WorldWideScience

Sample records for copper arsenate cca-treated

  1. New Approach to Remove Metals from Chromated Copper Arsenate (CCA)-Treated Wood

    Science.gov (United States)

    Todd F. Shupe; Chung Y. Hse; Hui Pan

    2012-01-01

    Recovery of metals from chromated copper arsenate (CCA)-treated southern pine wood particles was investigated using binary acid solutions consisting of acetic, oxalic, and phosphoric acids in a microwave reactor. Formation of an insoluble copper oxalate complex in the binary solution containing oxalic acid was the major factor for low copper removal. Furthermore, the...

  2. Rapid microwave-assisted acid extraction of metals from chromated copper arsenate (CCA)-treated southern pine wood

    Science.gov (United States)

    Bin Yu; Chung Y. Hse; Todd F. Shupe

    2009-01-01

    The effects of acid concentration, reaction time, and temperature in a microwave reactor on recovery of CCA-treated wood were evaluated. Extraction of copper, chromium, and arsenic metals from chromated copper arsenate (CCA)-treated southern pine wood samples with three different acids (i.e., acetic acid, oxalic acid, and phosphoric acid) was investigated using in...

  3. Fractionation of heavy metals in liquefied chromated copper arsenate (CCA)-treated wood sludge using a modified BCR-sequential extraction procedure

    Science.gov (United States)

    Hui Pan; Chung-Yun Hse; Robert Gambrell; Todd F. Shupe

    2009-01-01

    Chromated copper arsenate (CCA)-treated wood was liquefied with polyethylene glycol/glycerin and sulfuric acid. After liquefaction, most CCA metals (98% As, 92% Cr, and 83% Cu) were removed from liquefied CCA-treated wood by precipitation with calcium hydroxide. The original CCA-treated wood and liquefied CCA-treated wood sludge were fractionated by a modified...

  4. Leaching of chromated copper arsenate (CCA)-treated wood in a simulated monofill and its potential impacts to landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Jambeck, Jenna R. [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Townsend, Timothy [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States)]. E-mail: ttown@ufl.edu; Solo-Gabriele, Helena [Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146-0630 (United States)

    2006-07-31

    The proper end-of-life management of chromated copper arsenate (CCA)-treated wood, which contains arsenic, copper, and chromium, is a concern to the solid waste management community. Landfills are often the final repository of this waste stream, and the impacts of CCA preservative metals on leachate quality are not well understood. Monofills are a type of landfill designed and operated to dispose a single waste type, such as ash, tires, mining waste, or wood. The feasibility of managing CCA-treated wood in monofills was examined using a simulated landfill (a leaching lysimeter) that contained a mix of new and weathered CCA-treated wood. The liquid to solid ratio (LS) reached in the experiment was 0.63:1. Arsenic, chromium, and copper leached from the lysimeter at average concentrations of 42 mg/L for arsenic, 9.4 mg/L for chromium, and 2.4 mg/L for copper. Complementary batch leaching studies using deionized water were performed on similar CCA-treated wood samples at LS of 5:1 and 10:1. When results from the lysimeter were compared to the batch test results, copper and chromium leachability appeared to be reduced in the lysimeter disposal environment. Of the three metals, arsenic leached to the greatest extent and was found to have the best correlation between the batch and the lysimeter experiments.

  5. Effect of weathering on chromated copper arsenate (CCA) treated wood : leaching of metal salts and change in water repellency

    Science.gov (United States)

    R. Sam Williams; Stan Lebow; Patricia Lebow

    2003-01-01

    Wood pressure-treated with chromated copper arsenate (CCA) wood preservative is commonly used for outdoor construction. Oxides of arsenic, copper, and chromium are bound in the wood by a complex series of chemical reactions, but a small percentage of these compounds are gradually released by leaching and weathering. Recent studies suggest that the release of these...

  6. Comparative study on liquefaction of creosote and chromated copper arsenate (CCA)-treated wood and untreated southern pine wood: effects of acid catalyst content, liquefaction time, temperature, and phenol to wood ratio

    Science.gov (United States)

    Hui Pan; Chung-Yun Hse; Todd F. Shupe

    2009-01-01

    Creosote- and chromated copper arsenate (CCA)-treated wood waste and untreated southern pine wood were liquefied with phenol and sulfuric acid. The effects of sulfuric acid content, liquefaction time, liquefaction temperature, and phenol to wood ratio on liquefaction rate (i.e., wood residue content) were investigated and analyzed by analysis of variance (...

  7. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, Lieve [Katholieke Universiteit Leuven, Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion, Celestijnenlaan 300A, B-3001 Leuven (Heverlee) (Belgium)]. E-mail: lieve.helsen@mech.kuleuven.be; Hacala, Amelie [Company Thermya, 1 rue Nicolas Appert, 33140 Villenave d' Ornon (France)]. E-mail: hacala@thermya.com

    2006-10-11

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 {mu}m) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 {mu}m)

  8. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    International Nuclear Information System (INIS)

    Helsen, Lieve; Hacala, Amelie

    2006-01-01

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 μm) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 μm)

  9. Carcinogenic risk of chromium, copper and arsenic in CCA-treated wood

    International Nuclear Information System (INIS)

    Ohgami, Nobutaka; Yamanoshita, Osamu; Thang, Nguyen Dinh; Yajima, Ichiro; Nakano, Chihiro; Wenting, Wu; Ohnuma, Shoko

    2015-01-01

    We showed that 2.1% of 233 pieces of lumber debris after the Great East Japan Earthquake was chromated copper arsenate (CCA)-treated wood. Since hexavalent chromium (Cr), copper (Cu) and pentavalent arsenic (As) in the debris may be diffused in the air via incineration, we exposed human lung normal (BEAS-2B) and carcinoma (A549) cells to Cr, Cu and As at the molar ratio in a representative CCA-treated wood. Co-exposure to 0.10 μM Cr and 0.06 μM As, which solely had no effect on colony formation, synergistically promoted colony formation in BEAS-2B cells, but not A549 cells, with activation of the PI3K/AKT pathway. Sole exposure and co-exposure to Cu showed limited effects. Since previous reports showed Cr and As concentrations to which human lungs might be exposed, our results suggest the importance to avoid diffusion of Cr and As in the air via incineration of debris including CCA-treated wood after the disaster. - Highlights: • CCA-treated wood was found in debris after the Great East Japan Earthquake in 2011. • Carcinogenic risk of CCA-treated woods was evaluated with human lung cell lines. • Co-exposure to Cr and As synergistically promoted colony formation. • Co-exposure to Cr and As synergistically activated the PI3/AKT pathway. • Effects of sole exposure and co-exposure to Cu on colony formation were limited. - Co-exposure to Cr and As, but not Cu, in CCA-treated wood debris from the Great East Japan Earthquake showed carcinogenicity in vitro.

  10. Extant contents of chromium, copper and arsenic in waste CCA-treated timber

    International Nuclear Information System (INIS)

    Chiba, Keiko; Uchida, Shinpei; Honma, Yoshinori; Sera, Koichiro; Saitoh, Katsumi

    2009-01-01

    The segregation and disposal of chromated copper arsenate (CCA)-treated wood waste when recycling building waste materials is a serious issue. We examined the contents of CCA preserved cedar timber by PIXE analysis. CCA preserved timber contained large amounts of these metals both on the surface and core of the wood. The ratio of chromium, copper and arsenic contained on the surface was 1:2:1, and in contrast, the ratio in the core was 1:1:2. In other words, the arsenic content was highest in the core. Moreover, the chemical form of arsenic in both parts of the wood was only inorganic arsenic; the same form of arsenic in preservative components known as carcinogenic substances. These findings mean that the complete separation of waste CCA preserved timber from construction and demolition wood is needed. (author)

  11. REMOVAL COPPER, CHROMIUM, ARSENIC FROM OUT-OF- SERVICE CCA-TREATED WOOD MATERIALS

    Directory of Open Access Journals (Sweden)

    Engin Derya Gezer

    2004-11-01

    Full Text Available Remediation can be defined as removing copper, chromium and arsenic from out-of-service CCA treated wood products. There are some various remediation methods that can be applied to remove copper, chromium and arsenic from out-of service CCA treated wood products in order to re-use that wooden materials and minimize adverse impacts of those out-of service CCA treated wood to environment, human health, animals and other living organisms. In this study, those applied various remediation methods to remove copper, chromium and arsenic were summarized.

  12. Mechanical and chemical properties of CCA-treated lumber removed from spent residential decks

    Science.gov (United States)

    Robert L. Smith; David Bailey; Philip A. Araman

    2007-01-01

    The amount of chromated copper arsenate (CCA)- treated wood being removed from spent residential decks is increasing at a tremendous rate. While most spent CCA-treated wood is being disposed in landfills, further useful and environmentally beneficial alternatives have to be met. If the volume of CCA-treated wood reaching landfills continues to rise, stricter disposal...

  13. Arsenic, chromium, and copper leaching from CCA-treated wood and their potential impacts on landfill leachate in a tropical country.

    Science.gov (United States)

    Kamchanawong, S; Veerakajohnsak, C

    2010-04-01

    This study looks into the potential risks of arsenic, chromium, and copper leaching from disposed hardwoods treated with chromated copper arsenate (CCA) in a tropical climate. The Toxicity Characteristic Leaching Procedure (TCLP) and the Waste Extraction Test (WET) were employed to examine new CCA-treated Burseraceae and Keruing woods, weathered CCA-treated teak wood, and ash from new CCA-treated Burseraceae wood. In addition, a total of six lysimeters, measuring 2 m high and 203 mm in diameter were prepared to compare the leachate generated from the wood monofills, construction and demolition (C&D) debris landfills and municipal solid waste (MSW) landfills, containing CCA-treated Burseraceae wood. The TCLP and WET results showed that the CCA-treated Burseraceae wood leached higher metal concentrations (i.e. 9.19-17.70 mg/L, 1.14-5.89 mg/L and 4.83-23.89 mg/L for arsenic, chromium, and copper, respectively) than the CCA-treated Keruing wood (i.e. 1.74-11.34 mg/L, 0.26-3.57 mg/L and 0.82-13.64 mg/L for arsenic, chromium and copper, respectively). Ash from the CCA-treated Burseraceae wood leached significantly higher metal concentrations (i.e. 108.5-116.9 mg/L, 1522-3862 mg/L and 84.03-114.4 mg/L for arsenic, chromium and copper, respectively), making this type of ash of high concern. The lysimeter study results showed that the MSW lysimeter exhibited higher reducing conditions, more biological activities and more dissolved ions in their leachates than the wood monofill and C&D debris lysimeters. All leachates generated from the lysimeters containing the CCA-treated Burseraceae wood contained significantly higher concentrations of arsenic in comparison to those of the untreated wood: in the range of 0.53-15.7 mg/L. It can be concluded that the disposal of CCA-treated Burseraceae wood in an unlined C&D landfill or a MSW landfill has the potential to contaminate groundwater.

  14. Application of a CCA-treated wood waste decontamination process to other copper-based preservative-treated wood after disposal

    Energy Technology Data Exchange (ETDEWEB)

    Janin, Amelie, E-mail: amelie.janin@ete.inrs.ca [University of Toronto, Faculty of Forestry, 33, Willcocks St., Toronto, ON, M5S 3B3 (Canada); Coudert, Lucie, E-mail: lucie.coudert@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Riche, Pauline, E-mail: pauline.riche@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Mercier, Guy, E-mail: guy_mercier@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Cooper, Paul, E-mail: p.cooper@utoronto.ca [University of Toronto, Faculty of Forestry, 33, Willcocks St., Toronto, ON, M5S 3B3 (Canada); Blais, Jean-Francois, E-mail: blaisjf@ete.inrs.ca [Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada)

    2011-02-28

    Research highlights: {yields} This paper describes a process for the metal removal from treated (CA-, ACQ- or MCQ-) wood wastes. {yields} This sulfuric acid leaching process is simple and economic. {yields} The remediated wood could be recycled in the industry. - Abstract: Chromated copper arsenate (CCA)-treated wood was widely used until 2004 for residential and industrial applications. Since 2004, CCA was replaced by alternative copper preservatives such as alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ), for residential applications due to health concerns. Treated wood waste disposal is becoming an issue. Previous studies identified a chemical process for decontaminating CCA-treated wood waste based on sulfuric acid leaching. The potential application of this process to wood treated with the copper-based preservatives (alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ)) is investigated here. Three consecutive leaching steps with 0.1 M sulfuric acid at 75 deg, C for 2 h were successful for all the types of treated wood and achieved more than 98% copper solubilisation. The different acidic leachates produced were successively treated by coagulation using ferric chloride and precipitation (pH = 7) using sodium hydroxide. Between 94 and 99% of copper in leachates could be recovered by electrodeposition after 90 min using 2 A electrical current. Thus, the process previously developed for CCA-treated wood waste decontamination could be efficiently applied for CA-, ACQ- or MCQ-treated wood.

  15. ASSESSING CHILDREN'S EXPOSURES TO THE WOOD PRESERVATIVE CCA (CHROMATED COPPER ARSENATE) ON TREATED PLAYSETS AND DECKS

    Science.gov (United States)

    Concerns have been raised regarding the safety of young children contacting arsenic and chromium residues while playing on and around Chromated Copper Arsenate (CCA) treated wood playground structures and decks. Although CCA registrants voluntarily canceled treated wood for re...

  16. Physical and mechanical properties of flakeboard produced from recycled CCA-treated wood

    Science.gov (United States)

    W. Li; T.F. Shupe; Chung-Yun Hse

    2004-01-01

    Chromated copper arsenate (CCA) treated wood has been most widely used in North America since the 1970s for many exterior applications such as decks, fences, playground equipment, utility poles, and others. A large volume of CCA-treated wood is currently coming out of service. Traditional disposal methods such as landfilling and incineration are not without adverse...

  17. Impact of chromated copper arsenate (CCA) in wood mulch.

    Science.gov (United States)

    Townsend, Timothy G; Solo-Gabriele, Helena; Tolaymat, Thabet; Stook, Kristin

    2003-06-20

    The production of landscape mulch is a major market for the recycling of yard trash and waste wood. When wood recovered from construction and demolition (C&D) debris is used as mulch, it sometimes contains chromated copper arsenate (CCA)-treated wood. The presence of CCA-treated wood may cause some potential environmental problems as a result of the chromium, copper, and arsenic present. Research was performed to examine the leachability of the three metals from a variety of processed wood mixtures in Florida. The mixtures tested included mixed wood from C&D debris recycling facilities and mulch purchased from retail outlets. The synthetic precipitation leaching procedure (SPLP) was performed to examine the leaching of chromium, copper and arsenic. Results were compared to Florida's groundwater cleanup target levels (GWCTLs). Eighteen of the 22 samples collected from C&D debris processing facilities leached arsenic at concentrations greater than Florida's GWCTL of 50 microg/l. The mean leachable arsenic concentration for the C&D debris samples was 153 microg/l with a maximum of 558 microg/l. One of the colored mulch samples purchased from a retail outlet leached arsenic above 50 microg/l, while purchased mulch samples derived from virgin materials did not leach detectable arsenic (<5 microg/l). A mass balance approach was used to compute the potential metal concentrations (mg/kg) that would result from CCA-treated wood being present in wood mulch. Less than 0.1% CCA-treated wood would cause a mulch to exceed Florida's residential clean soil guideline for arsenic (0.8 mg/kg).

  18. Landfill disposal of CCA-treated wood with construction and demolition (C&D) debris: arsenic, chromium, and copper concentrations in leachate.

    Science.gov (United States)

    Jambeck, Jenna R; Townsend, Timothy G; Solo-Gabriele, Helena M

    2008-08-01

    Although phased out of many residential uses in the United States, the disposal of CCA-treated wood remains a concern because significant quantities have yet to be taken out of service, and it is commonly disposed in landfills. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills. The goal of this research was to simulate the complex chemical and biological activity of a construction and demolition (C&D) debris landfill containing a realistic quantity of CCA-treated wood (10% by mass), produce leachate, and then evaluate the arsenic, copper, and chromium concentrations in the leachate as an indication of what may occur in a landfill setting. Copper concentrations were not significantly elevated in the control or experimental simulated landfill setting (alpha = 0.05). However, the concentrations of arsenic and chromium were significantly higher in the experimental simulated landfill leachate compared to the control simulated landfill leachate (alpha = 0.05, p debris can impact leachate quality which, in turn could affect leachate management practices or aquifers below unlined landfills.

  19. Improving the two-step remediation process for CCA-treated wood. Part I, Evaluating oxalic acid extraction

    Science.gov (United States)

    Carol Clausen

    2004-01-01

    In this study, three possible improvements to a remediation process for chromated-copper-arsenate (CCA) treated wood were evaluated. The process involves two steps: oxalic acid extraction of wood fiber followed by bacterial culture with Bacillus licheniformis CC01. The three potential improvements to the oxalic acid extraction step were (1) reusing oxalic acid for...

  20. Rapid microwave-assisted acid extraction of southern pine waste wood to remove metals from chromated copper arsenate (CCA) treatment

    Science.gov (United States)

    Chung-Yun Hse; Todd F. Shupe; Bin Yu

    2013-01-01

    Recovery of metals from chromated copper arsenate (CCA)-treated southern pine wood particles was investigated by extraction in a microwave reactor with binary combinations of acetic acid (AA), oxalic acid (OxA), and phosphoric acid (PhA). Use of OxA was not successful, as insoluble copper oxalate complexes impeded copper removal. The combination of OxA and AA also had...

  1. Leaching of CCA-treated wood: implications for waste disposal

    International Nuclear Information System (INIS)

    Townsend, Timothy; Tolaymat, Thabet; Solo-Gabriele, Helena; Dubey, Brajesh; Stook, Kristin; Wadanambi, Lakmini

    2004-01-01

    Leaching of arsenic, chromium, and copper from chromated copper arsenate (CCA)-treated wood poses possible environmental risk when disposed. Samples of un-weathered CCA-treated wood were tested using a variety of the US regulatory leaching procedures, including the toxicity characteristic leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), extraction procedure toxicity method (EPTOX), waste extraction test (WET), multiple extraction procedure (MEP), and modifications of these procedures which utilized actual MSW landfill leachates, a construction and demolition (C and D) debris leachate, and a concrete enhanced leachate. Additional experiments were conducted to assess factors affecting leaching, such as particle size, pH, and leaching contact time. Results from the regulatory leaching tests provided similar results with the exception of the WET, which extracted greater quantities of metals. Experiments conducted using actual MSW leachate, C and D debris leachate, and concrete enhanced leachate provided results that were within the same order of magnitude as results obtained from TCLP, SPLP, and EPTOX. Eleven of 13 samples of CCA-treated dimensional lumber exceeded the US EPA's toxicity characteristic (TC) threshold for arsenic (5 mg/L). If un-weathered arsenic-treated wood were not otherwise excluded from the definition of hazardous waste, it frequently would require management as such. When extracted with simulated rainwater (SPLP), 9 of the 13 samples leached arsenic at concentrations above 5 mg/L. Metal leachability tended to increase with decreasing particle size and at pH extremes. All three metals leached above the drinking water standards thus possibly posing a potential risk to groundwater. Arsenic is a major concern from a disposal point of view with respect to ground water quality

  2. Determination of the distribution of copper and chromium in partly remediated CCA-treated pine wood using SEM and EDX analyses

    DEFF Research Database (Denmark)

    Christensen, Iben Vernegren; Ottosen, Lisbeth M.; Melcher, Eckhard

    2005-01-01

    . After soaking, a small amount of Cu and Cr was still present in the cell walls but larger particles were now found on wall surfaces. Most effective removal of Cu was obtained after soaking in phosphoric and oxalic acid followed by EDR; here numerous rice grain-shaped particles were observed containing...... large amounts of Cu and no Cr. Cr was most effectively removed after soaking in oxalic acid and subsequent EDR treatment or dual soaking in phosphoric acid and oxalic acid with and without subsequent EDR.......Soaking in different acids and electrodialytic remediation (EDR) were applied for removing copper and chromium from freshly Chromated Copper Arsenate (CCA) impregnated EN 113 pine wood samples. After remedial treatments, AAS analyses revealed that the concentration of copper (Cu) and chromium (Cr...

  3. Elemental analysis of ash residue from combustion of CCA treated wood waste before and after electrodialytic extraction

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.

    2006-01-01

    Element distribution in a combined fly ash and bottom ash from combustion of copper chromate arsenate (CCA) treated wood waste was investigated by scanning electron microscopy (SEM/EDX) before and after electrodialytic extraction. The untreated ash contained various particles, including pieces...... of incompletely combusted wood rich in Cr and Ca, and irregular particles rich in Si, Al and K. Cr was also found incorporated in silica-based matrix particles. As was associated with Ca in porous (char) particles, indicating that Ca-arsenates had been formed during combustion. Cu was associated with Cr...... in the incompletely combusted wood pieces and was also found in almost pure form in a surface layer of some matrix particles – indicating surface condensation of volatile Cu species. In treated ash, Ca and As were no longer found together, indicating that Ca-arsenates had been dissolved due to the electrodialytic...

  4. Electrodialytic removal of Cu, Cr, and As from chromated copper arsenate-treated timber waste

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.B.; Mateus, E.P.; Ottosen, L.M.; Bech-Nielsen, G.

    2000-03-01

    Waste of wood treated with chromated copper arsenate (CCA) is expected to increase in volume over the next decades. Alternative disposal options to landfilling are becoming more attractive to study, especially those that promote reuse. The authors have studied the electrodialytic removal of Cu, Cr, and As from CCA-treated timber wastes. The method uses a low-level direct current as the cleaning agent, combining the electrokinetic movement of ions in the matrix with the principle of electrodialysis. The technique was tested in four experiments using a laboratory cell on sawdust of an out-of-service CCA-treated Pinus pinaster Ait. pole. The duration of all the experiments was 30 days, and the current density was kept constant at 0.2 mA/cm{sup 2}. The experiments differ because in one the sawdust was saturated with water (experiment 1) and in the rest it was saturated with oxalic acid, 2.5, 5, and 7.5% (w/w), respectively, in experiments 2--4. The highest removal rates obtained were 93% of Cu, 95% of Cr, and 99% of As in experiment 2. Other experimental conditions might possibly optimize the removal rates.

  5. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.

    Science.gov (United States)

    Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan

    2007-01-01

    Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated

  6. Arsenic levels in wipe samples collected from play structures constructed with CCA-treated wood: Impact on exposure estimates

    Energy Technology Data Exchange (ETDEWEB)

    Barraj, Leila M. [Chemical Regulation and Food Safety, Exponent, Inc., Suite 1100, 1150 Connecticut Ave., NW, Washington, DC 20036 (United States)], E-mail: lbarraj@exponent.com; Scrafford, Carolyn G. [Chemical Regulation and Food Safety, Exponent, Inc., Suite 1100, 1150 Connecticut Ave., NW, Washington, DC 20036 (United States); Eaton, W. Cary [RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709 (United States); Rogers, Robert E.; Jeng, Chwen-Jyh [Toxcon Health Sciences Research Centre Inc., 9607 - 41 Avenue, Edmonton, Alberta, T6E 5X7 (Canada)

    2009-04-01

    Lumber treated with chromated copper arsenate (CCA) has been used in residential outdoor wood structures and playgrounds. The U.S. EPA has conducted a probabilistic assessment of children's exposure to arsenic from CCA-treated structures using the Stochastic Human Exposure and Dose Simulation model for the wood preservative scenario (SHEDS-Wood). The EPA assessment relied on data from an experimental study using adult volunteers and designed to measure arsenic in maximum hand and wipe loadings. Analyses using arsenic handloading data from a study of children playing on CCA-treated play structures in Edmonton, Canada, indicate that the maximum handloading values significantly overestimate the exposure that occurs during actual play. The objective of our paper is to assess whether the dislodgeable arsenic residues from structures in the Edmonton study are comparable to those observed in other studies and whether they support the conclusion that the values derived by EPA using modeled maximum loading values overestimate hand exposures. We compared dislodgeable arsenic residue data from structures in the playgrounds in the Edmonton study to levels observed in studies used in EPA's assessment. Our analysis showed that the dislodgeable arsenic levels in the Edmonton playground structures are similar to those in the studies used by EPA. Hence, the exposure estimates derived using the handloading data from children playing on CCA-treated structures are more representative of children's actual exposures than the overestimates derived by EPA using modeled maximum values. Handloading data from children playing on CCA-treated structures should be used to reduce the uncertainty of modeled estimates derived using the SHEDS-Wood model.

  7. PRESERVATIVE LEACHING FROM WEATHERED CCA-TREATED WOOD

    Science.gov (United States)

    Disposal of discarded CCA-treated wood in landfills raises concerns with respect to leaching of preservative compounds. When unweathered CCA-treated wood is leached using the toxicity characteristic leaching procedure (TCLP), arsenic concentrations exceed the toxicity characteris...

  8. Copper tolerance of brown-rot fungi : oxalic acid production in southern pine treated with arsenic-free preservatives

    Science.gov (United States)

    Frederick Green; Carol A. Clausen

    2005-01-01

    The voluntary withdrawal of chromated copper arsenate (CCA)-treated wood from most residential applications has increased the use of non-arsenical copper-based organic wood preservatives. Because the arsenic component of CCA controlled copper tolerant fungi, scientists have renewed interest in and concern about the decay capacity in the important copper-tolerant group...

  9. Demonstration of the efficiency and robustness of an acid leaching process to remove metals from various CCA-treated wood samples.

    Science.gov (United States)

    Coudert, Lucie; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Janin, Amélie; Gastonguay, Louis

    2014-01-01

    In recent years, an efficient and economically attractive leaching process has been developed to remove metals from copper-based treated wood wastes. This study explored the applicability of this leaching process using chromated copper arsenate (CCA) treated wood samples with different initial metal loading and elapsed time between wood preservation treatment and remediation. The sulfuric acid leaching process resulted in the solubilization of more than 87% of the As, 70% of the Cr, and 76% of the Cu from CCA-chips and in the solubilization of more than 96% of the As, 78% of the Cr and 91% of the Cu from CCA-sawdust. The results showed that the performance of this leaching process might be influenced by the initial metal loading of the treated wood wastes and the elapsed time between preservation treatment and remediation. The effluents generated during the leaching steps were treated by precipitation-coagulation to satisfy the regulations for effluent discharge in municipal sewers. Precipitation using ferric chloride and sodium hydroxide was highly efficient, removing more than 99% of the As, Cr, and Cu. It appears that this leaching process can be successfully applied to remove metals from different CCA-treated wood samples and then from the effluents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effect of different extracting solutions on the electrodialytic remediation of CCA-treated wood waste Part I. - Behaviour of Cu and Cr

    DEFF Research Database (Denmark)

    Velizarova, E.; Ribeiro, A. B.; Mateus, E.

    2004-01-01

    Removal of Cu and Cr from chromated copper arsenate (CCA)-treated wood waste under batch electrodialytic conditions was studied. The effect of different types of extracting solutions, such as deionised water or aqueous solutions of NaCl, formic acid, oxalic acid, and EDTA, on the magnitude...... and direction of the fluxes of Cu- and Cr-containing species in the electrodialytic cell was investigated. Oxalic acid was found to have the best performance if simultaneous removal of the two elements is required (removal efficiencies of 80.5% for Cu and 87.4% for Cr, respectively). A mixture of oxalic acid...... and formic acid also led to similar removal efficiencies. In these experiments, the target elements were accumulated in both the anode and cathode compartments of the electrodialytic cell due to the formation of negatively charged complexes with the organic acids used besides the free cationic forms...

  11. Electrochemical removal of CU, CR and AS from CCA-treated waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, I.V.; Ottosen, L.M.; Villumsen, A. [Dept. of Geology and Geotechnical Engineering, The Technical Univ. of Denmark, Lyngby (Denmark); Ribeiro, A.B. [Dept. of Geology and Geotechnical Engineering, The Technical Univ. of Denmark, Lyngby (Denmark)]|[Dept. de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia, Univ. Nova de Lisboa, Caparica (Portugal)

    2001-07-01

    CCA-treated waste wood poses a potential environmental problem due to the content of copper, chromium and arsenic. This paper presents the results obtained by electrodialytic remediation of CCA-treated waste wood. It is found that more than 90% Cu, and approximately 85% Cr and As was removed from the wood during the remediation. Thereby the concentration of copper in the wood is reduced from app. 426 ppm to app. 25 ppm, chromium is reduced from app. 837 ppm to app. 135 ppm and the arsenic content decreases from app. 589 ppm to app. 151 ppm. After remediation the removed metals are collected into liquids. The use of ion exchange membranes to separate the wood from the electrolytes result in a distribution of the metals after remediation that makes the collection of the metals easier, and reuse of the metals, for e.g. new CCA, may be possible. (orig.)

  12. Long-term soil accumulation of chromium, copper, and arsenic adjacent to preservative-treated wood.

    Science.gov (United States)

    S. Lebow; D. Foster; J. Evans

    2004-01-01

    Chromated copper arsenate (CCA) treated wood has been used extensively in outdoor applications. The Environmental Protection Agency (EPA) and CCA producers recently reached an agreement to limit future use of CCA for some types of applications. One area of concern is the long-term accumulation of leached CCA in soil adjacent to treated wood structures. Interpreting...

  13. Comparative study of Nd:YAG laser-induced breakdown spectroscopy and transversely excited atmospheric CO2 laser-induced gas plasma spectroscopy on chromated copper arsenate preservative-treated wood.

    Science.gov (United States)

    Khumaeni, Ali; Lie, Zener Sukra; Niki, Hideaki; Lee, Yong Inn; Kurihara, Kazuyoshi; Wakasugi, Motoomi; Takahashi, Touru; Kagawa, Kiichiro

    2012-03-01

    Taking advantage of the specific characteristics of a transversely excited atmospheric (TEA) CO(2) laser, a sophisticated technique for the analysis of chromated copper arsenate (CCA) in wood samples has been developed. In this study, a CCA-treated wood sample with a dimension of 20 mm × 20 mm and a thickness of 2 mm was attached in contact to a nickel plate (20 mm × 20 mm × 0.15 mm), which functions as a subtarget. When the TEA CO(2) laser was successively irradiated onto the wood surface, a hole with a diameter of approximately 2.5 mm was produced inside the sample and the laser beam was directly impinged onto the metal subtarget. Strong and stable gas plasma with a very large diameter of approximately 10 mm was induced once the laser beam had directly struck the metal subtarget. This gas plasma then interacted with the fine particles of the sample inside the hole and finally the particles were effectively dissociated and excited in the gas plasma region. By using this technique, high precision and sensitive analysis of CCA-treated wood sample was realized. A linear calibration curve of Cr was successfully made using the CCA-treated wood sample. The detection limits of Cr, Cu, and As were estimated to be approximately 1, 2, and 15 mg/kg, respectively. In the case of standard LIBS using the Nd:YAG laser, the analytical intensities fluctuate and the detection limit was much lower at approximately one-tenth that of TEA CO(2) laser. © 2012 Optical Society of America

  14. Electrodialytic remediation of CCA treated waste wood in pilot scale

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Christensen, Iben Vernegren; Ottosen, Lisbeth M.

    2005-01-01

    study the utility of the method Electrodialytic Remediation was demonstrated for handling of CCA treated waste wood in pilot scale. The electrodialytic remediation method, which uses a low level DC current as the cleaning agent, combines elektrokinetic movement of ions in the wood matrix with the princi......-ples of electrodialysis. It has previously been shown that it is possible to remove Cu, Cr and As from CCA treated wood using electrodialytic remediation in laboratory scale (Ribeiro et al., 2000; Kristensen et al., 2003), but until now, the method had not been studied in larger scale. The pilot scale plant used...... in this study was designed to contain up to 2 m3 wood chips. Six remediation experiments were carried out. In these experiments, the process was up-scaled stepwise by increasing the distance between the electrodes from initially 60 cm to fi-nally 150 cm. The remediation time was varied between 11 and 21 days...

  15. Lead, arsenic, and copper content of crops grown on lead arsenate-treated and untreated soils

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, D

    1972-01-01

    Increased lead and arsenic concentrations in the surface soil (0-15 cm), resulting from applications of lead arsenate (PbHAs0/sub 1/), increased both lead and arsenic levels in crops grown on treated plots. The lead levels in some crops approached or exceeded the Canadian residue tolerance of 2.0 ppM. Lead arsenate soil treatments did not affect copper absorption by crops. On areas such as old orchard land contaminated with lead arsenate residues it may be advisable to ascertain crops, and also to determine the lead affinity and arsenic sensitivity of the plants to be grown.

  16. Electrodialytic remediation of CCA-treated waste wood in a 2 m3 pilot plant

    DEFF Research Database (Denmark)

    Christensen, Iben Vernegren; Pedersen, Anne Juul; Ottosen, Lisbeth M.

    2006-01-01

    Waste wood that has been treated with chromated-copper-arsenate (CCA) poses a potential environmental problem due to the content of copper, chromium and arsenic. A pilot plant for electrodialytic remediation of up to 2 m3 wood has been designed and tested and the results are presented here. Sever...

  17. Effect of simulated rainfall and weathering on release of preservative elements from CCA treated wood

    Science.gov (United States)

    Stan Lebow; R. Sam Williams; Patricia Lebow

    2003-01-01

    The release of arsenic from wood pressure-treated with chromated copper arsenate (CCA) can be decreased by application of wood finishes, but little is known about the types of finishes that are best suited for this purpose. This study evaluated the effects of finish water repellent content and ultraviolet (UV) radiation on the release of arsenic, copper, and chromium...

  18. Oxalic acid as an assisting agent for the electrodialytic remediation of chromated copper arsenate treated timber waste

    DEFF Research Database (Denmark)

    Ribeiro, Alexandra B.; Mateus, Eduardo P.; Ottosen, Lisbeth M.

    1999-01-01

    The electrodialytic process is proposed as a technique for the remediation of chromated copper arsenate treated timber waste, using oxalic acid as assisting agent. The method prowed succesfull 93% Cu, 95% Cr and 99% As was removed from the timber.......The electrodialytic process is proposed as a technique for the remediation of chromated copper arsenate treated timber waste, using oxalic acid as assisting agent. The method prowed succesfull 93% Cu, 95% Cr and 99% As was removed from the timber....

  19. Effect of moisture content on strength of CCA-treated lumber

    Science.gov (United States)

    Jerrold E. Winandy

    1995-01-01

    Recent studies on the effects of chromated copper arsenate (CCA) treatment on lumber design properties have primarily evaluated the effects of such treatment at or near 12% moisture content and at failure times of 1 to 10 min. The influence of various moisture contents and faster loading rates is unknown. This report discusses the influence of moisture content and its...

  20. Chemical yields from low-temperature pyrolysis of CCA-treated wood

    Science.gov (United States)

    Qirong Fu; Dimitris Argyropolous; Lucian Lucia; David Tilotta; Stan Lebow

    2009-01-01

    Low-temperature pyrolysis offers a feasible option for wood-waste management and the recovery of a variety of useful chemicals. The effect of chromated copper arsenate (CCA) wood preservative on the yield and composition of various pyrolysis products was investigated in the present research. A novel quantitative 31P nuclear magnetic resonance (...

  1. Online Sorting of Wood Treated with Chromated Copper Arsenate Using Laser Induced Breakdown Spectroscopy

    National Research Council Canada - National Science Library

    Moskal, Thomas

    2001-01-01

    .... While CCA treated wood has several benefits, with perhaps the most important being the saving of an estimated 225 million trees annually due to its longer service life, there are growing concerns...

  2. Soil and sediment concentrations of chromium, copper, and arsenic adjacent to a chromated copper arsenate-treated wetland boardwalk

    Science.gov (United States)

    Stan Lebow; Daniel Foster

    2010-01-01

    Environmental accumulation of preservative adjacent to a chromated copper arsenate (type C)–treated wetland boardwalk was evaluated. The site is considered a realistic ‘‘worst case’’ because of the large volume of treated wood, low current speeds, high annual rainfall, and environmental sensitivity. Soil and sediment samples were collected before construction and 0.5,...

  3. Composition and solubility of precipitated copper(II) arsenates

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Hanna; Shchukarev, Andrey; Sjoeberg, Staffan [Department of Chemistry, Umea University, SE-901 87 Umea (Sweden); Loevgren, Lars, E-mail: lars.lovgren@chem.umu.se [Department of Chemistry, Umea University, SE-901 87 Umea (Sweden)

    2011-05-15

    Research Highlights: > By mixing solutions of Cu{sup 2+} and HAsO{sub 4}{sup 2-} solid phases are formed in a wide pH range. > Five different stoichiometric compositions were found. > Two of the solid phases formed in 0.1 M NaCl contained Na{sup +}. > Stability constants for all solid phases have been determined. > Aqueous complexes containing Cu{sup 2+} and AsO{sub 4}{sup 3-} ions could not be detected. - Abstract: Equilibrium reactions involving Cu(II) and As(V) have been studied with respect to formation of complexes in aqueous solutions as well as formation of solid phases. Potentiometric titrations performed at 25 deg. C (I = 0.1 M Na(Cl)) and at different Cu to As ratios gave no evidence for the existence of Cu(II) arsenate complexes in solution below the pH of the precipitation boundaries (pH {approx} 4), irrespective of the Cu to As ratio and pH. Mixing of solutions of Cu(II) and As(V) at different proportions and adjusting pH to values ranging from 4 to 9 resulted in precipitation of five different solid phases. The elemental composition of the solids was determined using X-ray Photoelectron Spectroscopy, and Environmental Scanning Microscopy-Field Emission Gun equipped with an energy dispersive spectroscopy detector. The average Cu/As ratio was determined by dissolving the solids. Total soluble concentrations of the components Cu(II) and As(V), as well as the basicity of the solid phases were determined by analysis of aqueous solutions. Based upon these experimental data the stoichiometric composition of the solid phases and their stability were determined. The resulting equilibrium model includes the solid phases Cu{sub 3}(AsO{sub 4}){sub 2}, Cu{sub 3}(AsO{sub 4})(OH){sub 3}, Cu{sub 2}(AsO{sub 4})(OH), Cu{sub 5}Na(HAsO{sub 4})(AsO{sub 4}){sub 3} and Cu{sub 5}Na{sub 2}AsO{sub 4}){sub 4}, where Cu{sub 5}Na(HAsO{sub 4})(AsO{sub 4}){sub 3} and Cu{sub 5}Na{sub 2}(AsO{sub 4}){sub 4} have not been reported previously. In 0.1 M Na(Cl), Na{sup +} was found to be

  4. Assessment of the environmental effects associated with wooden bridges preserved with creosote, pentachlorophenol, or chromated copper arsenate

    Science.gov (United States)

    Kenneth M. Brooks

    Timber bridges provide an economical alternative to concrete and steel structures, particularly in rural areas with light to moderate vehicle traffic. Wooden components of these bridges are treated with chromated copper arsenate type C (CCA), pentachlorophenol, or creosote to prolong the life of the structure from a few years to many decades. This results in reduced...

  5. Evolution of copper arsenate resistance for enhanced enargite bioleaching using the extreme thermoacidophile Metallosphaera sedula.

    Science.gov (United States)

    Ai, Chenbing; McCarthy, Samuel; Liang, Yuting; Rudrappa, Deepak; Qiu, Guanzhou; Blum, Paul

    2017-12-01

    Adaptive laboratory evolution (ALE) was employed to isolate arsenate and copper cross-resistant strains, from the copper-resistant M. sedula CuR1. The evolved strains, M. sedula ARS50-1 and M. sedula ARS50-2, contained 12 and 13 additional mutations, respectively, relative to M. sedula CuR1. Bioleaching capacity of a defined consortium (consisting of a naturally occurring strain and a genetically engineered copper sensitive strain) was increased by introduction of M. sedula ARS50-2, with 5.31 and 26.29% more copper recovered from enargite at a pulp density (PD) of 1 and 3% (w/v), respectively. M. sedula ARS50-2 arose as the predominant species and modulated the proportions of the other two strains after it had been introduced. Collectively, the higher Cu 2+ resistance trait of M. sedula ARS50-2 resulted in a modulated microbial community structure, and consolidating enargite bioleaching especially at elevated PD.

  6. Regressional modeling of electrodialytic removal of Cu, Cr and As from CCA treated timber waste

    DEFF Research Database (Denmark)

    Moreira, E.E.; Ribeiro, Alexandra B.; Mateus, Eduardo

    2005-01-01

    ) removal of Cu, Cr and As from CCA treated timber waste. The method uses a low-level direct current as the cleaning agent, combining the electrokinetic movement of ions in the matrix with the principle of electrodialysis. The technique was tested in eight experiments using a laboratory cell on sawdust...

  7. Determination of chromated copper arsenate (CCA) in treated wood of Eucalyptus

    International Nuclear Information System (INIS)

    Parreira, Paulo S.; Vendrametto, Guilherme R.; Cunha, Magda E.T.

    2009-01-01

    This work deals with the possible application of a portable energy dispersive handmade system (PXRF-LFNA-02) for the determination of Chromium, Copper and Arsenic in the preservative solution used to protect commercial wood of Eucalyptus, which are employed as wood fence, posts, contention fences, railroad sleepers, etc. It was prepared five body-of-proof made of eucalyptus alburnum with different concentrations for each element varying from 0.0061 to 0.0180 (g/g) for CrO 3 , 0.0024 to 0.0070 (g/g) for CuO and 0.0044 to 0.0129 (g/g) for As 2 O 5 . Four of them were used for calibration curves and one used as reference sample. It was used a commercial CCA (Chromated Copper Arsenate ) solution to prepare the samples. The results show a good linear regression between concentrations and X-rays intensities, after applied the multiple linear regression methodology for interelemental corrections. The values obtained with this methodology were 3.01(kg/m 3 ), 1.18 (kg/m 3 ) e 2.21 (kg/m 3 ) for CrO 3 , CuO and As 2 O 5 , respectively, while the nominal values are 2.90 (kg/m 3 ) for CrO 3 , 1.13 (kg/m 3 ) for CuO and 2.07 (kg/m 3 ) for As 2 O 5 . The ED-XRF (Energy Dispersive X-Rays Fluorescence) is a well established technique with high-speed of analytical procedure and its portable configuration allowing a multielemental, simultaneous and non destructive analyses besides in situ application. (author)

  8. Determination of chromated copper arsenate (CCA) in treated wood of Eucalyptus

    Energy Technology Data Exchange (ETDEWEB)

    Parreira, Paulo S., E-mail: parreira@uel.b [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica. Lab.de Fisica Nuclear Aplicada; Vendrametto, Guilherme R.; Cunha, Magda E.T., E-mail: grvendrametto@gmail.co [Universidade Norte do Parana, Arapongas, PR (Brazil). Centro de Ciencias Humanas, da Saude, Exatas e Tecnologicas-A

    2009-07-01

    This work deals with the possible application of a portable energy dispersive handmade system (PXRF-LFNA-02) for the determination of Chromium, Copper and Arsenic in the preservative solution used to protect commercial wood of Eucalyptus, which are employed as wood fence, posts, contention fences, railroad sleepers, etc. It was prepared five body-of-proof made of eucalyptus alburnum with different concentrations for each element varying from 0.0061 to 0.0180 (g/g) for CrO{sub 3}, 0.0024 to 0.0070 (g/g) for CuO and 0.0044 to 0.0129 (g/g) for As{sub 2}O{sub 5}. Four of them were used for calibration curves and one used as reference sample. It was used a commercial CCA (Chromated Copper Arsenate ) solution to prepare the samples. The results show a good linear regression between concentrations and X-rays intensities, after applied the multiple linear regression methodology for interelemental corrections. The values obtained with this methodology were 3.01(kg/m{sup 3}), 1.18 (kg/m{sup 3}) e 2.21 (kg/m{sup 3}) for CrO{sub 3}, CuO and As{sub 2}O{sub 5}, respectively, while the nominal values are 2.90 (kg/m{sup 3}) for CrO{sub 3}, 1.13 (kg/m{sup 3}) for CuO and 2.07 (kg/m{sup 3}) for As{sub 2}O{sub 5}. The ED-XRF (Energy Dispersive X-Rays Fluorescence) is a well established technique with high-speed of analytical procedure and its portable configuration allowing a multielemental, simultaneous and non destructive analyses besides in situ application. (author)

  9. Chemical-specific health consultation for chromated copper arsenate chemical mixture: port of Djibouti.

    Science.gov (United States)

    Chou, Selene; Colman, Joan; Tylenda, Carolyn; De Rosa, Christopher

    2007-05-01

    The Agency for Toxic Substances and Disease Registry (ATSDR) prepared this health consultation to provide support for assessing the public health implications of hazardous chemical exposure, primarily through drinking water, related to releases of chromated copper arsenate (CCA) in the port of Djibouti. CCA from a shipment, apparently intended for treating electric poles, is leaking into the soil in the port area. CCA is a pesticide used to protect wood against decay-causing organisms. This mixture commonly contains chromium(VI) (hexavalent chromium) as chromic acid, arsenic(V) (pentavalent arsenic) as arsenic pentoxide and copper (II) (divalent copper) as cupric oxide, often in an aqueous solution or concentrate. Experimental studies of the fate of CCA in soil and monitoring studies of wood-preserving sites where CCA was spilled on the soil indicate that the chromium(VI), arsenic and copper components of CCA can leach from soil into groundwater and surface water. In addition, at CCA wood-preserving sites, substantial concentrations of chromium(VI), arsenic and copper remained in the soil and were leachable into water four years after the use of CCA was discontinued, suggesting prolonged persistence in soil, with continued potential for leaching. The degree of leaching depended on soil composition and the extent of soil contamination with CCA. In general, leaching was highest for chromium(VI), intermediate for arsenic and lowest for copper. Thus, the potential for contamination of sources of drinking water exists. Although arsenic that is leached from CCA-contaminated soil into surface water may accumulate in the tissues of fish and shellfish, most of the arsenic in these animals will be in a form (often called fish arsenic) that is less harmful. Copper, which leaches less readily than the other components, can accumulate in tissues of mussels and oysters. Chromium is not likely to accumulate in the tissues of fish and shellfish. Limited studies of air

  10. Towards a selective adsorbent for arsenate and selenite in the presence of phosphate: Assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex.

    Science.gov (United States)

    Yamani, Jamila S; Lounsbury, Amanda W; Zimmerman, Julie B

    2016-01-01

    The potential for a chitosan-copper polymer complex to select for the target contaminants in the presence of their respective competitive ions was evaluated by synthesizing chitosan-copper beads (CCB) for the treatment of (arsenate:phosphate), (selenite:phosphate), and (selenate:sulfate). Based on work by Rhazi et al., copper (II) binds to the amine moiety on the chitosan backbone as a monodentate complex (Type I) and as a bidentate complex crosslinking two polymer chains (Type II), depending on pH and copper loading. In general, the Type I complex exists alone; however, beyond threshold conditions of pH 5.5 during synthesis and a copper loading of 0.25 mol Cu(II)/mol chitosan monomer, the Type I and Type II complexes coexist. Subsequent chelation of this chitosan-copper ligand to oxyanions results in enhanced and selective adsorption of the target contaminants in complex matrices with high background ion concentrations. With differing affinities for arsenate, selenite, and phosphate, the Type I complex favors phosphate chelation while the Type II complex favors arsenate chelation due to electrostatic considerations and selenite chelation due to steric effects. No trend was exhibited for the selenate:sulfate system possibly due to the high Ksp of the corresponding copper salts. Binary separation factors, α12, were calculated for the arsenate-phosphate and selenite-phosphate systems, supporting the mechanistic hypothesis. While, further research is needed to develop a synthesis method for the independent formation of the Type II complexes to select for target contaminants in complex matrices, this work can provide initial steps in the development of a selective adsorbent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A comparative study on Cu, Cr and As removal from CCA-treated wood waste by dialytic and electrodialytic processes

    DEFF Research Database (Denmark)

    Velizarova, Emiliya; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2002-01-01

    In this study, electrodialytic and dialytic techniques were used for Cu, Cr and As removal from 20-years out-of-service CCA-treated Pinus pinaster Ait. pole. The effect of applying direct current, as "cleaning agent", of up to 120mA was investigated. Focus was given to a parallel comparison...

  12. A PROBABILISTIC EXPOSURE ASSESSMENT FOR CHILDREN WHO CONTACT CCA-TREATED PLAYSETS AND DECKS USING THE STOCHASTIC HUMAN EXPOSURE AND DOSE SIMULATION (SHEDS) MODEL FOR THE WOOD PRESERVATIVE EXPOSURE SCENARIO

    Science.gov (United States)

    The U.S. Environmental Protection Agency has conducted a probabilistic exposure and dose assessment on the arsenic (As) and chromium (Cr) components of Chromated Copper Arsenate (CCA) using the Stochastic Human Exposure and Dose Simulation model for wood preservatives (SHEDS-Wood...

  13. Development of laboratory experiments serving as a basis for modeling the transport behaviour of arsenate, lead, cadmium and copper in water-saturated columns

    International Nuclear Information System (INIS)

    Hamer, K.

    1993-01-01

    The aim of the study was to work out laboratory experiments which might serve as a link between the bench and the application of CoTAM (Column Transport and Absorption Model) in real practice, thus thanking the development of this computer model which is to permit the simulation of the transport behaviour of heavy metals in porous aquilers. Efforts were made to find a process-oriented concept so as to provide a wide field of application. In developing the model and the laboratory experiments, this meant studying all the processes in groundwater separately as far as possible and avoiding case-specific sum parameters. The work centered on an examination of sorption processes during transport in groundwater, as this combination of processes is always found in natural porous aquifers. In water-saturated-column experiments on combinations of arenaceous quartz, feldspar, montmorillonite, goethite, peat and manganese oxide as the aquifer material, the transport of cadmium, copper, lead and arsenate was simulated on the bench scale. These case examples served to study sorption processes and their diverse kinetics as well as hydrodynamic processes. (orig./BBR) [de

  14. Classification of waste wood treated with chromated copper arsenate and boron/fluorine preservatives; Classificacao de residuos de madeira tratada com preservativos a base de arseniato de cobre cromatado e de boro/fluor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrarini, Suzana Frighetto; Santos, Heldiane Souza dos; Miranda, Luciana Gampert; Azevedo, Carla M.N.; Pires, Marcal J.R., E-mail: suzana.ferrarini@gmail.com [Faculdade de Quimica, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Maia, Sandra Maria [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2012-07-01

    Classification of waste wood treated with chromated copper arsenate (CCA) and boron/fluorine preservatives, according to NBR 10004, was investigated. The leaching test (ABNT NBR 10005) for As and Cr, and solubilization test (ABNT NBR 10006) for F, were applied to out-of-service wooden poles. Concentrations of As and Cr in leachates were determined by ICP-MS and of F by ESI. Values for As were higher than 1 mg L{sup -1} classifying the waste as hazardous material (Class I) whereas values for F (> 1.5 mg L{sup -1}) were non-hazardous but indicated non-inert material (Class IIA). (author)

  15. "Artifactual" arsenate DNA

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2012-01-01

    The recent claim by Wolfe-Simon et al. that the Halomonas bacterial strain GFAJ-1 when grown in arsenate-containing medium with limiting phosphate is able to substitute phosphate with arsenate in biomolecules including nucleic acids and in particular DNA(1) arose much skepticism, primarily due...... to the very limited chemical stability of arsenate esters (see ref. 2 and references therein). A major part of the criticisms was concerned with the insufficient (bio)chemical evidence in the Wolfe-Simon study for the actual chemical incorporation of arsenate in DNA (and/or RNA). Redfield et al. now present...... evidence that the identification of arsenate DNA was artifactual....

  16. FIELD-SCALE LEACHING OF ARSENIC, CHROMIUM AND COPPER FROM WEATHERED TREATED WOOD

    Science.gov (United States)

    Hasan, A. Rasem; Hu, Ligang; Solo-Gabriele, Helena M.; Fieber, Lynne; Cai, Yong; Townsend, Timothy G.

    2010-01-01

    Earlier studies documented the loss of wood preservatives from new wood. The objective of this study was to evaluate losses from weathered treated wood under field conditions by collecting rainfall leachate from 5 different wood types, all with a surface area of 0.21 m2. Wood samples included weathered chromate copper arsenate (CCA) treated wood at low (2.7 kg/m3), medium (4.8 kg/m3) and high (35.4 kg/m3) retention levels, new alkaline copper quat (ACQ) treated wood (1.1 kg/m3 as CuO) and new untreated wood. Arsenic was found to leach at a higher rate (100 mg in 1 year for low retention) than chromium and copper (leached at the highest rate from the ACQ sample (670 mg). Overall results suggest that metals’ leaching is a continuous process driven by rainfall, and that the mechanism of release from the wood matrix changes as wood weathers. PMID:20053493

  17. Natural Arsenate DNA?

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2011-01-01

    The recent paper by Wolfe-Simon et al.1 reporting a bacterial strain, which is able to grow in high concentrations of arsenate, apparently in the absence of phosphate, and claims that in this strain arsenate is substituting for phosphate, e.g. in nucleic acids (Figure 1), was highly profiled, att...

  18. STOCHASTIC HUMAN EXPOSURE AND DOSE SIMULATION MODEL FOR THE WOOD PRESERVATIVE SCENARIO (SHEDS-WOOD), VERSION 2 MODEL SAS CODE

    Science.gov (United States)

    Concerns have been raised regarding the safety of young children contacting arsenic and chromium residues while playing on and around Chromated Copper Arsenate (CCA) treated wood playground structures and decks. Although CCA registrants voluntarily canceled treated wood for resi...

  19. Structural, optical, and redox properties of lamellar solids derived from copper(I) complexes and n-butylammonium uranyl phosphate and arsenate

    International Nuclear Information System (INIS)

    Jacob, A.T.; Ellis, A.B.

    1989-01-01

    A family of hydrated, layered solids has been prepared from intercalative ion-exchange reactions of n-butylammonium uranyl phosphate (BAUP) or arsenate (BAUAs), (n-C 4 H 9 NH 3 )UO 2 EO 4 ·3H 2 O (E = P, As), with Cu(LL) 2 + complexes (LL is dmp = 2,9-dimethyl-1,10-phenanthroline or bcp = 2,9-dimethyl-4,7-dipheyl-1,10-phenanthroline). The products obtained were analyzed as having compositions [Cu(LL) 2 ] x [BA] 1-x UO 2 EO 4 ·2H 2 O with x ∼ 0.2. X-ray powder diffraction data reveal that the compounds are single phases that can be indexed on the basis of a tetragonal unit cell. The solids exhibit absorption and photoluminescence (PL) properties characteristic of the Cu(LL) 2 + species; the Cu(I) complexes completely quench the uranyl PL. Once intercalated, the Cu(I) complexes can be oxidized by using Br 2 vapor and rereduced either by photochemical means or by N 2 H 4 vapor, as shown by changes in electronic and EPR spectra. 37 refs., 7 figs., 2 tabs

  20. Equilibriums of sorption of impurities of 3 d - cations by inorganic sorbents from phosphate and arsenate solutions

    International Nuclear Information System (INIS)

    Filatova, L.N.; Kurdyumova, T.N.; Bagrov, V.M.; Blyum, G.Z.

