction tests of the composites under sliding velocity of 15 m/s and load of 4. 9 N were conducted for 30 h . The results show that such properties of the electroless copper plating on short carbon fiber-copper-graphite composite as electric conductivity, hardness, bending strength and wear resistance are increased much more remarkably than those of the electroplating copper short carbon fiber-copper-graphite and copper-graphite composite without short carbon fiber.%本文采用化学镀铜法对短碳纤维表面进行镀铜,并用电镀法对长碳纤维表面进行连续镀铜后,再切割成镀铜短碳纤维.随后用粉末冶金法制备了含有这两种镀铜短碳纤维的碳纤维-铜-石墨复合材料和不含碳纤维的铜-石墨复合材料,对它们的物理和力学性能进行了测试,并在滑动速度为15 m/s、载荷为4.9N的干摩擦条件下进行了30 h磨损试验,结果表明:化学镀铜短碳纤维-铜-石墨复合材料的导电性、硬度、抗弯强度和耐磨性优于电镀铜短碳纤维-铜-石墨复合材料和不含碳纤维的铜-石墨复合材料.

  16. Synthesis, DNA binding, cellular DNA lesion and cytotoxicity of a series of new benzimidazole-based Schiff base copper(II) complexes.

    Science.gov (United States)

    Paul, Anup; Anbu, Sellamuthu; Sharma, Gunjan; Kuznetsov, Maxim L; Koch, Biplob; Guedes da Silva, M Fátima C; Pombeiro, Armando J L

    2015-12-14

    A series of new benzimidazole containing compounds 2-((1-R-1-H-benzimidazol-2-yl)phenyl-imino)naphthol HL(1-3) (R = methyl, ethyl or propyl, respectively) have been synthesized by Schiff base condensation of 2-(1-R-1-H-benzo[d]imidazol-2-yl)aniline and 2-hydroxy-1-naphthaldehyde. The reactions of HL(1-3) with Cu(NO3)2·2.5H2O led to the corresponding copper(II) complexes [Cu(L)(NO3)] 1-3. All the compounds were characterized by conventional analytical techniques and, for 1 and 3, also by single-crystal X-ray analysis. The interactions of complexes 1-3 with calf thymus DNA were studied by absorption and fluorescence spectroscopic techniques and the calculated binding constants (K(b)) are in the range of 3.5 × 10(5) M(-1)-3.2 × 10(5) M(-1). Complexes 1-3 effectively bind DNA through an intercalative mode, as proved by molecular docking studies. The binding affinity of the complexes decreases with the size increase of the N-alkyl substituent, in the order of 1 > 2 > 3, which is also in accord with the calculated LUMO(complex) energies. They show substantial in vitro cytotoxic effect against human lung (A-549), breast (MDA-MB-231) and cervical (HeLa) cancer cell lines. Complex 1 exhibits a significant inhibitory effect on the proliferation of the A-549 cancer cells. The antiproliferative efficacy of 1 has also been analysed by a DNA fragmentation assay, fluorescence activated cell sorting (FACS) and nuclear morphology using a fluorescence microscope. The possible mode for the apoptosis pathway of 1 has also been evaluated by a reactive oxygen species (ROS) generation study.

  17. A new, model-free calculation method to determine the coordination modes and distribution of copper(II) among the metal binding sites of multihistidine peptides using circular dichroism spectroscopy.

    Science.gov (United States)

    Osz, Katalin

    2008-12-01

    A new calculation method to determine microscopic protonation processes from CD spectra measured at different pH and Cu(II):ligand ratios was developed and used to give the relative binding strengths for the three histidines of hsPrP(84-114), a 31-mer polypeptide modeling the N-terminal copper(II) binding region of human (homo sapiens) prion protein. Mutants of hsPrP(84-114) with two or one histidyl residues have also been synthesized and their copper(II) complexes studied by CD spectroscopy. The 1-His models were analyzed first, and the molar CD spectra for the different coordination modes on the different histidines were calculated using the general computational program PSEQUAD. These spectra were deconvoluted into the sum of Gaussian curves and used as a first parameter set to calculate the molar spectra for the different coordination modes (3N and 4N coordination) and coordination positions (His85, His96 and His111) of the 2-His peptides. The calculation method therefore does not require the direct use of CD spectra measured in the smaller peptide models. This is a significant improvement over earlier calculation methods. In the same runs, the stepwise deprotonation pK(mic) values were refined and the pH-dependent distribution of copper(II) between the two histidines was determined. The results revealed the high, but different copper(II) binding affinities of the three separate histidines in the following order: His85 copper(II) binding preferences are transferable from the 2-His peptides to the 3-His hsPrP(84-114).

  18. Properties and ATRP activity of copper complexes with substituted tris(2-pyridylmethyl)amine-based ligands.

    Science.gov (United States)

    Kaur, Aman; Ribelli, Thomas G; Schröder, Kristin; Matyjaszewski, Krzysztof; Pintauer, Tomislav

    2015-02-16

    Synthesis, characterization, electrochemical studies, and ATRP activity of a series of novel copper(I and II) complexes with TPMA-based ligands containing 4-methoxy-3,5-dimethyl-substituted pyridine arms were reported. In the solid state, Cu(I)(TPMA*(1))Br, Cu(I)(TPMA*(2))Br, and Cu(I)(TPMA*(3))Br complexes were found to be distorted tetrahedral in geometry and contained coordinated bromide anions. Pseudo-coordination of the aliphatic nitrogen atom to the copper(I) center was observed in Cu(I)(TPMA*(2))Br and Cu(I)(TPMA*(3))Br complexes, whereas pyridine arm dissociation occurred in Cu(I)(TPMA*(1))Br. All copper(I) complexes with substituted TPMA ligands exhibited a high degree of fluxionality in solution. At low temperature, Cu(I)(TPMA*(1))Br was found to be symmetrical and monomeric, while dissociation of either unsubstituted pyridine and/or 4-methoxy-3,5-dimethyl-substituted pyridine arms was observed in Cu(I)(TPMA*(2))Br and Cu(I)(TPMA*(3))Br. On the other hand, the geometry of the copper(II) complexes in the solid state deviated from ideal trigonal bipyramidal, as confirmed by a decrease in τ values ([Cu(II)(TPMA*(1))Br][Br] (τ = 0.92) > [Cu(II)(TPMA*(3))Br][Br] (τ = 0.77) > [Cu(II)(TPMA*(2))Br][Br] (τ = 0.72)). Furthermore, cyclic voltammetry studies indicated a nearly stepwise decrease (ΔE ≈ 60 mV) of E1/2 values relative to SCE (TPMA (-240 mV) > TPMA*(1) (-310 mV) > TPMA*(2) (-360 mV) > TPMA*(3) (-420 mV)) on going from [Cu(II)(TPMA)Br][Br] to [Cu(II)(TPMA*(3))Br][Br], confirming that the presence of electron-donating groups in the 4 (-OMe) and 3,5 (-Me) positions of the pyridine rings in TPMA increases the reducing ability of the corresponding copper(I) complexes. This increase was mostly the result of a stronger influence of substituted TPMA ligands toward stabilization of the copper(II) oxidation state (log β(I) = 13.4 ± 0.2, log β(II) = 19.3 (TPMA*(1)), 20.5 (TPMA*(2)), and 21.5 (TPMA*(3))). Lastly, ARGET ATRP kinetic studies show that with

  19. Crystal structure, characterization and magnetic properties of a 1D copper(II) polymer incorporating a Schiff base with carboxylate side arm

    Indian Academy of Sciences (India)

    SHYAMAPADA SHIT; MADHUSUDAN NANDY; CORRADO RIZZOLI; CÉDRIC DESPLANCHES; SAMIRAN MITRA

    2016-06-01

    A new 1D polymeric copper(II) complex [{Cu(L)$(CF_{3}COO)}2]_{n}$ has been synthesized using apotentially tetradentate Schiff base ligand, HL, ((E)-2-((pyridin-2-yl)methyleneamino)-5-chlorobenzoic acid)and characterized by different spectroscopic methods. Single crystal X-ray structural characterization revealsthat the side arm carboxylate group of the coordinated Schiff base exhibits a $μ_{1,3}$ -bridging mode and connectsthe neighbouring copper(II) ions leading to a zigzag 1D chain structure where the copper(II) ions displaydistorted square pyramidal geometries. Variable temperature magnetic susceptibility measurement reveals aweak antiferromagnetic exchange (J = −0.47±0.01 $cm_{−1}) prevails between copper(II) ions in the chainmediated by the bridging carboxylate group, is also supported by the room temperature EPR spectral study.Electrochemical property of the complex is also reported.

  20. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors

    CERN Document Server

    Alfinito, Eleonora; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2016-01-01

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors, with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer thrombin-binding aptamer (TBA), has been widely explored concerning both its structure, which was resolved with different techniques, and its function, especially about the possibility of using it as the active part of biosensors. This paper proposes a microscopic model of the electrical properties of TBA and the aptamer-thrombin complex, combining information from both structure and function. The novelty consists in describing both the aptamer alone and the complex as an impedance network, thus going deeper inside the issues...

  1. Microstructures and properties of Al2O3 dispersion-strengthened copper alloys prepared through different methods

    Science.gov (United States)

    Yan, Zhi-qiao; Chen, Feng; Ye, Fu-xing; Zhang, Dong-ping; Cai, Yi-xiang

    2016-12-01

    Al2O3 dispersion copper alloy powder was prepared by internal oxidation, and three consolidation methods—high-velocity compaction (HVC), hot pressing (HP), and hot extrusion (HE)—were used to prepare Al2O3 dispersion-strengthened copper (Cu-Al2O3) alloys. The microstructures and properties of these alloys were investigated and compared. The results show that the alloys prepared by the HP and HE methods exhibited the coarsest and finest grain sizes, respectively. The alloy prepared by the HVC method exhibited the lowest relative density (98.3% vs. 99.5% for HP and 100% for HE), which resulted in the lowest electrical conductivity (81% IACS vs. 86% IACS for HP and 87% IACS for HE). However, this alloy also exhibited the highest hardness (77 HRB vs. 69 HRB for HP and 70 HRB for HE), the highest compressive strength (443 MPa vs. 386 MPa for HP and 378 MPa for HE), and the best hardness retention among the investigated alloys. The results illustrate that the alloy prepared by the HVC method exhibits high softening temperature and good mechanical properties at high temperatures, which imply long service life when used as spot-welding electrodes.

  2. Studies of cholecystokinin-stimulated biliary secretions reveal a high molecular weight copper-binding substance in normal subjects that is absent in patients with Wilson's disease.