    1986-01-01

    Present article is devoted to equilibriums of sorption of impurities of 3 d - cations by inorganic sorbents from phosphate and arsenate solutions. Equilibriums of sorption of microquantities of iron, scandium, zink, copper, cobalt and manganese by inorganic sorbents on the basis of titanium and aluminium oxides from phosphate and arsenate solutions are studied. The influence of structural and chemical properties of matrix on sorption properties of oxides in phosphate and arsenate solutions is studied as well. It is defined that in concentrated solutions the sorption value of trace contaminant depends on a character of cation of alkaline metal.

  1. Embryotoxicity of arsenite and arsenate

    International Nuclear Information System (INIS)

    Lindgren, A.; Danielsson, R.G.; Dencker, L.; Vahter, M.

    1984-01-01

    The distribution of 74 As-labelled and arsenite in pregnant mice and a monkey has been studied by autoradiography and gamma counting of isolated tissues, and their in vitro toxicity to a chondrogenic system has been investigated. With both arsenic forms, given as single intravenous injections to the mother, the 74 As-arsenic appeared to pass the mouse placenta relatively freely and approximately to the same extent. The retention time in material tissues including the placenta was, however, around three times longer with arsenite than with arsenate. In early gestation, high activity was registered in the embryonic neuroepithelium, which correlates well with reported CNS malformations in rodents. In late gestation, the distribution pattern was more like that in the adults. Accumulation in skin and squamous epithelia of the upper gastrointestinal tract (oral cavity, oesophagus and oesophageal region of stomach) dominated the distribution pucture, especially at a long survival interval. Arsenate, but not arsenite, showed affinity for the calcified areas of the skeleton. A marmoset monkey in late gestation receiving arsenite showed a somewhat lower rate of placental transfer than the mice. Skin and liver had the highest concentrations (at 8 hrs), both in mother and foetuses. This species is known not to methylate arsenic, resulting in stronger binding and longer retention times of arsenic as compared with other species. The stronger binding in maternal tissues may possibly explain the lower rate of placental transfer. Arsenite was shown to inhibit cartilage formation in a chick limb bud mesenchymal spot culture system (ED50 approximately 5-10μM) while arsenate seemed to be without effect at concentrations up to 200 μM (highest tested). Arsenate, however, showed a potential of the arsenite toxicity. (author)

  2. Arsenate uncoupling of oxidative phosphorylation in isolated plant mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Wickes, W A; Wiskich, J T

    1976-01-01

    The uncoupling by arsenate of beetroot and cauliflower bud mitochondria showed the following characteristics: arsenate stimulation of respiration above the rate found with phosphate; inhibition of arsenate-stimulated respiration by phosphate; enhancement of arsenate-stimulated respiration by ADP; only partial prevention of this ADP-enhanced respiration by atractyloside; inhibition by oligomycin of the arsenate-stimulated respiration back to the phosphate rate; and the absence of any stimulatory effect of ADP in the presence of oligomycin. These results are qualitatively analogous to those reported for arsenate uncoupling in rat liver mitochondria. Arsenate stimulated malate oxidation, presumably by stimulating malate entry, in both beetroot and cauliflower bud mitochondria; however, high rates of oxidation, and presumably entry, were only sustained with arsenate in beetroot mitochondria. NADH was oxidized rapidly in cauliflower bud mitochondria in the presence of arsenate, showing that arsenate did not inhibit electron transfer processes.

  3. Enhanced Tools and Techniques to Support Debris Management in Disaster Response Missions (Flood and Coastal Storm Damage Reduction Research and Development Program)

    Science.gov (United States)

    2009-05-01

    used for advertising , publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the...Acronyms ATSDR Agency for Toxic Substances and Disease Registry CAR Clean Air Report CCA Chromated copper arsenate treated wood CDC Center for...2005): 1. Vegetative materials 2. Clean lumber 3. Inert materials 4. Building materials 5. Chromate copper arsenate (CCA)-treated wood 6

  4. Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization.

    Science.gov (United States)

    Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska

    2014-01-01

    The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  5. Dissolution of Arsenic Minerals Mediated by Dissimilatory Arsenate Reducing Bacteria: Estimation of the Physiological Potential for Arsenic Mobilization

    Directory of Open Access Journals (Sweden)

    Drewniak Lukasz

    2014-01-01

    Full Text Available The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i produced siderophores that promote dissolution of minerals, (ii were resistant to dissolved arsenic compounds, (iii were able to use the dissolved arsenates as the terminal electron acceptor, and (iii were able to use copper minerals containing arsenic minerals (e.g., enargite as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  6. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    Barten, H.

    1986-11-01

    The results are described of a study of the thermochemical stability of anhydrous uranyl phosphates and arsenates. A number of aspects of chemical technological importance are indicated in detail. The synthesized anhydrous uranyl phosphates and arsenates were very hygroscopic, so that experiments on these compounds had to be carried out under moisture-free conditions. Further characterisation of these compounds are given, including a study of their thermal stabilities and phase relations. The uranyl phosphates reduced reversibly at temperatures of the order of 1100 to 1600 0 C. This makes it possible to express their relative stabilities quantitatively, in terms of the oxygen pressures of the reduction reactions. The thermal decomposition of uranyl arsenates did not occur by reduction, as for the phosphates, but by giving off arsenic oxide vapour. The results of measurements of enthalpies of solution led to the determination of the enthalpies of formation, heat capacity and the standard entropies of the uranyl arsenates. The thermochemical functions at high-temperatures could consequently be calculated. Attention is paid to the possible formation of uranium arsenates, whose uranium has a valency lower than six, hitherto not reported in literature. It was not possible to prepare arsenates of tetravalent uranium. However, three new compounds were observed, one of these, UAsO 5 , was studied in some detail. (Auth.)

  7. Arsenate and chromate incorporation in schwertmannite

    International Nuclear Information System (INIS)

    Regenspurg, Simona; Peiffer, Stefan

    2005-01-01

    High concentrations of Cr (up to 812 ppm) and As (up to 6740 ppm) were detected in precipitates of the mineral schwertmannite in areas influenced by acid mine drainage. Schwertmannite may act as well as a natural filter for these elements in water as well as their source by releasing the previously bound elements during its dissolution or mineral-transformation. The mechanisms of uptake and potential release for the species arsenate and chromate were investigated by performing synthesis and stability experiments with schwertmannite. Schwertmannite, synthesized in solutions containing arsenate in addition to sulphate, was enriched by up to 10.3 wt% arsenate without detectable structural changes as demonstrated by powder X-ray diffraction (XRD). In contrast to arsenate, a total substitution of sulphate by chromate was possible in sulphate-free solutions. Thereby, the chromate content in schwertmannite could reach 15.3 wt%. To determine the release of oxyanions from schwertmannite over time, synthetic schwertmannite samples containing varying amounts of sulphate, chromate and arsenate were kept at a stable pH of either 2 or 4 over 1 year in suspension. At several time intervals Fe and the oxyanions were measured in solution and alterations of the solid part were observed by XRD and Fourier-Transform infrared (FT-IR) spectroscopy. At pH 2 schwertmannite partly dissolved and the total release of arsenate (24%) was low in contrast to chromate (35.4-57.5%) and sulphate (67-76%). Accordingly, the ionic activity product (log IAP) of arsenated schwertmannite was lowest (13.5), followed by the log IAP for chromated schwertmannite (16.2-18.5) and the log IAP for regular (=non-substituted) schwertmannite (18). At pH 4 schwertmannite transformed to goethite, an effect which occurred at the fastest rate for regular schwertmannite (=arsenate- and chromate-free), followed by chromate and arsenate containing schwertmannite. Both chromate and more evidently arsenate have a

  8. Respiratory arsenate reductase as a bidirectional enzyme

    Science.gov (United States)

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  9. Response to arsenate treatment in Schizosaccharomyces pombe and the role of its arsenate reductase activity.

    Directory of Open Access Journals (Sweden)

    Alejandro Salgado

    Full Text Available Arsenic toxicity has been studied for a long time due to its effects in humans. Although epidemiological studies have demonstrated multiple effects in human physiology, there are many open questions about the cellular targets and the mechanisms of response to arsenic. Using the fission yeast Schizosaccharomyces pombe as model system, we have been able to demonstrate a strong activation of the MAPK Spc1/Sty1 in response to arsenate. This activation is dependent on Wis1 activation and Pyp2 phosphatase inactivation. Using arsenic speciation analysis we have also demonstrated the previously unknown capacity of S. pombe cells to reduce As (V to As (III. Genetic analysis of several fission yeast mutants point towards the cell cycle phosphatase Cdc25 as a possible candidate to carry out this arsenate reductase activity. We propose that arsenate reduction and intracellular accumulation of arsenite are the key mechanisms of arsenate tolerance in fission yeast.

  10. In vitro bioaccessibility of copper azole following simulated dermal transfer from pressure-treated wood

    Science.gov (United States)

    Micronized copper azole (MCA) and micronized copper quaternary are the latest wood preservatives to replace the liquid lkaline copper and chromated copper arsenate preservatives due to concerns over the toxicity or lack of effectiveness of the earlier formulations. Today, the use...

  11. Performance of copper-based wood preservatives in soil bed exposures

    Science.gov (United States)

    Stan T. Lebow; Thomas Nilsson; Jeffrey J. Morrell

    Copper-based biocides are widely used to protect wood from biological attack in a variety of environments. Chromated copper arsenate (CCA) is the dominant copper-based preservative for wood protection (J. T. MICKLEWRIGHT, 1989). First developed in India in the 1930s, CCA contains a very effective combination of materials. Copper provides protection against most...

  12. Factors affecting sodium hypochlorite extraction of CCA from treated wood.

    Science.gov (United States)

    Gezer, E D; Cooper, P A

    2009-12-01

    Significant amounts of chromated copper arsenate (CCA) treated wood products, such as utility poles and residential construction wood, remain in service. There is increasing public concern about environmental contamination from CCA-treated wood when it is removed from service for reuse or recycling, placed in landfills or burned in commercial incinerators. In this paper, we investigated the effects of time, temperature and sodium hypochlorite concentration on chromium oxidation and extraction of chromated copper arsenate from CCA-treated wood (Type C) removed from service. Of the conditions evaluated, reaction of milled wood with sodium hypochlorite for one hour at room temperature followed by heating at 75 degrees C for two hours gave the highest extraction efficiency. An average of 95% Cr, 99% Cu and 96% As could be removed from CCA-treated, milled wood by this process. Most of the extracted chromium was oxidized to the hexavalent state and could therefore be recycled in a CCA treating solution. Sodium hypochlorite extracting solutions could be reused several times to extract CCA components from additional treated wood samples.

  13. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    Barten, H.

    1986-01-01

    Results are described of a study of the thermochemical stability of anhydrous phosphates and arsenates. The results of phase studies deal with compound formation and characterization, coexisting phases and limiting physical or chemical properties. The uranyl phosphates evolve oxygen at higher temperatures and the arsenates lose arsenic oxide vapour. These phenomena give the possibility to describe their thermodynamic stabilities. Thus oxygen pressures of uranyl phosphates have been measured using a static, non-isothermal method. Having made available the pure anhydrous compounds in the course of this investigation, molar thermodynamic quantities have been measured as well. These include standard enthalpies of formation from solution calorimetry and high-temperature heat-capacity functions derived from enthalpy increments measured. Some attention is given to compounds with uranium in valencies lower than six which have been met during the investigation. An evaluation is made of the thermodynamics of the compounds studied, to result in tabulized high-temperature thermodynamic functions. Relative stabilities within the systems are discussed and comparisons of the uranyl phosphates and the arsenates are made. (Auth.)

  14. Removal of arsenate from groundwater by electrocoagulation method.

    Science.gov (United States)

    Ali, Imran; Khan, Tabrez A; Asim, Mohd

    2012-06-01

    Arsenic, a toxic metalloid in drinking water, has become a major threat for human beings and other organisms. In the present work, attempts have been made to remove arsenate from the synthetic as well as natural water of Ballia district, India by electrocoagulation method. Efforts have also been made to optimize the various parameters such as initial arsenate concentration, pH, applied voltage, processing time, and working temperature. Electrocoagulation is a fast, inexpensive, selective, accurate, reproducible, and eco-friendly method for arsenate removal from groundwater. The present paper describes an electrocoagulation method for arsenate removal from groundwater using iron and zinc as anode and cathode, respectively. The maximum removal of arsenate was 98.8% at 2.0 mg L(-1), 7.0, 3.0 V, 10.0 min, and 30°C as arsenate concentration, pH, applied voltage, processing time, and working temperature, respectively. Relative standard deviation, coefficient of determination (r (2)), and confidence limits were varied from 1.50% to 1.59%, 0.9996% to 0.9998%, and 96.0% to 99.0%, respectively. The treated water was clear, colorless, and odorless without any secondary contamination. The developed and validated method was applied for arsenate removal of two samples of groundwater of Ballia district, U.P., India, having 0.563 to 0.805 mg L(-1), arsenate concentrations. The reported method is capable for the removal of arsenate completely (100% removal) from groundwater of Ballia district. There was no change in the groundwater quality after the removal of arsenate. The treated water was safe for drinking, bathing, and recreation purposes. Therefore, this method may be the choice of arsenate removal from natural groundwater.

  15. Effect of co-existing copper and calcium on the removal of As(V) by reused aluminum oxides.

    Science.gov (United States)

    Yang, J K; Park, Y J; Kim, K H; Lee, H Y; Min, K C; Lee, S M

    2013-01-01

    Among the various heavy metals, arsenic is frequently found in abandoned mine drainage and the environmental fate of arsenic in real aqueous solutions can be highly dependent on the presence of co-existing ions. In this study, removal of arsenate through adsorption on the reused aluminum oxide or through precipitation was investigated in a single and in a binary system as a function of pH and concentration. Different removal behaviors of arsenate were observed in the presence of different cations as well as a variation of the molar ratios of arsenate to cations. Co-operative effects on arsenate removal by precipitation in solution occurred with an increase of copper concentration, while a decrease of arsenate removal resulted in increasing calcium concentration. It was observed that the arsenate removal in the presence of calcium would be highly dependent on the molar ratios of both elements.

  16. Respiration of arsenate and selenate by hyperthermophilic archaea.

    Science.gov (United States)

    Huber, R; Sacher, M; Vollmann, A; Huber, H; Rose, D

    2000-10-01

    A novel, strictly anaerobic, hyperthermophilic, facultative organotrophic archaeon was isolated from a hot spring at Pisciarelli Solfatara, Naples, Italy. The rod-shaped cells grew chemolithoautotrophically with carbon dioxide as carbon source, hydrogen as electron donor and arsenate, thiosulfate or elemental sulfur as electron acceptor. H2S was formed from sulfur or thiosulfate, arsenite from arsenate. Organotrophically, the new isolate grew optimally in the presence of an inorganic electron acceptor like sulfur, selenate or arsenate. Cultures, grown on arsenate and thiosulfate or arsenate and L-cysteine, precipitated realgar (As2S2). During growth on selenate, elemental selenium was produced. The G+C content of the DNA was 58.3 mol%. Due to 16S rRNA gene sequence analysis combined with physiological and morphological criteria, the new isolate belongs to the Thermoproteales order. It represents a new species within the genus Pyrobaculum, the type species of which we name Pyrobaculum arsenaticum (type strain PZ6*, DSM 13514, ATCC 700994). Comparative studies with different Pyrobaculum-species showed, that Pyrobaculum aerophilum was also able to grow organotrophically under anaerobic culture conditions in the presence of arsenate, selenate and selenite. During growth on selenite, elemental selenium was formed as final product. In contrast to P. arsenaticum, P. aerophilum could use selenate or arsenate for lithoautotrophic growth with carbon dioxide and hydrogen.

  17. Pilot-scale investigation of the robustness and efficiency of a copper-based treated wood wastes recycling process

    Energy Technology Data Exchange (ETDEWEB)

    Coudert, Lucie [INRS-ETE (Canada); Blais, Jean-François, E-mail: blaisjf@ete.inrs.ca [INRS-ETE (Canada); Mercier, Guy [INRS-ETE (Canada); Cooper, Paul [University of Toronto (Canada); Gastonguay, Louis [IREQ (Canada); Morris, Paul [FPInnovations (Canada); Janin, Amélie; Reynier, Nicolas [INRS-ETE (Canada)

    2013-10-15

    Highlights: • A leaching process was studied for metals removal from CCA-treated wood wastes. • This decontamination process was studied at pilot scale (130-L reactor). • Removals up to 98% of As, 88% of Cr, and 96% of Cu were obtained from wood wastes. • The produced leachates can be treated by chemical precipitation. -- Abstract: The disposal of metal-bearing treated wood wastes is becoming an environmental challenge. An efficient recycling process based on sulfuric acid leaching has been developed to remove metals from copper-based treated wood chips (0 < x < 12 mm). The present study explored the performance and the robustness of this technology in removing metals from copper-based treated wood wastes at a pilot plant scale (130-L reactor tank). After 3× 2 h leaching steps followed by 3× 7 min rinsing steps, up to 97.5% of As, 87.9% of Cr, and 96.1% of Cu were removed from CCA-treated wood wastes with different initial metal loading (>7.3 kg m{sup −3}) and more than 94.5% of Cu was removed from ACQ-, CA- and MCQ-treated wood. The treatment of effluents by precipitation–coagulation was highly efficient; allowing removals more than 93% for the As, Cr, and Cu contained in the effluent. The economic analysis included operating costs, indirect costs and revenues related to remediated wood sales. The economic analysis concluded that CCA-treated wood wastes remediation can lead to a benefit of 53.7 US$ t{sup −1} or a cost of 35.5 US$ t{sup −1} and that ACQ-, CA- and MCQ-treated wood wastes recycling led to benefits ranging from 9.3 to 21.2 US$ t{sup −1}.

  18. Sorptive removal of arsenate using termite mound.

    Science.gov (United States)

    Fufa, Fekadu; Alemayehu, Esayas; Lennartz, Bernd

    2014-01-01

    Long-term consumption of arsenic results in severe and permanent health damages. The aim of the study was to investigate arsenate (As(V)) sorption capacity of termite mound (TM), containing mainly silicon, aluminum, iron and titanium oxides, under batch adsorption setup. The pattern of As(V) removal with varying contact time, solution pH, adsorbent dose, As(V) concentration and competing anions was investigated. Dissolution of the adsorbent was insignificant under the equilibrium conditions. Equilibrium was achieved within 40 min of agitation time. Kinetic data of As(V) adsorption followed well the pseudo-second order equation (R(2) > 0.99). High As(V) removal efficiency (∼ 99%) was observed over a pH range ∼ 3-∼ 10, which is of great importance in the practical application. The Freundlich and Dubinin-Radushkevich isotherms well described (R(2) > 0.99, χ(2) ∼ 0.05) the equilibrium As(V) adsorption, giving a coefficient of adsorption 1.48 mg(1-1/n)L(1/n)/g and a saturation capacity 13.50 mg/g respectively. The obtained value of mean sorption energy (EDR = 13.32 kJ/mol) suggested the chemisorption mechanism of As(V) adsorption on TM. The removal of As(V) was significantly decreased in the presence of phosphate ions. The As(V) loaded adsorbent was successfully regenerated using NaOH solution with insignificant loss of metals. Therefore, the results of the study demonstrated that TM could be considered as a promising adsorbent for the treatment of As(V) in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Studies on the lanthanum arsenate ion-exchanger: preparation, physicochemical properties and applications

    International Nuclear Information System (INIS)

    Mukherjee, A.K.; Mandal, S.K.

    1984-01-01

    The cation-exchange behaviour of lanthanum arsenate has been studied. This paper reports the preparation and physicochemical properties of the exchanger. Its analytical utility is compared with that of other arsenate exchangers. Some practical analytical applications are described. (author)

  20. Crystal structure and vibrational spectra of melaminium arsenate

    Science.gov (United States)

    Anbalagan, G.; Marchewka, M. K.; Pawlus, K.; Kanagathara, N.

    2015-01-01

    The crystals of the new melaminium arsenate (MAS) [C3H7N6+ṡH2AsO4-] were obtained by the slow evaporation of an aqueous solution at room temperature. Single crystal X-ray diffraction analysis reveals that the crystal belongs to triclinic system with centro symmetric space group P-1. The crystals are built up from single protonated melaminium residues and single dissociated arsenate H2AsO4- anions. The protonated melaminium ring is almost planar. A combination of ionic and donor-acceptor hydrogen-bond interactions linking together the melaminium and arsenate residues forms a three-dimensional network. Vibrational spectroscopic analysis is reported on the basis of FT-IR and FT-Raman spectra recorded at room temperature. Hydrogen bonded network present in the crystal gives notable vibrational effect. DSC has also been performed for the crystal shows no phase transition in the studied temperature range (113-293 K).

  1. Absorption and translocation of arsenate arsenic by coffee plants

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, J F; Yamaguchi, S

    1964-01-01

    Studies on arsenate arsenic absorption and translocation in coffee plants were carried out using arsenic-77 applied either to leaves or to roots through the nutrient solution. The youngest leaves were unable to export arsenic and only an acropetal movement in the transpiration stream was observed. From the second pair of leaves, it moved into the growing leaves. From the fourth pair it moved downward through the stem and into the roots. Roots absorbed high amounts of arsenate once absorbed it moved via the xylem of the transpiration stream into the leaves. 7 references, 2 figures.

  2. Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis.

    Science.gov (United States)

    Norton, Gareth J; Lou-Hing, Daniel E; Meharg, Andrew A; Price, Adam H

    2008-01-01

    Rice (Oryza sativa) varieties that are arsenate-tolerant (Bala) and -sensitive (Azucena) were used to conduct a transcriptome analysis of the response of rice seedlings to sodium arsenate (AsV) in hydroponic solution. RNA extracted from the roots of three replicate experiments of plants grown for 1 week in phosphate-free nutrient with or without 13.3 muM AsV was used to challenge the Affymetrix (52K) GeneChip Rice Genome array. A total of 576 probe sets were significantly up-regulated at least 2-fold in both varieties, whereas 622 were down-regulated. Ontological classification is presented. As expected, a large number of transcription factors, stress proteins, and transporters demonstrated differential expression. Striking is the lack of response of classic oxidative stress-responsive genes or phytochelatin synthases/synthatases. However, the large number of responses from genes involved in glutathione synthesis, metabolism, and transport suggests that glutathione conjugation and arsenate methylation may be important biochemical responses to arsenate challenge. In this report, no attempt is made to dissect differences in the response of the tolerant and sensitive variety, but analysis in a companion article will link gene expression to the known tolerance loci available in the BalaxAzucena mapping population.

  3. Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis

    Science.gov (United States)

    Norton, Gareth J.; Lou-Hing, Daniel E.; Meharg, Andrew A.; Price, Adam H.

    2008-01-01

    Rice (Oryza sativa) varieties that are arsenate-tolerant (Bala) and -sensitive (Azucena) were used to conduct a transcriptome analysis of the response of rice seedlings to sodium arsenate (AsV) in hydroponic solution. RNA extracted from the roots of three replicate experiments of plants grown for 1 week in phosphate-free nutrient with or without 13.3 μM AsV was used to challenge the Affymetrix (52K) GeneChip Rice Genome array. A total of 576 probe sets were significantly up-regulated at least 2-fold in both varieties, whereas 622 were down-regulated. Ontological classification is presented. As expected, a large number of transcription factors, stress proteins, and transporters demonstrated differential expression. Striking is the lack of response of classic oxidative stress-responsive genes or phytochelatin synthases/synthatases. However, the large number of responses from genes involved in glutathione synthesis, metabolism, and transport suggests that glutathione conjugation and arsenate methylation may be important biochemical responses to arsenate challenge. In this report, no attempt is made to dissect differences in the response of the tolerant and sensitive variety, but analysis in a companion article will link gene expression to the known tolerance loci available in the Bala×Azucena mapping population. PMID:18453530

  4. Sorption and desorption of arsenate and arsenite on calcite

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Diederik Jan; Jakobsen, Rasmus

    2008-01-01

    The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic...

  5. Soil organic matter reduces the sorption of arsenate and phosphate

    NARCIS (Netherlands)

    Verbeeck, M.; Hiemstra, T.; Thiry, Y.; Smolders, E.

    2017-01-01

    The arsenate (AsO4) and phosphate (PO4) mobility in aerobic soil is affected by soil organic matter (OM). This study was set up to quantify the interaction between OM and AsO4 with an observational, experimental and computational approach. The adsorption of

  6. X-ray graphical and thermodynamical study of mercury arsenates

    International Nuclear Information System (INIS)

    Makitova, G. Zh.; Mustafin, E. S.; Kasenov, B. K.

    1999-01-01

    Purposes of the work are both determination of lattice parameters on the base of X-ray graphical data and experimental study of thermal conduction dependence of mercury arsenates Hg(AsO 3 ) 2 and Hg 3 (AsO 4 ) 2 . In this work for the first time the parameters of elementary cell thermal conduction in the range 298.15-625 K were determined. Formation of equilibrium contents of mercury arsenates was confirmed by X-ray phase analysis conducted on DRON-2,0 unit under Cu K - radiation. Curves of thermal-differential analysis show, that Hg(AsO 3 ) 2 and Hg 3 (AsO 4 ) 2 melting incongruently, relatively at 725 and 790 grad C. Displaying of X-ray- grammars of examined compounds have been conducted by homology method. On the base the displaying parameter of lattice crystallization were determined. Further arsenates were exposed to calorimetric research for determination of its thermal conduction. It is shown, that Hg 3 (AsO 4 ) 2 thermal conduction has maximum at 448 K and then it value is go down at 473 K and then smoothly increasing. It was supposed, such behavior is related with second kind phase transformation

  7. Enhanced extraction of heavy metals in the two-step process with the mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus.

    Science.gov (United States)

    Chang, Young-Cheol; Choi, DuBok; Kikuchi, Shintaro

    2012-01-01

    For biological extraction of heavy metals from chromated copper arsenate (CCA) treated wood, different bacteria were investigated. The extraction rates of heavy metals using Lactobacillusbulgaricus and Streptococcusthermophilus were highest. The chemical extraction rates were depended on the amounts of pyruvic acid and lactic acid. Especially, the extraction rates using mixed pyruvic acid and lactic acid were increased compared to those of sole one. They were also enhanced in the mixed culture of L. bulgaricus and S. thermophilus. To improve the extraction of CCA, a two-step processing procedure with the mixed culture of L. bulgaricus and S. thermophilus was conducted. A maximum of 93% of copper, 86.5% of chromium, and 97.8% of arsenic were extracted after 4 days. These results suggest that a two-step process with the mixed culture of L. bulgaricus and S. thermophilus is most effective to extract heavy metals from CCA treated wood. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model

    International Nuclear Information System (INIS)

    Hill, Denise S.; Wlodarczyk, Bogdan J.; Mitchell, Laura E.; Finnell, Richard H.

    2009-01-01

    Background: Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals. Objectives: We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenic's teratogenicity in early neurodevelopment. Methods: We evaluated maternal intraperitoneal (IP) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selected compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), L-methionine (L-Met), N-tert-Butyl-α-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenate's effects. Results: Arsenate caused significant glucose elevation during an IP glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p = 0.0260). Arsenate caused NTDs (100%, p < 0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%. Conclusions: IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulin's success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role.

  9. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide-arsenate ...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  10. Evaluation of leachate quality from pentachlorophenol, creosote and ACA [ammoniacal chromium arsenate] preserved wood products

    International Nuclear Information System (INIS)

    Whiticar, D.M.; Letourneau, L.; Konasewich, D.

    1994-01-01

    A field study was conducted to evaluate the leachability characteristics of pentachlorophenol (PCP), creosote, and ammoniacal chromium arsenate (ACA) wood preservatives from freshly treated wood products. Test products included PCP-treated utility poles, creosote-treated timbers and marine pilings, and ACA-treated utility poles. Bundles of test products were placed over collection trays to collect the leachate generated by natural rainfall and by sprinkling with tap water. The sampling schedule was based on accumulated rainfall with samples taken at about every 15 mm from 15 mm to 150 mm. Analyses included pH, oil and grease, total organic carbon, ammonia, metals, polynuclear aromatic hydrocarbons (PAH), chlorinated and nonchlorinated phenols, resin acids, and fish toxicity. The study indicated that leachates from wood products freshly treated with ACA, creosote, and PCP have potential for aquatic toxicity if released to the environment. A decreasing trend was noted in both the arsenic and copper releases as cumulative precipitation increased. PCP releases remained constant over the course of the study while PAH releases showed no significant trend. Phenanthrene was found to be the main component in the releases. 28 refs., 18 figs., 7 tabs

  11. A General Evaluation for Recycling Process of Impregnated Wood Removed From the Service

    Directory of Open Access Journals (Sweden)

    Cihat Taşçıoğlu

    2011-03-01

    Full Text Available Wood presevatives such as creosote, pentaclorophenol (PCP and chromated copper arsenate (CCA have been widely used over the years in order to extend wood products’ service life. CCA was known as most widely used wood preservative chemical in residendial and commercial applications world wide until 2004 volanteered phase out of the chemical from residential use bye the major manufacturers. Over the years CCA treated wood acuumulated in service reaching millions of cubic meters. But there is growing concern about the environmental impacts and increasing difficulty in disposing of treated wood products in many countries. Since disposal of CCA treated wood material poses greater problems than the other treated wood products due to heavy and toxic metal componets of CCA such as chromium and arsenic Traditional disposal methods like landfillig or incineration, both have negative environmental consequences. For that reason the increasing volume of CCA-treated wood products coming out of service requires alternative disposal methods and recycling techniques never tried before. The main purpose of this study, except for traditional methods like landfilling and incineration, is to evaluate the current alternative disposal and recycling methods for CCA treated wood removed from service.

  12. Comparison of arsenate and cadmium toxicity in a freshwater amphipod (Gammarus pulex)

    International Nuclear Information System (INIS)

    Vellinger, Céline; Parant, Marc; Rousselle, Philippe; Immel, Françoise

    2012-01-01

    Cadmium is largely documented on freshwater organisms while arsenic, especially arsenate, is rarely studied. The kinetic of the LC50s values for both metals was realized on Gammarus pulex. Physiological [i.e. metal concentration in body tissues, bioconcentration factor (BCF)] effects and behavioural responses (via pleopods beats) were investigated after 240-h exposure. Arsenate LC50 value was 100 fold higher than Cd-LC50 value after 240-h exposure, while concentrations in gammarids were similar for both metals at their respective LC50s. BCF decreased with increasing cadmium concentration while BCF remained stable with increasing arsenate concentration. Moreover, BCF was between 148 and 344 times lower for arsenate than cadmium. A significant hypoventilation was observed for cadmium concentrations exceeding or close to the 240h-LC50 Cd , while gammarids hyperventilated for the lowest arsenate concentrations and hypoventilated for the highest arsenate concentrations. We discussed the relationships between potential action mechanisms of these two metals and observed results. - Highlights: ► First study of arsenate toxicity in a Crustacean gammarid. ► Specific toxicological and behavioural responses to AsV and Cd contamination. ► Each metal led to specific-action mechanisms. ► Different energetic reallocation could explain specific behavioural responses. - This study brings to light the potential relationship between toxicological effects and behavioural responses of G. pulex exposed at both Cadmium and Arsenate.

  13. Amino-functionalized MCM-41 and MCM-48 for the removal of chromate and arsenate.

    Science.gov (United States)

    Benhamou, A; Basly, J P; Baudu, M; Derriche, Z; Hamacha, R

    2013-08-15

    The aim of the present work was to investigate the efficiency of three amino-functionalized (hexadecylamine, dodecylamine, and dimethyldodecylamine) mesoporous silicas (MCM-41 and MCM-48) toward the adsorption of arsenate and chromate. Hexadecylamine-functionalized materials were characterized; BET surface areas, pore volumes, and sizes decreased with the functionalization, whereas XRD patterns show that the hexagonal structure of MCM-41 and the cubic structure of MCM-48 were not modified. The zeta potential decreases with pH and the highest arsenate and chromate removal was observed at the lowest pHs. Adsorption of chromium and arsenate was significantly enhanced after functionalization and amino-functionalized MCM-41 adsorb larger amounts of arsenate when compared to expanded MCM-48 materials. Chromate sorption capacities increased with the chain length and the larger capacities were obtained with hexadecylamine-functionalized mesoporous silicas. Mesoporous silicas modified by dimethyldodecylamine exhibited the higher arsenate sorption capacities. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Pore-Water Carbonate and Phosphate As Predictors of Arsenate Toxicity in Soil.

    Science.gov (United States)

    Lamb, Dane T; Kader, Mohammed; Wang, Liang; Choppala, Girish; Rahman, Mohammad Mahmudur; Megharaj, Mallavarapu; Naidu, Ravi

    2016-12-06

    Phytotoxicity of inorganic contaminants is influenced by the presence of competing ions at the site of uptake. In this study, interaction of soil pore-water constituents with arsenate toxicity was investigated in cucumber (Cucumis sativa L) using 10 contrasting soils. Arsenate phytotoxicity was shown to be related to soluble carbonate and phosphate. The data indicated that dissolved phosphate and carbonate had an antagonistic impact on arsenate toxicity to cucumber. To predict arsenate phytotoxicity in soils with a diverse range of soil solution properties, both carbonate and phosphate were required. The relationship between arsenic and pore-water toxicity parameters was established initially using multiple regression. In addition, based on the relationship with carbonate and phosphate we successively applied a terrestrial biotic ligand-like model (BLM) including carbonate and phosphate. Estimated effective concentrations from the BLM-like parametrization were strongly correlated to measured arsenate values in pore-water (R 2 = 0.76, P soils.

  15. Photoinduced Oxidation of Arsenite to Arsenate on Ferrihydrite

    Energy Technology Data Exchange (ETDEWEB)

    N Bhandari; R Reeder; D Strongin

    2011-12-31

    The photochemistry of an aqueous suspension of the iron oxyhydroxide, ferrihydrite, in the presence of arsenite has been investigated using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray absorption near edge structure (XANES), and solution phase analysis. Both ATR-FTIR and XANES show that the exposure of ferrihydrite to arsenite in the dark leads to no change in the As oxidation state, but the exposure of this arsenite-bearing surface, which is in contact with pH 5 water, to light leads to the conversion of the majority of the adsorbed arsenite to the As(V) bearing species, arsenate. Analysis of the solution phase shows that ferrous iron is released into solution during the oxidation of arsenite. The photochemical reaction, however, shows the characteristics of a self-terminating reaction in that there is a significant suppression of this redox chemistry before 10% of the total iron making up the ferrihydrite partitions into solution as ferrous iron. The self-terminating behavior exhibited by this photochemical arsenite/ferrihydrite system is likely due to the passivation of the ferrihydrite surface by the strongly bound arsenate product.

  16. Arsenates of rare-metals: electrometric investigations on praseodymium arsenates as a function of pH

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S [Paraiba Univ., Joao Pessoa (Brazil). Dept. de Engenharia Quimica

    1982-01-01

    The stoichiometry of the compounds formed by the interaction of praseodymium chloride and different alkali arsenates (meta, pyro and ortho) at specific pH levels - 7.2, 8.3 and 11.1 - was investigated by electrometric techniques involving pH measurements and potentiometric and conductometric titrations. The inflections and breaks in the titration curves provide evidence for the formation of three praseodymium arsenates having the molecular formulae Pr/sub 2/O/sub 3/.3 As/sub 2/O/sub 5/, 2Pr/sub 2/O/sub 3/.3As/sub 2/O/sub 5/ and Pr2O/sub 3/.As/sub 2/O/sub 5/ in the vicinity of pH 4.8, 5.8 and 7.0, respectively. Analysis of the compounds by conventional methods (gravimetric, as oxide, for praseodymium; iodometric for arsenic) substantiate the results of the electrometric study

  17. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water

    International Nuclear Information System (INIS)

    Zhang Kai; Dwivedi, Vineet; Chi Chunyan; Wu Jishan

    2010-01-01

    A series of novel composites based on graphene oxide (GO) cross-linked with ferric hydroxide was developed for effective removal of arsenate from contaminated drinking water. GO, which was used as a supporting matrix here, was firstly treated with ferrous sulfate. Then, the ferrous compound cross-linked with GO was in situ oxidized to ferric compound by hydrogen peroxide, followed by treating with ammonium hydroxide. The morphology and composition of the composites were analyzed by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The ferric hydroxide was found to be homogenously impregnated onto GO sheets in amorphous form. These composites were evaluated as absorbents for arsenate removal from contaminated drinking water. For the water with arsenate concentration at 51.14 ppm, more than 95% of arsenate was absorbed by composite GO-Fe-5 with an absorption capacity of 23.78 mg arsenate/g of composite. Effective arsenate removal occurred in a wide range of pH from 4 to 9. However, the efficiency of arsenate removal was decreased when pH was increased to higher than 8.

  18. Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles

    International Nuclear Information System (INIS)

    Saikia, Jiban; Saha, Bedabrata; Das, Gopal

    2011-01-01

    Graphical abstract: Malachite nanoparticles of 100-150 nm, have been efficiently and for the first time used as an adsorbent for the removal of toxic arsenate and chromate in pH range 4-5. - Abstract: Malachite nanoparticles of 100-150 nm have been efficiently and for the first time used as an adsorbent for the removal of toxic arsenate and chromate. We report a high adsorption capacity for chromate and arsenate on malachite nanoparticle from both individual and mixed solution in pH ∼4-5. However, the adsorption efficiency decreases with the increase of solution pH. Batch studies revealed that initial pH, temperature, malachite nanoparticles dose and initial concentration of chromate and arsenate were important parameters for the adsorption process. Thermodynamic analysis showed that adsorption of chromate and arsenate on malachite nanoparticles is endothermic and spontaneous. The adsorption of these anions has also been investigated quantitatively with the help of adsorption kinetics, isotherm, and selectivity coefficient (K) analysis. The adsorption data for both chromate and arsenate were fitted well in Langmuir isotherm and preferentially followed the second order kinetics. The binding affinity of chromate is found to be slightly higher than arsenate in a competitive adsorption process which leads to the comparatively higher adsorption of chromate on malachite nanoparticles surface.

  19. Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions

    International Nuclear Information System (INIS)

    Guo, Yanwei; Zhu, Zhiliang; Qiu, Yanling; Zhao, Jianfu

    2012-01-01

    Highlights: ► A novel layered double hydroxide containing lanthanum (Cu/Mg/Fe/La-LDH) has been synthesized. ► The average pore size of the materials with about 16 nm indicated that the mesoporous structures existed in the Cu/Mg/Fe/La-LDHs. ► The adsorption capacity of As(V) increased with the increment of La 3+ content in the LDH. ► The maximum adsorption capacity of the synthesized Cu/Mg/Fe/La-LDH for arsenate was 43.5 mg/g. - Abstract: A novel layered double hydroxide containing lanthanum (Cu/Mg/Fe/La-LDH) has been synthesized and used for the removal of arsenate from aqueous solutions. The purpose of incorporation of La 3+ into LDHs was tried to enhance the uptake efficiency of arsenate and broaden the application field of LDHs functional materials. Effects of various physico-chemical factors such as solution pH, adsorbent dosage, contact time and initial arsenate concentrations on the adsorption of arsenate onto Cu/Mg/Fe/La-LDH were investigated. Results showed that the removal efficiency of arsenate increased with the increment of the lanthanum content in Cu/Mg/Fe/La-LDH adsorbents, and the optimized lanthanum content was 20% of the total trivalent metals composition (Fe 3+ and La 3+ ). The adsorption isotherms can be well described by Langmuir equation, and the adsorption kinetics of arsenate followed the pseudo-second-order kinetic model. Coexistent ions such as HPO 4 2− , CO 3 2− , SO 4 2− , Cl − and NO 3 − exhibited obvious competition with arsenate for the adsorption on Cu/Mg/Fe/La-LDH. The solution pH significantly affected the removal efficiency, which was closely related to the change of arsenate species distribution under different pH conditions. The predominant adsorption mechanism can be mainly attributed to the processes including ion exchange and layer ligand exchange.

  20. Evaluation of ferrolysis in arsenate adsorption on the paddy soil derived from an Oxisol.

    Science.gov (United States)

    Jiang, Jun; Dai, Zhaoxia; Sun, Rui; Zhao, Zhenjie; Dong, Ying; Hong, Zhineng; Xu, Renkou

    2017-07-01

    Iron oxides are dominant effective adsorbents for arsenate in iron oxide-rich variable charge soils. Oxisol-derived paddy soils undergo intensive ferrolysis, which results in high leaching and transformation of iron oxides. However, little information is available concerning the effect of ferrolysis on arsenate adsorption by paddy soil and parent Oxisol. In the present study, we examined the arsenate affinity of soils using arsenate adsorption/desorption isotherms, zeta potential, adsorption kinetics, pH effect and phosphate competition experiments. Results showed that ferrolysis in an alternating flooding-drying Oxisol-derived paddy soil resulted in a significant decrease of free iron oxides and increase of amorphous iron oxides in the surface and subsurface layers. There were more reactive sites exposed on amorphous than on crystalline iron oxides. Therefore, disproportionate ratios of arsenate adsorption capacities and contents of free iron oxides were observed in the studied Oxisols compared with paddy soils. The Gibbs free energy values corroborated that both electrostatic and non-electrostatic adsorption mechanisms contributed to the arsenate adsorption by bulk soils, and the kinetic adsorption data further suggested that the rate-limiting step was chemisorption. The zeta potential of soil colloids decreased after arsenate was adsorbed on the surfaces, forming inner-sphere complexes and thus transferring their negative charges to the soil particle surfaces. The adsorption/desorption isotherms showed that non-electrostatic adsorption was the main mechanism responsible for arsenate binding to the Oxisol and derived paddy soils, representing 91.42-94.65% of the adsorption capacities. Further studies revealed that arsenate adsorption was greatly inhibited by increasing suspension pH and incorporation of phosphate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Focused ion beam analysis of banana peel and its application for arsenate ion removal

    International Nuclear Information System (INIS)

    Memon, J.R.

    2015-01-01

    Banana peel, a common fruit waste, has been investigated for its ability to remove arsenate ions from ground water as a function of pH, contact time, and initial metal ion concentration. Focused ion beam (FIB) analysis revealed the internal morphology of the banana peels. Arsenate ions were entered into micropores of banana peel. pH was seen to have no effect on the sorption process. Retained species were eluted using 5 mL of 2 M H/sub 2/SO/sub 4/. The kinetics of sorption were observed to follow the pseudo first order rate equation. The sorption data followed Freundlich and D-R isotherms. The energy value obtained from the D-R isotherms indicated that the sorption was physical in nature for arsenate species. Our study has shown that banana peel has the ability to remove arsenate species from ground water samples. (author)

  2. Focused Ion Beam Analysis of Banana Peel and Its Application for Arsenate Ion Removal

    Directory of Open Access Journals (Sweden)

    Jamil R. Memon

    2015-06-01

    Full Text Available Banana peel, a common fruit waste, has been investigated for its ability to remove arsenate ions from ground water as a function of pH, contact time, and initial metal ion concentration. Focused ion beam (FIB analysis revealed the internal morphology of the banana peels. Arsenate ions were entered into micropores of banana peel. pH was seen to have no effect on the sorption process. Retained species were eluted using 5 mL of 2 M H2SO4. The kinetics of sorption were observed to follow the pseudo first order rate equation. The sorption data followed Freundlich and D-R isotherms. The energy value obtained from the D-R isotherms indicated that the sorption was physical in nature for arsenate species. Our study has shown that banana peel has the ability to remove arsenate species from ground water samples.

  3. Simultaneous sequestration of uranyl and arsenate at the goethite/water interface

    International Nuclear Information System (INIS)

    Fang Yuan; Yawen Cai; Shitong Yang; Zhiyong Liu; Lanhua Chen; Yue Lang; Shuao Wang; Xiangke Wang; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou; North China Electric Power University, Beijing

    2017-01-01

    This study highlights the simultaneous sequestration of U(VI) and arsenate at the goethite/water interface. The uptake trends and speciation of these two components were related with molar arsenate/U(VI) ratio, solution pH, contact order and aging time. A metastable [UO_2(H_2AsO_4)_2·H_2O] was observed after 3 days and then this solid completely transformed into Na_2(UO_2AsO_4)_2·3H_2O after 7 days. The disodium ethylenediamine tetraacetate ligand gave rise to the complete dissolution of Na_2(UO_2AsO_4)_2·3H_2O phase and the release of U(VI) and arsenate back into the solution. The experimental findings facilitated us better comprehend the migration and fate of coexisting U(VI) and arsenate in the aquatic environment. (author)

  4. Characterization of ferric arsenate-sulfate compounds: Implications for arsenic control in refractory gold processing residues

    Czech Academy of Sciences Publication Activity Database

    Paktunc, D.; Majzlan, J.; Palatinus, Lukáš; Dutrizac, J.; Klementová, Mariana; Poirier, G.

    2013-01-01

    Roč. 98, č. 4 (2013), s. 554-565 ISSN 0003-004X Institutional support: RVO:68378271 Keywords : arsenic * ferric arsenate sulfate * autoclave residue * hydrometallurgy Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.059, year: 2013

  5. Adsorption of arsenate from aqueous solution by rice husk-based adsorbent

    International Nuclear Information System (INIS)

    Khan, Taimur; Chaudhuri, Malay

    2013-01-01

    Rice husk-based adsorbent (RHBA) was prepared by burning rice husk in a muffle furnace at 400°C for 4 h and adsorption of arsenate by the RHBA from aqueous solution was examined. Batch adsorption test showed that extent of arsenate adsorption depended on contact time and pH. Equilibrium adsorption was attained in 60 min, with maximum adsorption occurring at pH 7. Equilibrium adsorption data were well described by the Freundlich isotherm model. Freundlich constants K f and 1/n were 3.62 and 2, respectively. The RHBA is effective in the adsorption of arsenate from water and is a potentially suitable filter medium for removing arsenate from groundwater at wells or in households.

  6. Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles.

    Science.gov (United States)

    Saikia, Jiban; Saha, Bedabrata; Das, Gopal

    2011-02-15

    Malachite nanoparticles of 100-150 nm have been efficiently and for the first time used as an adsorbent for the removal of toxic arsenate and chromate. We report a high adsorption capacity for chromate and arsenate on malachite nanoparticle from both individual and mixed solution in pH ∼4-5. However, the adsorption efficiency decreases with the increase of solution pH. Batch studies revealed that initial pH, temperature, malachite nanoparticles dose and initial concentration of chromate and arsenate were important parameters for the adsorption process. Thermodynamic analysis showed that adsorption of chromate and arsenate on malachite nanoparticles is endothermic and spontaneous. The adsorption of these anions has also been investigated quantitatively with the help of adsorption kinetics, isotherm, and selectivity coefficient (K) analysis. The adsorption data for both chromate and arsenate were fitted well in Langmuir isotherm and preferentially followed the second order kinetics. The binding affinity of chromate is found to be slightly higher than arsenate in a competitive adsorption process which leads to the comparatively higher adsorption of chromate on malachite nanoparticles surface. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  8. Monitoring losses of copper based wood preservatives in the Thames estuary

    Energy Technology Data Exchange (ETDEWEB)

    Hingston, J.A. [Environmental Processes and Water Technology Research Group, Department of Environmental Science and Technology, Faculty of Life Sciences, Imperial College, London SW7 2AZ (United Kingdom)]. E-mail: james.hingston@psd.defra.gsi.gov.uk; Murphy, R.J. [Department of Biology, Imperial College, London SW7 2AZ (United Kingdom); Lester, J.N. [School of Water Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)

    2006-09-15

    Field trials were conducted at two sites in the Thames estuary to monitor losses of copper, chromium and arsenic from wood preservative treated timbers of varying sizes and treatment regimes. Results indicated that leaching tests conducted under standard laboratory conditions might overestimate losses compared to losses resulting from real environmental exposures. Amine copper treated wood was noted to leach higher levels of copper compared to chromated copper arsenate treated wood, and was therefore considered an inappropriate replacement biocide for fresh and marine construction purposes on this basis. Increases in copper concentrations in the outer sections of amine copper treated posts may have represented re-distribution of this component in this timber. No accumulation of metals was found in sediments surrounding field trial posts. - Wood preservative field trials in the UK indicate that standard laboratory tests overestimate losses compared to those resulting from real environmental exposures.

  9. Monitoring losses of copper based wood preservatives in the Thames estuary

    International Nuclear Information System (INIS)

    Hingston, J.A.; Murphy, R.J.; Lester, J.N.

    2006-01-01

    Field trials were conducted at two sites in the Thames estuary to monitor losses of copper, chromium and arsenic from wood preservative treated timbers of varying sizes and treatment regimes. Results indicated that leaching tests conducted under standard laboratory conditions might overestimate losses compared to losses resulting from real environmental exposures. Amine copper treated wood was noted to leach higher levels of copper compared to chromated copper arsenate treated wood, and was therefore considered an inappropriate replacement biocide for fresh and marine construction purposes on this basis. Increases in copper concentrations in the outer sections of amine copper treated posts may have represented re-distribution of this component in this timber. No accumulation of metals was found in sediments surrounding field trial posts. - Wood preservative field trials in the UK indicate that standard laboratory tests overestimate losses compared to those resulting from real environmental exposures

  10. Competitive adsorption of arsenate and phosphate onto calcite; experimental results and modeling with CCM and CD-MUSIC

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus

    2012-01-01

    The competitive adsorption of arsenate and phosphate onto calcite was studied in batch experiments using calcite-equilibrated solutions. The solutions had circum-neutral pH (7–8.3) and covered a wide span in the activity of Ca2+ and View the MathML source. The results show that the adsorption...... that adsorption of arsenate onto calcite is of minor importance in most groundwater aquifers, as phosphate is often present at concentration levels sufficient to significantly reduce arsenate adsorption. The CD-MUSIC model for calcite was used successfully to model adsorption of arsenate and phosphate separately...

  11. Adsorption of arsenate on Cu/Mg/Fe/La layered double hydroxide from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yanwei [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhu, Zhiliang, E-mail: zzl@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Qiu, Yanling [Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092 (China); Zhao, Jianfu [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A novel layered double hydroxide containing lanthanum (Cu/Mg/Fe/La-LDH) has been synthesized. Black-Right-Pointing-Pointer The average pore size of the materials with about 16 nm indicated that the mesoporous structures existed in the Cu/Mg/Fe/La-LDHs. Black-Right-Pointing-Pointer The adsorption capacity of As(V) increased with the increment of La{sup 3+} content in the LDH. Black-Right-Pointing-Pointer The maximum adsorption capacity of the synthesized Cu/Mg/Fe/La-LDH for arsenate was 43.5 mg/g. - Abstract: A novel layered double hydroxide containing lanthanum (Cu/Mg/Fe/La-LDH) has been synthesized and used for the removal of arsenate from aqueous solutions. The purpose of incorporation of La{sup 3+} into LDHs was tried to enhance the uptake efficiency of arsenate and broaden the application field of LDHs functional materials. Effects of various physico-chemical factors such as solution pH, adsorbent dosage, contact time and initial arsenate concentrations on the adsorption of arsenate onto Cu/Mg/Fe/La-LDH were investigated. Results showed that the removal efficiency of arsenate increased with the increment of the lanthanum content in Cu/Mg/Fe/La-LDH adsorbents, and the optimized lanthanum content was 20% of the total trivalent metals composition (Fe{sup 3+} and La{sup 3+}). The adsorption isotherms can be well described by Langmuir equation, and the adsorption kinetics of arsenate followed the pseudo-second-order kinetic model. Coexistent ions such as HPO{sub 4}{sup 2-}, CO{sub 3}{sup 2-}, SO{sub 4}{sup 2-}, Cl{sup -} and NO{sub 3}{sup -} exhibited obvious competition with arsenate for the adsorption on Cu/Mg/Fe/La-LDH. The solution pH significantly affected the removal efficiency, which was closely related to the change of arsenate species distribution under different pH conditions. The predominant adsorption mechanism can be mainly attributed to the processes including ion exchange and layer ligand exchange.

  12. Copper naphthenate: a proven solution for new wood preservative problems

    Energy Technology Data Exchange (ETDEWEB)

    McNair, W.S. [Merichem Chemicals and Refinery Services LLC, Houston, TX (United States); Loecner, P. [Pacific Gas and Electric, Davis, CA (United States)

    2002-08-01

    Today's engineers have the responsibility of considering cost, availability and climbability, as well as the environmental alternatives available to the traditional wood preservatives used in the production of utility poles: creosote, pentachlorophenol (PCP) and chromated copper arsenate (CCA). The leading alternative now emerging for utilities in this field is copper naphthenate. The authors present a case study that clearly demonstrates copper naphthenate as one of the most environmentally sensitive and effective wood preservative. When first introduced, copper naphthenate seemed to frequently result in early failure of the poles treated with this preservative. It was discovered that it was a phenomenon that had been largely exaggerated, and the failure rate was less than one per cent. A recent review has concluded that premature failures have basically disappeared. Several reasons can explain premature failures, such as pretreatment decay, improper sterilization/conditioning/drying, inadequate copper penetration and retention, and others. The long term effectiveness and performance of copper naphthenate has been documented in a number of field trials. The ultimate disposal of the product must be considered by the specifying engineer, and it is possible to dispose of copper naphthenate poles in a sanitary landfill. Due in part to recent manufacturing economies, the cost of copper naphthenate is similar to other oil-borne treatments. The case study of Pacific Gas and Electric was discussed. 7 refs., 2 figs.

  13. Fabrication and evolution of multilayer silver nanofilms for surface-enhanced Raman scattering sensing of arsenate

    Directory of Open Access Journals (Sweden)

    Li Jinwei

    2011-01-01

    Full Text Available Abstract Surface-enhanced Raman scattering (SERS has recently been investigated extensively for chemical and biomolecular sensing. Multilayer silver (Ag nanofilms deposited on glass slides by a simple electroless deposition process have been fabricated as active substrates (Ag/GL substrates for arsenate SERS sensing. The nanostructures and layer characteristics of the multilayer Ag films could be tuned by varying the concentrations of reactants (AgNO3/BuNH2 and reaction time. A Ag nanoparticles (AgNPs double-layer was formed by directly reducing Ag+ ions on the glass surfaces, while a top layer (3rd-layer of Ag dendrites was deposited on the double-layer by self-assembling AgNPs or AgNPs aggregates which had already formed in the suspension. The SERS spectra of arsenate showed that characteristic SERS bands of arsenate appear at approximately 780 and 420 cm-1, and the former possesses higher SERS intensity. By comparing the peak heights of the approximately 780 cm-1 band of the SERS spectra, the optimal Ag/GL substrate has been obtained for the most sensitive SERS sensing of arsenate. Using this optimal substrate, the limit of detection (LOD of arsenate was determined to be approximately 5 μg·l-1.