    Science.gov (United States)

    Iyengar, V; Brewer, G J; Dick, R D; Chung, O Y

    1988-03-01

    Copper is unique among cations in that its balance is regulated by the liver. The liver regulates copper balance by excretion of copper (we call it regulatory copper) in the bile destined for loss in the stool. However, most copper secreted into the gastrointestinal tract, for example, that in saliva and gastric juice, is reabsorbed. The biochemical mechanism by which the normal liver "packages" regulatory copper to prevent its reabsorption is not understood. Whatever the mechanism, it appears to have failed in Wilson's disease, because patients with Wilson's disease do not excrete adequate amounts of regulatory copper in their bile to prevent copper accumulation. In the present work, we have studied cholecystokinin-stimulated biliary secretions obtained by intestinal intubation of five normal subjects and five patients with Wilson's disease. Studies of these secretions reveal: (1) that normal but not Wilson's disease biliary samples had a copper-containing peak in the void volume from Sephadex G-75 columns; (2) that the amount of copper in this peak extrapolated to 24 hours of secretion was appropriate to maintain normal copper balance; (3) that the amount of copper in this peak increased with dietary copper supplementation of normal subjects; (4) that normal but not Wilson's disease biliary samples cross-reacted with each of two ceruloplasmin antibodies; and (5) that the high molecular weight Sephadex G-75 fraction from normal but not from Wilson's disease biliary samples cross-reacted with ceruloplasmin antibody. We postulate that the high molecular weight copper-containing substance observed with Sephadex chromatography in normal biliary samples but absent in Wilson's disease samples is the copper-packaging mechanism for copper balance regulation.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Structural characterization of copper(II) binding to α-synuclein: Insights into the bioinorganic chemistry of Parkinson's disease

    OpenAIRE

    Rasia, Rodolfo M.; Carlos W Bertoncini; Marsh, Derek; Hoyer, Wolfgang; Cherny, Dmitry; Zweckstetter, Markus; Griesinger, Christian; Jovin, Thomas M.; Fernández, Claudio O

    2005-01-01

    The aggregation of α-synuclein (AS) is characteristic of Parkinson's disease and other neurodegenerative synucleinopathies. We demonstrate here that Cu(II) ions are effective in accelerating AS aggregation at physiologically relevant concentrations without altering the resultant fibrillar structures. By using numerous spectroscopic techniques (absorption, CD, EPR, and NMR), we have located the primary binding for Cu(II) to a specific site in the N terminus, involving His-50 as the anchoring r...

  4. Structural characterization of copper(II) binding to α-Synuclein: Insights into the bioinorganic chemistry of Parkinson's disease

    OpenAIRE

    Rasia, R.; BERTONCINI, C; Marsh, D; Hoyer, W.; Cherny, D; Zweckstetter, M.; Griesinger, C; Jovin, T.; Fernandez, C.

    2005-01-01

    The aggregation of α -synuclein (AS) is characteristic of Parkinson’s disease and other neurodegenerative synucleinopathies. We demonstrate here that Cu(II) ions are effective in accelerating AS aggregation at physiologically relevant concentrations without altering the resultant fibrillar structures. By using numerous spectroscopic techniques (absorption, CD, EPR, and NMR), we have located the primary binding for Cu(II) to a specific site in the N terminus, involving His-50 as the anchoring ...

  5. Conservation of DNA-binding specificity and oligomerisation properties within the p53 family

    Directory of Open Access Journals (Sweden)

    Joerger Andreas C

    2009-12-01

    Full Text Available Abstract Background Transcription factors activate their target genes by binding to specific response elements. Many transcription factor families evolved from a common ancestor by gene duplication and subsequent divergent evolution. Members of the p53 family, which play key roles in cell-cycle control and development, share conserved DNA binding and oligomerisation domains but exhibit distinct functions. In this study, the molecular basis of the functional divergence of related transcription factors was investigated. Results We characterised the DNA-binding specificity and oligomerisation properties of human p53, p63 and p73, as well as p53 from other organisms using novel biophysical approaches. All p53 family members bound DNA cooperatively as tetramers with high affinity. Despite structural differences in the oligomerisation domain, the dissociation constants of the tetramers was in the low nanomolar range for all family members, indicating that the strength of tetramerisation was evolutionarily conserved. However, small differences in the oligomerisation properties were observed, which may play a regulatory role. Intriguingly, the DNA-binding specificity of p53 family members was highly conserved even for evolutionarily distant species. Additionally, DNA recognition was only weakly affected by CpG methylation. Prediction of p53/p63/p73 binding sites in the genome showed almost complete overlap between the different homologs. Conclusion Diversity of biological function of p53 family members is not reflected in differences in sequence-specific DNA binding. Hence, additional specificity factors must exist, which allowed the acquisition of novel functions during evolution while preserving original roles.

  6. Processing of Copper by Hydrostatic Extrusion – Studies of Microstructure and Properties

    Directory of Open Access Journals (Sweden)

    Leszczyńska-Madej B.

    2016-09-01

    Full Text Available The present study attempts to apply HE to 99.99% pure copper. The microstructure of the samples was investigated by both light microscopy and scanning transmission electron microscopy (STEM. Additionally, the microhardness was measured, the tensile test was made, and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns, misorientation was determined. The obtained results show that microstructure of copper deformed by hydrostatic extrusion (HE is rather inhomogeneous. The regions strongly deformed with high dislocation density exist near cells and grains/subgrains free of dislocations. The measurements of the grain size have revealed that the sample with an initial in annealed-state grain size of about 250 μm had this grain size reduced to below 0.35μm when it was deformed by HE to the strain ε=2.91. The microhardness and UTS are stable within the whole investigated range of deformation.

  7. Properties of nanocrystalline copper prepared by vacuum-warm-compaction method

    Institute of Scientific and Technical Information of China (English)

    CHU Guang; LIU Wei; YANG Tian-zu; TANG Yong-jian

    2009-01-01

    Nanocrystalline Cu with average grain size of 22.8-25.3 nm was prepared by vacuum-warm-compaction method. Scanning electronic microscope, HMV-2 type microhardness tester, X-ray diffractometer, and 6157 type electrometer were used to determine the microstructure, microhardness and electrical resistivity of as-prepared nanocrystalline Cu, respectively. The results show that the microhardness of nanocrystalline Cu increases with larger pressure, longer duration of pressure or higher temperature. The highest microhardness of nanocrystalline Cu is 3.8 GPa, which is 7 times higher than that of coarse-grained copper. The electrical resistivity of as-prepared specimens is (1.2-1.4)×10-7 Ω·m at temperature 233-293 K, which is 5-6 times higher than that of the coarse-grained copper.

  8. Catalytic properties and activity of copper and silver containing Al-pillared bentonite for CO oxidation

    Science.gov (United States)

    Basoglu, Funda Turgut; Balci, Suna

    2016-02-01

    Al-pillared bentonite (Al-PB) using bentonite obtained from the Middle Anatolia region (Hançılı) was synthesized, and Cu@Al-PB and Ag@Al-PB were obtained after the second metal impregnation step. Cu/AlPB prepared using a hydrothermal method was obtained with a Cu/(Cu + Al) mole ratio of 0.05. The SEM/EDS, scanning electron microscopy/energy dispersive X-ray spectroscopy analyses indicated that the impregnation method resulted in a higher copper loading in the structure. Based on the XPS, X-ray photoelectron spectroscopy analysis, the aluminum in all of the samples was in the Al2O3 form with 2s and 2p3 orbitals. Although no copper peaks were observed for Cu/Al-PB, the 2p3 and 2p1 orbitals of copper as well as the 3d3 and 3d5 orbitals of silver were observed in the copper or silver impregnated samples, respectively. Metal incorporation resulted in an increase especially in the strength of the Brønsted acid peaks in the FTIR, Fourier transform infrared spectra. The intensity of the peaks corresponding to the Brønsted sites did not change substantially as pyridine desorption temperature increased. The impregnated samples created a decrease in the 50% conversion temperature for carbon monoxide oxidation. Cu@Al-PB, which was calcined at 500 °C, gave a carbon monoxide conversion that was as high as 100% at approximately 200 °C and maintained its activity to 500 °C. In the impregnated samples, the reaction may use the surface oxygen provided by the metal oxide.

  9. Effect of zinc and cerium addition on property of copper-based adsorbents for phosphine adsorption

    Institute of Scientific and Technical Information of China (English)

    宁平; 易红宏; 余琼粉; 唐晓龙; 杨丽萍; 叶智青

    2010-01-01

    A series of copper-based activated carbon (AC) adsorbents were prepared in order to investigate the effect of Zn, Ce addition on Cu-based AC adsorbent for phosphine (PH3) adsorption removal from yellow phosphorous tail gas. N2 adsorption isotherm and X-ray diffrac-tion (XRD) results suggested that the addition of Zn could increase the adsorbent ultramicropores, decrease the adsorbent supermicropores and the adsorbent average pore diameter. Therefore it enhanced the PH3 adsorption capacity. Appropriate amoun...

  10. Structural, optical and electrical properties of chemically deposited nonstoichiometric copper indium diselenide films

    Indian Academy of Sciences (India)

    R H Bari; L A Patil; P P Patil

    2006-10-01

    Thin films of copper indium diselenide (CIS) were prepared by chemical bath deposition technique onto glass substrate at temperature, 60°C. The studies on composition, morphology, optical absorption, electrical conductivity and structure of the films were carried out and discussed. Characterization included X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDAX) and absorption spectroscopy. The results are discussed and interpreted.

  11. New Approach In The Properties Evaluation Of Ultrafine-Grained OFHC Copper

    Directory of Open Access Journals (Sweden)

    Kvačkaj T.

    2015-06-01

    . However, the reduction of area had a different progress depending on microstructural features of materials (coarse-grained vs. ultrafine-grained structure and introduced strain rate conditions during plastic deformation (static vs. dynamic regime. The wear behaviour of copper was investigated through pin-on-disk tests. The wear tracks examination showed that the delamination and the mild oxidational wears are the main wear mechanisms.

  12. What has fluorescent sensing told us about copper and brain malfunction?

    Science.gov (United States)

    Shen, Clara; New, Elizabeth J

    2015-01-01

    There is growing evidence that copper and copper-binding proteins are common denominators in the mechanisms of neurodegenerative diseases such as Alzheimer's and Parkinson's. These pathologies have been linked to changes in copper homeostasis, but the question of whether this is a causal or effective relationship remains unanswered. A clearer understanding will require a way to visualise copper at a molecular level in vivo. Fluorescent metal sensing is one such tool, and a number of Cu(i) probes have been reported with excellent sensing properties and complementary studies that validate their biological application. This review critically evaluates the recent progress in fluorescent copper sensing and suggests some new directions for future study of copper neurochemistry.