  14. Arsenate removal by layered double hydroxides embedded into spherical polymer beads: Batch and column studies.

    Science.gov (United States)

    Nhat Ha, Ho Nguyen; Kim Phuong, Nguyen Thi; Boi An, Tran; Mai Tho, Nguyen Thi; Ngoc Thang, Tran; Quang Minh, Bui; Van Du, Cao

    2016-01-01

    In this study, the performance of poly(layered double hydroxides) [poly(LDHs)] beads as an adsorbent for arsenate removal from aqueous solution was investigated. The poly(LDHs) beads were prepared by immobilizing LDHs into spherical alginate/polyvinyl alcohol (PVA)-glutaraldehyde beads (spherical polymer beads). Batch adsorption studies were conducted to assess the effect of contact time, solution pH, initial arsenate concentrations and co-existing anions on arsenate removal performance. The potential reuse of these poly(LDHs) beads was also investigated. Approximately 79.1 to 91.2% of arsenic was removed from an arsenate solution (50 mg As L(-1)) by poly(LDHs). The adsorption data were well described by the pseudo-second-order kinetics model and the Langmuir isotherm model, and the adsorption capacities of these poly(LDHs) beads at pH 8 were from 1.64 to 1.73 mg As g(-1), as calculated from the Langmuir adsorption isotherm. The adsorption ability of the poly(LDHs) beads decreased by approximately 5-6% after 5 adsorption-desorption cycles. Phosphates markedly decreased arsenate removal. The effect of co-existing anions on the adsorption capacity declined in the following order: HPO4 (2-) > HCO3 (-) > SO4 (2-) > Cl(-). A fixed-bed column study was conducted with real-life arsenic-containing water. The breakthrough time was found to be from 7 to 10 h. Under optimized conditions, the poly(LDHs) removed more than 82% of total arsenic. The results obtained in this study will be useful for further extending the adsorbents to the field scale or for designing pilot plants in future studies. From the viewpoint of environmental friendliness, the poly(LDHs) beads are a potential cost-effective adsorbent for arsenate removal in water treatment.

  15. Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes

    KAUST Repository

    Sevcenco, Ana-Maria

    2015-03-13

    Oxo-anion binding properties of the thermostable enzyme ferritin from Pyrococcus furiosus were characterized with radiography. Radioisotopes 32P and 76As present as oxoanions were used to measure the extent and the rate of their absorption by the ferritin. Thermostable ferritin proved to be an excellent system for rapid phosphate and arsenate removal from aqueous solutions down to residual concentrations at the picomolar level. These very low concentrations make thermostable ferritin a potential tool to considerably mitigate industrial biofouling by phosphate limitation or to remove arsenate from drinking water.

  16. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate.

    Science.gov (United States)

    Song, Jia; Jia, Shao-Yi; Yu, Bo; Wu, Song-Hai; Han, Xu

    2015-08-30

    Abiotic oxidation of Fe(II) is a common pathway in the formation of Fe (hydr)oxides under natural conditions, however, little is known regarding the presence of arsenate on this process. In hence, the effect of arsenate on the precipitation of Fe (hydr)oxides during the oxidation of Fe(II) is investigated. Formation of arsenic-containing Fe (hydr)oxides is constrained by pH and molar ratios of As:Fe during the oxidation Fe(II). At pH 6.0, arsenate inhibits the formation of lepidocrocite and goethite, while favors the formation of ferric arsenate with the increasing As:Fe ratio. At pH 7.0, arsenate promotes the formation of hollow-structured Fe (hydr)oxides containing arsenate, as the As:Fe ratio reaches 0.07. Arsenate effectively inhibits the formation of magnetite at pH 8.0 even at As:Fe ratio of 0.01, while favors the formation of lepidocrocite and green rust, which can be latterly degenerated and replaced by ferric arsenate with the increasing As:Fe ratio. This study indicates that arsenate and low pH value favor the slow growth of dense-structured Fe (hydr)oxides like spherical ferric arsenate. With the rapid oxidation rate of Fe(II) at high pH, ferric (hydr)oxides prefer to precipitate in the formation of loose-structured Fe (hydr)oxides like lepidocrocite and green rust. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Arsenate tolerance in Silene paradoxa does not rely on phytochelatin-dependent sequestration

    International Nuclear Information System (INIS)

    Arnetoli, Miluscia; Vooijs, Riet; Bookum, Wilma ten; Galardi, Francesca; Gonnelli, Cristina; Gabbrielli, Roberto; Schat, Henk; Verkleij, Jos A.C.

    2008-01-01

    Arsenate tolerance, As accumulation and As-induced phytochelatin accumulation were compared in populations of Silene paradoxa, one from a mine site enriched in As, Cu and Zn, the other from an uncontaminated site. The mine population was significantly more arsenate-tolerant. Arsenate uptake and root-to-shoot transport were slightly but significantly higher in the non-mine plants. The difference in uptake was quantitatively insufficient to explain the difference in tolerance between the populations. As accumulation in the roots was similar in both populations, but the mine plants accumulated much less phytochelatins than the non-mine plants. The mean phytochelatin chain length, however, was higher in the mine population, possibly due to a constitutively lower cellular glutathione level. It is argued that the mine plants must possess an arsenic detoxification mechanism other than arsenate reduction and subsequent phytochelatin-based sequestration. This alternative mechanism might explain at least some part of the superior tolerance in the mine plants. - Neither decreased uptake nor phytochelatins seem to play a role in the As tolerance in Silene paradoxa

  18. Differential Pair Distribution Function Study of the Structure of Arsenate Adsorbed on Nanocrystalline [gamma]-Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei; Harrington, Richard; Tang, Yuanzhi; Kubicki, James D.; Aryanpour, Masoud; Reeder, Richard J.; Parise, John B.; Phillips, Brian L. (SBU); (Penn)

    2012-03-15

    Structural information is important for understanding surface adsorption mechanisms of contaminants on metal (hydr)oxides. In this work, a novel technique was employed to study the interfacial structure of arsenate oxyanions adsorbed on {gamma}-alumina nanoparticles, namely, differential pair distribution function (d-PDF) analysis of synchrotron X-ray total scattering. The d-PDF is the difference of properly normalized PDFs obtained for samples with and without arsenate adsorbed, otherwise identically prepared. The real space pattern contains information on atomic pair correlations between adsorbed arsenate and the atoms on {gamma}-alumina surface (Al, O, etc.). PDF results on the arsenate adsorption sample on {gamma}-alumina prepared at 1 mM As concentration and pH 5 revealed two peaks at 1.66 {angstrom} and 3.09 {angstrom}, corresponding to As-O and As-Al atomic pair correlations. This observation is consistent with those measured by extended X-ray absorption fine structure (EXAFS) spectroscopy, which suggests a first shell of As-O at 1.69 {+-} 0.01 {angstrom} with a coordination number of 4 and a second shell of As-Al at 3.13 {+-} 0.04 {angstrom} with a coordination number of 2. These results are in agreement with a bidentate binuclear coordination environment to the octahedral Al of {gamma}-alumina as predicted by density functional theory (DFT) calculation.

  19. Differential pair distribution function study of the structure of arsenate adsorbed on nanocrystalline γ-alumina.

    Science.gov (United States)

    Li, Wei; Harrington, Richard; Tang, Yuanzhi; Kubicki, James D; Aryanpour, Masoud; Reeder, Richard J; Parise, John B; Phillips, Brian L

    2011-11-15

    Structural information is important for understanding surface adsorption mechanisms of contaminants on metal (hydr)oxides. In this work, a novel technique was employed to study the interfacial structure of arsenate oxyanions adsorbed on γ-alumina nanoparticles, namely, differential pair distribution function (d-PDF) analysis of synchrotron X-ray total scattering. The d-PDF is the difference of properly normalized PDFs obtained for samples with and without arsenate adsorbed, otherwise identically prepared. The real space pattern contains information on atomic pair correlations between adsorbed arsenate and the atoms on γ-alumina surface (Al, O, etc.). PDF results on the arsenate adsorption sample on γ-alumina prepared at 1 mM As concentration and pH 5 revealed two peaks at 1.66 Å and 3.09 Å, corresponding to As-O and As-Al atomic pair correlations. This observation is consistent with those measured by extended X-ray absorption fine structure (EXAFS) spectroscopy, which suggests a first shell of As-O at 1.69 ± 0.01 Å with a coordination number of ~4 and a second shell of As-Al at ~3.13 ± 0.04 Å with a coordination number of ~2. These results are in agreement with a bidentate binuclear coordination environment to the octahedral Al of γ-alumina as predicted by density functional theory (DFT) calculation.

  20. ACCUMULATION AND METABOLISM OF ARSENIC IN MICE AFTER REPEATED ADMINISTRATION OF ARSENATE

    Science.gov (United States)

    Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate, Hughes, M. F., Kenyon, E. M., Edwards, B. C., Mitchell, C. T., Del Razo, L. M., and Thomas, D. J. The human carcinogen inorganic arsenic (iAs) is a pervasive environmental ...

  1. Adsorption of arsenate on soils. Part 1: Laboratory batch experiments using 16 Chinese soils with different physiochemical properties

    International Nuclear Information System (INIS)

    Jiang Wei; Zhang Shuzhen; Shan Xiaoquan; Feng Muhua; Zhu Yongguan; McLaren, Ron G.

    2005-01-01

    Laboratory batch experiments were carried out to study the adsorption of arsenate on 16 Chinese soils with different physicochemical properties. Wide differences in arsenate adsorption were observed, and the Jiangxi and Hubei soils were more effective sorbents for arsenate than other soils. The Langmuir one-surface and two-surface equations were used to model the arsenate adsorption data. Except for the Jiangxi and Hubei soils, the Langmuir one-surface equation gave reasonably good fits to the arsenate adsorption data. However, the Langmuir two-surface equation generally provided a better fit than the Langmuir one-surface equation. For soils with relative high organic matter (OM), dissolved organic carbon (DOC) or extractable phosphate, the Langmuir one-surface and two-surface equations described the adsorption isotherms similarly. In contrast, for soils with relatively low contents of OM, DOC or extractable phosphate, the Langmuir two-surface equation gave the better fit to the arsenate adsorption data. - The Langmuir two-surface equation fits arsenate adsorption onto soils

  2. Behavior of Eucalyptus urophylla and Eucalyptus citriodora Seedlings Grown in Soil Contaminated by Arsenate

    Directory of Open Access Journals (Sweden)

    Roseli Freire Melo

    2016-01-01

    Full Text Available ABSTRACT Persistent areas of tailings and deposits from coal and gold mining may present high levels of arsenic (As, mainly in the arsenate form, endangering the environment and human health. The establishment of vegetation cover is a key step to reclaiming these environments. Thus, this study aimed to evaluate the potential of Eucalyptus urophylla and E. citriodora seedlings for use in phytoremediation programs of arsenate-contaminated areas. Soil samples were incubated at increasing rates (0, 50, 100, 200 and 400 mg dm-3 of arsenic (arsenate form, using Na2HAsO4 for 15 days. The seedlings were produced in a substrate (vermiculite + sawdust and were transplanted to the pots with soil three months after seed germination. The values of plant height and diameter were taken during transplanting and 30, 60 and 90 days after transplanting. In the last evaluation, the total leaf area and biomass of shoots and roots were also determined. The values of available As in soil which caused a 50 % dry matter reduction (TS50%, the As translocation index (TI from the roots to the shoot of the plants, and its bioconcentration factor (BF were also calculated. Higher levels of arsenate in the soil significantly reduced the dry matter production of roots and shoots and the height of both species, most notably in E. urophylla plants. The highest levels of As were found in the root, with higher values for E. citriodora (ranging from 253.86 to 400 mg dm-3. The TI and BF were also reduced with As doses, but the values found in E. citriodora were significantly higher than in E. urophylla. E. citriodora plants presented a higher capacity to tolerate As and translocate it to the shoot than E. urophylla. Although these species cannot be considered as hyperaccumulators of As, E. citriodora presented the potential to be used in phytoremediation programs in arsenate-contaminated areas due to the long-term growth period of this species.

  3. Coprecipitation of arsenate with metal oxides. 3. Nature, mineralogy, and reactivity of iron(III)-aluminum precipitates.

    Science.gov (United States)

    Violante, Antonio; Pigna, Massimo; Del Gaudio, Stefania; Cozzolino, Vincenza; Banerjee, Dipanjan

    2009-03-01

    Coprecipitation involving arsenic with aluminum or iron has been studied because this technique is considered particularly efficient for removal of this toxic element from polluted waters. Coprecipitation of arsenic with mixed iron-aluminum solutions has received scant attention. In this work we studied (i)the mineralogy, surface properties, and chemical composition of mixed iron-aluminum oxides formed at initial Fe/Al molar ratio of 1.0 in the absence or presence of arsenate [As/ Fe+Al molar ratio (R) of 0, 0.01, or 0.1] and at pH 4.0, 7.0, and 10.0 and aged for 30 and 210 days at 50 degrees C and (ii) the removal of arsenate from the coprecipitates after addition of phosphate. The amounts of short-range ordered precipitates (ferrihydrite, aluminous ferrihydrite and/or poorly crystalline boehmite) were greater than those found in iron and aluminum systems (studied in previous works), due to the capacity of both aluminum and arsenate to retard or inhibitthe transformation of the initially formed precipitates into well-crystallized oxides (gibbsite, bayerite, and hematite). As a consequence, the surface areas of the iron-aluminum oxides formed in the absence or presence of arsenate were usually much larger than those of aluminum or iron oxides formed under the same conditions. Arsenate was found to be associated mainly into short-range ordered materials. Chemical composition of all samples was affected by pH, initial R, and aging. Phosphate sorption was facilitated by the presence of short-range ordered materials, mainly those richer in aluminum, but was inhibited by arsenate present in the samples. The quantities of arsenate replaced by phosphate, expressed as percentages of its total amount present in the samples, were particularly low, ranging from 10% to 26%. A comparison of the desorption of arsenate by phosphate from aluminum-arsenate and iron-arsenate (studied in previous works) and iron-aluminum-arsenate coprecipitates evidenced that phosphate has a greater

  4. Copper Test

    Science.gov (United States)

    ... in the arm and/or a 24-hour urine sample is collected. Sometimes a health practitioner performs a liver ... disease , a rare inherited disorder that can lead to excess storage of copper in the liver, brain, and other ...

  5. Arsenate impact on the metabolite profile, production and arsenic loading of xylem sap in cucumbers (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Kalle eUroic

    2012-04-01

    Full Text Available Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analysed including a metabolite profiling under arsenate stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure has a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up regulated, one compound down regulated by arsenate exposure. The compound down regulated was identified to be isoleucine. Furthermore, arsenate has a significant influence on sap production, leading to a reduction of up to 96 % sap production when plants are exposed to 1000 μg kg-1 arsenate. No difference to control plants was observed when plants were exposed to 1000 μg kg-1 DMA. Absolute arsenic amount in xylem sap was the lowest at high arsenate exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention.

  6. Goethite surface reactivity: III. Unifying arsenate adsorption behavior through a variable crystal face - Site density model

    Science.gov (United States)

    Salazar-Camacho, Carlos; Villalobos, Mario

    2010-04-01

    We developed a model that describes quantitatively the arsenate adsorption behavior for any goethite preparation as a function of pH and ionic strength, by using one basic surface arsenate stoichiometry, with two affinity constants. The model combines a face distribution-crystallographic site density model for goethite with tenets of the Triple Layer and CD-MUSIC surface complexation models, and is self-consistent with its adsorption behavior towards protons, electrolytes, and other ions investigated previously. Five different systems of published arsenate adsorption data were used to calibrate the model spanning a wide range of chemical conditions, which included adsorption isotherms at different pH values, and adsorption pH-edges at different As(V) loadings, both at different ionic strengths and background electrolytes. Four additional goethite-arsenate systems reported with limited characterization and adsorption data were accurately described by the model developed. The adsorption reaction proposed is: lbond2 FeOH +lbond2 SOH +AsO43-+H→lbond2 FeOAsO3[2-]…SOH+HO where lbond2 SOH is an adjacent surface site to lbond2 FeOH; with log K = 21.6 ± 0.7 when lbond2 SOH is another lbond2 FeOH, and log K = 18.75 ± 0.9, when lbond2 SOH is lbond2 Fe 2OH. An additional small contribution of a protonated complex was required to describe data at low pH and very high arsenate loadings. The model considered goethites above 80 m 2/g as ideally composed of 70% face (1 0 1) and 30% face (0 0 1), resulting in a site density for lbond2 FeOH and for lbond2 Fe 3OH of 3.125/nm 2 each. Below 80 m 2/g surface capacity increases progressively with decreasing area, which was modeled by considering a progressively increasing proportion of faces (0 1 0)/(1 0 1), because face (0 1 0) shows a much higher site density of lbond2 FeOH groups. Computation of the specific proportion of faces, and thus of the site densities for the three types of crystallographic surface groups present in

  7. Conversion of agricultural residues into activated carbons for water purification: Application to arsenate removal.

    Science.gov (United States)

    Torres-Perez, Jonatan; Gerente, Claire; Andres, Yves

    2012-01-01

    The conversion of two agricultural wastes, sugar beet pulp and peanut hulls, into sustainable activated carbons is presented and their potential application for the treatment of arsenate solution is investigated. A direct and physical activation is selected as well as a simple chemical treatment of the adsorbents. The material properties, such as BET surface areas, porous volumes, elemental analysis, ash contents and pH(PZC), of these alternative carbonaceous porous materials are determined and compared with a commercial granular activated carbon. An adsorption study based on experimental kinetic and equilibrium data is conducted in a batch reactor and completed by the use of different models (intraparticle diffusion, pseudo-second-order, Langmuir and Freundlich) and by isotherms carried out in natural waters. It is thus demonstrated that sugar beet pulp and peanut hulls are good precursors to obtain activated carbons for arsenate removal.

  8. Two Lactococcus lactis thioredoxin paralogues play different roles in responses to arsenate and oxidative stress

    DEFF Research Database (Denmark)

    Efler, Petr; Kilstrup, Mogens; Johnsen, Stig

    2015-01-01

    Thioredoxin (Trx) maintains intracellular thiol groups in a reduced state and is involved in a wide range of cellular processes, including ribonucleotide reduction, sulphur assimilation, oxidative stress responses and arsenate detoxification. The industrially important lactic acid bacterium...... Lactococcus lactis contains two Trxs. TrxA is similar to the well-characterized Trx homologue from Escherichia coli and contains the common WCGPC active site motif, while TrxD is atypical and contains an aspartate residue in the active site (WCGDC). To elucidate the physiological roles of the two Trx...... to the wild-type. The lack of TrxA also appears to impair methionine sulphoxide reduction. Both ΔtrxA and ΔtrxD strains displayed growth inhibition after treatment with sodium arsenate and tellurite as compared with the wild-type, suggesting partially overlapping functions of TrxA and TrxD. Overall...

  9. Determination of arsenate and organic arsenic via potentiometric titration of its heteropoly anions.

    Science.gov (United States)

    Metelka, R; Slavíková, S; Vytras, K

    2002-08-16

    Determination of arsenate based on its conversion to molybdoarsenate heteropoly anions followed by potentiometric titration is described. The titration is realized on the ion-pairing principle using cetylpyridinium chloride (or an analogous titrant containing a lipophilic cation), and is monitored by a carbon paste electrode, although other liquid-polymeric membrane-based electrodes can also be used. Calibration plots of the titrant end-point consumption versus concentration of arsenic were constructed and used to evaluate the content of arsenic in aqueous samples. The method could be applied in the analyses of samples with quite low arsenic content (amounts approximately 10 mug As in 50 cm(3) could be titrated). Organic arsenic was determined analogously after the Schöniger combustion of the sample and conversion of its arsenic to arsenate.

  10. PIXE study on absorption of arsenate and arsenite by arsenic hyperaccumulating fern (Pteris vittata)

    International Nuclear Information System (INIS)

    Yamazaki, H.; Ishii, K.; Matsuyama, S.

    2008-01-01

    Pytoremediation using an arsenic hyperaccumulator, Petris vittata L., has generated an increasing interest worldwide due to both environmentally sound and cost effectiveness. However the mechanism of arsenic accumulation by this fern is not clear at this time. This study examined the uptake of arsenate (As(V)) and arsenite (As(III)) by a hydroponic culture of Pteris vittata using both in-air submilli-PIXE for different parts of the fern and in-air micro-PIXE for the tissue cells. These PIXE analysis systems used 3 MeV proton beams from a 4.5-MV single-ended Dynamitron accelerator at Tohoku University, Japan. The fern took up both arsenate and arsenite from hydroponic solutions which were spiked with 50 mg of arsenic per litter. Final amount of arsenic accumulation in the fern is 1,500 mg per kg (wet weight) of the plant biomass in arsenite treatment and 1,100 mg per kg in arsenate treatment. Arsenic accumulation was not observed at the root parts of the ferns. The in-vivo mapping of elements by submilli-PIXE analyses on the fern laminas showed the arsenic accumulation in the edges of a pinna. The micro-PIXE analyses revealed arsenic maps homogeneously distributed in cells of the lamina, stem and rhizome of the fern. These results indicate that arsenic, both arsenate and arsenite in a contaminated medium are translocated quickly from roots to fronds of Pteris vittata, and distributes homogeneously into tissue cells of the fern laminas. (author)

  11. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  12. Photometric titration of arsenate with thorium nitrate on the microgram and milligram scale

    International Nuclear Information System (INIS)

    Harzdorf, C.; Fallah-Tafti, G.

    1976-01-01

    A method is decribed for the photometric titration of arsenate with thorium nitrate using pyrocatecholviolet as indicator. The method works at a low pH level and is therefore not subject to the most cationic interferences. Alkali salts do not affect the determination even at high concentrations if present as halides, nitrates or perchlorates. This makes the method particularly suitable for the analysis of arsenic in organic and inorganic compounds after decomposition. (orig.) [de

  13. Mode of action of sodium arsenate on laboratory colonies of the pharaoh's ant Monomorium pharaonis L

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, K P

    1974-01-01

    Arsenate compounds for pest control have been displayed on large scale by modern insecticides. In the control of the pharaoh's ant the arsenates however still remain an important means for eradication. The present study points out, that the mortality of workers and queens, respectively, are not the decisive factors of action as assumed until now. The causes for the extinction of the ant colonies after application of sodium arsenate are based on a combination of larval mortality and the induction of sterility in the queens, the sterility being the most important factor. A number of other factors moreover are working advantageously. First, the poison bait is not repellent and is well accepted by the workers, and is either stored in the nest or distributed trophalactically. Whereas with the workers there occurs a strongly delayed mortality, the larvae are being inhibited in their development after a few hours, shortly before pupation, or they are being paralyzed, whereby the further pupation would by cut off. The younger larvae normally do not come to pupation, but are being stunted and would be eliminated from the nest. The reproducing females, being the last members in the social chain, are protected in the polygynous society from the lethal action of the poison, although otherwise susceptible in the same way as workers. After a certain time sub-lethal doses of sodium arsenate lead to a decrease in fecundity. Egg production is suppressed dependent on the duration of the poison application up to permanent sterility. On the basis of these investigations some suggestions for practical control of the pharaoh's ant have been derived.

  14. Exogenous proline enhances the sensitivity of Tobacco BY-2 cells to arsenate.

    Science.gov (United States)

    Nahar, Mst Nur-E-Nazmun; Islam, Mohammad Muzahidul; Hoque, Md Anamul; Yonezawa, Anna; Prodhan, Md Yeasin; Nakamura, Toshiyuki; Nakamura, Yoshimasa; Munemasa, Shintaro; Murata, Yoshiyuki

    2017-09-01

    Arsenic causes physiological and structural disorders in plants. Proline is accumulated as a compatible solute in plants under various stress conditions and mitigates stresses. Here, we investigated the effects of exogenous proline on tobacco Bright Yellow-2 (BY-2) cultured cells under [Formula: see text] stress. Arsenate did not inhibit BY-2 cell growth at 40 and 50 μM but did it at 60 μM. Proline at 0.5 to 10 mM did not affect the cell growth but delayed it at 20 mM. At 40 μM [Formula: see text], neither 0.5 mM nor 1 mM proline affected the cell growth but 10 mM proline inhibited it. In the presence of [Formula: see text], 10 mM proline increased the number of Evans Blue-stained (dead) cells and decreased the number of total cells. Together, our results suggest that exogenous proline does not alleviate arsenate toxicity but enhances the sensitivity of BY-2 cells to arsenate.

  15. Arsenate Removal: Comparison of FSM-16 with Low Cost Modified Rice Husk

    International Nuclear Information System (INIS)

    Daifullah, A.A.M.

    2004-01-01

    The recently discovered meso porous molecular sieve FSM-16 was tested as an absorbent for arsenic (V) sorption from aqueous solutions. Its adsorption behavior was evaluated and compared with a low cost sorbent prepared from available agroresidue, rice husk, (boiled with 5% KOH followed by 10 % HCl). Factors affecting sorption of arsenate ions by the two sorbents (e.g., porosity, surface area of the sorbent, equilibrium time, adsorption rate, ph and temperature) were studied using ICP-MS for analysis. The data of adsorption of the two systems were described according to the S-Langmuir type according to the initial slope. The monolayer coverage was 92 and 68 mg/g for FSM-16 and modified rice husk (MRH),respectively, due to the silica content of the former is higher than the latter. The thermodynamic parameters were evaluated and indicated that this adsorption is endothermic process.It was found that the adsorptive capacity for arsenate using MRH represents 75% of that FSM-16. Therefore, the MRH is useful in the removal of arsenate ions due to its low cost, availability, and its good efficiency in this application and no need to be regenerated

  16. Uptake and biotransformation of arsenate in the lichen Hypogymnia physodes (L.) Nyl

    Energy Technology Data Exchange (ETDEWEB)

    Mrak, Tanja [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Slejkovec, Zdenka [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)], E-mail: zdenka.slejkovec@ijs.si; Jeran, Zvonka; Jacimovic, Radojko [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Kastelec, Damijana [Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana (Slovenia)

    2008-01-15

    The uptake and metabolism of arsenate, As(V), as a function of time and concentration were examined in the lichen Hypogymnia physodes (L.) Nyl. Lichen thalli were exposed to As(V) in the form of a solution. Exponential uptake of As(V) from 4 {mu}g mL{sup -1} As(V) solution was accompanied by constant arsenite, As(III), excretion back into the solution. Arsenate taken up into the lichens from 0, 0.1, 1, 10 {mu}g mL{sup -1} As(V) solutions was partially transformed into As(III), dimethylarsinic acid (DMA) and (mono)methylarsonic acid (MA). 48 h after exposure, the main arsenic compound in the lichens was DMA in 0.1, As(III) in 1 and As(V) in 10 {mu}g mL{sup -1} treatment. The proportion of methylated arsenic compounds decreased with increasing arsenate concentration in the exposure solution. These results suggest that at least two types of As(V) detoxification exist in lichens; arsenite excretion and methylation. - Lichens are able to metabolize the inorganic arsenic taken up.

  17. Sodium meta-arsenate for pH-metric determination of rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S [Paraiba Univ. (Brazil). Centro de Ciencias e Tecnologia, Dept. de Engenharia Quimica

    1981-01-01

    An accurate and rapid electrometric method for the determination of praseodymium and thorium as their meta-arsenates has been investigated. It consists in titrating praseodymium chloride and thorium nitrate solutions pH-metrically against a standard solution of sodium meta-arsenate, using a wide range glass electrode in conjunction with S.C.E. A marked change in pH is observed at the end-point corresponding to the precipitation of Pr(AsO/sub 3/)/sub 3/ and Th/sub 3/(AsO/sub 3/)/sub 4/ in the neighbourhood of pH 4.8 and 4.2, respectively. The curves have a regular form and a pronounced maximum in dpH/dV occurs at the end-point. The accuracy and reproducibility of the results have been found to be excellent even at low concentrations (5x10sup(-4)M) of the reactants. pH titration offers a simple, rapid and accurate method for the determination of praseodymium and thorium as their meta-arsenates. Similar titrations were also performed for estimation of samarium but they failed to provide any dependable results.

  18. Uptake and biotransformation of arsenate in the lichen Hypogymnia physodes (L.) Nyl

    International Nuclear Information System (INIS)

    Mrak, Tanja; Slejkovec, Zdenka; Jeran, Zvonka; Jacimovic, Radojko; Kastelec, Damijana

    2008-01-01

    The uptake and metabolism of arsenate, As(V), as a function of time and concentration were examined in the lichen Hypogymnia physodes (L.) Nyl. Lichen thalli were exposed to As(V) in the form of a solution. Exponential uptake of As(V) from 4 μg mL -1 As(V) solution was accompanied by constant arsenite, As(III), excretion back into the solution. Arsenate taken up into the lichens from 0, 0.1, 1, 10 μg mL -1 As(V) solutions was partially transformed into As(III), dimethylarsinic acid (DMA) and (mono)methylarsonic acid (MA). 48 h after exposure, the main arsenic compound in the lichens was DMA in 0.1, As(III) in 1 and As(V) in 10 μg mL -1 treatment. The proportion of methylated arsenic compounds decreased with increasing arsenate concentration in the exposure solution. These results suggest that at least two types of As(V) detoxification exist in lichens; arsenite excretion and methylation. - Lichens are able to metabolize the inorganic arsenic taken up

  19. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood

    International Nuclear Information System (INIS)

    Cao Xinde; Ma, Lena Q.

    2004-01-01

    Leaching of arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil arsenic levels. Thus, an environmental concern arises regarding accumulation of As in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to evaluate As accumulation by vegetables from the soils adjacent to the CCA-treated utility poles and fences and examine the effects of soil amendments on plant As accumulation. Carrot (Daucus carota L.) and lettuce (Lactuca sativa L.) were grown for ten weeks in the soil with or without compost and phosphate amendments. As expected, elevated As concentrations were observed in the pole soil (43 mg kg -1 ) and in the fence soil (27 mg kg -1 ), resulting in enhanced As accumulation of 44 mg kg -1 in carrot and 32 mg kg -1 in lettuce. Addition of phosphate to soils increased As accumulation by 4.56-9.3 times for carrot and 2.45-10.1 for lettuce due to increased soil water-soluble As via replacement of arsenate by phosphate in soil. However, biosolid compost application significantly reduced plant As uptake by 79-86%, relative to the untreated soils. This suppression is possibly because of As adsorbed by biosolid organic mater, which reduced As phytoavailability. Fractionation analysis showed that biosolid decreased As in soil water-soluble, exchangeable, and carbonate fraction by 45%, whereas phosphate increased it up to 2.61 times, compared to the untreated soils. Our results indicate that growing vegetables in soils near CCA-treated wood may pose a risk of As exposure for humans. Compost amendment can reduce such a risk by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils. Caution should be taken for phosphate application since it enhances As accumulation. - Capsule: Compost amendment can reduce As exposure risk for humans by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils

  20. RiArsB and RiMT-11: Two novel genes induced by arsenate in arbuscular mycorrhiza.

    Science.gov (United States)

    Maldonado-Mendoza, Ignacio E; Harrison, Maria J

    Plants associated with arbuscular mycorrhizal fungi (AMF) increase their tolerance to arsenic-polluted soils. This study aims to investigate the genes involved in the AMF molecular response to arsenic pollution. Genes encoding proteins involved in arsenic metabolism were identified and their expression assessed by PCR or RT-qPCR. The As-inducible gene GiArsA (R. irregularis ABC ATPase component of the ArsAB arsenite efflux pump) and two new genes, an arsenate/arsenite permease component of ArsAB (RiArsB) and a methyltransferase type 11 (RiMT-11) were induced when arsenate was added to two-compartment in vitro monoxenic cultures of R. irregularis-transformed carrot roots. RiArsB and RiMT-11 expression in extraradical hyphae in response to arsenate displayed maximum induction 4-6 h after addition of 350 μM arsenate. Their expression was also detected in colonized root tissues grown in pots, or in the root-fungus compartment of two-compartment in vitro systems. We used a Medicago truncatula double mutant (mtpt4/mtpt8) to demonstrate that RiMT-11 and RiArsB transcripts accumulate in response to the addition of arsenate but not in response to phosphate. These results suggest that these genes respond to arsenate addition regardless of non-functional Pi symbiotic transport, and that RiMT-11 may be involved in arsenate detoxification by methylation in AMF-colonized tissues. Copyright © 2017 British Mycological Society. All rights reserved.

  1. Removal of arsenate by ferrihydrite via surface complexation and surface precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiuli [Department of Environment Engineering, College of the Environment and Ecology, and The Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen (China); Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, and The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen (China); Peng, Changjun; Fu, Dun; Chen, Zheng [Department of Environment Engineering, College of the Environment and Ecology, and The Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen (China); Shen, Liang [Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, and The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen (China); Li, Qingbiao [Department of Environment Engineering, College of the Environment and Ecology, and The Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen (China); Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, and The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen (China); Ouyang, Tong, E-mail: yz3t@xmu.edu.cn [Department of Environment Engineering, College of the Environment and Ecology, and The Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen (China); Wang, Yuanpeng, E-mail: wypp@xmu.edu.cn [Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, and The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen (China)

    2015-10-30

    Graphical abstract: - Highlights: • Surface complexation and surface precipitation of As on ferrihydrite happen at pH 3–6. • The formation of surface precipitation enhanced As(V) adsorption. • The dissolved Fe{sup 3+} had a good linear relationship with the amount of arsenate re-adsorption. - Abstract: In this study, macroscopic and spectroscopic experimental methods accurately modeled the sorption process of arsenate on ferrihydrite. EXAFS, X-ray diffraction and infrared (IR) spectroscopy indicated that the behavior of As(V) adsorption onto ferrihydrite took place mainly via surface complexation and surface precipitation at acidic pH (3.0–6.0), while the surface precipitation was dominated at longer time intervals and higher Fe{sup 3+} concentration. The macroscopic competitive adsorption experiment between arsenate with phosphate indicated two types of adsorption sites existing on the surface of ferrihydrite, i.e., non-exchangeable sites, which are responsible for a rapid surface complex formation; and exchangeable sites for a slow build-up of surface precipitates. In the slow build-up precipitates, the As(V) surface coverage (mmol/g) exhibited a good linear relationship (R{sup 2} = 0.952) with the amount of dissolved Fe{sup 3+}. Three steps are involved during the process of surface precipitation, i.e., (1) an initial uptake of As(V) via surface complexation; (2) re-adsorption of Fe{sup 3+} leaching from ferrihydrite on the surface complex; and (3) As(V) adsorption via surface complexation again and finally forming the surface precipitate.

  2. Effect of ionophores on phosphate and arsenate transport in Micrococcus lysodeikticus

    Energy Technology Data Exchange (ETDEWEB)

    Friedberg, I

    1977-09-01

    The effects of ionophores on P/sub i/ and arsenate transport, at acid and alkaline environment, were investigated in whole cells of Micrococcus lysodeikticus, a Gram positive obligatory aerobic bacterium. The results suggest that both ..delta.. Psi and ..delta.. pH contribute to the driving force of P/sub i/ transport; ..delta.. Psi seems to be predominant at pH 7.8, whereas at pH 5.5, the transport is primarily driven by ..delta.. pH. 12 references, 1 figure.

  3. Effectiveness of Iron Filings in Arsenate and Arsenite Removal from Drinking Water

    Directory of Open Access Journals (Sweden)

    AliReza Asgari

    2009-09-01

    Full Text Available Groundwater contamination with arsenic (As has been recognized as a serious problem and there are various reports from different regions, especially from Kurdistan Providence, indicating the presence of As in the from of arsenate and arsenite in water recourses. Removal of these compounds can be accomplished by various methods but they are all expensive. In this study, three concentrations (0.5, 1, and 1 mg/L of iron filings (0.25, 0.5, 1 and 1.5 grams were used as a cheap and available material for adsorption of As and the effects of contact time and pH as well as chloride and sulfate ion concentrations on removal efficiency were determined. Description of adsorption isotherms (Ferundlich and Langmuir was accomplished. Finally, the data obtained were analyzed using the Excel softwere. The results indicate that iron filings show a high capability in adsorbing both arsenate and arsenic compounds from polluted water samples at pH 7 over a short contact time of 30 minutes. In fact, this cheap adsorbent shows good treatment when used at doses as low as 1g/L with no considerable interference by interfering anions (SO42- and Cl-. It appears that the absorbability of both arsenate and arsenite by iron filings can be expressed by Ferundlich isotherm with R2>0.96, whereas arsenate adsorption (with a R2 value of more than 0.96 can be better described by Langmuir isotherm than arsenite (with R2 value of more than 0.91. Results also indicate that the amount of iron added to water is much more than the standard value of 0.3mg/L set for dinking water. Nevertheless, this method has far greater advantages in terms of costs and availability than similar methods. Besides, as removal by this method is efficient without pH modification, iron filing treatment of drinking water may, therefore, be recomnended as a convenient solution to the problem of water resources polluted with As in Iran.

  4. Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides.

    Science.gov (United States)

    Zhang, Xin; Lin, Ai-Jun; Zhao, Fang-Jie; Xu, Guo-Zhong; Duan, Gui-Lan; Zhu, Yong-Guan

    2008-12-01

    This study investigates As accumulation and tolerance of the aquatic fern Azolla. Fifty strains of Azolla showed a large variation in As accumulation. The highest- and lowest-accumulating ferns among the 50 strains were chosen for further investigations. Azolla caroliniana accumulated two times more As than Azolla filiculoides owing to a higher influx velocity for arsenate. A. filiculoides was more resistant to external arsenate due to a lower uptake. Both strains showed a similar degree of tolerance to internal As. Arsenate and arsenite were the dominant As species in both Azolla strains, with methylated As species accounting for Azolla in paddy fields to reduce As transfer from soil and water to rice should be further evaluated.

  5. Selective Removal of Toxic Metals like Copper and Arsenic from Drinking Water Using Phenol-Formaldehyde Type Chelating Resins

    Directory of Open Access Journals (Sweden)

    Debasis Mohanty

    2009-01-01

    Full Text Available The concentration of different toxic metals has increased beyond environmentally and ecologically permissible levels due to the increase in industrial activity. More than 100 million people of Bangladesh and West Bengal in India are affected by drinking ground water contaminated with arsenic and some parts of India is also affected by poisoning effect of copper, cadmium and fluoride. Different methods have been evolved to reduce the arsenic concentration in drinking water to a maximum permissible level of 10 μg/L where as various methods are also available to separate copper from drinking water. Of the proven methods available today, removal of arsenic by polymeric ion exchangers has been most effective. While chelating ion exchange resins having specific chelating groups attached to a polymer have found extensive use in sorption and pre concentration of Cu2+ ions. Both the methods are coupled here to separate and preconcentrate toxic metal cation Cu2+ and metal anion arsenate(AsO4– at the same time. We have prepared a series of low-cost polymeric resins, which are very efficient in removing copper ion from drinking water and after coordinating with copper ion they act as polymeric ligand exchanger, which are efficiently removing arsenate from drinking water. For this purpose Schiff bases were prepared by condensing o-phenylenediamine with o-, m-, and p-hydroxybenzaldehydes. Condensing these phenolic Schiff bases with formaldehyde afforded the chelating resins in high yields. These resins are loaded with Cu2+, Ni2+ 2+, and Fe3+ ions. The resins and the polychelates are highly insoluble in water. In powdered form the metal ion-loaded resins are found to very efficiently remove arsenate ion from water at neutral pH. Resins loaded with optimum amount of Cu2+ ion is more effective in removing arsenate ions compared to those with Fe3+ ion, apparently because Cu2+ is a stronger Lewis acid than Fe3+. Various parameters influencing the removal of the

  6. Weight loss studies of fastener materials corrosion in contact with timbers treated with copper azole and alkaline copper quaternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kear, Gareth [Building Research Association of New Zealand (BRANZ) Ltd., Science and Engineering Services, Private Bag 50 908, Porirua City 5240 (New Zealand)], E-mail: G.Kear@soton.ac.uk; Wu Haizhen; Jones, Mark S. [Building Research Association of New Zealand (BRANZ) Ltd., Science and Engineering Services, Private Bag 50 908, Porirua City 5240 (New Zealand)

    2009-02-15

    Corrosion rates of mild steel, AISI 316 stainless steel and hot-dipped galvanised steel in contact with preservative-treated Pinus radiata have been determined using four distinct accelerated (49 {+-} 1 deg. C) and non-accelerated (21 {+-} 2 deg. C) weight loss methodologies. The data were measured as a function of timber moisture content and copper concentration over periods of exposure ranging from 2 weeks to 14 months. The results show that the corrosion resistance of the stainless steel was not influenced by classification or magnitude of preservative loading. Corrosion rates of this material were multiple orders of magnitude lower than those of the mild and galvanised steels. In most instances, corrosion rates of hot-dipped galvanised layers in contact with alkaline copper quaternary-treated timbers were up to a factor of 10 times, or greater, than those measured for copper-chrome-arsenate treatments. A direct negative influence of copper ion concentration on the corrosion resistance of mild steel was also observed for each preservative type.

  7. Effects of lead arsenate sprays on the fruit growth and sugar and acid contents in Natsudaidai (Citrus natsudaidai Hayata)

    Energy Technology Data Exchange (ETDEWEB)

    Kadoya, K; Kuraoka, T; Matsumoto, K

    1965-01-01

    The juice of the fruit of Citrus natsudaidai is characterized by high acidity. The acidity of the juice was most effectively reduced by treatment with lead arsenate spray at an early fruit growth stage when the acids were being most actively formed. The water-soluble organic acid content of leaves was not affected. The sugar content of the juice was increased by the treatment. The activity of phosphoenolpyruvate carboxylase was lowered in the vesicles of fruit sprayed with lead arsenate. It was also much depressed in the extracts from normal fruit when arsenic trioxide was added. Arsenic was detected in the vesicles of treated fruit. 15 references, 9 figures.

  8. Na₃Co₂(AsO₄)(As₂O₇): a new sodium cobalt arsenate.

    Science.gov (United States)

    Guesmi, Abderrahmen; Driss, Ahmed

    2012-07-01

    In the title compound, tris-odium dicobalt arsenate diarsenate, Na₃Co₂AsO₄As₂O₇, the two Co atoms, one of the two As and three of the seven O atoms lie on special positions, with site symmetries 2 and m for the Co, m for the As, and 2 and twice m for the O atoms. The two Na atoms are disordered over two general and special positions [occupancies 0.72 (3):0.28 (3) and 0.940 (6):0.060 (6), respectively]. The main structural feature is the association of the CoO₆ octa-hedra in the ab plane, forming Co₄O₂₀ units, which are corner- and edge-connected via AsO₄ and As₂O₇ arsenate groups, giving rise to a complex polyhedral connectivity with small tunnels, such as those running along the b- and c-axis directions, in which the Na⁺ ions reside. The structural model is validated by both bond-valence-sum and charge-distribution methods, and the distortion of the coordination polyhedra is analyzed by means of the effective coordination number.

  9. Effects of Chronic Exposure to Sodium Arsenate on Kidney of Rats

    Directory of Open Access Journals (Sweden)

    Namdar Yousofvand

    2015-09-01

    Full Text Available Background: In the present study, histopathological effects of chronic exposure to sodium arsenate in drinkable water were studied on a quantity of organs of rat. Methods: Rats were divided into two groups, group I; served as control group, were main-tained on deionized drinkable water for 2 months, and group II; the study group were given 60 g/ml of sodium arsenate in deionized drinkable water for 2 months. Blood and urine samples from two groups of animals were collected under anesthesia and the animals were sacrificed under deep anesthesia (a-chloralose, 100 mg/kg, I.P. Their kidney, liver, aorta, and heart were dissected out and cleaned of surrounding connective tissue. The organs were kept in formaldehyde (10% for histopathologic examination. Serum and urine samples from two groups were collected and analyzed for arsenic level. Total quantity of arsenic in serum and urine of animal was measured through graphic furnace atomic absorption spectrometry (GF-AAS. Results:Examination with light microscopy did not show any visible structural changes in the aorta, myocardium, and liver of chronic arsenic treated animals.However, a significant effect was observed in the kidneys of chronic arsenic treated rats showing distinct changes in proxi-mal tubular cells. There was high concentration of arsenic in serum and urine of arsenic ex-posed animals (group II significantly (P<0.001. Conclusion:Swollen tubular cells in histopathologic study of kidney may suggest toxic effects of arsenic in the body.

  10. Developmental consequences of in utero sodium arsenate exposure in mice with folate transport deficiencies

    International Nuclear Information System (INIS)

    Spiegelstein, Ofer; Gould, Amy; Wlodarczyk, Bogdan; Tsie, Marlene; Lu Xiufen; Le, Chris; Troen, Aron; Selhub, Jacob; Piedrahita, Jorge A.; Salbaum, J. Michael; Kappen, Claudia; Melnyk, Stepan; James, Jill; Finnell, Richard H.

    2005-01-01

    Previous studies have demonstrated that mice lacking a functional folate binding protein 2 gene (Folbp2 -/- ) were significantly more sensitive to in utero arsenic exposure than were the wild-type mice similarly exposed. When these mice were fed a folate-deficient diet, the embryotoxic effect of arsenate was further exacerbated. Contrary to expectations, studies on 24-h urinary speciation of sodium arsenate did not demonstrate any significant difference in arsenic biotransformation between Folbp2 -/- and Folbp2 +/+ mice. To better understand the influence of folate pathway genes on arsenic embryotoxicity, the present investigation utilized transgenic mice with disrupted folate binding protein 1 (Folbp1) and reduced folate carrier (RFC) genes. Because complete inactivation of Folbp1 and RFC genes results in embryonic lethality, we used heterozygous animals. Overall, no RFC genotype-related differences in embryonic susceptibility to arsenic exposure were observed. Embryonic lethality and neural tube defect (NTD) frequency in Folbp1 mice was dose-dependent and differed from the RFC mice; however, no genotype-related differences were observed. The RFC heterozygotes tended to have higher plasma levels of S-adenosylhomocysteine (SAH) than did the wild-type controls, although this effect was not robust. It is concluded that genetic modifications at the Folbp1 and RFC loci confers no particular sensitivity to arsenic toxicity compared to wild-type controls, thus disproving the working hypothesis that decreased methylating capacity of the genetically modified mice would put them at increased risk for arsenic-induced reproductive toxicity

  11. Kinetics and thermodynamic for sorption of arsenate by Lanthanum-exchanged zeolite

    International Nuclear Information System (INIS)

    Mohd Jelas Haron; Saiful Adli Masdan; Mohd Zobir Hussein; Zulkarnain Zainal; Anuar Kassim

    2007-01-01

    Zeolites are crystalline, hydrated aluminosilicate containing exchangeable alkaline and alkaline earth cations in their structural frameworks. Since zeolites have permanent negative charges on their surfaces, they have no affinity for anions. However recent studies have shown that modification of zeolites with certain surfactants or metal cations yield sorbents with a strong affinity for many anions. In this paper, modification of zeolites (zeolite A, X and ZSM5) were performed by exchange of naturally occurring cations with lanthanum ion that forms low solubility arsenate salt. The exchanged zeolites were used to sorb arsenate from aqueous solution. Among parameters investigated were effect of pH, arsenate initial concentrations, contact time and temperature. The maximum exchanged capacity of La (III) ion was obtained when using solution with initial pH of 4. Zeolite X gives the highest La (III) exchanged capacity compared to other zeolites. The results showed that As (V) sorption by La-zeolites occurred at about pH 6.5 and increased as pH increased and reaching maximum at equilibrium pH about 7.8. On the other hand, almost no arsenate sorption occurred on un exchanged zeolites. This indicates that La (III) ion on the exchanged zeolites is taking part on the As(V) sorption via surface precipitation. The results also showed that the sorption capacities increased with increasing initial As (V) concentrations. The sorption followed Langmuir model with maximum sorption capacities of 0.41, 0.21 and 0.19 mmol/g at 25 degree Celsius for La exchanged zeolite X (La-ZX), La exchanged zeolite ZSM5 (La-ZSM) and La exchanged zeolite A (La-ZA), respectively. The amounts of sorption of As (V) by La exchanged zeolite increased as temperature increased from 25 to 70 degree Celsius indicating that the process is endothermic. The free energy changes ( ΔG degree) for the sorption at 25 degree Celsius were -10.25, -9.65 and -8.49 kJ/ mol for La-ZX, La-ZSM and La-ZA, respectively. The

  12. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  13. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  14. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  15. Arsenic accumulation by the aquatic fern Azolla: Comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xin [State Key Lab of Urban and ONAL Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Lin Aijun [Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zhao Fangjie [Soil Science Department, Rothamsted Research, Hertfordshire AL5 2JQ (United Kingdom); Xu Guozhong [Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013 (China); Duan Guilan [State Key Lab of Urban and ONAL Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhu Yongguan [State Key Lab of Urban and ONAL Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361003 (China)], E-mail: ygzhu@rcees.ac.cn

    2008-12-15

    This study investigates As accumulation and tolerance of the aquatic fern Azolla. Fifty strains of Azolla showed a large variation in As accumulation. The highest- and lowest-accumulating ferns among the 50 strains were chosen for further investigations. Azolla caroliniana accumulated two times more As than Azolla filiculoides owing to a higher influx velocity for arsenate. A. filiculoides was more resistant to external arsenate due to a lower uptake. Both strains showed a similar degree of tolerance to internal As. Arsenate and arsenite were the dominant As species in both Azolla strains, with methlyated As species accounting for <5% of the total As. A. filiculoides had a higher proportion of arsenite than A. caroliniana. Both strains effluxed more arsenate than arsenite, and the amount of As efflux was proportional to the amount of As accumulation. The potential of growing Azolla in paddy fields to reduce As transfer from soil and water to rice should be further evaluated. - Arsenic accumulation and efflux differ between strains of the aquatic fern Azolla.

  16. Role of uniform pore structure and high positive charges in the arsenate adsorption performance of Al13-modified montmorillonite

    International Nuclear Information System (INIS)

    Zhao, Shou; Feng, Chenghong; Huang, Xiangning; Li, Baohua; Niu, Junfeng; Shen, Zhenyao

    2012-01-01

    Highlights: ► Al 13 modification changes As(V) sorption mechanism of montmorillonites. ► Intercalated ion charges mainly affects As(V) adsorption kinetics. ► Uniform pore structure exhibit more excellent As(V) adsorption performance. - Abstract: Four modified montmorillonite adsorbents with varied Al 13 contents (i.e., Na-Mont, AC-Mont, PAC 20 -Mont, and Al 13 -Mont) were synthesized and characterized by N 2 adsorption/desorption, X-ray diffraction, and Fourier-transform infrared analyses. The arsenate adsorption performance of the four adsorbents were also investigated to determine the role of intercalated Al 13 , especially its high purity, high positive charge (+7), and special Keggin structure. With increased Al 13 content, the physicochemical properties (e.g., surface area, structural uniformity, basal spacing, and pore volume) and adsorption performance of the modified montmorillonites were significantly but disproportionately improved. The adsorption data well fitted the Freundlich and Redlich–Peterson isotherm model, whereas the kinetic data better correlated with the pseudo-second-order kinetic model. The arsenate sorption mechanism of the montmorillonites changed from physical to chemisorption after intercalation with Al 13 . Increasing charges of the intercalated ions enhanced the arsenate adsorption kinetics, but had minimal effect on the structural changes of the montmorillonites. The uniform pore structure formed by intercalation with high-purity Al 13 greatly enhanced the pore diffusion and adsorption rate of arsenate, resulting in the high adsorption performance of Al 13 -Mont.

  17. Arsenate and Arsenite Sorption on Magnetite: Relations to Groundwater Arsenic Treatment Using Zerovalent Iron and Natural Attenuation

    Science.gov (United States)

    Magnetite (Fe3O4) is a zerovalent iron corrosion product; it is also formed in natural soil and sediment. Sorption of arsenate (As(V)) and arsenite (As(III)) on magnetite is an important process of arsenic removal from groundwater using zerovalent iron-based permeable reactive ba...

  18. Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles Lake, California

    Science.gov (United States)

    Blum, Jodi Switzer; Kulp, Thomas R.; Han, Sukkyun; Lanoil, Brian; Saltikov, Chad W.; Stolz, John F.; Miller, Laurence G.; Oremland, Ronald S.

    2012-01-01

    A haloalkaliphilic sulfate-respiring bacterium, strain SLSR-1, was isolated from a lactate-fed stable enrichment culture originally obtained from the extreme environment of Searles Lake, California. The isolate proved capable of growth via sulfate-reduction over a broad range of salinities (125–330 g/L), although growth was slowest at salt-saturation. Strain SLSR-1 was also capable of growth via dissimilatory arsenate-reduction and displayed an even broader range of salinity tolerance (50–330 g/L) when grown under these conditions. Strain SLSR-1 could also grow via dissimilatory nitrate reduction to ammonia. Growth experiments in the presence of high borate concentrations indicated a greater sensitivity of sulfate-reduction than arsenate-respiration to this naturally abundant anion in Searles Lake. Strain SLSR-1 contained genes involved in both sulfate-reduction (dsrAB) and arsenate respiration (arrA). Amplicons of 16S rRNA gene sequences obtained from DNA extracted from Searles Lake sediment revealed the presence of close relatives of strain SLSR-1 as part of the flora of this ecosystem despite the fact that sulfate-reduction activity could not be detected in situ. We conclude that strain SLSR-1 can only achieve growth via arsenate-reduction under the current chemical conditions prevalent at Searles Lake. Strain SLSR-1 is a deltaproteobacterium in the family Desulfohalobiacea of anaerobic, haloalkaliphilic bacteria, for which we propose the name Desulfohalophilus alkaliarsenatis gen. nov., sp. nov.

  19. Mediator, SWI/SNF and SAGA complexes regulate Yap8-dependent transcriptional activation of ACR2 in response to arsenate.

    Science.gov (United States)

    Menezes, Regina Andrade; Pimentel, Catarina; Silva, Ana Rita Courelas; Amaral, Catarina; Merhej, Jawad; Devaux, Frédéric; Rodrigues-Pousada, Claudina

    2017-04-01

    Response to arsenic stress in Saccharomyces cerevisiae is orchestrated by the regulatory protein Yap8, which mediates transcriptional activation of ACR2 and ACR3. This study contributes to the state of art knowledge of the molecular mechanisms underlying yeast stress response to arsenate as it provides the genetic and biochemical evidences that Yap8, through cysteine residues 132, 137, and 274, is the sensor of presence of arsenate in the cytosol. Moreover, it is here reported for the first time the essential role of the Mediator complex in the transcriptional activation of ACR2 by Yap8. Based on our data, we propose an order-of-function map to recapitulate the sequence of events taking place in cells injured with arsenate. Modification of the sulfhydryl state of these cysteines converts Yap8 in its activated form, triggering the recruitment of the Mediator complex to the ACR2/ACR3 promoter, through the interaction with the tail subunit Med2. The Mediator complex then transfers the regulatory signals conveyed by Yap8 to the core transcriptional machinery, which culminates with TBP occupancy, ACR2 upregulation and cell adaptation to arsenate stress. Additional co-factors are required for the transcriptional activation of ACR2 by Yap8, particularly the nucleosome remodeling activity of SWI/SNF and SAGA complexes. Copyright © 2017. Published by Elsevier B.V.

  20. Facile synthesis of size-tunable gold nanoparticles by pomegranate (Punica granatum) leaf extract: Applications in arsenate sensing

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Ashit; Mahajan, Ketakee; Bankar, Ashok [Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411007 (India); Srikanth, Rapole [Proteomics Laboratory, National Centre for Cell Science, Pune 411007 (India); Kumar, Ameeta Ravi [Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411007 (India); Gosavi, Suresh, E-mail: swg@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India); Centre for Sensor Studies, University of Pune, Pune 411007 (India); Zinjarde, Smita, E-mail: smita@unipune.ac.in [Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411007 (India); Centre for Sensor Studies, University of Pune, Pune 411007 (India)

    2013-03-15

    Highlights: ► Pomegranate leaf extracts mediated rapid gold nanoparticle (AuNP) synthesis. ► The phyto-inspired AuNPs were size-tuned and characterized. ► The reducing and capping agents in the extract were identified. ► The nanoparticles reacted specifically with arsenate (V) ions. - Abstract: When pomegranate leaf extracts were incubated with chloroauric acid (HAuCl{sub 4}), gold nanoparticles (AuNPs) were synthesized. These were characterized by a variety of techniques. With an increasing content of the leaf extract, a gradual decrease in size and an increase in monodispersity were observed. Transmission electron microscope (TEM) images showed that the phyto-fabricated AuNPs were surrounded by an amorphous layer. Gallic acid in the extract mediated the reduction and a natural decapeptide capped the nanostructures. Blocking of thiol groups in the decapeptide cysteine residues caused the nanoparticles to aggregate. On interaction with arsenate (V) ions, the UV–vis spectra of the nanoparticles showed a decrease in intensity and a red-shift. Energy dispersive spectra confirmed the presence of arsenate associated with the AuNPs. Thus, by using these AuNPs, a method for sensing the toxic arsenate ions could be developed.

  1. Facile synthesis of size-tunable gold nanoparticles by pomegranate (Punica granatum) leaf extract: Applications in arsenate sensing

    International Nuclear Information System (INIS)

    Rao, Ashit; Mahajan, Ketakee; Bankar, Ashok; Srikanth, Rapole; Kumar, Ameeta Ravi; Gosavi, Suresh; Zinjarde, Smita

    2013-01-01

    Highlights: ► Pomegranate leaf extracts mediated rapid gold nanoparticle (AuNP) synthesis. ► The phyto-inspired AuNPs were size-tuned and characterized. ► The reducing and capping agents in the extract were identified. ► The nanoparticles reacted specifically with arsenate (V) ions. - Abstract: When pomegranate leaf extracts were incubated with chloroauric acid (HAuCl 4 ), gold nanoparticles (AuNPs) were synthesized. These were characterized by a variety of techniques. With an increasing content of the leaf extract, a gradual decrease in size and an increase in monodispersity were observed. Transmission electron microscope (TEM) images showed that the phyto-fabricated AuNPs were surrounded by an amorphous layer. Gallic acid in the extract mediated the reduction and a natural decapeptide capped the nanostructures. Blocking of thiol groups in the decapeptide cysteine residues caused the nanoparticles to aggregate. On interaction with arsenate (V) ions, the UV–vis spectra of the nanoparticles showed a decrease in intensity and a red-shift. Energy dispersive spectra confirmed the presence of arsenate associated with the AuNPs. Thus, by using these AuNPs, a method for sensing the toxic arsenate ions could be developed

  2. TISSUE DISTRIBUTION OF INORGANIC ARSENIC (AS) AND ITS METHYLATED METABOLITES IN MICE FOLLOWING ORAL ADMINISTRATION OF ARSENATE (ASV)

    Science.gov (United States)

    TISSUE DISTRIBUTION OF INORGANIC ARSENIC (iAs) AND ITS METHYLATED METABOLITES IN MICE FOLLOWING ORAL ADMINISTRATION OF ARSENATE (AsV). E M Kenyon1, L M Del Razo2, and M F Hughes1. 1NHEERL, ORD, US EPA, RTP, NC, USA; 2CINVESTAV-IPN, Mexico City, Mexico.The relationship o...

  3. Arsenic accumulation by the aquatic fern Azolla: Comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides

    International Nuclear Information System (INIS)

    Zhang Xin; Lin Aijun; Zhao Fangjie; Xu Guozhong; Duan Guilan; Zhu Yongguan

    2008-01-01

    This study investigates As accumulation and tolerance of the aquatic fern Azolla. Fifty strains of Azolla showed a large variation in As accumulation. The highest- and lowest-accumulating ferns among the 50 strains were chosen for further investigations. Azolla caroliniana accumulated two times more As than Azolla filiculoides owing to a higher influx velocity for arsenate. A. filiculoides was more resistant to external arsenate due to a lower uptake. Both strains showed a similar degree of tolerance to internal As. Arsenate and arsenite were the dominant As species in both Azolla strains, with methlyated As species accounting for <5% of the total As. A. filiculoides had a higher proportion of arsenite than A. caroliniana. Both strains effluxed more arsenate than arsenite, and the amount of As efflux was proportional to the amount of As accumulation. The potential of growing Azolla in paddy fields to reduce As transfer from soil and water to rice should be further evaluated. - Arsenic accumulation and efflux differ between strains of the aquatic fern Azolla

  4. Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase

    Directory of Open Access Journals (Sweden)

    Dugas Sandra L

    2003-07-01

    Full Text Available Abstract Background The ars gene system provides arsenic resistance for a variety of microorganisms and can be chromosomal or plasmid-borne. The arsC gene, which codes for an arsenate reductase is essential for arsenate resistance and transforms arsenate into arsenite, which is extruded from the cell. A survey of GenBank shows that arsC appears to be phylogenetically widespread both in organisms with known arsenic resistance and those organisms that have been sequenced as part of whole genome projects. Results Phylogenetic analysis of aligned arsC sequences shows broad similarities to the established 16S rRNA phylogeny, with separation of bacterial, archaeal, and subsequently eukaryotic arsC genes. However, inconsistencies between arsC and 16S rRNA are apparent for some taxa. Cyanobacteria and some of the γ-Proteobacteria appear to possess arsC genes that are similar to those of Low GC Gram-positive Bacteria, and other isolated taxa possess arsC genes that would not be expected based on known evolutionary relationships. There is no clear separation of plasmid-borne and chromosomal arsC genes, although a number of the Enterobacteriales (γ-Proteobacteria possess similar plasmid-encoded arsC sequences. Conclusion The overall phylogeny of the arsenate reductases suggests a single, early origin of the arsC gene and subsequent sequence divergence to give the distinct arsC classes that exist today. Discrepancies between 16S rRNA and arsC phylogenies support the role of horizontal gene transfer (HGT in the evolution of arsenate reductases, with a number of instances of HGT early in bacterial arsC evolution. Plasmid-borne arsC genes are not monophyletic suggesting multiple cases of chromosomal-plasmid exchange and subsequent HGT. Overall, arsC phylogeny is complex and is likely the result of a number of evolutionary mechanisms.

  5. Embryotoxicity of arsenite and arsenate. Distribution in pregnant mice and monkeys and effects on embryonic cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, A; Danielsson, R G; Dencker, L [Department of Toxicology, Biomedical Center, Uppsala University, Sweden; Vahter, M [National Institute of Environmental Medicine, Stockholm, Sweden

    1984-01-01

    The distribution of /sup 74/As-labelled arsenate and arsenite in pregnant mice and a monkey has been studied by autoradiography and gamma counting of isolated tissues, and their in vitro toxicity to a chondrogenic system has been investigated. With both arsenic forms, given as single intravenous injections to the mother, the /sup 74/As-arsenic appeared to pass the mouse placenta relatively freely and approximately to the same extent. The retention time in material tissues including the placenta was, however, around three times longer with arsenite than with arsenate. In early gestation, high activity was registered in the embryonic neuroepithelium, which correlates well with reported CNS malformations in rodents. In late gestation, the distribution pattern was more like that in the adults. Accumulation in skin and squamous epithelia of the upper gastrointestinal tract (oral cavity, oesophagus and oesophageal region of stomach) dominated the distribution pucture, especially at a long survival interval. Arsenate, but not arsenite, showed affinity for the calcified areas of the skeleton. A marmoset monkey in late gestation receiving arsenite showed a somewhat lower rate of placental transfer than the mice. Skin and liver had the highest concentrations (at 8 hrs), both in mother and foetuses. This species is known not to methylate arsenic, resulting in stronger binding and longer retention times of arsenic as compared with other species. The stronger binding in maternal tissues may possibly explain the lower rate of placental transfer. Arsenite was shown to inhibit cartilage formation in a chick limb bud mesenchymal spot culture system (ED50 approximately 5-10..mu..M) while arsenate seemed to be without effect at concentrations up to 200 ..mu..M (highest tested). Arsenate, however, showed a potential of the arsenite toxicity.

  6. Rice-arsenate interactions in hydroponics: a three-gene model for tolerance.

    Science.gov (United States)

    Norton, Gareth J; Nigar, Meher; Williams, Paul N; Dasgupta, Tapash; Meharg, Andrew A; Price, Adam H

    2008-01-01

    In this study, the genetic mapping of the tolerance of root growth to 13.3 muM arsenate [As(V)] using the BalaxAzucena population is improved, and candidate genes for further study are identified. A remarkable three-gene model of tolerance is advanced, which appears to involve epistatic interaction between three major genes, two on chromosome 6 and one on chromosome 10. Any combination of two of these genes inherited from the tolerant parent leads to the plant having tolerance. Lists of potential positional candidate genes are presented. These are then refined using whole genome transcriptomics data and bioinformatics. Physiological evidence is also provided that genes related to phosphate transport are unlikely to be behind the genetic loci conferring tolerance. These results offer testable hypotheses for genes related to As(V) tolerance that might offer strategies for mitigating arsenic (As) accumulation in consumed rice.

  7. Rice–arsenate interactions in hydroponics: a three-gene model for tolerance

    Science.gov (United States)

    Norton, Gareth J.; Nigar, Meher; Dasgupta, Tapash; Meharg, Andrew A.; Price, Adam H.

    2008-01-01

    In this study, the genetic mapping of the tolerance of root growth to 13.3 μM arsenate [As(V)] using the Bala×Azucena population is improved, and candidate genes for further study are identified. A remarkable three-gene model of tolerance is advanced, which appears to involve epistatic interaction between three major genes, two on chromosome 6 and one on chromosome 10. Any combination of two of these genes inherited from the tolerant parent leads to the plant having tolerance. Lists of potential positional candidate genes are presented. These are then refined using whole genome transcriptomics data and bioinformatics. Physiological evidence is also provided that genes related to phosphate transport are unlikely to be behind the genetic loci conferring tolerance. These results offer testable hypotheses for genes related to As(V) tolerance that might offer strategies for mitigating arsenic (As) accumulation in consumed rice. PMID:18453529

  8. Modeling of electrodialytic and dialytic removal of Cr, Cu and As from CCA-treated wood chips

    DEFF Research Database (Denmark)

    Ribeiro, Alexandra; Rodriguez-Maroto, J.M.; Mateus, Eduardo

    2007-01-01

    + and NO3 used as electrolyte solutions in the electrode compartments, and oxalate ions and protons incorporated with the oxalic acid solution during wood chips incubation. The model simulation also takes into account that OH generated on the cathode, during electrodialytic remediation, is periodically...... neutralized by addition of nitric acid in the cathode compartment. The anion and cation-exchange membranes are simply represented as ionic filters that preclude the transport of co-ions (the cations and anions respectively) with the exception of H+, which is retarded but considered to pass through the anion...

  9. A comparative study on Cu, Cr and As removal from CCA-treated wood waste by dialytic and electrodialytic processes

    DEFF Research Database (Denmark)

    Velizarova, Emiliya; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2002-01-01

    with the performance of a pure dialytic experiment (without an external power supply) in order to reveal transport of charged particles induced solely by internal electrochemical potential differences in the system. Oxalic acid proved to be a more suitable pre-treatment solution than deionised water for wood chips...

  10. Neutralization of arsenic pollutants, contained in natural waters: The theoretical analysis of solubility of some arsenates and optimization of the processes

    Directory of Open Access Journals (Sweden)

    Marta Litynska

    2017-01-01

    Full Text Available Arsenic belongs to chemical elements, which are often found in natural waters and make it unsuitable for consumption without special treatment. Neutralization of arsenic pollutants of natural waters by converting them into insoluble form is one of the perspective methods of dearsenication. Precipitation (by iron or aluminium coagulants, lime and adsorption (by oxides and hydroxides of iron, aluminium or manganese are among the most popular dearsenication methods. The use of these chemicals entails the formation of poorly soluble arsenates. Since the possibility of the release of arsenic compounds into the water due to the dissolution of formed arsenates depends on its solubility under appropriate conditions, it is necessary to have information about the dependence of arsenates solubility on pH. According to the calculations the solubilities of arsenates of iron(III, aluminium, manganese(II and calcium are highly dependent on pH. At pH

  11. Potential Remobilization of Toxic Anions during Reduction of Arsenated and Chromated Schwertmannite by the Dissimilatory Fe(III)-Reducing Bacterium Acidiphilium cryptum JF-5

    International Nuclear Information System (INIS)

    Regenspurg, Simona; Goessner, Anita; Peiffer, Stefan; Kuesel, Kirsten

    2002-01-01

    Schwertmannite, an iron(III)-oxyhydroxysulfate formed in acidic mining-impacted stream or lake waters often contaminated with toxic elements like arsenate or chromate, is able to incorporate high amounts of these oxyanions. Detoxification of the water might be achieved if precipitated arsenated or chromated schwertmannite is fixed in the sediment. However, under reduced conditions, reductive dissolution of iron oxides mediated by the activity of Fe(III)-reducing bacteria might mobilize arsenate and chromate again. In this study, the reduction of synthesized arsenated or chromated schwertmannite by the acidophilic Fe(III)-reducer Acidiphilium cryptum JF-5, isolated from an acidic mining-impacted sediment, was investigated. In TSB medium at pH 2.7 with glucose as electron donor, A. cryptum JF-5 reduced about 10% of the total Fe(III) present in pure synthetic schwertmannite but only 5% of Fe(III) present in arsenated schwertmannite. In contrast to sulfate that was released during the reductive dissolution of pure schwertmannite, arsenate was not released during the reduction of arsenated schwertmannite probably due to the high surface complexation constant of arsenate and Fe(III). In medium containing chromated schwertmannite, no Fe(II) was formed, and no glucose was consumed indicating that chromate might have been toxic to cells of A. cryptum JF-5. Both As(V) or Cr(VI) could not be utilized as electron acceptor by A. cryptum JF-5. A comparison between autoclaved (121 o C for 20 min) and non-autoclaved schwertmannite samples demonstrated that nearly 100%of the bound sulfate was released during heating, and FTIR spectra indicated a transformation of schwertmannite to goethite. This structural change was not observed with autoclaved arsenated or chromated schwertmannite. These results suggest that the mobility of arsenate and chromate is not enhanced by the activity of acidophilic Fe(III)-reducing bacteria in mining-impacted sediments. In contrast, the presence of

  12. Aquatic Life Criteria - Copper

    Science.gov (United States)

    Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.

  13. Copper Bioleaching in Chile

    OpenAIRE

    Juan Carlos Gentina; Fernando Acevedo

    2016-01-01

    Chile has a great tradition of producing and exporting copper. Over the last several decades, it has become the first producer on an international level. Its copper reserves are also the most important on the planet. However, after years of mineral exploitation, the ease of extracting copper oxides and ore copper content has diminished. To keep the production level high, the introduction of new technologies has become necessary. One that has been successful is bioleaching. Chile had the first...

  14. Soil arsenic surveys of New Orleans: localized hazards in children's play areas.

    Science.gov (United States)

    Mielke, Howard W; Gonzales, Chris R; Cahn, Elise; Brumfield, Jessica; Powell, Eric T; Mielke, Paul W

    2010-10-01

    Arsenic (As) ranks first on the 2005 and 2007 hazardous substances priority lists compiled for the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This study describes two New Orleans soil As surveys: (1) a survey of composite soil samples from 286 census tracts and (2) a field survey of soil As at 38 play areas associated with the presence of chromated-copper-arsenate (CCA)-treated wood on residential and public properties. The survey of metropolitan New Orleans soils revealed a median As content of 1.5 mg/kg (range New Orleans probably exists in play areas across the nation. These findings support a precautionary program for testing soils and wood for hazardous substances at all play areas intended for children.

  15. Adsorption of arsenate on soils. Part 2: Modeling the relationship between adsorption capacity and soil physiochemical properties using 16 Chinese soils

    International Nuclear Information System (INIS)

    Jiang Wei; Zhang, Shuzhen; Shan Xiaoquan; Feng Muhua; Zhu Yongguan; McLaren, Ron G.

    2005-01-01

    An attempt has been made to elucidate the effects of soil properties on arsenate adsorption by modeling the relationships between adsorption capacity and the properties of 16 Chinese soils. The model produced was validated against three Australian and three American soils. The results showed that nearly 93.8% of the variability in arsenate adsorption on the low-energy surface could be described by citrate-dithionite extractable Fe (Fe CD ), clay content, organic matter content (OM) and dissolved organic carbon (DOC); nearly 87.6% of the variability in arsenate adsorption on the high-energy surface could be described by Fe CD , DOC and total arsenic in soils. Fe CD exhibited the most important positive influence on arsenate adsorption. Oxalate extractable Al (Al OX ), citrate-dithionite extractable Al (Al CD ), extractable P and soil pH appeared relatively unimportant for adsorption of arsenate by soils. - Citrate-dithionite extractable Fe has the most important positive influence on arsenate adsorption on soils

  16. The removal of sulphate from mine water by precipitation as ettringite and the utilisation of the precipitate as a sorbent for arsenate removal.

    Science.gov (United States)

    Tolonen, Emma-Tuulia; Hu, Tao; Rämö, Jaakko; Lassi, Ulla

    2016-10-01

    The aim of this research was to investigate sulphate removal from mine water by precipitation as ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and the utilisation of the precipitate as a sorbent for arsenate removal. The mine water sulphate concentration was reduced by 85-90% from the initial 1400 mg/L during ettringite precipitation depending on the treatment method. The precipitation conditions were also simulated with MINEQL + software, and the computational results were compared with the experimental results. The precipitated solids were characterised with X-ray diffraction and a scanning electron microscope. The precipitated solids were tested as sorbents for arsenate removal from the model solution. The arsenic(V) model solution concentration reduced 86-96% from the initial 1.5 mg/L with a 1 g/L sorbent dosage. The effect of initial arsenate concentration on the sorption of arsenate on the precipitate was studied and Langmuir, Freundlich, and Langmuir-Freundlich sorption isotherm models were fitted to the experimental data. The maximum arsenate sorption capacity (qm = 11.2 ± 4.7 mg/g) of the precipitate was obtained from the Langmuir-Freundlich isotherm. The results indicate that the precipitate produced during sulphate removal from mine water by precipitation as ettringite could be further used as a sorbent for arsenate removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Demystifying Controlling Copper Corrosion

    Science.gov (United States)

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  18. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia.

    Science.gov (United States)

    Hamamura, Natsuko; Itai, Takaaki; Liu, Yitai; Reysenbach, Anna-Louise; Damdinsuren, Narantuya; Inskeep, William P

    2014-10-01

    Microbial arsenic transformation pathways associated with a saline lake located in northern Mongolia were examined using molecular biological and culturing approaches. Bacterial 16S rRNA gene sequences recovered from saline lake sediments and soils were affiliated with haloalkaliphiles, including Bacillus and Halomonas spp. Diverse sequences of arsenate respiratory reductase (arrA) and a new group of arsenite oxidase (arxA) genes were also identified. Pure cultures of arsenate-reducing Nitrincola strain and anaerobic arsenite-oxidizing Halomonas strain were isolated. The chemoorganotrophic Halomonas strain contains arxA gene similar to that of a chemoautotrophic arsenite-oxidizing Alkalilimnicola ehrlichii strain MLHE-1. These results revealed the diversity of arsenic transformation pathways associated with a geographically distinct saline system and the potential contribution of arx-dependent arsenite oxidation by heterotrophic bacteria.

  19. Hepatoprotective effects of hexane root extract of Alchornea laxiflora in sodium arsenate toxicity in wistar albino rats

    OpenAIRE

    Esosa Samuel Uhunmwangho; Nurudeen Olajide Rasaq; Iyanuoluwa Olubukola Osikoya

    2018-01-01

    Background: Medicinal plants are have been used in the treatment of myriad disease conditions, Alchornea laxiflora is one of such medicinal plant. Aim: To investigate the hepatoprotective effect of hexane root extract of Alchornea laxiflora against sodium arsenate induced liver damage in wistar male rats. Setting and Design: Extraction and administration of bioactive extract. Materials and Methods: Extraction of air-dried ground root of Alchornea laxiflora was done by extracting 500 g with 50...

  20. Hepatoprotective effects of hexane root extract of Alchornea laxiflora in sodium arsenate toxicity in wistar albino rats

    Directory of Open Access Journals (Sweden)

    Esosa Samuel Uhunmwangho

    2018-01-01

    Full Text Available Background: Medicinal plants are have been used in the treatment of myriad disease conditions, Alchornea laxiflora is one of such medicinal plant. Aim: To investigate the hepatoprotective effect of hexane root extract of Alchornea laxiflora against sodium arsenate induced liver damage in wistar male rats. Setting and Design: Extraction and administration of bioactive extract. Materials and Methods: Extraction of air-dried ground root of Alchornea laxiflora was done by extracting 500 g with 500 cm of 95% hexane for 72 hrs.The animals (120-150 g were pre-treated with the extract at varying doses (0.1, 0.5, 1.0, 10, 50 and 100 mg/kg body weight for seven days orally prior to the intra-peritoneal administration of the toxicant (sodium arsenate at a dose of 2 mg/kg body weight at the eight day. Hepatoprotective activity of the extracts was evaluated by studying the Cytochrome b5content, Glutathione-S-transferase and 4- Nitroanisole-o-demethylase activities in the liver, Plasma levels of Alanine aminotransferase (AST, Alanine aminotransferase (ALT, Alkaline phosphatase (ALP and the levels of Total protein, Albumin, Globulin and Glutathione of the various groups. Statistical Analysis: The data were analysed with Microsoft excels (for windows 2007 and Student t-test and ANOVA. Result and Conclusion: The results suggest that pre-treatment of rats with hexane root extract of Alchornea laxiflora for seven days reduced the elevated levels of liver enzymes, reduced the levels of induced liver metabolizing enzymes and the levels of Total protein, Albumin, Globulin and Glutathione that was increased by the toxicity of sodium arsenate in rats and as such possess hepatoprotective effect against sodium arsenate.

  1. Protective role of vitamin C and E against sodium arsenate induced changes in developing kidney of albino mice

    International Nuclear Information System (INIS)

    Qureshi, F.; Tahir, M.; Sami, W.

    2009-01-01

    Background: Arsenic is a teratogenic agent present in the environment as oxides and arsenate and humans are exposed to it through contaminated drinking water, food, soil and air. This investigation was undertaken to evaluate protective role of Vitamin C and E against teratogenic injury produced by sodium arsenate in developing kidney of the mouse. Methods: Twenty-four pregnant albino mice of BALB/c strain, were randomly divided into 4 groups of 6 each: A1, A2, A3 and A4. Group A1 served as the control and received weight related distilled water by intra-peritoneal (I/P) injection, group A2 was given a single doses of 35 mg/kg on 8 GD whereas groups A3 and A4 were treated with Vitamin C and E by IP injection, 9 mg/kg/day and 15 mg/kg/day respectively, starting from 8 day and continued for the rest of the pregnancy period. The foetal kidneys were weighed and histological studies carried out including micrometry on different components of nephron. Results: Sodium arsenate toxicity manifested as an increase in weight of the kidneys, wider nephrogenic zone and significant reduction in the mean of number of mature renal corpuscles as compared to the control group (p<0.000). There were moderate to severe necrotic and degenerative changes in proximal and distal convoluted tubules; glomeruli were hyper cellular, the Bowman's spaces were obliterated. There was a statistically significant difference in mean diameter of renal corpuscles of group A2 when compared with groups A1, A3 and A4, (p<0.000). Conclusions: The findings implied that groups receiving Vitamin C and E along with sodium arsenate showed an overall improvement in all parameters, indicating the protective role of Vitamin C and E against arsenic induced teratogenicity in developing kidney and are safe to use during pregnancy without deleterious effect on human conspectuses in arsenic exposed areas. (author)

  2. Enzyme phylogenies as markers for the oxidation state of the environment: the case of respiratory arsenate reductase and related enzymes.

    Science.gov (United States)

    Duval, Simon; Ducluzeau, Anne-Lise; Nitschke, Wolfgang; Schoepp-Cothenet, Barbara

    2008-07-16

    Phylogenies of certain bioenergetic enzymes have proved to be useful tools for deducing evolutionary ancestry of bioenergetic pathways and their relationship to geochemical parameters of the environment. Our previous phylogenetic analysis of arsenite oxidase, the molybdopterin enzyme responsible for the biological oxidation of arsenite to arsenate, indicated its probable emergence prior to the Archaea/Bacteria split more than 3 billion years ago, in line with the geochemical fact that arsenite was present in biological habitats on the early Earth. Respiratory arsenate reductase (Arr), another molybdopterin enzyme involved in microbial arsenic metabolism, serves as terminal oxidase, and is thus situated at the opposite end of bioenergetic electron transfer chains as compared to arsenite oxidase. The evolutionary history of the Arr-enzyme has not been studied in detail so far. We performed a genomic search of genes related to arrA coding for the molybdopterin subunit. The multiple alignment of the retrieved sequences served to reconstruct a neighbor-joining phylogeny of Arr and closely related enzymes. Our analysis confirmed the previously proposed proximity of Arr to the cluster of polysulfide/thiosulfate reductases but also unravels a hitherto unrecognized clade even more closely related to Arr. The obtained phylogeny strongly suggests that Arr originated after the Bacteria/Archaea divergence in the domain Bacteria, and was subsequently laterally distributed within this domain. It further more indicates that, as a result of accumulation of arsenate in the environment, an enzyme related to polysulfide reductase and not to arsenite oxidase has evolved into Arr. These findings are paleogeochemically rationalized by the fact that the accumulation of arsenate over arsenite required the increase in oxidation state of the environment brought about by oxygenic photosynthesis.

  3. Embryotoxicity of arsenite and arsenate. Distribution in pregnant mice and monkeys and effects on embryonic cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, A; Danielsson, R G; Dencker, L [Department of Toxicology, Biomedical Center, Uppsala University, Sweden; Vahter, M [National Institute of Environmental Medicine, Stockholm, Sweden

    1984-01-01

    The distribution of /sup 74/As-labelled and arsenite in pregnant mice and a monkey has been studied by autoradiography and gamma counting of isolated tissues, and their in vitro toxicity to a chondrogenic system has been investigated. With both arsenic forms, given as single intravenous injections to the mother, the /sup 74/As-arsenic appeared to pass the mouse placenta relatively freely and approximately to the same extent. The retention time in material tissues including the placenta was, however, around three times longer with arsenite than with arsenate. In early gestation, high activity was registered in the embryonic neuroepithelium, which correlates well with reported CNS malformations in rodents. In late gestation, the distribution pattern was more like that in the adults. Accumulation in skin and squamous epithelia of the upper gastrointestinal tract (oral cavity, oesophagus and oesophageal region of stomach) dominated the distribution picture, especially at a long survival interval. Arsenate, but not arsenite, showed affinity for the calcified areas of the skeleton. A marmoset monkey in late gestation receiving arsenite showed a somewhat lower rate of placental transfer than the mice. Skin and liver had the highest concentrations (at 8 hrs), both in mother and foetuses. This species is known not to methylate arsenic, resulting in stronger binding and longer retention times of arsenic as compared with other species. The stronger binding in maternal tissues may possibly explain the lower rate of placental transfer. Arsenite was shown to inhibit cartilage formation in a chick limb bud mesenchymal spot culture system (ED50 approximately 5-10..mu..M) while arsenate seemed to be without effect at concentrations up to 200 ..mu..M (highest tested). Arsenate, however, showed a potential of the arsenite toxicity.

  4. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz.

    Science.gov (United States)

    Neil, Chelsea W; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration (Rg) of heterogeneously formed precipitates grew from 1.5 to 2.5 (± 1.0) nm within 1 h. For the system containing 10(-5) M arsenate, Rg grew from 3.6 to 6.1 (± 0.5) nm, and for the system containing 10(-5) M phosphate, Rg grew from 2.0 to 4.0 (± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new findings are important because differences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.

  5. Arsenic uptake by lettuce from As-contaminated soil remediated with Pteris vittata and organic amendment.

    Science.gov (United States)

    de Oliveira, Letuzia M; Suchismita, Das; Gress, Julia; Rathinasabapathi, Bala; Chen, Yanshan; Ma, Lena Q

    2017-06-01

    Leaching of inorganic arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil As levels. Thus, an environmental concern arises regarding As accumulation in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to investigate the ability of As-hyperaccumulator P. vittata and organic amendments in reducing As uptake by lettuce (Lactuca sativa) from a soil contaminated from CCA-treated wood (63.9 mg kg -1 As). P. vittata was grown for 150 d in a CCA-contaminated soil amended with biochar, activated carbon or coffee grounds at 1%, followed by lettuce for another 55 d. After harvest, plant biomass and As concentrations in plant and soil were determined. The presence of P. vittata reduced As content in lettuce by 21% from 27.3 to 21.5 mg kg -1 while amendment further reduced As in lettuce by 5.6-18%, with activated C being most effective. Our data showed that both P. vittata and organic amendments were effective in reducing As concentration in lettuce. Though no health-based standard for As in vegetables exists in USA, care should be taken when growing lettuce in contaminated soils. Our data showed that application of organic amendments with P. vittata reduced As hazards in CCA-contaminated soils. Published by Elsevier Ltd.

  6. The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments.

    Science.gov (United States)

    Pantoja, M L; Jones, H; Garelick, H; Mohamedbakr, H G; Burkitbayev, M

    2014-01-01

    Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L(-1)) for an initial concentration of 1,000 μg L(-1). Maximum capacity at pH 4 and 17% iron was 18.12-40.82 mg of arsenic/g of D-Fe and at pH 4 and 10% iron was 18.48-29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10% and 17% iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.

  7. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes

    KAUST Repository

    Yoon, Jaekyung

    2009-09-01

    Rejection characteristics of chromate, arsenate, and perchlorate were examined for one reverse osmosis (RO, LFC-1), two nanofiltration (NF, ESNA, and MX07), and one ultrafiltration (UF and GM) membranes that are commercially available. A bench-scale cross-flow flat-sheet filtration system was employed to determine the toxic ion rejection and the membrane flux. Both model and natural waters were used to prepare chromate, arsenate, and perchlorate solutions (approximately 100 μg L-1 for each anion) in mixtures in the presence of other salts (KCl, K2SO4, and CaCl2); and at varying pH conditions (4, 6, 8, and 10) and solution conductivities (30, 60, and 115 mS m-1). The rejection of target ions by the membranes increases with increasing solution pH due to the increasingly negative membrane charge with synthetic model waters. Cr(VI), As(V), and ClO4 - rejection follows the order LFC-1 (>90%) > MX07 (25-95%) ≅ ESNA (30-90%) > GM (3-47%) at all pH conditions. In contrast, the rejection of target ions by the membranes decreases with increasing solution conductivity due to the decreasingly negative membrane charge. Cr(VI), As(V), and ClO4 - rejection follows the order CaCl2 < KCl ≅ K2SO4 at constant pH and conductivity conditions for the NF and UF membranes tested. For natural waters the LFC-1 RO membrane with a small pore size (0.34 nm) had a significantly greater rejection for those target anions (>90%) excluding NO3 - (71-74%) than the ESNA NF membrane (11-56%) with a relatively large pore size (0.44 nm), indicating that size exclusion is at least partially responsible for the rejection. The ratio of solute radius (ri,s) to effective membrane pore radius (rp) was employed to compare ion rejection. For all of the ions, the rejection is higher than 70% when the ri,s/rp ratio is greater than 0.4 for the LFC-1 membrane, while for di-valent ions (CrO4 2 -, SO4 2 -, and HAsSO4 2 -) the rejection (38-56%) is fairly proportional to the ri,s/rp ratio (0.32-0.62) for the ESNA

  8. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification

    Directory of Open Access Journals (Sweden)

    Kandasamy Suganthi

    2010-06-01

    Full Text Available Abstract Background Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive. Results To identify the differentially expressed transcripts and the pathways involved in arsenic metabolism and detoxification, C. abyssinica plants were subjected to arsenate stress and a PCR-Select Suppression Subtraction Hybridization (SSH approach was employed. A total of 105 differentially expressed subtracted cDNAs were sequenced which were found to represent 38 genes. Those genes encode proteins functioning as antioxidants, metal transporters, reductases, enzymes involved in the protein degradation pathway, and several novel uncharacterized proteins. The transcripts corresponding to the subtracted cDNAs showed strong upregulation by arsenate stress as confirmed by the semi-quantitative RT-PCR. Conclusions Our study revealed novel insights into the plant defense mechanisms and the regulation of genes and gene networks in response to arsenate toxicity. The differential expression of transcripts encoding glutathione-S-transferases, antioxidants, sulfur metabolism, heat-shock proteins, metal transporters, and enzymes in the ubiquitination pathway of protein degradation as well as several unknown

  9. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification

    Science.gov (United States)

    2010-01-01

    Background Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive. Results To identify the differentially expressed transcripts and the pathways involved in arsenic metabolism and detoxification, C. abyssinica plants were subjected to arsenate stress and a PCR-Select Suppression Subtraction Hybridization (SSH) approach was employed. A total of 105 differentially expressed subtracted cDNAs were sequenced which were found to represent 38 genes. Those genes encode proteins functioning as antioxidants, metal transporters, reductases, enzymes involved in the protein degradation pathway, and several novel uncharacterized proteins. The transcripts corresponding to the subtracted cDNAs showed strong upregulation by arsenate stress as confirmed by the semi-quantitative RT-PCR. Conclusions Our study revealed novel insights into the plant defense mechanisms and the regulation of genes and gene networks in response to arsenate toxicity. The differential expression of transcripts encoding glutathione-S-transferases, antioxidants, sulfur metabolism, heat-shock proteins, metal transporters, and enzymes in the ubiquitination pathway of protein degradation as well as several unknown novel proteins serve as

  10. Arsenate biotransformation by Microcystis aeruginosa under different nitrogen and phosphorus levels.

    Science.gov (United States)

    Che, Feifei; Du, Miaomiao; Yan, Changzhou

    2018-04-01

    The arsenate (As(V)) biotransformation by Microcystis aeruginosa in a medium with different concentrations of nitrogen (N) and phosphorus (P) has been studied under laboratory conditions. When 15μg/L As(V) was added, N and P in the medium showed effective regulation on arsenic (As) metabolism in M. aeruginosa, resulting in significant differences in the algal growth among different N and P treatments. Under 0.2mg/L P treatment, increases in N concentration (4-20mg/L) significantly stimulated the cell growth and therefore indirectly enhanced the production of dimethylarsinic acid (DMA), the main As metabolite, accounting for 71%-79% of the total As in the medium. Meanwhile, 10-20mg/L N treatments accelerated the ability of As metabolization by M. aeruginosa, leading to higher contents of DMA per cell. However, As(V) uptake by M. aeruginosa was significantly impeded by 0.5-1.0mg/L P treatment, resulting in smaller rates of As transformation in M. aeruginosa as well as lower contents of As metabolites in the medium. Our data demonstrated that As(V) transformation by M. aeruginosa was significantly accelerated by increasing N levels, while it was inhibited by increasing P levels. Overall, both P and N play key roles in As(V) biotransformation processes. Copyright © 2017. Published by Elsevier B.V.

  11. Preparation and certification of arsenate [As(V)] reference material, NMIJ CRM 7912-a.

    Science.gov (United States)

    Narukawa, Tomohiro; Kuroiwa, Takayoshi; Narushima, Izumi; Jimbo, Yasujiro; Suzuki, Toshihiro; Chiba, Koichi

    2010-05-01

    Arsenate [As(V)] solution reference material, National Metrology Institute of Japan (NMIJ) certified reference material (CRM) 7912-a, for speciation of arsenic species was developed and certified by NMIJ, the National Institute of Advanced Industrial Science and Technology. High-purity As(2)O(3) reagent powder was dissolved in 0.8 M HNO(3) solution and As(III) was oxidized to As(V) with HNO(3) to prepare 100 mg kg(-1) of As(V) candidate CRM solution. The solution was bottled in 400 bottles (50 mL each). The concentration of As(V) was determined by four independent analytical techniques-inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectrometry, graphite furnace atomic absorption spectrometry, and liquid chromatography inductively coupled plasma mass spectrometry-according to As(V) calibration solutions, which were prepared from the arsenic standard of the Japan Calibration Service system and whose species was guaranteed to be As(V) by NMIJ. The uncertainties of all the measurements and preparation procedures were evaluated. The certified value of As(V) in the CRM is (99.53 +/- 1.67) mg kg(-1) (k = 2).

  12. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    Science.gov (United States)

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties.

  13. Interlayer Structures and Dynamics of Arsenate and Arsenite Intercalated Layered Double Hydroxides: A First Principles Study

    Directory of Open Access Journals (Sweden)

    Yingchun Zhang

    2017-03-01

    Full Text Available In this study, by using first principles simulation techniques, we explored the basal spacings, interlayer structures, and dynamics of arsenite and arsenate intercalated Layered double hydroxides (LDHs. Our results confirm that the basal spacings of NO3−-LDHs increase with layer charge densities. It is found that Arsenic (As species can enter the gallery spaces of LDHs with a Mg/Al ratio of 2:1 but they cannot enter those with lower charge densities. Interlayer species show layering distributions. All anions form a single layer distribution while water molecules form a single layer distribution at low layer charge density and a double layer distribution at high layer charge densities. H2AsO4− has two orientations in the interlayer regions (i.e., one with its three folds axis normal to the layer sheets and another with its two folds axis normal to the layer sheets, and only the latter is observed for HAsO42−. H2AsO3− orientates in a tilt-lying way. The mobility of water and NO3− increases with the layer charge densities while As species have very low mobility. Our simulations provide microscopic information of As intercalated LDHs, which can be used for further understanding of the structures of oxy-anion intercalated LDHs.

  14. Solid solutions of hydrogen uranyl phosphate and hydrogen uranyl arsenate. A family of luminescent, lamellar hosts

    International Nuclear Information System (INIS)

    Dorhout, P.K.; Rosenthal, G.L.; Ellis, A.B.

    1988-01-01

    Hydrogen uranyl phosphate, HUO 2 PO 4 x 4H 2 O (HUP), and hydrogen uranyl arsenate, HUO 2 AsO 4 x 4H 2 O (HUAs), form solid solutions of composition HUO 2 (PO 4 ) 1-x (AsO 4 )x (HUPAs), representing a family of lamellar, luminescent solids that can serve as hosts for intercalation chemistry. The solids are prepared by aqueous precipitation reactions from uranyl nitrate and mixtures of phosphoric and arsenic acids; thermogravimetric analysis indicates that the phases are tetrahydrates, like HUP and HUAs. Powder x-ray diffraction data reveal the HUPAs solids to be single phases whose lattice constants increase with X, in rough accord with Vegard's law Spectral shifts observed for the HUPAs samples. Emission from the solids is efficient (quantum yields of ∼ 0.2) and long-lived (lifetimes of ∼ 150 μs), although the measured values are uniformly smaller than those of HUP and HUAs; unimolecular radiative and nonradiative rate constants for excited-state decay of ∼ 1500 and 5000 s -1 , respectively, have been calculated for the compounds. 18 refs., 5 figs., 2 tabs

  15. Impact of soil organic carbon on monosodium methyl arsenate (MSMA) sorption and species transformation.

    Science.gov (United States)

    Ou, Ling; Gannon, Travis W; Polizzotto, Matthew L

    2017-11-01

    Monosodium methyl arsenate (MSMA), a common arsenical herbicide, is a major contributor of anthropogenic arsenic (As) to the environment. Uncertainty about controls on MSMA fate and the rates and products of MSMA species transformation limits effective MSMA regulation and management. The main objectives of this research were to quantify the kinetics and mechanistic drivers of MSMA species transformation and removal from solution by soil. Laboratory MSMA incubation studies with two soils and varying soil organic carbon (SOC) levels were conducted. Arsenic removal from solution was more extensive and faster in sandy clay loam incubations than sand incubations, but for both systems, As removal was biphasic, with initially fast removal governed by sorption, followed by slower As removal limited by species transformation. Dimethylarsinic acid was the dominant product of species transformation at first, but inorganic As(V) was the ultimate transformation product by experiment ends. SOC decreased As removal and enhanced As species transformation, and SOC content had linear relationships with As removal rates (R 2  = 0.59-0.95) for each soil and reaction phase. These results reveal the importance of edaphic conditions on inorganic As production and overall mobility of As following MSMA use, and such information should be considered in MSMA management and regulatory decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Solution structure of an arsenate reductase-related protein, YffB, from Brucella melitensis, the etiological agent responsible for brucellosis

    International Nuclear Information System (INIS)

    Buchko, Garry W.; Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.; Myler, Peter J.

    2011-01-01

    B. melitensis is a NIAID Category B microorganism that is responsible for brucellosis and is a potential agent for biological warfare. Here, the solution structure of the 116-residue arsenate reductase-related protein Bm-YffB (BR0369) from this organism is reported. Brucella melitensis is the etiological agent responsible for brucellosis. Present in the B. melitensis genome is a 116-residue protein related to arsenate reductases (Bm-YffB; BR0369). Arsenate reductases (ArsC) convert arsenate ion (H 2 AsO 4 − ), a compound that is toxic to bacteria, to arsenite ion (AsO 2 − ), a product that may be efficiently exported out of the cell. Consequently, Bm-YffB is a potential drug target because if arsenate reduction is the protein’s major biological function then disabling the cell’s ability to reduce arsenate would make these cells more sensitive to the deleterious effects of arsenate. Size-exclusion chromatography and NMR spectroscopy indicate that Bm-YffB is a monomer in solution. The solution structure of Bm-YffB shows that the protein consists of two domains: a four-stranded mixed β-sheet flanked by two α-helices on one side and an α-helical bundle. The α/β domain is characteristic of the fold of thioredoxin-like proteins and the overall structure is generally similar to those of known arsenate reductases despite the marginal sequence similarity. Chemical shift perturbation studies with 15 N-labeled Bm-YffB show that the protein binds reduced glutathione at a site adjacent to a region similar to the HX 3 CX 3 R catalytic sequence motif that is important for arsenic detoxification activity in the classical arsenate-reductase family of proteins. The latter observation supports the hypothesis that the ArsC-YffB family of proteins may function as glutathione-dependent thiol reductases. However, comparison of the structure of Bm-YffB with the structures of proteins from the classical ArsC family suggest that the mechanism and possibly the function of Bm

  17. A SAM-dependent methyltransferase cotranscribed with arsenate reductase alters resistance to peptidyl transferase center-binding antibiotics in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Singh, Sudhir; Singh, Chhaya; Tripathi, Anil Kumar

    2014-05-01

    The genome of Azospirillum brasilense harbors a gene encoding S-adenosylmethionine-dependent methyltransferase, which is located downstream of an arsenate reductase gene. Both genes are cotranscribed and translationally coupled. When they were cloned and expressed individually in an arsenate-sensitive strain of Escherichia coli, arsenate reductase conferred tolerance to arsenate; however, methyltransferase failed to do so. Sequence analysis revealed that methyltransferase was more closely related to a PrmB-type N5-glutamine methyltransferase than to the arsenate detoxifying methyltransferase ArsM. Insertional inactivation of prmB gene in A. brasilense resulted in an increased sensitivity to chloramphenicol and resistance to tiamulin and clindamycin, which are known to bind at the peptidyl transferase center (PTC) in the ribosome. These observations suggested that the inability of prmB:km mutant to methylate L3 protein might alter hydrophobicity in the antibiotic-binding pocket of the PTC, which might affect the binding of chloramphenicol, clindamycin, and tiamulin differentially. This is the first report showing the role of PrmB-type N5-glutamine methyltransferases in conferring resistance to tiamulin and clindamycin in any bacterium.

  18. Legacy lead arsenate soil contamination at childcare centers in the Yakima Valley, Central Washington, USA.

    Science.gov (United States)

    Durkee, Jenna; Bartrem, Casey; Möller, Gregory

    2017-02-01

    From the early 1900s to the 1950s, Yakima Valley orchards were commonly treated with lead arsenate (LA) insecticides. Lead (Pb) and arsenic (As) soil contamination has been identified on former orchard lands throughout Central Washington and pose a threat to human health and the environment. The levels of Pb and As in soil and interior dust at participating childcare centers in the Upper Yakima Valley (Yakima County), Washington were sampled to explore exposure potential for young children. Childcare center soils were collected from two soil depths, homogenized, and analyzed in bulk by a field-portable X-ray fluorescence spectrometer (XRF). Interior dust wipes samples were collected from at least two locations in each facility. All soil samples >250 mg/kg Pb and/or >20 As mg/kg were sieved to 250 μm, tested by XRF a second time, and analyzed via acid digestion and inductively coupled plasma mass spectrometry (ICP-MS) analysis. Bulk and sieved XRF results, as well as ICP-MS to XRF results were strongly correlated. Maximum Pb and As XRF results indicated that 4 (21%) and 8 (42%) of the 19 childcare centers surveyed exceeded the regulatory standard for Pb and As, respectively. Historic land use was significantly associated with elevated Pb and As levels. Interior dust loadings were below United States Environmental Protection Agency (EPA) guidelines. Childcare centers are areas of intensive use for children and when coupled with potential residential exposure in their homes, the total daily exposure is a potential hazard to children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Glutathione-supported arsenate reduction coupled to arsenolysis catalyzed by ornithine carbamoyl transferase

    International Nuclear Information System (INIS)

    Nemeti, Balazs; Gregus, Zoltan

    2009-01-01

    Three cytosolic phosphorolytic/arsenolytic enzymes, (purine nucleoside phosphorylase [PNP], glycogen phosphorylase, glyceraldehyde-3-phosphate dehydrogenase) have been shown to mediate reduction of arsenate (AsV) to the more toxic arsenite (AsIII) in a thiol-dependent manner. With unknown mechanism, hepatic mitochondria also reduce AsV. Mitochondria possess ornithine carbamoyl transferase (OCT), which catalyzes phosphorolytic or arsenolytic citrulline cleavage; therefore, we examined if mitochondrial OCT facilitated AsV reduction in presence of glutathione. Isolated rat liver mitochondria were incubated with AsV, and AsIII formed was quantified. Glutathione-supplemented permeabilized or solubilized mitochondria reduced AsV. Citrulline (substrate for OCT-catalyzed arsenolysis) increased AsV reduction. The citrulline-stimulated AsV reduction was abolished by ornithine (OCT substrate inhibiting citrulline cleavage), phosphate (OCT substrate competing with AsV), and the OCT inhibitor norvaline or PALO, indicating that AsV reduction is coupled to OCT-catalyzed arsenolysis of citrulline. Corroborating this conclusion, purified bacterial OCT mediated AsV reduction in presence of citrulline and glutathione with similar responsiveness to these agents. In contrast, AsIII formation by intact mitochondria was unaffected by PALO and slightly stimulated by citrulline, ornithine, and norvaline, suggesting minimal role for OCT in AsV reduction in intact mitochondria. In addition to OCT, mitochondrial PNP can also mediate AsIII formation; however, its role in AsV reduction appears severely limited by purine nucleoside supply. Collectively, mitochondrial and bacterial OCT promote glutathione-dependent AsV reduction with coupled arsenolysis of citrulline, supporting the hypothesis that AsV reduction is mediated by phosphorolytic/arsenolytic enzymes. Nevertheless, because citrulline cleavage is disfavored physiologically, OCT may have little role in AsV reduction in vivo.

  20. Enhanced oxidation of arsenite to arsenate using tunable K+ concentration in the OMS-2 tunnel.

    Science.gov (United States)

    Hou, Jingtao; Sha, Zhenjie; Hartley, William; Tan, Wenfeng; Wang, Mingxia; Xiong, Juan; Li, Yuanzhi; Ke, Yujie; Long, Yi; Xue, Shengguo

    2018-03-29

    Cryptomelane-type octahedral molecular sieve manganese oxide (OMS-2) possesses high redox potential and has attracted much interest in its application for oxidation arsenite (As(III)) species of arsenic to arsenate (As(V)) to decrease arsenic toxicity and promote total arsenic removal. However, coexisting ions such as As(V) and phosphate are ubiquitous and readily bond to manganese oxide surface, consequently passivating surface active sites of manganese oxide and reducing As(III) oxidation. In this study, we present a novel strategy to significantly promote As(III) oxidation activity of OMS-2 by tuning K + concentration in the tunnel. Batch experimental results reveal that increasing K + concentration in the tunnel of OMS-2 not only considerably improved As(III) oxidation kinetics rate from 0.027 to 0.102 min -1 , but also reduced adverse effect of competitive ion on As(III) oxidation. The origin of K + concentration effect on As(III) oxidation was investigated through As(V) and phosphate adsorption kinetics, detection of Mn 2+ release in solution, surface charge characteristics, and density functional theory (DFT) calculations. Experimental results and theoretical calculations confirm that by increasing K + concentration in the OMS-2 tunnel not only does it improve arsenic adsorption on K + doped OMS-2, but also accelerates two electrons transfers from As(III) to each bonded Mn atom on OMS-2 surface, thus considerably improving As(III) oxidation kinetics rate, which is responsible for counteracting the adverse adsorption effects by coexisting ions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Simultaneous removal of perchlorate and arsenate by ion-exchange media modified with nanostructured iron (hydr)oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hristovski, Kiril [Environmental Technology Laboratory, Arizona State University, 6075 S. WMS Campus Loop W, Mesa, AZ 85212 (United States)], E-mail: kiril.hristovski@asu.edu; Westerhoff, Paul [Department of Civil and Environmental Engineering, Arizona State University, Box 5306, Tempe, AZ 85287-5306 (United States)], E-mail: p.westerhoff@asu.edu; Moeller, Teresia [SolmeteX Inc., 50 Bearfoot Road, Northborough, MA 01532 (United States)], E-mail: tmoller@solmetex.com; Sylvester, Paul [SolmeteX Inc., 50 Bearfoot Road, Northborough, MA 01532 (United States)], E-mail: psylvester@solmetex.com; Condit, Wendy [Battelle, 505 King Avenue, Columbus, OH 43201 (United States)], E-mail: conditw@battelle.org; Mash, Heath [United States Environmental Protection Agency, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States)], E-mail: mash.heath@epa.gov

    2008-03-21

    Hybrid ion-exchange (HIX) media for simultaneous removal of arsenate and perchlorate were prepared by impregnation of non-crystalline iron (hydr)oxide nanoparticles onto strong base ion-exchange (IX) resins using two different chemical treatment techniques. In situ precipitation of Fe(III) (M treatment) resulted in the formation of sphere-like clusters of nanomaterials with diameters of {approx}5 nm, while KMnO{sub 4}/Fe(II) treatments yielded rod-like nanomaterials with diameters of 10-50 nm inside the pores of the media. The iron content of most HIX media was >10% of dry weight. The HIX media prepared via the M treatment method consistently exhibited greater arsenate adsorption capacity. The fitted Freundlich adsorption intensity parameters (q=KxC{sub E}{sup 1/n}) for arsenate (1/n < 0.6) indicated favorable adsorption trends. The K values ranged between 2.5 and 34.7 mgAs/g dry resin and were generally higher for the M treated media in comparison to the permanganate treated media. The separation factors for perchlorate over chloride ({alpha}{sub Cl{sup -}}{sup ClO{sub 4}{sup -}}) for the HIX media were lower than its untreated counterparts. The HIX prepared via the M treatment, had higher {alpha}{sub Cl{sup -}}{sup ClO{sub 4}{sup -}} than the HIX obtained by the KMnO{sub 4}/Fe(II) treatments suggesting that permanganate may adversely impact the ion-exchange base media. Short bed adsorber (SBA) tests demonstrated that the mass transport kinetics for both ions are adequately rapid to permit simultaneous removal using HIX media in a fixed bed reactor.

  2. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake

    International Nuclear Information System (INIS)

    Xu Pengliang; Christie, Peter; Liu Yu; Zhang Junling; Li Xiaolin

    2008-01-01

    A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg -1 ) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake. - G. mosseae was more tolerant than M. truncatula to As and may have conferred enhanced host tolerance by restricting root As uptake and enhancing P nutrition

  3. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake

    Energy Technology Data Exchange (ETDEWEB)

    Xu Pengliang [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Christie, Peter [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Agricultural and Environmental Science Department, Queen' s University Belfast, Belfast BT9 5PX (United Kingdom); Liu Yu [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Zhang Junling [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)], E-mail: junlingz@cau.edu.cn; Li Xiaolin [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)

    2008-11-15

    A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg{sup -1}) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake. - G. mosseae was more tolerant than M. truncatula to As and may have conferred enhanced host tolerance by restricting root As uptake and enhancing P nutrition.

  4. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  5. Evaluation of commercial landscaping mulch for possible contamination from CCA.