  13. Effect of carbon coating on the physico-chemical properties and toxicity of copper and nickel nanoparticles.

    Science.gov (United States)

    Minocha, Shalini; Mumper, Russell J

    2012-11-05

    The primary aim of these interdisciplinary studies is to investigate the effect of surface carbon coating on the physico-chemical properties and toxicity of carbon-coated and noncoated copper and nickel nanoparticles (C-Cu, Cu, C-Ni, Ni NPs) in A549 alveolar epithelial cells. Compared to Cu NPs, C-Cu NPs exhibit protection against surface oxidation, tenfold higher cellular uptake, and fourfold lower release of soluble Cu. The toxicity of C-Cu NPs and Cu NPs is associated with pronounced damage to mitochondrial function and plasma membrane integrity, respectively. Compared to Cu and C-Cu NPs, Ni and C-Ni NPs are less toxic. These studies demonstrate that correlations can be drawn between physico-chemical properties and resultant toxicity of NPs as a function of surface carbon coating.

  14. A new copper(II) complex with 2-thenoyltrifluoroacetone and 2,2-bipyridine: Crystal structure, spectral properties and cytotoxic activity

    Science.gov (United States)

    Lopes, P. S.; Paixão, D. A.; de Paula, F. C. S.; Ferreira, A. M. D. C.; Ellena, J.; Guilardi, S.; Pereira-Maia, E. C.; Guerra, W.

    2013-02-01

    This work reports the synthesis and characterization of a new copper(II) complex with 2-thenoyltrifluoroacetone (HTTA) and 2,2-bipyridine (bipy). The complex was characterized by elemental analysis, UV-Vis, IR and EPR. The crystal structure was determined by single-crystal X-ray diffraction. The copper ion has a distorted square-pyramidal geometry and is coordinated to two bidentate ligands (HTTA and bipy) and a perchlorate ion weakly bonded in the apical position. The crystal packing is stabilized by non-classical hydrogen bonds and weak interactions π-π stacking. In the copper complex, the metal ion binds to HTTA via the oxygen atoms of the β-diketone group and to bipy via its two heterocyclic nitrogens. The title compound inhibits the growth of K562 cells with an IC50 value equal to 28.2 μmol L-1.

  15. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen, E-mail: zhangch@mail.buct.edu.cn

    2014-07-15

    Highlights: • Interface functionalized PGMA porous monolith was fabricated. • The adsorption capacity of Cu{sup 2+} was 35.3 mg/g. • The effects of porous structure on the adsorption of Cu{sup 2+} were studied. • The adsorption behaviors of porous monolith were studied. - Abstract: The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu{sup 2+}). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied.

  16. Binding properties of ferrocene-glutathione conjugates as inhibitors and sensors for glutathione S-transferases.

    Science.gov (United States)

    Martos-Maldonado, Manuel C; Casas-Solvas, Juan M; Téllez-Sanz, Ramiro; Mesa-Valle, Concepción; Quesada-Soriano, Indalecio; García-Maroto, Federico; Vargas-Berenguel, Antonio; García-Fuentes, Luís

    2012-02-01

    The binding properties of two electroactive glutathione-ferrocene conjugates that consist in glutathione attached to one or both of the cyclopentadienyl rings of ferrocene (GSFc and GSFcSG), to Schistosoma japonica glutathione S-transferase (SjGST) were studied by spectroscopy fluorescence, isothermal titration calorimetry (ITC) and differential pulse voltammetry (DPV). Such ferrocene conjugates resulted to be competitive inhibitors of glutathione S-transferase with an increased binding affinity relative to the natural substrate glutathione (GSH). We found that the conjugate having two glutathione units (GSFcSG) exhibits an affinity for SjGST approximately two orders of magnitude higher than GSH. Furthermore, it shows negative cooperativity with the affinity for the second binding site two orders of magnitude lower than that for the first one. We propose that the reason for such negative cooperativity is steric since, i) the obtained thermodynamic parameters do not indicate profound conformational changes upon GSFcSG binding and ii) docking studies have shown that, when bound, part of the first bound ligand invades the second site due to its large size. In addition, voltammetric measurements show a strong decrease of the peak current upon binding of ferrocene-glutathione conjugates to SjGST and provide very similar K values than those obtained by ITC. Moreover, the sensing ability, expressed by the sensitivity parameter shows that GSFcSG is much more sensitive than GSFc, for the detection of SjGST.

  17. Effects of ligand binding on the mechanical properties of ankyrin repeat protein gankyrin.

    Directory of Open Access Journals (Sweden)

    Giovanni Settanni

    Full Text Available Ankyrin repeat proteins are elastic materials that unfold and refold sequentially, repeat by repeat, under force. Herein we use atomistic molecular dynamics to compare the mechanical properties of the 7-ankyrin-repeat oncoprotein Gankyrin in isolation and in complex with its binding partner S6-C. We show that the bound S6-C greatly increases the resistance of Gankyrin to mechanical stress. The effect is specific to those repeats of Gankyrin directly in contact with S6-C, and the mechanical 'hot spots' of the interaction map to the same repeats as the thermodynamic hot spots. A consequence of stepwise nature of unfolding and the localized nature of ligand binding is that it impacts on all aspects of the protein's mechanical behavior, including the order of repeat unfolding, the diversity of unfolding pathways accessed, the nature of partially unfolded intermediates, the forces required and the work transferred to the system to unfold the whole protein and its parts. Stepwise unfolding thus provides the means to buffer repeat proteins and their binding partners from mechanical stress in the cell. Our results illustrate how ligand binding can control the mechanical response of proteins. The data also point to a cellular mechano-switching mechanism whereby binding between two partner macromolecules is regulated by mechanical stress.

  18. DNA binding properties and biological evaluation of dihydropyrimidinones derivatives as potential antitumor agents

    Science.gov (United States)

    Wang, Gongke; Li, Xiangrong; Gou, Yaping; Chen, Yuhan; Yan, Changling; Lu, Yan

    2013-10-01

    The binding properties of two medicinally important dihydropyrimidinones derivatives 5-(Ethoxycarbonyl)-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (EMPD) and 5-(Ethoxycarbonyl)-6-methyl-4-(4-chlorophenyl)-3,4-dihydropyrimidin-2(1H)-one (EMCD) with calf-thymus DNA (ctDNA) were investigated by spectroscopy, viscosity, isothermal titration calorimetry (ITC) and molecular modeling techniques. Simultaneously, their biological activities were evaluated with MTT assay method. The binding constants determined with spectroscopic titration and ITC were found to be in the same order of 104 M-1. According to the results of viscosity studies, fluorescence competitive binding experiment and ITC investigations, intercalative binding was evaluated as the dominant binding modes between the two compounds and ctDNA. Furthermore, the results of molecular modeling corroborated those obtained from spectroscopic, viscosimetric and ITC investigations. Evaluation of the antitumor activities of the two derivatives against different tumor cell lines proved that they exhibited significant tumor cell inhibition rate, accordingly blocking DNA transcription and replication. The present results favor the development of potential drugs related with dihydropyrimidinones derivatives in the treatment of some diseases.

  19. A minimal model of peptide binding predicts ensemble properties of serum antibodies

    Directory of Open Access Journals (Sweden)

    Greiff Victor

    2012-02-01

    Full Text Available Background The importance of peptide microarrays as a tool for serological diagnostics has strongly increased over the last decade. However, interpretation of the binding signals is still hampered by our limited understanding of the technology. This is in particular true for arrays probed with antibody mixtures of unknown complexity, such as sera. To gain insight into how signals depend on peptide amino acid sequences, we probed random-sequence peptide microarrays with sera of healthy and infected mice. We analyzed the resulting antibody binding profiles with regression methods and formulated a minimal model to explain our findings. Results Multivariate regression analysis relating peptide sequence to measured signals led to the definition of amino acid-associated weights. Although these weights do not contain information on amino acid position, they predict up to 40-50% of the binding profiles' variation. Mathematical modeling shows that this position-independent ansatz is only adequate for highly diverse random antibody mixtures which are not dominated by a few antibodies. Experimental results suggest that sera from healthy individuals correspond to that case, in contrast to sera of infected ones. Conclusions Our results indicate that position-independent amino acid-associated weights predict linear epitope binding of antibody mixtures only if the mixture is random, highly diverse, and contains no dominant antibodies. The discovered ensemble property is an important step towards an understanding of peptide-array serum-antibody binding profiles. It has implications for both serological diagnostics and B cell epitope mapping.

  20. Detection of oral streptococci with collagen-binding properties in saliva specimens from mothers and their children.

    Science.gov (United States)

    Nomura, Ryota; Naka, Shuhei; Nakano, Kazuhiko; Taniguchi, Naho; Matsumoto, Michiyo; Ooshima, Takashi

    2010-07-01

    Approximately 10-20% of Streptococcus mutans strains have been reported to possess collagen-binding properties, whereas other species in the oral cavity with those properties remain to be elucidated. Aim. To identify strains with collagen-binding properties and analyse their characteristics in comparison with S. mutans. A total of 110 expectorated saliva specimens were collected from 55 pairs of mothers and their children. Bacterial strains with collagen-binding properties were isolated and the species specified. In addition, strains with collagen-binding properties isolated from mother-child pairs were analysed using molecular biological approaches. The detection frequency of strains with collagen-binding properties was shown to be 40.9%, among which S. salivarius was the most frequently detected, followed by S. mutans. The collagen-binding activity of the S. mutans group was the highest, followed by S. salivarius. In addition, S. mutans and S. salivarius strains from 3 and 1 mother-child pairs, respectively, were shown to be the same clones. Our results indicate that S. mutans and S. salivarius are major species with collagen-binding properties in the oral cavity, and that strains with such properties may be related to mother-child transmission.

  1. FcRn expression, ligands binding properties and its regulation in human immune cells and hepatocytes

    OpenAIRE

    2007-01-01

    ABSTRACT Expression and diverse functions of MHC class I related neonatal Fc receptor in different tissues is continually reported. To contribute to the understanding of how the receptor functions according to cell type, we investigated the expression and ligands binding properties of FcRn in human immune cells and hepatocytes. Here, we report that heterodimeric FcRn is expressed in these cells as evidenced by RT-PCR, Western immunoblottting and flow cytometry. The receptor expression i...