    Science.gov (United States)

    Jacobi, Gary; Solo-Gabriele, Helena; Dubey, Brajesh; Townsend, Timothy; Shibata, Tomoyuki

    2007-01-01

    Wood treated with chromated copper arsenate (CCA) is found in construction and demolition (C&D) debris, and a common use for wood recycled from C&D debris is the production of mulch. Given the high metals concentrations in CCA-treated wood, a small fraction of CCA-treated wood can increase the metal concentrations in the mulch above regulatory thresholds. The objective of this study was to determine the extent of contamination of CCA-treated wood in consumer landscaping mulch and to determine whether visual methods or rapid X-ray fluorescence (XRF) technology can be used to identify suspect mulch. Samples were collected throughout the State of Florida (USA) and evaluated both visually and chemically. Visual analysis focused on documenting wood-chip size distribution, whether the samples were artificially colored, and whether they contained plywood chips which is an indication that the sample was, in part, made from recycled C&D wood. Chemical analysis included measurements of total recoverable metals, leachable metals as per the standardized synthetic precipitation leaching procedure (SPLP), and XRF analysis. Visual identification methods, such as colorant addition or presence of plywood, were found effective to preliminarily screen suspect mulch. XRF analysis was found to be effective for identifying mulch containing higher than 75 mg/kg arsenic. For mulch samples that were not colored and did not contain evidence of C&D wood, none exceeded leachable metal concentrations of 50 microg/L and only 3% exceeded 10 mg/kg for recoverable metals. The majority of the colored mulch made from recycled C&D wood contained from 1% to 5% CCA-treated wood (15% maximum fraction) resulting in leachable metals in excess of 50 microg/L and total recoverable metals in excess of 10 mg/kg. The maximum arsenic concentration measured in the mulch samples evaluated was 230 mg/kg, which was above the Florida residential direct exposure regulatory guideline of 2.1 mg/kg.

  6. Arsenate and fluoride enhanced each other's uptake in As-sensitive plant Pteris ensiformis.

    Science.gov (United States)

    Das, Suchismita; de Oliveira, Letuzia M; da Silva, Evandro; Ma, Lena Q

    2017-08-01

    We investigated the effects of arsenate (AsV) and fluoride (F) on each other's uptake in an As-sensitive plant Pteris ensiformis. Plants were exposed to 1) 0.1 × Hoagland solution control, 2) 3.75 mg L -1 As and 1.9, 3.8, or 7.6 mg L -1 F, or 3) 1 mg L -1 F and 3.75 mg L -1 or 7.5 mg L -1 As for 7 d in hydroponics. P. ensiformis accumulated 14.7-32.6 mg kg -1 As at 3.75 mg L -1 AsV, and 99-145 mg kg -1 F at 1 mg L -1 F. Our study revealed that AsV and F increased each other's uptake when co-present. At 1.9 mg L -1 , F increased frond As uptake from 14.7 to 40.3 mg kg -1 , while 7.5 mg L -1 As increased frond F uptake from 99 to 371 mg kg -1 . Although, AsV was the predominant As species in all tissues, F enhanced AsIII levels in the rhizomes and fronds, while the reverse was observed in the roots. Increasing As concentrations also enhanced TBARS and H 2 O 2 in tissues, indicating oxidative stress. However, F alleviated As stress by lowering their levels in the fronds. Frond and root membrane leakage were also evident due to As or F exposure. The results may facilitate better understanding of the mechanisms underlying the co-uptake of As and F in plants. However, the mechanisms of how they enhance each other's uptake in P. ensiformis need further investigation. Published by Elsevier Ltd.

  7. Na3Co2(AsO4(As2O7: a new sodium cobalt arsenate

    Directory of Open Access Journals (Sweden)

    Abderrahmen Guesmi

    2012-07-01

    Full Text Available In the title compound, trisodium dicobalt arsenate diarsenate, Na3Co2AsO4As2O7, the two Co atoms, one of the two As and three of the seven O atoms lie on special positions, with site symmetries 2 and m for the Co, m for the As, and 2 and twice m for the O atoms. The two Na atoms are disordered over two general and special positions [occupancies 0.72 (3:0.28 (3 and 0.940 (6:0.060 (6, respectively]. The main structural feature is the association of the CoO6 octahedra in the ab plane, forming Co4O20 units, which are corner- and edge-connected via AsO4 and As2O7 arsenate groups, giving rise to a complex polyhedral connectivity with small tunnels, such as those running along the b- and c-axis directions, in which the Na+ ions reside. The structural model is validated by both bond-valence-sum and charge-distribution methods, and the distortion of the coordination polyhedra is analyzed by means of the effective coordination number.

  8. Urinary arsenic speciation profiles in mice subchronically exposed to low concentrations of sodium arsenate in drinking water

    Directory of Open Access Journals (Sweden)

    Huijie Wu

    2011-09-01

    Full Text Available Arsenic is a proven human carcinogen. Although the mechanism of its carcinogenicity is still largely unknown, methylation is thought to have an important role to play in arsenic toxicity. In this study, urinary methylation profiles were investigated in female C57BL/6J black mice given drinking water containing 500 μg arsenate (AsV/L, 250 μg AsV/L, or 100 μg AsV/L as sodium arsenate for 2 months. The concentrations of arsenic chosen reflected those in the drinking water often encountered in arsenic-endemic areas. Urine samples were collected from the mice at the end of the exposure period, and the arsenic species were analyzed by high performance liquid chromatography-inductively coupled plasma-mass spectrometry. All detectable arsenic species showed strong linear correlation with the administered dosage. The methylation patterns were similar in all three groups with a slight decrease of dimethylarsinic acid/AsV ratio in the 500-μg/L group, which corresponded to the significantly higher arsenic retention in the tissue. The results indicate that urinary arsenic could be used as a good biomarker for internal dose and potential biological effects. Different doses of arsenic exposure could result in different degrees of methylation, excretion, and tissue retention, and this may contribute to the understanding of arsenic carcinogenicity.

  9. Rhizosphere colonization and arsenic translocation in sunflower (Helianthus annuus L.) by arsenate reducing Alcaligenes sp. strain Dhal-L.

    Science.gov (United States)

    Cavalca, Lucia; Corsini, Anna; Bachate, Sachin Prabhakar; Andreoni, Vincenza

    2013-10-01

    In the present study, six arsenic-resistant strains previously isolated were tested for their plant growth promoting characteristics and heavy metal resistance, in order to choose one model strain as an inoculum for sunflower plants in pot experiments. The aim was to investigate the effect of arsenic-resistant strain on sunflower growth and on arsenic uptake from arsenic contaminated soil. Based on plant growth promoting characteristics and heavy metal resistance, Alcaligenes sp. strain Dhal-L was chosen as an inoculum. Beside the ability to reduce arsenate to arsenite via an Ars operon, the strain exhibited 1-amino-cyclopropane-1-carboxylic acid deaminase activity and it was also able to produce siderophore and indole acetic acid. Pot experiments were conducted with an agricultural soil contaminated with arsenic (214 mg kg⁻¹). A real time PCR method was set up based on the quantification of ACR3(2) type of arsenite efflux pump carried by Alcaligenes sp. strain Dhal-L, in order to monitor presence and colonisation of the strain in the bulk and rhizospheric soil. As a result of strain inoculation, arsenic uptake by plants was increased by 53 %, whereas ACR3(2) gene copy number in rhizospheric soil was 100 times higher in inoculated than in control pots, indicating the colonisation of strain. The results indicated that the presence of arsenate reducing strains in the rhizosphere of sunflower influences arsenic mobilization and promotes arsenic uptake by plant.

  10. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  11. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  12. Canine Copper-Associated Hepatitis

    NARCIS (Netherlands)

    Dirksen, Karen; Fieten, Hille

    2017-01-01

    Copper-associated hepatitis is recognized with increasing frequency in dogs. The disease is characterized by centrolobular hepatic copper accumulation, leading to hepatitis and eventually cirrhosis. The only way to establish the diagnosis is by histologic assessment of copper distribution and copper

  13. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level.

  14. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil

    International Nuclear Information System (INIS)

    Kumpiene, Jurate; Ore, Solvita; Renella, Giancarlo; Mench, Michel; Lagerkvist, Anders; Maurice, Christian

    2006-01-01

    Stabilization of soil contaminated with trace elements is a remediation practice that does not reduce the total content of contaminants, but lowers the amounts of mobile and bioavailable fractions. This study evaluated the efficiency of Fe to reduce the mobility and bioavailability of Cr, Cu, As and Zn in a chromated copper arsenate (CCA)-contaminated soil using chemical, biochemical and biotoxicity tests. Contaminated soil was stabilized with 1% iron grit. This treatment decreased As and Cr concentrations in leachates (by 98% and 45%, respectively), in soil pore water (by 99% and 94%, respectively) and in plant shoots (by 84% and 95%, respectively). The stabilization technique also restored most of analyzed soil enzyme activities and reduced microbial toxicity, as evaluated by the BioTox TM test. After stabilization, exchangeable and bioaccessible fractions of Cu remained high, causing some residual toxicity in the treated soil. - Zerovalent iron effectively reduces mobility and bioavailability of As and Cr, but does not adequately stabilize Cu

  15. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  16. Micromachining with copper lasers

    Science.gov (United States)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  17. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  18. copper(II)

    Indian Academy of Sciences (India)

    Unknown

    bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) ... Abstract. Equilibrium concentrations of various condensed and gaseous phases have been thermodyna- ... phere, over a wide range of substrate temperatures and total reactor pressures.

  19. Bacterial Killing by Dry Metallic Copper Surfaces▿

    OpenAIRE

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2010-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important fir...

  20. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  1. Copper intoxication in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Gazaryan, V.S.; Sogoyan, I.S.; Agabalov, G.A.; Mesropyan, V.V.

    1966-01-01

    Of 950 sheep fed hay from a vineyard sprayed regularly with copper sulfate, 143 developed clinical copper poisoning and 103 died. The Cu content of the hay was 10.23 mg%, of the liver of dead sheep 17-52 mg%, and of the blood serum of affected sheep 0.86 mg%. The symptoms and the histological findings in kidneys and liver are described.

  2. A study on the coprecipitation of arsenite and arsenate into calcite coupled with the determination of oxidation states of arsenic both in calcite and water

    International Nuclear Information System (INIS)

    Yokoyama, Yuka; Takahashi, Yoshio; Mitsunobu, Satoshi; Tanaka, Kazuya; Itai, Takaaki

    2009-01-01

    It was found that the amount of arsenite incorporated into calcite is much less than that of arsenate. The result suggests that the sequestration of arsenic by coprecipitation with calcite cannot be an important chemical process under reducing conditions such as in groundwater where arsenite is the dominant arsenic species. (author)

  3. SORPTION OF ARSENATE AND ARSENITE ON RUO2 X H2O: ANALYSIS OF SORBED PHASE OXIDATION STATE BY XANES IN ADVANCED PHOTON SOURCE ACTIVITY REPORT 2002

    Science.gov (United States)

    The sorption reactions of arsenate (As(V)) and arsenite (As(III)) on RuO2 x H2O were examined by X-ray Absorption Near Edge Spectroscopy (XANES) to elucidate the solid state speciation of sorbed As. At all pH values studied (pH 4-8), RuO2 x H

  4. Concentration and chemical status of arsenic in the blood of pregnant hamsters during critical embryogenesis. 1. Subchronic exposure to arsenate utilizing constant rate administration

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, D.P.; Ferm, V.H.

    1986-08-01

    The concentration, availability, and chemical status of radiolabeled arsenic has been determined in the blood of pregnant hamsters at the beginning (morning of Day 8) and the end (morning of Day 9) of the critical period of embryogenesis. Hamster dams were exposed to teratogenic doses of arsenate by means of osmotic minipumps implanted on the morning of Day 6 of the gestation period. Whole blood arsenic concentrations were the same for 48 and 72 hr postimplant. The arsenic concentration of plasma equaled that of red cells. Plasma arsenic was not bound to macromolecules and had the same chemical status 48 and 72 hr postimplant. Arsenate was the dominant form (67% of the total). However, the presence of dimethylarsinic acid and arsenite indicates that the pentavalent species was metabolized. Red cell arsenic was bound to macromolecules in the cell sap. Seventy percent of red cell sap arsenic was dialyzable 48 hr postimplant, but only 56% 72 hr postimplant. Arsenate was the dominant dialyzable red cell species on Day 8 and arsenite was the major dialyzable form on Day 9. The authors findings demonstrate a relationship between the maternal blood concentration and chemical status of arsenic and the presence of malformations resulting from a constant rate exposure of pregnant hamsters to arsenate via the osmotic minipump.

  5. COMPARATIVE TISSUE DISTRIBUTION AND URINARY EXCRETION OF INORGANIC ARSENIC (IAS) AND ITS METHYLATED METABOLITES IN MICE FOLLOWING ORAL ADMINISTRATION OF ARSENATE (ASV) AND ARSENITE (ASIII)

    Science.gov (United States)

    COMPARATIVE TISSUE DISTRIBUTION AND URINARY EXCRETION OF INORGANIC ARSENIC (iAs) AND ITS METHYLATED METABOLITES IN MICE FOLLOWING ORAL ADMINISTRATION OF ARSENATE (AsV) AND ARSENITE (AsIII). E M Kenyon, L M Del Razo and M F Hughes. U.S. EPA, ORD, NHEERL, ETD, PKB, RTP, NC, USA; ...

  6. Concentration and chemical status of arsenic in the blood of pregnant hamsters during critical embryogenesis. 1. Subchronic exposure to arsenate utilizing constant rate administration

    International Nuclear Information System (INIS)

    Hanlon, D.P.; Ferm, V.H.

    1986-01-01

    The concentration, availability, and chemical status of radiolabeled arsenic has been determined in the blood of pregnant hamsters at the beginning (morning of Day 8) and the end (morning of Day 9) of the critical period of embryogenesis. Hamster dams were exposed to teratogenic doses of arsenate by means of osmotic minipumps implanted on the morning of Day 6 of the gestation period. Whole blood arsenic concentrations were the same for 48 and 72 hr postimplant. The arsenic concentration of plasma equaled that of red cells. Plasma arsenic was not bound to macromolecules and had the same chemical status 48 and 72 hr postimplant. Arsenate was the dominant form (67% of the total). However, the presence of dimethylarsinic acid and arsenite indicates that the pentavalent species was metabolized. Red cell arsenic was bound to macromolecules in the cell sap. Seventy percent of red cell sap arsenic was dialyzable 48 hr postimplant, but only 56% 72 hr postimplant. Arsenate was the dominant dialyzable red cell species on Day 8 and arsenite was the major dialyzable form on Day 9. The authors findings demonstrate a relationship between the maternal blood concentration and chemical status of arsenic and the presence of malformations resulting from a constant rate exposure of pregnant hamsters to arsenate via the osmotic minipump

  7. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  8. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood

    Energy Technology Data Exchange (ETDEWEB)

    Cao Xinde [Soil and Water Science Department, University of Florida, Gainesville, FL (United States)]. E-mail: xcao@stevens.edu; Ma, Lena Q. [Soil and Water Science Department, University of Florida, Gainesville, FL (United States)

    2004-12-01

    Leaching of arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil arsenic levels. Thus, an environmental concern arises regarding accumulation of As in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to evaluate As accumulation by vegetables from the soils adjacent to the CCA-treated utility poles and fences and examine the effects of soil amendments on plant As accumulation. Carrot (Daucus carota L.) and lettuce (Lactuca sativa L.) were grown for ten weeks in the soil with or without compost and phosphate amendments. As expected, elevated As concentrations were observed in the pole soil (43 mg kg{sup -1}) and in the fence soil (27 mg kg{sup -1}), resulting in enhanced As accumulation of 44 mg kg{sup -1} in carrot and 32 mg kg{sup -1} in lettuce. Addition of phosphate to soils increased As accumulation by 4.56-9.3 times for carrot and 2.45-10.1 for lettuce due to increased soil water-soluble As via replacement of arsenate by phosphate in soil. However, biosolid compost application significantly reduced plant As uptake by 79-86%, relative to the untreated soils. This suppression is possibly because of As adsorbed by biosolid organic mater, which reduced As phytoavailability. Fractionation analysis showed that biosolid decreased As in soil water-soluble, exchangeable, and carbonate fraction by 45%, whereas phosphate increased it up to 2.61 times, compared to the untreated soils. Our results indicate that growing vegetables in soils near CCA-treated wood may pose a risk of As exposure for humans. Compost amendment can reduce such a risk by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils. Caution should be taken for phosphate application since it enhances As accumulation. - Capsule: Compost amendment can reduce As exposure risk for humans by reducing As accumulation by vegetables and can be an important strategy for remediating CCA

  9. Simulation of the effects of phosphate on adsorption of arsenite and arsenate on ferrihydrite matrix using a geochemical equilibrium model

    International Nuclear Information System (INIS)

    Kassenga, G.R.

    2005-01-01

    Arsenic is of environmental concern because of its toxicity to plants, animals, and human beings. Iron oxides, including the poorly crystalline (amorphous) iron oxides, e.g., ferrihydrite, have a strong affinity for both arsenite and arsenate (the most toxic species of arsenic). In view of this, adsorption on ferrihydrite matrix is the main process of immobilization of arsenic in groundwater. The presence of phosphate in groundwater may however limit adsorption of arsenic on iron oxides due to competition for adsorption sites, resulting in higher aqueous concentrations in some environments. This paper analyses the effects of phosphate on aqueous concentration of arsenic at different pH using a geochemical equilibrium simulation model. It specifically focuses on arsenite and arsenate, the most toxic forms of arsenic. A general description of the occurrence of arsenic in the environment, its toxicity, and health hazards is first given. The paper discusses sources and geochemical processes that control arsenic mobility in aquifers. Adsorption and desorption reactions of arsenic on ferrihydrite and the factors that affect them are described. Modeling of adsorption/desorption processes is then discussed. Finally, the effects of phosphate on adsorption and desorption processes of arsenic on ferrihydrite as a function of pH are analyzed using PHREEQC Version 2, a computer program for simulating chemical reactions and transport processes in natural and polluted water. The model is applied in a case study formulated on the basis of a realistic hydrogeochemical setting to demonstrate how the use of arsenical pesticides and phosphate fertilizers may pose potential public health problems in areas where groundwater is used for domestic purposes. The modeling results have shown that aqueous concentration of arsenic increases with increasing phosphate-phosphorus concentration for pH values less than 10 assuming that ferrihydrite concentration and other hydrogeochemical conditions

  10. Estimation of enthalpies and entropies of melting of arsenates from phase diagrams of MeAsO3-Me3AsO4 (Me=Na,K,Rb,Cs) and correlation of thermodynamic properties of alkali metal arsenates

    International Nuclear Information System (INIS)

    Kasenov, B.K.; Isabaev, S.M.; Buketov, E.A.

    1982-01-01

    Values of ΔHsub(melting)sup(0) and ΔSsub(melting)sup(0) for Na 3 AsO 4 , K 3 AsO 4 , Rb 3 AsO 4 and Cs 3 AsO 4 (65.3 kJ/mol and 44.4 J/molxK respectively) were calculated by the Shredder-Vant-Hoff equation in the approximation of ideal solutions from diagrams of the state of MeAsO 3 -He 3 AsO 4 (Me=Na, K, Rb, Cs) systems. ΔHsub(298)sup(0)-f(Tsub(melting)) and ΔHsub(melting)sup(0)-f(ΔHsub(298)sup(0)) dependences were found for arsenates

  11. A natural analogue for copper waste canisters: The copper-uranium mineralised concretions in the Permian mudrocks of south Devon, United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Milodowski, A.E.; Styles, M.T.; Hards, V.L. [Natural Environment Research Council (United Kingdom). British Geological Survey

    2000-08-01

    mineralisation and alteration that can be related to the burial and diagenetic history of the Permian strata. The native copper mineralisation exhibits close temporal association with the formation of uraniferous and vanadiferous concretions (known as 'fish-eyes') in the same rocks. Petrographical relationships indicate that both the copper and the 'fish-eye' concretions formed during burial diagenesis but before the maximum compaction of the host mudstone and siltstone. The regional burial history Wessex Basin, indicates that the maximum compaction of the Permian strata would have been achieved by at least the end of the Lower Jurassic (possibly even in the Triassic). Therefore, the native copper mineralisation is older than 176 Ma. The native copper sheets display a complex sequence of alteration and subsequent mineral growth of minerals on their surfaces. The earliest alteration was to copper oxides - principally cuprite with minor tenorite, indicating a change to more oxidising groundwater conditions. The dissolution of native silver and the growth of fringes of copper arsenides followed this. Nickel arsenides and chalcocite, associated with the precipitation of uranium silicates occurred in the later stages of alteration. This suggests a return to a more reducing pore water environment. Again, petrographical relationships indicate that this alteration and subsequent mineralisation is geologically old (i.e. Lower Jurassic or older). Secondary malachite, intimately intergrown copper sulphate and copper oxides, copper chloride, copper-uranium arsenate and uranium vanadates have formed as late-stage alteration products of the native copper and earlier diagenetic cuprite, chalcocite, copper-nickel arsenide and uranium silicate alteration and mineralisation. This latest stage alteration is most probably attributable to near-surface weathering processes. Although the native copper is affected by corrosion, the study has shown that a significant proportion (30

  12. A natural analogue for copper waste canisters: The copper-uranium mineralised concretions in the Permian mudrocks of south Devon, United Kingdom

    International Nuclear Information System (INIS)

    Milodowski, A.E.; Styles, M.T.; Hards, V.L.

    2000-08-01

    mineralisation and alteration that can be related to the burial and diagenetic history of the Permian strata. The native copper mineralisation exhibits close temporal association with the formation of uraniferous and vanadiferous concretions (known as 'fish-eyes') in the same rocks. Petrographical relationships indicate that both the copper and the 'fish-eye' concretions formed during burial diagenesis but before the maximum compaction of the host mudstone and siltstone. The regional burial history Wessex Basin, indicates that the maximum compaction of the Permian strata would have been achieved by at least the end of the Lower Jurassic (possibly even in the Triassic). Therefore, the native copper mineralisation is older than 176 Ma. The native copper sheets display a complex sequence of alteration and subsequent mineral growth of minerals on their surfaces. The earliest alteration was to copper oxides - principally cuprite with minor tenorite, indicating a change to more oxidising groundwater conditions. The dissolution of native silver and the growth of fringes of copper arsenides followed this. Nickel arsenides and chalcocite, associated with the precipitation of uranium silicates occurred in the later stages of alteration. This suggests a return to a more reducing pore water environment. Again, petrographical relationships indicate that this alteration and subsequent mineralisation is geologically old (i.e. Lower Jurassic or older). Secondary malachite, intimately intergrown copper sulphate and copper oxides, copper chloride, copper-uranium arsenate and uranium vanadates have formed as late-stage alteration products of the native copper and earlier diagenetic cuprite, chalcocite, copper-nickel arsenide and uranium silicate alteration and mineralisation. This latest stage alteration is most probably attributable to near-surface weathering processes. Although the native copper is affected by corrosion, the study has shown that a significant proportion (30-80% of the original

  13. Synthesis of calix[4]arene-grafted magnetite nanoparticles and Evaluation of their arsenate as well as dichromate removal efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Serkan; Ozcan, Fatih; Yilmaz, Mustafa; Cengeloglu, Yunus [Department of Chemistry, Selcuk University, Konya (Turkey); Tor, Ali [Department of Environmental Engineering, Selcuk University, Konya (Turkey); Memon, Shahabuddin [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro (Pakistan)

    2010-07-15

    In this study, 5,17-bis-[(4-benzylpiperidine)methyl]-25,26,27,28-tetrahydroxy-calix[4]arene (3) has been prepared by the treatment of calix[4]arene with a secondary amine (4-benzylpiperidine) and formaldehyde by means of Mannich reaction. The prepared Mannich base (3) has been grafted onto [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane-modified Fe{sub 3}O{sub 4} magnetite nanoparticles (EPPTMS-MN) in order to obtain 5,17-bis-[(4-benzylpiperidine)methyl]-25,26,27,28-tetrahydroxy calix[4]arene-grafted EPPTMS-MN (BP-calix[4]arene-grafted Fe{sub 3}O{sub 4}). All new compounds were characterized by a combination of FTIR and {sup 1}H-NMR analyses. The morphology of the magnetic nanoparticles was examined by transmission electron microscopy. Moreover, the studies regarding the removal of arsenate and dichromate ions from the aqueous solutions were also carried out by using 5,17-bis-[(4-benzylpiperidine)methyl]-25,26,27,28-tetrahydroxy-calix[4]arene in liquid-liquid extraction and BP-calix[4]arene-grafted Fe{sub 3}O{sub 4} (4) in solid-liquid extraction experiments. The extraction results indicated that 3 is protonated at proton-switchable binding sites in acidic conditions. Hence, facilitating binding of arsenate and dichromate is resulted from both electrostatic interactions and hydrogen bonding. To understand the selectivity of 3, the retention of dichromate anions in the presence of Cl{sup -}, NO{sub 3}{sup -}, and SO{sub 4}{sup 2-} anions at pH 1.5 was also examined. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. Possible Roles of Plant Sulfurtransferases in Detoxification of Cyanide, Reactive Oxygen Species, Selected Heavy Metals and Arsenate

    Directory of Open Access Journals (Sweden)

    Parvin Most

    2015-01-01

    Full Text Available Plants and animals have evolved various potential mechanisms to surmount the adverse effects of heavy metal toxicity. Plants possess low molecular weight compounds containing sulfhydryl groups (-SH that actively react with toxic metals. For instance, glutathione (γ-Glu-Cys-Gly is a sulfur-containing tripeptide thiol and a substrate of cysteine-rich phytochelatins (γ-Glu-Cys2–11-Gly (PCs. Phytochelatins react with heavy metal ions by glutathione S-transferase in the cytosol and afterwards they are sequestered into the vacuole for degradation. Furthermore, heavy metals induce reactive oxygen species (ROS, which directly or indirectly influence metabolic processes. Reduced glutathione (GSH attributes as an antioxidant and participates to control ROS during stress. Maintenance of the GSH/GSSG ratio is important for cellular redox balance, which is crucial for the survival of the plants. In this context, sulfurtransferases (Str, also called rhodaneses, comprise a group of enzymes widely distributed in all phyla, paving the way for the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors, at least in vitro. The best characterized in vitro reaction is the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms have multi-protein families (MPF of Str. Despite the presence of Str activities in many living organisms, their physiological role has not been clarified unambiguously. In mammals, these proteins are involved in the elimination of cyanide released from cyanogenic compounds. However, their ubiquity suggests additional physiological functions. Furthermore, it is speculated that a member of the Str family acts as arsenate reductase (AR and is involved in arsenate detoxification. In summary, the role of Str in detoxification processes is still not well understood but seems to be a major function in the organism.

  15. Copper : recession and recovery

    International Nuclear Information System (INIS)

    Warwick-Ching, T.

    2002-01-01

    In 2002, the world output for copper will fall for the first time in nearly a decade because of financial pressure and voluntary constraints. Cutbacks at copper mines amount to 760,000 tonnes per year. These cutbacks have occurred mostly in the United States which holds the largest share of high cost mines. This paper discussed recent developments in both copper supply and demand. The United States is unique as both a large consumer and producer of copper. At 1.35 million tonnes, US mine output in 2001 was at its lowest since 1987. The cutbacks in mining in general were described in this paper with particular reference to the huge loss of mining and metallurgical activity in the United States during a prolonged period of low prices in the mid 1980s. The author noted that this period was followed by an exceptional decade when much of the industry rebounded. Only 8 mines closed outright in the United States and a handful in Canada since the recession of the 1980s, but that is partly because mines got bigger and there are fewer small mines in North America. There are only 4 electrolytic refineries and 3 smelters still active in the entire United States, of which 2 are operating at a fraction of capacity. It was noted that only the buoyancy of China prevented a much bigger decline in copper demand on a global scale

  16. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  17. Electrical conduction in composites containing copper core-copper

    Indian Academy of Sciences (India)

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles ...

  18. As(III) Removal from Drinking Water by Carbon Nanotube Membranes with Magnetron-Sputtered Copper: Performance and Mechanisms.

    Science.gov (United States)

    Luan, Hongyan; Zhang, Quan; Cheng, Guo-An; Huang, Haiou

    2018-06-07

    Current approaches for functionalizing carbon nanotubes (CNTs) often utilize harsh chemical conditions, and the resulting harmful wastes can cause various environmental and health concerns. In this study, magnetron sputtering technique is facilely employed to functionalize CNT membranes by depositing Cu onto premade CNT membranes without using any chemical treatment. A comparative evaluation of the substrate polymeric membrane (mixed cellulose ester (MCE)), MCE sputtered with copper (Cu/MCE), the pristine CNT membrane (CNT), and CNT membrane sputtered with Cu (Cu/CNT) shows that Cu/CNT possesses mechanically stable structures and similar membrane permeability as MCE. More importantly, Cu/CNT outperforms other membranes with high As(III) removal efficiency of above 90%, as compared to less than 10% by MCE and CNT, and 75% by Cu/MCE from water. The performance of Cu/CNT membranes for As(III) removal is also investigated as a function of ionic strength, sputtering time, co-existing ions, solution pH, and the reusability. Further characterizations of As speciation in the filtrate and on Cu/CNT reveal that arsenite removal by Cu/CNT possibly began with Cu-catalyzed oxidation of arsenite to arsenate, followed by adsorptive filtration of arsenate by the membrane. Overall, this study demonstrates that magnetron sputtering is a promising greener technology for the productions of metal-CNT composite membranes for environmental applications.

  19. Study of copper fluorination

    International Nuclear Information System (INIS)

    Gillardeau, J.

    1967-02-01

    This report deals with the action of fluorine on copper. Comprehensive descriptions are given of the particular technological methods and of the preparation of the reactants. This fluorination reaction has been studied at medium and low fluorine pressures. A nucleation and growth phenomenon is described. The influence of a pollution of the gas phase on the fluorination process is described. The solid-state reaction between cupric fluoride and cooper has also been studied. A special study has been made of the growth of copper deposits by thermal decomposition of gaseous fluorides. (author) [fr

  20. Effect of moisture control and air venting on H2S production and leachate quality in mature C&D debris landfills.

    Science.gov (United States)

    Zhang, Jianye; Dubey, Brajesh; Townsend, Timothy

    2014-10-21

    The effect of air venting and moisture variation on H2S production and the leaching of metals/metalloids (arsenic, copper, chromium, and boron) from treated wood in aged mature construction and demolition (C&D) debris landfills were examined. Three simulated C&D debris landfill lysimeters were constructed and monitored, each containing as a major debris component either wooden pallets, chromated copper arsenate (CCA) treated wood, or alkaline copper quaternary (ACQ) treated wood. The lysimeters were operated with alternating periods of water addition (a total of 160 L in four equal amounts) and air venting (68.4 m(3)per day for 121 days in two phases). Moisture addition did not increase H2S levels in the long term, and a significant drop in H2S concentration was observed (up to 99%) when aerobic conditions were promoted through air venting. H2S concentrations increased after venting stopped up to values approximately two orders of magnitude lower than observed prior to venting. Venting had the immediate consequence of suppressing biological H2S production, and the longer-term effect of decreasing organic matter that could otherwise be utilized in this process. Under aerobic conditions, the levels of arsenic, chromium, and boron in leachate decreased up to 96%, 49%, and 68%, respectively, while copper was found to increase up to 200% in CCA and 445% in ACQ column leachates.

  1. A comparative toxicity assessment of materials used in aquatic construction.

    Science.gov (United States)

    Lalonde, Benoit A; Ernst, William; Julien, Gary; Jackman, Paula; Doe, Ken; Schaefer, Rebecca

    2011-10-01

    Comparative toxicity testing was performed on selected materials that may be used in aquatic construction projects. The tests were conducted on the following materials: (1) untreated wood species (hemlock [Tsuga ssp], Western red cedar (Thuja plicata), red oak [Quercus rubra], Douglas fir [Pseudotsuga menziesii], red pine [Pinus resinosa], and tamarack [Larix ssp]); (2) plastic wood; (3) Ecothermo wood hemlock stakes treated with preservatives (e.g., chromated copper arsenate [CCA], creosote, alkaline copper quaternary [ACQ], zinc naphthenate, copper naphthenate, and Lifetime Wood Treatment); (4) epoxy-coated steel; (5) hot-rolled steel; (6) zinc-coated steel; and (7) concrete. Those materials were used in acute lethality tests with rainbow trout, Daphnia magna, Vibrio fischeri and threespine stickleback. The results indicated the following general ranking of the materials (from the lowest to highest LC(50) values); ACQ > creosote > zinc naphthenate > copper naphthenate > CCA (treated at 22.4 kg/m(3)) > concrete > red pine > western red cedar > red oak > zinc-coated steel > epoxy-coated steel > CCA (6.4 kg/m(3)). Furthermore, the toxicity results indicated that plastic wood, certain untreated wood species (hemlock, tamarack, Douglas fir, and red oak), hot-rolled steel, Ecothermo wood, and wood treated with Lifetime Wood Treatment were generally nontoxic to the test species. © Springer Science+Business Media, LLC 2011

  2. Brazing copper to dispersion-strengthened copper

    Science.gov (United States)

    Ryding, David G.; Allen, Douglas; Lee, Richard H.

    1996-11-01

    The advanced photon source is a state-of-the-art synchrotron light source that will produce intense x-ray beams, which will allow the study of smaller samples and faster reactions and processes at a greater level of detail than has ben possible to date. The beam is produced by using third- generation insertion devices in a 7-GeV electron/positron storage ring that is 1,104 meters in circumference. The heat load from these intense high-power devices is very high, and certain components must sustain total heat loads of 3 to 15 kW and heat fluxes of 30 W/mm$_2). Because the beams will cycle on and off many times, thermal shock and fatigue will be a problem. High heat flux impinging on a small area causes a large thermal gradient that results in high stress. GlidCop, a dispersion-strengthened copper, is the desired design material because of its high thermal conductivity and superior mechanical properties as compared to copper and its alloys. GlidCop is not amenable to joining by fusion welding, and brazing requires diligence because of high diffusivity. Brazing procedures were developed using optical and scanning electron microscopy.

  3. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  4. Creative Copper Crests

    Science.gov (United States)

    Knab, Thomas

    2011-01-01

    In this article, the author discusses how to create an art activity that would link the computer-created business cards of fourth-grade students with an upcoming school-wide medieval event. Creating family crests from copper foil would be a great connection, since they, like business cards, are an individual's way to identify themselves to others.…

  5. and copper(II)

    Indian Academy of Sciences (India)

    Unknown

    (II) and copper(II)–zinc(II) complexes. SUBODH KUMAR1, R N PATEL1*, P V KHADIKAR1 and. K B PANDEYA2. 1 Department of Chemistry, APS University, Rewa 486 003, India. 2 CSJM University, Kanpur 208 016, India e-mail: (R N Patel) ...

  6. Reagent conditions of the flotation of copper, copper - molybdenum and copper -zinc ores in foreing countries

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1983-01-01

    Reagents-collectors and frothers, used abroad in reagent regimes of flotation of copper, copper-molybdenum and copper zinc ores, have been considered. Xanthogenates, aerofloats, xanthogenformiates, thionocarbamates are mainly used as reagents-collectors. Methylizobutylcarbinol and Daufros are used as reagents-frothers

  7. Hypoxia targeting copper complexes

    International Nuclear Information System (INIS)

    Dearling, J.L.

    1998-11-01

    The importance and incidence of tumour hypoxia, its measurement and current treatments available, including pharmacological and radiopharmacological methods of targeting hypoxia, are discussed. A variety of in vitro and in vivo methods for imposing hypoxia have been developed and are reviewed. Copper, its chemistry, biochemistry and radiochemistry, the potential for use of copper radionuclides and its use to date in this field is considered with particular reference to the thiosemicarbazones. Their biological activity, metal chelation, in vitro and in vivo studies of their radiocopper complexes and the potential for their use as hypoxia targeting radiopharmaceuticals is described. The reduction of the copper(II) complex to copper(l), its pivotal importance in their biological behaviour, and the potential for manipulation of this to effect hypoxia selectivity are described. An in vitro method for assessing the hypoxia selectivity of radiopharmaceuticals is reported. The rapid deoxygenation and high viability of a mammalian cell culture in this system is discussed and factors which may affect the cellular uptake of a radiopharmaceutical are described. The design, synthesis and complexation with copper and radiocopper of a range of bis(thiosemicarbazones) is reported. Synthesis of these compounds is simple giving high yields of pure products. The characteristics of the radiocopper complexes ( 64 Cu) including lipophilicity and redox activity are reported (reduction potentials in the range -0.314 - -0.590 V). High cellular uptakes of the radiocopper complexes of the ligands, in hypoxic and normoxic EMT6 and CHO320 cells, were observed. Extremes of selectivity are shown ranging from the hypoxia selective 64 Cu(II)ATSM to normoxic cell selective 64 Cu(II)GTS. The selectivities observed are compared with the physico chemical characteristics of the complexes. A good correlation exists between selectivity of the complex and its Cu(II)/Cu(I) reduction potential, with hypoxia

  8. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  9. Separation/Preconcentration and Speciation Analysis of Trace Amounts of Arsenate and Arsenite in Water Samples Using Modified Magnetite Nanoparticles and Molybdenum Blue Method

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Karimi

    2014-01-01

    Full Text Available A new, simple, and fast method for the separation/preconcentration and speciation analysis of arsenate and arsenite ions using cetyltrimethyl ammonium bromide immobilized on alumina-coated magnetite nanoparticles (CTAB@ACMNPs followed by molybdenum blue method is proposed. The method is based on the adsorption of arsenate on CTAB@ACMNPs. Total arsenic in different samples was determined as As(V after oxidation of As(III to As(V using potassium permanganate. The arsenic concentration has been determined by UV-Visible spectrometric technique based on molybdenum blue method and amount of As(III was calculated by subtracting the concentration of As(V from total arsenic concentration. MNPs and ACMNPs were characterized by VSM, XRD, SEM, and FT-IR spectroscopy. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range, and relative standard deviation (RSD of arsenate were 175 (for 350 mL of sample solution, 0.028 μg mL−1, 0.090–4.0 μg mL−1, and 2.8% (for 2.0 μg mL−1, n=7, respectively. This method avoided the time-consuming column-passing process of loading large volume samples in traditional SPE through the rapid isolation of CTAB@ACMNPs with an adscititious magnet. The proposed method was successfully applied to the determination and speciation of arsenic in different water samples and suitable recoveries were obtained.

  10. Is the effect of silicon on rice uptake of arsenate (AsV) related to internal silicon concentrations, iron plaque and phosphate nutrition?

    International Nuclear Information System (INIS)

    Guo, W.; Zhu, Y.-G.; Liu, W.-J.; Liang, Y.-C.; Geng, C.-N.; Wang, S.-G.

    2007-01-01

    Solution culture experiments were conducted to investigate the effects of silicon (Si) on arsenate (As V ) uptake by rice. The addition of Si to the pretreatment or uptake solution significantly decreased shoot and root As concentrations (P < 0.001 and P < 0.05). The presence of Si in the pretreatment or uptake solution also significantly decreased shoot P concentrations (P < 0.001). The data demonstrated that both internal and external Si inhibited the uptake of As and P. Results of As uptake kinetics showed that the mechanism of the effect of Si on arsenate uptake is not caused by direct competition for active sites of transporters with As. The effect of Si on As uptake was not entirely mediated through the effect of Si on P uptake. Although the addition of Si to pretreatment solutions still significantly decreased shoot and root As concentrations, the extent of reduction became smaller when rice roots were coated with iron plaque. - Arsenate uptake by rice seedlings is affected by both Si (internal and external) and iron plaque on root surface

  11. Green synthesis and evaluation of an iron-based metal-organic framework MIL-88B for efficient decontamination of arsenate from water.

    Science.gov (United States)

    Hou, Shuliang; Wu, Yi-Nan; Feng, Lingyu; Chen, Wei; Wang, Ying; Morlay, Catherine; Li, Fengting

    2018-02-13

    Iron-containing metal-organic frameworks (MOFs) have gradually emerged as environmentally benign alternatives for reducing the levels of environmental contamination because of their advantages, such as readily obtained raw materials with low cost, nontoxic metal source with good biocompatibility, and distinguished physicochemical features e.g., high porosity, framework flexibility, and semiconductor properties. In this study, we reported an innovative strategy for synthesizing an iron-based MOF, MIL-88B, at room temperature. The novelty of this strategy was the use of ethanol as solvent and the pretreatment of dry milling with neither the bulk use of a toxic organic solvent nor the addition of extremely dangerous hydrofluoric acid or strong alkali. The synthesized MIL-88B(Fe) was evaluated as a sorbent for removing arsenate in water and it exhibited high adsorption capacity (156.7 mg g -1 ) at a low dosage. The removal capacity of trace arsenate on MIL-88B(Fe) was 32.3 mg g -1 at a low equilibrium concentration (6.4 μg L -1 ), which satisfied the arsenic threshold for drinking water. The results of Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the As(v) molecules bonded with the oxygen molecules, which were coordinated with FeO clusters in the framework. This work presented the potential use of the up-scaled MIL-88B as an excellent sorbent for purifying arsenate-contaminated water.

  12. The Effect of Copper

    African Journals Online (AJOL)

    environment, where fishes are found, stuns them ... of earthen ponds are springing up near cocoa ... farm, which posses toxicological risk to farmed ... Veg. oil. 1.0. 1.0. 1.0. 1.0. 1.0. Copper sulphate 0. 1.0. 2.5. 5.0. 7.5. Total ..... Cellulase Production by Wild Strains of Aspergillus Niger, ... Mangrove Area of Lagos, Nigeria.

  13. Copper Pyrimidine based MOFs

    Indian Academy of Sciences (India)

    Synthesized hydrothermally in a 23-mL Teflon lined stainless steel bomb by heating copper(II) 2-pyrazinecarboxylate (31 mg, 0.1 mmol) and tin(II) iodide (75 mg, 0.2 mmol) in 4 mL water at 150±C for 24 h. The reaction vessel was subsequently cooled to 70±C at 1±C/min and held at that temperature for 6 h before returning ...

  14. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  15. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  16. Arsenate Impact on the Metabolite Profile, Production, and Arsenic Loading of Xylem Sap in Cucumbers (Cucumis sativus L.)

    Science.gov (United States)

    Uroic, M. Kalle; Salaün, Pascal; Raab, Andrea; Feldmann, Jörg

    2012-01-01

    Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV) and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analyzed including a metabolite profiling under AsV stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure had a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up-regulated, one compound down-regulated by AsV exposure. The compound down-regulated was identified to be isoleucine. Furthermore, AsV exposure had a significant influence on sap production, leading to a reduction of up to 96% sap production when plants were exposed to 1000 μg kg−1 AsV. No difference to control plants was observed when plants were exposed to 1000 μg kg−1 DMA. Absolute arsenic amount in xylem sap was the lowest at high AsV exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention. PMID:22536187

  17. Native copper as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1989-12-01

    This paper discusses the occurrence of native copper as found in geological formations as a stability analogue of copper canisters that are planned to be used for the disposal of spent nuclear fuel in the Finnish bedrock. A summary of several publications on native copper occurrences is presented. The present geochemical and geohydrological conditions in which copper is met with in its metallic state show that metallic copper is stable in a wide range of temperatures. At low temperatures native copper is found to be stable where groundwater has moderate pH (about 7), low Eh (< +100 mV), and low total dissolved solids, especially chloride. Microscopical and microanalytical studies were carried out on a dozen of rock samples containing native copper. The results reveal that the metal shows no significant alteration. Only the surface of copper grains is locally coated. In the oldest samples there exist small corrosion cracks; the age of the oldest samples is over 1,000 million years. A review of several Finnish groundwater studies suggests that there are places in Finland where the geohydrological conditions are favourable for native copper stability. (orig.)

  18. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  19. Copper tolerance in Becium homblei

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, C; Stone, J

    1971-04-09

    Analyses show that Becium homblei has apparently no mechanism for limiting copper uptake. As growth proceeds, the concentration of metal increases in leaves and stems. Much of the copper is bound to structural material of the cells. There is a significant difference between the amount of extractable material in root and leaf tissues. These differences, in conjunction with the extrinsic factor of regular bush fires, were important factors in the evolution of this copper-resistant species of Becium. 9 references.

  20. Copper toxicity in housed lambs

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, A H; Valks, D A; Appleton, M A; Shaw, W B

    1969-09-27

    Copper toxicity among 170 lambs artificially reared indoors at High Mowthorpe NAAS Experimental Husbandry Farm is reported. Although only three lambs were lost it is not unreasonable to suggest that the liver copper levels of the lambs which were slaughtered would have been high and losses could have been much heavier had there been any further copper supplementation. Even a copper level of 20 ppm in lamb concentrates given to lambs reared artificially indoors is dangerous, and intakes of much less than 38 mg per lamb per day can be fatal if given of a prolonged period. 5 references, 1 table.

  1. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  2. Spectrographic determination of impurities in copper and copper oxide

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1990-11-01

    An emission spectrographic method for the determination of Al, Bi, Ca, Cd, Cr, Fe, Ge, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn and Zn in copper and copper oxide is described. Two mixtures (Graphite and ZnO: graphite and GeO sub(2)) were used as buffers. The standard deviation lies around 10%. (author)

  3. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  4. Environmentally friendly wood preservatives formulated with enzymatic-hydrolyzed okara, copper and/or boron salts

    International Nuclear Information System (INIS)

    Ahn, Sye Hee; Oh, Sei Chang; Choi, In-gyu; Han, Gyu-seong; Jeong, Han-seob; Kim, Ki-woo; Yoon, Young-ho; Yang, In

    2010-01-01

    Novel biocides, such as copper azole (CuAz) and ammoniacal copper quaternary (ACQ), are extensively used as substitutes for chromate copper arsenate (CCA) in wood preservation. However, the expense of these biocides has necessitated the development of cost-effective and environmentally friendly wood preservatives. This study was conducted to investigate the effectiveness against decaying fungi of the preservatives formulated with enzymatic-hydrolyzed okara (OK), which is an organic waste produced from the manufacture of tofu, CuCl 2 (CC) and/or Na 2 B 4 O 7 .10H 2 O (B). With the addition of NH 4 OH as a dissociating agent, the addition of OK facilitated the target retention of most of the OK/CC and OK/CC/B preservative formulations in wood blocks. The OK-based wood preservatives (OK-WPs) were stable against hot-water leaching. When compared with control and CC-treated wood blocks, the leached wood blocks treated with OK/CC and OK/CC/B formulations showed excellent decay resistance against both Postia placenta and Gloeophyllum trabeum, especially when OK was hydrolyzed by Celluclast at a loading level of 0.1 ml/g. Scanning electron microscopy (SEM) and SEM-energy dispersive X-ray (SEM-EDX) spectrometry analyses demonstrated that preservative complexes, such as OK-CC and OK-CC-B, existed in the wood blocks treated with OK/CC and OK/CC/B formulations. This study results support the potential application of OK-WPs as environmentally friendly wood preservatives capable of replacing CuAz and ACQ.

  5. Environmentally friendly wood preservatives formulated with enzymatic-hydrolyzed okara, copper and/or boron salts

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sye Hee; Oh, Sei Chang [Department of Forest Resources, Daegu University, Gyeongsan 712-714 (Korea, Republic of); Choi, In-gyu [Department of Forest Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Han, Gyu-seong [Department of Wood and Paper Sciences, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Jeong, Han-seob [Department of Forest Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Kim, Ki-woo [National Instrumentation Center for Environmental Management, Seoul National University, Seoul 151-921 (Korea, Republic of); Yoon, Young-ho [KCI Co. Ltd., Seosan, Chungcheongnam-do 356-874 (Korea, Republic of); Yang, In, E-mail: dahadad2000@yahoo.com [Research Institute for Agriculture and Life Sciences, Seoul National University, San 56-1 Sillim-Dong, Kwanak-gu, Seoul 151-921 (Korea, Republic of)

    2010-06-15

    Novel biocides, such as copper azole (CuAz) and ammoniacal copper quaternary (ACQ), are extensively used as substitutes for chromate copper arsenate (CCA) in wood preservation. However, the expense of these biocides has necessitated the development of cost-effective and environmentally friendly wood preservatives. This study was conducted to investigate the effectiveness against decaying fungi of the preservatives formulated with enzymatic-hydrolyzed okara (OK), which is an organic waste produced from the manufacture of tofu, CuCl{sub 2} (CC) and/or Na{sub 2}B{sub 4}O{sub 7}.10H{sub 2}O (B). With the addition of NH{sub 4}OH as a dissociating agent, the addition of OK facilitated the target retention of most of the OK/CC and OK/CC/B preservative formulations in wood blocks. The OK-based wood preservatives (OK-WPs) were stable against hot-water leaching. When compared with control and CC-treated wood blocks, the leached wood blocks treated with OK/CC and OK/CC/B formulations showed excellent decay resistance against both Postia placenta and Gloeophyllum trabeum, especially when OK was hydrolyzed by Celluclast at a loading level of 0.1 ml/g. Scanning electron microscopy (SEM) and SEM-energy dispersive X-ray (SEM-EDX) spectrometry analyses demonstrated that preservative complexes, such as OK-CC and OK-CC-B, existed in the wood blocks treated with OK/CC and OK/CC/B formulations. This study results support the potential application of OK-WPs as environmentally friendly wood preservatives capable of replacing CuAz and ACQ.

  6. Impacts of environmental factors on arsenate biotransformation and release in Microcystis aeruginosa using the Taguchi experimental design approach.

    Science.gov (United States)

    Wang, Zhenhong; Luo, Zhuanxi; Yan, Changzhou; Xing, Baoshan

    2017-07-01

    Very limited information is available on how and to what extent environmental factors influence arsenic (As) biotransformation and release in freshwater algae. These factors include concentrations of arsenate (As(V)), dissolved inorganic nitrogen (N), phosphate (P), and ambient pH. This study conducted a series of experiments using Taguchi methods to determine optimum conditions for As biotransformation. We assessed principal effective factors of As(V), N, P, and pH and determined that As biotransformation and release actuate at 10.0 μM As(V) in dead alga cells, the As efflux ratio and organic As efflux content actuate at 1.0 mg/L P, algal growth and intracellular arsenite (As(III)) content actuate at 10.0 mg/L N, and the total sum of As(III) efflux from dead alga cells actuates at a pH level of 10. Moreover, N is the critical component for As(V) biotransformation in M. aeruginosa, specifically for As(III) transformation, because N can accelerate algal growth, subsequently improving As(III) accumulation and its efflux, which results in an As(V) to As(III) reduction. Furthermore, low P concentrations in combination with high N concentrations promote As accumulation. Following As(V), P was the primary impacting factor for As accumulation. In addition, small amounts of As accumulation under low concentrations of As and high P were securely stored in living algal cells and were easily released after cell death. Results from this study will help to assess practical applications and the overall control of key environmental factors, particularly those associated with algal bioremediation in As polluted water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dissimilatory Arsenate Reduction and In Situ Microbial Activities and Diversity in Arsenic-rich Groundwater of Chianan Plain, Southwestern Taiwan.

    Science.gov (United States)

    Das, Suvendu; Liu, Chia-Chuan; Jean, Jiin-Shuh; Liu, Tsunglin

    2016-02-01

    Although dissimilatory arsenic reduction (DAsR) has been recognized as an important process for groundwater arsenic (As) enrichment, its characterization and association with in situ microbial activities and diversity in As-rich groundwater is barely studied. In this work, we collected As-rich groundwater at depths of 23, 300, and 313 m, respectively, from Yenshui-3, Budai-Shinwen, and Budai-4 of Chianan plain, southwestern Taiwan, and conducted incubation experiments using different electron donors, acceptors, and sulfate-reducing bacterial inhibitor (tungstate) to characterize DAsR. Moreover, bacterial diversity was evaluated using 454-pyrosequencing targeting bacterial 16S rRNAs. MPN technique was used to enumerate microorganisms with different in situ metabolic functions. The results revealed that DAsR in groundwater of Chianan plain was a biotic phenomenon (as DAsR was totally inhibited by filter sterilization), enhanced by the type of electron donor (in this case, lactate enhanced DAsR but acetate and succinate did not), and limited by the availability of arsenate. In addition to oxidative recycling of As(III), dissolution of As(V)-saturated manganese and iron minerals by indigenous dissimilatory Mn(IV)- and Fe(III)-reducing bacteria, and abiotic oxidation of As(III) with Mn(IV) regenerated As(V) in the groundwater. Sulfate-respiring bacteria contributed 7.4 and 28.2 % to the observed DAsR in groundwater of Yinshui-3 and Budai-Shinwen, respectively, whereas their contribution was negligible in groundwater of Budai-4. A noticeable variation in dominant genera Acinetobacter and Bacillus was observed within the groundwater. Firmicutes dominated in highly As-rich groundwater of Yenshui-3, whereas Proteobacteria dominated in comparatively less As-rich groundwater of Budai-Shinwen and Budai 4.

  8. Crystallization and preliminary crystallographic characterization of LmACR2, an arsenate/antimonate reductase from Leishmania major

    Energy Technology Data Exchange (ETDEWEB)

    Bisacchi, Davide [Bioinformatics and Structural Proteomics, IST-National Cancer Research Institute, Genova (Italy); Zhou, Yao; Rosen, Barry P.; Mukhopadhyay, Rita [Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan (United States); Bordo, Domenico, E-mail: domenico.bordo@istge.it [Bioinformatics and Structural Proteomics, IST-National Cancer Research Institute, Genova (Italy)

    2006-10-01

    LmACR2 from L. major is the first rhodanese-like enzyme directly involved in the reduction of arsenate and antimonate to be crystallized. Diffraction data have been collected to 1.99 Å resolution using synchrotron X-rays. Arsenic is present in the biosphere owing either to the presence of pesticides and herbicides used in agricultural and industrial activities or to leaching from geological formations. The health effects of prolonged exposure to arsenic can be devastating and may lead to various forms of cancer. Antimony(V), which is chemically very similar to arsenic, is used instead in the treatment of leishmaniasis, an infection caused by the protozoan parasite Leishmania sp.; the reduction of pentavalent antimony contained in the drug Pentostam to the active trivalent form arises from the presence in the Leishmania genome of a gene, LmACR2, coding for the protein LmACR2 (14.5 kDa, 127 amino acids) that displays weak but significant sequence similarity to the catalytic domain of Cdc25 phosphatase and to rhodanese enzymes. For structural characterization, LmACR2 was overexpressed, purified to homogeneity and crystallized in a trigonal space group (P321 or P3{sub 1}21/P3{sub 2}21). The protein crystallized in two distinct trigonal crystal forms, with unit-cell parameters a = b = 111.0, c = 86.1 Å and a = b = 111.0, c = 175.6 Å, respectively. At a synchrotron beamline, the diffraction pattern extended to a resolution limit of 1.99 Å.