  2. Structural, chemical and optical properties of the polyethylene–copper sulfide composite thin films synthesized using polythionic acid as sulfur source

    Energy Technology Data Exchange (ETDEWEB)

    Ancutiene, Ingrida [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas (Lithuania); Navea, Juan G. [Chemistry Department, Skidmore College, 815N. Broadway, Saratoga Springs, NY 12866 (United States); Baltrusaitis, Jonas, E-mail: job314@lehigh.edu [Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States)

    2015-08-30

    Graphical abstract: Several crystalline copper sulfide phases (spionkopite, anilite, digenite, djurleite, chalcocite) were obtained in as synthesized samples (PE-Cu{sub x}S) and elucidated using XRD. Thickness of the films obtained ranged from several microns to ∼18 μm and depended on the Cu(II/I) exposure time. Bandgap of the materials obtained was measured and ranged from 1.88 to 1.17 eV. Importantly, heating samples, many copper sulfide crystalline phase containing films at 100 °C in inert atmosphere invariably resulted in a single copper sulfide, anilite (Cu{sub 1.75}S), phase. - Highlights: • We investigated deposition of a single phase copper sulfide on polyethylene. • A single sulfur precursor – H{sub 2}S{sub 33}O{sub 6} – was used. • Increasing exposure time to Cu(II/I) yielded Cu{sub x}S with higher x values. • Heating at 100 °C in N{sub 2} resulted in a single anilite (Cu{sub 1.75}S) phase. • Cu(I) and Cu(II) compounds were detected using XPS. - Abstract: Synthesis and properties of thin copper sulfide films deposited on polyethylene were explored for the development of low cost hybrid organic–inorganic photovoltaic materials. Polyethylene was used as a model organic host material for thin copper sulfide film formation. Adsorption–diffusion method was used which utilized consecutive exposure of polyethylene to polythionic acid followed by aqueous Cu(II/I) solution. Several crystalline copper sulfide phases were obtained in synthesized samples and elucidated using X-ray diffraction. Surface chemical composition determined using X-ray photoelectron spectroscopy showed the presence of copper sulfides in combination with copper hydroxide. Thickness of the composite material films ranged from several microns to ∼18 μm and depended on the Cu(II/I) exposure time. Bandgap of the materials obtained was measured and ranged from 1.88 to 1.17 eV. Importantly, heating these complex copper sulfide crystalline phase containing films at 100

  3. Binding selectivity of vitamin K3 based chemosensors towards nickel(II) and copper(II) metal ions

    Science.gov (United States)

    Patil, Amit; Lande, Dipali N.; Nalkar, Archana; Gejji, Shridhar P.; Chakrovorty, Debamitra; Gonnade, Rajesh; Moniz, Tânia; Rangel, Maria; Pereira, Eulália; Salunke-Gawali, Sunita

    2017-09-01

    The vitamin K3 derivatives 2-methyl-3-[(pyridin-2-ylmethyl)-amino]-1,4-naphthoquinone (M-1), 2-methyl-3-[(pyridin-2-ylethyl)-amino]-1,4-naphthoquinone (M-2), 2-methyl-3-((2-(thiophen-2-yl)methyl)amino)naphthalene-1,4-dione (M-3) and 2-methyl-3-((2-(thiophen-2-yl)ethyl)amino)naphthalene-1,4-dione (M-4) have been synthesized, characterized and studied for their chemosensor abilities towards transition metal ions. Crystal structures of M-1 to M-4 revealed a variety of Nsbnd H⋯O, Csbnd H⋯O, Csbnd H⋯π and π⋯π interactions. Minor variations in such interactions by chemical stimuli such as metal ions, results in change in color that can be visualized by naked eyes. It has been shown that electronic structure and 1H NMR, vibrational as well as electronic spectra from the density functional theory agree well with the experiments. The metal ion binding in ethanol, ethanol-water and in mild base triethylamine brings forth recognizing ability of M-1 toward Ni2+ whereas M-2 exhibits large sensing ability for Cu2+ ion. Interestingly M-1 display varying metal ion binding specificity in different solvents with the association constant in ethanol being 11,786 M-1 for Ni2+ compared to 9462 M-1 for the Cu2+. A reversal in preferential binding of M-2 with the respective association constants being 4190 M-1 and 6370 M-1 is discernible.

  4. Relationships of ligand binding, redox properties, and protonation in Coprinus cinereus peroxidase.

    Science.gov (United States)

    Ciaccio, Chiara; Rosati, Antonella; De Sanctis, Giampiero; Sinibaldi, Federica; Marini, Stefano; Santucci, Roberto; Ascenzi, Paolo; Welinder, Karen G; Coletta, Massimo

    2003-05-23

    The pH dependence of the redox potentials and kinetics for CO association and dissociation was determined between pH 3.0 and 13.0 at 25 degrees C for the wild-type Coprinus cinereus fungal peroxidase and for a site-directed mutant in which Asp245, which is H-bonded to N delta of the imidazole of the proximal His183, was substituted with Asn. The determination of these functional properties allowed this information to be merged in a self-consistent fashion and to formulate for the first time a complete scheme employing the minimum number of groups required to describe the whole proton-linked behavior of both redox and ligand binding properties. The overall pH dependence can be accounted for by four redox- and ligand-linked groups. The proximal H-bond, which is strictly conserved in all peroxidases, will still be present in the site-specific mutant, but will no longer have an ionic character, and this event will bring about an alteration of redox equilibria and CO binding kinetics, envisaging a relevant role played by this H-bond also in modulating redox properties and ligand binding equilibria.

  5. Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination

    Directory of Open Access Journals (Sweden)

    Anna Różańska

    2017-07-01

    Full Text Available Background: Hospital equipment made from copper alloys can play an important role in complementing traditional methods of disinfection. Aims of the study: The aim of this study was to assess the dynamics of the antimicrobial properties of selected copper alloys in different simulations of environmental conditions (with organic contamination vs. without organic contamination, and to test alternatives to the currently used testing methods. Materials and Methods: A modification of Japanese standard JIS Z 2801 as well as Staphylococcus aureus (SA and Escherichia coli (EC suspended in NaCl vs. tryptic soy broth (TSB were used in tests performed on seven commonly used copper alloys, copper, and stainless steel. Results: A much faster reduction of the bacterial suspension was observed for the inoculum prepared in NaCl than in TSB. A faster reduction for EC than for SA was observed in the inoculum prepared in NaCl. The opposite results were found for the inoculum based on TSB. A significant correlation between the copper concentration in the copper alloys and the time and degree of bacterial suspension reduction was only observed in the case of EC. Conclusions: This study confirmed the antimicrobial properties of copper alloys, and additionally showed that Staphylococcus aureus was more resistant than Escherichia coli in the variant of the experiment without organic contamination. However, even for SA, a total reduction of the bacterial inoculum’s density took no longer than 2 h. Under conditions simulating organic contamination, all of the tested alloys were shown to have bactericidal or bacteriostatic properties, which was contrary to the results from stainless steel.

  6. Mechanical properties of wood from Pinus sylvestris L. treated with Light Organic Solvent Preservative and with waterborne Copper Azole

    Directory of Open Access Journals (Sweden)

    A.M. Villasante

    2013-12-01

    Full Text Available Aim of study: To determine the effect on wood from Pinus sylvestris of treatment with preservatives on mechanical properties and to establish the relation between the penetration and compression strength.Area of study: SpainMaterial and Methods: 40 samples of defect-free wood from Pinus sylvestris L. were treated with Light Organic Solvent Preservative (Vacsol Azure WR 2601 and 50 with waterborne Copper Azole (Tanalith E 3492. 40 control samples were not treated (water or preservative. Mechanical resistance to static bending, modulus of elasticity and compression strength parallel to the grain were compared with untreated wood. Regression analysis between the penetration and compression strength parallel was done with the samples treated with waterborne preservative.Main results: The results indicate that the treated wood (with either product presents a statistically significant increase in mechanical resistance in all three mechanical characteristics. The results obtained differ from earlier studies carried out by other authors.There was no correlation between parallel compression strength and the degree of impregnation of the wood with waterborne Copper Azole . The most probable explanation for these results concerns changes in pressure during treatment.The use of untreated control samples instead of samples treated only with water is more likely to produce significant results in the mechanical resistance studies.Research highlights: Treated wood presents a statistically significant increase in MOE, modulus of rupture to static bending  and parallel compression strength.There was no correlation between parallel compression strength and the degree of impregnation with waterborne preservative.Keywords: Light Organic Solvent Preservative; MOE; parallel compression; static bending; waterborne Copper Azole; wood technology.

  7. Effects of copper amine treatments on mechanical, biological and surface/interphase properties of poly (vinyl chloride)/wood composites

    Science.gov (United States)

    Jiang, Haihong

    2005-11-01

    The copper ethanolamine (CuEA) complex was used as a wood surface modifier and a coupling agent for wood-PVC composites. Mechanical properties of composites, such as unnotched impact strength, flexural strength and flexural toughness, were significantly increased, and fungal decay weight loss was dramatically decreased by wood surface copper amine treatments. It is evident that copper amine was a very effective coupling agent and decay inhibitor for PVC/wood flour composites, especially in high wood flour loading level. A DSC study showed that the heat capacity differences (DeltaCp) of composites before and after PVC glass transition were reduced by adding wood particles. A DMA study revealed that the movements of PVC chain segments during glass transition were limited and obstructed by the presence of wood molecule chains. This restriction effect became stronger by increasing wood flour content and by using Cu-treated wood flour. Wood flour particles acted as "physical cross-linking points" inside the PVC matrix, resulting in the absence of the rubbery plateau of PVC and higher E', E'' above Tg, and smaller tan delta peaks. Enhanced mechanical performances were attributed to the improved wetting condition between PVC melts and wood surfaces, and the formation of a stronger interphase strengthened by chemical interactions between Cu-treated wood flour and the PVC matrix. Contact angles of PVC solution drops on Cu-treated wood surfaces were decreased dramatically compared to those on the untreated surfaces. Acid-base (polar), gammaAB, electron-acceptor (acid) (gamma +), electron-donor (base) (gamma-) surface energy components and the total surface energies increased after wood surface Cu-treatments, indicating a strong tendency toward acid-base or polar interactions. Improved interphase and interfacial adhesion were further confirmed by measuring interfacial shear strength between wood and the PVC matrix.

  8. Synthesis, characterization and pharmacological studies of copper complexes of flavone derivatives as potential anti-tuberculosis agents.

    Science.gov (United States)

    Joseph, J; Nagashri, K; Suman, A

    2016-09-01

    Novel series of different hydroxyflavone derivatives and their copper complexes were synthesized. They were characterized using analytical and spectral techniques. The superoxide dismutase (SOD) mimetic activity of the synthesized complexes demonstrated that copper complex of L(10) has promising SOD-mimetic activity than other ligands & complexes. The in vitro antimicrobial activities of the synthesized compounds were tested against the bacterial species and fungal species. The DNA binding properties of copper complexes were studied using cyclic voltametry and electronic absorption techniques. Anti-tuberculosis activity was also performed. The effective complexes was subjected to antimycobacterial activity using MABA method and summarized. The antimycobacterial activity of copper complexes have been evaluated and discussed.

  9. Structural and binding properties of the PASTA domain of PonA2, a key penicillin binding protein from Mycobacterium tuberculosis.