  9. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests

    International Nuclear Information System (INIS)

    Wang, Shengsen; Gao, Bin; Li, Yuncong; Creamer, Anne Elise; He, Feng

    2017-01-01

    Highlights: • Biochar supported nZVI (nZVI/BC) was synthesized. • nZVI/BC showed excellent As(V) removal efficiency in batch and CMR experiments. • 100% removal efficiency was achieved in CMRs. • Surface adsorption was the dominant removal mechanism. - Abstract: Arsenate (As(V)) removal ability by nanoscale zero-valent iron (nZVI) is compromised by aggregation of nZVI particles. In this work, pine derived biochar (PB) was used as a supporting material to stabilize nZVI for As(V) removal. The biochar supported nZVI (nZVI/BC) was synthesized by precipitating the nanoparticles on carbon surfaces. Experiments using batch and continuous flow, completely mixed reactors (CMRs) were carried out to investigate the removal of As(V) by the nZVI/BC from aqueous solutions. Batch experiments showed that nZVI/BC had high As(V) removal capacity in a wide range of pH (3–8). Kinetic data revealed that equilibrium was reached within 1 h and the isotherm data showed that the Langmuir maximum adsorption capacity of the nZVI/BC for As(V) at pH 4.1 was 124.5 g kg −1 . As(V) (100 mg L −1 ) adsorption in anoxic condition was about 8% more than in oxic conditions, where As(V) reduction was observed in anoxic condition. The performance of the nZVI/BC in flowing condition was evaluated in CMRs at influent As(V) concentrations of 2.1 and 5.5 mg L −1 and the adsorbent removed 100% and 90% of the As(V), respectively. Furthermore, the nZVI/BC composite is magnetic which facilitates collection from aqueous solutions.

  10. Crystallization and preliminary crystallographic characterization of LmACR2, an arsenate/antimonate reductase from Leishmania major

    International Nuclear Information System (INIS)

    Bisacchi, Davide; Zhou, Yao; Rosen, Barry P.; Mukhopadhyay, Rita; Bordo, Domenico

    2006-01-01

    LmACR2 from L. major is the first rhodanese-like enzyme directly involved in the reduction of arsenate and antimonate to be crystallized. Diffraction data have been collected to 1.99 Å resolution using synchrotron X-rays. Arsenic is present in the biosphere owing either to the presence of pesticides and herbicides used in agricultural and industrial activities or to leaching from geological formations. The health effects of prolonged exposure to arsenic can be devastating and may lead to various forms of cancer. Antimony(V), which is chemically very similar to arsenic, is used instead in the treatment of leishmaniasis, an infection caused by the protozoan parasite Leishmania sp.; the reduction of pentavalent antimony contained in the drug Pentostam to the active trivalent form arises from the presence in the Leishmania genome of a gene, LmACR2, coding for the protein LmACR2 (14.5 kDa, 127 amino acids) that displays weak but significant sequence similarity to the catalytic domain of Cdc25 phosphatase and to rhodanese enzymes. For structural characterization, LmACR2 was overexpressed, purified to homogeneity and crystallized in a trigonal space group (P321 or P3 1 21/P3 2 21). The protein crystallized in two distinct trigonal crystal forms, with unit-cell parameters a = b = 111.0, c = 86.1 Å and a = b = 111.0, c = 175.6 Å, respectively. At a synchrotron beamline, the diffraction pattern extended to a resolution limit of 1.99 Å

  11. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengsen [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); Gao, Bin, E-mail: bg55@ufl.edu [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); Li, Yuncong [Tropical Research and Education Center, University of Florida, Homestead, FL 33031 (United States); Creamer, Anne Elise [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); He, Feng [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014 (China)

    2017-01-15

    Highlights: • Biochar supported nZVI (nZVI/BC) was synthesized. • nZVI/BC showed excellent As(V) removal efficiency in batch and CMR experiments. • 100% removal efficiency was achieved in CMRs. • Surface adsorption was the dominant removal mechanism. - Abstract: Arsenate (As(V)) removal ability by nanoscale zero-valent iron (nZVI) is compromised by aggregation of nZVI particles. In this work, pine derived biochar (PB) was used as a supporting material to stabilize nZVI for As(V) removal. The biochar supported nZVI (nZVI/BC) was synthesized by precipitating the nanoparticles on carbon surfaces. Experiments using batch and continuous flow, completely mixed reactors (CMRs) were carried out to investigate the removal of As(V) by the nZVI/BC from aqueous solutions. Batch experiments showed that nZVI/BC had high As(V) removal capacity in a wide range of pH (3–8). Kinetic data revealed that equilibrium was reached within 1 h and the isotherm data showed that the Langmuir maximum adsorption capacity of the nZVI/BC for As(V) at pH 4.1 was 124.5 g kg{sup −1}. As(V) (100 mg L{sup −1}) adsorption in anoxic condition was about 8% more than in oxic conditions, where As(V) reduction was observed in anoxic condition. The performance of the nZVI/BC in flowing condition was evaluated in CMRs at influent As(V) concentrations of 2.1 and 5.5 mg L{sup −1} and the adsorbent removed 100% and 90% of the As(V), respectively. Furthermore, the nZVI/BC composite is magnetic which facilitates collection from aqueous solutions.

  12. Copper: From neurotransmission to neuroproteostasis

    Directory of Open Access Journals (Sweden)

    Carlos M Opazo

    2014-07-01

    Full Text Available Copper is critical for the Central Nervous System (CNS development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of AMPA receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (neuroproteostasis in the CNS with focus in the Ubiquitin Proteasome System, which is particularly relevant to neurological disorders such Alzheimer’s disease (AD where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.

  13. New Insight into the Local Structure of Hydrous Ferric Arsenate Using Full-Potential Multiple Scattering Analysis, Density Functional Theory Calculations, and Vibrational Spectroscopy.

    Science.gov (United States)

    Wang, Shaofeng; Ma, Xu; Zhang, Guoqing; Jia, Yongfeng; Hatada, Keisuke

    2016-11-15

    Hydrous ferric arsenate (HFA) is an important arsenic-bearing precipitate in the mining-impacted environment and hydrometallurgical tailings. However, there is no agreement on its local atomic structure. The local structure of HFA was reprobed by employing a full-potential multiple scattering (FPMS) analysis, density functional theory (DFT) calculations, and vibrational spectroscopy. The FPMS simulations indicated that the coordination number of the As-Fe, Fe-As, or both in HFA was approximately two. The DFT calculations constructed a structure of HFA with the formula of Fe(HAsO 4 ) x (H 2 AsO 4 ) 1-x (OH) y ·zH 2 O. The presence of protonated arsenate in HFA was also evidenced by vibrational spectroscopy. The As and Fe K-edge X-ray absorption near-edge structure spectra of HFA were accurately reproduced by FPMS simulations using the chain structure, which was also a reasonable model for extended X-Ray absorption fine structure fitting. The FPMS refinements indicated that the interatomic Fe-Fe distance was approximately 5.2 Å, consistent with that obtained by Mikutta et al. (Environ. Sci. Technol. 2013, 47 (7), 3122-3131) using wavelet analysis. All of the results suggested that HFA was more likely to occur as a chain with AsO 4 tetrahedra and FeO 6 octahedra connecting alternately in an isolated bidentate-type fashion. This finding is of significance for understanding the fate of arsenic and the formation of ferric arsenate minerals in an acidic environment.

  14. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    Science.gov (United States)

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  15. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration

    International Nuclear Information System (INIS)

    Chowdhury, Uttam K.; Zakharyan, Robert A.; Hernandez, Alba; Avram, Mihaela D.; Kopplin, Michael J.; Aposhian, H. Vasken

    2006-01-01

    Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arsenic-containing metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic + 3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 bp of Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate

  16. Copper Powder and Chemicals: edited proceedings of a seminar

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Various papers are presented covering the following topics: Status of Copper Chemical Industry in India, Copper Powder from Industrial Wastes, Manufacture of Copper Hydroxide and High Grade Cement Copper from Low Grade Copper Ore, Manufacture of Copper Sulphate as a By-Product, Hydrometallurgical Treatments of Copper Converter and Smelter Slage for Recovering Copper and other Non-Ferrous Metals, Recovery of Copper from Dilute Solutions, Use of Copper Compounds as Fungicides in India, Copper in Animal Husbandry, and Use of Copper Powder and Chemicals for Marine Applications. The keynote paper given at the Seminar was on Conservation of Copper for Better Use.

  17. 21 CFR 73.1647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper. It...

  18. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, van den G.J.; de Goeij, J.J.M.; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendriks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (<1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  19. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  20. NID Copper Sample Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Zhu, Zihua

    2011-09-12

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

  1. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-01-01

    Gallium and copper radionuclides have a long history of use in nuclear medicine. Table 1 presents the nuclear properties of several gallium and copper isotopes that either are used in the routine practice of clinical nuclear medicine or exhibit particular characteristics that might make them useful in diagnostic or therapeutic medicine. This paper will provide some historic perspective along with an overview of some current research directions in gallium and copper radiopharmaceutical chemistry. A more extensive review of gallium radiopharmaceutical chemistry has recently appeared and can be consulted for a more in-depth treatment of this topic

  2. Relationship between firewood usage and urinary Cr, Cu and As in informal areas of Cape Town.

    Science.gov (United States)

    Dalvie, Mohamed Aqiel; Africa, Algernon; Naidoo, Sivapregasen

    2013-09-03

    The study investigated whether wood usage by informal food vendors and household residents in Cape Town results in the absorption of arsenic (As), chromium (Cr) and copper (Cu) owing to release of these metals in the burning of chromated copper arsenate (CCA)-treated wood. The participants (N=78) selected included an equal number of food vendors and non-vendors from 2 informal settlements. All participants answered a questionnaire concerning exposure and were tested for urinary Cr, Cu and As, while the urine of 29 participants was also tested for toxic As (As(tox)). Multivariate analysis showed that the time spent in close proximity to the wood, as well as the quantity of wood used for cooking and for household use, was weakly positively associated with urinary levels of As, Cr and the sum of As, Cr and Cu. The study provides evidence that use of wood likely to contain CCA as a fuel for informal food outlets and household purposes may increase the absorption of inorganic As, Cu and Cr.

  3. Copper complexes as 'radiation recovery' agents

    International Nuclear Information System (INIS)

    Sorenson, J.R.J.

    1989-01-01

    Copper and its compounds have been used for their remedial effects since the beginning of recorded history. As early as 3000 BC the Egyptians used copper as an antiseptic for healing wounds and to sterilise drinking water; and later, ca 1550 BC, the Ebers Papyrus reports the use of copper acetate, copper sulphate and pulverised metallic copper for the treatment of eye infections. These historical uses of copper and its compounds are particularly interesting in the light of modern evidence concerning the use of certain copper complexes for the treatment of radiation sickness and more recently as an adjunct to radiotherapy for cancer patients. (author)

  4. An arsenate-reducing and alkane-metabolizing novel bacterium, Rhizobium arsenicireducens sp. nov., isolated from arsenic-rich groundwater.

    Science.gov (United States)

    Mohapatra, Balaram; Sarkar, Angana; Joshi, Swati; Chatterjee, Atrayee; Kazy, Sufia Khannam; Maiti, Mrinal Kumar; Satyanarayana, Tulasi; Sar, Pinaki

    2017-03-01

    A novel arsenic (As)-resistant, arsenate-respiring, alkane-metabolizing bacterium KAs 5-22 T , isolated from As-rich groundwater of West Bengal was characterized by physiological and genomic properties. Cells of strain KAs 5-22 T were Gram-stain-negative, rod-shaped, motile, and facultative anaerobic. Growth occurred at optimum of pH 6.0-7.0, temperature 30 °C. 16S rRNA gene affiliated the strain KAs 5-22 T to the genus Rhizobium showing maximum similarity (98.4 %) with the type strain of Rhizobium naphthalenivorans TSY03b T followed by (98.0 % similarity) Rhizobium selenitireducens B1 T . The genomic G + C content was 59.4 mol%, and DNA-DNA relatedness with its closest phylogenetic neighbors was 50.2 %. Chemotaxonomy indicated UQ-10 as the major quinone; phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol as major polar lipids; C 16:0 , C 17:0 , 2-OH C 10:0 , 3-OH C 16:0 , and unresolved C 18:1 ɷ7C/ɷ9C as predominant fatty acids. The cells were found to reduce O 2 , As 5+ , NO 3 - , SO 4 2- and Fe 3+ as alternate electron acceptors. The strain's ability to metabolize dodecane or other alkanes as sole carbon source using As 5+ as terminal electron acceptor was supported by the presence of genes encoding benzyl succinate synthase (bssA like) and molybdopterin-binding site (mopB) of As 5+ respiratory reductase (arrA). Differential phenotypic, chemotaxonomic, genotypic as well as physiological properties revealed that the strain KAs 5-22 T is separated from its nearest recognized Rhizobium species. On the basis of the data presented, strain KAs 5-22 T is considered to represent a novel species of the genus Rhizobium, for which the name Rhizobium arsenicireducens sp. nov. is proposed as type strain (=LMG 28795 T =MTCC 12115 T ).

  5. Determination of arsenate in natural pH seawater using a manganese-coated gold microwire electrode

    Energy Technology Data Exchange (ETDEWEB)

    Gibbon-Walsh, Kristoff [Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Salauen, Pascal, E-mail: Salaun@liv.ac.uk [Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Berg, Constant M.G. van den, E-mail: Vandenberg@liv.ac.uk [Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Determination of arsenic(V) in water of neutral pH. Black-Right-Pointing-Pointer An unusual redox couple of elemental Mn/As{sup V} reduces As{sup V} to As{sup III}. Black-Right-Pointing-Pointer Novel manganese coated gold microwire electrode. - Abstract: Direct electrochemical determination of arsenate (As{sup V}) in neutral pH waters is considered impossible due to electro-inactivity of As{sup V}. As{sup III} on the other hand is readily plated as As{sup 0} on a gold electrode and quantified by anodic stripping voltammetry (ASV). We found that the reduction of As{sup V} to As{sup III} was mediated by elemental Mn on the electrode surface in a novel redox couple in which 2 electrons are exchanged causing the Mn to be oxidised to Mn{sup II}. Advantage is taken of this redox couple to enable for the first time the electrochemical determination of As{sup V} in natural waters of neutral pH including seawater by ASV using a manganese-coated gold microwire electrode. Thereto Mn is added to excess ({approx}1 {mu}M Mn) to the water leading to a Mn coating during the deposition of As on the electrode at a deposition potential of -1.3 V. Deposition of As{sup 0} from dissolved As{sup V} caused elemental Mn to be re-oxidised to Mn{sup II} in a 1:1 molar ratio providing evidence for the reaction mechanism. The deposited As{sup V} is subsequently quantified using an ASV scan. As{sup III} interferes and should be quantified separately at a more positive deposition potential of -0.9 V. Combined inorganic As is quantified after oxidation of As{sup III} to As{sup V} using hypochlorite. The microwire electrode was vibrated during the deposition step to improve the sensitivity. The detection limit was 0.2 nM As{sup V} using a deposition time of 180 s.

  6. Environmental Risks of Nano Zerovalent Iron for Arsenate Remediation: Impacts on Cytosolic Levels of Inorganic Phosphate and MgATP2- in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Weilan; Lo, Irene M C; Hu, Liming; Voon, Chia Pao; Lim, Boon Leong; Versaw, Wayne K

    2018-04-03

    The use of nano zerovalent iron (nZVI) for arsenate (As(V)) remediation has proven effective, but full-scale injection of nZVI into the subsurface has aroused serious concerns for associated environmental risks. This study evaluated the efficacy of nZVI treatment for arsenate remediation and its potential hazards to plants using Arabidopsis thaliana grown in a hydroponic system. Biosensors for inorganic phosphate (Pi) and MgATP 2- were used to monitor in vivo Pi and MgATP 2- levels in plant cells. The results showed that nZVI could remove As(V) from growth media, decrease As uptake by plants, and mitigate As(V) toxicity to plants. However, excess nZVI could cause Pi starvation in plants leading to detrimental effects on plant growth. Due to the competitive adsorption of As(V) and Pi on nZVI, removing As(V) via nZVI treatment at an upstream site could relieve downstream plants from As(V) toxicity and Pi deprivation, in which case 100 mg/L of nZVI was the optimal dosage for remediation of As(V) at a concentration around 16.13 mg/L.

  7. New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

    KAUST Repository

    Chubar, Natalia

    2011-12-01

    Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H 2AsO 4 -, H 3AsO 3, F -, Br -, BrO 3 -, HSeO 4 -, HSeO 3 - and H 3BO 3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg-Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg-Al hydrous oxides towards H 2AsO 4 - (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N 2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate. © 2011 IWA Publishing.

  8. Copper tailings in stucco mortars

    Directory of Open Access Journals (Sweden)

    Osvaldo Pavez

    Full Text Available Abstract This investigation addressed the evaluation of the use of copper tailings in the construction industry in order to reduce the impact on the environment. The evaluation was performed by a technical comparison between stucco mortars prepared with crushed conventional sand and with copper tailings sand. The best results were achieved with the stucco mortars containing tailings. The tailings presented a fine particles size distribution curve different from that suggested by the standard. The values of compressive strength, retentivity, and adherence in the stucco mortars prepared with copper tailings were much higher than those obtained with crushed sand. According to the results from this study, it can be concluded that the preparation of stucco mortars using copper tailings replacing conventional sand is a technically feasible alternative for the construction industry, presenting the benefit of mitigating the impact of disposal to the environment.

  9. The copper deposits of Michigan

    Science.gov (United States)

    Butler, B.S.; Burbank, W.S.

    1929-01-01

    The copper district of Keweenaw Point, in the northern peninsula of Michigan, is the second largest producer of copper in the world.  The output of the district since 1845 has been more than 7,500,000,000 pounds and showed a rather steady and consistent increase from the beginning of production to the end of the World War in 1918, since which there has been a marked decrease.

  10. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  11. Atmospheric corrosion effects on copper

    International Nuclear Information System (INIS)

    Franey, J.P.

    1985-01-01

    Studies have been performed on the naturally formed patina on various copper samples. Samples have been obtained from structures at AT and T Bell Laboratories, Murray Hill, NJ (40,2,1 and <1 yr) and the Statue of Liberty (100 yr). The samples show a distinct layering effect, that is, the copper base material shows separate oxide and basic sulfate layers on all samples, indicating that patina is not a homogeneous mixture of oxides and basic sulfates

  12. Chronic copper poisoning in lambs

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D B

    1964-08-08

    This communication presented evidence of the elevation of plasma GOT (glutamic oxaloacetic transaminase or aspartate transaminase) concentration during the development of copper toxicity in some experimental lambs, and also demonstrated that plasma GOT concentration can be used to assess the course of the disease during treatment. A group of Kerry Hill lambs were fed 1 1/2 lb per day of a proprietary concentrate containing 40 parts of copper per million on a dry-matter basis in addition to hay and water ad lib. Data was included for the plasma GOT concentrations of the lambs, bled weekly after weaning from pasture to this diet. There was some variation between the individual lambs, and in one there was no increase in plasma GOT by the 20th week when all the surviving lambs were slaughtered. The concentrations of copper found in the caudate lobe of the liver and in the kidney cortex post mortem were given. The overall findings showed that the liver gave a reliable indication of the copper status of an animal whereas the kidney cortex copper concentration was a better criterion for the diagnosis of copper poisoning and was in agreement with the results of Eden, Todd, and Grocey and Thompson. Observations demonstrated the benefits resulting from the early diagnosis of chronic copper poisoning in lambs, when treatment of affected animals may be commenced before the haemolytic crisis develops. Treatment included reducing the copper intake and dosing with ammonium molybdate and sodium sulfate, and the plasma GOT concentration may be used to assess the rate of recovery. 4 references, 3 tables.

  13. Copper sulphate poisoning in horses

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, M

    1975-01-01

    In the archives of the Clinic for Internal Diseases of Domestic Animals at the Veterinary Faculty of Zagreb University some thirty cases of horse disease diagnosed as copper sulphate poisoning were noted. The data correspond in many respects to the clinical findings of copper sulphate poisoning in other domestic animals. A series of experimental horse poisonings were undertaken in order to determine the toxicity of copper sulphate. The research results are as follows: Horses are sensitive to copper sulphate. Even a single application of 0.125 g/kg body weight in 1% concentration by means of incubation into the stomach causes stomach and gut disturbances and other poisoning symptoms. Poisoning occurs in two types: acute and chronic. The former appears after one to three applications of copper sulphate solution and is characterized by gastroenteritis, haemolysis, jaundice and haemoglobinuria with signs of consecutive damage of kidney, liver and other organs. The disease, from the first application to death lasts for two weeks. Chronic poisoning is caused by ingestion of dry copper sulphate in food (1% solution dried on hay or clover) for two or more months. There are chronic disturbances of stomach and gut and loss of weight, and consecutive (three to four) haemolytic crises similar to those of acute poisoning. From the beginning of poisoning to death six or more months can elapse.

  14. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  15. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  16. Use of copper radioisotopes in investigating disorders of copper metabolism

    International Nuclear Information System (INIS)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M.; Smith, S.; Mercer, J.

    1998-01-01

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes 64 Cu (t 1/2 = 12.8 hr) and 67 Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  17. NID Copper Sample Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Zhu, Zihua

    2011-02-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  18. NID Copper Sample Analysis

    International Nuclear Information System (INIS)

    Kouzes, Richard T.; Zhu, Zihua

    2011-01-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76 Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76 Ge. The DEMONSTRATOR will utilize 76 Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  19. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  20. Renal cortex copper concentration in acute copper poisoning in calves

    Directory of Open Access Journals (Sweden)

    Luis E. Fazzio

    2012-01-01

    Full Text Available The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu concentration in clinical cases of acute copper poisoning (ACP. A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.

  1. Copper metallurgy at the crossroads

    Directory of Open Access Journals (Sweden)

    Habashi F.

    2007-01-01

    Full Text Available Copper technology changed from the vertical to the horizontal furnace and from the roast reaction to converting towards the end of the last century. However, the horizontal furnace proved to be an inefficient and polluting reactor. As a result many attempts were made to replace it. In the past 50 years new successful melting processes were introduced on an industrial scale that were more energy efficient and less polluting. In addition, smelting and converting were conducted in a single reactor in which the concentrate was fed and the raw copper was produced. The standing problem in many countries, however, is marketing 3 tonnes of sulfuric acid per tonne of copper produced as well as emitting large amounts of excess SO2 in the atmosphere. Pressure hydrometallurgy offers the possibility of liberating the copper industry from SO2 problem. Heap leaching technology has become a gigantic operation. Combined with solvent extraction and electrowinning it contributes today to about 20% of copper production and is expected to grow. Pressure leaching offers the possibility of liberating the copper industry from SO2 problem. The technology is over hundred years old. It is applied for leaching a variety of ores and concentrates. Hydrothermal oxidation of sulfide concentrates has the enormous advantage of producing elemental sulfur, hence solving the SO2 and sulfuric acid problems found in smelters. Precipitation of metals such as nickel and cobalt under hydrothermal conditions has been used for over 50 years. It has the advantage of a compact plant but the disadvantage of producing ammonium sulfate as a co-product. In case of copper, however, precipitation takes place without the need of neutralizing the acid, which is a great advantage and could be an excellent substitute for electrowinning which is energy intensive and occupies extensive space. Recent advances in the engineering aspects of pressure equipment design open the door widely for increased

  2. Micro-analytical evidence of origin and degradation of copper pigments found in Bohemian Gothic murals.

    Science.gov (United States)

    Svarcová, Silvie; Hradil, David; Hradilová, Janka; Kocí, Eva; Bezdicka, Petr

    2009-12-01

    Correct identification of pigments and all accompanying phases found in colour layers of historical paintings are relevant for searching their origin and pigment preparation pathways and for specification of their further degradation processes. We successfully applied the analytical route combining non-destructive in situ X-ray fluorescence analyses with subsequent laboratory investigation of micro-samples by optical microscopy, scanning electron microscopy/energy-dispersive spectroscopy and X-ray powder micro-diffraction (micro-XRD) to obtain efficiently all the data relevant for mineralogical interpretations of the copper pigments origin. Cu salts (carbonates, chlorides, sulphates, etc.) used as pigments exist in a range of polymorphs with similar or identical composition. The efficiency of the micro-XRD for direct identification of such crystal phases present in micro-samples of colour layers was demonstrated in the presented paper. A new, until now unpublished, type of copper pigment--cumengeite, Pb(21)Cu(20)Cl(42)(OH)(40)--used as a blue pigment on a sacral wall painting in the Czech Republic was found by means of micro-XRD. Furthermore, azurite, malachite, paratacamite, atacamite and posnjakite were identified in fragments of colour layers of selected Gothic wall paintings. We found Cu-Zn arsenates indicating the natural origin of azurite and malachite; artificial malachite was distinguishable according to its typical spherulitic crystals. The corrosion of blue azurite to green basic Cu chloride was clearly evidenced on some places exposed to the action of salts and moisture-in a good agreement with the results of laboratory experiments, which also show that oxalic acid accelerates the corrosion of Cu pigments.

  3. Influence of dietary selenium on the disposition of arsenate in the female B6C3F{sub 1} mouse

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, E.M.; Hughes, M.F. [Environmental Protection Agency, Research Triangle Park, NC (United States); Levander, O.A. [Nutrient Requirements and Functions Lab., Beltsville, MD (United States)

    1997-06-27

    Interactions between arsenic (As) and selenium (Se) at the metabolic level are multifaceted and complex. These interactions are of practical significance because populations in various parts of the world are simultaneously exposed to inorganic As in drinking water and Se mainly in the diet at varying levels. The primary goal of this study was to investigate whether differing dietary Se status would alter the profile of urinary metabolites or their time course for elimination after exposure to arsenate [As(V)]. Weanling female 86C3F, mice were maintained for 28 d on either a control diet of powdered rodent meal sufficient in Se (A 0.2 ppm) or Torula yeast-based (TYB) diets deficient (B, 0.02 ppm Se), sufficient (C, 0.2 ppm Se), or excessive (D, 2.0 ppm Se) in Se; mice then received by oral gavage 5 mg (As)/kg as sodium [{sup 73}As] arsenate. The time course for elimination of total arsenic and metabolites in urine was measured over a 48-h period, and total arsenic was determined in feces and tissues at 48 h. Mice on the Se excess diet excreted a significantly higher percentage of urinary As as inorganic As, with a significantly decreased ratio of organic to inorganic As compared to Se-sufficient mice, suggesting that As methylation was decreased. Mice on the Se-deficient diet appeared to eliminate As(V), arsenite, and dimethylarsinic acid (DMA) in urine more slowly than Se-sufficient mice; however, further studies are required to confirm this finding. Mice on the Se-sufficient meal diet (A) excreted significantly less (by percent) arsenate-derived radioactivity in urine and more in feces compared to mice on the Se-sufficient TYB diet (C), with total elimination being similar for both groups. This indicates that mice on the meal diet absorbed significantly less As(V) than mice on the TYB diet, and this may be due to more fiber or {open_quotes}bulk{close_quotes} in the meal diet. 35 refs., 6 figs., 6 tabs.

  4. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption

    Science.gov (United States)

    Mikutta, Robert; Lorenz, Dennis; Guggenberger, Georg; Haumaier, Ludwig; Freund, Anja

    2014-11-01

    Ferric oxyhydroxides play an important role in controlling the bioavailability of oxyanions such as arsenate and phosphate in soil. Despite this, little is known about the properties and reactivity of Fe(III)-organic matter phases derived from adsorption (reaction of organic matter (OM) to post-synthesis Fe oxide) versus coprecipitation (formation of Fe oxides in presence of OM). Coprecipitates and adsorption complexes were synthesized at pH 4 using two natural organic matter (NOM) types extracted from forest floor layers (Oi and Oa horizon) of a Haplic Podzol. Iron(III) coprecipitates were formed at initial molar metal-to-carbon (M/C) ratios of 1.0 and 0.1 and an aluminum (Al)-to-Fe(III) ratio of 0.2. Sample properties were studied by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, dynamic light scattering, and electrophoretic mobility measurements. Arsenic [As(V)] adsorption to Fe-OM phases was studied in batch experiments (168 h, pH 4, 100 μM As). The organic carbon (OC) contents of the coprecipitates (82-339 mg g-1) were higher than those of adsorption complexes (31 and 36 mg g-1), leading to pronounced variations in specific surface area (9-300 m2 g-1), average pore radii (1-9 nm), and total pore volumes (11-374 mm3 g-1) but being independent of the NOM type or the presence of Al. The occlusion of Fe solids by OM (XPS surface concentrations: 60-82 atom% C) caused comparable pHPZC (1.5-2) of adsorption complexes and coprecipitates. The synthesis conditions resulted in different Fe-OM association modes: Fe oxide particles in 'M/C 0.1' coprecipitates covered to a larger extent the outermost aggregate surfaces, for some 'M/C 1.0' coprecipitates OM effectively enveloped the Fe oxides, while OM in the adsorption complexes primarily covered the outer aggregate surfaces. Despite of their larger OC contents, adsorption of As(V) was fastest to coprecipitates formed at low Fe availability (M/C 0.1) and facilitated by desorption of weakly

  5. Investigation of copper nuclei

    International Nuclear Information System (INIS)

    Delfini, M.G.

    1983-01-01

    An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64 Cu and 66 Cu. They were obtained by bombarding the 63 Cu and 65 Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64 Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)

  6. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  7. Current trends in copper theft prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mastrofrancesco, A. [Electrical Safety Authority, ON (Canada)

    2009-07-01

    Copper is used in electrical wiring, water and gas piping, currency, and in household items. An increase in the price and demand for copper has made copper theft a profitable venture for some thieves. Copper consumed in North America is typically supplied by recycling. Scrap dealers may pay near-market prices for pure copper wires. However, copper theft poses a serious threat to the safety of utility workers and the public. Power outages caused by copper theft are now affecting grid reliability. This paper examined technologies and techniques used to prevent copper theft as part of a security strategy for utilities. Attempts to steal copper can leave utility substations unsecured and accessible to children. The theft of neutral grounds will cause the local distribution company (LDC) to malfunction and may cause power surges in homes as well as appliance fires. Utilities are now looking at using a hybrid steel and copper alternative to prevent copper theft. Asset identification techniques are also being used to identify the original owners of the copper and more easily prosecute thieves. Automated monitoring techniques are also being used to increase substation security. Utilities are also partnering with law enforcement agencies and pressuring governments to require scrap dealers to record who they buy from. It was concluded that strategies to prevent copper theft should be considered as part of an overall security strategy for utilities. tabs., figs.

  8. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong

    2002-01-01

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  9. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  10. Copper tolerance of Trichoderma species

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena

    2014-01-01

    Full Text Available Some Trichoderma strains can persist in ecosystems with high concentrations of heavy metals. The aim of this research was to examine the variability of Trichoderma strains isolated from different ecosystems, based on their morphological properties and restriction analysis of ITS fragments. The fungal growth was tested on potato dextrose agar, amended with Cu(II concentrations ranging from 0.25 to 10 mmol/l, in order to identify copper-resistant strains. The results indicate that some isolated strains of Trichoderma sp. show tolerance to higher copper concentrations. Further research to examine the ability of copper bioaccumulation by tolerant Trichoderma strains is needed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31080 i br. III 43010

  11. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    International Nuclear Information System (INIS)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload

  12. Figurines in Pietrele: Copper Age ideology

    Directory of Open Access Journals (Sweden)

    Svend Hansen

    2011-12-01

    Full Text Available Major trends in figurine production of the copper age settlement of Pietrele (Romania are discussed. The bone figurines are seen as an ideological innovation of the Early Copper Age system in the Eastern Balkans.

  13. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  14. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake

    NARCIS (Netherlands)

    Berghe, van den P.V.E; Folmer, D.E.; Malingré, H.E.M.; Beurden, van E.; Klomp, A.E.M.; Sluis, van de B.; Merkx, M.; Berger, R.J.; Klomp, L.W.J.

    2007-01-01

    High-affinity cellular copper uptake is mediated by the CTR (copper transporter) 1 family of proteins. The highly homologous hCTR (human CTR) 2 protein has been identified, but its function in copper uptake is currently unknown. To characterize the role of hCTR2 in copper homoeostasis,

  15. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts

    NARCIS (Netherlands)

    Munnik, P.|info:eu-repo/dai/nl/328228524; Wolters, M.|info:eu-repo/dai/nl/304829560; Gabrielsson, A.; Pollington, S.D.; Headdock, G.; Bitter, J.H.|info:eu-repo/dai/nl/160581435; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2011-01-01

    In order to obtain copper catalysts with high dispersions at high copper loadings, the gas flow rate and gas composition was varied during calcination of silica gel impregnated with copper nitrate to a loading of 18 wt % of copper. Analysis by X-ray diffraction (XRD), N2O chemisorption, and

  16. Copper and Anesthesia: Clinical Relevance and Management of Copper Related Disorders

    OpenAIRE

    Langley, Adrian; Dameron, Charles T.

    2013-01-01

    Recent research has implicated abnormal copper homeostasis in the underlying pathophysiology of several clinically important disorders, some of which may be encountered by the anesthetist in daily clinical practice. The purpose of this narrative review is to summarize the physiology and pharmacology of copper, the clinical implications of abnormal copper metabolism, and the subsequent influence of altered copper homeostasis on anesthetic management.

  17. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color...

  18. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and...

  19. Synthesis, crystal structure, electrical properties, and sodium transport pathways of the new arsenate Na{sub 4}Co{sub 7}(AsO{sub 4}){sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Ben Smida, Youssef; Marzouki, Riadh [Université de Tunis El Manar, Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Manar II, Tunis (Tunisia); Georges, Samuel [Université Grenoble Alpes, Laboratoire d’Electrochimie et de Physicochimie des Matériaux et des Interfaces LEPMI, F-38000 Grenoble (France); Kutteh, Ramzi [Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, New South Wales 2234 (Australia); Avdeev, Maxim [Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, New South Wales 2234 (Australia); School of Chemistry, University of Sydney, Sydney, New South Wales 2006 (Australia); Guesmi, Abderrahmen; Zid, Mohamed Faouzi [Université de Tunis El Manar, Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Manar II, Tunis (Tunisia)

    2016-07-15

    A new sodium cobalt (II) arsenate Na{sub 4}Co{sub 7}(AsO{sub 4}){sub 6} has been synthesized by a solid-state reaction and its crystal structure determined from single crystal X-ray diffraction data. It crystallizes in the monoclinic system, space group C2/m, with a=10.7098(9) Å, b=14.7837(9) Å, c=6.6845(7) Å, and β=105.545(9)°. The structure is described as a three-dimensional framework built up of corner-edge sharing CoO{sub 6}, CoO{sub 4} and AsO{sub 4} polyhedra, with interconnecting channels along [100] in which the Na{sup +} cations are located. The densest ceramics with relative density of 94% was obtained by ball milling and optimization of sintering temperature, and its microstructure characterized by scanning electron microscopy. The electrical properties of the ceramics were studied over a temperature interval from 280 °C to 560 °C using the complex impedance spectroscopy over the range of 13 MHz–5 Hz. The ionic bulk conductivity value of the sample at 360 °C is 2.51 10{sup −5} S cm{sup −1} and the measured activation energy is Ea=1 eV. The sodium migration pathways in the crystal structure were investigated computationally using the bond valence site energy (BVSE) model and classical molecular dynamics (MD) simulations. - Graphical abstract: Correlation between crystal structure, microstructure and ionic conductivity . Display Omitted - Highlights: • A new arsenate Na{sub 4}Co{sub 7}(AsO{sub 4}){sub 6} was prepared by solid state reaction. • Its crystal structure was determined by powder X-ray diffraction. • Na{sup +} ionic conductivity was probed by complex impedance spectroscopy. • Na{sup +} conduction pathways were modeled by bond-valence method and molecular dynamics.

  20. Refining processes in the copper casting technology

    OpenAIRE

    Rzadkosz, S.; Kranc, M.; Garbacz-Klempka, A.; Kozana, J.; Piękoś, M.

    2015-01-01

    The paper presents the analysis of technology of copper and alloyed copper destined for power engineering casts. The casts quality was assessed based on microstructure, chemical content analysis and strength properties tests. Characteristic deoxidising (Logas, Cup) and modifying (ODM2, Kupmod2) formulas were used for the copper where high electrical conductivity was required. Chosen examples of alloyed copper with varied Cr and Zr content were studied, and the optimal heat treatment parameter...

  1. 21 CFR 184.1261 - Copper sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a...

  2. The Bauschinger Effect in Copper

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Brown, L .M.; Stobbs, W. M.

    1981-01-01

    A study of the Bauschinger effect in pure copper shows that by comparison with dispersion hardened copper the effect is very small and independent of temperature. This suggests that the obstacles to flow are deformable. A simple composite model based on this principle accounts for the data semi......-quantitatively and also accounts for the stored energy of cold-work. An interesting feature of the model is that it shows very clearly that, although dislocation pile-ups may exist, the flow stress of the composite is entirely due to the resistance to dislocation motion in the tangles of forest dislocations....

  3. Cupriferous peat: embryonic copper ore

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, D C

    1961-07-01

    A Canadian peat was found to contain up to 10% (dry weight) Cu, and a mechanism for Cu accumulation in peat was discussed. Wet chemical techniques and x-ray diffraction were utilized to identify Cu compounds. Copper was organically bound in peat as a chelate complex and did not occur as an oxide, sulfide, or as elemental Cu. Because of the low S content of peat the Cu was assumed to be bound to nitrogen or oxygen-containing components. Copper, having a greater affinity for N, tended to form the more stable Cu-N chelate. The element was concentrated as circulating cupriferous ground waters filtered through the peat.

  4. Tunable synthesis of copper nanotubes

    International Nuclear Information System (INIS)

    Kaniukov, E; Yakimchuk, D; Kozlovsky, A; Shlimas, D; Zdorovets, M; Kadyrzhanov, K

    2016-01-01

    Simple method of tunable synthesis of copper nanotubes based on template synthesis was developed. A comprehensive study of the structural, morphological and electrical characteristics of the obtained nanostructures was carried out. Characterization of structural features was made by methods of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry analysis. Evaluation of wall thickness is made by methods of gas permeability. Electrical conductivity of nanotubes was define in the study of their current-voltage characteristics. The possibility to control of copper nanotubes physical properties by variation of the deposition parameters was shown. (paper)

  5. Electrical conduction in composites containing copper core–copper ...

    Indian Academy of Sciences (India)

    Unknown

    of Mott's small polaron hopping conduction model. ... sample exhibited a metallic conduction confirming the formation of a percolative chain of ..... value of εp. Also the oxide layer formation on the initially unoxidized copper particles will increase the resistivity level of the nanocomposite. This is borne out by results shown in ...

  6. 21 CFR 73.2647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.2647 Section 73.2647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The color additive copper powder shall conform in identity and specifications to the requirements of § 73...

  7. Copper nanoparticles in zeolite Y

    NARCIS (Netherlands)

    Seidel, A.; Loos, J.; Boddenberg, B.

    1999-01-01

    CuCl has been dispersed in the supercages of a Y-type zeolite by heating a mechanical salt/host mixture in vacuo. The occluded salt was subsequently reduced to copper metal in a hydrogen atmosphere. Virtually complete reduction of the salt is achieved at 460°C. Under the same conditions,

  8. Effects of copper on mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Kostal, L

    1971-01-01

    The author deals with the effects of copper on mitosis. He found that a Cu concentration of 1 mg per liter is very toxic and strongly inhibits the course of mitosis in Vicia fabia. The effects of 0.5 mg and 0.25 mg Cu concentrations per liter were similar but a much weaker character.

  9. Copper complexes as chemical nucleases

    Indian Academy of Sciences (India)

    Unknown

    anticancer drug famotidine has been shown as a better catalyst than CuCl2 for sulfite ... Effect of addition of bis-chelate copper(II) complexes (dpq, •; phen, ; ..... Reproduction, Development & Genetics for their help in the DNA cleavage studies ...

  10. Copper, lead and zinc production

    International Nuclear Information System (INIS)

    Ayers, J.; Ternan, S.

    2001-01-01

    This chapter provides information on the by-products and residues generated during the production of copper, lead and zinc. The purpose of this chapter is to describe by-products and residues which are generated, how these may be avoided or minimised, and available options for the utilization and management of residues. (author)

  11. on THICKNESS OF COPPER (|) OXIDE

    African Journals Online (AJOL)

    2006-12-20

    Dec 20, 2006 ... known materials to be used as semiconductor devices. The oxide is. Observed to be an attractive starting material for the production of solar cells for low cost terrestrial conversion of solar energy to electricity. Copper (I) oxide is one Of the earliest known photovoltaic materials and the first in which the ...

  12. Lab Tracker and Copper Calculator

    Science.gov (United States)

    ... have to do with factors of asymmetric neurologic development, such as being right or left-handed. The copper is often seen most prominently in the basal ganglia, the area deep within the brain that coordinates movements. The face of the giant ...

  13. Crystallization of copper metaphosphate glass

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  14. COPPER CORROSION AND SOLUBILITY RESEARCH

    Science.gov (United States)

    This poster provides a very cursory summary of TTEB in-house copper research experimental systems, and extramural research projects. The field studies summarized are the Indian Hill (OH) study of the use of orthophosphate for reducing cuprosolvency in a high alkalinity water, an...

  15. Spectroscopic studies of copper enzymes

    International Nuclear Information System (INIS)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-01-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present

  16. A Study of Protection of Copper Alloys

    International Nuclear Information System (INIS)

    Kim, E. A.; Kim, S. H.; Kim, C. R.

    1974-01-01

    Volatile treatment of high capacity boiler water with hydrazine and ammonia is studied. Ammonia comes from the decomposition of excess hydrazine injected to treat dissolved oxygen. Ammonia is also injected for the control of pH. To find an effect of such ammonia on the copper alloy, the relations between pH and iron, and ammonia and copper are studied. Since the dependence of corrosion of iron on pH differs from that of copper, a range of pH was selected experimentally to minimize the corrosion rates of both copper and iron. Corrosion rates of various copper alloys are also compared

  17. Electrochemical remediation of copper contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Mitojan, R.A. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study objective focused on electrochemical remediation copper polluted soils in the presence of adjuvant substances and conditions that are more effective for the treatment. Some of these substances were studied in different researches. Moreover, authors obtained a result of extraction copper rate higher than 90%. In this connection the following problems were set: - Influence organic and inorganic substances on copper mobility in soil under the DC current. - Moisture effect on copper migration in clay. - Electrochemical remediation soils different mineralogical composition. - A washing conditions contribution to electrochemical remediation of soil from copper. - Accuracy rating experimental dates. (orig.)

  18. Arsenic leaching and speciation in C&D debris landfills and the relationship with gypsum drywall content.

    Science.gov (United States)

    Zhang, Jianye; Kim, Hwidong; Dubey, Brajesh; Townsend, Timothy

    2017-01-01

    The effects of sulfide levels on arsenic leaching and speciation were investigated using leachate generated from laboratory-scale construction and demolition (C&D) debris landfills, which were simulated lysimeters containing various percentages of gypsum drywall. The drywall percentages in lysimeters were 0, 1, 6, and 12.4wt% (weight percent) respectively. With the exception of a control lysimeter that contained 12.4wt% of drywall, each lysimeter contained chromated copper arsenate (CCA) treated wood, which accounts for 10wt% of the C&D waste. During the period of study, lysimeters were mostly under anaerobic conditions. Leachate analysis results showed that sulfide levels increased as the percentage of drywall increased in landfills, but arsenic concentrations in leachate were not linearly correlated with sulfide levels. Instead, the arsenic concentrations decreased as sulfide increased up to approximately 1000μg/L, but had an increase with further increase in sulfide levels, forming a V-shape on the arsenic vs. sulfide plot. The analysis of arsenic speciation in leachate showed different species distribution as sulfide levels changed; the fraction of arsenite (As(III)) increased as the sulfide level increased, and thioarsenate anions (As(V)) were detected when the sulfide level further increased (>10 4 μg/L). The formation of insoluble arsenic sulfide minerals at a lower range of sulfide and soluble thioarsenic anionic species at a higher range of sulfide likely contributed to the decreasing and increasing trend of arsenic leaching. Copyright © 2016. Published by Elsevier Ltd.

  19. Tribological properties of copper-based composites with copper coated NbSe2 and CNT

    International Nuclear Information System (INIS)

    Chen, Beibei; Yang, Jin; Zhang, Qing; Huang, Hong; Li, Hongping; Tang, Hua; Li, Changsheng

    2015-01-01

    Graphical abstract: Morphology of copper coated NbSe 2 and CNT; friction coefficient and wear rate of copper-based composites. - Highlights: • NbSe 2 and CNT were coated with copper layers by the means of electroless plating. • The mechanical and tribological properties of copper composites were studied. • The enhancement mechanisms of copper coated NbSe 2 and CNT were proposed. • Copper–copper coated (12 wt.%NbSe 2 –3 wt.%CNT) composite had the best wear resistance. - Abstract: Copper-based composites with copper coated NbSe 2 and/or CNT were fabricated by the powder metallurgy technique. The morphology and phase composition of copper coated NbSe 2 and carbon nanotube (CNT) were observed using high solution transmission electronic microscope (HRTEM), scanning electronic microscope (SEM equipped with EDS) and X-ray diffraction (XRD). The density, hardness, and bending strength of as-prepared copper-based composites were measured, and their tribological properties were investigated using UMT-2 tester. Results indicated that all copper-based composites showed decreased density and bending strength, but increased hardness in comparison with copper matrix. Besides, the incorporation of copper coated NbSe 2 improved the friction-reducing and anti-wear properties of copper matrix. Addition of copper coated CNT greatly enhanced the mechanical and tribological properties. In particular, when the content of copper coated CNT was 3 wt.%, the corresponding composite exhibited the best tribological properties. This was because NbSe 2 was distributed chaotically in matrix, which greatly improved the friction-reducing property of copper, while CNT with superior mechanical strength enhanced the wear resistance by increasing the load-carrying capacity. More importantly, copper layers coated on NbSe 2 and CNT favored the good interfacial combination between fillers and copper matrix showing beneficial effect for the stresses transferring from matrix to fillers

  20. Reactivity test between beryllium and copper

    International Nuclear Information System (INIS)

    Kawamura, H.; Kato, M.

    1995-01-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700 degrees C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper)

  1. Copper economy in Chlamydomonas: Prioritized allocation and reallocation of copper to respiration vs. photosynthesis

    Science.gov (United States)

    Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.

    2015-01-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  2. What is the Potential for More Copper Fabrication in Zambia?

    OpenAIRE

    World Bank

    2011-01-01

    The copper fabrication industry lies between: (1) the industry that produces copper (as a commodity metal from mined ores as well as from recycling), and (2) the users of copper in finished products such as electronic goods. Copper fabrication involves the manufacture of products such as copper wire, wire rod, low-voltage cable, and other copper based semi-manufactures. Copper is clearly a...

  3. Accumulation and hyperaccumulation of copper in plants

    Science.gov (United States)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  4. Teor de arsênio e adsorção competitiva arsênio/fosfato e arsênio/sulfato em solos de Minas Gerais, Brasil Arsenate content, and arsenate/phosphate and arsenate/sulphate competitive adsorption in soils from Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Mari Lucia Campos

    2013-06-01

    Full Text Available A alta toxicidade de As para homens e animais gera a necessidade de estudos do comportamento químico do arsenato nos solos que possam auxiliar na mitigação de áreas contaminadas com arsênio. Este trabalho teve por objetivo avaliar o teor total e a adsorção de As na ausência e presença dos ânions fosfato e sulfato em seis diferentes classes de solos do estado de Minas Gerais, Brasil. Os solos alvo deste estudo são: o Neossolo Flúvico (RU, Gleissolo Háplico (GX, Gleissolo Melânico (GM, Latossolo Vermelho Distrófico (LVd, coletados em Lavras; Neossolo Quartzarênico (RQ, coletado em Itutinga e o Latossolo Amarelo Distrófico (LAd, coletado em Rosário, no estado de Minas Gerais. As amostras de solo foram secas, moídas e peneiradas em peneira de 2,0mm para execução do teste de adsorção e peneiradas em peneira plástica com malha de 1,5mm para determinação do teor de As, o qual foi determinado pelo método 3051A. A adsorção de As foi avaliada na dose de1500µmol L-1 de As, 1500µmol L-1 de As + 1500µmol L-1 de P e 1500µmol L-1 de As + 750µmolL-1 de S, em relação solo:solução final de 1:100, a pH 5,5 e força iônica de 15mmol L-1. Os seis solos apresentaram teor médio de As entre 0,14 e 9,3mgkg-1. A porcentagem adsorvida de arsênio na ausência dos outros ânions seguiu a sequência GM>LVd=RU=LAd=GX=RQ. A adição de fosfato e sulfato reduziu a porcentagem de arsênio adsorvido e, por consequência, houve um aumentou na concentração de arsênio disponível na solução do solo.The high toxicity of arsenic to humans and animals creates the need to study the chemical behavior of arsenate in soils that can help in the mitigation of areas contaminated with arsenic. This work aimed to evaluate the total content and adsorption in the absence and presence of phosphate and sulfate anions in six different soil classes in the state of Minas Gerais, Brazil. Soils aim of this study are: Fluvic Neosol (RU, Haplic Gleysol (GX

  5. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species.

    Science.gov (United States)

    Levy, Jacqueline L; Angel, Brad M; Stauber, Jennifer L; Poon, Wing L; Simpson, Stuart L; Cheng, Shuk Han; Jolley, Dianne F

    2008-08-29

    Although it has been well established that different species of marine algae have different sensitivities to metals, our understanding of the physiological and biochemical basis for these differences is limited. This study investigated copper adsorption and internalisation in three algal species with differing sensitivities to copper. The diatom Phaeodactylum tricornutum was particularly sensitive to copper, with a 72-h IC50 (concentration of copper to inhibit growth rate by 50%) of 8.0 microg Cu L(-1), compared to the green algae Tetraselmis sp. (72-h IC50 47 microg Cu L(-1)) and Dunaliella tertiolecta (72-h IC50 530 microg Cu L(-1)). At these IC50 concentrations, Tetraselmis sp. had much higher intracellular copper (1.97+/-0.01 x 10(-13)g Cu cell(-1)) than P. tricornutum (0.23+/-0.19 x 10(-13)g Cu cell(-1)) and D. tertiolecta (0.59+/-0.05 x 10(-13)g Cu cell(-1)), suggesting that Tetraselmis sp. effectively detoxifies copper within the cell. By contrast, at the same external copper concentration (50 microg L(-1)), D. tertiolecta appears to better exclude copper than Tetraselmis sp. by having a slower copper internalisation rate and lower internal copper concentrations at equivalent extracellular concentrations. The results suggest that the use of internal copper concentrations and net uptake rates alone cannot explain differences in species-sensitivity for different algal species. Model prediction of copper toxicity to marine biota and understanding fundamental differences in species-sensitivity will require, not just an understanding of water quality parameters and copper-cell binding, but also further knowledge of cellular detoxification mechanisms.

  6. Nanoscale Copper and Copper Compounds for Advanced Device Applications

    Science.gov (United States)

    Chen, Lih-Juann

    2016-12-01

    Copper has been in use for at least 10,000 years. Copper alloys, such as bronze and brass, have played important roles in advancing civilization in human history. Bronze artifacts date at least 6500 years. On the other hand, discovery of intriguing properties and new applications in contemporary technology for copper and its compounds, particularly on nanoscale, have continued. In this paper, examples for the applications of Cu and Cu alloys for advanced device applications will be given on Cu metallization in microelectronics devices, Cu nanobats as field emitters, Cu2S nanowire array as high-rate capability and high-capacity cathodes for lithium-ion batteries, Cu-Te nanostructures for field-effect transistor, Cu3Si nanowires as high-performance field emitters and efficient anti-reflective layers, single-crystal Cu(In,Ga)Se2 nanotip arrays for high-efficiency solar cell, multilevel Cu2S resistive memory, superlattice Cu2S-Ag2S heterojunction diodes, and facet-dependent Cu2O diode.

  7. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  8. Copper Leaching from Copper-ethanolamine Treated Wood: Comparison of Field Test Studies and Laboratory Standard Procedures

    OpenAIRE

    Nejc Thaler; Miha Humar

    2014-01-01

    Copper-based compounds are some of the most important biocides for the protection of wood in heavy duty applications. In the past, copper was combined with chromium compounds to reduce copper leaching, but a recent generation of copper-based preservatives uses ethanolamine as a fixative. To elucidate the leaching of copper biocides from wood, Norway spruce (Picea abies) wood was treated with a commercial copper-ethanolamine solution with two different copper concentrations (cCu = 0.125% and 0...

  9. The Effects of Arbuscular-Mycorrhizal Fungi and Phosphorous on Arsenic Uptake by Sunflower Plant in Soils Spiked with Arsenite and Arsenate

    Directory of Open Access Journals (Sweden)

    Saeed Bagherifam

    2017-01-01

    Full Text Available Introduction: Arsenic is a highly toxic metalloid in group 15 of periodic table. The information on environmental behaviour of arsenic, however, is still scarce. Contamination of soils and water with arsenic and antimony due to their widespread industrial application and mining activities has raised serious environmental concerns. Nearly all Arsenic-contaminated soils results from human activities and it has different environmental and sociological impacts. Various strategies and methods have been proposed for environmental management and remediation of contaminated soils. Among all methods, the phytoremediation is receiving more attention due to its cost effective and environmental friendly characteristics. In the case of arsenic contaminated soils, there are effective factors such as soil fertility, nutrients content and microorganisms function, which can improve the uptake of As by plants. Up to now, several studies have been evaluated the effects of symbiotic fungal association in plants on increasing nutrients and toxic elements uptake. Many of authors reported that the mycorrhizal symbiosis increases the uptake of toxic elements in root and shoot of plants and consequently improve the efficacy of phytostabilization and phytoextraction processes. There are conflicting results about the effect of arbuscular- mycorrhizal fungi (AMF on As uptake by various plants. Chen et al. (4 found that Glomus mosseae symbiosis with plant reduces As concentration and enhance phosphorus content in shoot and root of plant. Whilst Cozzolino et al. (7 reported that the AMF increases as concentration in shoot and root of cabbage. Phosphorus has important role on mycorrhizal symbiosis and also As uptake by plants. Therefore, current study was conducted to evaluated effect of Glomus intraradices and Glomus mosseae symbiosis with sunflower and also soil phosphorus concentration on uptake of arsenic from arsenite and arsenate contaminated soils. Materials and

  10. Thermal conductivity of glass copper-composite

    International Nuclear Information System (INIS)

    Kinoshita, Makoto; Terai, Ryohei; Haidai, Haruki

    1980-01-01

    Glass-metal composites are to be one of the answers for promoting thermal conduction in the glassy solids containing high-level radioactive wastes. In order to investigate the effect of metal addition on thermal conductivity of glasses, glass-copper composites were selected, and the conductivities of the composites were measured and discussed in regards to copper content and microstructure. Fully densified composites were successfully prepared by pressure sintering of the powder mixtures of glass and copper at temperatures above the yield points of the constituent glasses if the copper content was not so much. The conductivity was measured by means of a comparative method, in which the thermal gradient of the specimen was compared with that of quartz glass as standard under thermally steady state. Measurements were carried out at around 50 0 C. The thermal conductivity increased with increasing content of copper depending on the kind of copper powder used. The conductivities of the composites of the same copper content differed considerably each another. Fine copper powder was effective on increasing conductivity, and the conductivity became about threefold of that of glass by mixing the fine copper powder about 10 vol%. For the composites containing the fine copper powder less than 5 vol%, the conductivity obeyed so-called logarithmic rule, one of the mixture rules of conductivity, whereas for composites containing more than 5 vol%, the conductivity remarkably increased apart from the rule. This fact suggests that copper becomes continuous in the composite when the copper content increased beyond 5 vol%. For the composites containing coarse copper powder, the conductivity was increased not significantly, and obeyed an equation derived from the model in which conductive material dispersed in less conductive one. (author)

  11. Copper disinfection ban causes storm.

    Science.gov (United States)

    Lester, Alan

    2013-05-01

    Since 1 February this year, under the EU's Biocidal Products Directive, it has been illegal to sell or use water treatment systems that use elemental copper, a practice employed historically by a significant number of UK healthcare facilities to combat Legionella. Alan Lester, managing director of specialist supplier of 'environmentally-friendly' water treatment systems, Advanced Hydro, says the ban has caused 'a storm of giant proportion,' with advocates of copper ion-based treatment systems arguing that this disinfection method dates back 3,000 years to Egyptian times, making it an 'undoubtedly proven' technology. Here he explains why the ban came into force, considers why the UK's Health and Safety Executive (HSE) is seeking a derogation, looks at the ban's likely impact, and gives a personal viewpoint on the 'pros and cons' of some of the alternative treatment technologies, including a titanium dioxide-based system marketed by Advanced Hydro itself in the UK.