    Science.gov (United States)

    Calvanese, Luisa; Falcigno, Lucia; Maglione, Cira; Marasco, Daniela; Ruggiero, Alessia; Squeglia, Flavia; Berisio, Rita; D'Auria, Gabriella

    2014-07-01

    PonA2 is one of the two class A penicillin binding proteins of Mycobacterium tuberculosis, the etiologic agent of tuberculosis. It plays a complex role in mycobacterial physiology and is spotted as a promising target for inhibitors. PonA2 is involved in adaptation of M. tuberculosis to dormancy, an ability which has been attributed to the presence in its sequence of a C-terminal PASTA domain. Since PASTA modules are typically considered as β-lactam antibiotic binding domains, we determined the solution structure of the PASTA domain from PonA2 and analyzed its binding properties versus a plethora of potential binders, including the β-lactam antibiotics, two typical muropeptide mimics, and polymeric peptidoglycan. We show that, despite a high structural similarity with other PASTA domains, the PASTA domain of PonA2 displays different binding properties, as it is not able to bind muropeptides, or β-lactams, or polymeric peptidoglycan. These results indicate that the role of PASTA domains cannot be generalized, as their specific binding properties strongly depend on surface residues, which are widely variable.

  10. Survival of bacteria on metallic copper surfaces in a hospital trial.

    Science.gov (United States)

    Mikolay, André; Huggett, Susanne; Tikana, Ladji; Grass, Gregor; Braun, Jörg; Nies, Dietrich H

    2010-08-01

    Basic chemistry of copper is responsible for its Janus-faced feature: on one hand, copper is an essential trace element required to interact efficiently with molecular oxygen. On the other hand, interaction with reactive oxygen species in undesired Fenton-like reactions leads to the production of hydroxyl radicals, which rapidly damage cellular macromolecules. Moreover, copper cations strongly bind to thiol compounds disturbing redox-homeostasis and may also remove cations of other transition metals from their native binding sites in enzymes. Nature has learned during evolution to deal with the dangerous yet important copper cations. Bacterial cells use different efflux systems to detoxify the metal from the cytoplasm or periplasm. Despite this ability, bacteria are rapidly killed on dry metallic copper surfaces. The mode of killing likely involves copper cations being released from the metallic copper and reactive oxygen species. With all this knowledge about the interaction of copper and its cations with cellular macromolecules in mind, experiments were moved to the next level, and the antimicrobial properties of copper-containing alloys in an "everyday" hospital setting were investigated. The alloys tested decreased the number of colony-forming units on metallic copper-containing surfaces by one third compared to control aluminum or plastic surfaces. Moreover, after disinfection, repopulation of the surfaces was delayed on copper alloys. This study bridges a gap between basic research concerning cellular copper homeostasis and application of this knowledge. It demonstrates that the use of copper-containing alloys may limit the spread of multiple drug-resistant bacteria in hospitals.

  11. Searching the conformational complexity and binding properties of HDAC6 through docking and molecular dynamic simulations.

    Science.gov (United States)

    Sixto-López, Yudibeth; Bello, Martiniano; Rodríguez-Fonseca, Rolando Alberto; Rosales-Hernández, Martha Cecilia; Martínez-Archundia, Marlet; Gómez-Vidal, José Antonio; Correa-Basurto, José

    2017-10-01

    Histone deacetylases (HDACs) are a family of proteins involved in the deacetylation of histones and other non-histones substrates. HDAC6 belongs to class II and shares similar biological functions with others of its class. Nevertheless, its three-dimensional structure that involves the catalytic site remains unknown for exploring the ligand recognition properties. Therefore, in this contribution, homology modeling, 100-ns-long Molecular Dynamics (MD) simulation and docking calculations were combined to explore the conformational complexity and binding properties of the catalytic domain 2 from HDAC6 (DD2-HDAC6), for which activity and affinity toward five different ligands have been reported. Clustering analysis allowed identifying the most populated conformers present during the MD simulation, which were used as starting models to perform docking calculations with five DD2-HDAC6 inhibitors: Cay10603 (CAY), Rocilinostat (RCT), Tubastatin A (TBA), Tubacin (TBC), and Nexturastat (NXT), and then were also submitted to 100-ns-long MD simulations. Docking calculations revealed that the five inhibitors bind at the DD2-HDAC6 binding site with the lowest binding free energy, the same binding mode is maintained along the 100-ns-long MD simulations. Overall, our results provide structural information about the molecular flexibility of apo and holo DD2-HDAC6 states as well as insight of the map of interactions between DD2-HDAC6 and five well-known DD2-HDAC6 inhibitors allowing structural details to guide the drug design. Finally, we highlight the importance of combining different theoretical approaches to provide suitable structural models for structure-based drug design.

  12. [Structure-functional organization of eukaryotic high-affinity copper importer CTR1 determines its ability to transport copper, silver and cisplatin].

    Science.gov (United States)

    Skvortsov, A N; Zatulovskiĭ, E A; Puchkova, L V

    2012-01-01

    It was shown recently, that high affinity Cu(I) importer eukaryotic protein CTR1 can also transport in vitro abiogenic Ag(I) ions and anticancer drug cisplatin. At present there is no rational explanation how CTR1 can transfer platinum group, which is different by coordination properties from highly similar Cu(I) and Ag(I). To understand this phenomenon we analyzed 25 sequences of chordate CTR1 proteins, and found out conserved patterns of organization of N-terminal extracellular part of CTR1 which correspond to initial metal binding. Extracellular copper-binding motifs were qualified by their coordination properties. It was shown that relative position of Met- and His-rich copper-binding motifs in CTR1 predisposes the extracellular CTR1 part to binding of copper, silver and cisplatin. Relation between tissue-specific expression of CTR1 gene, steady-state copper concentration, and silver and platinum accumulation in organs of mice in vivo was analyzed. Significant positive but incomplete correlation exists between these variables. Basing on structural and functional peculiarities of N-terminal part of CTR1 a hypothesis of coupled transport of copper and cisplatin has been suggested, which avoids the disagreement between CTR1-mediated cisplatin transport in vitro, and irreversible binding of platinum to Met-rich peptides.

  13. First-principles study on structural and electronic properties of copper nanowire encapsulated into GaN nanotube

    Science.gov (United States)

    Ma, Liang-Cai; Zhang, Yan; Zhang, Jian-Min; Xu, Ke-Wei

    2011-09-01

    We present a systemic study of the structural and electronic properties of Cu n nanowires ( n=5, 9 and 13) encapsulated in armchair (8,8) gallium nitride nanotubes (GaNNTs) using the first-principles calculations. We find that the formation processes of these systems are all exothermic. The initial shapes are preserved without any visible changes for the Cu 5@(8,8) and Cu 9@(8,8) combined systems, but a quadratic-like cross-section shape is formed for the outer nanotube of the Cu 13@(8,8) combined system due to the stronger attraction between nanowire and nanotube. The electrons of Ga and N atoms in outer GaN sheath affect the electron conductance of the encapsulated metallic nanowire in the Cu 13@(8,8) combined system. But in the Cu 5@(8,8) and Cu 9@(8,8) combined systems, the conduction electrons are distributed only on the copper atoms, so charge transport will occur only in the inner copper nanowire, which is effectively insulated by the outer GaN nanotube. Considering the maximal metal filling ratio in nanotube, we know that the Cu 9@(8,8) combined system is top-priority in the ultra-large-scale integration (ULSI) circuits and micro-electromechanical systems (MEMS) devices that demand steady transport of electrons.

  14. Synthesis and microwave absorption properties of yolk-shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells.

    Science.gov (United States)

    Liu, Jiwei; Cheng, Jin; Che, Renchao; Xu, Junjie; Liu, Mengmei; Liu, Zhengwang

    2013-04-10

    Yolk-shell microspheres with magnetic Fe3O4 cores and hierarchical copper silicate shells have been successfully synthesized by combining the versatile sol-gel process and hydrothermal reaction. Various yolk-shell microspheres with different core size and shell thickness can be readily synthesized by varying the experimental conditions. Compared to pure Fe3O4, the as-synthesized yolk-shell microspheres exhibit significantly enhanced microwave absorption properties in terms of both the maximum reflection loss value and the absorption bandwidth. The maximum reflection loss value of these yolk-shell microspheres can reach -23.5 dB at 7 GHz with a thickness of 2 mm, and the absorption bandwidths with reflection loss lower than -10 dB are up to 10.4 GHz. Owing to the large specific surface area, high porosity, and synergistic effect of both the magnetic Fe3O4 cores and hierarchical copper silicate shells, these unique yolk-shell microspheres may have the potential as high-efficient absorbers for microwave absorption applications.

  15. Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents.

    Science.gov (United States)

    Shankar, Shiv; Teng, Xinnan; Rhim, Jong-Whan

    2014-12-19

    Various types of agar-based bio-nanocomposite (BNC) films were prepared by blending agar and six different copper nanoparticles (CuNPs) with different shapes and sizes obtained from three different sources of copper salts and two different reducing agents. The BNC films were characterized by UV-visible, FE-SEM, FT-IR, and XRD. The thermogravimetric study showed that the melting point of BNC films was increased when ascorbic acid was used as a reducing agent for CuNPs synthesis. Apparent surface color and transmittance of agar film was greatly influenced by the reinforcement of CuNPs. However, mechanical and water vapor barrier properties did not change significantly (p>0.05) by blending with CuNPs. Tensile modulus and tensile strength decreased slightly for all types of CuNPs reinforced while elongation at break slightly increased when CuNPs produced by ascorbic acid were blended. The agar bio-nanocomposite films showed profound antibacterial activity against both Gram-positive and Gram-negative food-borne pathogenic bacteria.

  16. Investigation on Interface Structure and Wear-resistant Properties of HVOF Sprayed Carbides Coating onto Copper Substrate

    Institute of Scientific and Technical Information of China (English)

    HOU Li-feng; ZHANG Heng-jin; WEI Ying-hui; YAN Kai; HU Lan-qing; XU Bing-she

    2004-01-01

    In this paper, we deposited carbides on copper substrate by High velocity oxy-fuel (HVOF) spraying. The structure of the coating and microstructure of the substrate-coating interface have been investigated by means of scanning electron microscope (SEM) and transmission electron microscopy (TEM). We observed the worn surface of the coating and investigated the wear mechanism. The results show that the microstructure of the interface between HVOF sprayed coating and substrate which consists of the amorphous layers, nanocrystalls in the coating and dislocation cells in copper substrate,etc. is complex. The amorphous layers are formed from heated adhesion after rapidly cooling, while the nanocrystalls come from the fragmentation of half-molten carbides. At the same time we found that the wear-resistant properties of the WC-Co coating is better than that of Cr3C2-NiCr coating at room temperature. The early wear-resistance of the HVOF sprayed coating is poor because of the roughness of its surface or bad bond of hard composite particles. The high velocity of molten droplets is propitious to fill up the interspaces between carbides, so as to make the coating more compact and reduce its porosities, thus the wear-resistance of carbides coatings is improved.