  12. Multilevel Dual Damascene copper interconnections

    Science.gov (United States)

    Lakshminarayanan, S.

    Copper has been acknowledged as the interconnect material for future generations of ICs to overcome the bottlenecks on speed and reliability present with the current Al based wiring. A new set of challenges brought to the forefront when copper replaces aluminum, have to be met and resolved to make it a viable option. Unit step processes related to copper technology have been under development for the last few years. In this work, the application of copper as the interconnect material in multilevel structures with SiO2 as the interlevel dielectric has been explored, with emphasis on integration issues and complete process realization. Interconnect definition was achieved by the Dual Damascene approach using chemical mechanical polishing of oxide and copper. The choice of materials used as adhesion promoter/diffusion barrier included Ti, Ta and CVD TiN. Two different polish chemistries (NH4OH or HNO3 based) were used to form the interconnects. The diffusion barrier was removed during polishing (in the case of TiN) or by a post CMP etch (as with Ti or Ta). Copper surface passivation was performed using boron implantation and PECVD nitride encapsulation. The interlevel dielectric way composed of a multilayer stack of PECVD SiO2 and SixNy. A baseline process sequence which ensured the mechanical and thermal compatibility of the different unit steps was first created. A comprehensive test vehicle was designed and test structures were fabricated using the process flow developed. Suitable modifications were subsequently introduced in the sequence as and when processing problems were encountered. Electrical characterization was performed on the fabricated devices, interconnects, contacts and vias. The structures were subjected to thermal stressing to assess their stability and performance. The measurement of interconnect sheet resistances revealed lower copper loss due to dishing on samples polished using HNO3 based slurry. Interconnect resistances remained stable upto 400o

  13. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    Science.gov (United States)

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  14. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  15. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    Science.gov (United States)

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  16. Analysis of the Genome and Mobilome of a Dissimilatory Arsenate Reducing Aeromonas sp. O23A Reveals Multiple Mechanisms for Heavy Metal Resistance and Metabolism

    Directory of Open Access Journals (Sweden)

    Witold Uhrynowski

    2017-05-01

    Full Text Available Aeromonas spp. are among the most ubiquitous microorganisms, as they have been isolated from different environmental niches including waters, soil, as well as wounds and digestive tracts of poikilothermic animals and humans. Although much attention has been paid to the pathogenicity of Aeromonads, the role of these bacteria in environmentally important processes, such as transformation of heavy metals, remains to be discovered. Therefore, the aim of this study was a detailed genomic characterization of Aeromonas sp. O23A, the first representative of this genus capable of dissimilatory arsenate reduction. The strain was isolated from microbial mats from the Zloty Stok mine (SW Poland, an environment strongly contaminated with arsenic. Previous physiological studies indicated that O23A may be involved in both mobilization and immobilization of this metalloid in the environment. To discover the molecular basis of the mechanisms behind the observed abilities, the genome of O23A (∼5.0 Mbp was sequenced and annotated, and genes for arsenic respiration, heavy metal resistance (hmr and other phenotypic traits, including siderophore production, were identified. The functionality of the indicated gene modules was assessed in a series of minimal inhibitory concentration analyses for various metals and metalloids, as well as mineral dissolution experiments. Interestingly, comparative analyses revealed that O23A is related to a fish pathogen Aeromonas salmonicida subsp. salmonicida A449 which, however, does not carry genes for arsenic respiration. This indicates that the dissimilatory arsenate reduction ability may have been lost during genome reduction in pathogenic strains, or acquired through horizontal gene transfer. Therefore, particular emphasis was placed upon the mobilome of O23A, consisting of four plasmids, a phage, and numerous transposable elements, which may play a role in the dissemination of hmr and arsenic metabolism genes in the

  17. Analysis of the Genome and Mobilome of a Dissimilatory Arsenate Reducing Aeromonas sp. O23A Reveals Multiple Mechanisms for Heavy Metal Resistance and Metabolism.

    Science.gov (United States)

    Uhrynowski, Witold; Decewicz, Przemyslaw; Dziewit, Lukasz; Radlinska, Monika; Krawczyk, Pawel S; Lipinski, Leszek; Adamska, Dorota; Drewniak, Lukasz

    2017-01-01

    Aeromonas spp. are among the most ubiquitous microorganisms, as they have been isolated from different environmental niches including waters, soil, as well as wounds and digestive tracts of poikilothermic animals and humans. Although much attention has been paid to the pathogenicity of Aeromonads, the role of these bacteria in environmentally important processes, such as transformation of heavy metals, remains to be discovered. Therefore, the aim of this study was a detailed genomic characterization of Aeromonas sp. O23A, the first representative of this genus capable of dissimilatory arsenate reduction. The strain was isolated from microbial mats from the Zloty Stok mine (SW Poland), an environment strongly contaminated with arsenic. Previous physiological studies indicated that O23A may be involved in both mobilization and immobilization of this metalloid in the environment. To discover the molecular basis of the mechanisms behind the observed abilities, the genome of O23A (∼5.0 Mbp) was sequenced and annotated, and genes for arsenic respiration, heavy metal resistance ( hmr ) and other phenotypic traits, including siderophore production, were identified. The functionality of the indicated gene modules was assessed in a series of minimal inhibitory concentration analyses for various metals and metalloids, as well as mineral dissolution experiments. Interestingly, comparative analyses revealed that O23A is related to a fish pathogen Aeromonas salmonicida subsp. salmonicida A449 which, however, does not carry genes for arsenic respiration. This indicates that the dissimilatory arsenate reduction ability may have been lost during genome reduction in pathogenic strains, or acquired through horizontal gene transfer. Therefore, particular emphasis was placed upon the mobilome of O23A, consisting of four plasmids, a phage, and numerous transposable elements, which may play a role in the dissemination of hmr and arsenic metabolism genes in the environment. The obtained

  18. Analysis of the Genome and Mobilome of a Dissimilatory Arsenate Reducing Aeromonas sp. O23A Reveals Multiple Mechanisms for Heavy Metal Resistance and Metabolism

    Science.gov (United States)

    Uhrynowski, Witold; Decewicz, Przemyslaw; Dziewit, Lukasz; Radlinska, Monika; Krawczyk, Pawel S.; Lipinski, Leszek; Adamska, Dorota; Drewniak, Lukasz

    2017-01-01

    Aeromonas spp. are among the most ubiquitous microorganisms, as they have been isolated from different environmental niches including waters, soil, as well as wounds and digestive tracts of poikilothermic animals and humans. Although much attention has been paid to the pathogenicity of Aeromonads, the role of these bacteria in environmentally important processes, such as transformation of heavy metals, remains to be discovered. Therefore, the aim of this study was a detailed genomic characterization of Aeromonas sp. O23A, the first representative of this genus capable of dissimilatory arsenate reduction. The strain was isolated from microbial mats from the Zloty Stok mine (SW Poland), an environment strongly contaminated with arsenic. Previous physiological studies indicated that O23A may be involved in both mobilization and immobilization of this metalloid in the environment. To discover the molecular basis of the mechanisms behind the observed abilities, the genome of O23A (∼5.0 Mbp) was sequenced and annotated, and genes for arsenic respiration, heavy metal resistance (hmr) and other phenotypic traits, including siderophore production, were identified. The functionality of the indicated gene modules was assessed in a series of minimal inhibitory concentration analyses for various metals and metalloids, as well as mineral dissolution experiments. Interestingly, comparative analyses revealed that O23A is related to a fish pathogen Aeromonas salmonicida subsp. salmonicida A449 which, however, does not carry genes for arsenic respiration. This indicates that the dissimilatory arsenate reduction ability may have been lost during genome reduction in pathogenic strains, or acquired through horizontal gene transfer. Therefore, particular emphasis was placed upon the mobilome of O23A, consisting of four plasmids, a phage, and numerous transposable elements, which may play a role in the dissemination of hmr and arsenic metabolism genes in the environment. The obtained

  19. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.; John, E.K.; Barnhart, A.J.

    1990-01-01

    Several isotopes of gallium and copper exhibit nuclear properties that make them attractive for applications in nuclear medicine, most notably Ga-67, Ga-68, Cu-67 and Cu-62. Of these, gamma-emitting Ga-67 has historically found the greatest clinical use, based on the observation that tracer gallium(III) citrate rapidly produces Ga-67 transferrin upon intravenous injection and then slowly affords selective Ga-67 localization in sites of abscess and certain tumors. Copper-67 has received attention as a potential label for tissue-selective monoclonal antibodies, since its associated γ-photons can be used for external imaging and its β - -emissions could be used for radiation therapy. Positron-emitting gallium-68 and copper-62, being available from parent/daughter generator systems, have attracted interest as potential labels for radiopharmaceuticals used in positron emission tomography (PET) because they could reduce the dependence of this imaging technology on hospital-based cyclotrons. The 10 min. half-life of Cu-62 is particularly well-suited to the time frame of PET studies of tissue perfusion, an application for which Cu(II)-bis(thiosemicarbazone) derivatives appear promising. The 68 min. half-life of Ga-68 makes it appropriate for PET studies over longer imaging time spans

  20. Speciation and leachability of copper in mine tailings from porphyry copper mining

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Yianatos, Juan B; Ottosen, Lisbeth M.

    2005-01-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150mgkg^-^1 dry...... matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212@mm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order...... to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles...

  1. Preparation of copper and silicon/copper powders by a gas ...

    Indian Academy of Sciences (India)

    Administrator

    aCentre for Materials Research, Department of Imaging and Applied Physics, ... Copper powder; Si/Cu composite particle; gas evaporation–condensation method; characteriza- tion. .... from the liquid metal surface, the mixed vapour of copper.

  2. Copper Bioleaching in China: Review and Prospect

    OpenAIRE

    Shenghua Yin; Leiming Wang; Eugie Kabwe; Xun Chen; Rongfu Yan; Kai An; Lei Zhang; Aixiang Wu

    2018-01-01

    The commercial application of copper bioleaching, an environmentally-friendly approach for low-grade and secondary mineral resources recycling, has increased worldwide since the 2000s. As the world’s second-largest economic entity and the largest developing country, China has the largest demand for metal resources, significantly advancing the theory and industrial technology of copper bioleaching. This paper reviews the exploration and application of copper bioleaching in China. Two typical b...

  3. World Copper Market Outlook: 2003-2014

    OpenAIRE

    Florela Stoian

    2015-01-01

    This paper presents synthetically the copper market outlook (demand, supply, and prices) during 2003-2014, highlighting the impact of economic crisis of 2008-2009 on the world copper market. During the crisis, the decline in demand caused increases in excess supply of metal, as the supply has followed an upward trend, contributing to the imbalances of the copper market and putting pressure on stock prices at LME London Metal Exchange.

  4. Electrochemical synthesis of highly crystalline copper nanowires

    International Nuclear Information System (INIS)

    Kaur, Amandeep; Gupta, Tanish; Kumar, Akshay; Kumar, Sanjeev; Singh, Karamjeet; Thakur, Anup

    2015-01-01

    Copper nanowires were fabricated within the pores of anodic alumina template (AAT) by template synthesis method at pH = 2.9. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to investigate the structure, morphology and composition of fabricated nanowires. These characterizations revealed that the deposited copper nanowires were highly crystalline in nature, dense and uniform. The crystalline copper nanowires are promising in application of future nanoelectronic devices and circuits

  5. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis

    NARCIS (Netherlands)

    Fedoseienko, Alina; Bartuzi, Paulina; van de Sluis, Bart

    2014-01-01

    Copper is an important cofactor in numerous biological processes in all living organisms. However, excessive copper can be extremely toxic, so it is vital that the copper level within a cell is tightly regulated. The damaging effect of copper is seen in several hereditary forms of copper toxicity in

  6. Thermal conductivity of tungsten–copper composites

    International Nuclear Information System (INIS)

    Lee, Sang Hyun; Kwon, Su Yong; Ham, Hye Jeong

    2012-01-01

    Highlights: ► We present the temperature dependence of the thermophysical properties for tungsten–copper composite from room temperature to 400 °C. The powders of tungsten–copper were produced by the spray conversion method and the W–Cu alloys were fabricated by the metal injection molding. Thermal conductivity and thermal expansion of tungsten–copper composite was controllable by volume fraction copper. - Abstract: As the speed and degree of integration of semiconductor devices increases, more heat is generated, and the performance and lifetime of semiconductor devices depend on the dissipation of the generated heat. Tungsten–copper alloys have high electrical and thermal conductivities, low contact resistances, and low coefficients of thermal expansion, thus allowing them to be used as a shielding material for microwave packages, and heat sinks for high power integrated circuits (ICs). In this study, the thermal conductivity and thermal expansion of several types of tungsten–copper (W–Cu) composites are investigated, using compositions of 5–30 wt.% copper balanced with tungsten. The tungsten–copper powders were produced using the spray conversion method, and the W–Cu alloys were fabricated via the metal injection molding. The tungsten–copper composite particles were nanosized, and the thermal conductivity of the W–Cu alloys gradually decreases with temperature increases. The thermal conductivity of the W–30 wt.% Cu composite was 238 W/(m K) at room temperature.

  7. Unraveling the Amycolatopsis tucumanensis copper-resistome.

    Science.gov (United States)

    Dávila Costa, José Sebastián; Kothe, Erika; Abate, Carlos Mauricio; Amoroso, María Julia

    2012-10-01

    Heavy metal pollution is widespread causing serious ecological problems in many parts of the world; especially in developing countries where a budget for remediation technology is not affordable. Therefore, screening for microbes with high accumulation capacities and studying their stable resistance characteristics is advisable to define cost-effective any remediation strategies. Herein, the copper-resistome of the novel copper-resistant strain Amycolatopsis tucumanensis was studied using several approaches. Two dimensional gel electrophoresis revealed that proteins of the central metabolism, energy production, transcriptional regulators, two-component system, antioxidants and protective metabolites increased their abundance upon copper-stress conditions. Transcriptome analysis revealed that in presence of copper, superoxide dismutase, alkyl hydroperoxide reductase and mycothiol reductase genes were markedly induced in expression. The oxidative damage of protein and lipid from A. tucumanensis was negligible compared with that observed in the copper-sensitive strain Amycolatopsis eurytherma. Thus, we provide evidence that A. tucumamensis shows a high adaptation towards copper, the sum of which is proposed as the copper-resistome. This adaptation allows the strain to accumulate copper and survive this stress; besides, it constitutes the first report in which the copper-resistome of a strain of the genus Amycolatopsis with bioremediation potential has been evaluated.

  8. Electroforming copper targets for RTNS-II

    International Nuclear Information System (INIS)

    Kelley, W.K.; Dini, J.W.; Logan, C.M.

    1981-01-01

    Copper targets used in RTNS II, which is the world's most intense 14-MeV neutron source, contain water cooling channels for temperature control. There are two methods for fabricating these targets: (1) diffusion bonding a copper panel containing photoetched channels to another copper panel, and (2) an electroforming technique which involves filling the photoetched channels with wax, plating thick copper to seal over the channels and then removing the wax. Development of this latter process and results obtained with it are described

  9. Nearly 60% Copper Rod & Wire Companies Neutral about Future Copper Price

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>How about the trend of copper price recently? According to the survey result of Shanghai Metals Market, amongst 21 domestic copper rod & wire companies, 57% of the companies are neutral about the future copper price, while 14% and 19% of the companies consider that

  10. The copper-transporting ATPase pump and its potential role in copper-tolerance

    Science.gov (United States)

    Katie Ohno; C.A. Clausen; Frederick Green; G. Stanosz

    2016-01-01

    Copper-tolerant brown-rot decay fungi exploit intricate mechanisms to neutralize the efficacy of copper-containing preservative formulations. The production and accumulation oxalate is the most widely recognized theory regarding the mechanism of copper-tolerance in these fungi. The role of oxalate, however, may be only one part of a series of necessary components...

  11. Pyrobaculum Yellowstonensis Strain WP30 Respires On Elemental Sulfur And/or Arsenate in Circumneutral Sulfidic Sediments of Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Jay, Z.; Beam, Jake; Dohnalkova, Alice; Lohmayer, R.; Bodle, B.; Planer-Friedrich, B.; Romine, Margaret F.; Inskeep, William

    2015-09-15

    Thermoproteales populations (phylum Crenarchaeota) are abundant in high-25 temperature (>70° C) environments of Yellowstone National Park (YNP) and are important in mediating biogeochemical cycles of sulfur, arsenic and carbon. The objectives of this study were to determine specific physiological attributes of the isolate Pyrobaculum yellowstonensis strain WP30, which was obtained from an elemental sulfur sediment (Joseph’s Coat Hot Spring [JCHS]; 80 °C; pH 6.1), and relate this organism to geochemical processes occurring in situ. Strain WP30 is a chemoheterotroph that utilizes organic carbon as a source of carbon and electrons and requires elemental sulfur and/or arsenic as electron acceptors. Growth in the presence of elemental sulfur and arsenate resulted in the production of thioarsenates and polysulfides relative to sterile controls. The complete genome of this organism was sequenced (1.99 Mb, 58 % G+C) and revealed numerous metabolic pathways for the degradation of carbohydrates, amino acids and lipids, multiple dimethylsulfoxide molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, and pathways for the de novo synthesis of nearly all required cofactors and metabolites. Comparative genomics of P. yellowstonensis versus assembled metagenome sequence from JCHS showed that this organisms is highly-related (~95% average nucleotide identity) to in situ populations. The physiological attributes and metabolic capabilities of P. yellowstonensis provide importanat information towards understanding the distribution and function of these populations in YNP.

  12. Understanding the adsorptive interactions of arsenate-iron nanoparticles with curved fullerene-like sheets in activated carbon using a quantum mechanics/molecular mechanics computational approach.

    Science.gov (United States)

    Ha, Nguyen Ngoc; Cam, Le Minh; Ha, Nguyen Thi Thu; Goh, Bee-Min; Saunders, Martin; Jiang, Zhong-Tao; Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z; El-Harbawi, Mohanad; Yin, Chun-Yang

    2017-06-07

    The prevalence of global arsenic groundwater contamination has driven widespread research on developing effective treatment systems including adsorption using various sorbents. The uptake of arsenic-based contaminants onto established sorbents such as activated carbon (AC) can be effectively enhanced via immobilization/impregnation of iron-based elements on the porous AC surface. Recent suggestions that AC pores structurally consist of an eclectic mix of curved fullerene-like sheets may affect the arsenic adsorption dynamics within the AC pores and is further complicated by the presence of nano-sized iron-based elements. We have therefore, attempted to shed light on the adsorptive interactions of arsenate-iron nanoparticles with curved fullerene-like sheets by using hybridized quantum mechanics/molecular mechanics (QMMM) calculations and microscopy characterization. It is found that, subsequent to optimization, chemisorption between HAsO 4 2- and the AC carbon sheet (endothermic process) is virtually non-existent - this observation is supported by experimental results. Conversely, the incorporation of iron nanoparticles (FeNPs) into the AC carbon sheet greatly facilitates chemisorption of HAsO 4 2- . Our calculation implies that iron carbide is formed at the junction between the iron and the AC interface and this tightly chemosorbed layer prevents detachment of the FeNPs on the AC surface. Other aspects including electronic structure/properties, carbon arrangement defects and rate of adsorptive interaction, which are determined using the Climbing-Image NEB method, are also discussed.

  13. Thermodynamic parameters for the protonation and the interaction of arsenate with Mg2+, Ca2+ and Sr2+: Application to natural waters.

    Science.gov (United States)

    Chillè, Donatella; Foti, Claudia; Giuffrè, Ottavia

    2018-01-01

    Thermodynamic parameters for the protonation of AsO 4 3- and for the interaction with Mg 2+ , Ca 2+ and Sr 2+ were reported, comprehensive also of their dependence on ionic strength, considering the 0.1 ≤ I ≤ 1 M range and using NaCl as background salt. The same speciation models were obtained for Mg 2+ , Ca 2+ and Sr 2+ systems, with the formation of three different species: ML, MLH and MLH 2 (L = AsO 4 3- ). Mono- and di-protonated species were very weak, with formation constant values (log K) ranging from 1.45 to 3.23. In order to have a complete picture of thermodynamic properties of the systems under study and to fill the shortage of thermodynamic data on arsenate complex systems, the ligand protonation and metal complex enthalpies were also determined by calorimetric titrations, at t = 25 °C and in NaCl at I = 0.7 M (for H + -AsO 4 3- species also at I = 0.1 M). On the light of the proposed speciation models, examples of As(V) distribution in some natural waters are reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Use of micro-PIXE in the study of arsenate uptake in lichens and its influence on element distribution and concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Mrak, T. [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Simcic, J. [Department of Low and Medium Energy Physics, Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Pelicon, P. [Department of Low and Medium Energy Physics, Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia)]. E-mail: primoz.pelicon@ijs.si; Jeran, Z. [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Reis, M.A. [ITN - Nuclear and Technology Institute, EN 10 Sacavem, Apartado 21, 2686-953 Sacavem (Portugal); Pinheiro, T. [ITN - Nuclear and Technology Institute, EN 10 Sacavem, Apartado 21, 2686-953 Sacavem (Portugal); Nuclear Physics Centre, Lisbon University, Av. Prof. Gama Pinto 2, 1649-003 Lisbon (Portugal)

    2007-07-15

    Micro-PIXE was applied in the study of arsenic metabolism in the lichen Hypogymnia physodes (L.) Nyl. Lichen thalli were laboratory exposed to a solution of an inorganic arsenic compound arsenate and to a control solution. Perpendicular sections that reveal the morphological properties of the lichen thallus were subjected to microbeam measurements to obtain data on the localization of arsenic and its influence on the distribution and concentrations of the selected macro- and microelements P, S, K, Ca, Cl, Mn, Fe and Zn. Five groups of elements were distinguished regarding losses and redistribution due to arsenic exposure: (1) K and Ca were depleted from all lichen layers; (2) Mn was depleted from the algal layer and lower cortex, (3) Fe was decreased in the algal layer and increased in the lower cortex, (4) Zn was decreased both in the algal layer and the medulla, but increased in the lower cortex, and (5) P and S were decreased in the medulla, but increased in the algal layer and the lower cortex.

  15. Arsenate reductase from Thermus thermophilus conjugated to polyethylene glycol-stabilized gold nanospheres allow trace sensing and speciation of arsenic ions.

    Science.gov (United States)

    Politi, Jane; Spadavecchia, Jolanda; Fiorentino, Gabriella; Antonucci, Immacolata; De Stefano, Luca

    2016-10-01

    Water sources pollution by arsenic ions is a serious environmental problem all around the world. Arsenate reductase enzyme (TtArsC) from Thermus thermophilus extremophile bacterium, naturally binds arsenic ions, As(V) and As (III), in aqueous solutions. In this research, TtArsC enzyme adsorption onto hybrid polyethylene glycol-stabilized gold nanoparticles (AuNPs) was studied at different pH values as an innovative nanobiosystem for metal concentration monitoring. Characterizations were performed by UV/Vis and circular dichroism spectroscopies, TEM images and in terms of surface charge changes. The molecular interaction between arsenic ions and the TtArsC-AuNPs nanobiosystem was also monitored at all pH values considered by UV/Vis spectroscopy. Tests performed revealed high sensitivities and limits of detection equal to 10 ± 3 M -12 and 7.7 ± 0.3 M -12 for As(III) and As(V), respectively. © 2016 The Author(s).

  16. Copper oxide--copper sulfate water-splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    Foh, S. E.; Schreiber, J. D.; Dafler, J. R.

    1978-08-01

    A hybrid copper oxide--copper sulfate thermochemical water-splitting cycle, IGT's H-5, has been demonstrated in the laboratory with recycled materials. The optimum configuration and operating conditions for the electrolytic hydrogen-producing step have not yet been defined. With cooperative funding (A.G.A./G.R.I./DOE) a conceptual flowsheet was developed for this cycle and a load-line efficiency of about 37% calculated. This figure is the result of a single iteration on the original base case flow sheet and compares well with the values calculated for other processes at this stage of development. An iterative optimization of process conditions would improve efficiency. The data required to perform an economic analysis are not yet available and the electrolysis step must be more fully defined. An attractive process efficiency, relatively few corrosive materials, and few gas-phase separations are attributes of Cycle H-5 that lead us to believe hydrogen costs (to be developed during future analyses) would be improved significantly over similar processes analyzed to date.

  17. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    International Nuclear Information System (INIS)

    McCormick, Stephen F.

    2016-01-01

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/

  18. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

    2016-03-25

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  19. Hereditary iron and copper deposition

    DEFF Research Database (Denmark)

    Aaseth, Jan; Flaten, Trond Peder; Andersen, Ole

    2007-01-01

    Hereditary deposition of iron (primary haemochromatosis) or copper (Wilson's disease) are autosomal recessive metabolic disease characterized by progressive liver pathology and subsequent involvement of various other organs. The prevalence of primary haemochromatosis is approximately 0.5%, about......, they may be inadequate in patients diagnosed so late that extensive body deposits of metal have been developed. The main research needs in this field are to further clarify molecular mechanisms of disease progression and to develop new chelators that are more effective and less toxic than those presently...

  20. Synthesis of Commercial Products from Copper Wire-Drawing Waste

    Science.gov (United States)

    Ayala, J.; Fernández, B.

    2014-06-01

    Copper powder and copper sulfate pentahydrate were obtained from copper wire-drawing scale. The hydrometallurgical recycling process proposed in this article yields a high-purity copper powder and analytical grade copper sulfate pentahydrate. In the first stage of this process, the copper is dissolved in sulfuric acid media via dismutation of the scale. In the second stage, copper sulfate pentahydrate is precipitated using ethanol. Effects such as pH, reaction times, stirring speed, initial copper concentration, and ethanol/solution volume ratio were studied during the precipitation from solution reaction. The proposed method is technically straightforward and provides efficient recovery of Cu from wire-drawing scale.

  1. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  2. Mesophilic leaching of copper sulphide sludge

    Directory of Open Access Journals (Sweden)

    VLADIMIR B. CVETKOVSKI

    2009-02-01

    Full Text Available Copper was precipitated using a sodium sulphide solution as the precipitation agent from an acid solution containing 17 g/l copper and 350 g/l sulphuric acid. The particle size of nearly 1 µm in the sulphide sludge sample was detected by optical microscopy. Based on chemical and X-ray diffraction analyses, covellite was detected as the major sulphide mineral. The batch bioleach amenability test was performed at 32 °C on the Tk31 mine mesophilic mixed culture using a residence time of 28 days. The dissolution of copper sulphide by direct catalytic leaching of the sulphides with bacteria attached to the particles was found to be worthy, although a small quantity of ferrous ions had to be added to raise the activity of the bacteria and the redox potential of the culture medium. Throughout the 22-day period of the bioleach test, copper recovery based on residue analysis indicated a copper extraction of 95 %, with copper concentration in the bioleach solution of 15 g/l. The slope of the straight line tangential to the exponential part of the extraction curve gave a copper solubilisation rate of 1.1 g/l per day. This suggests that a copper extraction of 95 % for the period of bioleach test of 13.6 days may be attained in a three-stage bioreactor system.

  3. Chemistry of the copper silicon interface

    International Nuclear Information System (INIS)

    Ford, M.J.; Sashin, V.A.; Nixon, K.

    2002-01-01

    Full text: Copper and silicon readily interdiffuse, even at room temperature, to form an interface which can be several nanometers thick. Over the years considerable effort has gone into investigating the diffusion process and chemical nature of the interface formed. Photoemission measurements give evidence for the formation of a stable suicide with a definite stoichiometry, Cu 3 Si. This is evidenced by splitting of the Si LVV Auger line and slight shifts and change in shape of the copper valence band density of states as measured by ultra-violet photoemission. In this paper we present calculations of the electronic structure of copper suicide, bulk copper and silicon, and preliminary measurements of the interface by electron momentum spectroscopy. Densities of states for copper and copper suicide are dominated by the copper 3d bands, and difference between the two compounds are relatively small. By contrast, the full band structures are quite distinct. Hence, experimental measurements of the full band structure of the copper on silicon interface, for example by EMS, have the potential to reveal the chemistry of the interface in a detailed way

  4. The copper metallome in prokaryotic cells

    DEFF Research Database (Denmark)

    Rensing, Christopher Günther T; Alwathnani, Hend A.; McDevitt, Sylvia F.

    2016-01-01

    and protozoans also utilize heavy metals such as copper and zinc in the killing of phagocytized bacteria. It seems, therefore, not surprising that many bacteria including pathogens harbor additional copper resistance determinants. However, the occurrence of these resistance determinants is more widespread than...

  5. Copper laser diagnostics and kinetics support

    International Nuclear Information System (INIS)

    1981-12-01

    In the effort MSNW participated with the LINL copper-Vapor Laser Program by providing a useful plasma diagnostic for interpretation of Copper-vapor laser kinetics. MSNW developed and delivered a pulsed interferometric diagnostic package to LLNL. Moreover MSNW provided personal services at the request and direction of LLL in the implementation of the diagnostic and interpretation of the data

  6. Photocleavage of DNA by copper (II) complexes

    Indian Academy of Sciences (India)

    The chemistry of ternary and binary copper(II) complexes showing efficient visible lightinduced DNA cleavage activity is summarized in this article. The role of the metal in photo-induced DNA cleavage reactions is explored by designing complex molecules having a variety of ligands. Ternary copper(II) complexes with amino ...

  7. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    Abstract. A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the.

  8. Molybdenum extraction from copper-molybdenum ores

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1982-01-01

    Molybdenum extraction from copper-molybdenum ores as practised in different countries is reviewed. In world practice the production process including depression of copper and iron sulfides and flotation of molybdenite is widely spread. At two USA factories the process of a selective flotation with molybdenite depression by dextrin is used

  9. Electrodialytic remediation of copper mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, A.; Ottpsen, Lisbeth M.

    2005-01-01

    electrodialytic remediation experiments on copper mine tailings. The results show that electric current could remove copper from watery tailing if the potential gradient was higher than 2V/cm during 21 days. With addition of sulphuric acid, the process was enhanced because the pH decreased to around 4...

  10. Extra-Hepatic Storage of Copper

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else; Horn, N.

    1975-01-01

    The distribution of copper among the organs of an aborted, male foetus, expected to develop Menkes' syndrome, was entirely different from the distribution in 4 normal foetuses. Copper concentrations determined by neutron activation analysis showed a considerably reduced content in the liver...

  11. Activation of ADAM 12 protease by copper

    DEFF Research Database (Denmark)

    Loechel, F; Wewer, Ulla M.

    2001-01-01

    Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency: elimina......Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency......: elimination of the ADAM 12 cysteine switch by a point mutation in the propeptide had no effect on copper activation, whereas mutation of an unpaired cysteine residue in the catalytic domain resulted in a mutant form of ADAM 12-S that was insensitive to copper. This suggests a multi-step activation mechanism...... for ADAM 12 involving both furin cleavage and copper binding....

  12. Microbial leaching of low grade copper ores

    International Nuclear Information System (INIS)

    Rauf, A.; Ashfaq, M.

    1991-01-01

    Biotechnology is regarded as one of the most promising and revolutionary solution to various problems which are generally faced in the extraction of metals from their ores such as high energy, capital costs and environmental pollution. The paper deals with the study of low grade copper ores for their beneficiation and extraction of copper. The ores used were chalcopyrite and oxidized copper ores. Microorganisms play a vital role in the solubilization of valuable contents from ores such as copper and other metals. Studies have been conducted on the indigenous copper ores by using thiobacillus ferro oxidans and thiobacillus thio oxidans. For comparison purpose some experiments have also been conducted by chemical leaching. The results of bacterial leaching are encouraging. (author)

  13. Modification of polycrystalline copper by proton irradiation

    International Nuclear Information System (INIS)

    Garcia S, F.; Cabral P, A.; Saniger B, J.M.; Banuelos, J.G.; Barragan V, A.

    1997-01-01

    Polished copper samples were irradiated with proton beams of 300 and 700 keV at room temperature and at -150 Centigrade. In this work the obtained results are reported when such copper irradiated samples are analysed with Sem, Tem, AFM. The Sem micrographs showed evident changes in surface of these copper samples, therefore an EDAX microanalysis was done for its characterization. additionally, the Tem micrographs showed heaps formation until 200 nm. Its electron diffraction spectra indicated that these heaps consist of a copper compound. Finally with AFM were observed changes in coloration of the irradiated sample surface, as well as changes in texture and rugosity of them. These results show in general that irradiation process with protons which is known as an innocuo process produces changes in the copper properties. (Author)

  14. Engineering kinetic barriers in copper metallization

    International Nuclear Information System (INIS)

    Huang Hanchen; Wei, H.L.; Woo, C.H.; Zhang, X.X.

    2002-01-01

    In metallization processes of integrated circuits, it is desirable to deposit the metal lines (aluminum or copper) fast and at low temperatures. However, the lines (films) usually consist of undesirable columns and voids, because of the absence of sufficient diffusion--a direct result of large kinetic barriers. Following the proposal and realization of the three-dimensional Ehrlich-Schwoebel (3D ES) barrier, we present here a method to engineer this kinetic barrier so as to improve quality of deposited copper films. We deposit copper films by magnetron sputtering, characterize the film structure and texture by using the scanning electron microscope and the x-ray diffraction, respectively. Taking indium as surfactant during copper deposition, we have achieved much better density and bottom coverage of copper filled trenches. The characterizations show that the improvement is the result of the 3D ES barrier reduction caused by indium addition. Engineering the 3D ES barrier therefore leads to improved film quality

  15. Uranium accompanying recovery from copper ores

    International Nuclear Information System (INIS)

    Golynko, Z.Sh.; Laskorin, B.N.

    1981-01-01

    In the search for new raw material sources for nuclear power engineering a review of the technique of uranium accompaning recovery from copper ores reprocessing products in some countries is presented. In the USA a sorption method of uranium extraction by means of strongly basic ion exchange resins from solutions upon copper case- hardening with subsequent extraction from eluates by solutions of tertiary amines is realized. Elution is realized with sulphuric acid. In South Africa an extraction reprocessing of gravitational concentrate extracted from copper sulphide flotation tailings is organized. In India the uranium extraction from copper ores flotation enrichment tailings is organized on a commerical scale. Presented are data on the scale of uranium recovery, various conditions of its recovery as well as block diagrams of the processes. It is shown that copper ores become an additional source of uranium recovery [ru

  16. Activation determination of copper in food

    International Nuclear Information System (INIS)

    Jiranek, V.; Bludovsky, R.

    1982-01-01

    Neutron activation analysis was used for determining copper content in food. Analyzed were dried milk, flour, coffee, tea, husked rice, and liver. Bowen's kale powder with a guaranteed copper content of 3.6 to 6.5 ppm was used as a reference biological material. The instruments, chemicals and solutions used are reported. The method is described of copper separation with α-benzoinoxime and pyridine as is the procedure for the destructive activation analysis of samples. The copper concentrations in the foods under analysis were found to range within usual limits. The copper concentration determined in the reference material agreed with the measured value. The analysis confirms that the method yields reliable results. (J.B.)

  17. Kinetics of the conversion of copper sulfide to blister copper

    Directory of Open Access Journals (Sweden)

    Carrillo, F.

    2002-10-01

    Full Text Available The desulfurization of copper sulfide by air and oxygen has been studied in two laboratory reactors where the gas is blown onto the melt surface. Rates of oxidation in a vertical resistance furnace may be explained by the mass transfer control in the gas phase. However, results for a horizontal tube suggest that the chemical resistance is controlling.

    La desulfuración del sulfuro cuproso con aire y oxígeno se ha estudiado en dos reactores de laboratorio, en los cuales el gas se sopla sobre la superficie del fundido. La velocidad de reacción en un horno de resistencias verticales se puede explicar considerando como controlante la resistencia a la transferencia de materia de la fase gas. Sin embargo, los resultados del horno horizontal indican que la resistencia química es la controlante.

  18. Surface films and corrosion of copper

    International Nuclear Information System (INIS)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M.

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  19. Synthesis, characterization and analytical application of hybrid; Acrylamide zirconium (IV) arsenate a cation exchanger, effect of dielectric constant on distribution coefficient of metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Nabi, Syed A. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, U.P. (India)], E-mail: sanabi@rediffmail.com; Shalla, Aabid H. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, U.P. (India)

    2009-04-30

    A new hybrid inorganic-organic cation exchanger acrylamide zirconium (IV) arsenate has been synthesized, characterized and its analytical application explored. The effect of experimental parameters such as mixing ratio of reagents, temperature, and pH on the properties of material has been studied. FTIR, TGA, X-ray, UV-vis spectrophotometry, SEM and elemental analysis were used to determine the physiochemical properties of this hybrid ion exchanger. The material behaves as a monofunctional acid with ion-exchange capacity of 1.65 meq/g for Na{sup +} ions. The chemical stability data reveals that the exchanger is quite stable in mineral acids, bases and fairly stable in organic solvents, while as thermal analysis shows that the material retain 84% of its ion-exchange capacity up to 600 deg. C. Adsorption behavior of metal ions in solvents with increasing dielectric constant has also been explored. The sorption studies reveal that the material is selective for Pb{sup 2+} ions. The analytical utility of the material has been explored by achieving some binary separations of metal ions on its column. Pb{sup 2+} has been selectively removed from synthetic mixtures containing Mg{sup 2+}, Ca{sup 2+}, Sr{sup 2+}, Zn{sup 2+} and Cu{sup 2+}, Al{sup 3+}, Ni{sup 2+}, Fe{sup 3+}. In order to demonstrate practical utility of the material quantitative separation of the Cu{sup 2+} and Zn{sup 2+} in brass sample has been achieved on its columns.

  20. Single and combined effects of cadmium and arsenate in Gammarus pulex (Crustacea, Amphipoda): Understanding the links between physiological and behavioural responses

    Energy Technology Data Exchange (ETDEWEB)

    Vellinger, Céline, E-mail: celine.vellinger@gmail.com [Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine – Metz (France); Gismondi, Eric, E-mail: gismondi.eric@gmail.com [Laboratoire d’Ecologie animale et d’Ecotoxicologie, Institut de Chimie, Université de Liège, Allée du 6 Août 15, B-4000 Sart-Tilman, Liège (Belgium); Felten, Vincent, E-mail: vincent.felten@univ-lorraine.fr [Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine – Metz (France); Rousselle, Philippe, E-mail: rousselle@univ-lorraine.fr [Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine – Metz (France); Mehennaoui, Kahina, E-mail: meh_kahina@yahoo.fr [Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine – Metz (France); Parant, Marc, E-mail: parant@univ-lorraine.fr [Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine – Metz (France); Usseglio-Polatera, Philippe, E-mail: usseglio-polatera@univ-lorraine.fr [Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), CNRS UMR 7360, Université de Lorraine – Metz (France)

    2013-09-15

    Highlights: •Linking physiological to behavioural responses of G. pulex exposed to AsV and/or Cd. •AsV and/or Cd exposure exhibited similar biomarkers responses. •Contamination increases the mobilization of detoxification systems in gammarids. •Both changes in energy reserve use and allocation are involved in gammarid response. •Increased lipid peroxidation could be the cause of increasing gammarid mortality. -- Abstract: This study aimed at investigating the individual and interactive effects of cadmium (Cd) and arsenate (AsV) in Gammarus pulex (Crustacea, Amphipoda) through the use of several biomarkers. Individuals were exposed for 240 h to two concentrations of AsV or Cd alone, and all the possible binary mixtures of these concentrations of AsV and Cd in a complete factorial design. The pattern of the biomarkers’ responses to Cd and AsV alone or in mixture was similar in Gammarus pulex, even if the response intensity varied depending on the tested conditions. G. pulex responded to contamination with increased mobilization of the detoxification systems [i.e. γ-glutamyl-cystein ligase activity (GCL), reduced glutathione content (GSH) and metallothionein concentrations (MT)]. This response seems to imply changes in energy reserve utilization (total lipids and proteins are used prior to glycogen reserves), but also a possible energy reallocation from locomotion to detoxification processes. The observed increase in lipid peroxidation could be relied to the increasing gammarid mortality, despite the higher mobilization of detoxification systems. Even if the outcome of the complex interactions between AsV and Cd remains difficult to unravel, such studies are critically important for better assessing the effects of stressors on organisms, populations and communities in a multi-contamination context of ecosystems.

  1. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  2. Grain boundary corrosion of copper canister material

    International Nuclear Information System (INIS)

    Fennell, P.A.H.; Graham, A.J.; Smart, N.R.; Sofield, C.J.

    2001-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister. The potential for grain boundary corrosion was investigated by exposing copper specimens, which had undergone different heat treatments and hence had different grain sizes, to aerated artificial bentonite-equilibrated groundwater with two concentrations of chloride, for increasing periods of time. The degree of grain boundary corrosion was determined by atomic force microscopy (AFM) and optical microscopy. AFM showed no increase in grain boundary 'ditching' for low chloride groundwater. In high chloride groundwater the surface was covered uniformly with a fine-grained oxide. No increases in oxide thickness were observed. No significant grain boundary attack was observed using optical microscopy either. The work suggests that in aerated artificial groundwaters containing chloride ions, grain boundary corrosion of copper is unlikely to adversely affect SKB's copper canisters

  3. Normal macrophage function in copper deficient mice

    International Nuclear Information System (INIS)

    Lukasewycz, O.A.; Kolquist, K.L.; Prohaska, J.R.

    1986-01-01

    Copper deficiency (-Cu) was produced in C57 BL and C58 mice by feeding a low copper diet (modified AIN-76A) from birth. Mice given supplemental copper in the drinking water (+Cu) served as controls. Copper status was monitored by assay of ceruloplasmin (CP) activity. Macrophages (M0) were obtained from matched +Cu and -Cu male 7 week-old mice by peritoneal lavage 3 days after thioglycollate stimulation. M0 were assayed in terms of lipopolysaccharide-induced hexose monophosphate shunt activity by monitoring 14 CO 2 production from [1- 14 C]-glucose and by the determination of phagocytic index using fluorescein labelled latex bead ingestion. M0 from -Cu mice were equivalent to those of +Cu mice in both these parameters. However, superoxide dismutase and cytochrome oxidase activities were both significantly lower in -Cu M0, confirming a functional copper deficiency. Previous results from this laboratory have shown that -Cu mice have a decreased antibody response to sheep erythrocyte antigens and a diminished reactivity to B and T cell mitogens. These immunological insufficiencies appear to be proportional to the severity of copper depletion as determined by CP levels. Furthermore, -Cu lymphocytes exhibit depressed mixed lymphocyte reactivity consistent with alterations at the membrane surface. The present results suggest that M0/monocytes are less severely affected than lymphocytes in copper deficiency states

  4. Copper adsorption in tropical oxisols

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available Cu adsorption, at concentrations between 0 to 800 mg L-1, was evaluated in surface and subsurface samples of three Brazilian soils: a heavy clayey-textured Rhodic Hapludalf (RH, a heavy clayey-textured Anionic ''Rhodic'' Acrudox (RA and a medium-textured Anionic ''Xanthic'' Acrudox (XA. After adsorption, two consecutive extractions were performed to the samples which received 100 mg L-1 copper. Surface samples adsorbed higher amounts of Cu than the subsurface, and exhibited lower Cu removed after the extractions, reinforcing the influence of the organic matter in the reactions. Cu adsorption was significant in the subsurface horizons of the Oxisols, despite the positive balance of charge, demonstrating the existence of mechanisms for specific adsorption, mainly related to the predominance of iron and aluminum oxides in the mineral fractions. In these samples, Cu was easily removed from the adsorption sites. RH demonstrated a higher capacity for the Cu adsorption in both horizons.

  5. Copper accumulation by stickleback nests containing spiggin.

    Science.gov (United States)

    Pinho, G L L; Martins, C M G; Barber, I

    2016-07-01

    The three-spined stickleback is a ubiquitous fish of marine, brackish and freshwater ecosystems across the Northern hemisphere that presents intermediate sensitivity to copper. Male sticklebacks display a range of elaborate reproductive behaviours that include nest construction. To build the nests, each male binds nesting material together using an endogenous glycoprotein nesting glue, known as 'spiggin'. Spiggin is a cysteine-rich protein and, therefore, potentially binds heavy metals present in the environment. The aim of this study was to investigate the capacity of stickleback nests to accumulate copper from environmental sources. Newly built nests, constructed by male fish from polyester threads in laboratory aquaria, were immersed in copper solutions ranging in concentration from 21.1-626.6 μg Cu L(-1). Bundles of polyester threads from aquaria without male fish were also immersed in the same copper solutions. After immersion, nests presented higher amounts of copper than the thread bundles, indicating a higher capacity of nests to bind this metal. A significant, positive correlation between the concentration of copper in the exposure solution and in the exposed nests was identified, but there was no such relationship for thread bundles. Since both spiggin synthesis and male courtship behaviour are under the control of circulating androgens, we predicted that males with high courtship scores would produce and secrete high levels of the spiggin protein. In the present study, nests built by high courtship score males accumulated more copper than those built by low courtship score males. Considering the potential of spiggin to bind metals, the positive relationship between fish courtship and spiggin secretion seems to explain the higher amount of copper on the nests from the fish showing high behaviour scores. Further work is now needed to determine the consequences of the copper binding potential of spiggin in stickleback nests for the health and survival of

  6. 21 CFR 74.3045 - [Phthalocyaninato(2-)] copper.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false [Phthalocyaninato(2-)] copper. 74.3045 Section 74...-)] copper. (a) Identity. The color additive is [phthalocyaninato(2-)] copper (CAS Reg. No. 147-14-8) having... [phthalocyaninato(2-)] copper shall conform to the following specifications and shall be free from impurities other...

  7. Possibilities of radioisotopic fluorescence analysis application in copper industry

    International Nuclear Information System (INIS)

    Parus, J.; Kierzek, J.

    1983-01-01

    The main applications of X-ray fluorescence analysis in copper industry such as: copper ores and other materials from flotation analysis, lead and silver determination in blister copper, analysis of metallurgic dusts and copper base alloys analysis are presented. (A.S.)

  8. 49 CFR 192.125 - Design of copper pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that indicated...

  9. Conditions for precipitation of copper phases in DWPF waste glass

    International Nuclear Information System (INIS)

    Schumacher, R.F.; Ramsey, W.G.

    1993-01-01

    The Defense Waste Processing Facility (DWPF) precipitate hydrolysis process requires the use of copper formate catalyst. The expected absorbed radiation doses to the precipitate require levels of copper formate that increase the potential for the precipitation of metallic copper in the DWPF Melter. The conditions required to avoid the precipitation of copper are described

  10. Copper doped borate dosimeters revisited

    Energy Technology Data Exchange (ETDEWEB)

    Alajerami, Y.S.M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine (Country Unknown); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Oncology Treatment Centre, Sultan Ismail Hospital, 81100 Johor Bahru (Malaysia); Ghoshal, S.K. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Bradley, D.A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mhareb, M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saleh, M.A. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); National Atomic Energy Commission (NATEC), Sana' a (Yemen)

    2014-11-15

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu{sup +} and Cu{sup ++}) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu{sup +} ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated

  11. Copper doped borate dosimeters revisited

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ghoshal, S.K.; Bradley, D.A.; Mhareb, M.; Saleh, M.A.

    2014-01-01

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu + and Cu ++ ) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu + ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated technique in borate

  12. Use of combined ion exchangers on the basis of KU-23 and KM-2p cation exchangers for purification of ammonium molybdate and tungstate solutions from phosphate, arsenate, and silicate impurities

    International Nuclear Information System (INIS)

    Blokhin, A.A.; Majorov, D.Yu.; Kopyrin, A.A.; Taushkanov, V.P.

    2002-01-01

    Using the Tracer technique ( 32 P) and elementary analysis, potentiality of using combined ionites on the basis of macroporous cation-exchange resins KU-23 or KM-2p and hydrated zirconium oxide for purification of concentrated solutions of ammonium molybdate and tungstate from phosphate-, arsenate-, and silicate-ions impurities was studied. High selectivity of the combined ionites towards impurity ions was ascertained, which permits reducing the content of impurities by a factor of 50-100 compared with the initial one [ru

  13. Graphene-protected copper and silver plasmonics

    DEFF Research Database (Denmark)

    Kravets, V. G.; Jalil, R.; Kim, Y. J.

    2014-01-01

    suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered...... with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic...

  14. Copper Promoted Synthesis of Diaryl Ethers

    OpenAIRE

    Ghosh, Rajshekhar; Samuelson, Ashoka G

    2004-01-01

    An efficient protocol using copper based reagents for the coupling of aryl halides with phenols to generate diaryl ethers is described. Acopper( I) complex, [ Cu( CH3CN) (4)] ClO4, or the readily available copper( II) source, CuCO3 . Cu( OH) (2) . H2O ( in combination with potassium phosphate), can be used. Aryl halides and phenols with different steric and electronic demands have been used to assess the efficiency of the procedure. The latter source of copper gives better yields under all co...

  15. Energy and environmental implications of copper production

    Energy Technology Data Exchange (ETDEWEB)

    Alvardo, Sergio [Chile Univ., Dept. of Mechanical Engineering, Santiago (Chile); Maldonado, Pedro; Jaques, Ivan [Chile Univ., Energy Research Program, Santiago (Chile)

    1999-04-01

    Primary copper production is a major activity in the mining sector. It is highly energy-intensive, ranking third in specific energy consumption (SEC) among the five major basic metals (aluminum, copper, iron, lead and zinc) and poses important environmental hazards. We examine the large discrepancy between theoretical (from thermodynamics) and actual (from empirical data) SECs and then describe relevant environmental issues, focusing on the most significant energy-related environmental impacts of primary copper production with emphasis on greenhouse-gas (GHG) emissions. An example of GHG energy-related abatement that concurrently improves energy use is presented. (Author)

  16. Present status and prospect of copper radiopharmaceuticals

    International Nuclear Information System (INIS)

    Chen Huawei; Li Hongfeng; Liu Boli

    1996-01-01

    In the past decade most of the efforts of copper radiopharmaceuticals research has been focused on bis(thiosemicarbazonato) copper complexes for use in myocardial and brain imaging agents. In the present work, the analogs of bis(thiosemicarbazone) is studied in labeling antibodies and tumors. The retention mechanism of Cu-PTSM is investigated. Other kinds of ligands, BAT (N 2 S 2 ) for example, can be used to prepare neutral copper complexes in order to obtain brain radiopharmaceuticals in future. (60 refs.)

  17. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  18. Preparation of graphite dispersed copper composite on copper plate with CO2 laser

    Science.gov (United States)

    Yokoyama, S.; Ishikawa, Y.; Muizz, M. N. A.; Hisyamudin, M. N. N.; Nishiyama, K.; Sasano, J.; Izaki, M.

    2018-01-01

    It was tried in this work to prepare the graphite dispersed copper composite locally on a copper plate with a CO2 laser. The objectives of this study were to clear whether copper graphite composite was prepared on a copper plate and how the composite was prepared. The carbon content at the laser spot decreased with the laser irradiation time. This mainly resulted from the elimination by the laser trapping. The carbon content at the outside of the laser spot increased with time. Both the laser ablation and the laser trapping did not act on the graphite particles at the outside of the laser spot. Because the copper at the outside of the laser spot melted by the heat conduction from the laser spot, the particles were fixed by the wetting. However, the graphite particles were half-floated on the copper plate. The Vickers hardness decreased with an increase with laser irradiation time because of annealing.

  19. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierra from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.

  20. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierrae from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.

  1. Effects of organic matters coming from Chinese tea on soluble copper release from copper teapot

    International Nuclear Information System (INIS)

    Ni Lixiao; Li Shiyin

    2008-01-01

    The morphology and elemental composition of the corrosion products of copper teapot's inner-surface were characterized by the scanning electron microscopy and energy dispersive X-ray surface analysis (SEM/EDS), X-ray powder diffraction (XRD) and X-ray photon spectroscopy (XPS) analysis. It was revealed that Cu, Fe, Ca, P, Si and Al were the main elements of corrosion by-products, and the α-SiO 2 , Cu 2 O and CaCO 3 as the main mineral components on the inner-surface of copper teapot. The effects of organic matters coming from Chinese tea on soluble copper release from copper teapots in tap water were also investigated. The results showed that the doses of organic matter (as TOC), temperate and stagnation time have significant effects on the concentration of soluble copper released from copper teapots in tap water

  2. Theft in Price-Volatile Markets: On the Relationship between Copper Price and Copper Theft

    OpenAIRE

    Sidebottom, A.; Belur, J.; Bowers, K.; Tompson, L.; Johnson, S. D.

    2011-01-01

    Recently, against a backdrop of general reductions in acquisitive crime, increases have been observed in the frequency of metal theft offences. This is generally attributed to increases in metal prices in response to global demand exceeding supply. The main objective of this article was to examine the relationship between the price of copper and levels of copper theft, focusing specifically on copper cable theft from the British railway network. Results indicated a significant positive correl...

  3. “Pulling the plug” on cellular copper: The role of mitochondria in copper export

    OpenAIRE

    Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.

    2008-01-01

    Mitochondria contain two enzymes, Cu, Zn superoxide dismutase (Sod1) and cytochrome c oxidase (CcO), that require copper as a cofactor for their biological activity. The copper used for their metallation originates from a conserved, bioactive pool contained within the mitochondrial matrix, the size of which changes in response to either genetic or pharmacological manipulation of cellular copper status. Its dynamic nature implies molecular mechanisms exist that functionally couple mitochondria...

  4. Reparatory adaptation to copper-induced injury and occurrence of a copper-binding protein in the polycheate, Eudistylia vancouveri

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.S.; Roesijadi, G.