  17. Investigation on Interface Structure and Wear-resistant Properties of HVOF Sprayed Carbides Coating onto Copper Substrate

    Institute of Scientific and Technical Information of China (English)

    HOULi-feng; ZHANGHeng-jin; WEIYing-hui; YANKai; HULan-qing; XUBing-she

    2004-01-01

    In this paper, we deposited carbides on copper substrate by High velocity oxy-fuel (HVOF) spraying. The structure of the coating and microstructure of the substrate-coating interface have been investigated by means of scanning electron microscope (SEM) and transmission electron microscopy (TEM). We observed the worn surface of the coating and investigated the wear mechanism. The results show that the microstructure of the interface between HVOF sprayed coating and substrate which consists of the amorphous layers, nanocrystalls in the coating and dislocation cells in copper substrate, etc. is complex. The amorphous layers are formed from heated adhesion after rapidly cooling, while the nanocrystalls come from the fragmentation of half-molten carbides. At the same time we found that the wear-resistant properties of the WC-Co coating is better than that of Cr3C2-NiCr coating at room temperature. The early wear-resistance of the HVOF sprayed coating is poor because of the roughness of its surface or bad bond of hard composite particles. The high velocity of molten droplets is propitious to fill up the interspaces between carbides, so as to make the coating more compact and reduce its porosities, thus the wear-resistance of carbides coatings is improved.

  18. Mechanical properties of wood from Pinus sylvestris L. treated with Light Organic Solvent Preservative and with waterborne Copper Azole

    Energy Technology Data Exchange (ETDEWEB)

    Villasante, A.; Laina, R.; Rojas, J. A. M.; Rojas, I. M.; Vignote, S.

    2013-07-01

    Aim of study: To determine the effect on wood from Pinus sylvestris of treatment with preservatives on mechanical properties and to establish the relation between the penetration and compression strenght. Area of study: Spain. Material and methods: 40 samples of defect-free wood from Pinus sylvestris L. were treated with Light Organic Solvent Preservative (Vacsol Azure WR 2601) and 50 with waterborne Copper Azole (Tanalith E 3492). 40 control samples were not treated (water or preservative). Mechanical resistance to static bending, modulus of elasticity and compression strength parallel to the grain were compared with untreated wood. Regression analysis between the penetration and compression strength parallel was done with the samples treated with waterborne preservative. Main results: The results indicate that the treated wood (with either product) presents a statistically significant increase in mechanical resistance in all three mechanical characteristics. The results obtained differ from earlier studies carried out by other authors. There was no correlation between parallel compression strength and the degree of impregnation of the wood with waterborne Copper Azole. The most probable explanation for these results concerns changes in pressure during treatment. The use of untreated control samples instead of samples treated only with water is more likely to produce significant results in the mechanical resistance studies. Research highlights: Treated wood presents a statistically significant increase in MOE, modulus of rupture to static bending and parallel compression strength. There was no correlation between parallel compression strength and the degree of impregnation with waterborne preservative. (Author)

  19. The histidine composition of the amyloid-β domain, but not the E1 copper binding domain, modulates β-secretase processing of amyloid-β protein precursor in Alzheimer's disease.

    Science.gov (United States)

    Gough, Mallory; Blanthorn-Hazell, Sophee; Parkin, Edward T

    2015-01-01

    Amyloid-β protein precursor (AβPP) proteolysis by β- and γ-secretases generates neurotoxic amyloid-β (Aβ)-peptides in Alzheimer's disease (AD). We have investigated the role of histidine residues within the extracellular E1 copper binding and Aβ domains of AβPP in its proteolysis. By stably expressing histidine to alanine AβPP mutant constructs in SH-SY5Y cells, we show that mutations in the E1 copper binding domain had no impact on α- or β-secretase processing. Mutation of histidine 14 within the Aβ-domain specifically down-regulated β-secretase processing without impacting on non-amyloidogenic proteolysis. Understanding how histidine 14 participates in AβPP proteolysis may reveal new intervention points for AD treatments.

  20. Using engineered single-chain antibodies to correlate molecular binding properties and nanoparticle adhesion dynamics.

    Science.gov (United States)

    Haun, Jered B; Pepper, Lauren R; Boder, Eric T; Hammer, Daniel A

    2011-11-15

    Elucidation of the relationship between targeting molecule binding properties and the adhesive behavior of therapeutic or diagnostic nanocarriers would aid in the design of optimized vectors and lead to improved efficacy. We measured the adhesion of 200-nm-diameter particles under fluid flow that was mediated by a diverse array of molecular interactions, including recombinant single-chain antibodies (scFvs), full antibodies, and the avidin/biotin interaction. Within the panel of scFvs, we used a family of mutants that display a spectrum of binding kinetics, allowing us to compare nanoparticle adhesion to bond chemistry. In addition, we explored the effect of molecular size by inserting a protein linker into the scFv fusion construct and by employing scFvs that are specific for targets with vastly different sizes. Using computational models, we extracted multivalent kinetic rate constants for particle attachment and detachment from the adhesion data and correlated the results to molecular binding properties. Our results indicate that the factors that increase encounter probability, such as adhesion molecule valency and size, directly enhance the rate of nanoparticle attachment. Bond kinetics had no influence on scFv-mediated nanoparticle attachment within the kinetic range tested, however, but did appear to affect antibody/antigen and avidin/biotin mediated adhesion. We attribute this finding to a combination of multivalent binding and differences in bond mechanical strength between recombinant scFvs and the other adhesion molecules. Nanoparticle detachment probability correlated directly with adhesion molecule valency and size, as well as the logarithm of the affinity for all molecules tested. On the basis of this work, scFvs can serve as viable targeting receptors for nanoparticles, but improvements to their bond mechanical strength would likely be required to fully exploit their tunable kinetic properties and maximize the adhesion efficiency of nanoparticles that

  1. Facile synthesis and properties of hierarchical double-walled copper silicate hollow nanofibers assembled by nanotubes.

    Science.gov (United States)

    Jin, Renxi; Yang, Yang; Xing, Yan; Chen, Li; Song, Shuyan; Jin, Rongchao

    2014-04-22

    The hierarchical assembly of multilevel, nonspherical hollow structures remains a considerable challenge. Here, we report a facile approach for synthesizing copper silicate hollow nanofibers with an ultrasmall nanotube-assembled, double-walled structure. The as-prepared hollow fibers possess a tailored complex wall structure, high length-to-diameter ratio, good structural stability, and a high surface area, and they exhibit excellent performance as an easily recycled adsorbent for wastewater treatment and as an ideal support for noble metal catalysts. In addition, this strategy can be extended as a general approach to prepare other double-walled, hollow, fibrous silica-templated materials.

  2. Tribological Properties of PVD Carbon-Copper Composite Films Reinforced by Titanium

    Directory of Open Access Journals (Sweden)

    Lungevics J.

    2016-02-01

    Full Text Available Carbon-copper composite coatings reinforced with titanium were deposited using high power magnetron sputtering technique. Tribological and metrological tests were performed using Taylor Hobson Talysurf Intra 50 measuring equipment and CSM Instruments ball-on-disk type tribometer. Friction coefficient and wear rate were determined at 2N, 4N, 6N loads. It was revealed that friction coefficient decreased at a higher Ti concentration, which was particularly expressed at bigger applied loads. However, wear volume values tended to increase in the beginning, till Ti concentration reached about 11 %, but then decreased, thus providing better nanocoating wear resistance.

  3. Theoretical Study of Copper Complexes: Molecular Structure, Properties, and Its Application to Solar Cells

    Directory of Open Access Journals (Sweden)

    Jesus Baldenebro-Lopez

    2013-01-01

    Full Text Available We present a theoretical investigation of copper complexes with potential applications as sensitizers for solar cells. The density functional theory (DFT and time-dependent DFT were utilized, using the M06 hybrid meta-GGA functional with the LANL2DZ (D95V on first row and DZVP basis sets. This level of calculation was used to find the optimized molecular structure, the absorption spectra, the molecular orbitals energies, and the chemical reactivity parameters that arise from conceptual DFT. Solvent effects have been taken into account by an implicit approach, namely, the polarizable continuum model (PCM, using the nonequilibrium version of the IEF-PCM model.

  4. Positron annihilation and magnetic properties studies of copper substituted nickel ferrite nanoparticles

    Science.gov (United States)

    Kargar, Z.; Asgarian, S. M.; Mozaffari, M.

    2016-05-01

    Single phase copper substituted nickel ferrite Ni1-xCuxFe2O4 (x = 0.0, 0.1, 0.3 and 0.5) nanoparticles were synthesized by the sol-gel method. TEM images of the samples confirm formation of nano-sized particles. The Rietveld refinement of the X-ray diffraction patterns showed that lattice constant increase with increase in copper content from 8.331 for x = 0.0 to 8.355 Å in x = 0.5. Cation distribution of samples has been determined by the occupancy factor, using Rietveld refinement. The positron lifetime spectra of the samples were convoluted into three lifetime components. The shortest lifetime is due to the positrons that do not get trapped by the vacancy defects. The second lifetime is ascribed to annihilation of positrons in tetrahedral (A) and octahedral (B) sites in spinel structure. It is seen that for x = 0.1 and 0.3 samples, positron trapped within vacancies in A sites, but for x = 0.0 and 0.5, the positrons trapped and annihilated within occupied B sites. The longest lifetime component attributed to annihilation of positrons in the free volume between nanoparticles. The obtained results from coincidence Doppler broadening spectroscopy (CDBS) confirmed the results of positron annihilation lifetime spectroscopy (PALS) and also showed that the vacancy clusters concentration for x = 0.3 is more than those in other samples. Average defect density in the samples, determined from mean lifetime of annihilated positrons reflects that the vacancy concentration for x = 0.3 is maximum. The magnetic measurements showed that the saturation magnetization for x = 0.3 is maximum that can be explained by Néel's theory. The coercivity in nanoparticles increased with increase in copper content. This increase is ascribed to the change in anisotropy constant because of increase of the average defect density due to the substitution of Cu2+ cations and magnetocrystalline anisotropy of Cu2+ cations. Curie temperature of the samples reduces with increase in copper content which

  5. Effects of bonding bakeout thermal cycles on pre- and post irradiation microstructures, physical, and mechanical properties of copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N.; Eldrup, M.; Toft, P.; Edwards, D.J. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-10-01

    At present, dispersion strengthened (DS) copper is being considered as the primary candidate material for the ITER first wall and divertor components. Recently, it was agreed among the ITER parties that a backup alloy should be selected from the two well known precipitation hardened copper alloys, CuCrZr and CuNiBe. It was therefore decided to carry out screening experiments to simulate the effect of bonding and bakeout thermal cycles on microstructure, mechanical properties, and electrical resistivity of CuCrZr and CuNiBe alloys. On the basis of the results of these experiments, one of the two alloys will be selected as a backup material. Tensile specimens of CuCrZr and CuNiBe alloys were given various heat treatments corresponding to solution anneal, prime ageing, and bonding thermal cycle followed by reageing and the reactor bakeout treatment at 623K for 100 hours. Tensile specimens of the DS copper were also given the heat treatment corresponding to the bonding thermal cycle. A number of these heat treated specimens of CuCrZr, CuNiBe, and DS copper were neutron irradiated at 523K to a dose level of {approx}0.3 dpa (NRT) in the DR-3 reactor at Riso. Both unirradiated and irradiated specimens with the various heat treatments were tensile tested at 532K. The dislocation, precipitate and void microstructures and electrical resistivity of these specimens were also determined. Results of these investigations will be reported and discussed in terms of thermal and irradiation stability of precipitates and irradiation-induced precipitation and recovery of dislocation microstructure. Results show that the bonding and bakeout thermal cycles are not likely to have any serious deleterious effects on the performance of these alloys. The CuNiBe alloys were found to be susceptible to radiation-induced embrittlement, however, the exact mechanism is not yet known. It is thought that radiation-induced precipitation and segregation of the beryllium may be responsible.

  6. Effects of silicon, copper and iron on static and dynamic properties of alloy 206 (aluminum-copper) in semi-solids produced by the SEED process

    Science.gov (United States)

    Lemieux, Alain

    The advantages of producing metal parts by rheocasting are generally recognised for common foundry alloys of Al-Si. However, other more performing alloys in terms of mechanical properties could have a great interest in specialized applications in the automotive industry, while remaining competitive in the forming. Indeed, the growing demand for more competitive products requires the development of new alloys better suited to semi-solid processes. Among others, Al-Cu alloys of the 2XX series are known for their superior mechanical strength. However, in the past, 2XX alloys were never candidates for pressure die casting. The main reason is their propensity to hot tearing. Semi-solid processes provide better conditions for molding with the rheological behavior of dough and molding temperatures lower reducing this type of defect. In the initial phase, this research has studied factors that reduce hot tearing susceptibility of castings produced by semi-solid SEED of alloy 206. Subsequently, a comparative study on the tensile properties and fatigue was performed on four variants of the alloy 206. The results of tensile strength and fatigue were compared with the specifications for applications in the automotive industry and also to other competing processes and alloys. During this study, several metallurgical aspects were analyzed. The following main points have been validated: i) the main effects of compositional variations of silicon, iron and copper alloy Al-Cu (206) on the mechanical properties, and ii) certain relationships between the mechanism of hot cracking and the solidification rate in semi-solid. Parts produced from the semi-solid paste coming from the SEED process combined with modified 206 alloys have been successfully molded and achieved superior mechanical properties than the requirements of the automotive industry. The fatigue properties of the two best modified 206 alloys were higher than those of A357 alloy castings and are close to those of the

  7. Synthesis and structure elucidation of new μ-oxamido-bridged dicopper(II) complex with in vitro anticancer activity: A combined study from experiment verification and docking calculation on DNA/protein-binding property.

    Science.gov (United States)

    Zhu, Ling; Zheng, Kang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2016-02-01

    A new oxamido-bridged dicopper(II) complex with formula of [Cu2(deap)(pic)2], where H2deap and pic represent N,N'-bis[3-(diethylamino)propyl]oxamide and picrate, respectively, was synthesized and characterized by elemental analyses, molar conductance measurements, IR and electronic spectral study, and single-crystal X-ray diffraction. The crystal structure analyses revealed that the two copper(II) atoms in the dicopper(II) complex are bridged by the trans-deap(2-) ligand with the distances of 5.2116(17)Å, and the coordination environment around the copper(II) atoms can be described as a square-planar geometry. Hydrogen bonding and π-π stacking interactions link the dicopper(II) complex into a three-dimensional infinite network. The DNA/protein-binding properties of the complex are investigated by molecular docking and experimental assays. The results indicate that the dicopper(II) complex can interact with HS-DNA in the mode of intercalation and effectively quench the intrinsic fluorescence of protein BSA by 1:1 binding with the most possible binding site in the proximity of Trp134. The in vitro anticancer activities suggest that the complex is active against the selected tumor cell lines, and IC50 values for SMMC-7721 and HepG2 are lower than cisplatin. The effects of the electron density distribution of the terminal ligand and the chelate ring arrangement around copper(II) ions bridged by symmetric N,N'-bis(substituted)oxamides on DNA/BSA-binding ability and in vitro anticancer activity are preliminarily discussed.

  8. Tuning of structural, light emission and wetting properties of nanostructured copper oxide-porous silicon matrix formed on electrochemically etched copper-coated silicon substrates

    Science.gov (United States)

    Naddaf, M.

    2017-01-01

    Matrices of copper oxide-porous silicon nanostructures have been formed by electrochemical etching of copper-coated silicon surfaces in HF-based solution at different etching times (5-15 min). Micro-Raman, X-ray diffraction and X-ray photoelectron spectroscopy results show that the nature of copper oxide in the matrix changes from single-phase copper (I) oxide (Cu2O) to single-phase copper (II) oxide (CuO) on increasing the etching time. This is accompanied with important variation in the content of carbon, carbon hydrides, carbonyl compounds and silicon oxide in the matrix. The matrix formed at the low etching time (5 min) exhibits a single broad "blue" room-temperature photoluminescence (PL) band. On increasing the etching time, the intensity of this band decreases and a much stronger "red" PL band emerges in the PL spectra. The relative intensity of this band with respect to the "blue" band significantly increases on increasing the etching time. The "blue" and "red" PL bands are attributed to Cu2O and porous silicon of the matrix, respectively. In addition, the water contact angle measurements reveal that the hydrophobicity of the matrix surface can be tuned from hydrophobic to superhydrophobic state by controlling the etching time.

  9. DNA binding property and antitumor evaluation of xanthone with dimethylamine side chain.

    Science.gov (United States)

    Shen, Rui; Wang, Weihua; Yang, Gengliang

    2014-05-01

    In this work, a xanthone derivative was obtained by cationic modification of the free hydroxyl group of xanthone with dimethylamine group of high pKa value. The interactions of xanthones with DNA were investigated by spectroscopic methods, electrophoretic migration assay and polymerase chain reaction test. Results indicate that xanthones can intercalate into the DNA base pairs by the hydrophobic plane and the xanthone with dimethylamine side chain may also bind the DNA phosphate framework by the basic amine alkyl chain, thus showing a better DNA binding ability than the xanthone. Furthermore, inhibition on tumor cells (ECA109, SGC7901, GLC-82) proliferation of xanthones were evaluated by MTT method. Analysis results show that the xanthone with dimethylamine side chain exhibits more effective inhibition activity against three cancer cells than the xanthone. The effects on the inhibition of tumor cells in vitro agree with the studies of DNA binding. It means that the amine alkyl chain would play an important role in its antitumor activity and DNA binding property.

  10. Fe binding properties of two soybean (Glycine max L.) LEA4 proteins associated with antioxidant activity.

    Science.gov (United States)

    Liu, Guobao; Xu, Hong; Zhang, Liao; Zheng, Yizhi

    2011-06-01

    Late embryogenesis abundant (LEA) group 4 (LEA4) proteins play an important role in the water stress tolerance of plants. Although they have been hypothesized to stabilize macromolecules in stressed cells, the protective functions and mechanisms of LEA4 proteins are still not clear. In this study, the metal binding properties of two related soybean LEA4 proteins, GmPM1 and GmPM9, were tested using immobilized metal ion affinity chromatography (IMAC). The metal ions Fe(3+), Ni(2+), Cu(2+) and Zn(2+) were observed to bind these two proteins, while Ca(2+), Mg(2+) or Mn(2+) did not. Results from isothermal titration calorimetry (ITC) indicated that the binding affinity of GmPM1 for Fe(3+) was stronger than that of GmPM9. Hydroxyl radicals generated by the Fe(3+)/H(2)O(2) system were scavenged by both GmPM1 and GmPM9 in the absence or the presence of high ionic conditions (100 mM NaCl), although the scavenging activity of GmPM1 was significantly greater than that of GmPM9. These results suggest that GmPM1 and GmPM9 are metal-binding proteins which may function in reducing oxidative damage induced by abiotic stress in plants.

  11. The Effects of Doping Copper and Mesoporous Structure on Photocatalytic Properties of TiO2

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-01-01

    Full Text Available This paper describes a system for the synthesis of Cu-doped mesoporous TiO2 nanoparticles by a hydrothermal method at relatively low temperatures. The technique used is to dope the as-prepared mesoporous TiO2 system with copper. In this method, the copper species with the form of Cu1+, which was attributed to the reduction effect of dehydroxylation and evidenced by X-ray photoelectron spectroscopy (XPS and X-ray diffraction (XRD, was well dispersed in the optimal concentration 1 wt.% Cu-doped mesoporous TiO2. In this as-prepared mesoporous TiO2 system, original particles with a size of approximately 20 nm are aggregated together to shapes of approximately 1100 nm, which resulted in the porous aggregate structure. More importantly, the enhancement of the photocatalytic activity was discussed as effects due to the formation of stable Cu(I and the mesoporous structure in the Cu-doped mesoporous TiO2. Among them, Cu-doped mesoporous TiO2 shows the highest degradation rate of methyl orange (MO. In addition, the effects of initial solution pH on degradation of MO had also been investigated. As a result, the optimum values of initial solution pH were found to be 3.

  12. Influence of a cold deformation process by drawing on the electrical properties of copper wires

    Directory of Open Access Journals (Sweden)

    Rafael da Silva Bernardo

    Full Text Available Abstract This article presents a study of the drawing, deformation, hardening and heat treatment of copper wire, in order to investigate the influence of combinations of operating variables (annealing factor, oil emulsion temperature and machine speed during the drawing process on the electrical conductivity of copper wires. The results showed that when the metal is deformed, the value of electrical conductivity suffers a decrease due to the hardening phenomenon. Because of this, it is necessary to heat treat the material. So, it was observed that the annealing factor, which is associated with the thermal treatment temperature, showed a high degree of correlation with the electrical conductivity. This fact is explained by the annealing factor which is responsible for the intensity of the heat treatment. The speed at which the drawing occurs also showed a direct correlation with electric conductivity because the higher the value, the greater the heat treatment temperature and consequently, the greater the electrical conductivity of the material. On the other hand, it had not been possible to establish a conclusion about the correlation between the electrical conductivity and oil emulsion temperature during the drawing process.

  13. Stereochemical Properties of Multidentate Nitrogen Donor Ligands and Their Copper Complexes by Electronic CD and DFT.

    Science.gov (United States)

    Poopari, Mohammad Reza; Dezhahang, Zahra; Xu, Yunjie

    2016-07-01

    UV-Vis and electronic circular dichroism (ECD) spectroscopy, complemented with Density Functional Theory (DFT) calculations, were used to elucidate the structural diversities of three multidentate nitrogen donor ligands and two associated copper complexes in solution directly. The three chiral salen ligands all consist of trans-cyclohexane-1,2-diamine as a chiral scaffold and also of pyridine rings as chromophores, differing only in the linking groups between the two functional groups mentioned above. Very different ECD intensities and somewhat different ECD patterns were observed for these ligands and satisfactorily interpreted theoretically. For the geometry optimization and spectral simulation of the open-shell metal complexes, the LANL2DZ basis set with effective core potential for the Cu and Cl atoms and pure cc-pVTZ for the rest of the atoms was utilized. The performance of the same calculations with the polarization functions (f,g) from the cc-pVTZ basis added to the LANL2DZ basis was compared. While the three ligands exhibit different conformational flexibility, the associated copper complexes show great rigidity imposed by the metal-ligand coordination, taking on a single structure in each case. In addition, dispersion interactions were shown to change the conformational stability ordering of the ligands noticeably and to exert considerable influence on the simulated UV-Vis and ECD spectra. Chirality 28:545-555, 2016. © 2016 Wiley Periodicals, Inc.

  14. Effect of copper surface pre-treatment on the properties of CVD grown graphene

    Directory of Open Access Journals (Sweden)

    Min-Sik Kim

    2014-12-01

    Full Text Available Here, we report the synthesis of high quality monolayer graphene on the pre-treated copper (Cu foil by chemical vapor deposition method. The pre-treatment process, which consists of pre-annealing in a hydrogen ambient, followed by diluted nitric acid etching of Cu foil, helps in removing impurities. These impurities include native copper oxide and rolling lines that act as a nucleation center for multilayer graphene. Raman mapping of our graphene grown on pre-treated Cu foil primarily consisted of ∼98% a monolayer graphene with as compared to 75 % for the graphene grown on untreated Cu foil. A high hydrogen flow rate during the pre-annealing process resulted in an increased I2D/IG ratio of graphene up to 3.55. Uniform monolayer graphene was obtained with a I2D/IG ratio and sheet resistance varying from 1.84 – 3.39 and 1110 – 1290 Ω/□, respectively.

  15. Properties of Al-doped Copper Nitride Films Prepared by Reactive Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cu3N and AlxCu3N films were prepared with reactive magnetron sputtering method. The two films were deposited on glass substrates at 0.8 Pa N2 partial pressure and 100 ℃ substrate temperature by using a pure Cu and Al target, respectively. X-ray diffraction (XRD) measurements show that the un-doped film was composed of Cu3N crystallites with anti-ReO3 structure and adopted [111] preferred orientation. XRD shows that the growth of Al-doped copper nitride films (AlxCu3N) was affected strongly by doping Al, the intensity of [111] peak decreases with increasing the concentration of Al and the high concentration of Al could prevent the Cu3N from crystallization. AFM shows that the surface of AlxCu3N film is smoother than that of Cu3N film. Compared with the Cu3N films, the resistivities of the Al-doped copper nitride films (AlxCu3N) have been reduced, and the microhardness has been enhanced.

  16. Thermal transport properties of multiphase sintered metals microstructures. The copper-tungsten system: Experiments and modeling

    Science.gov (United States)

    Gheribi, Aïmen E.; Autissier, Emmanuel; Gardarein, Jean-Laurent; Richou, Marianne

    2016-04-01

    The thermal diffusivity of Cu-W sintered alloys microstructures is measured at room temperature at different compositions, using rear face flash experiments. The samples are synthesized with the Spark Plasma Sintering technique. The resulting microstructures are slightly porous and consist of angular nanoscale grains of tungsten with medium sphericity in a copper matrix. The tungsten particles are at the nanoscale with an average grain size of 250 nm in contrast to the copper matrix for which the average grain size lies in the range 20 μm-30 μm; this is large enough to avoid the grains boundary effect upon the thermal transport. The overall porosity of the microstructures lies within the range: 6 %≤P ≤12 % . Along with the experimental work, a predictive model describing the effective thermal conductivity of multiphasic macrostructures is proposed in order to explain the obtained experimental results. The model was developed based only on physical considerations and contains no empirical parameters; it takes into account the type of microstructure and the microstructure parameters: porosity, grain shape, grain size, and grain size distribution. The agreement between the experiments and the model is found to be excellent.

  17. Electrical properties and thermal stability of Pd-doped copper nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Ji, A. L.; Lu, N. P.; Gao, L.; Zhang, W. B.; Liao, L. G.; Cao, Z. X. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, P. O. Box 603, Beijing 100190 (China)

    2013-01-28

    Pd-doped copper nitride films with Pd concentrations up to 5.6 at. % were successfully synthesized by reactive magnetron sputtering of metal targets. Higher concentration of Pd (>5.6 at. %) would deteriorate the quality of the deposits. XPS and XRD data strongly suggest that Pd atoms occupy the centers of the Cu{sub 3}N unit cells rather than simply substituting for the Cu atoms. A reduction in the electrical resistivity by three orders of magnitude was observed when the Pd concentration increases from zero to 5.6 at. %. All the deposits with the Pd concentration up to 5.6 at. % exhibit n-typed conductivity behavior. The corresponding carrier concentrations increase by four orders of magnitude from 10{sup 17} to 10{sup 21} cm{sup -3}. Compared with the undoped copper nitride films, a weakly Pd-doped Cu{sub 3}N films possess fine thermal stability in vacuum. And the decomposition product after annealing at 450 Degree-Sign C exhibits a good metallic behavior, indicating that it qualifies the fabrication of conduct wires or metallic structures for the promising applications.

  18. Corrosion inhibition properties of pyrazolylindolenine compounds on copper surface in acidic media

    Directory of Open Access Journals (Sweden)

    Ebadi Mehdi

    2012-12-01

    Full Text Available Abstract Background The corrosion inhibition performance of pyrazolylindolenine compounds, namely 4-(3,3-dimethyl-3H-indol-2-yl-pyrazole-1-carbothioamide (InPzTAm, 4-(3,3-dimethyl-3H-indol-2-yl-1H-pyrazole-1-carbothiohydrazide (InPzTH and 3,3-dimethyl-2-(1-phenyl-1H-pyrazol-4-yl-3H-indole (InPzPh, on copper in 1M HCl solution is investigated by electrochemical impedance spectroscopy (EIS, open circuit potential (OCP and linear scan voltammetry (LSV techniques. Results The results show that the corrosion rate of copper is diminished by the compounds with the inhibition strength in the order of: InPzTAm> InPzTH > InPzPh. The corrosion inhibition efficiencies for the three inhibitors are 94.0, 91.4 and 79.3, for InPzTAm, InPzTH and InPzPh respectively with the same inhibitor concentration (2 mM. Conclusion From the EIS, OCP and LSV results it was concluded that pyrazolylindolenine compounds with S-atom (with an amine group have illustrated better corrosion inhibition performance compared to hydrazine and phenyl group.

  19. Tubulin Binding and Polymerization Promoting Properties of Tubulin Polymerization Promoting Proteins Are Evolutionarily Conserved.

    Science.gov (United States)

    Oláh, Judit; Szénási, Tibor; Szabó, Adél; Kovács, Kinga; Lőw, Péter; Štifanić, Mauro; Orosz, Ferenc

    2017-02-21

    Tubulin polymerization promoting proteins (TPPPs) constitute a eukaryotic protein family. There are three TPPP paralogs in the human genome, denoted as TPPP1-TPPP3. TPPP1 and TPPP3 are intrinsically unstructured proteins (IUPs) that bind and polymerize tubulin and stabilize microtubules, but TPPP2 does not. Vertebrate TPPPs originated from the ancient invertebrate TPPP by two-round whole-genome duplication; thus, whether the tubulin/microtubule binding function of TPPP1 and TPPP3 is a newly acquired property or was present in the invertebrate orthologs (generally one TPPP per species) has been an open question. To answer this question, we investigated a TPPP from a simple and early branching animal, the sponge Suberites domuncula. Bioinformatics, biochemical, immunochemical, spectroscopic, and electron microscopic data showed that the properties of the sponge protein correspond to those of TPPP1; namely, it is an IUP that strongly binds tubulin and induces its polymerization, proving that these features of animal TPPPs have been evolutionarily conserved.

  20. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.

    Science.gov (United States)

    Rode, Ambadas B; Endoh, Tamaki; Sugimoto, Naoki

    2015-01-12

    Riboswitch-mediated control of gene expression depends on ligand binding properties (kinetics and affinity) of its aptamer domain. A detailed analysis of interior regions of the aptamer, which affect the ligand binding properties, is important for both understanding natural riboswitch functions and for enabling rational design of tuneable artificial riboswitches. Kinetic analyses of binding reaction between flavin mononucleotide (FMN) and several natural and mutant aptamer domains of FMN-specific riboswitches were performed. The strong dependence of the dissociation rate (52.6-fold) and affinity (100-fold) on the identities of base pairs in the aptamer stem suggested that the stem region, which is conserved in length but variable in base-pair composition and context, is the tuning region of the FMN-specific aptamer. Synthetic riboswitches were constructed based on the same aptamer domain by rationally modifying the tuning regions. The observed 9.31-fold difference in the half-maximal effective concentration (EC50) corresponded to a 11.6-fold difference in the dissociation constant (K(D)) of the aptamer domains and suggested that the gene expression can be controlled by rationally adjusting the tuning regions.

  1. Assessment of Density Functional Methods for Exciton Binding Energies and Related Optoelectronic Properties

    CERN Document Server

    Lee, Jui-Che; Lin, Shiang-Tai

    2015-01-01

    The exciton binding energy, the energy required to dissociate an excited electron-hole pair into free charge carriers, is one of the key factors to the optoelectronic performance of organic materials. However, it remains unclear whether modern quantum-mechanical calculations, mostly based on Kohn-Sham density functional theory (KS-DFT) and time-dependent density functional theory (TDDFT), are reliably accurate for exciton binding energies. In this study, the exciton binding energies and related optoelectronic properties (e.g., the ionization potentials, electron affinities, fundamental gaps, and optical gaps) of 121 small- to medium-sized molecules are calculated using KS-DFT and TDDFT with various density functionals. Our KS-DFT and TDDFT results are compared with those calculated using highly accurate CCSD and EOM-CCSD methods, respectively. The omegaB97, omegaB97X, and omegaB97X-D functionals are shown to generally outperform (with a mean absolute error of 0.36 eV) other functionals for the properties inve...

  2. Regulating rheological properties of binding medium for additive technologies using polyvinylpyrrolidone

    Science.gov (United States)

    Zemtsov, A. E.; Golunov, A. V.; Golunova, A. S.

    2017-08-01

    The paper considers the process of discreet element (droplet) formation in additive manufacturing. The urgency of the research is proved by using the inkjet method while forming fine powders in additive technologies. The binder rheological properties determine the formation accuracy for a discrete element of a three-dimensional part. The article suggests indicators that allow an operative assessment of a binder suitability for usage in the fine powder formation process. As a result of the research, the geometric parameters of the jetting apparatus forming the powder according to the Binder Jetting technology were aligned with the compositions