    1983-01-01

    Chemically injured branchial pinnae of copper-treated polychaetes, Eudistylia vancouveri, regenerated while still exposed to copper. The first observations of pinna regeneration coincided with the apparent induction of a low molecular weight (approx.5000 daltons) copper-binding protein. This protein may play a role in the detoxification of copper and subsequent tissue regeneration. 7 references, 5 figures.

  5. RECYCLING OF SCRAP AND WASTE OF COPPER AND COPPER ALLOYS IN BELARUS

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2017-01-01

    Full Text Available The construction of a new casting and mechanical shop of unitary enterprise «Tsvetmet» in December 2015 has allowed to solve the complex problem of processing and utilization of scrap and wastes of copper and copper alloys in the Republic of Belarus. The technological processes of fire refinement of copper and manufacturing of copper rod from scrap and production of brass rod by hot pressing (extrusion of the continuously casted round billet have been mastered for the first time in the Republic of Belarus.

  6. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Bortolon, Leandro; Lambais, Márcio R; Camargo, Flávio A O

    2012-04-01

    Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4

  7. Transformation of arsenic-rich copper smelter flue dust in contrasting soils: A 2-year field experiment.

    Science.gov (United States)

    Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Penížek, Vít; Matoušek, Tomáš; Culka, Adam; Drahota, Petr

    2018-06-01

    Dust emissions from copper smelters processing arsenic-bearing ores represent a risk to soil environments due to the high levels of As and other inorganic contaminants. Using an in situ experiment in four different forest and grassland soils (pH 3.2-8.0) we studied the transformation of As-rich (>50 wt% As) copper smelter dust over 24 months. Double polyamide bags with 1 g of flue dust were buried at different depths in soil pits and in 6-month intervals; then those bags, surrounding soil columns, and soil pore waters were collected and analysed. Dust dissolution was relatively fast during the first 6 months (5-34%), and mass losses attained 52% after 24 months. The key driving forces affecting dust dissolution were not only pH, but also the water percolation/retention in individual soils. Primary arsenolite (As 2 O 3 ) dissolution was responsible for high As release from the dust (to 72%) and substantial increase of As in the soil (to a 56 × increase; to 1500 mg kg -1 ). Despite high arsenolite solubility, this phase persisted in the dust after 2 years of exposure. Mineralogical investigation indicated that mimetite [Pb 5 (AsO 4 ) 3 (Cl,OH)], unidentified complex Ca-Pb-Fe-Zn arsenates, and Fe oxyhydroxides partly controlled the mobility of As and other metal(loid)s. Compared to As, other less abundant contaminants (Bi, Cu, Pb, Sb, Zn) were released into the soil to a lesser extent (8-40% of total). The relatively high mobility of As in the soil can be seen from decreases of bulk As concentrations after spring snowmelt, high water-extractable fractions with up to ∼50% of As(III) in extracts, and high As concentrations in soil pore waters. Results indicate that efficient controls of emissions from copper smelters and flue dust disposal sites are needed to prevent extensive contamination of nearby soils by persistent As. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Ultralow-loss CMOS copper plasmonic waveguides

    DEFF Research Database (Denmark)

    Fedyanin, Dmitry Yu.; Yakubovsky, Dmitry I.; Kirtaev, Roman V.

    2016-01-01

    with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which...

  9. Refining processes of selected copper alloys

    Directory of Open Access Journals (Sweden)

    S. Rzadkosz

    2009-04-01

    Full Text Available The analysis of the refining effectiveness of the liquid copper and selected copper alloys by various micro additions and special refiningsubstances – was performed. Examinations of an influence of purifying, modifying and deoxidation operations performed in a metal bath on the properties of certain selected alloys based on copper matrix - were made. Refining substances, protecting-purifying slag, deoxidation and modifying substances containing micro additions of such elements as: zirconium, boron, phosphor, sodium, lithium, or their compounds introduced in order to change micro structures and properties of alloys, were applied in examinations. A special attention was directed to macro and micro structures of alloys, their tensile and elongation strength and hot-cracks sensitivity. Refining effects were estimated by comparing the effectiveness of micro structure changes with property changes of copper and its selected alloys from the group of tin bronzes.

  10. Thermally modified bentonite clay for copper removal

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Kleinübing, S.J.; Silva, M.G.C.

    2011-01-01

    Bentonite clay coming from Pernambuco was thermally modified in order to increase its affinity and capacity in the copper removal in porous bed. The application of this procedure is justified by the low cost of clay, their abundance and affinity for various metal ions. Thermally treatment modifies the clay adsorption properties enables its use in porous bed system, with the increase in surface area and mechanical strength. The material was characterized by x-ray diffraction, thermogravimetric analysis and N_2 physisorption. Then tests were carried out for adsorption of copper in various experimental conditions and evaluated the mass transfer zone, useful and total adsorbed removal amounts and total copper removal percentage. The results showed that the clay treated at higher temperature showed higher copper removal. (author)

  11. Formation of copper precipitates in silicon

    Science.gov (United States)

    Flink, Christoph; Feick, Henning; McHugo, Scott A.; Mohammed, Amna; Seifert, Winfried; Hieslmair, Henry; Heiser, Thomas; Istratov, Andrei A.; Weber, Eicke R.

    1999-12-01

    The formation of copper precipitates in silicon was studied after high-temperature intentional contamination of p- and n-type FZ and Cz-grown silicon and quench to room temperature. With the Transient Ion Drift (TID) technique on p-type silicon a critical Fermi level position at EC-0.2 eV was found. Only if the Fermi level position, which is determined by the concentrations of the acceptors and the copper donors, surpasses this critical value precipitation takes place. If the Fermi level is below this level the supersaturated interstitial copper diffuses out. An electrostatic precipitation model is introduced that correlates the observed precipitation behavior with the electrical activity of the copper precipitates as detected with Deep Level Transient Spectroscopy (DLTS) on n-type and with Minority Carrier Transient Spectroscopy (MCTS) on p-type silicon.

  12. Water requirements of the copper industry

    Science.gov (United States)

    Mussey, Orville Durey

    1961-01-01

    The copper industry in 1955 used about 330 million gallons of water per day in the mining and manufacturing of primary copper. This amount is about 0.3 percent of the total estimated withdrawals of industrial water in the United States in 1955. These facts were determined by a survey, in 1956, of the amount and chemical quality of the water used by the copper industry. A large part of this water was used in Arizona, Nevada, New Mexico, and Utah, where about five-sixths of the domestic copper is mined. Much of the remaining water use was near New York City where most of the electrolytic refineries are located, and the rest of the water was used in widely scattered places. A little more than 100,000 gallons of water per ton of copper was used in the production of copper from domestic ores. Of this amount about 70,000 gallons per ton was used in mining and concentrating the ore, and about 30,000 gallons per ton was used to reduce the concentrate to refined copper. In areas where water was scarce or expensive, the unit water use was a little more than half the average. About 60 mgd (million gallons per day) or 18 percent of the water was used consumptively, and nearly all of the consumptive use occurred in the water-short areas of the West. Of the water used in mining and manufacturing primary copper 75 percent was surface water and 25 percent was ground water, 89 percent of this water was self-supplied by the copper companies and 11 percent came from public supplies. Much of the water used in producing primary copper was of comparatively poor quality; about 46 percent was saline containing 1,000 ppm (parts per million) or more of dissolved solids and 54 percent was fresh. Water that is used for concentration of copper ores by flotation or even any water that comes in contact with the ore at any time before it reaches the flotation plant must be free of petroleum products because they interfere with the flotation process. The water used in mining and ore concentration

  13. Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives

    Science.gov (United States)

    Carol A. Clausen; Frederick Green

    2003-01-01

    Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...

  14. Copper-resistant bacteria enhance plant growth and copper phytoextraction.

    Science.gov (United States)

    Yang, Renxiu; Luo, Chunling; Chen, Yahua; Wang, Guiping; Xu, Yue; Shen, Zhenguo

    2013-01-01

    In this study, we investigated the role of rhizospheric bacteria in solubilizing soil copper (Cu) and promoting plant growth. The Cu-resistant bacterium DGS6 was isolated from a natural Cu-contaminated soil and was identified as Pseudomonas sp. DGS6. This isolate solubilized Cu in Cu-contaminated soil and stimulated root elongation of maize and sunflower. Maize was more sensitive to inoculation with DGS6 than was sunflower and exhibited greater root elongation. In pot experiment, inoculation with DGS6 increased the shoot dry weight of maize by 49% and sunflower by 34%, and increased the root dry weight of maize by 85% and sunflower by 45%. Although the concentrations of Cu in inoculated and non-inoculated seedlings did not differ significantly, the total accumulation of Cu in the plants increased after inoculation. DGS6 showed a high ability to solubilize P and produce iron-chelating siderophores, as well as significantly improved the accumulation of P and Fe in both maize and sunflower shoots. In addition, DGS6 produced indole-3-acetic acid (IAA) and ACC deaminase, which suggests that it may modulate ethylene levels in plants. The bacterial strain DGS6 could be a good candidate for re-vegetation of Cu-contaminated sites. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.

  15. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  16. Copper content in blood of Uzbek population

    International Nuclear Information System (INIS)

    Mikhol'skaya, I.N.; Agzamova, S.S.; Kutyakova, T.Yu.; Osinskaya, N.S.

    1990-01-01

    The content of copper in blood of Uzbekistan population, depending on place of residence, sex and age was studied to solve certain medicobiological problems. The method of neutron activation with radiochemcial isolation was employed for the analysis. According to the data obtained average content of copper for the points in the republic selected for men and women of different age groups were calculated. 5 refs

  17. Radiation environmental impact assessment of copper exploitation

    International Nuclear Information System (INIS)

    Fan Guang; Wen Zhijian

    2010-01-01

    The radiation environmental impact of mineral exploitation on the surrounding environment has become a public concern. This paper presents the radiation environmental impact assessment of copper exploitation. Based on the project description and detailed investigations of surrounding environment, systematic radiation environmental impacts have been identified. The environmental impacts are assessed during both construction and operation phase. The environmental protection measures have also been proposed. The related conclusion and measures can play an active role in copper exploitation and environmental protection. (authors)

  18. Electrodialytic Remediation of Copper Mine Tailings

    DEFF Research Database (Denmark)

    Hansen, H.K.; Rojo, A.; Ottosen, L.M.

    2012-01-01

    This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields.......This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields....

  19. Bonding and structure of copper nitrenes.

    Science.gov (United States)

    Cundari, Thomas R; Dinescu, Adriana; Kazi, Abul B

    2008-11-03

    Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.

  20. Corrosion mechanism of copper in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2013-01-01

    Highlights: ► Corrosion of copper in biodiesel increases with the increase of immersion time. ► The corrosion patina is found to be composed of CuO, Cu 2 O, CuCO 3 and Cu(OH) 2 . ► Green CuCO 3 was found as the major corrosion product. ► The mechanisms governing corrosion of copper in palm biodiesel are discussed. - Abstract: Biodiesel is a promising alternative fuel. However, it causes enhanced corrosion of automotive materials, especially of copper based components. In the present study, corrosion mechanism of copper was investigated by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Compositional change of biodiesel due to the exposure of copper was also investigated. Corrosion patina on copper is found to be composed of Cu 2 O, CuO, Cu(OH) 2 and CuCO 3. Dissolved O 2 , H 2 O, CO 2 and RCOO − radical in biodiesel seem to be the leading factors in enhancing the corrosiveness of biodiesel.

  1. Recirculation effect of Chilean copper smelting dust with high impurities contents on the impurity distributions during smelting process; Efecto de la recirculacion de polvo de fundicion de cobre de Chile con altos contenidos de impurezas en la distribucion de impurezas durante el proceso de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Montenegro, V.; Sano, H.; Fujisawa, T.

    2010-07-01

    Usually, dust generated during the copper smelting process by the Teniente Converter and the Flash Smelting Furnaces in Chile, contains high concentrations of copper, zinc, arsenic, antimony and other metals. In general, the dust is recirculated to the smelting process or it is directed to hydrometallurgical process for recovery and stabilization. However, in recent years the generation of dust has increased because of the degradation of the quality of the concentrate. In addition, the environmental regulations have become stricter. It is therefore desirable to understand the behavior of those elements, when the smelting process operates with recirculation of dust. In this study, the effect of dust recirculation to smelting process on the distribution among the matte, slag and gas phases was evaluated, as a function of matte grade, amount of recirculated dust, oxygen enrichment and temperature. It was found that the concentration in the matte of the impurities such as arsenic, antimony and bismuth, increased slightly with recirculation of dust. On the other hand, the concentration of lead and zinc depend of the direct recirculation of dust to the process. Additionally, it was found that high concentrations of arsenic and antimony in the dust may lead to the formation and precipitation of copper arsenates and other metals (speiss), which may generates important operational problems. (Author) 15 refs.

  2. Divalent Copper as a Major Triggering Agent in Alzheimer's Disease.

    Science.gov (United States)

    Brewer, George J

    2015-01-01

    Alzheimer's disease (AD) is at epidemic proportions in developed countries, with a steady increase in the early 1900 s, and then exploding over the last 50 years. This epidemiology points to something causative in the environment of developed countries. This paper will review the considerable evidence that that something could be inorganic copper ingestion. The epidemic parallels closely the spread of copper plumbing, with copper leached from the plumbing into drinking water being a main causal feature, aided by the increasingly common use of supplement pills containing copper. Inorganic copper is divalent copper, or copper-2, while we now know that organic copper, or copper in foods, is primarily monovalent copper, or copper-1. The intestinal transport system, Ctr1, absorbs copper-1 and the copper moves to the liver, where it is put into safe channels. Copper-2 is not absorbed by Ctr1, and some of it bypasses the liver and goes directly into the blood, where it appears to be exquisitely toxic to brain cognition. Thus, while aggregation of amyloid-β has been postulated to be the cause of AD under current dogma, the great increase in prevalence over the last century appears to be due to ingestion of copper-2, which may be causing the aggregation, and/or increasing the oxidant toxicity of the aggregates. An alternative hypothesis proposes that oxidant stress is the primary injuring agent, and under this hypothesis, copper-2 accumulation in the brain may be a causal factor of the oxidant injury. Thus, irrespective of which hypothesis is correct, AD can be classified, at least in part, as a copper-2 toxicity disease. It is relatively easy to avoid copper-2 ingestion, as discussed in this review. If most people begin avoiding copper-2 ingestion, perhaps the epidemic of this serious disease can be aborted.

  3. Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake.

    Science.gov (United States)

    Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N

    2017-08-01

    The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    2008-01-01

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  5. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study.

    OpenAIRE

    Midander, Klara; Cronholm, Pontus; Karlsson, Hanna L.; Elihn, Karine; Moller, Lennart; Leygraf, Christofer; Wallinder, Inger Odnevall

    2009-01-01

    An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano- and micrometer-sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer-sized Cu, release more copper in serum-containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate-buffered ...

  6. Vitrification of copper flotation waste

    Energy Technology Data Exchange (ETDEWEB)

    Karamanov, Alexander [Institute of Physical Chemistry, Bulgarian Academy of Science, G. Bonchev Str. Block 11, 1113 Sofia (Bulgaria)]. E-mail: karama@ing.univaq.it; Aloisi, Mirko [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, 67040 Monteluco di Roio, L' Aquila (Italy); Pelino, Mario [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, 67040 Monteluco di Roio, L' Aquila (Italy)

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30 wt% W were melted for 30 min at 1400 deg. C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  7. The Copper Balance of Cities

    Science.gov (United States)

    Kral, Ulrich; Lin, Chih-Yi; Kellner, Katharina; Ma, Hwong-wen; Brunner, Paul H

    2014-01-01

    Material management faces a dual challenge: on the one hand satisfying large and increasing demands for goods and on the other hand accommodating wastes and emissions in sinks. Hence, the characterization of material flows and stocks is relevant for both improving resource efficiency and environmental protection. This article focuses on the urban scale, a dimension rarely investigated in past metal flow studies. We compare the copper (Cu) metabolism of two cities in different economic states, namely, Vienna (Europe) and Taipei (Asia). Substance flow analysis is used to calculate urban Cu balances in a comprehensive and transparent form. The main difference between Cu in the two cities appears to be the stock: Vienna seems close to saturation with 180 kilograms per capita (kg/cap) and a growth rate of 2% per year. In contrast, the Taipei stock of 30 kg/cap grows rapidly by 26% per year. Even though most Cu is recycled in both cities, bottom ash from municipal solid waste incineration represents an unused Cu potential accounting for 1% to 5% of annual demand. Nonpoint emissions are predominant; up to 50% of the loadings into the sewer system are from nonpoint sources. The results of this research are instrumental for the design of the Cu metabolism in each city. The outcomes serve as a base for identification and recovery of recyclables as well as for directing nonrecyclables to appropriate sinks, avoiding sensitive environmental pathways. The methodology applied is well suited for city benchmarking if sufficient data are available. PMID:25866460

  8. Vitrification of copper flotation waste.

    Science.gov (United States)

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30wt% W were melted for 30min at 1400 degrees C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  9. Vitrification of copper flotation waste

    International Nuclear Information System (INIS)

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-01-01

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30 wt% W were melted for 30 min at 1400 deg. C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit

  10. Method for providing uranium with a protective copper coating

    Science.gov (United States)

    Waldrop, Forrest B.; Jones, Edward

    1981-01-01

    The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electro-deposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.

  11. Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits

    Science.gov (United States)

    Kesler, Stephen E.; Wilkinson, Bruce H.

    2008-03-01

    Improved estimates of global mineral endowments are relevantto issues ranging from strategic planning to global geochemicalcycling. We have used a time-space model for the tectonic migrationof porphyry copper deposits vertically through the crust tocalculate Earth's endowment of copper in mineral deposits. Themodel relies only on knowledge of numbers and ages of porphyrycopper deposits, Earth's most widespread and important sourceof copper, in order to estimate numbers of eroded and preserveddeposits in the crust. Model results indicate that 125,895 porphyrycopper deposits were formed during Phanerozoic time, that only47,789 of these remain at various crustal depths, and that thesecontain 1.7 x 1011 tonnes (t) of copper. Assuming that othertypes of copper deposits behave similarly in the crust and haveabundances proportional to their current global production yieldsan estimate of 3 x 1011 t for total global copper resourcesat all levels in Earth's crust. Thus, 0.25% of the copper inthe crust has been concentrated into deposits through Phanerozoictime, and about two-thirds of this has been recycled by upliftand erosion. The amount of copper in deposits above 3.3 km,a likely limit of future mining, could supply current worldmine production for 5500 yr, thus quantifying the highly unusualand nonrenewable nature of mineral deposits.

  12. Interesting properties of some iron(II), copper(I) and copper(II ...

    Indian Academy of Sciences (India)

    Administrator

    Tridendate ligands with nitrogen centers, generally well-known as the tripod ligands, have been of considerable interest to inorganic chemists dealing with the preparation of model compounds for hemocyanin, tyrosinase etc. We have found that such ligands when complexed with iron(II) and copper(II) and copper(I) ions ...

  13. Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size.

    Science.gov (United States)

    Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M

    2005-09-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.

  14. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  15. Utilization of Copper Alloys for Marine Applications

    Science.gov (United States)

    Drach, Andrew

    Utilization of copper alloy components in systems deployed in marine environment presents potential improvements by reducing maintenance costs, prolonging service life, and increasing reliability. However, integration of these materials faces technological challenges, which are discussed and addressed in this work, including characterization of material performance in seawater environment, hydrodynamics of copper alloy components, and design procedures for systems with copper alloys. To characterize the hydrodynamic behavior of copper alloy nets, mesh geometry of the major types of copper nets currently used in the marine aquaculture are analyzed and formulae for the solidity and strand length are proposed. Experimental studies of drag forces on copper alloy net panels are described. Based on these studies, empirical values for normal drag coefficients are proposed for various types of copper netting. These findings are compared to the previously published data on polymer nets. It is shown that copper nets exhibit significantly lower resistance to normal currents, which corresponds to lower values of normal drag coefficient. The seawater performance (corrosion and biofouling) of copper alloys is studied through the field trials of tensioned and untensioned specimens in a one-year deployment in the North Atlantic Ocean. The corrosion behavior is characterized by weight loss, optical microscopy, and SEM/EDX analyses. The biofouling performance is quantified in terms of the biomass accumulation. To estimate the effects of stray electrical currents on the seawater corrosion measurements, a low cost three-axis stray electric current monitoring device is designed and tested both in the lab and in the 30-day field deployment. The system consists of a remotely operated PC with a set of pseudo-electrodes and a digital compass. The collected data is processed to determine magnitudes of AC and DC components of electric field and dominant AC frequencies. Mechanical behavior of

  16. Copper Recycling in the United States in 2004

    Science.gov (United States)

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).

  17. Hepatic copper content, urinary copper excretion, and serum ceruloplasmin in liver disease. [Activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ritland, S; Skrede, S [Rikshospitalet, Oslo (Norway); Steinnes, E [Institutt for Atomenergi, Kjeller (Norway)

    1977-01-01

    Liver copper content, urinary copper output and plasma ceruloplasmin have been evaluated in a variety of liver disorders. An activation analysis procedure for the determination of liver copper content is described. Dried biopsy samples were irradiated for two days at a thermal neutron flux of 1.5x10/sup 13/ ncm/sup -2/sec/sup -1/. After one day's delay the samples were dissolved in an acid mixture with copper carrier, and separated on an anion exchange column. The /sup 64/Cu activity in the separated fractions was recorded by gamma spectrometry using a Ge(Li) solid detector. The urinary copper excretion and the serum ceruloplasmin were determined by conventional laboratory methods.

  18. The effect of primary copper slag cooling rate on the copper valorization in the flotation process

    Directory of Open Access Journals (Sweden)

    Aleksandar Mihajlović

    2015-06-01

    Full Text Available Technological procedure of slow cooling slag from primary copper production is applied in the purpose of copper recovery in the level of 98.5% to blister. This technological procedure is divided into two phases, first slow cooling of slag on the air for 24 hours, and then accelerated cooling with water for 48 hours. Within the research following methods were used: calculation of nonstationary slag cooling, verification of the calculation using computer simulation of slag cooling in the software package COMSOL Multiphysics and experimental verification of simulation results. After testing of the experimentally gained samples of slowly cooled slag it was found that this technological procedure gives the best results in promoting growth or coagulation of dispersed particles of copper sulfide and copper in the slag, thereby increasing the utilization of the flotation process with a decrease of copper losses through very fine particles.

  19. Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films

    Science.gov (United States)

    Fredj, Narjes; Burleigh, T. David; New Mexico Tech Team

    2014-03-01

    This investigation describes an electrochemical technique for growing adhesive copper oxide films on copper with attractive colors ranging from gold-brown to pearl with intermediate colors from red violet to gold green. The technique consists of anodically dissolving copper at transpassive potentials in hot sodium hydroxide, and then depositing brilliant color films of Cu2O onto the surface of copper after the anodic potential has been turned off. The color of the copper oxide film depends on the temperature, the anodic potential, the time t1 of polarization, and the time t2, which is the time of immersion after potential has been turned off. The brilliant colored films were characterized using glancing angle x-ray diffraction, and the film was found to be primarily Cu2O. Cyclic voltammetry, chronopotentiometry, scanning electron microscopy, and x-ray photoelectron spectroscopy were also used to characterize these films.

  20. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

    Directory of Open Access Journals (Sweden)

    Rebeca Ortega-Amaya

    2016-07-01

    Full Text Available This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs on the surface of a copper foil supporting graphene oxide (GO at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure.

  1. Treatment of copper ores containing atacamite by the brisa process

    International Nuclear Information System (INIS)

    Carranza, F.; Mazuelos, A.; Romero, R.

    2003-01-01

    The current treatment of copper ores containing atacamite and secondary copper sulphides consists of heap leaching, by the TL process. copper recoveries by this treatment are very low (less than 50% for operating times higher than six months). In order to improve the copper extraction yields, several treatment options are presented in this work, wich consist on promoting the acid leaching of the atacamite and the indirect bio leaching (Brisk process) of the secondary copper sulphides. All the options lead to improved copper recoveries in comparison with the current treatment. An economic estimation of each option of treatment is included, with really attractive results. (Author) 13 refs

  2. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O

    2011-12-01

    This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.

  3. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications.

    Science.gov (United States)

    Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Kříbek, Bohdan; Mapani, Ben

    2017-02-01

    The leaching behaviors of primary copper (Cu) slags originating from Ausmelt, reverbatory, and converter furnaces operating under a single technological process were compared to a residual slag tailing obtained by slag re-processing via flotation and metal recovery. The EN 12457-2 leaching test, used for assessment of the hazardous properties, was followed by the CEN/TS 14997 pH-static leaching test (pH range 3-12). Both leaching experiments were coupled with a mineralogical investigation of the primary and secondary phases as well as geochemical modeling. Metals (Cd, Cu, Pb, Zn) exhibit the highest leaching at low pH. Under acidic conditions (pH 3-6), Ausmelt slag and slag tailing exhibited higher metal leaching compared to other slag types. Very low leaching of metals (far below EU limits for non-hazardous waste) was observed at natural pH (7.9-9.0) for all the studied slag samples. In contrast, relatively high leaching of As was observed over the entire pH range, especially for Ausmelt slag (exceeding the EU limit for hazardous waste by 1.7×). However, geochemical modeling and scanning electron microscopy indicated that formation of stable Ca-Cu-Pb arsenates and the binding of As to newly formed Fe (oxyhydr)oxides play an important role in efficient As immobilization at the slag-water interface. In contrast, no controls were predicted for Sb, whose leaching was almost pH-independent. Nevertheless Sb leached concentrations at natural pH were below EU limit for hazardous waste. Re-processing of primary Cu slags for metal recovery, and subsequent co-disposal of the resulting slag tailing with dolomite-rich mine tailing and local laterite is suitable for stabilizing the remaining contaminants (except Sb) and limiting their leaching into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Copper-beryllium alloys for technical applications

    International Nuclear Information System (INIS)

    Heller, W.

    1976-01-01

    Data of physical properties are compiled for the most commonly used copper-beryllium alloys (CuBe 2, CuBe 1.7, CuCoBe, and CuCoAgBe), with emphasis on their temperature dependence and their variation with particular annealing and hardening treatments. The purpose is to provide a reference source and to indicate the versatility of these materials with respect to other copper alloys and to pure copper. The special features of CuBe alloys include high mechanical strength with reasonably high electrical conductivity, as well as good wear and corrosion resistance. For example, CuBe 2 has a yield strength of up to 1200 N/mm 2 , about three times that of pure copper, whilst the electrical conductivity of CuCoBe can be as high as 28 MS/m, nearly half that of pure copper. Typical applications are springs and electrical contacts. The importance of a proper heat treatment is discussed in some detail, notably the metallurgy and effects of low-temperature annealing (precipitation-hardening). A chapter on manufacturing processes covers machining, brazing, welding, and cleaning. This is followed by some remarks on safety precautions against beryllium poisoning. CuBe alloys are commercially available in the form of wires, strips, rods, and bars. Typical dimensions, specifications, a brief cost estimate, and addresses of suppliers are listed. (Author)

  5. Copper in the sea: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.L.

    1977-04-01

    Life in the sea is vulnerable to the influx of trace metals resulting from man's activities. Although many pollutants introduced to the sea eventually degrade to less harmful forms, trace metals accumulate in sediments and have a continued potential for effect on biota. Copper has a toxic potential exceeding all other metals due to the quantity discharged and its toxicological effect. Fortunately, copper in the oceans is rendered less bioavailable or less toxic by its ready interaction with the complex chemical components of seawater. This bibliography was prepared to illustrate the status of current knowledge of the biogeochemistry of copper and to aid the development of research programs to define the effects of copper discharged to the marine environment. The references are categorized to aid the reader to locate literature concerning specific aspects of the biogeochemistry of copper. A brief comment describing the important findings in each category is given. Although this bibliography is not exhaustive, the listed references are likely representative of current knowledge.

  6. Optical properties of stabilized copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohindroo, Jeevan Jyoti, E-mail: jjmdav@gmail.com [Punjab Technical University, Kapurthala Punjab (India); Department of Chemistry, DAV College, Amritsar, Punjab India (India); Garg, Umesh Kumar, E-mail: Umeshkgarg@gmail.com [Punjab Technical University, Kapurthala Punjab (India); Guru Teg Bahadur Khalsa College of IT, Malout, Punjab (India); Sharma, Anshul Kumar [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2016-05-06

    Optical studies involving calculation of Band Gap of the synthesized copper nanoparticles were carried out in the wavelength range of 500 to 650 nm at room temperature, the particles showed high absorption at 550 nm indicating their good absorptive properties. In this method water is used as the medium for reduction of copper ions in to copper Nanoparticles the stabilization of copper Nanoparticles was studied with starch both as a reductant and stabilizer,. The reaction mixture was heated using a kitchen microwave for about 5 minutes to attain the required temp for the reaction. The pH of the solution was adjusted to alkaline using 5% solution of NaOH. Formation of Copper Nanoparticles was indicated by change in color of the solution from blue to yellowish black which is supported by the UV absorption at 570 nm.the synthesized particles were washed with water and alcohol. The optical properties depend upon absorption of radiations which in turn depends upon ratio of electrons and holes present in the material and also on the shape of the nanoparticles. In the present investigation it was observed that optical absorption increases with increase in particle size. The optical band gap for the Nanoparticles was obtained from plots between hv vs. (αhv){sup 2} and hv vs. (αhv){sup 1/2}. The value of Band gap came out to be around 1.98–2.02 eV which is in close agreement with the earlier reported values.

  7. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria

    DEFF Research Database (Denmark)

    Elguindi, J; Moffitt, S; Hasman, Henrik

    2010-01-01

    of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper...... on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells, which contributed directly to bacterial killing....

  8. Copper Resistance of the Emerging Pathogen Acinetobacter baumannii.

    Science.gov (United States)

    Williams, Caitlin L; Neu, Heather M; Gilbreath, Jeremy J; Michel, Sarah L J; Zurawski, Daniel V; Merrell, D Scott

    2016-10-15

    Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic, and treatment options

  9. Copper Resistance of the Emerging Pathogen Acinetobacter baumannii

    Science.gov (United States)

    Williams, Caitlin L.; Neu, Heather M.; Gilbreath, Jeremy J.; Michel, Sarah L. J.; Zurawski, Daniel V.

    2016-01-01

    ABSTRACT Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa. Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. IMPORTANCE Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic

  10. Effect of Copper and Iron Ions on the Sulphidizing Flotation of Copper Oxide in Copper Smelting Slag

    OpenAIRE

    Qing-qing Pan; Hui-qing Peng

    2018-01-01

    The treatment of smelting slag has attracted much attention nowadays. This study investigates the influence of Na2S, CuSO4, and FeCl3 on sulphidizing flotation of copper oxide. The results show that a proper Cu2+ concentration can increase the sulphidizing effect of copper oxide, while Fe3+ inhibits the sulphidizing effect. Further analysis shows that Cu2+ ions can reduce the surface potential, increase the S2− adsorption, then generate more polysulfide, and therefore promote the sulphidizing...

  11. Copper metabolism: a multicompartmental model of copper kinetics in the rat

    International Nuclear Information System (INIS)

    Dunn, M.A.

    1985-01-01

    A qualitative multicompartmental model was developed that describes the whole-body kinetics of copper metabolism in the adult rat. The model was developed from radiocopper percent dose vs. time data measured over a three day period in plasma, liver, skin, skeletal muscle, bile and feces after the intravenous injection of 10 μg copper labeled with 64 Cu. Plasma radiocopper was separated into ceruloplasmin (Cp) and nonceruloplasmin (NCp) fractions. Liver cytosolic radiocopper was fractionated into void volume superoxide dismutase (SOD) containing and metallothionein fractions by gel filtration. Liver particulate fractions were isolated by differential centrifugation. The SAAM and CONSAM modeling programs were used to develop the model. The sizes of compartments, fractional rate constants and mass transfer rates between compartments were evaluated. The intracellular metabolism of copper was similar in hepatic and extrahepatic tissues being comprised of a faster turning over compartment (FTC) exchanging copper with NCp and a slower turning over compartment (STC) with input from Cp. Output from the STC was into the FTC. In the liver the STC was postulated to represent SOD copper which unlike the extrahepatic tissues received much of its input from the FTC. A small amount of biliary copper (9%) was postulated to return to plasma NCp by enterohepatic recycling. The model developed was contrasted and compared with two previous models of copper metabolism

  12. COPPER RESISTANT STRAIN CANDIDA TROPICALIS RomCu5 INTERACTION WITH SOLUBLE AND INSOLUBLE COPPER COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Ie. P. Prekrasna

    2015-10-01

    Full Text Available The focus of the study was interaction of Candida tropicalis RomCu5 isolated from highland Ecuador ecosystem with soluble and insoluble copper compounds. Strain C. tropicalis RomCu5 was cultured in a liquid medium of Hiss in the presence of soluble (copper citrate and CuCl2 and insoluble (CuO and CuCO3 copper compounds. The biomass growth was determined by change in optical density of culture liquid, composition of the gas phase was measured on gas chromatograph, redox potential and pH of the culture fluid was defined potentiometrically. The concentration of soluble copper compounds was determined colorimetrically. Maximal permissible concentration of Cu2+ for C. tropicalis RomCu5 was 30 000 ppm of Cu2+ in form of copper citrate and 500 ppm of Cu2+ in form of CuCl2. C. tropicalis was metabolically active at super high concentrations of Cu2+, despite the inhibitory effect of Cu2+. C. tropicalis immobilized Cu2+ in the form of copper citrate and CuCl2 by it accumulation in the biomass. Due to medium acidification C. tropicalis dissolved CuO and CuCO3. High resistance of C. tropicalis to Cu2+ and ability to interact with soluble and insoluble copper compounds makes it biotechnologically perspective.

  13. Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.

    Science.gov (United States)

    Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger

    2014-01-01

    This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.

  14. REMOVAL OF COPPER ELECTROLYTE CONTAMINANTS BY ADSORPTION

    Directory of Open Access Journals (Sweden)

    B Gabai

    1997-09-01

    Full Text Available Abstract - Selective adsorbents have become frequently used in industrial processes. Recent studies have shown the possibility of using adsorption to separate copper refinery electrolyte contaminants, with better results than those obtained with conventional techniques. During copper electrorefinning, many impurities may be found as dissolved metals present in the anode slime which forms on the electrode surface, accumulated in the electrolyte or incorporated into the refined copper on the cathode by deposition. In this study, synthetic zeolites, chelating resins and activated carbons were tested as adsorbents to select the best adsorbent performance, as well as the best operating temperature for the process. The experimental method applied was the finite bath, which consists in bringing the adsorbent into contact with a finite volume of electrolyte while controlling the temperature. The concentration of metals in the liquid phase was continuously monitored by atomic absorption spectrophotometry (AAS

  15. Surface properties of copper based cermet materials

    International Nuclear Information System (INIS)

    Voinea, M.; Vladuta, C.; Bogatu, C.; Duta, A.

    2008-01-01

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO x cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO x was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components

  16. Preparation of copper nanoparticles by radiation

    International Nuclear Information System (INIS)

    Liu Yajian; Guo Xiongbin; Li Zhaolong; Fu Junjie; Tan Yuanyuan; Zhou Xinyao; Xu Furong

    2013-01-01

    Copper nanoparticles were successfully synthesized by 60 Co-γ radiation with aqueous solution of cupric sulfate under inert nitrogen-purged conditions. Cu nanoparticles were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), laser particle size distribution analyzer (LSPSDA) and differential scanning calorimeter (DSC) techniques, respectively. The effects of solution system, pH, additive of surfactant and absorbed doses on the particle size and its distribution as well as stored stability of Cu naoparticles were investigated. High resolution TEM pictures showed the formation of homogeneous cubic-structured copper nanoparticles with different sizes depends on the synthetic conditions. This new kind of synthesis method shows the excellent stability, which may provide an efficient way to improve the fine tuning of the structure and size of copper nanoparticles. (authors)

  17. Anaerobic Digestion Alters Copper and Zinc Speciation.

    Science.gov (United States)

    Legros, Samuel; Levard, Clément; Marcato-Romain, Claire-Emmanuelle; Guiresse, Maritxu; Doelsch, Emmanuel

    2017-09-19

    Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.

  18. Copper alloys deterioration due to anthropogenic action

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A.; Perez-Rodriguez, J. L.; Herrera, L. K.; Jimenez-de-Haro, M. C.; Robador, M. D.; Justo, A.; Blanes, J. M.; Perez-Ferrer, J. C.

    2008-07-01

    Results are presented from several samples taken from leaves of the Pardon Portico of Mosque-Cathedral or Cordoba, where an alteration on their surface was detected. Metal samples analyzed using X-ray microanalysis and powder x-ray diffraction were predominantly constituted by copper with some amounts of zinc attributed to brass, whereas other samples were also constituted by copper, tin and lead attributed to bronze. surface samples were analyzed using the same techniques. In addition Fourier transform infrared spectroscopy was also used. The main compound identified in all the surface of the leaves is copper chloride hydroxide (atacamite). Lead chlorides have also been found. These data show that the sudden alteration that appears may be attributed to the use of some cleaning product containing chloride. Other compounds detected in the surface were gypsum, quartz and oxalates coming from environmental contamination. (Author) 17 refs.

  19. Biologic assessment of copper-containing amalgams.

    Science.gov (United States)

    Mjor, I A; Eriksen, H M; Haugen, E; Skogedal, O

    1977-12-01

    In order to reduce creep and avoid marginal fractures in amalgam restorations, new alloys containing higher proportions of copper have been introduced. Fillings of these materials were placed in cavities prepared in the deciduous teeth of monkeys or placed in polyethylene tubes and implanted subcutaneously in rats. Conventional silver/tin alloys and zinc oxide eugenol cement were used as reference materials. Despite limitations due to the varying depths of cavities and the small number of animals involved it was concluded that the high copper alloys caused more severe pulp damage than the other materials studied. In the implantation studies many of the high copper specimens were exfoliated before the end of the experimental period. It is concluded that in deep cavities these materials require the use of a non-toxic base or lining material although as they are commonly used in young children's teeth the placement of linings and the isolation of the cavity pose problems.

  20. Electrometallurgy of copper refinery anode slimes

    Science.gov (United States)

    Scott, J. D.

    1990-08-01

    High-selenium copper refinery anode slimes form two separate and dynamically evolving series of compounds with increasing electrolysis time. In one, silver is progressively added to non-stoichiometric copper selenides, both those originally present in the anode and those formed subsequently in the slime layer, and in the other, silver-poor copper selenides undergo a dis-continuous crystallographic sequence of anodic-oxidative transformations. The silver-to-selenium molar ratio in the as-cast anode and the current density of electrorefining can be used to construct predominance diagrams for both series and, thus, to predict the final bulk “mineralogy” of the slimes. Although totally incorrect in detail, these bulk data are sufficiently accurate to provide explanations for several processing problems which have been experienced by Kidd Creek Division, Falconbridge Ltd., in its commercial tankhouse. They form the basis for a computer model which predicts final cathode quality from chemical analyses of smelter feed.

  1. He bubble sites in implanted copper alloy

    International Nuclear Information System (INIS)

    Moreno, D.; Eliezer, D.

    1996-01-01

    Structural materials in fusion reactors will be exposed to helium implantation over a broad range of energies. The deformation and partial exfoliation of surface layers due to hydrogen isotopes and helium contribute to the total erosion of the first wall. For this reason, one of the most important criteria in the choice of materials for the first wall of fusion reactors is the material's damage resistance. Recent advances in developing nuclear fusion reactors reveal that efficient heat removal from plasma-facing components is very important. Copper and copper alloys are considered an attractive choice for transporting such a high heat flux without thermal damage as they have high thermal conductivity. In the present study the authors report on the structural changes in a copper alloy, due to the helium implantation on the very near surface area, observed by transmission electron microscopy

  2. Bulk Copper Electrodeposition on Gold Imaged by In Situ STM

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Møller, Per

    1996-01-01

    Electrochemical measurements were carried out simultaneously with acquisition of in situ STM images of copper electrodeposition at low cathodic overpotentials and subsequent dissolution from the underlying polycrystalline gold surfaces. The morphologies of the copper deposits were examined...

  3. Influence of diethyldithiocarbamate on cadmium and copper toxicity ...

    African Journals Online (AJOL)

    drinie

    Abstract. Toxic effects of two heavy metals, cadmium (Cd) and copper (Cu), and a fungicide, .... mining 50% morbid concentrations (MC50) and 50% inhibition .... WHITTON B and SHEHATA F (1982) Influence of cobalt, nickel, copper.

  4. Structural and magnetic studies on copper succinate dihydrate ...

    Indian Academy of Sciences (India)

    M P BINITHA

    2017-08-21

    Aug 21, 2017 ... rials chemistry, heterogeneous catalysis, gas storage, polymer magnets, etc. ... super exchange interactions among copper atoms through bridging .... Thus, these two water molecules in the structure of copper succinate are.

  5. potentiometric studies of the complexes formed by copper (ii)

    African Journals Online (AJOL)

    MBI

    The overall stability constants of copper (II) and zinc (II) ions with some polar ... The average number of coordinated amino acids to the copper (II) and zinc (II) ions .... of chelated rings (Yamuchi and Odani, 1996). ... Synthesis and techniques in.

  6. Pathogenic adaptations to host-derived antibacterial copper

    Science.gov (United States)

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  7. Effects of copper stress on antioxidative enzymes, chlorophyll and ...

    African Journals Online (AJOL)

    Effects of copper stress on antioxidative enzymes, chlorophyll and protein content in Atriplex ... Journal Home > Vol 10, No 50 (2011) > ... The aim of this work was to investigate some enzymatic systems response of this plant to copper stress.

  8. Synthesis and characterization of Eichhornia-mediated copper oxide ...

    Indian Academy of Sciences (India)

    In this paper, we report the biosynthesis and characterization of copper oxide nanoparticles ... copper oxide nanoparticles by simple, cost-effective and ecofriendly method as an alternative to other available ... Currently, zinc oxide, gold, silver.

  9. Copper absorption and copper balance during consecutive periods for rats fed varying levels of dietary copper

    International Nuclear Information System (INIS)

    Stuart, M.A.; Johnson, P.E.

    1986-01-01

    Copper (Cu) balance and absorption were studied to determine the extent to which absorption is dependent on dietary Cu. Over 12 consecutive 5-d metabolic periods, Cu balance was determined for four groups of young growing rats (n = 8) fed modified AIN-76 diets having different levels of added Cu (2.5, 5.0, 10 or 20 micrograms/g). Among groups, mean body weights did not differ over time (P greater than 0.05). There were no significant differences among groups for liver, heart or plasma Cu. Rats in all groups were in positive Cu balance throughout the study. After consuming the experimental diets for 10 d, rats eating 10 or 20 micrograms Cu/g diet showed a more positive Cu balance than did rats in the other groups. This trend continued until d 60. For rats eating 20 micrograms Cu/g diet, balance varied significantly over time. Three test meals labeled with stable 65Cu were fed at d 10, 40 and 50, respectively. Apparent Cu absorption, as determined by fecal monitoring of 65Cu, did not change appreciably over time for rats eating 2.5 or 5.0 micrograms Cu/g diet. A test meal labeled with radioactive 67Cu was fed at d 40. For rats eating 2.5 micrograms Cu/g diet, apparent absorption was higher (31%) than that for all other groups (5.0, 23%; 10, 19%; 20, 16%; P less than 0.05). Absorption values determined by whole-body retention of 67Cu were similar to those determined by fecal monitoring of 65Cu

  10. Recovery of Copper from Copper Slag by Hydrometallurgy Method, from Iraqi Factories Waste

    Directory of Open Access Journals (Sweden)

    Bahaa Sami Mahdi

    2018-05-01

    Full Text Available   In this research, the recovery of copper from copper slag is investigated using hydrometallurgy method. Slag samples were taken from Al-Shaheed State Company. The results of the chemical analysis showed that the slag contained 11.4% of copper. The recovery process included two stages; the first stage is leaching using diluted sulfuric acid. The most important variables that effect on the leaching process was studied, such as acid concentration, hydrogen peroxide adding, particle size, liquid to solid, stirring speed and leaching time by changing the condition and the stabilizing of other factors at room temperature.               The second stage is precipitation of copper from leaching solution by zinc powder with different weights and times, at room temperature and 1.5 PH value. The results of the first stage manifested that about 99.7% of the copper have been dissolved at the following operational conditions: 50% acid concentration, 5 ml hydrogen peroxide adding, particle size (-75+53 micron, 1:10 liquid to solid, 500 rpm stirring speed and 25 min of leaching time. The highest percentage of copper precipitation in the second stage was 99.8% when added 3gm zinc powder at 20 min. The XRD result revealed that the predominant phase was pure copper. The results of EDS exhibited that a few percentage of oxygen appeared with copper powder. The final of copper recovery ratio was 99.3% with 99.2% purity.

  11. Thermodynamic data for copper. Implications for the corrosion of copper under repository conditions

    International Nuclear Information System (INIS)

    Puigdomenech, I.; Taxen, C.

    2000-08-01

    The stability of copper canisters has a central role in the safety concept for the planned nuclear spent fuel repository in Sweden. The corrosion of copper canisters will be influenced by the chemical and physical environment in the near-field of the repository, and thermodynamic equilibrium calculations provide the basis for understanding this system. Thermodynamic data have been selected in this work for solids and aqueous species in the system: Cu - H 2 O - H + - H 2 - F - - Cl - - S 2- - SO 4 2- - NO 3 - - NO 2 - - NH 4 + PO 4 3- - CO 3 2+ . For some reactions and compounds, for which no experimental information on temperature effects was available, entropy and heat capacity values have been estimated. The compiled data were used to calculate thermodynamic equilibria for copper systems up to 100 deg C. The stability of copper in contact with granitic groundwaters has been illustrated using chemical equilibrium diagrams, with he following main conclusions: Dissolved sulphide and O 2 in groundwater are the most damaging components for copper corrosion. If available, HS - will react quantitatively with copper to form a variety of sulphides. However, sulphide concentrations in natural waters are usually low, because it forms sparingly soluble solids with transition metals, including Fe(II), which is wide-spread in reducing environments. Chloride can affect negatively copper corrosion. High concentrations (e.g., [Cl - ]TOT > 60 g/l) may be unfavourable for the general corrosion of copper in combination with in the following circumstances: Low pH ( + . The negative effects of Cl - are emphasised at higher temperatures. The chloride-enhancement of general corrosion may be beneficial for localised corrosion: pitting and stress corrosion cracking. The concept of redox potential, E H , has been found to be inadequate to describe copper corrosion in a nuclear repository. The available amounts of oxidants/reductants, and the stoichiometry of the corrosion reactions are

  12. United States copper metal and scrap use and trade patterns, 1995‒2014

    Science.gov (United States)

    Goonan, Thomas G.

    2016-06-17

    In 1995, China accounted for 10 percent of world copper consumption. By 2014, China accounted for about 49 percent of world copper consumption. This change has affected global copper and copper scrap prices, the sources of copper supply, and U.S. trade of copper-containing materials.

  13. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    Science.gov (United States)

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-03

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most.

  14. Kamarizaite, Fe{3/3+}(AsO4)2(OH)3 · 3H2O, a new mineral species, arsenate analogue of tinticite

    Science.gov (United States)

    Chukanov, N. V.; Pekov, I. V.; Möckel, S.; Mukhanova, A. A.; Belakovsky, D. I.; Levitskaya, L. A.; Bekenova, G. K.

    2010-12-01

    Kamarizaite, a new mineral species, has been identified in the dump of the Kamariza Mine, Lavrion mining district, Attica Region, Greece, in association with goethite, scorodite, and jarosite. It was named after type locality. Kamarizaite occurs as fine-grained monomineralic aggregates (up to 3 cm across) composed of platy crystals up to 1 μm in size and submicron kidney-shaped segregations. The new mineral is yellow to beige, with light yellow streak. The Mohs hardness is about 3. No cleavage is observed. The density measured by hydrostatic weighing is 3.16(1) g/cm3, and the calculated density is 3.12 g/cm3. The wavenumbers of absorption bands in the IR spectrum of kamarizaite are (cm-1; s is strong band, w is weak band): 3552, 3315s, 3115, 1650w, 1620w, 1089, 911s, 888s, 870, 835s, 808s, 614w, 540, 500, 478, 429. According to TG and IR data, complete dehydration and dehydroxylation in vacuum (with a weight loss of 15.3(1)%) occurs in the temperature range 110-420°C. Mössbauer data indicate that all iron in kamarizaite is octahedrally coordinated Fe3+. Kamarizaite is optically biaxial, positive: n min = 1.825, n max = 1.835, n mean = 1.83(1) (for a fine-grained aggregate). The chemical composition of kamarizaite (electron microprobe, average of four point analyses) is as follows, wt %: 0.35 CaO, 41.78 Fe2O3, 39.89 As2O5, 1.49 SO3, 15.3 H2O (from TG data); the total is 98.81. The empirical formula calculated on the basis of (AsO4,SO4)2 is Ca0.03Fe{2.86/3+} (AsO4)1.90(SO4)0.10(OH)2.74 · 3.27H2O. The idealized formula is Fe{3/3+}(AsO4)2(OH)3 · 3H2O. Kamarizaite is an arsenate analogue of orthorhombic tinticite, space group Pccm, Pcc2, Pcmm, Pcm21, or Pc2 m; a = 21.32(1), b = 13.666(6), c =15.80(1) Å, V= 4603.29(5) Å3, Z= 16. The strongest reflections of the X-ray powder diffraction pattern [ bar d , Å ( I, %) ( hkl)] are: 6.61 (37) (112, 120), 5.85 (52) (311), 3.947 (100) (004, 032, 511), 3.396 (37) (133, 431), 3.332 (60) (314), 3.085 (58) (621, 414, 324

  15. Studies on Cementation of Tin on Copper and Tin Stripping from Copper Substrate

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2016-06-01

    Full Text Available Cementation of tin on copper in acid chloride-thiourea solutions leads to the formation of porous layers with a thickness dependent on the immersion time. The process occurs via Sn(II-Cu(I mechanism. Chemical stripping of tin was carried out in alkaline and acid solutions in the presence of oxidizing agents. It resulted in the dissolution of metallic tin, but refractory Cu3Sn phase remained on the copper surface. Electrochemical tin stripping allows complete tin removal from the copper substrate, but porosity and complex phase composition of the tin coating do not allow monitoring the process in unambiguous way.

  16. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.

    Science.gov (United States)

    Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal

    2018-02-01

    Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 10 4 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of

  17. Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Samreen; Goddard, Russell H.; Bielmyer-Fraser, Gretchen K., E-mail: gkbielmyer@valdosta.edu

    2015-03-15

    Highlights: • Differences between CuO NP and CuCl{sub 2} exposure were characterized. • Copper accumulation in E. pallida was concentration-dependent. • E. pallida exposed to CuCl{sub 2} accumulated higher copper tissue burdens. • The oxidative stress response was greater in E. pallida exposed to CuO NP. • Both forms of copper inhibited CA activity in E. pallida. - Abstract: Increasing use of metal oxide nanoparticles (NP) by various industries has resulted in substantial output of these NP into aquatic systems. At elevated concentrations, NP may interact with and potentially affect aquatic organisms. Environmental implications of increased NP use are largely unknown, particularly in marine systems. This research investigated and compared the effects of copper oxide (CuO) NP and dissolved copper, as copper chloride (CuCl{sub 2}), on the sea anemone, Exaiptasia pallida. Sea anemones were collected over 21 days and tissue copper accumulation and activities of the enzymes: catalase, glutathione peroxidase, glutathione reductase, and carbonic anhydrase were quantified. The size and shape of CuO NP were observed using a ecanning electron microscope (SEM) and the presence of copper was confirmed by using Oxford energy dispersive spectroscopy systems (EDS/EDX). E. pallida accumulated copper in their tissues in a concentration- and time-dependent manner, with the animals exposed to CuCl{sub 2} accumulating higher tissue copper burdens than those exposed to CuO NP. As a consequence of increased copper exposure, as CuO NP or CuCl{sub 2}, anemones increased activities of all of the antioxidant enzymes measured to some degree, and decreased the activity of carbonic anhydrase. Anemones exposed to CuO NP generally had higher anti-oxidant enzyme activities than those exposed to the same concentrations of CuCl{sub 2}. This study is useful in discerning differences between CuO NP and dissolved copper exposure and the findings have implications for exposure of aquatic

  18. High temperature oxidation of copper and copper aluminium alloys: Impact on furnace side wall cooling systems

    Science.gov (United States)

    Plascencia Barrera, Gabriel

    The high temperature oxidation behaviours of copper and dilute Cu-Al alloys were investigated. Experiments were carried out by: (i) Oxidizing under various oxygen potentials at different temperatures using a combined TG-DTA apparatus. (ii) Oxidizing in a muffle furnace (in air) at different temperatures for extended periods of time. The oxidation mechanisms were evaluated based upon the kinetic data obtained as well as by X-ray diffraction and microscopical (SEM and optical) analyses. It was found that oxidation of copper strongly depends on the temperature. Two distinct mechanisms were encountered. Between 300 and 500°C, the oxidation rate is controlled by lateral growth of the oxide on the metal surface, whereas between 600 and 1000°C oxidation is controlled by lattice diffusion of copper ions through the oxide scale. On the other hand, the partial pressure of oxygen only has a small effect on the oxidation of copper. Alloy oxidation is also dependent on the temperature. As temperature increases, more aluminium is required to protect copper from being oxidized. It was shown that if the amount of oxygen that dissolves in the alloy exceeds the solubility limit of oxygen in copper, an internal oxidation layer will develop, leading to the formation of a tarnishing scale. On the other hand if the oxygen content in the alloy lies below the solubility limit of oxygen in copper, no oxidation products will form since a tight protective alumina layer will form on the alloy surface. Surface phenomena may affect the oxidation behaviour of dilute Cu-Al alloys. Immersion tests in molten copper matte and copper converting slag, using laboratory scale cooling elements with various copper based materials, were conducted. Results from these tests showed that alloying copper with 3 to 4 wt% Al decreases the oxidation rate of pure copper by 4 orders of magnitude; however due to a significant drop in thermal conductivity, the ability to extract heat is compromised, leading to

  19. Oxidation-assisted graphene heteroepitaxy on copper foil

    OpenAIRE

    Reckinger, Nicolas; Tang, Xiaohui; Joucken, Frédéric; Lajaunie, Luc; Arenal, Raul; Dubois, Emmanuel; Hackens, Benoît; Henrard, Luc; Colomer, Jean-François

    2016-01-01

    We propose an innovative, easy-to-implement approach to synthesize large-area singlecrystalline graphene sheets by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process. Subsequent reduction of copper under hydrogen suddenly unlocks the delayed reconstruction, f...

  20. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications