WorldWideScience

Sample records for coordinated catalytic activity

  1. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold

    Energy Technology Data Exchange (ETDEWEB)

    Krajčí, Marian [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84511 Bratislava (Slovakia); Kameoka, Satoshi; Tsai, An-Pang [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

    2016-08-28

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al{sub 2}Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped (211) surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir–Hinshelwood mechanism with the activation energy of 37 kJ/mol or via the CO–OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy.

  2. Synthesis, Structural Characterization and Catalytic Activity of A Cu(II Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine

    Directory of Open Access Journals (Sweden)

    Wang Li-Hua

    2017-04-01

    Full Text Available In order to study the catalytic activity of Cu(II coordination polymer material, a novel 1D chained Cu(II coordination polymer material, [CuL(bipy(H2O5]n (A1 (H2L = 1,4-phenylenediacetic acid, bipy = 2,2’-bipyridine, has been prepared by the reaction of 1,4-phenylenediacetic acid, 2,2’-bipyridine, Cu(CH3COO2·H2O and NaOH. The composition of A1 was determined by elemental analysis, IR spectra and single crystal X-ray diffraction. The results of characterization show that each Cu(II atom adopts six-coordination and forms a distorted octahedral configuration. The catalytic activity and reusability of A1 catalyst for A3 coupling reaction of benzaldehyde, piperidine, and phenylacetylene have been investigated. And the results show that the Cu(II complex catalyst has good catalytic activity with a maximum yield of 54.3% and stability. Copyright © 2017 BCREC GROUP. All rights reserved Received: 21st October 2016; Revised: 17th November 2016; Accepted: 22nd November 2016 How to Cite: Li-Hua, W., Lei, L., Xin, W. (2017. Synthesis, Structural Characterization and Catalytic Activity of A Cu(II Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 113-118 (doi:10.9767/bcrec.12.1.735.113-118 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.735.113-118

  3. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  4. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO{sub 2} transformation

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, Ramasamy [Department of Chemistry, Thiagarajar College, Madurai, Tamilnadu 625 009 (India); National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036 (India); Thamaraichelvan, Arunachalam [Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute, Kelambakkam, Tamilnadu 603 103 (India); Ganesan, Tharumeya Kuppusamy [Department of Chemistry, The American College, Madurai, Tamilnadu 625 002 (India); Viswanathan, Balasubramanian, E-mail: bvnathan@iitm.ac.in [National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036 (India)

    2017-02-28

    Highlights: • On interaction with adsorbate CO{sub 2,} the adsorbent changes its configuration around the metal. • Electron transfer is faster in low coordinative environment of Cu. • CO formation is more favorable on Cu sites with even coordination number. • Cu at coordination number two has a over potential of −0.35 V. - Abstract: Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO{sub 2} to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO{sub 2} to CO at an applied potential of −0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO{sub 2} to various value added chemicals.

  5. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO2 transformation

    Science.gov (United States)

    Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian

    2017-02-01

    Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.

  6. Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: theory and experimental evidence

    International Nuclear Information System (INIS)

    Falicov, L.M.; Somorjai, G.A.

    1985-01-01

    Correlation between catalytic activity and low-energy local electronic fluctuation in transition metals is proposed. A theory and calculations are presented which indicate that maximum electronic fluctuants take place at high-coordination metal sites. Either (i) atomically rough surfaces that expose to the reactant molecules atoms with large numbers of nonmagnetic or weakly magnetic neighbors in the first or second layer at the surface or (ii) stepped and kinked surfaces are the most active in carrying out structure-sensitive catalytic reactions. The synthesis of ammonia from N 2 and H 2 over iron and rhenium surfaces, 1 H 2 / 2 H 2 exchange over stepped platinum crystal surfaces at low pressures, and the hydrogenolysis (C - C bond breaking) of isobutane at kinked platinum crystal surfaces are presented as experimental evidence in support of the theory

  7. Trends in the Catalytic CO Oxidation Activity of Nanoparticles

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Falsig, Hanne; Larsen, Britt Hvolbæk

    2008-01-01

    Going for gold: Density functional calculations show how gold nanoparticles are more active catalysts for CO oxidation than other metal nanoparticles. The high catalytic activity of nanosized gold clusters at low temperature is found to be related to the ability of low-coordinate metal atoms...

  8. Catalytic effect in opening the coordination sphere of an organo-f-complex

    International Nuclear Information System (INIS)

    Andrea, T.; Wang, J.; Gourevich, I.; Eisen, M.S.

    2002-01-01

    Organo-f-complexes have been studied in the last decade showing unique stoichiometric and catalytic properties, which are deeply influenced by the nature of the x ancillary ligands. Opening of the metal center coordination sphere is obtained by replacing the pentamethylcyclopentadienyl ligation in Cp* 2 MR 2 (Cp* = C 5 Me 5 , M = f-element metal, R = a-bonded ligand) by the bridged ancillary ligation Anna-Me 2 SiCp 2MR 2 (Cp* = C 5 Me 4 ). For organolanthanides, this change allows an increase (10-100 fold) in rates for the olefin insertion into the M-R bond [1] and in organoactinides; this modification has been shown to cause an increase (103 fold) in their catalytic activity for the hydrogenation of 1-hexene [2]. Recently, we have shown that organoactinides of the type Cp* 2 MR 2 (Cp* = C 5 Me 5 ; M = Th, U; R = CH 3 ) are active catalysts for both the oligomerization and hydrosilylation of terminal alkynes [3J. Thus, a conceptual question arises regarding the use of an open organoactinide such as Me 2 SiCp* 2 U n Bu 2 as compared to Cp* 2 UR 2 . This opening in the coordination sphere at the metal center should be unique in such a way that it is reasonable expected the increase of the reactivity towards product formation in the hydrosilylation and metathesis catalytic processes of terminal alkynes. In this poster we report, and quantitatively compare, the effects of the ansa-organouranium complex (Me 2 SiCp'' 2 U n Bu) 2 O The synthesis of the complex was achieved as described in equations 1 and 2

  9. Synthesis, Characterization, and Catalytic Activity of Pd(II Salen-Functionalized Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Rotcharin Sawisai

    2017-01-01

    Full Text Available Salen ligand synthesized from 2-hydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde was used as a palladium chelating ligand for the immobilization of the catalytic site. Mesoporous silica supported palladium catalysts were prepared by immobilizing Pd(OAc2 onto a mesoporous silica gel through the coordination of the imine-functionalized mesoporous silica gel. The prepared catalysts were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray (EDX, inductivity couple plasma (ICP, nitrogen adsorption-desorption, and Fourier transform infrared (FT-IR spectroscopy. The solid catalysts showed higher activity for the hydroamination of C-(tetra-O-acetyl-β-D-galactopyranosylallene with aromatic amines compared with the corresponding homogenous catalyst. The heterogeneous catalytic system can be easily recovered by simple filtration and reused for up to five cycles with no significant loss of catalytic activity.

  10. Natural clinoptilolite exchanged with iron: characterization and catalytic activity in nitrogen monoxide reduction

    Directory of Open Access Journals (Sweden)

    Daria Tito-Ferro

    2016-12-01

    Full Text Available The aim of this work was to characterize the natural clinoptilolite from Tasajeras deposit, Cuba, modified by hydrothermal ion-exchange with solutions of iron (II sulfate and iron (III nitrate in acid medium. Besides this, its catalytic activity to reduce nitrogen monoxide with carbon monoxide/propene in the presence of oxygen was evaluated. The characterization was performed by Mössbauer and UV-Vis diffuse reflectance spectroscopies and adsorption measurements. The obtained results lead to conclude that in exchanged samples, incorporated divalent and trivalent irons are found in octahedral coordination. Both irons should be mainly in cationic extra-framework positions inside clinoptilolite channels as charge compensating cations, and also as iron oxy-hydroxides resulting from limited hydrolysis of these cations. The iron (III exchanged samples has a larger amount of iron oxy-hydroxides agglomerates. The iron (II exchanged samples have additionally iron (II sulfate adsorbed. The catalytic activity in the nitrogen monoxide reduction is higher in the exchanged zeolites than starting. Among all samples, those exchanged of iron (II has the higher catalytic activity. This lead to outline that, main catalytically active centers are associated with divalent iron.

  11. Coordination kinetics of different metal ions with the amidoximated polyacrylonitrile nanofibrous membranes and catalytic behaviors of their complexes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fu; Dong, Yong Chun; Kang, Wei Min; Cheng, Bowen; Qu, Xiang; Cui, Guixin [School of Textiles, Tianjin Polytechnic University, Tianjin (China)

    2016-12-15

    Two transition metal ions (Fe{sup 3+} and Cu{sup 2+}) and a rare earth metal ion (Ce{sup 3+}) were selected to coordinate with amidoximated polyacrylonitrile (PAN) nanofibrous membrane for preparing three metal modified PAN nanofibrous membrane complexes (M-AO-n-PANs, M = Fe, Cu, or Ce) as the heterogeneous Fenton catalysts for the dye degradation in water under visible irradiation. The coordination kinetics of three metal ions with modified PAN nanofibrous membranes was studied and the catalytic properties of the resulting complexes were also compared. The results indicated that increasing metal ion concentrations in solution or higher coordination temperature led to a significant increase in metal content, particularly in Fe and Cu contents of the complexes. Their coordination process could be described using Langmuir isotherm and pseudo-second-order kinetic equations. Moreover, Fe-AO-n-PAN had the best photocatalytic efficiency for the dye degradation in acidic medium, but a lower photocatalytic activity than Cu-AO-n-PAN in alkali medium.

  12. Effect of Mesoporous Chitosan Action and Coordination on the Catalytic Activity of Mesoporous Chitosan-Grafted Cobalt Tetrakis(p-SulfophenylPorphyrin for Ethylbenzene Oxidation

    Directory of Open Access Journals (Sweden)

    Guan Huang

    2018-05-01

    Full Text Available To simulate the active site cavity structure function and axial coordination of cytochrome P-450 enzymes, mesoporous chitosan(mesp-CTS was used as a scaffold for a meso-sized cavity to immobilize cobalt tetrakis(p-sulphophenylporphyrin chloride(Co TPPS. Immobilization was achieved via an acid–base reaction and axial coordination of the H2N-C group to the Co ion in Co TPPS, thus forming the biomimetic catalyst Co TPPS/mesp-CTS. Several approaches, including scanning electron microscopy (SEM, the Brunauer–Emmett–Teller (BETtechnique, Fourier transform infrared (FT-IR spectroscopy, ultraviolet-visible (UV-vis spectroscopy, thermogravimetric and differential scanning calorimetry (TG-DSC, and X-ray photoelectron spectroscopy (XPS, were used to characterize the grafted catalyst. The catalytic performance of Co TPPS/mesp-CTS in ethylbenzene oxidation without any solvents and additives was investigated. The results showed that only 0.96 × 10 mol of Co TPPS grafted onto mesp-CTS could be recycled three times for 200 mL of ethylbenzene oxidation, with an average yield of 44.6% and selectivity of 68.8%. The highly efficient catalysis can be attributed to promotion by mesp-CTS, including the effect of the mesoporous structure and the axial coordination to the Co ion in Co TPPS. This biomimetic methodology provides a method for clean production of acetophenone via ethylbenzene oxidation.

  13. Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges.

    Science.gov (United States)

    Ignacio Martínez-Araya, Jorge; Grand, André; Glossman-Mitnik, Daniel

    2015-11-28

    By means of the Spin-Polarized Conceptual Density Functional Theory (SP-CDFT), three 2,6-bis(imino)pyridine catalysts based on iron(II), used for polymerization of ethylene, were studied. The catalysts differed by the substituent group, bearing either -H, -NO2 or -OCH3. To date, catalytic activity, a purely experimental parameter measuring the mass of polyethylene produced per millimole of iron per time and pressure unit at a fixed temperature, has not been explained in terms of local hyper-softness. The latter is a purely theoretical parameter designed for quantifying electronic effects; it is measured using the metal atom responsible for the coordination process with the monomer (ethylene). Because steric effects are not relevant in these kinds of catalysts and only electronic effects drive the catalytic process, an interesting link is found between catalytic activity and the local hyper-softness condensed on the iron atom by means of four functionals (B3LYP, BP86, B97D, and VSXC). This work demonstrates that the use of local hyper-softness, predicted by the SP-CDFT, is a suitable parameter for explaining order relationships among catalytic activity values, thus quantifying the electronic influence of the substituent group inducing this difference; the use of only net electric charges does not lead to clear conclusions. This finding can aid in estimating catalytic activities leading to a more rational design of new catalysts via computational chemistry.

  14. Cycloaddition of CO 2 to challenging N -tosyl aziridines using a halogen-free niobium complex: Catalytic activity and mechanistic insights

    KAUST Repository

    Arayachukiat, Sunatda

    2017-11-06

    An efficient and facile approach to the regioselective synthesis of N-tosyloxazolidinones from the corresponding N-tosylaziridines and CO2 was developed using dual catalytic systems involving an early transition metal coordination compound as a Lewis acid and a nucleophilic cocatalyst. Among the screened Lewis acids, halogen-free niobium pentaethoxide (Nb(OEt)5) displayed the best catalytic activity when used in the presence of tetrabutylammonium iodide (TBAI). Systematic DFT calculations, supported by catalytic experiments, demonstrate that CO2 insertion is the rate determining step for this process and it is highly dependent on the steric hindrance at the niobium center.

  15. Cycloaddition of CO 2 to challenging N -tosyl aziridines using a halogen-free niobium complex: Catalytic activity and mechanistic insights

    KAUST Repository

    Arayachukiat, Sunatda; Yingcharoen, Prapussorn; Vummaleti, Sai V. C.; Cavallo, Luigi; Poater, Albert; D’ Elia, Valerio

    2017-01-01

    An efficient and facile approach to the regioselective synthesis of N-tosyloxazolidinones from the corresponding N-tosylaziridines and CO2 was developed using dual catalytic systems involving an early transition metal coordination compound as a Lewis acid and a nucleophilic cocatalyst. Among the screened Lewis acids, halogen-free niobium pentaethoxide (Nb(OEt)5) displayed the best catalytic activity when used in the presence of tetrabutylammonium iodide (TBAI). Systematic DFT calculations, supported by catalytic experiments, demonstrate that CO2 insertion is the rate determining step for this process and it is highly dependent on the steric hindrance at the niobium center.

  16. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion

    International Nuclear Information System (INIS)

    Pozan, Gulin Selda

    2012-01-01

    Highlights: ► α-Al 2 O 3 , obtained from Bohmite, as a support for enhancing of the activity. ► The support material for catalytic oxidation. ► The manganese state and oxygen species effect on the catalytic combustion reaction. - Abstract: The aim of this work was to study combustion of toluene (1000 ppm) over MnO 2 modified with different supports. α-Al 2 O 3 and γ-Al 2 O 3 obtained from Boehmite, γ-Al 2 O 3 (commercial), SiO 2 , TiO 2 and ZrO 2 were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO 2 was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO 2 /α-Al 2 O 3 (B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289 °C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity.

  17. Polynuclear complexes of copper(I) halides: coordination chemistry and catalytic transformations of alkynes

    International Nuclear Information System (INIS)

    Mykhalichko, B M; Mys'kiv, M G; Temkin, Oleg N

    2000-01-01

    Characteristic features of the coordination chemistry of Cu(I) and mechanisms of catalytic conversions of alkynes in the CuCl-MCl-H 2 O-HC≡CR system (MCl is alkali metal or ammonium chloride or amine hydrochloride; R=H, CH 2 OH, CH=CH 2 , etc.) are analysed based on studies of the compositions and structures of copper(I) chloride (bromide) complexes, alkyne π-complexes and ethynyl organometallic polynuclear compounds formed in this system in solutions and in the crystalline state. The role of polynuclear complexes in various reactions of alkynes is discussed. The bibliography includes 149 references.

  18. Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles.

    Science.gov (United States)

    Reske, Rulle; Mistry, Hemma; Behafarid, Farzad; Roldan Cuenya, Beatriz; Strasser, Peter

    2014-05-14

    A study of particle size effects during the catalytic CO2 electroreduction on size-controlled Cu nanoparticles (NPs) is presented. Cu NP catalysts in the 2-15 nm mean size range were prepared, and their catalytic activity and selectivity during CO2 electroreduction were analyzed and compared to a bulk Cu electrode. A dramatic increase in the catalytic activity and selectivity for H2 and CO was observed with decreasing Cu particle size, in particular, for NPs below 5 nm. Hydrocarbon (methane and ethylene) selectivity was increasingly suppressed for nanoscale Cu surfaces. The size dependence of the surface atomic coordination of model spherical Cu particles was used to rationalize the experimental results. Changes in the population of low-coordinated surface sites and their stronger chemisorption were linked to surging H2 and CO selectivities, higher catalytic activity, and smaller hydrocarbon selectivity. The presented activity-selectivity-size relations provide novel insights in the CO2 electroreduction reaction on nanoscale surfaces. Our smallest nanoparticles (~2 nm) enter the ab initio computationally accessible size regime, and therefore, the results obtained lend themselves well to density functional theory (DFT) evaluation and reaction mechanism verification.

  19. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Alireza, E-mail: aabbasi@khayam.ut.ac.ir [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Gharib, Maniya; Najafi, Mahnaz [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Janczak, Jan [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wrocław (Poland)

    2016-03-15

    A new one-dimensional (1D) coordination polymer, [Zn(4,4′-bpy)(H{sub 2}O){sub 4}](ADC)·4H{sub 2}O (1) (4,4′-bpy=4,4′-bipyridine and H{sub 2}ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles. - Graphical abstract: A new 1D coordination polymer as catalyst for the degradation of Bismarck brown aqueous solution. - Highlights: • A 1D coordination polymer has been synthesized at room temperature. • The prepared compound was utilized for color removal of Bismarck brown dye. • Good catalytic activity and stability in the dye decolorization has been found.

  20. Simultaneous pore enlargement and introduction of highly dispersed Fe active sites in MSNs for enhanced catalytic activity

    International Nuclear Information System (INIS)

    Gu Jinlou; Dong Xu; Elangovan, S.P.; Li Yongsheng; Zhao Wenru; Iijima, Toshio; Yamazaki, Yasuo; Shi Jianlin

    2012-01-01

    An effective post-hydrothermal treatment strategy has been developed to dope highly dispersed iron catalytical centers into the framework of mesoporous silica, to keep the particle size in nanometric scale, and in the meanwhile, to expand the pore size of the synthesized mesoporous silica nanoparticles (MSNs). Characterization techniques such as XRD, BET, SEM and TEM support that the synthesized samples are long period ordered with particles size about 100 nm and a relatively large pore size of ca. 3.5 nm. UV–vis, XPS and EPR measurements demonstrate that the introduced iron active centers are highly dispersed in a coordinatively unsaturated status. NH 3 -TPD verifies that the acid amount of iron-doped MSNs is quite high. The synthesized nanocatalysts show an excellent catalytic performance for benzylation of benzene by benzyl chloride, and they present relatively higher yield and selectivity to diphenylmethane with a lower iron content and much shorter reaction time. - Graphical abstract: Uniform MSNs with iron active centers and large pore size have been prepared by a newly developed strategy, which demonstrates enhanced catalytic performance for benzylation of benzene by benzyl chloride. Highlights: ► Iron species were introduced into the framework of mesoporous silica nanoparticles with uniform dispersion. ► The pore sizes of the synthesized nanocatalysts were expanded. ► The acidic site quantities were quite high and the acidic centers were accessible. ► The nanocatalysts presented higher yield and selectivity to diphenylmethane with significantly lower Fe content.

  1. Syntheses, structures, electrochemistry and catalytic oxidation degradation of organic dyes of two new coordination polymers derived from Cu(II) and Mn(II) and 1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ming; Mu, Bao; Huang, Ru-Dan, E-mail: huangrd@bit.edu.cn

    2017-02-15

    Two new coordination polymers (CPs), namely, [Cu{sub 2}(ttbz)(H{sub 2}btc){sub 2}(OH)]{sub n} (1) and [Mn(ttbz){sub 2}(H{sub 2}O){sub 2}]{sub n} (2) (Httbz =1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene, H{sub 3}btc =1,3,5-benzenetricarboxylic acid), have been hydrothermally synthesized and structurally characterized. Complex 1 exhibits a (3,5,5,5)-connected 2D layer with a Schläfli symbol of (3·4{sup 2})(3·4{sup 4}0.5{sup 2}0.6{sup 3})(3{sup 2}0.4{sup 4}0.5{sup 2}0.6{sup 2})(3{sup 2}0.4{sup 4}0.5{sup 3}0.6), in which the ttbz{sup -} ligand can be described as μ{sub 5}-bridge, linking Cu(II) ions into a 2D layer and H{sub 2}btc{sup -} ions play a supporting role in complex 1. The ttbz{sup -} ligand in complex 2 represents the bridging coordination mode, connecting two Mn(II) ions to form the infinite 1D zigzag chains, respectively, which are further connected by two different types of hydrogen bonds to form a 3D supramolecular. Furthermore, catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated at room temperature in aqueous solutions, indicating these complexes may be applicable to color removal in a textile wastewater stream and practical applications in areas of electrocatalytic reduction toward nitrite, respectively. - Graphical abstract: Two new coordination polymers based on different structural characteristics have been hydrothermally synthesized by the mixed ligands. The catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated. - Highlights: • The organic ligand containing the tetrazolyl group and triazolyl group with some advantages has been used. • Two new coordination polymers with different structural characteristics has been discussed in detail. • Catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated.

  2. Surface composition of carburized tungsten trioxide and its catalytic activity

    International Nuclear Information System (INIS)

    Nakazawa, M.; Okamoto, H.

    1985-01-01

    The surface composition and electronic structure of carburized tungsten trioxide are investigated using x-ray photoelectron spectroscopy (XPS). The relationship between the surface composition and the catalytic activity for methanol electro-oxidation is clarified. The tungsten carbide concentration in the surface layer increases with the carburization time. The formation of tungsten carbide enhances the catalytic activity. On the other hand, the presence of free carbon or tungsten trioxide in the surface layer reduces the activity remarkably. It is also shown that, the higher the electronic density of states near the Fermi level, the higher the catalytic activity

  3. Mechanisms of catalytic activity in heavily coated hydrocracking catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Millan, M.; Adell, C.; Hinojosa, C.; Herod, A.A.; Kandiyoti, R. [University of London Imperial College Science Technology & Medicine, London (United Kingdom). Dept. of Chemical Engineering

    2008-01-15

    Catalyst deactivation by coke deposition has a direct impact on the economic viability of heavy hydrocarbon upgrading processes, such as coal liquefaction and oil residue hydroprocessing. Coke deposition is responsible for rapid loss of catalytic activity and it mostly takes place in the early stages of hydrocracking. The effect of carbonaceous deposition on the catalytic activity of a chromium pillared montmorillonite has been studied in the present work. Its catalytic activity in hydrocracking a coal extract was evaluated based on the boiling point distributions of feed and products obtained by thermogravimetric analysis (TGA), and their characterisation by size exclusion chromatography (SEC) and UV-Fluorescence spectroscopy (UV-F). A large deposition on the catalyst was observed after two successive 2-hour long runs in which the catalyst recovered from the first run was reused in the second. The pillared clay retained its activity even though it showed high carbon loading, a large drop in surface area and complete apparent pore blockage. Some observations may contribute to explain this persistent catalytic activity. First, there is evidence suggesting the dynamic nature of the carbonaceous deposits, which continuously exchange material with the liquid, allowing catalytic activity to continue. Secondly, Scanning Electron Microscopy (SEM) on the used Cr montmorillonite has shown preferential deposition on some regions of the catalyst, which leaves a fraction of the surface relatively exposed. Finally, evidence from SEM coupled to X-ray microanalysis also suggest that deposits are thinner in areas where the active phase of the catalyst is present in higher concentrations. Hydrogenation on the active sites would make the deposits more soluble in the liquid cleaning of surrounding area from deposits.

  4. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Llorca, Jordi, E-mail: jordi.llorca@upc.edu; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques (Spain); Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol [Universitat de Barcelona, Departament de Quimica Inorganica (Spain)

    2008-03-15

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O{sub 2}-H{sub 2} mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration.

  5. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    International Nuclear Information System (INIS)

    Llorca, Jordi; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi; Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol

    2008-01-01

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O 2 -H 2 mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration

  6. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion.

    Science.gov (United States)

    Pozan, Gulin Selda

    2012-06-30

    The aim of this work was to study combustion of toluene (1000ppm) over MnO(2) modified with different supports. α-Al(2)O(3) and γ-Al(2)O(3) obtained from Boehmite, γ-Al(2)O(3) (commercial), SiO(2), TiO(2) and ZrO(2) were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO(2) was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO(2)/α-Al(2)O(3)(B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289°C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Catalytic Activity Control via Crossover between Two Different Microstructures

    KAUST Repository

    Zhou, Yuheng

    2017-09-08

    Metal nanocatalysts hold great promise for a wide range of heterogeneous catalytic reactions, while the optimization strategy of catalytic activity is largely restricted by particle size or shape control. Here, we demonstrate that a reversible microstructural control through the crossover between multiply-twinned nanoparticle (MTP) and single crystal (SC) can be readily achieved by solvent post-treatment on gold nanoparticles (AuNPs). Polar solvents (e.g. water, methanol) direct the transformation from MTP to SC accompanied by the disappearance of twinning and stacking faults. A reverse transformation from SC to MTP is achieved in non-polar solvent (e.g. toluene) mixed with thiol ligands. The transformation between two different microstructures is directly observed by in-situ TEM and leads to a drastic modulation of catalytic activity towards the gas-phase selective oxidation of alcohols. There is a quasi-linear relationship between TOFs and MTP concentrations. Based on the combined experimental and theoretical investigations of alcohol chemisorption on these nanocatalysts, we propose that the exposure of {211}-like microfacets associated with twin boundaries and stack faults accounts for the strong chemisorption of alcohol molecules on MTP AuNPs and thus the exceptionally high catalytic activity.

  8. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    Science.gov (United States)

    Abbasi, Alireza; Gharib, Maniya; Najafi, Mahnaz; Janczak, Jan

    2016-03-01

    A new one-dimensional (1D) coordination polymer, [Zn(4,4‧-bpy)(H2O)4](ADC)·4H2O (1) (4,4‧-bpy=4,4‧-bipyridine and H2ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles.

  9. Modulation of catalytic activity in multi-domain protein tyrosine phosphatases.

    Directory of Open Access Journals (Sweden)

    Lalima L Madan

    Full Text Available Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1 domains, while the membrane-distal (D2 domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A. While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.

  10. Study on the correlation between the surface active species of Pd/cordierite monolithic catalyst and its catalytic activity

    International Nuclear Information System (INIS)

    Liao, Hengcheng; Zuo, Peiyuan; Liu, Miaomiao

    2016-01-01

    Two Pd-loading routes and three Pd-precursor matters were adopted to prepare Pd/(Ce,Y)O_2/γ-Al_2O_3/cordierite monolithic catalyst. The surface active species on the catalyst were characterized by XPS, and its catalytic activity for methane combustion was tested, and the dynamics of the catalytic combustion reaction was also discussed. Pd-loading route and Pd-precursor mass have a significant influence on the catalytic activity and surface active species. The sol dipping method is more advanced than the aqueous solution impregnating method. PN-sol catalyst, by sol dipping combined with Pd(NO_3)_2-precursor, has the best catalytic activity. The physical reason is the unique active Pd phase coexisting with active PdO phase on the surface, and thus the Pd3d_5_/_2 binding energy of surface species and apparent activation energy of combustion reaction are considerably decreased. The catalytic activity index, Pd3d_5_/_2 binding energy and apparent activation energy are highly tied each other with exponential relations.

  11. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    Science.gov (United States)

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol.

  12. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  13. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  14. MECHANISMS OF THE COMPLEX FORMATION BY d-METALS ON POROUS SUPPORTS AND THE CATALYTIC ACTIVITY OF THE FORMED COMPLEXES IN REDOX REACTIONS

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2015-11-01

    Full Text Available The catalytic activity of supported complexes of d metals in redox reactions with participation of gaseous toxicants, PH3, CO, O3, and SO2, depends on their composition. Owing to the variety of physicochemical and structural-adsorption properties of available supports, their influence on complex formation processes, the composition and catalytic activity of metal complexes anchored on them varies over a wide range. The metal complex formation on sup-ports with weak ion-exchanging properties is similar to that in aqueous solutions. In this case, the support role mainly adds up to the ability to reduce the activity of water adsorbed on them. The interaction between a metal complex and a support surface occurs through adsorbed water molecules. Such supports can also affect complex formation processes owing to protolytic reactions on account of acidic properties of sorbents used as supports. The catalytic activity of metal complexes supported on polyphase natural sorbents considerably depends on their phase relationship. In the case of supports with the nonsimple structure and pronounced ion-exchanging properties, for instance, zeolites and laminar silicates, it is necessary to take into account the variety of places where metal ions can be located. Such location places determine distinctions in the coordination environment of the metal ions and the strength of their bonding with surface adsorption sites and, therefore, the catalytic activity of surface complexes formed by theses metal ions. Because of the energy surface inhomogeneity, it is important to determine a relationship between the strength of a metal complex bonding with a support surface and its catalytic activity. For example, bimetallic complexes are catalytically active in the reactions of oxidation of the above gaseous toxicants. In particular, in the case of carbon monoxide oxidation, the most catalytic activity is shown by palladium-copper complexes in which copper(II is strongly

  15. Preparation of raspberry-like γ-Fe2O3/crackled nitrogen-doped carbon capsules and their application as supports to improve catalytic activity.

    Science.gov (United States)

    Zhang, Junshuai; Yao, Tongjie; Zhang, Hui; Zhang, Xiao; Wu, Jie

    2016-11-10

    In this manuscript, we have introduced a novel method to improve the catalytic activity of metal nanoparticles via optimizing the support structure. To this end, raspberry-like γ-Fe 2 O 3 /crackled nitrogen-doped carbon (CNC) capsules were prepared by a two-step method. Compared with traditional magnetic capsules, in γ-Fe 2 O 3 /CNC capsules, the γ-Fe 2 O 3 nanoparticles were embedded in a CNC shell; therefore, they neither occupied the anchoring sites for metal nanoparticles nor came into contact with them, which was beneficial for increasing the metal nanoparticle loading. Numerous tiny cracks appeared on the porous CNC shell, which effectively improved the mass diffusion and transport in catalytic reactions. Additionally, the coordination interaction could be generated between the precursor metal ions and doped-nitrogen atoms in the capsule shell. With the help of these structural merits, γ-Fe 2 O 3 /CNC capsules were ideal supports for Pd nanoparticles, because they were beneficial for improving the Pd loading, reducing the nanoparticle size, increasing their dispersity and maximizing the catalytic performance of Pd nanoparticles anchored on the inner shell surface. As expected, γ-Fe 2 O 3 /CNC@Pd catalysts exhibited a dramatically enhanced catalytic activity towards hydrophilic 4-nitrophenol and hydrophobic nitrobenzene. The reaction rate constant k was compared with recent work and the corresponding reference samples. Moreover, they could be easily recycled by using a magnet and reused without an obvious loss of catalytic activity.

  16. Nanodiamond-Gold Nanocomposites with the Peroxidase-Like Oxidative Catalytic Activity.

    Science.gov (United States)

    Kim, Min-Chul; Lee, Dukhee; Jeong, Seong Hoon; Lee, Sang-Yup; Kang, Eunah

    2016-12-21

    Novel nanodiamond-gold nanocomposites (NDAus) are prepared, and their oxidative catalytic activity is examined. Gold nanoparticles are deposited on carboxylated nanodiamonds (NDs) by in situ chemical reduction of gold precursor ions to produce NDAus, which exhibit catalytic activity for the oxidation of o-phenylenediamine in the presence of hydrogen peroxide similarly to a peroxidase. This remarkable catalytic activity is exhibited only by the gold nanoparticle-decorated NDs and is not observed for either Au nanoparticles or NDs separately. Kinetic oxidative catalysis studies show that NDAus exhibit a ping-pong mechanism with an activation energy of 93.3 kJ mol -1 , with the oxidation reaction rate being proportional to the substrate concentration. NDAus retain considerable activity even after several instances of reuse and are compatible with a natural enzyme, allowing the detection of xanthine using cascade catalysis. Association with gold nanoparticles makes NDs a good carbonic catalyst due to charge transfer at the metal-carbon interface and facilitated substrate adsorption. The results of this study suggest that diverse carbonic catalysts can be obtained by interfacial incorporation of various metal/inorganic substances.

  17. Synthesis, crystal structure and catalytic effect on thermal decomposition of RDX and AP: An energetic coordination polymer [Pb{sub 2}(C{sub 5}H{sub 3}N{sub 5}O{sub 5}){sub 2}(NMP)·NMP]{sub n}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jin-jian [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yancheng Teachers College, Yancheng 224002 (China); Liu, Zu-Liang, E-mail: liuzl@mail.njust.edu.cn [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Cheng, Jian [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yancheng Teachers College, Yancheng 224002 (China); Fang, Dong, E-mail: fangdong106@163.com [Yancheng Teachers College, Yancheng 224002 (China)

    2013-04-15

    An energetic lead(II) coordination polymer based on the ligand ANPyO has been synthesized and its crystal structure has been got. The polymer was characterized by FT-IR spectroscopy, elemental analysis, DSC and TG-DTG technologies. Thermal analysis shows that there are one endothermic process and two exothermic decomposition stages in the temperature range of 50–600 °C with final residues 57.09%. The non-isothermal kinetic has also been studied on the main exothermic decomposition using the Kissinger's and Ozawa–Doyle's methods, the apparent activation energy is calculated as 195.2 KJ/mol. Furthermore, DSC measurements show that the polymer has significant catalytic effect on the thermal decomposition of ammonium perchlorate. - Graphical abstract: An energetic lead(II) coordination polymer of ANPyO has been synthesized, structurally characterized and properties tested. Highlights: ► We have synthesized and characterized an energetic lead(II) coordination polymer. ► We have measured its molecular structure and thermal decomposition. ► It has significant catalytic effect on thermal decomposition of AP.

  18. Residue Phe112 of the Human-Type Corrinoid Adenosyltransferase (PduO) Enzyme of Lactobacillus reuteri Is Critical to the Formation of the Four-Coordinate Co(II) Corrinoid Substrate and to the Activity of the Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Mera, Paola E.; St. Maurice, Martin; Rayment, Ivan; Escalante-Semerena, Jorge C.; UW

    2009-06-08

    ATP:Corrinoid adenosyltransferases (ACAs) catalyze the transfer of the adenosyl moiety from ATP to cob(I)alamin via a four-coordinate cob(II)alamin intermediate. At present, it is unknown how ACAs promote the formation of the four-coordinate corrinoid species needed for activity. The published high-resolution crystal structure of the ACA from Lactobacillus reuteri (LrPduO) in complex with ATP and cob(II)alamin shows that the environment around the alpha face of the corrin ring consists of bulky hydrophobic residues. To understand how these residues promote the generation of the four-coordinate cob(II)alamin, variants of the human-type ACA enzyme from L. reuteri (LrPduO) were kinetically and structurally characterized. These studies revealed that residue Phe112 is critical in the displacement of 5,6-dimethylbenzimidazole (DMB) from its coordination bond with the Co ion of the ring, resulting in the formation of the four-coordinate species. An F112A substitution resulted in a 80% drop in the catalytic efficiency of the enzyme. The explanation for this loss of activity was obtained from the crystal structure of the mutant protein, which showed cob(II)alamin bound in the active site with DMB coordinated to the cobalt ion. The crystal structure of an LrPduO(F112H) variant showed a DMB-off/His-on interaction between the corrinoid and the enzyme, whose catalytic efficiency was 4 orders of magnitude lower than that of the wild-type protein. The analysis of the kinetic parameters of LrPduO(F112H) suggests that the F112H substitution negatively impacts product release. Substitutions of other hydrophobic residues in the Cbl binding pocket did not result in significant defects in catalytic efficiency in vitro; however, none of the variant enzymes analyzed in this work supported AdoCbl biosynthesis in vivo.

  19. A spectroscopic and catalytic investigation of active phase-support interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haller, G.L.

    1991-01-01

    Active catalytic phases (metal, mixed metals, oxide or mixed oxides) interacting with oxide support on which the active phase is dispersed can affect the percentage exposed, the morphology of supported particles, the degree of reducibility of cations, etc., in a variety of ways. Our objective is to characterize the physical chemistry of the active phase-oxide support by spectroscopic methods and to correlate this structure with catalytic function. The three systems discussed in this progress report are Ag/TiO{sub 2}, Ru-Cu/SiO{sub 2} and SiO{sub 2}/Al{sub 2}O{sub 3}. 24 refs., 3 figs., 2 tabs.

  20. Catalytic dehydrogenation of alcohol over solid-state molybdenum sulfide clusters with an octahedral metal framework

    Energy Technology Data Exchange (ETDEWEB)

    Kamiguchi, Satoshi, E-mail: kamigu@riken.jp [Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako City, Saitama 351-0198 (Japan); Organometallic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0198 (Japan); Okumura, Kazu [School of Advanced Engineering, Kogakuin University, Nakano-machi, Hachioji City, Tokyo 192-0015 (Japan); Nagashima, Sayoko; Chihara, Teiji [Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan)

    2015-12-15

    Graphical abstract: - Highlights: • Solid-state molybdenum sulfide clusters catalyzed the dehydrogenation of alcohol. • The dehydrogenation proceeded without the addition of any oxidants. • The catalytic activity developed when the cluster was activated at 300–500 °C in H{sub 2}. • The Lewis-acidic molybdenum atom and basic sulfur ligand were catalytically active. • The clusters function as bifunctional acid–base catalysts. - Abstract: Solid-state molybdenum sulfide clusters with an octahedral metal framework, the superconducting Chevrel phases, are applied to catalysis. A copper salt of a nonstoichiometric sulfur-deficient cluster, Cu{sub x}Mo{sub 6}S{sub 8–δ} (x = 2.94 and δ ≈ 0.3), is stored in air for more than 90 days. When the oxygenated cluster is thermally activated in a hydrogen stream above 300 °C, catalytic activity for the dehydrogenation of primary alcohols to aldehydes and secondary alcohols to ketones develops. The addition of pyridine or benzoic acid decreases the dehydrogenation activity, indicating that both a Lewis-acidic coordinatively unsaturated molybdenum atom and a basic sulfur ligand synergistically act as the catalytic active sites.

  1. Outstanding catalytic activity of ultra-pure platinum nanoparticles.

    Science.gov (United States)

    Januszewska, Aneta; Dercz, Grzegorz; Piwowar, Justyna; Jurczakowski, Rafal; Lewera, Adam

    2013-12-09

    Small (4 nm) nanoparticles with a narrow size distribution, exceptional surface purity, and increased surface order, which exhibits itself as an increased presence of basal crystallographic planes, can be obtained without the use of any surfactant. These nanoparticles can be used in many applications in an as-received state and are threefold more active towards a model catalytic reaction (oxidation of ethylene glycol). Furthermore, the superior properties of this material are interesting not only due to the increase in their intrinsic catalytic activity, but also due to the exceptional surface purity itself. The nanoparticles can be used directly (i.e., as-received, without any cleaning steps) in biomedical applications (i.e., as more efficient drug carriers due to an increased number of adsorption sites) and in energy-harvesting/data-storage devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Retro-binding thrombin active site inhibitors: identification of an orally active inhibitor of thrombin catalytic activity.

    Science.gov (United States)

    Iwanowicz, Edwin J; Kimball, S David; Lin, James; Lau, Wan; Han, W-C; Wang, Tammy C; Roberts, Daniel G M; Schumacher, W A; Ogletree, Martin L; Seiler, Steven M

    2002-11-04

    A series of retro-binding inhibitors of human alpha-thrombin was prepared to elucidate structure-activity relationships (SAR) and optimize in vivo performance. Compounds 9 and 11, orally active inhibitors of thrombin catalytic activity, were identified to be efficacious in a thrombin-induced lethality model in mice.

  3. WD40 domain of Apc1 is critical for the coactivator-induced allosteric transition that stimulates APC/C catalytic activity.

    Science.gov (United States)

    Li, Qiuhong; Chang, Leifu; Aibara, Shintaro; Yang, Jing; Zhang, Ziguo; Barford, David

    2016-09-20

    The anaphase-promoting complex/cyclosome (APC/C) is a large multimeric cullin-RING E3 ubiquitin ligase that orchestrates cell-cycle progression by targeting cell-cycle regulatory proteins for destruction via the ubiquitin proteasome system. The APC/C assembly comprises two scaffolding subcomplexes: the platform and the TPR lobe that together coordinate the juxtaposition of the catalytic and substrate-recognition modules. The platform comprises APC/C subunits Apc1, Apc4, Apc5, and Apc15. Although the role of Apc1 as an APC/C scaffolding subunit has been characterized, its specific functions in contributing toward APC/C catalytic activity are not fully understood. Here, we report the crystal structure of the N-terminal domain of human Apc1 (Apc1N) determined at 2.2-Å resolution and provide an atomic-resolution description of the architecture of its WD40 (WD40 repeat) domain (Apc1(WD40)). To understand how Apc1(WD40) contributes to APC/C activity, a mutant form of the APC/C with Apc1(WD40) deleted was generated and evaluated biochemically and structurally. We found that the deletion of Apc1(WD40) abolished the UbcH10-dependent ubiquitination of APC/C substrates without impairing the Ube2S-dependent ubiquitin chain elongation activity. A cryo-EM structure of an APC/C-Cdh1 complex with Apc1(WD40) deleted showed that the mutant APC/C is locked into an inactive conformation in which the UbcH10-binding site of the catalytic module is inaccessible. Additionally, an EM density for Apc15 is not visible. Our data show that Apc1(WD40) is required to mediate the coactivator-induced conformational change of the APC/C that is responsible for stimulating APC/C catalytic activity by promoting UbcH10 binding. In contrast, Ube2S activity toward APC/C substrates is not dependent on the initiation-competent conformation of the APC/C.

  4. Sorting catalytically active polymersome nanoreactors by flow cytometry

    NARCIS (Netherlands)

    Nallani, M.; Woestenenk, R.; de Hoog, H.P.M.; van Dongen, S.F.M.; Boezeman, J.; Cornelissen, J.J.L.M.; Nolte, R.J.M.; van Hest, J.C.M.

    2009-01-01

    A strategy that involves a versatile one-step preparation procedure of enzyme filled porous and stable polymeric catalytically active nanoreactors (polymersomes) by flow cytometry was reported. A 1:1 mixture of the polymerase dispersions was analyzed in a Coulter Epics Elite Flow Cytometer, while

  5. High-energy coordination polymers (CPs) exhibiting good catalytic effect on the thermal decomposition of ammonium dinitramide

    Science.gov (United States)

    Li, Xin; Han, Jing; Zhang, Sheng; Zhai, Lianjie; Wang, Bozhou; Yang, Qi; Wei, Qing; Xie, Gang; Chen, Sanping; Gao, Shengli

    2017-09-01

    High-energy coordination polymers (CPs) not only exhibit good energetic performances but also have a good catalytic effect on the thermal decomposition of energetic materials. In this contribution, two high-energy CPs Cu2(DNBT)2(CH3OH)(H2O)3·3H2O (1) and [Cu3(DDT)2(H2O)2]n (2) (H2DNBT = 3,3‧-dinitro-5,5‧-bis(1H-1,2,4-triazole and H3DDT = 4,5-bis(1H-tetrazol-5-yl)-2H-1,2,3-triazole) were synthesized and structurally characterized. Furthermore, 1 was thermos-dehydrated to produce Cu2(DNBT)2(CH3OH)(H2O)3 (1a). The thermal decomposition kinetics of 1, 1a and 2 were studied by Kissinger's method and Ozawa's method. Thermal analyses and sensitivity tests show that all compounds exhibit high thermal stability and low sensitivity for external stimuli. Meanwhile, all compounds have large positive enthalpy of formation, which are calculated as being (1067.67 ± 2.62) kJ mol-1 (1), (1464.12 ± 3.12) kJ mol-1 (1a) and (3877.82 ± 2.75) kJ mol-1 (2), respectively. The catalytic effects of 1a and 2 on the thermal decomposition of ammonium dinitramide (ADN) were also investigated.

  6. Synthesis, structure and catalytic activities of nickel(II) complexes bearing N4 tetradentate Schiff base ligand

    Science.gov (United States)

    Sarkar, Saikat; Nag, Sanat Kumar; Chattopadhyay, Asoke Prasun; Dey, Kamalendu; Islam, Sk. Manirul; Sarkar, Avijit; Sarkar, Sougata

    2018-05-01

    Two new nickel(II) complexes [Ni(L)Cl2] (1) and [Ni(L)(NCS)2] (2) of a neutral tetradentate mono-condensed Schiff base ligand, 3-(2-(2-aminoethylamino)ethylimino)butan-2-one oxime (L) have been synthesized and characterized using different physicochemical techniques e.g. elemental analyses, spectroscopic (IR, Electronic, NMR) methods, conductivity and molecular measurements. The crystal structure of complex (2) has been determined by using single crystal X-ray diffraction method and it suggests a distorted octahedral geometry around nickel(II) having a NiN6 coordinating atmosphere. The non-coordinated Osbnd H group on the ligand L remain engaged in H-bonding interactions with the S end of the coordinated thiocyanate moiety. These H-bonding interactions lead to Osbnd S separations of 3.132 Å and play prominent role in crystal packing. It is observed that the mononuclear units are glued together with such Osbnd H…S interactions and finally results in an 1D supramolecular sheet-like arrangement. DFT/TDDFT based theoretical calculations were also performed on the ligand and the complexes aiming at the accomplishment of idea regarding their optimized geometry, electronic transitions and the molecular energy levels. Finally the catalytic behavior of the complexes for oxidation of styrene has also been carried out. A variety of reaction conditions like the effect of solvent, effect of temperature and time as well as the effect of ratio of substrate to oxidant were thoroughly studied to judge the catalytic efficiency of the Ni(II) coordination entity.

  7. Structure and catalytic activity of regenerated spent hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Massoth, F.E.; Furimsky, E. (Utah University, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1992-11-01

    Two spent catalysts, obtained from different hydrodemetallation operations, were regenerated by two different treatments, viz. 2% (V/V) O[sub 2]/N[sub 2] and air. One spent catalyst (B), contained 3 wt% V and 15 wt% C, while the other (H) contained 10 wt% V, 14 wt% C and 8 wt% Fe. After regeneration in the O[sub 2]/N[sub 2] stream, catalyst B showed essentially complete recovery of its original surface area, whereas catalyst H showed only 70% recovery. Both catalysts showed substantial losses in surface area by the air treatment. Catalytic activity tests on the regenerated catalysts for hydrodesulfurization of thiophene and for hydrogenation of 1-hexene showed low recovery of activities, even for the regenerated catalyst in which the surface area had been completely recovered. X-ray diffraction analyses of the spent-regenerated catalysts revealed substantial changes in catalyst structure. Surface area and catalytic activity results were qualitatively explained by these catalyst structural changes. 17 refs., 1 fig., 3 tabs.

  8. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    KAUST Repository

    Kwezi, Lusisizwe

    2018-01-22

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  9. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    KAUST Repository

    Kwezi, Lusisizwe; Wheeler, Janet I; Marondedze, Claudius; Gehring, Christoph A; Irving, Helen R

    2018-01-01

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  10. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation

    Science.gov (United States)

    Hou, Jingtao; Li, Yuanzhi; Mao, Mingyang; Zhao, Xiujian; Yue, Yuanzheng

    2014-11-01

    The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel and facile strategy of synthesizing these unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework by hydrothermal redox reaction between Ce(NO3)3 and KMnO4 with KMnO4/Ce(NO3)3 at a molar ratio of 3 : 1 at 120 °C. Compared to pure OMS-2, the produced catalyst of Ce ion substituted OMS-2 ultrathin nanorods exhibits an enormous enhancement in the catalytic activity for benzene oxidation, which is evidenced by a significant decrease (ΔT50 = 100 °C, ΔT90 = 129 °C) in the reaction temperature of T50 and T90 (corresponding to the benzene conversion = 50% and 90%), which is considerably more efficient than the expensive supported noble metal catalyst (Pt/Al2O3). We combine both theoretical and experimental evidence to provide a new physical insight into the significant effect due to the defects induced by the Ce ion substitution on the catalytic activity of OMS-2. The formation of unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework leads to a significant enhancement of the lattice oxygen activity, thus tremendously increasing the catalytic activity.The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel

  11. Study of the catalytic activity of supported technetium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mikhailenko, I.E.; Pokorovskaya, O.V.

    1985-01-01

    The radioactive d metal 43 Tc 99 has catalytic properties in the synthesis of ammonia. For the purpose of reducing the quantity of the radioactive metal and of increasing the specific surface, the active component was applied to BaTiO 3 and gamma-Al 2 O 3 supports. This paper uses charcoal as a support and a table presents the catalytic activity of the samples during the synthesis of ammonia. X-ray diffractometric investigation of the catalysts was carried out with the use of Cu K /SUB alpha/ radiation. It is shown that the catalysts. The values of the specific rate constants of technetium in the catalysts. The values of the specific rate constants remain practically constant for all the catalyst samples studied, attesting to the absence of a specific metal-support interaction during the synthesis of ammonia

  12. Thermal activation of catalytic microjets in blood samples using microfluidic chips.

    Science.gov (United States)

    Soler, Lluís; Martínez-Cisneros, Cynthia; Swiersy, Anka; Sánchez, Samuel; Schmidt, Oliver G

    2013-11-21

    We demonstrate that catalytic microjet engines can out-swim high complex media composed of red blood cells and serum. Despite the challenge presented by the high viscosity of the solution at room temperature, the catalytic microjets can be activated at physiological temperature and, consequently, self-propel in diluted solutions of blood samples. We prove that these microjets self-propel in 10× diluted blood samples using microfluidic chips.

  13. Thermal activation of catalytic microjets in blood samples using microfluidic chips†

    Science.gov (United States)

    Soler, Lluís; Martínez-Cisneros, Cynthia; Swiersy, Anka; Sánchez, Samuel; Schmidt, Oliver G.

    2014-01-01

    We demonstrate that catalytic microjet engines can out-swim high complex media composed of red blood cells and serum. Despite the challenge presented by the high viscosity of the solution at room temperature, the catalytic microjets can be activated at physiological temperature and, consequently, self-propel in diluted solutions of blood samples. We prove that these microjets self-propel in 10× diluted blood samples using microfluidic chips. PMID:24089195

  14. Preparation, Characterization, and Catalytic Activity of MoCo/USY Catalyst on Hydrodeoxygenation Reaction of Anisole

    Science.gov (United States)

    Nugrahaningtyas, K. D.; Suharbiansah, R. S. R.; Rahmawati, F.

    2018-03-01

    This research aims to prepare, characterize, and study the catalytic activity of Molybdenum (Mo) and Cobalt (Co) metal with supporting material Ultra Stable Y-Zeolite (USY), to produce catalysts with activity in hydrotreatment reaction and in order to eliminate impurities compounds that containing unwanted groups heteroatoms. The bimetallic catalysts MoCo/USY were prepared by wet impregnation method with weight variation of Co metal 0%, 2%, 4%, 6%, 8%, and Mo metal 8% (w/w), respectively. Activation method of the catalyst included calcination, oxidation, reduction and the crystallinity was characterized using X-ray diffraction (XRD), the acidity of the catalyst was analyzed using Fourier Transform Infrared Spectroscopy (FT-IR) and gravimetry method, minerals present in the catalyst was analyzed using X-Ray Fluorescence (XRF), and surface of the catalyst was analyzed using Surface Area Analyzer (SAA). Catalytic activity test (benzene yield product) of MoCo/USY on hydrodeoxigenation reaction of anisole aimed to determine the effect of Mo-Co/USY for catalytic activity in the reaction hydrodeoxigenation (HDO) anisole. Based on characterization and test of catalytic activity, it is known that catalytic of MoCo/USY 2% (catalyst B) shows best activities with acidity of 10.209 mmol/g, specific area of catalyst of 426.295 m2/g, pore average of 14.135 Å, total pore volume 0.318 cc/g, and total yield of HDO products 6.06%.

  15. Catalytic reduction of hexaminecobalt(III) by pitch-based spherical activated carbon (PBSAC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu; Mao, Yan-Peng; Zhu, Hai-Song; Cheng, Jing-Yi; Long, Xiang-Li; Yuan, Wei-Kang [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China)

    2010-07-15

    The wet ammonia (NH{sub 3}) desulfurization process can be retrofitted to remove nitric oxide (NO) and sulfur dioxide (SO{sub 2}) simultaneously by adding soluble cobalt(II) salt into the aqueous ammonia solution. Activated carbon is used as a catalyst to regenerate hexaminecobalt(II), Co(NH{sub 3}){sub 6}{sup 2+}, so that NO removal efficiency can be maintained at a high level for a long time. In this study, the catalytic performance of pitch-based spherical activated carbon (PBSAC) in the simultaneous removal of NO and SO{sub 2} with this wet ammonia scrubbing process has been studied systematically. Experiments have been performed in a batch stirred cell to test the catalytic characteristics of PBSAC in the catalytic reduction of hexaminecobalt(III), Co(NH{sub 3}){sub 6}{sup 3+}. The experimental results show that PBSAC is a much better catalyst in the catalytic reduction of Co(NH{sub 3}){sub 6}{sup 3+} than palm shell activated carbon (PSAC). The Co(NH{sub 3}){sub 6}{sup 3+} reduction reaction rate increases with PBSAC when the PBSAC dose is below 7.5 g/L. The Co(NH{sub 3}){sub 6}{sup 3+} reduction rate increases with its initial concentration. Best Co(NH{sub 3}){sub 6}{sup 3+} conversion is gained at a pH range of 2.0-6.0. A high temperature is favorable to such reaction. The intrinsic activation energy of 51.00 kJ/mol for the Co(NH{sub 3}){sub 6}{sup 3+} reduction catalyzed by PBSAC has been obtained. The experiments manifest that the simultaneous elimination of NO and SO{sub 2} by the hexaminecobalt solution coupled with catalytic regeneration of hexaminecobalt(II) can maintain a NO removal efficiency of 90% for a long time. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Investigation of the Origin of Catalytic Activity in Oxide-Supported Nanoparticle Gold

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Ian [Univ. of Virginia, Charlottesville, VA (United States)

    2017-05-26

    Since Haruta’s discovery in 1987 of the surprising catalytic activity of supported Au nanoparticles, we have seen a very large number of experimental and theoretical efforts to explain this activity and to fully understand the nature of the behavior of the responsible active sites. In 2011, we discovered that a dual catalytic site at the perimeter of ~3nm diameter Au particles supported on TiO2 is responsible for oxidative catalytic activity. O2 molecules bind with Au atoms and Ti4+ ions in the TiO2 support and the weakened O-O bond dissociates at low temperatures, proceeding to produce O atoms which act as oxidizing agents for the test molecule, CO. The papers supported by DOE have built on this finding and have been concerned with two aspects of the behavior of Au/TiO2 catalysts: (1). Mechanistic behavior of dual catalytic sites in the oxidation of organic molecules such as ethylene and acetic acid; (2). Studies of the electronic properties of the TiO2 (110) single crystal in relation to its participation in charge transfer at the occupied dual catalytic site. A total of 20 papers have been produced through DOE support of this work. The papers combine IR spectroscopic investigations of Au/TiO2 catalysts with surface science on the TiO2(110) and TiO2 nanoparticle surfaces with modern density functional modeling. The primary goals of the work were to investigate the behavior of the dual Au/Ti4+ site for the partial oxidation of alcohols to acids, the hydrogenation of aldehydes and ketones to alcohols, and the condensation of oxygenate intermediates- all processes related to the utilization of biomass in the production of useful chemical energy sources.

  17. Method to produce catalytically active nanocomposite coatings

    Science.gov (United States)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  18. Method to produce catalytically active nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2017-12-19

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  19. Effect of Mesoporous Chitosan Action and Coordination on the Catalytic Activity of Mesoporous Chitosan-Grafted Cobalt Tetrakis(p-Sulfophenyl)Porphyrin for Ethylbenzene Oxidation

    OpenAIRE

    Guan Huang; Lin Qiang Mo; Yan Xun Wei; Hong Zhou; Yong An Guo; Su Juan Wei

    2018-01-01

    To simulate the active site cavity structure function and axial coordination of cytochrome P-450 enzymes, mesoporous chitosan(mesp-CTS) was used as a scaffold for a meso-sized cavity to immobilize cobalt tetrakis(p-sulphophenyl)porphyrin chloride(Co TPPS). Immobilization was achieved via an acid–base reaction and axial coordination of the H2N-C group to the Co ion in Co TPPS, thus forming the biomimetic catalyst Co TPPS/mesp-CTS. Several approaches, including scanning electron microscop...

  20. Dependence of crystal size on the catalytic performance of a porous coordination polymer.

    Science.gov (United States)

    Kiyonaga, Tomokazu; Higuchi, Masakazu; Kajiwara, Takashi; Takashima, Yohei; Duan, Jingui; Nagashima, Kazuro; Kitagawa, Susumu

    2015-02-14

    Submicrosized MOF-76(Yb) exhibits a higher catalytic performance for esterification than microsized MOF-76(Yb). Control of the crystal size of porous heterogeneous catalysts, such as PCP/MOFs, offers a promising approach to fabricating high-performance catalysts based on accessibility to the internal catalytic sites.

  1. Nd(III) and Dy(III) coordination compounds based on 1H-tetrazolate-5-acetic acid ligands: Synthesis, crystal structures and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiaoyun; Chen Dianyu; He Minghua [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China); Yang Gaowen, E-mail: ygwsx@126.com [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China); Shen Lei; Zhai Chun; Shen Wei; Gu Kun; Zhao Jingjing [Jiangsu Laboratory of Advanced Functional Materials, Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu (China)

    2012-06-15

    Reactions of 1H-tetrazolate-5-acetic acid(H{sub 2}tza) with Nd(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O or Dy(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O with the presence of KOH under solvothermal conditions, produced two new coordination compounds, [M{sub 2}(tza){sub 3}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O [M=Nd(1), Dy(2)]. Both compounds were structurally characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Compounds 1 and 2 reveal 1D structures via bridging tza as linker. Furthermore, the compounds 1 and 2 showed a specific and good catalytic behavior for the polymerization of styrene, and the polymerization showed controlled characteristics. - Graphical Abstract: Two new coordination compounds, [M{sub 2}(tza){sub 3}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O [M=Nd(1), Dy(2)] have been synthesis. 1 and 2 reveal 1D structures via bridging tza as linker, and showed a specific and good catalytic behavior for the polymerization of styrene. Highlights: Black-Right-Pointing-Pointer we have reported two novel compounds formed by H{sub 2}tza and Nd(III) or Dy(III). Black-Right-Pointing-Pointer Compounds 1 and 2 were found to have catalysis property for the photo-polymerization of styrene. Black-Right-Pointing-Pointer The high molecular weight polymers with narrow molecular weight distributions were obtained.

  2. Mutations in the catalytic loop HRD motif alter the activity and function of Drosophila Src64.

    Directory of Open Access Journals (Sweden)

    Taylor C Strong

    Full Text Available The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele.

  3. Modeling of catalytically active metal complex species and intermediates in reactions of organic halides electroreduction.

    Science.gov (United States)

    Lytvynenko, Anton S; Kolotilov, Sergey V; Kiskin, Mikhail A; Eremenko, Igor L; Novotortsev, Vladimir M

    2015-02-28

    The results of quantum chemical modeling of organic and metal-containing intermediates that occur in electrocatalytic dehalogenation reactions of organic chlorides are presented. Modeling of processes that take place in successive steps of the electrochemical reduction of representative C1 and C2 chlorides - CHCl3 and Freon R113 (1,1,2-trifluoro-1,2,2-trichloroethane) - was carried out by density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2). It was found that taking solvation into account using an implicit solvent model (conductor-like screening model, COSMO) or considering explicit solvent molecules gave similar results. In addition to modeling of simple non-catalytic dehalogenation, processes with a number of complexes and their reduced forms, some of which were catalytically active, were investigated by DFT. Complexes M(L1)2 (M = Fe, Co, Ni, Cu, Zn, L1H = Schiff base from 2-pyridinecarbaldehyde and the hydrazide of 4-pyridinecarboxylic acid), Ni(L2) (H2L2 is the Schiff base from salicylaldehyde and 1,2-ethylenediamine, known as salen) and Co(L3)2Cl2, representing a fragment of a redox-active coordination polymer [Co(L3)Cl2]n (L3 is the dithioamide of 1,3-benzenedicarboxylic acid), were considered. Gradual changes in electronic structure in a series of compounds M(L1)2 were observed, and correlations between [M(L1)2](0) spin-up and spin-down LUMO energies and the relative energies of the corresponding high-spin and low-spin reduced forms, as well as the shape of the orbitals, were proposed. These results can be helpful for determination of the nature of redox-processes in similar systems by DFT. No specific covalent interactions between [M(L1)2](-) and the R113 molecule (M = Fe, Co, Ni, Zn) were found, which indicates that M(L1)2 electrocatalysts act rather like electron transfer mediators via outer-shell electron transfer. A relaxed surface scan of the adducts {M(L1)2·R113}(-) (M = Ni or Co) versus the distance between the

  4. Catalytic Mechanism of Nitrile Hydratase Proposed by Time-resolved X-ray Crystallography Using a Novel Substrate, tert-Butylisonitrile*S⃞

    Science.gov (United States)

    Hashimoto, Koichi; Suzuki, Hiroyuki; Taniguchi, Kayoko; Noguchi, Takumi; Yohda, Masafumi; Odaka, Masafumi

    2008-01-01

    Nitrile hydratases (NHases) have an unusual iron or cobalt catalytic center with two oxidized cysteine ligands, cysteine-sulfinic acid and cysteine-sulfenic acid, catalyzing the hydration of nitriles to amides. Recently, we found that the NHase of Rhodococcus erythropolis N771 exhibited an additional catalytic activity, converting tert-butylisonitrile (tBuNC) to tert-butylamine. Taking advantage of the slow reactivity of tBuNC and the photoreactivity of nitrosylated NHase, we present the first structural evidence for the catalytic mechanism of NHase with time-resolved x-ray crystallography. By monitoring the reaction with attenuated total reflectance-Fourier transform infrared spectroscopy, the product from the isonitrile carbon was identified as a CO molecule. Crystals of nitrosylated inactive NHase were soaked with tBuNC. The catalytic reaction was initiated by photo-induced denitrosylation and stopped by flash cooling. tBuNC was first trapped at the hydrophobic pocket above the iron center and then coordinated to the iron ion at 120 min. At 440 min, the electron density of tBuNC was significantly altered, and a new electron density was observed near the isonitrile carbon as well as the sulfenate oxygen of αCys114. These results demonstrate that the substrate was coordinated to the iron and then attacked by a solvent molecule activated by αCys114-SOH. PMID:18948265

  5. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  6. Investigation into catalytic activity of chelates of transition elements with azomethine in connection with their bacteriostatic action

    Energy Technology Data Exchange (ETDEWEB)

    Aptekar' , M D; Gordeev, Yu M [Voroshilovgradskij Mashinostroitel' nyj Inst. (USSR)

    1975-07-01

    By gas-volumimetric methods catalytic activity of VKS Co(2), Ni(2), Cu(2), Zn(2) and Cd(2) on the o-oxyarylazometine basis in the hydroperoxide decomposition and ascorbic acid oxidation reactions was studied. Dependence of catalytic activity of VKS on nature of central atom, aldehyde and amine fragments structure of ligands, complex stability was determined. It was shown that some similarity exist between catalytic activity of studied VKS and their bacteriostatic influence on E.coli,Staph. aureus,B.subtilis.

  7. Supercritical CO{sub 2} mediated synthesis and catalytic activity of graphene/Pd nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lulu [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749 (Korea, Republic of); Nguyen, Van Hoa [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749 (Korea, Republic of); Department of Chemistry, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang (Viet Nam); Shim, Jae-Jin, E-mail: jjshim@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749 (Korea, Republic of)

    2015-11-15

    Highlights: • RGO/Pd composite was efficiently prepared via a facile method in supercritical CO{sub 2}. • Graphene sheets were coated uniformly with Pd nanoparticles with a size of ∼8 nm. • Composites exhibited excellent catalytic activity in the Suzuki reaction even after 10 cycles. - Abstract: Graphene sheets were decorated with palladium nanoparticles using a facile and efficient method in supercritical CO{sub 2}. The nanoparticles were formed on the graphene sheets by the simple hydrogen reduction of palladium(II) hexafluoroacetylacetonate precursor in supercritical CO{sub 2}. The product was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Highly dispersed nanoparticles with various sizes and shapes adhered well to the graphene sheets. The composites showed high catalytic activities for the Suzuki reaction under aqueous and aerobic conditions within 5 min. The effects of the different Pd precursor loadings on the catalytic activities of the composites were also examined.

  8. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U. J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A. M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  9. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguang [Columbia Univ., New York, NY; Frenkel, Anatoly [Yeshiva Univ., New York, NY (United States); Rodriguez, Jose [Brookhaven National Lab. (BNL), Upton, NY (United States); Adzic, Radoslav [Brookhaven National Lab. (BNL), Upton, NY (United States); Bare, Simon R. [UOP LLC, Des Plaines, IL (United States); Hulbert, Steve L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karim, Ayman [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullins, David R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steve [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  10. Fibrous nano-silica supported ruthenium (KCC-1/Ru): A sustainable catalyst for the hydrogenolysis of alkanes with good catalytic activity and lifetime

    KAUST Repository

    Fihri, Aziz

    2012-07-06

    We have shown that fibrous nanosilica (KCC-1) can serve as a suitable support for the synthesis of highly dispersed ruthenium (Ru) nanoparticles. The resulting KCC-1/Ru catalyst displayed superior activity for the hydrogenolysis of propane and ethane at atmospheric pressure and at low temperature. The high catalytic activity was due to the formation of Ru-nanoparticles with an active size range (1-4 nm) and the presence of hexagonal-shaped particles with several corners and sharp edges possessing reactive atoms with lowest coordination numbers. The catalyst was stable with an excellent lifetime and no sign of deactivation, even after eight days. This enhanced stability may be due to the fibrous nature of KCC-1 which restricts Ostwald ripening of Ru nanoparticles. © 2012 American Chemical Society.

  11. Direct instrumental identification of catalytically active surface sites

    Science.gov (United States)

    Pfisterer, Jonas H. K.; Liang, Yunchang; Schneider, Oliver; Bandarenka, Aliaksandr S.

    2017-09-01

    The activity of heterogeneous catalysts—which are involved in some 80 per cent of processes in the chemical and energy industries—is determined by the electronic structure of specific surface sites that offer optimal binding of reaction intermediates. Directly identifying and monitoring these sites during a reaction should therefore provide insight that might aid the targeted development of heterogeneous catalysts and electrocatalysts (those that participate in electrochemical reactions) for practical applications. The invention of the scanning tunnelling microscope (STM) and the electrochemical STM promised to deliver such imaging capabilities, and both have indeed contributed greatly to our atomistic understanding of heterogeneous catalysis. But although the STM has been used to probe and initiate surface reactions, and has even enabled local measurements of reactivity in some systems, it is not generally thought to be suited to the direct identification of catalytically active surface sites under reaction conditions. Here we demonstrate, however, that common STMs can readily map the catalytic activity of surfaces with high spatial resolution: we show that by monitoring relative changes in the tunnelling current noise, active sites can be distinguished in an almost quantitative fashion according to their ability to catalyse the hydrogen-evolution reaction or the oxygen-reduction reaction. These data allow us to evaluate directly the importance and relative contribution to overall catalyst activity of different defects and sites at the boundaries between two materials. With its ability to deliver such information and its ready applicability to different systems, we anticipate that our method will aid the rational design of heterogeneous catalysts.

  12. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts.

    Science.gov (United States)

    Li, Jiang; Liu, Jun-Ling; Zhou, Hong-Jun; Fu, Yao

    2016-06-08

    Iron-based heterogeneous catalysts, which were generally prepared by pyrolysis of iron complexes on supports at elevated temperature, were found to be capable of catalyzing the transfer hydrogenation of furfural (FF) to furfuryl alcohol (FFA). The effects of metal precursor, nitrogen precursor, pyrolysis temperature, and support on catalytic performance were examined thoroughly, and a comprehensive study of the reaction parameters was also performed. The highest selectivity of FFA reached 83.0 % with a FF conversion of 91.6 % under the optimal reaction condition. Catalyst characterization suggested that iron cations coordinated by pyridinic nitrogen functionalities were responsible for the enhanced catalytic activity. The iron catalyst could be recycled without significant loss of catalytic activity for five runs, and the destruction of the nitrogen-iron species, the presence of crystallized Fe2 O3 phase, and the pore structure change were the main reasons for catalyst deactivation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Iron Coordination and Halogen-Bonding Assisted Iodosylbenzene Activation

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Poulsen de Sousa, David; McKenzie, Christine

    catalytic mixtures using soluble terminal oxygen transfer agents. Isolation of a reactive iron-terminal oxidant adduct, an unique Fe(III)-OIPh complex, is facilitated by strong stabilizing supramolecular halogen-bonding. L3-edge XANES suggests +1.6 for the average oxidation state for the iodine atom3......The iron complex of the hexadentate ligand N,N,N'-tris(2-pyridylmethyl)ethylendiamine-N'-acetate (tpena) efficiently catalyzes selective oxidations of electron-rich olefins and sulfides by insoluble iodosylbenzene (PhIO). Surprisingly, these reactions are faster and more selective than homogenous...... in the iron(III)-coordinated PhIO. This represents a reduction of iodine relative to the original “hypervalent” (+3) PhIO. The equivalent of electron density must be removed from the {(tpena)Fe(III)O} moiety, however Mössbauer spectroscopy shows that the iron atom is not high valent....

  14. The activity of catalytic systems based on zero-valent nickel complexes in propene dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Shmidt, F.K.; Mironova, L.V.; Proidakov, A.G.; Kalabin, G.A.; Ratovskii, G.V.; Dmitrieva, T.V.

    1978-01-01

    Catalytic systems consisting of Ni(PPh/sub 3/) or Ni(P(OEt)/sub 3/)/sub 4/, Lewis acids BF/sub 3/ or BF/sub 3/.OEt/sub 2/, and Broensted acids HF, H/sub 2/SO/sub 4/, EtOH, or H/sub 2/O (even in trace amounts), but not HCl, showed high catalytic activities (i.e., hexene yields of 1200-1600 g-mole per g-atom Ni per hour) with 67-84% methylpentenes. In the absence of Lewis acids, the catalytic activity decreased and linear hexenes were favored (up to 65%). The activity of the systems containing no Broensted additives (i.e., when the solvents were thoroughly dehydrated and evacuated) was very low (50 g-mole hexene per g-atom Ni per hour). Proton, phosphorus-31, and fluorine-19 NMR studies identified nickel hydride complexes (NHC) with PF(OEt)/sub 2/ ligands in the Ni(P(OC/sub 2/H/sub 5/)/sub 3/)/sub 4// BF/sub 3/(OC/sub 2/H/sub 5/)/sub 2//C/sub 2/H/sub 5/OH system, and a UV spectroscopic study showed that the catalytic activity was proportional to the concentration of NHC in the system. Tables, spectra, and 16 references.

  15. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption – Catalytic wet air oxidation on activated carbons

    International Nuclear Information System (INIS)

    Quesada-Peñate, I.; Julcour-Lebigue, C.; Jáuregui-Haza, U.J.; Wilhelm, A.M.; Delmas, H.

    2012-01-01

    Highlights: ► Three activated carbons (AC) compared as adsorbents and oxidation catalysts. ► Similar evolution for catalytic and adsorptive properties of AC over reuses. ► Acidic and mesoporous AC to be preferred, despite lower initial efficiency. ► Oxidative degradation of paracetamol improves biodegradability. ► Convenient hybrid adsorption–regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  16. Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NOx with NH3

    International Nuclear Information System (INIS)

    Szymanski, Grzegorz S.; Grzybek, Teresa; Papp, Helmut

    2004-01-01

    The reduction of nitrogen oxide with ammonia was studied using carbon catalysts with chemically modified surfaces. Carbon samples with different surface chemistry were obtained from commercial activated carbon D43/1 (CarboTech, Essen, Germany) by chemical modification involving oxidation with conc. nitric acid (DOx) (1); high temperature treatment (=1000K) under vacuum (DHT) (2); or in ammonia (DHTN, DOxN) (3). Additionally, a portion of the DOx sample was promoted with iron(III) ions (DOxFe). The catalytic tests were performed in a microreactor at a temperature range of 413-573K. The carbon sample annealed under vacuum (DHT) showed the lowest activity. The formation of surface acidic surface oxides by nitric acid treatment (DOx) enhanced the catalytic activity only slightly. However, as can be expected, subsequent promotion of the DOx sample with iron(III) ions increased drastically its catalytic activity. However, this was accompanied by some loss of selectivity, i.e. formation of N 2 O as side product. This effect can be avoided using ammonia-treated carbons which demonstrated reasonable activity with simultaneous high selectivity. The most active and selective among them was the sample that was first oxidized with nitric acid and then heated in an ammonia stream (DOxN). A correlation between catalytic activity and surface nitrogen content was observed. Surface nitrogen species seem to play an important role in catalytic selective reduction of nitrogen oxide with ammonia, possibly facilitating NO 2 formation (a reaction intermediate) as a result of easier chemisorption of oxygen and nitrogen oxide

  17. Catalytic enhancement of gold nanocages induced by undercoordination-charge-polarization

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2017-05-01

    Full Text Available Principle behind the highest catalytic ability of the least coordinated gold remains a puzzle. With the aid of density functional theory calculations, we show that in 3-coordinated gold cages (i the Au–Au bond contracts by ∼5% in average, (ii the valance density-of-states shift up to Fermi level when the Au55 cluster turns into an Au12 cage, and (iii the activation energy for CO oxidation drops in sequence, Au55 cluster (13.6 Kcal/mol, Au42 cage (8.0 Kcal/mol, Au13(6.5 Kcal/mol, and Au12 cage (5.1 Kcal/mol, with comparing the reaction paths and spin states. The principle clarified here paves the way for the design of gold nanocatalyst.

  18. [Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].

    Science.gov (United States)

    Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng

    2013-04-01

    The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH.

  19. Heptanuclear Fe5Cu2-Phenylgermsesquioxane containing 2,2'-Bipyridine: Synthesis, Structure, and Catalytic Activity in Oxidation of C-H Compounds.

    Science.gov (United States)

    Bilyachenko, Alexey N; Khrustalev, Victor N; Zubavichus, Yan V; Shul'pina, Lidia S; Kulakova, Alena N; Bantreil, Xavier; Lamaty, Frédéric; Levitsky, Mikhail M; Gutsul, Evgeniy I; Shubina, Elena S; Shul'pin, Georgiy B

    2018-01-02

    A new representative of an unusual family of metallagermaniumsesquioxanes, namely the heterometallic cagelike phenylgermsesquioxane (PhGeO 2 ) 12 Cu 2 Fe 5 (O)OH(PhGe) 2 O 5 (bipy) 2 (2), was synthesized and structurally characterized. Fe(III) ions of the complex are coordinated by oxa ligands: (i) cyclic (PhGeO 2 ) 12 and acyclic (Ph 2 Ge 2 O 5 ) germoxanolates and (ii) O 2- and (iii) HO - moieties. In turn, Cu(II) ions are coordinated by both oxa (germoxanolates) and aza ligands (2,2'-bipyridines). This "hetero-type" of ligation gives in sum an attractive pagoda-like molecular architecture of the complex 2. Product 2 showed a high catalytic activity in the oxidation of alkanes to the corresponding alkyl hydroperoxides (in yields up to 30%) and alcohols (in yields up to 100%) and in the oxidative formation of benzamides from alcohols (catalyst loading down to 0.4 mol % in Cu/Fe).

  20. 23 CFR 450.208 - Coordination of planning process activities.

    Science.gov (United States)

    2010-04-01

    ... process. (h) The statewide transportation planning process should be consistent with the Strategic Highway... 23 Highways 1 2010-04-01 2010-04-01 false Coordination of planning process activities. 450.208... Coordination of planning process activities. (a) In carrying out the statewide transportation planning process...

  1. ITER co-ordinated technical activities

    International Nuclear Information System (INIS)

    2001-01-01

    As agreed upon between the ITER Engineering Design Activities (EDA) Parties 'Co-ordinated Technical Activities' (CTA) means technical activities which are deemed necessary to maintain the integrity of the international project, so as to prepare for the ITER joint implementation. The scope of these activities includes design adaptation to the specific site conditions, safety analysis and licensing preparation that are based on specific site offers, evaluation of cost and construction schedule, preparation of procurement documents and other issues raised by the Parties collectively, whilst assuring the coherence of the ITER project including design control

  2. Comparative catalytic activity of PET track-etched membranes with embedded silver and gold nanotubes

    Science.gov (United States)

    Mashentseva, Anastassiya; Borgekov, Daryn; Kislitsin, Sergey; Zdorovets, Maxim; Migunova, Anastassiya

    2015-12-01

    Irradiated by heavy ions nanoporous polyethylene terephthalate track-etched membranes (PET TeMs) after +15Kr84 ions bombardment (1.75 MeV/nucl with the ion fluency of 1 × 109 cm-2) and sequential etching was applied in this research as a template for development of composites with catalytically enriched properties. A highly ordered silver and gold nanotubes arrays were embedded in 100 nm pores of PET TeMs via electroless deposition technique at 4 °C during 1 h. All "as-prepared" composites were examined for catalytic activity using reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride as a common reaction to test metallic nanostructures catalysts. The effect of temperature on the catalytic activity was investigated in range of 292-313 K and activation energy were calculated. Kapp of Ag/PET composites linearly increase with an increase of the temperature thus normal Arrhenius behavior have been seen and the activation energy was calculated to be 42.13 kJ/mol. Au/PET composites exhibit not only more powerful catalytic activity but also non-linear dependence of rate constant from temperature. Kapp increased with increasing temperature throughout the 292-308 K temperature range; the reaction had an activation energy 65.32 kJ/mol. In range 311-313 K rate constant dramatically decreased and the apparent activation energy at this temperature rang was -91.44 kJ/mol due some structural changes, i.e. agglomeration of Au nanoparticles on the surface of composite.

  3. Catalytic bioreactors and methods of using same

    Science.gov (United States)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  4. Structural insights into the loss of catalytic competence in pectate lyase activity at low pH

    DEFF Research Database (Denmark)

    Ali, Salyha; Søndergaard, Chresten Rauff; Teixeira, Susana

    2015-01-01

    at the active centre (+1 subsite), they withdraw electrons acidifying the C5 proton facilitating its abstraction by the catalytic arginine. Here we show that activity is lost at low pH because protonation of aspartates results in the loss of the two catalytic calcium-ions causing a profound failure to correctly...

  5. Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Plapp, Bryce V.; Savarimuthu, Baskar Raj; Ferraro, Daniel J.; Rubach, Jon K.; Brown, Eric N.; Ramaswamy, S. (Iowa)

    2017-07-07

    During catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography. The apoenzyme and its complex with adenosine 5'-diphosphoribose have an open protein conformation with the catalytic zinc in one position, tetracoordinated by Cys-46, His-67, Cys-174, and a water molecule. The bidentate chelators 2,2'-bipyridine and 1,10-phenanthroline displace the water and form a pentacoordinated zinc. The enzyme–NADH complex has a closed conformation similar to that of ternary complexes with coenzyme and substrate analogues; the coordination of the catalytic zinc is similar to that found in the apoenzyme, except that a minor, alternative position for the catalytic zinc is ~1.3 Å from the major position and closer to Glu-68, which could form the alternative coordination to the catalytic zinc. Complexes with NADH and N-1-methylhexylformamide or N-benzylformamide (or with NAD+ and fluoro alcohols) have the classical tetracoordinated zinc, and no water is bound to the zinc or the nicotinamide rings. The major forms of the enzyme in the mechanism have a tetracoordinated zinc, where the carboxylate group of Glu-68 could participate in the exchange of water and substrates on the zinc. Hydride transfer in the Michaelis complexes does not involve a nearby water.

  6. O-, N-Atoms-Coordinated Mn Cofactors within a Graphene Framework as Bioinspired Oxygen Reduction Reaction Electrocatalysts.

    Science.gov (United States)

    Yang, Yang; Mao, Kaitian; Gao, Shiqi; Huang, Hao; Xia, Guoliang; Lin, Zhiyu; Jiang, Peng; Wang, Changlai; Wang, Hui; Chen, Qianwang

    2018-05-28

    Manganese (Mn) is generally regarded as not being sufficiently active for the oxygen reduction reaction (ORR) compared to other transition metals such as Fe and Co. However, in biology, manganese-containing enzymes can catalyze oxygen-evolving reactions efficiently with a relative low onset potential. Here, atomically dispersed O and N atoms coordinated Mn active sites are incorporated within graphene frameworks to emulate both the structure and function of Mn cofactors in heme-copper oxidases superfamily. Unlike previous single-metal catalysts with general M-N-C structures, here, it is proved that a coordinated O atom can also play a significant role in tuning the intrinsic catalytic activities of transition metals. The biomimetic electrocatalyst exhibits superior performance for the ORR and zinc-air batteries under alkaline conditions, which is even better than that of commercial Pt/C. The excellent performance can be ascribed to the abundant atomically dispersed Mn cofactors in the graphene frameworks, confirmed by various characterization methods. Theoretical calculations reveal that the intrinsic catalytic activity of metal Mn can be significantly improved via changing local geometry of nearest coordinated O and N atoms. Especially, graphene frameworks containing the Mn-N 3 O 1 cofactor demonstrate the fastest ORR kinetics due to the tuning of the d electronic states to a reasonable state. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma

    KAUST Repository

    Cheng, Chia-Chin; Lu, Ang-Yu; Tseng, Chien-Chih; Yang, Xiulin; Hedhili, Mohamed N.; Chen, Min-Cheng; Wei, Kung-Hwa; Li, Lain-Jong

    2016-01-01

    that account for a small percentage of the surface area, rather than the basal planes, of MoS2 monolayer have been confirmed as their active catalytic sites. As a result, extensive efforts have been developing in activating the basal planes of MoS2

  8. A highly sensitive technique for detecting catalytically active nanoparticles against a background of general workplace aerosols

    International Nuclear Information System (INIS)

    Neubauer, N; Weis, F; Seipenbusch, M; Kasper, G; Binder, A

    2011-01-01

    A new measurement technique was studied using catalysis to specifically detect airborne nanoparticles in presence of background particles in the workplace air. Catalytically active nanoparticles produced by spark discharge were used as aerosol catalysts. According to these particles suitable catalytic test reactions were chosen and investigated by two different approaches: catalysis on airborne nanoparticles and catalysis on deposited nanoparticles. The results indicate that catalysis is applicable for the specific measurement of nanoparticles in the workplace air. Catalysis on airborne particles is suitable for the specific detection of very active nanoparticles, e.g. platinum or nickel, at high concentrations of about 10 7 /cm 3 . The approach of catalysis on deposited particles is better suited for nanoparticle aerosols at low concentrations, for slow catalytic reactions or less active nanoparticles like iron oxide (Fe 2 O 3 ). On the basis of the experimental results detection limits in the range of μg or even ng were calculated which assure the good potential of catalysis for the specific detection of nanoparticles in the workplace air based on their catalytic activity.

  9. Preparation of amino-functionalized regenerated cellulose membranes with high catalytic activity.

    Science.gov (United States)

    Wang, Wei; Bai, Qian; Liang, Tao; Bai, Huiyu; Liu, Xiaoya

    2017-09-01

    The modification of regenerated cellulose (RC) membranes was carried out by using silane coupling agents presenting primary and secondary amino-groups. The grafting of the amino groups onto the modified cellulose molecule was confirmed by X-ray photoelectron spectroscopies and 13 C nuclear magnetic resonance spectroscopic analyses. The crystallinity of the cellulose membranes (CM) decreased after chemical modification as indicated by the X-ray diffraction results. Moreover, a denser structure was observed at the surface and cross section of the modified membranes by SEM images. The contact angle measurements showed that the silane coupling treatment enhanced the hydrophobicity of the obtained materials. Then the catalytic properties of two types of modified membranes were studied in a batch process by evaluating their catalytic performance in a Knoevenagel condensation. The results indicated that the cellulose membrane grafted with many secondary amines exhibited a better catalytic activity compared to the one grafted only by primary amines. In addition, the compact structure of the modified membranes permitted their application in a pervaporation catalytic membrane reactor. Therefore, functional CM that prepared in this paper represented a promising material in the field of industrial catalysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.

    Science.gov (United States)

    Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming

    2016-09-01

    A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal.

  11. Optical manipulation and catalytic activity enhanced by surface plasmon effect

    Science.gov (United States)

    Zou, Ningmu; Min, Jiang; Jiao, Wenxiang; Wang, Guanghui

    2017-02-01

    For optical manipulation, a nano-optical conveyor belt consisting of an array of gold plasmonic non-concentric nano-rings (PNNRs) is demonstrated for the realization of trapping and unidirectional transportation of nanoparticles by polarization rotation of excitation beam. These hot spots of an asymmetric plasmonic nanostructure are polarization dependent, therefore, one can use the incident polarization state to manipulate the trapped targets. Trapped particles could be transferred between adjacent PNNRs in a given direction just by rotating the polarization of incident beam due to unbalanced potential. The angular dependent distribution of electric field around PNNR has been solved using the three- dimensional finite-difference time-domain (FDTD) technique. For optical enhanced catalytic activity, the spectral properties of dimers of Au nanorod-Au nanorod nanostructures under the excitation of 532nm photons have been investigated. With a super-resolution catalytic mapping technique, we identified the existence of "hot spot" in terms of catalytic reactivity at the gap region within the twined plasmonic nanostructure. Also, FDTD calculation has revealed an intrinsic correlation between hot electron transfer.

  12. Baicalin and scutellarin are proteasome inhibitors that specifically target chymotrypsin-like catalytic activity.

    Science.gov (United States)

    Wu, Yi-Xin; Sato, Eiji; Kimura, Wataru; Miura, Naoyuki

    2013-09-01

    Baicalin and scutellarin are the major active principal flavonoids extracted from the Chinese herbal medicines Scutellaria baicalensis and Erigeron breviscapus (Vant.) Hand-Mazz. It has recently been reported that baicalin and scutellarin have antitumor activity. However, the mechanisms of action are unknown. We previously reported that some flavonoids have a specific role in the inhibition of the activity of proteasome subunits and induced apoptosis in tumor cells. To further investigate these pharmacological effects, we examined the inhibitory activity of baicalin and scutellarin on the extracted proteasomes from mice and cancer cells. Using fluorogenic substrates for proteasome catalytic subunits, we found that baicalin and scutellarin specifically inhibited chymotrypsin-like activity but did not inhibit trypsin-like and peptidyl-glutamyl peptide hydrolyzing activities. These data suggested that baicalin and scutellarin specifically inhibit chymotrypsin-like catalytic activity in the proteasome. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Design parameters for measurements of local catalytic activity on surfaces

    DEFF Research Database (Denmark)

    Johansson, Martin; Johannessen, Tue; Jørgensen, Jan Hoffmann

    2006-01-01

    Computational fluid dynamics in combination with experiments is used to characterize a gas sampling device for measurements of the local catalytic activity on surfaces. The device basically consists of a quartz capillary mounted concentrically inside an aluminum tube. Reactant gas is blown toward......, the limits of the range in reaction rate, which can be Studied are estimated. (c) 2005 Elsevier B.V. All rights reserved.......Computational fluid dynamics in combination with experiments is used to characterize a gas sampling device for measurements of the local catalytic activity on surfaces. The device basically consists of a quartz capillary mounted concentrically inside an aluminum tube. Reactant gas is blown toward...... limit for the lateral resolution of the measurement, and that a flow rate of the order of 240 (ml/min)(n) is sufficient to achieve this resolution. The sensitivity is reasonable also with high flow rates, due to the presence of a pocket of stagnant gas under the tip of the capillary. Furthermore...

  14. A new experimental setup for high-pressure catalytic activity measurements on surface deposited mass-selected Pt clusters

    International Nuclear Information System (INIS)

    Watanabe, Yoshihide; Isomura, Noritake

    2009-01-01

    A new experimental setup to study catalytic and electronic properties of size-selected clusters on metal oxide substrates from the viewpoint of cluster-support interaction and to formulate a method for the development of heterogeneous catalysts such as automotive exhaust catalysts has been developed. The apparatus consists of a size-selected cluster source, a photoemission spectrometer, a scanning tunneling microscope (STM), and a high-pressure reaction cell. The high-pressure reaction cell measurements provided information on catalytic properties in conditions close to practical use. The authors investigated size-selected platinum clusters deposited on a TiO 2 (110) surface using a reaction cell and STM. Catalytic activity measurements showed that the catalytic activities have a cluster-size dependency.

  15. Synthesis of Co/N-HNTs composites and investigation on its catalytic activity for H2 generation

    International Nuclear Information System (INIS)

    Zhao, Dongcui; Cheng, Zhilin; Nan, Zhaodong

    2016-01-01

    Co/N-HNTs composites were synthesized via a one-pot solvothermal method, where amine functional halloysite nanotubes (N-HNTs) were used as support materials. Effects of sulfosuccinate sodium salt (AOT), an anionic surfactant, on morphology and dispersibility of Co particles anchored at the N-HNTs were studied. The dispersibility of the Co particles was promoted with the increase of the AOT concentration. The as-obtained composite was used as a catalyst to generate H 2 gas by hydrolysis of NaBH 4 solution. The catalytic activity of the composite was significantly enhanced than the pure Co and Co/graphene composite at the same experimental conditions reported by our laboratory, and the catalyst was conveniently separated from the solution by a magnet. The catalytic activity was enhanced when the dispersibility of the Co particles was improved at the surface of the N-HNTs and the Co content contained in the composite was lowed. At the same time, the Co particles anchored at the inner surface of the N-HNTs resulted in higher catalytic activity, where the Co particles may bond with nitrogen atoms. The activation energy for the hydrolysis of NaBH 4 was calculated to be about 15.42 kJ mol −1 . The catalyst can be continuously used for four times with about the same catalytic activity. - Highlights: • Co/N-HNTs composites are synthesized. • The dispersibility and morphology of the Co particles anchored at the N-HNTs are modified by AOT. • The composite shows higher catalytic activity for production H 2 gas.

  16. Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO2.

    Science.gov (United States)

    Wang, Xiaoqian; Chen, Zhao; Zhao, Xuyan; Yao, Tao; Chen, Wenxing; You, Rui; Zhao, Changming; Wu, Geng; Wang, Jing; Huang, Weixin; Yang, Jinlong; Hong, Xun; Wei, Shiqiang; Wu, Yuen; Li, Yadong

    2018-02-12

    The design of active, selective, and stable CO 2 reduction electrocatalysts is still challenging. A series of atomically dispersed Co catalysts with different nitrogen coordination numbers were prepared and their CO 2 electroreduction catalytic performance was explored. The best catalyst, atomically dispersed Co with two-coordinate nitrogen atoms, achieves both high selectivity and superior activity with 94 % CO formation Faradaic efficiency and a current density of 18.1 mA cm -2 at an overpotential of 520 mV. The CO formation turnover frequency reaches a record value of 18 200 h -1 , surpassing most reported metal-based catalysts under comparable conditions. Our experimental and theoretical results demonstrate that lower a coordination number facilitates activation of CO 2 to the CO 2 .- intermediate and hence enhances CO 2 electroreduction activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Catalytic process for tritium exchange reaction

    International Nuclear Information System (INIS)

    Hansoo Lee; Kang, H.S.; Paek, S.W.; Hongsuk Chung; Yang Geun Chung; Sook Kyung Lee

    2001-01-01

    The catalytic activities for a hydrogen isotope exchange were measured through the reaction of a vapor and gas mixture. The catalytic activity showed to be comparable with the published data. Since the gas velocity is relatively low, the deactivation was not found clearly during the 5-hour experiment. Hydrogen isotope transfer experiments were also conducted through the liquid phase catalytic exchange reaction column that consisted of a catalytic bed and a hydrophilic bed. The efficiencies of both the catalytic and hydrophilic beds were higher than 0.9, implying that the column performance was excellent. (author)

  18. On the effect of atomic structure on the deactivation of catalytic gold nanoparticles

    International Nuclear Information System (INIS)

    Walsh, M J; Gai, P L; Boyes, E D

    2012-01-01

    Here we present atomic scale studies into the nature of both the internal structure and external surfaces of catalytic Au nanoparticles using aberration corrected in-situ electron microscopy. The activity of catalytic nanoparticles is thought to be highly sensitive to the particles' structure, meaning typical local atomic rearrangements are likely to significantly affect the overall performance of the catalyst. As-deposited Au nanoparticles are found to exhibit a variety of morphologies, with many being internally strained or highly stepped at the surface. Upon heating, surface atoms are observed to minimise the particles' surface energy by restructuring towards planar (111) facets, resulting in the removal of low co-ordinated sites thought to be crucial in catalysis by Au nanoparticles. These results suggest the process of surface energy minimisation made possible by heating may lead to a loss of active sites and consequently contribute to the deactivation of the catalyst.

  19. Coordinated research activities: Annual report and statistics for 2004

    International Nuclear Information System (INIS)

    2005-05-01

    Article III of the IAEA Statute authorises the Agency to encourage and assist research on, and development and practical application of, atomic energy for peaceful purposes throughout the world and to foster the exchange of scientific and technical information, as well as the exchange of scientists in the field of peaceful uses of atomic energy. The Agency's Coordinated Research Activities stimulate and coordinate the undertaking of research in selected nuclear fields by scientists in IAEA Member States. The research supported by the Agency is within the framework of the Agency's programmes, sub-programmes and projects that are listed in the approved Programme and Budget of the Agency. These Coordinated Research Activities are normally implemented through Coordinated Research Projects (CRPs) that bring together research institutes in both developing and developed Member States to collaborate on the research topic of interest. The Agency may also respond to proposals from institutes for participation in the research activities by awarding individual research contracts not related to a CRP. A small portion of available funds is used to finance individual projects, which deal with topics covered by the Agency's scientific programme. The Agency also supports Doctoral CRPs, which are designed to strengthen promotion of research on nuclear technologies in developing Member States through pair building between agreement holders and contract holders. These CRPs include a PhD training programme at the contract holders' institutions. Three doctoral CRPs currently implemented by the Human Health programme address the management of liver cancer using radionuclide methods, improvement of radiotherapy outcomes in AIDS cancer patients and isotopic and complementary tools for the study of micronutrient status and interactions in developing country populations exposed to multiple nutritional deficiencies. Further information on the Agency's coordinated research activities

  20. Coordinated research activities: Annual report and statistics for 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-05-15

    Article III of the IAEA Statute authorises the Agency to encourage and assist research on, and development and practical application of, atomic energy for peaceful purposes throughout the world and to foster the exchange of scientific and technical information, as well as the exchange of scientists in the field of peaceful uses of atomic energy. The Agency's Coordinated Research Activities stimulate and coordinate the undertaking of research in selected nuclear fields by scientists in IAEA Member States. The research supported by the Agency is within the framework of the Agency's programmes, sub-programmes and projects that are listed in the approved Programme and Budget of the Agency. These Coordinated Research Activities are normally implemented through Coordinated Research Projects (CRPs) that bring together research institutes in both developing and developed Member States to collaborate on the research topic of interest. The Agency may also respond to proposals from institutes for participation in the research activities by awarding individual research contracts not related to a CRP. A small portion of available funds is used to finance individual projects, which deal with topics covered by the Agency's scientific programme. The Agency also supports Doctoral CRPs, which are designed to strengthen promotion of research on nuclear technologies in developing Member States through pair building between agreement holders and contract holders. These CRPs include a PhD training programme at the contract holders' institutions. Three doctoral CRPs currently implemented by the Human Health programme address the management of liver cancer using radionuclide methods, improvement of radiotherapy outcomes in AIDS cancer patients and isotopic and complementary tools for the study of micronutrient status and interactions in developing country populations exposed to multiple nutritional deficiencies. Further information on the Agency's coordinated research activities

  1. Catalytic activity of bed materials from industrial CFB boilers for the decomposition of N2O

    International Nuclear Information System (INIS)

    Barisic, V.; Klingstedt, F.; Kilpinen, P.; Hupa, M.; Naydenov, A.; Stefanov, P.

    2005-01-01

    The correlation between the catalytic activity towards N 2 O decomposition and fuel type was studied for the bed materials sampled from the bottom bed of two industrial CFB boilers, a 12MW th and a 550MW th , burning biomass fuels and wastes, alone or as a mixture. It was found that the elemental composition of the surface of the bed material particles changed according to the composition of the ash from the parent fuel. The measured catalytic activity of the bed material samples increased with the amount of the catalytically active oxides (CaO, MgO, Fe 2 O 3 , Al 2 O 3 ). In the case of limestone addition, the activity of the bed material was influenced by both the elemental composition of the fuel, and the ratio between lime and sulfated lime

  2. Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Grass, M.E.; Kuhn, J.N.; Tao, F.; Habas, S.E.; Huang, W.; Yang, P.; Somorjai, G.A.

    2009-02-21

    Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns and cuboctahedra, via polyol seeded growth. Son and colleagues prepared catalytically active monodisperse oleylamine-capped tetrahedral Rh NCs for the hydrogenation of arenes via an organometallic route. More recently, the Somorjai group synthesized sizetunable monodisperse Rh NCs using a one-step polyol technique. In this Communication, we report the highly selective synthesis of catalytically active, monodisperse Rh nanocubes of < 10 nm by a seedless polyol method. In this approach, Br{sup -} ions from trimethyl

  3. Enhanced catalytic activity without the use of an external light source using microwave-synthesized CuO nanopetals

    Directory of Open Access Journals (Sweden)

    Govinda Lakhotiya

    2017-05-01

    Full Text Available We report enhanced catalytic activity of CuO nanopetals synthesized by microwave-assisted wet chemical synthesis. The catalytic reaction of CuO nanopetals and H2O2 was studied with the application of external light source and also under dark conditions for the degradation of the hazardous dye methylene blue. The CuO nanopetals showed significant catalytic activity for the fast degradation of methylene blue and rhodamine B (RhB under dark conditions, without the application of an external light source. This increased catalytic activity was attributed to the co-operative role of H2O2 and the large specific surface area (≈40 m2·g−1 of the nanopetals. We propose a detail mechanism for this fast degradation. A separate study of the effect of different H2O2 concentrations for the degradation of methylene blue under dark conditions is also illustrated.

  4. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH4

    International Nuclear Information System (INIS)

    Zhang, Haijun; Lu, Lilin; Cao, Yingnan; Du, Shuang; Cheng, Zhong; Zhang, Shaowei

    2014-01-01

    Graphical abstract: The synthesis and characterization of 2.0 nm-diameter Au/Pt/Pd nanoparticles are reported. The catalytic activity for glucose oxidation of the nanoparticles is several times higher than that of Au nanoparticles with nearly same size. - Highlights: • PVP-protected Au/Pt/Pd trimetallic nanoparticles (TNPs) of 2.0 nm in diameter were prepared. • The catalytic activity of TNPs is several times higher than that of Au nanoparticles. • Negatively charged Au atoms in the TNPs were confirmed by DFT calculation. - Abstract: Au/Pt/Pd trimetallic nanoparticles (TNPs) with an alloyed structure and an average diameter of about 2.0 nm were prepared via reducing the corresponding ions with rapidly injected NaBH 4 , and characterized by UV–vis, TEM and HR-TEM. The catalytic activity of as-prepared TNPs for the aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with about the same average size, which could be attributed to the catalytically active sites provided by the negatively charged Au atoms as a result of the electron donation from the neighboring Pd atoms. This was well supported by the electron density calculations based on the density functional theory

  5. Coordinated Voltage Control of Active Distribution Network

    Directory of Open Access Journals (Sweden)

    Xie Jiang

    2016-01-01

    Full Text Available This paper presents a centralized coordinated voltage control method for active distribution network to solve off-limit problem of voltage after incorporation of distributed generation (DG. The proposed method consists of two parts, it coordinated primal-dual interior point method-based voltage regulation schemes of DG reactive powers and capacitors with centralized on-load tap changer (OLTC controlling method which utilizes system’s maximum and minimum voltages, to improve the qualified rate of voltage and reduce the operation numbers of OLTC. The proposed coordination has considered the cost of capacitors. The method is tested using a radial edited IEEE-33 nodes distribution network which is modelled using MATLAB.

  6. Cobalt-embedded carbon nanofiber derived from a coordination polymer as a highly efficient heterogeneous catalyst for activating oxone in water.

    Science.gov (United States)

    Lin, Kun-Yi Andrew; Tong, Wai-Chi; Du, Yunchen

    2018-03-01

    Carbon fiber (CF) supported cobalt nanoparticles (NPs) are promising catalysts for activating Oxone because carbon is non-metal and earth-abundant, and CF-based catalysts exhibit a high aspect ratio, which affords more accessible and dense catalytic sites. Nevertheless, most of CF-supported catalysts are fabricated by post-synthetic methods, which involve complicated preparations. More importantly, metallic NPs are attached to the outer surface of CF rather than embedded within CF. However, there is still a great demand for developing Co-bearing carbon fibers for Oxone activation via simple and effective methods. Thus, this study proposes to develop a cobalt NP-embedded carbon nanofiber (CCNF) by a simple hydrothermal reaction of Co and nitrilotriacetic acid (NA), followed by one-step carbonization. Owing to the coordinative structure of CoNA, the derivative CCNF exhibits a fibrous carbon matrix embedded with evenly distributed and densely packed Co 3 O 4 and magnetic Co 0 nanoparticles. The fibrous structure, magnetism and embedded Co NPs enable CCNF to be a promising catalyst for Oxone activation. As degradation of Rhodamine B (RhB) is selected as a model reaction, CCNF not only rapidly activates Oxone to fully degrade RhB but also shows a much higher catalytic activity than the most common Oxone activator, Co 3 O 4 . CCNF also exhibits the lowest activation energy than any reported catalysts for Oxone activation to degrade RhB. In addition, CCNF could be re-used to activate Oxone for RhB degradation. These results indicate that CCNF is a conveniently prepared and highly effective fibrous Co/C hybrid material for activating Oxone to oxidize contaminants in water. Copyright © 2017. Published by Elsevier Ltd.

  7. Coordinated research activities: Annual report and statistics for 2005

    International Nuclear Information System (INIS)

    2006-06-01

    Article III of the IAEA Statute authorises the Agency to encourage and assist research on, and development and practical application of, atomic energy for peaceful purposes throughout the world and to foster the exchange of scientific and technical information, as well as the exchange of scientists in the field of peaceful uses of atomic energy. The Agency's Coordinated Research Activities stimulate and coordinate the undertaking of research in selected nuclear fields by scientists in IAEA Member States. The research supported by the Agency is within the framework of the Agency's programmes, sub-programmes and projects that are listed in the approved Programme and Budget of the Agency. These Coordinated Research Activities are normally implemented through Coordinated Research Projects (CRPs) that bring together research institutes in both developing and developed Member States to collaborate on the research topic of interest. The Agency may also respond to proposals from institutes for participation in the research activities by awarding individual research contracts not related to a CRP. A small portion of available funds is used to finance individual projects, which deal with topics covered by the Agency's scientific programme. The Agency also supports Doctoral CRPs, which are designed to strengthen promotion of research on nuclear technologies in developing Member States through pair building between agreement holders and contract holders. These CRPs include a PhD training programme at the contract holders' institutions. Three doctoral CRPs currently implemented by the Human Health programme address the management of liver cancer using radionuclide methods, improvement of radiotherapy outcomes in AIDS cancer patients and isotopic and complementary tools for the study of micronutrient status and interactions in developing country populations exposed to multiple nutritional deficiencies. Further information on the Agency's Coordinated Research Activities contained

  8. Coordinated research activities: Annual report and statistics for 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    Article III of the IAEA Statute authorises the Agency to encourage and assist research on, and development and practical application of, atomic energy for peaceful purposes throughout the world and to foster the exchange of scientific and technical information, as well as the exchange of scientists in the field of peaceful uses of atomic energy. The Agency's Coordinated Research Activities stimulate and coordinate the undertaking of research in selected nuclear fields by scientists in IAEA Member States. The research supported by the Agency is within the framework of the Agency's programmes, sub-programmes and projects that are listed in the approved Programme and Budget of the Agency. These Coordinated Research Activities are normally implemented through Coordinated Research Projects (CRPs) that bring together research institutes in both developing and developed Member States to collaborate on the research topic of interest. The Agency may also respond to proposals from institutes for participation in the research activities by awarding individual research contracts not related to a CRP. A small portion of available funds is used to finance individual projects, which deal with topics covered by the Agency's scientific programme. The Agency also supports Doctoral CRPs, which are designed to strengthen promotion of research on nuclear technologies in developing Member States through pair building between agreement holders and contract holders. These CRPs include a PhD training programme at the contract holders' institutions. Three doctoral CRPs currently implemented by the Human Health programme address the management of liver cancer using radionuclide methods, improvement of radiotherapy outcomes in AIDS cancer patients and isotopic and complementary tools for the study of micronutrient status and interactions in developing country populations exposed to multiple nutritional deficiencies. Further information on the Agency's Coordinated Research Activities contained

  9. Bioinspired catalytic generation of high-valent cobalt-oxo species by the axially coordinated CoPc on pyridine-functionalized MWCNTs for the elimination of organic contaminants

    Science.gov (United States)

    Li, Nan; Wang, Ying; Wu, Chenren; Lu, Wangyang; Pei, Kemei; Chen, Wenxing

    2018-03-01

    Enzymes have always been a source of inspiration for the design and improvement of catalysts. Many examples are occurring in heme/non-heme metalloenzymes with the generation of active high-valent metal-oxo intermediates that are controlled by the surrounding amino acids/protein and axial residue ligands, facilitating the efficient oxidation of substrates in biochemical processes. Here, the high-valent cobalt-oxo species have been formed during the heterolysis of H2O2 activated by the bioinspired catalyst, axially coordinated cobalt phthalocyanine (CoPc) on pyridine-functionalized multi-walled carbon nanotubes (MWCNTs-Py), characterized by ultraviolet-visible and X-ray photoelectron spectroscopy. Formation process of the active cobalt-oxo species has been further confirmed by electrospray ionization mass spectrometry analysis and the results from the density functional theory (B3LYP/6-311G) calculations. Such high-valent cobalt-oxo species exhibit high reactivity and enough persistence for the oxidation of the target substrate, C.I. Acid Red 1. The oxidation products are nearly biodegradable small molecules identified by ultra-performance liquid chromatography/high-definition mass spectrometry. This strategy provides a foundation on developing efficient and persistent catalytic system, in particular oxidation processes based on the complex catalysts with N4 macrocycle structures.

  10. Coordination and standardization of federal sedimentation activities

    Science.gov (United States)

    Glysson, G. Douglas; Gray, John R.

    1997-01-01

    In August 1964, the Bureau of the Budget issued Circular A-67 to set forth guidelines for the coordination of water-data acquisition activities throughout the Federal government. The U.S. Department of the Interior was assigned the task of implementing Circular A-67, which in turn redelegated this responsibility to the U.S. Geological Survey (USGS). Delegation of the lead responsibility for water-data coordination to the USGS occurred because of its historical role as the primary agency for water-data acquisition in the United States. To provide overall leadership for implementing the provisions of Circular A-67, the USGS established the Office of Water Data Coordination in the Water Resources Division (WRD). In addition, regional and district offices of the WRD were delegated responsibility for coordinating water data within their geographic areas of responsibility. On December 10, 1991, the Office of Management and Budget issued OMB Number Memorandum M-92-01, which expands the USGS's coordination role to encompass all water information. This includes data critical to water resources in the following categories: - surface- and ground-water quality and quantity,

  11. The structure-property relationship of oxovanadium(IV) complexes in the wall framework of PMOs and their catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shijian [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 210009 Jiangsu (China); Wang, Bangbang; Gao, Shuying; Ding, Yun [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China); Kong, Yan, E-mail: kongy36@njtech.edu.cn [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China)

    2017-03-01

    Graphical abstract: In this work, oxovanadium(IV) species have been successfully incorporated into the wall framework of PMOs materials by the co-condensation of the silica source with oxovanadium organic complexes. The oxovanadium(IV) species are existed as the tetrahedral coordination and also be stable and well-dispersed in the framework of the PMOs materials. These as-prepared functional catalysts are proved to be effective in the oxidation of styrene, and high catalytic stabilities are obtained. - Highlights: • The oxovanadium complexes were directly incorporated into the wall framework of PMOs instead of the pore channels by one-step synthesis process, partly avoiding the destruction of the mesoporous channels. • The vanadium species in the framework of PMOs are highly stable as pseudotetrahedral monovanadate. • These as-prepared V-PMO catalysts display high catalytic activity and stability in the styrene oxidation reaction. - Abstract: Oxovanadium(IV) species could be considered as effective active sites in the catalytic oxidation reactions, but in the traditional vanadium-containing catalysts, the unstable and undispersible status of these active sites cause great limitation in their application. In this study, we present a novel approach to utilize the co-condensation of the silica source with oxovanadium organic complexes through the liquid-crystal templating (LCT) process introducing the vanadium species into the framework of periodically meosporous organosilicas (PMOs). Oxovanadium organic complexes are successfully obtained by the coordination effect between vanadium species and organic complexes. Thus the vanadium-containing PMOs catalysts are accordingly synthesized; the model structure of as-prepared catalysts is proposed and further verified by different characterization measurements. These vanadium-containing PMOs catalysts display the extremely stable and well-dispersed oxovanadium(IV) species in the framework, and due to this advanced

  12. Au-HKUST-1 Composite Nanocapsules: Synthesis with a Coordination Replication Strategy and Catalysis on CO Oxidation.

    Science.gov (United States)

    Liu, Yongxin; Zhang, Jiali; Song, Lingxiao; Xu, Wenyuan; Guo, Zanru; Yang, Xiaomin; Wu, Xiaoxin; Chen, Xi

    2016-09-07

    A novel coordination replication of Cu2O redox-template strategy is reported to efficiently fabricate Au-HKUST-1 composite nanocapsule, with a HKUST-1 sandwich shell and an embedded Au nanoparticles layer. The novel synthesis procedure involves forming Au nanoparticles on the surface of Cu2O, transforming partial Cu2O into HKUST-1 shell via coordination replication, and removing the residual Cu2O by acid. The as-prepared Au-HKUST-1 composite nanocapsules displayed high catalytic activity on CO oxidation.

  13. Correction: Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges.

    Science.gov (United States)

    Martínez-Araya, Jorge Ignacio; Grand, André; Glossman-Mitnik, Daniel

    2016-01-28

    Correction for 'Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges' by Jorge Ignacio Martínez-Araya et al., Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/c5cp03822g.

  14. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    Science.gov (United States)

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH₃ at low temperature.

    Science.gov (United States)

    Wang, Peng; Sun, Hong; Quan, Xie; Chen, Shuo

    2016-01-15

    The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO2 and H2O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO2/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NOx conversion ranges from 196 to 300°C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO2 species responsible for fast SCR reactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Synthesis of Co/N-HNTs composites and investigation on its catalytic activity for H{sub 2} generation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dongcui; Cheng, Zhilin; Nan, Zhaodong, E-mail: zdnan@yzu.edu.cn

    2016-11-01

    Co/N-HNTs composites were synthesized via a one-pot solvothermal method, where amine functional halloysite nanotubes (N-HNTs) were used as support materials. Effects of sulfosuccinate sodium salt (AOT), an anionic surfactant, on morphology and dispersibility of Co particles anchored at the N-HNTs were studied. The dispersibility of the Co particles was promoted with the increase of the AOT concentration. The as-obtained composite was used as a catalyst to generate H{sub 2} gas by hydrolysis of NaBH{sub 4} solution. The catalytic activity of the composite was significantly enhanced than the pure Co and Co/graphene composite at the same experimental conditions reported by our laboratory, and the catalyst was conveniently separated from the solution by a magnet. The catalytic activity was enhanced when the dispersibility of the Co particles was improved at the surface of the N-HNTs and the Co content contained in the composite was lowed. At the same time, the Co particles anchored at the inner surface of the N-HNTs resulted in higher catalytic activity, where the Co particles may bond with nitrogen atoms. The activation energy for the hydrolysis of NaBH{sub 4} was calculated to be about 15.42 kJ mol{sup −1}. The catalyst can be continuously used for four times with about the same catalytic activity. - Highlights: • Co/N-HNTs composites are synthesized. • The dispersibility and morphology of the Co particles anchored at the N-HNTs are modified by AOT. • The composite shows higher catalytic activity for production H{sub 2} gas.

  17. Size control and catalytic activity of bio-supported palladium nanoparticles.

    Science.gov (United States)

    Søbjerg, Lina Sveidal; Lindhardt, Anders T; Skrydstrup, Troels; Finster, Kai; Meyer, Rikke Louise

    2011-07-01

    The development of nanoparticles has greatly improved the catalytic properties of metals due to the higher surface to volume ratio of smaller particles. The production of nanoparticles is most commonly based on abiotic processes, but in the search for alternative protocols, bacterial cells have been identified as excellent scaffolds of nanoparticle nucleation, and bacteria have been successfully employed to recover and regenerate platinum group metals from industrial waste. We report on the formation of bio-supported palladium (Pd) nanoparticles on the surface of two bacterial species with distinctly different surfaces: the gram positive Staphylococcus sciuri and the gram negative Cupriavidus necator. We investigated how the type of bacterium and the amount of biomass affected the size and catalytic properties of the nanoparticles formed. By increasing the biomass:Pd ratio, we could produce bio-supported Pd nanoparticles smaller than 10nm in diameter, whereas lower biomass:Pd ratios resulted in particles ranging from few to hundreds of nm. The bio-supported Pd nanoparticle catalytic properties were investigated towards the Suzuki-Miyaura cross coupling reaction and hydrogenation reactions. Surprisingly, the smallest nanoparticles obtained at the highest biomass:Pd ratio showed no reactivity towards the test reactions. The lack of reactivity appears to be caused by thiol groups, which poison the catalyst by binding strongly to Pd. Different treatments intended to liberate particles from the biomass, such as burning or rinsing in acetone, did not re-establish their catalytic activity. Sulphur-free biomaterials should therefore be explored as more suitable scaffolds for Pd(0) nanoparticle formation. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Crystal structure of metagenomic β-xylosidase/ α-l-arabinofuranosidase activated by calcium.

    Science.gov (United States)

    Matsuzawa, Tomohiko; Kaneko, Satoshi; Kishine, Naomi; Fujimoto, Zui; Yaoi, Katsuro

    2017-09-01

    The crystal structure of metagenomic β-xylosidase/α-l-arabinofuranosidase CoXyl43, activated by calcium ions, was determined in its apo and complexed forms with xylotriose or l-arabinose in the presence and absence of calcium. The presence of calcium ions dramatically increases the kcat of CoXyl43 for p-nitrophenyl β-d-xylopyranoside and reduces the Michaelis constant for p-nitrophenyl α-l-arabinofuranoside. CoXyl43 consists of a single catalytic domain comprised of a five-bladed β-propeller. In the presence of calcium, a single calcium ion was observed at the centre of this catalytic domain, behind the catalytic pocket. In the absence of calcium, the calcium ion was replaced with one sodium ion and one water molecule, and the positions of these cations were shifted by 1.3 Å. The histidine-319 side chain, which coordinates to the 2-hydroxyl oxygen atom of the bound xylose molecule in the catalytic pocket, also coordinates to the calcium ion, but not to the sodium ion. The calcium-dependent increase in activity appears to be caused by the structural change in the catalytic pocket induced by the tightly bound calcium ion and coordinating water molecules, and by the protonation state of glutamic acid-268, the catalytic acid of the enzyme. Our findings further elucidate the complex relationship between metal ions and glycosidases. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  19. Halogen poisoning effect of Pt-TiO{sub 2} for formaldehyde catalytic oxidation performance at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaofeng; Cheng, Bei [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ho, Wingkei, E-mail: keithho@ied.edu.hk [Department of Science and Environmental Studies and Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Tai Po, N.T. Hong Kong (China)

    2016-02-28

    Graphical abstract: - Highlights: • The Pt-TiO{sub 2} catalyst is deactivated by adsorption of halogen ions. • The halogen poison is mainly attributed to the active site blocking of the Pt surface. • Halogen ions and Pt form Pt−X coordination bonds. • Large halogen diameter exhibits severe poisoning effect. - Abstract: Catalytic decomposition of formaldehyde (HCHO) at room temperature is an important method for HCHO removal. Pt-based catalysts are the optimal catalyst for HCHO decomposition at room temperature. However, the stability of this catalyst remains unexplored. In this study, Pt-TiO{sub 2} (Pt-P25) catalysts with and without adsorbed halogen ions (including F{sup −}, Cl{sup −}, Br{sup −}, and I{sup −}) were prepared through impregnation and ion modification. Pt-TiO{sub 2} samples with adsorbed halogen ions exhibited reduced catalytic activity for formaldehyde decomposition at room temperature compared with the Pt-TiO{sub 2} sample; the catalytic activity followed the order of F-Pt-P25, Cl-Pt-P25, Br-Pt-P25, and I-Pt-P25. Characterization results (including XRD, TEM, HRTEM, BET, XPS, and metal dispersion) showed that the adsorbed halogen ions can poison Pt nanoparticles (NPs), thereby reducing the HCHO oxidation activity of Pt-TiO{sub 2}. The poison mechanism is due to the strong adsorption of halogen ions on the surface of Pt NPs. The adsorbed ions form coordination bonds with surface Pt atoms by transferring surplus electrons into the unoccupied 5d orbit of the Pt atom, thereby inhibiting oxygen adsorption and activation of the Pt NP surface. Moreover, deactivation rate increases with increasing diameter of halogen ions. This study provides new insights into the fabrication of high-performance Pt-based catalysts for indoor air purification.

  20. Catalytic activity of metallic nanoisland coatings. The influence of size effects on the recombination properties

    International Nuclear Information System (INIS)

    Tomilina, O A; Berzhansky, V N; Shaposhnikov, A N; Tomilin, S V

    2016-01-01

    The results of investigations of the quantum-size effects influence on selective properties of heterogeneous nanocatalysts are presents. As etalon exothermic reaction was used the reaction of atomic hydrogen recombination. The nanostructured Pd and Pt films on Teflon substrate were used as a samples of heterogeneous nanocatalysts. It was shown that for nanoparticles with various sizes the catalytic activity has the periodic dependence. It has been found that for certain sizes of nanoparticles their catalytic activity is less than that of Teflon substrate. (paper)

  1. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  2. Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NO{sub x} with NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, Grzegorz S. [Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun (Poland); Grzybek, Teresa [Faculty of Fuels and Energy, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Papp, Helmut [Faculty of Chemistry and Mineralogy, Institute of Technical Chemistry, University of Leipzig, Linnerstrasse 3, 04103 Leipzig (Germany)

    2004-06-15

    The reduction of nitrogen oxide with ammonia was studied using carbon catalysts with chemically modified surfaces. Carbon samples with different surface chemistry were obtained from commercial activated carbon D43/1 (CarboTech, Essen, Germany) by chemical modification involving oxidation with conc. nitric acid (DOx) (1); high temperature treatment (=1000K) under vacuum (DHT) (2); or in ammonia (DHTN, DOxN) (3). Additionally, a portion of the DOx sample was promoted with iron(III) ions (DOxFe). The catalytic tests were performed in a microreactor at a temperature range of 413-573K. The carbon sample annealed under vacuum (DHT) showed the lowest activity. The formation of surface acidic surface oxides by nitric acid treatment (DOx) enhanced the catalytic activity only slightly. However, as can be expected, subsequent promotion of the DOx sample with iron(III) ions increased drastically its catalytic activity. However, this was accompanied by some loss of selectivity, i.e. formation of N{sub 2}O as side product. This effect can be avoided using ammonia-treated carbons which demonstrated reasonable activity with simultaneous high selectivity. The most active and selective among them was the sample that was first oxidized with nitric acid and then heated in an ammonia stream (DOxN). A correlation between catalytic activity and surface nitrogen content was observed. Surface nitrogen species seem to play an important role in catalytic selective reduction of nitrogen oxide with ammonia, possibly facilitating NO{sub 2} formation (a reaction intermediate) as a result of easier chemisorption of oxygen and nitrogen oxide.

  3. Catalytic activity of zeolite-containing catalysts in cumene cracking

    Energy Technology Data Exchange (ETDEWEB)

    Koval' chuk, L V; Takhtarova, G N; Topchieva, K V [Moskovskij Gosudarstvennyj Univ. (USSR). Kafedra Fizicheskoj Khimii

    1977-01-01

    The catalytic properties are studied of decationized forms (Ca and La) of zeolite-containing catalysts in relation to the nature of the cation and the degree of exchange in the cumene cracking reaction. It has been established that the increase in the activity of Ca-decationized catalysts occurs at a degree of exchange from 22 to 40% and at a ratio of the cation and decationized areas from 0.4 to 1. For La-decationized catalysts the activity increases at a degree of exchange up to 60% and at a ratio between the cation and decationized areas exceeding 1.

  4. Synthesis, Characterization and Catalytic Activity of Cu/Cu2O Nanoparticles Prepared in Aqueous Medium

    Directory of Open Access Journals (Sweden)

    Sayed M. Badawy

    2015-07-01

    Full Text Available Copper/Copper oxide (Cu/Cu2O nanoparticles were synthesized by modified chemical reduction method in an aqueous medium using hydrazine as reducing agent and copper sulfate pentahydrate as precursor. The Cu/Cu2O nanoparticles were characterized by X-ray Diffraction (XRD, Energy Dispersive X-ray Fluorescence (EDXRF, Scanning Electron Microscope (SEM, and Transmission Electron Microscope (TEM. The analysis revealed the pattern of face-centered cubic (fcc crystal structure of copper Cu metal and cubic cuprites structure for Cu2O. The SEM result showed monodispersed and agglomerated particles with two micron sizes of about 180 nm and 800 nm, respectively. The TEM result showed few single crystal particles of face-centered cubic structures with average particle size about 11-14 nm. The catalytic activity of Cu/Cu2O nanoparticles for the decomposition of hydrogen peroxide was investigated and compared with manganese oxide MnO2. The results showed that the second-order equation provides the best correlation for the catalytic decomposition of H2O2 on Cu/Cu2O. The catalytic activity of hydrogen peroxide by Cu/Cu2O is less than the catalytic activity of MnO2 due to the presence of copper metal Cu with cuprous oxide Cu2O. © 2015 BCREC UNDIP. All rights reservedReceived: 6th January 2015; Revised: 14th March 2015; Accepted: 15th March 2015How to Cite: Badawy, S.M., El-Khashab, R.A., Nayl, A.A. (2015. Synthesis, Characterization and Catalytic Activity of Cu/Cu2O Nanoparticles Prepared in Aqueous Medium. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 169-174. (doi:10.9767/bcrec.10.2.7984.169-174 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7984.169-174  

  5. Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums

    KAUST Repository

    Li, Wenjun; Ajitha, Manjaly John; Lang, Ming; Huang, Kuo-Wei; Wang, Jian

    2017-01-01

    An example for the catalytic synthesis of densely functionalized 1,2,3-triazoles through a LUMO activation mode has been developed. The protocol is enabled by intermolecular cross coupling reactions of azides with in situ-generated alpha

  6. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haijun, E-mail: zhanghaijun@wust.edu.cn [College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081 (China); State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081 (China); Lu, Lilin [College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Cao, Yingnan; Du, Shuang [College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081 (China); State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081 (China); Cheng, Zhong [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Zhang, Shaowei [State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2014-01-01

    Graphical abstract: The synthesis and characterization of 2.0 nm-diameter Au/Pt/Pd nanoparticles are reported. The catalytic activity for glucose oxidation of the nanoparticles is several times higher than that of Au nanoparticles with nearly same size. - Highlights: • PVP-protected Au/Pt/Pd trimetallic nanoparticles (TNPs) of 2.0 nm in diameter were prepared. • The catalytic activity of TNPs is several times higher than that of Au nanoparticles. • Negatively charged Au atoms in the TNPs were confirmed by DFT calculation. - Abstract: Au/Pt/Pd trimetallic nanoparticles (TNPs) with an alloyed structure and an average diameter of about 2.0 nm were prepared via reducing the corresponding ions with rapidly injected NaBH{sub 4}, and characterized by UV–vis, TEM and HR-TEM. The catalytic activity of as-prepared TNPs for the aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with about the same average size, which could be attributed to the catalytically active sites provided by the negatively charged Au atoms as a result of the electron donation from the neighboring Pd atoms. This was well supported by the electron density calculations based on the density functional theory.

  7. Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity.

    Science.gov (United States)

    Eckhard, Kathrin; Chen, Xingxing; Turcu, Florin; Schuhmann, Wolfgang

    2006-12-07

    In order to locally analyse catalytic activity on modified surfaces a transient redox competition mode of scanning electrochemical microscopy (SECM) has been developed. In a bi-potentiostatic experiment the SECM tip competes with the sample for the very same analyte. This leads to a current decrease at the SECM tip, if it is positioned in close proximity to an active catalyst site on the surface. Specifically, local catalytic activity of a Pt-catalyst modified sample with respect to the catalytic reduction of molecular oxygen was investigated. At higher local catalytic activity the local 02 partial pressure within the gap between accurately positioned SECM tip and sample is depleted, leading to a noticeable tip current decrease over active sites. A flexible software module has been implemented into the SECM to adapt the competition conditions by proper definition of tip and sample potentials. A potential pulse profile enables the localised electrochemically induced generation of molecular oxygen prior to the competition detection. The current decay curves are recorded over the entire duration of the applied reduction pulse. Hence, a time resolved processing of the acquired current values provides movies of the local oxygen concentration against x,y-position. The SECM redox competition mode was verified with a macroscopic Pt-disk electrode as a test sample to demonstrate the feasibility of the approach. Moreover, highly dispersed electro-deposited spots of gold and platinum on glassy carbon were visualised using the redox competition mode of SECM. Catalyst spots of different nature as well as activity inhomogeneities within one spot caused by local variations in Pt-loading were visualised successfully.

  8. Palladium-pyridyl catalytic films: a highly active and recyclable catalyst for hydrogenation of styrene under mild conditions.

    Science.gov (United States)

    Gao, Shuiying; Li, Weijin; Cao, Rong

    2015-03-01

    Palladium-pyridyl catalytic films, (PdCl2/bpy)n, were created by alternating immersions of a substrate in PdCl2 and bpy (bpy=4, 4'-bipyridyl) solutions. The as-prepared (PdCl2/bpy)10 catalyst demonstrated a remarkable catalytic activity toward hydrogenation of styrene under mild conditions and the turnover frequency (TOF) is as high as 6944h(-1). Pd(II) ions of (PdCl2/bpy)n films are in situ reduced to Pd nanoparticles (NPs) during the hydrogenation of styrene process, which results in the catalytic activity of the films. The results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) further demonstrate that Pd(II) ions of (PdCl2/bpy)n films were gradually converted to Pd(0) states. The catalytic activity is related to bilayer numbers and the activity increases with the number of bilayers below 10 bilayers. The solid substrates coated with (PdCl2/bpy)n multilayer catalysts were easily removed from the reaction mixture without separation filtration. Moreover, (PdCl2/bpy)n catalysts were reused for 10 consecutive reactions without loss of activity. The present (PdCl2/bpy)n heterogeneous catalysts have the advantages of easy separation and good recyclability. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Update of technical coordinating committee activities

    International Nuclear Information System (INIS)

    Alvarado, R.A.

    1995-01-01

    The Technical Coordinating Committee has its origins in the earliest days of implementing the Low-Level Radioactive Waste Policy Act. Between 1982 and 1985, individuals in several of the states felt that coordination among the states would be beneficial to all by affording states a cost-effective method for sharing ideas, discussing alternatives, and presenting solutions to common problems. At the current time, the committee comprises members from each of the sited states. Various compacts, federal agencies, and industry groups participate in committee activities. The Low-Level Management Program provides support for the committee through the provision of logistical support and limited manpower allocation. Activities of the committee have recently focused on waste treatment and minimization technologies. The committee also has worked diligently to see the review of the 3RSTAT computer code completed. The committee has taken a position on various regulatory proposals the past year. The committee expects to continue its work until new sites are brought online

  10. Update of technical coordinating committee activities

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, R.A.

    1995-12-31

    The Technical Coordinating Committee has its origins in the earliest days of implementing the Low-Level Radioactive Waste Policy Act. Between 1982 and 1985, individuals in several of the states felt that coordination among the states would be beneficial to all by affording states a cost-effective method for sharing ideas, discussing alternatives, and presenting solutions to common problems. At the current time, the committee comprises members from each of the sited states. Various compacts, federal agencies, and industry groups participate in committee activities. The Low-Level Management Program provides support for the committee through the provision of logistical support and limited manpower allocation. Activities of the committee have recently focused on waste treatment and minimization technologies. The committee also has worked diligently to see the review of the 3RSTAT computer code completed. The committee has taken a position on various regulatory proposals the past year. The committee expects to continue its work until new sites are brought online.

  11. Catalytic activity of metall-like carbides in carbon oxide oxidation reaction

    International Nuclear Information System (INIS)

    Kharlamov, A.I.; Kosolapova, T.Ya.; Rafal, A.N.; Kirillova, N.V.

    1980-01-01

    Kinetics of carbon oxide oxidation upon carbides of hafnium, niobium, tantalum, molybdenum, zirconium and chromium is studied. Probable mechanism of the catalysts action is suggested. The established character of the change of the carbide catalytic activity is explained by the change of d-electron contribution to the metal-metal interaction

  12. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    International Nuclear Information System (INIS)

    Sarah C. Larson; Vicki H. Grassian

    2006-01-01

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NO x ) and ammonia (NH 3 ) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO 2 was observed at room temperature in the presence of NH 3 as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO 2 reduction with NH 3 relative to nanocrystalline NaY

  13. Polystyrene-Supported Acyclic Diaminocarbene Palladium Complexes in Sonogashira Cross-Coupling: Stability vs. Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Vladimir N. Mikhaylov

    2018-04-01

    Full Text Available Two types of immobilized on the amino-functionalized polystyrene-supported acyclic diaminocarbene palladium complexes (ADC-PdII are investigated under Sonogashira cross-coupling conditions. Depending on substituents in the diaminocarbene fragment immobilized ADC-PdII, systems are found to have different catalytic activity and stability regarding Pd-leaching. PdII-diaminocarbenes possessing protons at both nitrogen atoms smoothly decompose into Pd0-containing species providing a catalytic “cocktail system” with high activity and ability to reuse within nine runs. Polymer-supported palladium (II complex bearing NBn–Ccarbene–NH-moiety exhibits greater stability while noticeably lower activity under Sonogashira cross-coupling. Four molecular ADC-PdII complexes are also synthesized and investigated with the aim of confirming proposed base-promoted pathway of ADC-PdII conversion through carbodiimide into an active Pd0 forms.

  14. Effect of pH value and delayed-action time on catalytic activity of tartrate niobium(5) complexes

    International Nuclear Information System (INIS)

    Alekseeva, I.I.; Chernysheva, L.M.; Bobkova, M.V.; Solomonov, V.A.

    1987-01-01

    Results of thermokinetic study of catalytic activity of niobium (5) tartrate solutions in the oxidation of ascorbic acid with hydrogen peroxide are presented. Addition of tartrate-ions to a concentration of 1x10 -2 M and higher in niobium (5) diluted solution enhances the catalytic activity of Nb(5). Alkaline tartrate solutions of niobium (5) may be used as standard solutions in determination of niobium microquantities by kinetic method

  15. Direct Hysteresis Heating of Catalytically Active Ni–Co Nanoparticles as Steam Reforming Catalyst

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Engbæk, Jakob Soland; Vendelbo, Søren Bastholm

    2017-01-01

    We demonstrated a proof-of-concept catalytic steam reforming flow reactor system heated only by supported magnetic nickel–cobalt nanoparticles in an oscillating magnetic field. The heat transfer was facilitated by the hysteresis heating in the nickel–cobalt nanoparticles alone. This produced...... a sufficient power input to equilibrate the reaction at above 780 °C with more than 98% conversion of methane. The high conversion of methane indicated that Co-rich nanoparticles with a high Curie temperature provide sufficient heat to enable the endothermic reaction, with the catalytic activity facilitated...... by the Ni content in the nanoparticles. The magnetic hysteresis losses obtained from temperature-dependent hysteresis measurements were found to correlate well with the heat generation in the system. The direct heating of the catalytic system provides a fast heat transfer and thereby overcomes the heat...

  16. Catalytic Activity of a Bifunctional Catalyst for Hydrotreatment of Jatropha curcas L. Seed Oil

    Directory of Open Access Journals (Sweden)

    J. García-Dávila

    2018-01-01

    Full Text Available The hydrotreating process of vegetable oils (HPVO involves the transformation of vegetable oil triglycerides into straight chain alkanes, which are carried out by deoxygenation reactions, generating multiple hydrocarbon compounds, cuts similar to heavy vacuum oil. The HPVO is applied to Jatropha curcas oil on USY zeolite supported with gamma alumina and platinum deposition on the catalytic as hydrogenation component. The acid of additional activity of the supports allows the development of catalytic routes that the intervention of catalytic centers of different nature reaches the desired product. The products of the hydrotreating reaction with Jatropha curcas seed oil triglycerides were identified by Fourier transform infrared spectroscopy and by mass spectroscopy to identify and analyze the generated intermediate and final hydrocarbon compounds.

  17. Catalytic oxidation of cyanides in an aqueous phase over individual and manganese-modified cobalt oxide systems

    International Nuclear Information System (INIS)

    Christoskova, St.; Stoyanova, M.

    2009-01-01

    The possibility for purification of wastewaters containing free cyanides by applying of a new method based on cyanides catalytic oxidation with air to CO 2 and N 2 at low temperature and atmospheric pressure was investigated. On this purpose, individual and modified with manganese Co-oxide systems as active phase of environmental catalysts were synthesized. The applied method of synthesis favours the preparation of oxide catalytic systems with high active oxygen content (total-O* and surface-O* s ) possessing high mobility, and the metal ions being in a high oxidation state and in an octahedral coordination-factors determining high activity in reactions of complete oxidation. The catalysts employed were characterized by powder X-ray diffraction, Infrared spectroscopy, and chemical analysis. The effect of pH of the medium and catalyst loading on the effectiveness of the cyanide oxidation process, expressed by the degree of conversion (α, %), by the rate constant (k, min -1 ), and COD was studied. The results obtained reveal that using catalysts investigated a high cyanide removal efficiency could be achieved even in strong alkaline medium. The higher activity of the manganese promoted catalytic sample could be explained on the basis of higher total active oxygen content and its higher mobility both depending on the conditions, under which the synthesis of catalyst is being carried out.

  18. Triblock copolymer-mediated synthesis of catalytically active gold nanostructures

    Science.gov (United States)

    Santos, Douglas C.; de Souza, Viviane C.; Vasconcelos, Diego A.; Andrade, George R. S.; Gimenez, Iara F.; Teixeira, Zaine

    2018-04-01

    The design of nanostructures based on poly(ethylene oxide)-poly(propylene)-poly(ethylene oxide) (PEO-PPO-PEO) and metal nanoparticles is becoming an important research topic due to their multiple functionalities in different fields, including nanomedicine and catalysis. In this work, water-soluble gold nanoparticles have been prepared through a green aqueous synthesis method using Pluronic F127 as both reducing and stabilizing agents. The size dependence (varying from 2 to 70 nm) and stability of gold nanoparticles were systematically studied by varying some parameters of synthesis, which were the polymer concentration, temperature, and exposure to UV-A light, being monitored by UV-Vis spectroscopy and TEM. Also, an elaborated study regarding to the kinetic of formation (nucleation and growth) was presented. Finally, the as-prepared Pluronic-capped gold nanoparticles have shown excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride, in which a higher catalytic performance was exhibited when compared with gold nanoparticles prepared by classical reduction method using sodium citrate. [Figure not available: see fulltext.

  19. Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions

    KAUST Repository

    Al-Khattaf, S.

    2012-01-10

    Catalytic behaviour of pure zeolite ZSM-5 and a bi-porous composite material (BCM) were investigated in transformation of m-xylene, while zeolite HY and the bi-porous composite were used in the cracking of 1,3,5-triisopropylbenzene (TIPB). The micro/mesoporous material was used to understand the effect of the presence of mesopores on these reactions. Various characterisation techniques, that is, XRD, SEM, TGA, FT-IR and nitrogen sorption measurements were applied for complete characterisation of the catalysts. Catalytic tests using CREC riser simulator showed that the micro/mesoporous composite catalyst exhibited higher catalytic activity as compared with the conventional microporous ZSM-5 and HY zeolite for transformation of m-xylene and for the catalytic cracking of TIPB, respectively. The outstanding catalytic reactivity of m-xylene and TIPB molecules were mainly attributed to the easier access of active sites provided by the mesopores. Apparent activation energies for the disappearance of m-xylene and TIPB over all catalysts were found to decrease in the order: EBCM>EZSM-5 and EBCM>EHY, respectively. © 2012 Canadian Society for Chemical Engineering.

  20. The Catalytic Activity of Modified Zeolite Lanthanum on the Catalytic Cracking of Al-Duara Atmospheric Distillation Residue

    Directory of Open Access Journals (Sweden)

    Karim Khalifa Esgair

    2016-03-01

    Full Text Available Atmospheric residue fluid catalytic cracking was selected as a probe reaction to test the catalytic performance of modified NaY zeolites and prepared NaY zeolites. Modified NaY zeolites have been synthesized by simple ion exchange methods. Three samples of modified zeolite Y have been obtained by replacing the sodium ions in the original sample with lanthanum and the weight percent added are 0.28, 0.53, and 1.02 respectively. The effects of addition of lanthanum to zeolite Y in different weight percent on the cracking catalysts were investigated using an experimental laboratory plant scale of fluidized bed reactor. The experiments have been performed with weight hourly space velocity (WHSV range of 6 to 24 h-1, and the range of temperature from 450 to 510 oC. The activity of the catalyst with 1.02 wt% lanthanum has been shown to be much greater than that of the sample parent NaY. Also it was observed that the addition of the lanthanum causes an increase in the thermal stability of the zeolite.

  1. Coordinating Management Activities in Distributed Software Development Projects

    OpenAIRE

    Bendeck, Fawsy; Goldmann, Sigrid; Holz, Harald; Kötting, Boris

    1999-01-01

    Coordinating distributed processes, especially engineering and software design processes, has been a research topic for some time now. Several approaches have been published that aim at coordinating large projects in general, and large software development processes in specific. However, most of these approaches focus on the technical part of the design process and omit management activities like planning and scheduling the project, or monitoring it during execution. In this paper, we focus o...

  2. 20 CFR 631.37 - Coordination activities.

    Science.gov (United States)

    2010-04-01

    ... TITLE III OF THE JOB TRAINING PARTNERSHIP ACT State Administration § 631.37 Coordination activities. (a..., including the formation of labor-management committees under this part, the dislocated worker unit shall... Training Act (29 U.S.C. 1721 note), title IV-C of the Job Training Partnership Act (29 U.S.C. 1721, et seq...

  3. Reduced graphene oxide supported platinum nanocubes composites: one-pot hydrothermal synthesis and enhanced catalytic activity

    International Nuclear Information System (INIS)

    Li, Fumin; Gao, Xueqing; Xue, Qi; Li, Shuni; Chen, Yu; Lee, Jong-Min

    2015-01-01

    Reduced graphene oxide (rGO) supported platinum nanocubes (Pt-NCs) composites (Pt-NCs/rGO) were synthesized successfully by a water-based co-chemical reduction method, in which polyallylamine hydrochloride acted as a multi-functional molecule for the functionalization of graphene oxide, anchorage of Pt II precursor, and control of Pt crystal facets. The morphology, structure, composition, and catalytic property of Pt-NCs/rGO composites were characterized in detail by various spectroscopic techniques. Transmission electron microscopy images showed well-defined Pt-NCs with an average size of 9 nm uniformly distributed on the rGO surface. The as-prepared Pt-NCs/rGO composites had excellent colloidal stability in the aqueous solution, and exhibited superior catalytic activity towards the hydrogenation reduction of nitro groups compared to commercial Pt black. The improved catalytic activity originated from the abundant exposed Pt{100} facets of Pt-NCs, excellent dispersion of Pt-NCs on the rGO surface, and synergistic effect between Pt-NCs and rGO. (paper)

  4. Characterization of gallium-containing zeolites for catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Sanchez, M.

    2003-12-08

    The present study considers the synthesis, characterization, and catalytic evaluation of extra-framework gallium-containing zeolites. We focus on modification of zeolites by chemical vapor deposition of trimethylgallium on HZSM-5 and Mordenite zeolites. Chapter 2 is dedicated to the chemisorption and stability of TMG on HZSM-5 and HMOR zeolites. The effect of silylation is also addressed. Some theoretical calculations are also shown in this study to support part of the experimental results. In Chapter 3, the effect of oxidation and reduction treatments on these catalysts is investigated by FTIR, ICP and multinuclei NMR. In Chapter 4, the oxidation state and Ga coordination obtained during and after thermal treatment with H2 and O2 is analysed by X-ray adsorption spectroscopy (XANES and EXAFS) and IR analysis of CO adsorption. These results allow a better understanding of the catalytic behaviour of Ga-containing zeolites catalyst. Chapter 5 consists of two parts: one discusses the H2 activation over Ga/HZSM5 and Ga/MOR catalysts by H2/D2 isotopic exchange reaction, and the second part deals with the aromatization of n-heptane over the same catalysts.

  5. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.

    Science.gov (United States)

    Dokmanić, Ivan; Sikić, Mile; Tomić, Sanja

    2008-03-01

    Metal ions are constituents of many metalloproteins, in which they have either catalytic (metalloenzymes) or structural functions. In this work, the characteristics of various metals were studied (Cu, Zn, Mg, Mn, Fe, Co, Ni, Cd and Ca in proteins with known crystal structure) as well as the specificity of their environments. The analysis was performed on two data sets: the set of protein structures in the Protein Data Bank (PDB) determined with resolution metal ion and its electron donors and the latter was used to assess the preferred coordination numbers and common combinations of amino-acid residues in the neighbourhood of each metal. Although the metal ions considered predominantly had a valence of two, their preferred coordination number and the type of amino-acid residues that participate in the coordination differed significantly from one metal ion to the next. This study concentrates on finding the specificities of a metal-ion environment, namely the distribution of coordination numbers and the amino-acid residue types that frequently take part in coordination. Furthermore, the correlation between the coordination number and the occurrence of certain amino-acid residues (quartets and triplets) in a metal-ion coordination sphere was analysed. The results obtained are of particular value for the identification and modelling of metal-binding sites in protein structures derived by homology modelling. Knowledge of the geometry and characteristics of the metal-binding sites in metalloproteins of known function can help to more closely determine the biological activity of proteins of unknown function and to aid in design of proteins with specific affinity for certain metals.

  6. Nature of active centers of catalytic system of VOCl/sub 3/ - Al(C/sub 2/H/sub 5/)/sub 2/Cl

    Energy Technology Data Exchange (ETDEWEB)

    Dubnikova, I L; Meshkova, I N [AN SSSR, Moscow. Inst. Khimicheskoj Fiziki

    1977-05-01

    To investigate the nature of the active sites of the catalyst VOCl/sub 3/-Al(C/sub 2/H/sub 5/)/sub 2/Cl during olefine polymerization, the following factors have been studied: composition and catalytic activity of homogeneous and heterogeneous components of the system, valent state of vanadium entering into the composition of the catalytic sites, effect of an organoaluminium component on the catalytic activity of the system, and the properties of the polymeric products being formed. It has been shown that the catalytic sites of the system VOCl/sub 3/-Al(C/sub 4/H/sub 5/)/sub 2/Cl are located, predominantly, in the heterogeneus phase of the catalyst. A conclusion has been made that heterogeneous catalytic sites are bimetal complexes of alkyl derivatives of vanadium trichloride and aluminuim alkylchlorides and that polycentral mechanism of catalysis of olefine polymerization in the presence of VOCl/sub 3/-Al(C/sub 2/H/sub 5/)/sub 2/Cl is caused by two types of active vanadium-aluminium complexes differing in the nature of an organoaluminium component.

  7. Catalytic zinc site and mechanism of the metalloenzyme PR-AMP cyclohydrolase.

    Science.gov (United States)

    D'Ordine, Robert L; Linger, Rebecca S; Thai, Carolyn J; Davisson, V Jo

    2012-07-24

    The enzyme N(1)-(5'-phosphoribosyl) adenosine-5'-monophosphate cyclohydrolase (PR-AMP cyclohydrolase) is a Zn(2+) metalloprotein encoded by the hisI gene. It catalyzes the third step of histidine biosynthesis, an uncommon ring-opening of a purine heterocycle for use in primary metabolism. A three-dimensional structure of the enzyme from Methanobacterium thermoautotrophicum has revealed that three conserved cysteine residues occur at the dimer interface and likely form the catalytic site. To investigate the functions of these cysteines in the enzyme from Methanococcus vannielii, a series of biochemical studies were pursued to test the basic hypothesis regarding their roles in catalysis. Inactivation of the enzyme activity by methyl methane thiosulfonate (MMTS) or 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) also compromised the Zn(2+) binding properties of the protein inducing loss of up to 90% of the metal. Overall reaction stoichiometry and the potassium cyanide (KCN) induced cleavage of the protein suggested that all three cysteines were modified in the process. The enzyme was protected from DTNB-induced inactivation by inclusion of the substrate N(1)-(5'-phosphoribosyl)adenosine 5'-monophosphate; (PR-AMP), while Mg(2+), a metal required for catalytic activity, enhanced the rate of inactivation. Site-directed mutations of the conserved C93, C109, C116 and the double mutant C109/C116 were prepared and analyzed for catalytic activity, Zn(2+) content, and reactivity with DTNB. Substitution of alanine for each of the conserved cysteines showed no measurable catalytic activity, and only the C116A was still capable of binding Zn(2+). Reactions of DTNB with the C109A/C116A double mutant showed that C93 is completely modified within 0.5 s. A model consistent with these data involves a DTNB-induced mixed disulfide linkage between C93 and C109 or C116, followed by ejection of the active site Zn(2+) and provides further evidence that the Zn(2+) coordination site involves the

  8. Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation.

    Science.gov (United States)

    Zhu, Nengwu; Cao, Yanlan; Shi, Chaohong; Wu, Pingxiao; Ma, Haiqin

    2016-04-01

    Recovery of gold from aqueous solution using simple and economical methodologies is highly desirable. In this work, recovery of gold as gold nanoparticles (AuNPs) by Shewanella haliotis with sodium lactate as electron donor was explored. The results showed that the process was affected by the concentration of biomass, sodium lactate, and initial gold ions as well as pH value. Specifically, the presence of sodium lactate determines the formation of nanoparticles, biomass, and AuCl4 (-) concentration mainly affected the size and dispersity of the products, reaction pH greatly affected the recovery efficiency, and morphology of the products in the recovery process. Under appropriate conditions (5.25 g/L biomass, 40 mM sodium lactate, 0.5 mM AuCl4 (-), and pH of 5), the recovery efficiency was almost 99 %, and the recovered AuNPs were mainly spherical with size range of 10-30 nm (~85 %). Meanwhile, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that carboxyl and amine groups might play an important role in the process. In addition, the catalytic activity of the AuNPs recovered under various conditions was testified by analyzing the reduction rate of p-nitrophenol by borohydride. The biorecovered AuNPs exhibited interesting size and shape-dependent catalytic activity, of which the spherical particle with smaller size showed the highest catalytic reduction activity with rate constant of 0.665 min(-1).

  9. Effect of dose and dose rate of gamma radiation on catalytic activity of catalase

    International Nuclear Information System (INIS)

    Vaclav Cuba; Tereza Pavelkova; Viliam Mucka

    2010-01-01

    Catalytic activity of gamma irradiated catalase from bovine liver was studied for hydrogen peroxide decomposition at constant temperature and pressure. The measurement was performed at temperatures 27, 32, 37, 42 and 47 deg C. Solutions containing 1 and 0.01 g dm -3 of catalase in phosphate buffer were used for the study. Repeatability of both sample preparation and kinetics measurement was experimentally verified. Rate constants of the reaction were determined for all temperatures and the activation energy was evaluated from Arrhenius plot. Gamma irradiation was performed using 60 Co radionuclide source Gammacell 220 at two different dose rates 5.5 and 70 Gy h -1 , with doses ranging from 10 to 1000 Gy. The observed reaction of irradiated and non-irradiated catalase with hydrogen peroxide is of the first order. Irradiation significantly decreases catalytic activity of catalase, but the activation energy does not depend markedly on the dose. The effect of irradiation is more significant at higher dose rate. (author)

  10. Catalytic activity of lanthanum oxide for the reduction of cyclohexanone

    International Nuclear Information System (INIS)

    Sugunan, S.; Sherly, K.B.

    1994-01-01

    Lanthanum oxides, La 2 O 3 has been found to be an effective catalyst for the liquid phase reduction of cyclohexanone. The catalytic activities of La 2 O 3 activated at 300, 500 and 800 degC and its mixed oxides with alumina for the reduction of cylcohexanone with 2-propanol have been determined and the data parallel that of the electron donating properties of the catalysts. The electron donating properties of the catalysts have been determined from the adsorption of electron acceptors of different electron affinities on the surface of these oxides. (author). 15 refs., 2 figs., 1 tab

  11. Kinetic Parameters of Non-Isothermal Thermogravimetric Non-Catalytic and Catalytic Pyrolysis of Empty Fruit Bunch with Alumina by Kissinger and Ozawa Methods

    Science.gov (United States)

    Rahayu Mohamed, Alina; Li, Nurfahani; Sohaimi, Khairunissa Syairah Ahmad; Izzati Iberahim, Nur; Munirah Rohaizad, Nor; Hamzah, Rosniza

    2018-03-01

    The non-isothermal thermogravimetric non-catalytic and catalytic empty fruit bunch (EFB) pyrolysis with alumina were performed at different heating rates of 10, 15, 20, 25, 30 and 40 K/min under nitrogen atmosphere at a flow rate of 100 ml/min under dynamic conditions from 301 K to 1273 K. The activation energy were calculated based on Kissinger and Ozawa methods. Both reactions followed first order reactions. By Kissinger method, the activation energy and Ln A values for non-catalytic and catalytic EFB pyrolysis with alumina were 188.69 kJ mol-1 and 201.67 kJ/mol respectively. By Ozawa method, the activation energy values for non-catalytic and catalytic EFB pyrolysis with alumina were 189.13 kJ/mol and 201.44 kJ/mol respectively. The presence of catalyst increased the activation energy values for EFB pyrolysis as calculated by Kissinger and Ozawa methods.

  12. Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer

    International Nuclear Information System (INIS)

    Cui, Zhongping; Qi, Ji; Xu, Xinxin; Liu, Lu; Wang, Yi

    2013-01-01

    To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer composite material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: • This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. • PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. • The “combination” of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future

  13. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα.

    Science.gov (United States)

    Trosiuk, Tetiana V; Shalak, Vyacheslav F; Szczepanowski, Roman H; Negrutskii, Boris S; El'skaya, Anna V

    2016-02-01

    Eukaryotic translation elongation factor 1Bα (eEF1Bα) is a functional homolog of the bacterial factor EF-Ts, and is a component of the macromolecular eEF1B complex. eEF1Bα functions as a catalyst of guanine nucleotide exchange on translation elongation factor 1A (eEF1A). The C-terminal domain of eEF1Bα is necessary and sufficient for its catalytic activity, whereas the N-terminal domain interacts with eukaryotic translation elongation factor 1Bγ (eEF1Bγ) to form a tight complex. However, eEF1Bγ has been shown to enhance the catalytic activity of eEF1Bα attributed to the C-terminal domain of eEF1Bα. This suggests that the N-terminal domain of eEF1Bα may in some way influence the guanine nucleotide exchange process. We have shown that full-length recombinant eEF1Bα and its truncated forms are non-globular proteins with elongated shapes. Truncation of the N-terminal domain of eEF1Bα, which is dispensable for catalytic activity, resulted in acceleration of the rate of guanine nucleotide exchange on eEF1A compared to full-length eEF1Bα. A similar effect on the catalytic activity of eEF1Bα was observed after its interaction with eEF1Bγ. We suggest that the non-catalytic N-terminal domain of eEF1Bα may interfere with eEF1A binding to the C-terminal catalytic domain, resulting in a decrease in the overall rate of the guanine nucleotide exchange reaction. Formation of a tight complex between the eEF1Bγ and eEF1Bα N-terminal domains abolishes this inhibitory effect. © 2015 FEBS.

  14. Integrating nanotubes into microsystems with electron beam lithography and in situ catalytically activated growth

    DEFF Research Database (Denmark)

    Gjerde, Kjetil; Fornés-Mora, Marc; Kjelstrup-Hansen, Jakob

    2006-01-01

    Integration of freestanding wire-like structures such as multi walled carbon nanotubes (MWCNT) into microsystems has many potential applications. Devices such as AFM tips or improved electrodes for conductivity measurements are obvious candidates. Catalytically activated growth opens up the possi......Integration of freestanding wire-like structures such as multi walled carbon nanotubes (MWCNT) into microsystems has many potential applications. Devices such as AFM tips or improved electrodes for conductivity measurements are obvious candidates. Catalytically activated growth opens up...... the possibility of waferscale fabrication of such devices. We combine conventional microfabrication techniques with state of the art electron beam lithography (EBL) to precisely position catalyst nanoparticles with sub 100 nm diameter into the microsystems. In particular, we have explored two main approaches...

  15. Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios

    NARCIS (Netherlands)

    Fu, Donglong|info:eu-repo/dai/nl/412516918; Schmidt, Joel E.|info:eu-repo/dai/nl/413333736; Ristanovic, Zoran|info:eu-repo/dai/nl/328233005; Chowdhury, Abhishek Dutta|info:eu-repo/dai/nl/412438003; Meirer, Florian; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2017-01-01

    Highly b-oriented zeolite ZSM-5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al3+ usually disrupts the orientation of zeolite films.

  16. Identification of coevolving residues and coevolution potentials emphasizing structure, bond formation and catalytic coordination in protein evolution.

    Directory of Open Access Journals (Sweden)

    Daniel Y Little

    Full Text Available The structure and function of a protein is dependent on coordinated interactions between its residues. The selective pressures associated with a mutation at one site should therefore depend on the amino acid identity of interacting sites. Mutual information has previously been applied to multiple sequence alignments as a means of detecting coevolutionary interactions. Here, we introduce a refinement of the mutual information method that: 1 removes a significant, non-coevolutionary bias and 2 accounts for heteroscedasticity. Using a large, non-overlapping database of protein alignments, we demonstrate that predicted coevolving residue-pairs tend to lie in close physical proximity. We introduce coevolution potentials as a novel measure of the propensity for the 20 amino acids to pair amongst predicted coevolutionary interactions. Ionic, hydrogen, and disulfide bond-forming pairs exhibited the highest potentials. Finally, we demonstrate that pairs of catalytic residues have a significantly increased likelihood to be identified as coevolving. These correlations to distinct protein features verify the accuracy of our algorithm and are consistent with a model of coevolution in which selective pressures towards preserving residue interactions act to shape the mutational landscape of a protein by restricting the set of admissible neutral mutations.

  17. Enhancement in the Catalytic Activity of Pd/USY in the Heck Reaction Induced by H2 Bubbling

    Directory of Open Access Journals (Sweden)

    Miki Niwa

    2010-12-01

    Full Text Available Pd was loaded on ultra stable Y (USY zeolites prepared by steaming NH4-Y zeolite under different conditions. Heck reactions were carried out over the prepared Pd/USY. We found that H2 bubbling was effective in improving not only the catalytic activity of Pd/USY, but also that of other supported Pd catalysts and Pd(OAc2. Moreover, the catalytic activity of Pd/USY could be optimized by choosing appropriate steaming conditions for the preparation of the USY zeolites; Pd loaded on USY prepared at 873 K with 100% H2O gave the highest activity (TOF = 61,000 h−1, which was higher than that of Pd loaded on other kinds of supports. The prepared Pd/USY catalysts were applicable to the Heck reactions using various kinds of substrates including bromo- and chloro-substituted aromatic and heteroaromatic compounds. Characterization of the acid properties of the USY zeolites revealed that the strong acid site (OHstrong generated as a result of steaming had a profound effect on the catalytic activity of Pd.

  18. Enhancement in the catalytic activity of Pd/USY in the heck reaction induced by H2 bubbling.

    Science.gov (United States)

    Okumura, Kazu; Tomiyama, Takuya; Moriyama, Sayaka; Nakamichi, Ayaka; Niwa, Miki

    2010-12-24

    Pd was loaded on ultra stable Y (USY) zeolites prepared by steaming NH(4)-Y zeolite under different conditions. Heck reactions were carried out over the prepared Pd/USY. We found that H₂ bubbling was effective in improving not only the catalytic activity of Pd/USY, but also that of other supported Pd catalysts and Pd(OAc)₂. Moreover, the catalytic activity of Pd/USY could be optimized by choosing appropriate steaming conditions for the preparation of the USY zeolites; Pd loaded on USY prepared at 873 K with 100% H₂O gave the highest activity (TOF = 61,000 h⁻¹), which was higher than that of Pd loaded on other kinds of supports. The prepared Pd/USY catalysts were applicable to the Heck reactions using various kinds of substrates including bromo- and chloro-substituted aromatic and heteroaromatic compounds. Characterization of the acid properties of the USY zeolites revealed that the strong acid site (OH(strong)) generated as a result of steaming had a profound effect on the catalytic activity of Pd.

  19. Preparation, Characterization and Catalytic Activity of Nickel Molybdate (NiMoO4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hicham Oudghiri-Hassani

    2018-01-01

    Full Text Available Nickel molybdate (NiMoO4 nanoparticles were synthesized via calcination of an oxalate complex in static air at 500 °C. The oxalate complex was analyzed by thermal gravimetric analysis (TGA and Fourier transform infrared spectroscopy (FTIR. The as-synthesized nickel molybdate was characterized by Brunauer–Emmett–Teller technique (BET, X-ray diffraction (XRD, and transmission electron microscopy (TEM and its catalytic efficiency was tested in the reduction reaction of the three-nitrophenol isomers. The nickel molybdate displays a very high activity in the catalytic reduction of the nitro functional group to an amino. The reduction progress was controlled using Ultraviolet-Visible (UV-Vis absorption.

  20. μ-reactor measurements of catalytic activity of mass selected nano-particles

    DEFF Research Database (Denmark)

    Riedel, Jakob Nordheim

    The work of this thesis revolves around catalytic activity measurements of nano-particles tested using a μ-reactor platform, developed and produced at DTU, in a collaboration between CINF and Nanotech. The thesis contains the results from two separate research projects; both utilising μ-reactors ......The work of this thesis revolves around catalytic activity measurements of nano-particles tested using a μ-reactor platform, developed and produced at DTU, in a collaboration between CINF and Nanotech. The thesis contains the results from two separate research projects; both utilising μ......-reactors in combination with surface science techniques and computer simulations. The first project described is a study of hydrogen dissociation on mono-disperse platinum clusters. The second project studies methanation from carbon monoxide and hydrogen on nano-particles of nickel-iron alloys. The second study is a work...... in progress, and the corresponding chapter aims to summarise the results so far. Other projects are not included in the thesis because they are inconclusive or dead ends. Hydrogen dissociation was studied by the H2/D2 exchange reaction on SiO2-supported mono-disperse platinum clusters in a -reactor...

  1. Synthesis and characterization of magnetically recyclable Ag nanoparticles immobilized on Fe3O4@C nanospheres with catalytic activity

    International Nuclear Information System (INIS)

    Li, Wei-hong; Yue, Xiu-ping; Guo, Chang-sheng; Lv, Jia-pei; Liu, Si-si; Zhang, Yuan; Xu, Jian

    2015-01-01

    Highlights: • Ag-loaded Fe 3 O 4 @C nanospheres were synthesized by a facile method. • The Fe 3 O 4 encapsulated mesoporous carbon was decorated with 10 nm Ag nanocrystals. • The as-prepared Ag-Fe 3 O 4 @C nanocomposite showed excellent catalytic activity. • The nanocomposite had convenient magnetic separability. - Abstract: A novel approach for the synthesis of Ag-loaded Fe 3 O 4 @C nanospheres (Ag-Fe 3 O 4 @C) was successfully developed. The catalysts possessed a carbon-coated magnetic core and grew active silver nanoparticles on the outer shell using hydrazine monohydrate as the AgNO 3 reductant in ethanol. The morphology, inner structure, and magnetic properties of the as-prepared composites were studied with transmission electron microscopy (TEM), X-ray powder diffraction (XRD), fourier translation infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. Catalytic activity was investigated by degrading rhodamine B (RhB) in the designed experiment. The obtained products were monodispersed and bifunctional with high magnetization, as well as exhibited excellent catalytic activity toward organic dye with 98% of RhB conversion within 20 min in the presence of NaBH 4 . The product also exhibited convenient magnetic separability and maintained high catalytic activity after six cycle runs

  2. Loss of Catalytic Activity in the E134D, H67A, and H349A Mutants of DapE: Mechanistic Analysis with QM/MM Investigation.

    Science.gov (United States)

    Dutta, Debodyuti; Mishra, Sabyashachi

    2016-11-17

    In the fight against bacterial infections and antibiotic resistance, the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) is a potentially safe target enzyme. The role of the Glu134, His67, and His349 residues in the binding and hydrolysis of N-succinyl-l,l-diaminopimelic acid (SDAP) is investigated by employing molecular dynamics simulation and hybrid quantum mechanical-molecular mechanical (MM) calculations of the E134D, H67A, and H349A mutants of DapE. The free energy of substrate binding obtained from the MM-Poisson-Boltzmann surface area approach correctly reproduced the experimentally observed ordering of substrate affinity, that is, E134D > wt > H67A > H349A. The mechanism of catalytic action by the E134D mutant is elucidated by structurally and energetically characterizing the intermediates and the transition states along the reaction pathway. The rate-determining step in the general acid-base hydrolysis reaction by the E134D mutant is found to be the nucleophilic attack step, which involves an activation energy barrier 10 kcal/mol greater than that in the wild-type (wt)-DapE. This explains the 3 orders of magnitude decrease in the experimentally determined k cat value for the E134D mutant compared to that of wt-DapE. In the H67A and H349A mutants, the Glu134 residue undergoes a conformational change and exhibits a strong coordination with the metal centers. This not only results in a weaker substrate binding in the two histidine mutants but also hinders the activation of the catalytic water molecule, which constitutes the first step of the substrate hydrolysis by DapE. This leads to an effective quenching of the catalytic activity in the H67A and H349A mutants.

  3. Influence of different preparation conditions on catalytic activity of ag /gama-al/sub 2/o/sub 3/ for hydrogenation of coal slime pyrolysis

    International Nuclear Information System (INIS)

    Lei, Z.; Rong, C.

    2014-01-01

    This paper, introducing variable conditional factors with Ag/AL/sub 2/O/sub 3/ as catalyst, selects five variables to investigate the influences of experimental conditions on Ag/Al2O/sub 3/ catalytic activity and define the optimal process conditions. These variables include Ag loading amount, calcinations temperature, calcinations time, reduction temperature, reduction time. X ray diffraction (XRD), hydrogen temperature-programmed reduction (TPR), X ray photoelectron spectrum (XPS) and scanning electron microscopy (SEM) were utilized to characterize the catalytic activity of Ag/-Al/sub 2/O/sub 3/, active center structure and state and those of carrier were emphatically studied, In the meantime the effects of active center and carrier on catalytic activity are studied. The results showed that: (1) In the range of 600 degree C-900 degree C, the catalytic activity of Ag/-Al/sub 2/O/sub 3/ with different loading showed little difference when changing loading amount, in the range of 900 degree C-1100 degree C, when the loading was 5%, the catalytic activity was very high; From the XRD and SEM characterizations, when the loading was 5%, it showed strong intensity diffraction peak of Ag crystal, crystal Ag is the most important activity center to promote hydrogen yield. (2) the catalytic activity of Ag/-Al/sub 2/O/sub 3/ at 450 degree C was considerably higher than that at 400 degree C and 500 degree C. By BET, XRD and SEM characterization, it can be seen, the diffraction peaks intensity of Ag crystal at 450 degree C is higher and sharper than that at 400 degree C and 500 degree C and with the increase of calcinations temperature, the specific surface area of catalysts also increased. (3) In the range of 600 degree C - 1000 degree C, the effects of calcinations time can be negligible, while, with temperature higher than 1000 degree C, 4-hour-calcinations-time catalyst exhibits a more noticeable catalytic activity than 3-hour and 5-hour catalyst do; From the XRD

  4. Catalytic activity of Co/SiO2 and Co/TiO2 nanosized systems in the oxidation of carbon monoxide

    Science.gov (United States)

    Kelyp, A. A.; Smirnova, N. P.; Oleksenko, L. P.; Lutsenko, L. V.; Oranskaya, E. I.; Ripko, A. P.

    2013-06-01

    The effects of the preparation procedure, active component concentration, and conditions of formation of nanosized cobalt-containing systems based on TiO2 and SiO2 mesoporous powders on their catalytic activity in the oxidation of carbon monoxide were studied. The active phase in the systems was cobalt spinel CoCo2O4 found in all samples. High catalytic activity was found in the samples characterized by relatively high contents of surface active centers (cobalt cations with octahedral surroundings).

  5. Conformational flexibility in the catalytic triad revealed by the high-resolution crystal structure of Streptomyces erythraeus trypsin in an unliganded state

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, Elise; Vukoti, Krishna [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Miyagi, Masaru, E-mail: mxm356@cwru.edu [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Lodowski, David T., E-mail: mxm356@cwru.edu [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States)

    2014-03-01

    This work reports the first sub-angstrom resolution structure of S. erythraeus trypsin. The detailed model of a prototypical serine protease at a catalytically relevant pH with an unoccupied active site is presented and is compared with other high-resolution serine protease structures. With more than 500 crystal structures determined, serine proteases make up greater than one-third of all proteases structurally examined to date, making them among the best biochemically and structurally characterized enzymes. Despite the numerous crystallographic and biochemical studies of trypsin and related serine proteases, there are still considerable shortcomings in the understanding of their catalytic mechanism. Streptomyces erythraeus trypsin (SET) does not exhibit autolysis and crystallizes readily at physiological pH; hence, it is well suited for structural studies aimed at extending the understanding of the catalytic mechanism of serine proteases. While X-ray crystallographic structures of this enzyme have been reported, no coordinates have ever been made available in the Protein Data Bank. Based on this, and observations on the extreme stability and unique properties of this particular trypsin, it was decided to crystallize it and determine its structure. Here, the first sub-angstrom resolution structure of an unmodified, unliganded trypsin crystallized at physiological pH is reported. Detailed structural analysis reveals the geometry and structural rigidity of the catalytic triad in the unoccupied active site and comparison to related serine proteases provides a context for interpretation of biochemical studies of catalytic mechanism and activity.

  6. Conformational flexibility in the catalytic triad revealed by the high-resolution crystal structure of Streptomyces erythraeus trypsin in an unliganded state

    International Nuclear Information System (INIS)

    Blankenship, Elise; Vukoti, Krishna; Miyagi, Masaru; Lodowski, David T.

    2014-01-01

    This work reports the first sub-angstrom resolution structure of S. erythraeus trypsin. The detailed model of a prototypical serine protease at a catalytically relevant pH with an unoccupied active site is presented and is compared with other high-resolution serine protease structures. With more than 500 crystal structures determined, serine proteases make up greater than one-third of all proteases structurally examined to date, making them among the best biochemically and structurally characterized enzymes. Despite the numerous crystallographic and biochemical studies of trypsin and related serine proteases, there are still considerable shortcomings in the understanding of their catalytic mechanism. Streptomyces erythraeus trypsin (SET) does not exhibit autolysis and crystallizes readily at physiological pH; hence, it is well suited for structural studies aimed at extending the understanding of the catalytic mechanism of serine proteases. While X-ray crystallographic structures of this enzyme have been reported, no coordinates have ever been made available in the Protein Data Bank. Based on this, and observations on the extreme stability and unique properties of this particular trypsin, it was decided to crystallize it and determine its structure. Here, the first sub-angstrom resolution structure of an unmodified, unliganded trypsin crystallized at physiological pH is reported. Detailed structural analysis reveals the geometry and structural rigidity of the catalytic triad in the unoccupied active site and comparison to related serine proteases provides a context for interpretation of biochemical studies of catalytic mechanism and activity

  7. Role of regulatory subunits and protein kinase inhibitor (PKI) in determining nuclear localization and activity of the catalytic subunit of protein kinase A.

    Science.gov (United States)

    Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S

    1999-03-05

    Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.

  8. Synthesis, characterizations and catalytic studies of a new two-dimensional metal-organic framework based on Co-carboxylate secondary building units

    Science.gov (United States)

    Bagherzadeh, Mojtaba; Ashouri, Fatemeh; Đaković, Marijana

    2015-03-01

    A metal-organic framework [Co3(BDC)3(DMF)2(H2O)2] was synthesized and structurally characterized. X-ray single crystal analysis revealed that the framework contains a 2D polymeric chain through coordination of 1,4-benzenedicarboxylic acid linker ligand to cobalt centers. The polymer crystallize in monoclinic P21/n space group with a=13.989(3) Å, b=9.6728(17) Å, c=16.707(3) Å, and Z=2. The polymer features a framework based on the perfect octahedral Co-O6 secondary building units. The catalytic activities of [Co3(BDC)3(DMF)2(H2O)2]n for olefins oxidation was conducted. The heterogeneous catalyst could be facilely separated from the reaction mixture, and reused three times without significant degradation in catalytic activity. Furthermore, no contribution from homogeneous catalysis of active species leaching into reaction solution was detected.

  9. Superior acidic catalytic activity and stability of Fe-doped HTaWO6 nanotubes

    KAUST Repository

    Liu, He

    2017-07-26

    Fe-doped HTaWO6 (H1-3xFexTaWO6, x = 0.23) nanotubes as highly active solid acid catalysts were prepared via an exfoliation-scrolling-exchange process. The specific surface area and pore volume of undoped nanotubes (20.8 m2 g-1, 0.057 cm3 g-1) were remarkably enhanced through Fe3+ ion-exchange (>100 m2 g-1, 0.547 cm3 g-1). Doping Fe ions into the nanotubes endowed them with improved thermal stability due to the stronger interaction between the intercalated Fe3+ ions and the host layers. This interaction also facilitated the preservation of effective Brønsted acid sites and the generation of new acid sites. The integration of these functional roles resulted in Fe-doped nanotubes with high acidic catalytic activities in the Friedel-Crafts alkylation of anisole and the esterification of acetic acid. Facile accessibility to active sites, generation of effective Brønsted acid sites, high stability of the tubular structure and strong acid sites were found to synergistically contribute to the excellent acidic catalytic efficiency. Additionally, the activity of cycled nanocatalysts can be easily recovered through annealing treatment.

  10. Superior acidic catalytic activity and stability of Fe-doped HTaWO6 nanotubes

    KAUST Repository

    Liu, He; Zhang, Haitao; Fei, Linfeng; Ma, Hongbin; Zhao, Guoying; Mak, CheeLeung; Zhang, Xixiang; Zhang, Suojiang

    2017-01-01

    Fe-doped HTaWO6 (H1-3xFexTaWO6, x = 0.23) nanotubes as highly active solid acid catalysts were prepared via an exfoliation-scrolling-exchange process. The specific surface area and pore volume of undoped nanotubes (20.8 m2 g-1, 0.057 cm3 g-1) were remarkably enhanced through Fe3+ ion-exchange (>100 m2 g-1, 0.547 cm3 g-1). Doping Fe ions into the nanotubes endowed them with improved thermal stability due to the stronger interaction between the intercalated Fe3+ ions and the host layers. This interaction also facilitated the preservation of effective Brønsted acid sites and the generation of new acid sites. The integration of these functional roles resulted in Fe-doped nanotubes with high acidic catalytic activities in the Friedel-Crafts alkylation of anisole and the esterification of acetic acid. Facile accessibility to active sites, generation of effective Brønsted acid sites, high stability of the tubular structure and strong acid sites were found to synergistically contribute to the excellent acidic catalytic efficiency. Additionally, the activity of cycled nanocatalysts can be easily recovered through annealing treatment.

  11. Additive Manufacturing of Catalytically Active Living Materials.

    Science.gov (United States)

    Saha, Abhijit; Johnston, Trevor G; Shafranek, Ryan T; Goodman, Cassandra J; Zalatan, Jesse G; Storti, Duane W; Ganter, Mark A; Nelson, Alshakim

    2018-04-25

    Living materials, which are composites of living cells residing in a polymeric matrix, are designed to utilize the innate functionalities of the cells to address a broad range of applications such as fermentation and biosensing. Herein, we demonstrate the additive manufacturing of catalytically active living materials (AMCALM) for continuous fermentation. A multi-stimuli-responsive yeast-laden hydrogel ink, based on F127-dimethacrylate, was developed and printed using a direct-write 3D printer. The reversible stimuli-responsive behaviors of the polymer hydrogel inks to temperature and pressure are critical, as they enabled the facile incorporation of yeast cells and subsequent fabrication of 3D lattice constructs. Subsequent photo-cross-linking of the printed polymer hydrogel afforded a robust elastic material. These yeast-laden living materials were metabolically active in the fermentation of glucose into ethanol for 2 weeks in a continuous batch process without significant reduction in efficiency (∼90% yield of ethanol). This cell immobilization platform may potentially be applicable toward other genetically modified yeast strains to produce other high-value chemicals in a continuous biofermentation process.

  12. METHOD FOR DETERMINING THE SPATIAL COORDINATES IN THE ACTIVE STEREOSCOPIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Valery V. Korotaev

    2014-11-01

    Full Text Available The paper deals with the structural scheme of active stereoscopic system and algorithm of its operation, providing the fast calculation of the spatial coordinates. The system includes two identical cameras, forming a stereo pair, and a laser scanner, which provides vertical scanning of the space before the system by the laser beam. A separate synchronizer provides synchronous operation of the two cameras. The developed algorithm of the system operation is implemented in MATLAB. In the proposed algorithm, the influence of background light is eliminated by interframe processing. The algorithm is based on precomputation of coordinates for epipolar lines and corresponding points in stereoscopic image. These data are used to quick calculation of the three-dimensional coordinates of points that form the three-dimensional images of objects. Experiment description on a physical model is given. Experimental results confirm the efficiency of the proposed active stereoscopic system and its operation algorithm. The proposed scheme of active stereoscopic system and calculating method for the spatial coordinates can be recommended for creation of stereoscopic systems, operating in real time and at high processing speed: devices for face recognition, systems for the position control of railway track, automobile active safety systems.

  13. Preparation of silver nanoparticles/polydopamine functionalized polyacrylonitrile fiber paper and its catalytic activity for the reduction 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shixiang, E-mail: shixianglu@bit.edu.cn [School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France); Yu, Jianying; Cheng, Yuanyuan [School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wang, Qian; Barras, Alexandre [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France); Xu, Wenguo [School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Szunerits, Sabine [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France); Cornu, David [Institut Européen des Membranes, UMR 5635, Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), CNRS, Université Montpellier 2, 276 rue de la Galéra, Montpellier 34000 (France); Boukherroub, Rabah, E-mail: rabah.boukherroub@iemn.univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France)

    2017-07-31

    Graphical abstract: Illustration of the preparation of Ag nanoparticles coated paper and its catalytic application for 4-nitrophenol reduction into the corresponding 4-aminophenol. - Highlights: • Polyacrylonitrile paper was functionalized with polydopamine and Ag nanoparticles. • Polydopamine coating layer played both reductive and adhesive roles. • The composite material displayed good catalytic activity for 4-nitrophenol reduction. • The process was environmentally benign and facile. - Abstract: The study reports on the preparation of polyacrylonitrile fiber paper (PANFP) functionalized with polydopamine (PD) and silver nanoparticles (Ag NPs), named as Ag NPs/PD/PANFP. The composite material was obtained via a simple two-step chemical process. First, a thin polydopamine layer was coated onto the PANFP surface through immersion into an alkaline dopamine (pH 8.5) aqueous solution at room temperature. The reductive properties of polydopamine were further exploited for the deposition of Ag NPs. The morphology and chemical composition of the composite material were characterized using scanning electron microscopy (SEM), X-ray diffraction pattern (XRD) and X-ray photoelectron spectroscopy (XPS). The catalytic activity of the nanocomposite was evaluated for the reduction of 4-nitrophenol using sodium borohydride (NaBH{sub 4}) at room temperature. The Ag NPs/PD/PANFP displayed good catalytic performance with a full reduction of 4-nitrophenol into the corresponding 4-aminophenol within 30 min. Moreover, the composite material exhibited a good stability up to 4 cycles without a significant loss of its catalytic activity.

  14. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hua [School of Urban Rail Transportation, Soochow University, Suzhou 215006 (China); Li, Zhihu [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China); Xu, Yanhui, E-mail: xuyanhui@suda.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China)

    2015-04-15

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm{sup −2} for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm{sup −2} (the real surface area), and the reaction rate constant has an order of magnitude of 10{sup −7}–10{sup −6} cm s{sup −1}. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER.

  15. Engineered disulfide bonds increase active-site local stability and reduce catalytic activity of a cold-adapted alkaline phosphatase.

    Science.gov (United States)

    Asgeirsson, Bjarni; Adalbjörnsson, Björn Vidar; Gylfason, Gudjón Andri

    2007-06-01

    Alkaline phosphatase is an extracellular enzyme that is membrane-bound in eukaryotes but resides in the periplasmic space of bacteria. It normally carries four cysteine residues that form two disulfide bonds, for instance in the APs of Escherichia coli and vertebrates. An AP variant from a Vibrio sp. has only one cysteine residue. This cysteine is second next to the nucleophilic serine in the active site. We have individually modified seven residues to cysteine that are on two loops predicted to be within a 5 A radius. Four of them formed a disulfide bond to the endogenous cysteine. Thermal stability was monitored by circular dichroism and activity measurements. Global stability was similar to the wild-type enzyme. However, a significant increase in heat-stability was observed for the disulfide-containing variants using activity as a measure, together with a large reduction in catalytic rates (k(cat)) and a general decrease in Km values. The results suggest that a high degree of mobility near the active site and in the helix carrying the endogenous cysteine is essential for full catalytic efficiency in the cold-adapted AP.

  16. Catalytic Activity of μ-Carbido-Dimeric Iron(IV) Octapropylporphyrazinate in the 3,5,7,2',4'-Pentahydroxyflavone Oxidation Reaction with tert-Butyl Hydroperoxide

    Science.gov (United States)

    Tyurin, D. V.; Zaitseva, S. V.; Kudrik, E. V.

    2018-05-01

    It is found for the first time that μ-carbido-dimeric iron(IV) octapropylporphyrazinate displays catalytic activity in the oxidation reaction of natural flavonol morin with tert-butyl hydroperoxide, with the catalyst being stable under conditions of the reaction. The kinetics of this reaction are studied. It is shown the reaction proceeds via tentative formation of a complex between the catalyst and the oxidant, followed by O‒O bond homolytic cleavage. The kinetics of the reaction is described in the coordinates of the Michaelis-Menten equation. A linear dependence of the apparent reaction rate constant on the concentration of the catalyst is observed, testifying to its participation in the limiting reaction step. The equilibrium constants and rates of interaction are found. A mechanism is proposed for the reaction on the basis of the experimental data.

  17. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    Science.gov (United States)

    Islam, A. E.; Nikolaev, P.; Amama, P. B.; Zakharov, D.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Stach, E. A.; Maruyama, B.

    2015-09-01

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. With the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  18. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    were characterized by infrared, electronic, electron paramagnetic resonance ... The catalytic oxidation property of ruthenium(III) complexes were also ... cies at room temperature. ..... aldehyde part of Schiff base ligands, catalytic activ- ity of new ...

  19. Block copolymer hollow fiber membranes with catalytic activity and pH-response

    KAUST Repository

    Hilke, Roland

    2013-08-14

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes. © 2013 American Chemical Society.

  20. Block copolymer hollow fiber membranes with catalytic activity and pH-response

    KAUST Repository

    Hilke, Roland; Neelakanda, Pradeep; Madhavan, Poornima; Vainio, Ulla; Behzad, Ali Reza; Sougrat, Rachid; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2013-01-01

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes. © 2013 American Chemical Society.

  1. Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums

    KAUST Repository

    Li, Wenjun

    2017-02-15

    An example for the catalytic synthesis of densely functionalized 1,2,3-triazoles through a LUMO activation mode has been developed. The protocol is enabled by intermolecular cross coupling reactions of azides with in situ-generated alpha,beta-unsaturated acyl azoliums. High yields and broad scope as well as the investigation of reaction mechanism are reported.

  2. Redox-active porous coordination polymers prepared by trinuclear heterometallic pivalate linking with the redox-active nickel(II) complex: synthesis, structure, magnetic and redox properties, and electrocatalytic activity in organic compound dehalogenation in heterogeneous medium.

    Science.gov (United States)

    Lytvynenko, A S; Kolotilov, S V; Kiskin, M A; Cador, O; Golhen, S; Aleksandrov, G G; Mishura, A M; Titov, V E; Ouahab, L; Eremenko, I L; Novotortsev, V M

    2014-05-19

    Linking of the trinuclear pivalate fragment Fe2CoO(Piv)6 by the redox-active bridge Ni(L)2 (compound 1; LH is Schiff base from hydrazide of 4-pyridinecarboxylic acid and 2-pyridinecarbaldehyde, Piv(-) = pivalate) led to formation of a new porous coordination polymer (PCP) {Fe2CoO(Piv)6}{Ni(L)2}1.5 (2). X-ray structures of 1 and 2 were determined. A crystal lattice of compound 2 is built from stacked 2D layers; the Ni(L)2 units can be considered as bridges, which bind two Fe2CoO(Piv)6 units. In desolvated form, 2 possesses a porous crystal lattice (SBET = 50 m(2) g(-1), VDR = 0.017 cm(3) g(-1) estimated from N2 sorption at 78 K). At 298 K, 2 absorbed a significant quantity of methanol (up to 0.3 cm(3) g(-1)) and chloroform. Temperature dependence of molar magnetic susceptibility of 2 could be fitted as superposition of χMT of Fe2CoO(Piv)6 and Ni(L)2 units, possible interactions between them were taken into account using molecular field model. In turn, magnetic properties of the Fe2CoO(Piv)6 unit were fitted using two models, one of which directly took into account a spin-orbit coupling of Co(II), and in the second model the spin-orbit coupling of Co(II) was approximated as zero-field splitting. Electrochemical and electrocatalytic properties of 2 were studied by cyclic voltammetry in suspension and compared with electrochemical and electrocatalytic properties of a soluble analogue 1. A catalytic effect was determined by analysis of the catalytic current dependency on concentrations of the substrate. Compound 1 possessed electrocatalytic activity in organic halide dehalogenation, and such activity was preserved for the Ni(L)2 units, incorporated into the framework of 2. In addition, a new property occurred in the case of 2: the catalytic activity of PCP depended on its sorption capacity with respect to the substrate. In contrast to homogeneous catalysts, usage of solid PCPs may allow selectivity due to porous structure and simplify separation of product.

  3. Green Synthesis and Catalytic Activity of Gold Nanoparticles Synthesized by Artemisia capillaris Water Extract

    Science.gov (United States)

    Lim, Soo Hyeon; Ahn, Eun-Young; Park, Youmie

    2016-10-01

    Gold nanoparticles were synthesized using a water extract of Artemisia capillaris (AC-AuNPs) under different extract concentrations, and their catalytic activity was evaluated in a 4-nitrophenol reduction reaction in the presence of sodium borohydride. The AC-AuNPs showed violet or wine colors with characteristic surface plasmon resonance bands at 534 543 nm that were dependent on the extract concentration. Spherical nanoparticles with an average size of 16.88 ± 5.47 29.93 ± 9.80 nm were observed by transmission electron microscopy. A blue shift in the maximum surface plasmon resonance was observed with increasing extract concentration. The face-centered cubic structure of AC-AuNPs was confirmed by high-resolution X-ray diffraction analysis. Based on phytochemical screening and Fourier transform infrared spectra, flavonoids, phenolic compounds, and amino acids present in the extract contributed to the reduction of Au ions to AC-AuNPs. The average size of the AC-AuNPs decreased as the extract concentration during the synthesis was increased. Higher 4-nitrophenol reduction reaction rate constants were observed for smaller sizes. The extract in the AC-AuNPs was removed by centrifugation to investigate the effect of the extract in the reduction reaction. Interestingly, the removal of extracts greatly enhanced their catalytic activity by up to 50.4 %. The proposed experimental method, which uses simple centrifugation, can be applied to other metallic nanoparticles that are green synthesized with plant extracts to enhance their catalytic activity.

  4. Synthesis of Rh/Macro-Porous Alumina Over Micro-Channel Plate and Its Catalytic Activity Tests for Diesel Reforming.

    Science.gov (United States)

    Seong, Yeon Baek; Kim, Yong Sul; Park, No-Kuk; Lee, Tae Jin

    2015-11-01

    Macro-porous Al2O3 as the catalytic support material was synthesized using colloidal polystyrene spheres over a micro-channel plate. The colloidal polystyrene spheres were used as a template for the production of an ordered macro porous material using an alumina nitrate solution as the precursor for Al2O3. The close-packed colloidal crystal array template method was applied to the formulation of ordered macro-porous Al2O3 used as a catalytic support material over a micro-channel plate. The solvent in the mixture solution, which also contained the colloidal polystyrene solution, aluminum nitrate solution and the precursor of the catalytic active materials (Rh), was evaporated in a vacuum oven at 50 degrees C. The ordered polystyrene spheres and aluminum salt of the solid state were deposited over a micro channel plate, and macro-porous Al2O3 was formed after calcination at 600 degrees C to remove the polystyrene spheres. The catalytic activity of the Rh/macro-porous alumina supported over the micro-channel plate was tested for diesel reforming.

  5. Detection of Intracellular Reduced (Catalytically Active) SHP-1 and Analyses of Catalytically Inactive SHP-1 after Oxidation by Pervanadate or H2O2.

    Science.gov (United States)

    Choi, Seeyoung; Love, Paul E

    2018-01-05

    Oxidative inactivation of cysteine-dependent Protein Tyrosine Phosphatases (PTPs) by cellular reactive oxygen species (ROS) plays a critical role in regulating signal transduction in multiple cell types. The phosphatase activity of most PTPs depends upon a 'signature' cysteine residue within the catalytic domain that is maintained in the de-protonated state at physiological pH rendering it susceptible to ROS-mediated oxidation. Direct and indirect techniques for detection of PTP oxidation have been developed (Karisch and Neel, 2013). To detect catalytically active PTPs, cell lysates are treated with iodoacetyl-polyethylene glycol-biotin (IAP-biotin), which irreversibly binds to reduced (S - ) cysteine thiols. Irreversible oxidation of SHP-1 after treatment of cells with pervanadate or H 2 O 2 is detected with antibodies specific for the sulfonic acid (SO 3 H) form of the conserved active site cysteine of PTPs. In this protocol, we describe a method for the detection of the reduced (S - ; active) or irreversibly oxidized (SO 3 H; inactive) form of the hematopoietic PTP SHP-1 in thymocytes, although this method is applicable to any cysteine-dependent PTP in any cell type.

  6. Osmium and cobalt complexes incorporating facially coordinated N ...

    Indian Academy of Sciences (India)

    Administrator

    coordinated N,N,O donor azo-imine ligands: Redox and catalytic properties. Poulami Pattanayak, a. Debprasad Patra, a. Jahar Lal Pratihar, a. Andrew Burrows,. Mary F. Mahon b and Surajit Chattopadhyay* a a. Department of Chemistry, University of Kalyani, Kalyani-741235, India b. Department of Inorganic Chemistry, ...

  7. Coordinated research activities: Annual report and statistics for 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-15

    In 2007, a total of Euro 6 606 194 were obligated for the Agency's Coordinated Research Activities (Euro 6 515 957 from the regular budget and Euro 90 237 from extrabudgetary resources). Most of the Coordinated Research Activities are carried out via Coordinated Research Projects (CRPs) which bring together research institutes in both developing and developed Member States to collaborate on research topics of common interest. At the end of 2007, work was being carried out on 115 CRPs, 37 in Major Programme 1 - Nuclear Power, Fuel Cycle and Nuclear Science, 71 in Major Programme 2 - Nuclear Techniques for Development and Environmental Protection, and 7 in Major Programme 3 - Nuclear Safety and Security. The total amount obligated for these activities in 2007 was 15% more than in 2006, largely due to the implementation of 28 new CRPs. At the end of 2007 work was being carried out under 976 contracts and 562 agreements with institutes in 110 Member States. 72% of the funds obligated for contracts in 2007 were in respect of institutions in developing countries, primarily in the areas of food and agriculture and human health. During 2007, 21% of the Chief Scientific Investigators participating in Agency CRPs were female researchers. Efforts will continue to increase the participation of women and younger researcher in the Coordinated Research Activities. The forty two completed CRPs evaluated in Appendix E resulted in 9 PhDs, one masters degree and in the publishing of about 800 articles and reports, scientific papers, proceedings of scientific conferences and contribution to international conferences, as well as 13 IAEA TECDOCs, and various scientific databases and websites. Detailed evaluation reports on the outputs, effectiveness, impact, recommended future action, and resulting publications of these completed CRPs are included in in Appendix E of this report. (author)

  8. Coordinated research activities: Annual report and statistics for 2007

    International Nuclear Information System (INIS)

    2008-07-01

    In 2007, a total of Euro 6 606 194 were obligated for the Agency's Coordinated Research Activities (Euro 6 515 957 from the regular budget and Euro 90 237 from extrabudgetary resources). Most of the Coordinated Research Activities are carried out via Coordinated Research Projects (CRPs) which bring together research institutes in both developing and developed Member States to collaborate on research topics of common interest. At the end of 2007, work was being carried out on 115 CRPs, 37 in Major Programme 1 - Nuclear Power, Fuel Cycle and Nuclear Science, 71 in Major Programme 2 - Nuclear Techniques for Development and Environmental Protection, and 7 in Major Programme 3 - Nuclear Safety and Security. The total amount obligated for these activities in 2007 was 15% more than in 2006, largely due to the implementation of 28 new CRPs. At the end of 2007 work was being carried out under 976 contracts and 562 agreements with institutes in 110 Member States. 72% of the funds obligated for contracts in 2007 were in respect of institutions in developing countries, primarily in the areas of food and agriculture and human health. During 2007, 21% of the Chief Scientific Investigators participating in Agency CRPs were female researchers. Efforts will continue to increase the participation of women and younger researcher in the Coordinated Research Activities. The forty two completed CRPs evaluated in Appendix E resulted in 9 PhDs, one masters degree and in the publishing of about 800 articles and reports, scientific papers, proceedings of scientific conferences and contribution to international conferences, as well as 13 IAEA TECDOCs, and various scientific databases and websites. Detailed evaluation reports on the outputs, effectiveness, impact, recommended future action, and resulting publications of these completed CRPs are included in in Appendix E of this report. (author)

  9. Studies Relevent to Catalytic Activation Co & other small Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Peter C

    2005-02-22

    Detailed annual and triannual reports describing the progress accomplished during the tenure of this grant were filed with the Program Manager for Catalysis at the Office of Basic Energy Sciences. To avoid unnecessary duplication, the present report will provide a brief overview of the research areas that were sponsored by this grant and list the resulting publications and theses based on this DOE supported research. The scientific personnel participating in (and trained by) this grant's research are also listed. Research carried out under this DOE grant was largely concerned with the mechanisms of the homogeneous catalytic and photocatalytic activation of small molecules such as carbon monoxide, dihydrogen and various hydrocarbons. Much of the more recent effort has focused on the dynamics and mechanisms of reactions relevant to substrate carbonylations by homogeneous organometallic catalysts. A wide range of modern investigative techniques were employed, including quantitative fast reaction methodologies such as time-resolved optical (TRO) and time-resolved infrared (TRIR) spectroscopy and stopped flow kinetics. Although somewhat diverse, this research falls within the scope of the long-term objective of applying quantitative techniques to elucidate the dynamics and understand the principles of mechanisms relevant to the selective and efficient catalytic conversions of fundamental feedstocks to higher value materials.

  10. Enhanced catalytic activity of the nanostructured Co-W-B film catalysts for hydrogen evolution from the hydrolysis of ammonia borane.

    Science.gov (United States)

    Li, Chao; Wang, Dan; Wang, Yan; Li, Guode; Hu, Guijuan; Wu, Shiwei; Cao, Zhongqiu; Zhang, Ke

    2018-08-15

    In this work, nanostructured Co-W-B films are successfully synthesized on the foam sponge by electroless plating method and employed as the catalysts with enhanced catalytic activity towards hydrogen evolution from the hydrolysis of ammonia borane (NH 3 BH 3 , AB) at room temperature. The particle size of the as-prepared Co-W-B film catalysts is varied by adjusting the depositional pH value to identify the most suitable particle size for hydrogen evolution of AB hydrolysis. The Co-W-B film catalyst with the particle size of about 67.3 nm shows the highest catalytic activity and can reach a hydrogen generation rate of 3327.7 mL min -1 g cat -1 at 298 K. The activation energy of the hydrolysis reaction of AB is determined to be 32.2 kJ mol -1 . Remarkably, the as-obtained Co-W-B film is also a reusable catalyst preserving 78.4% of their initial catalytic activity even after 5 cycles in hydrolysis of AB at room temperature. Thus, the enhanced catalytic activity illustrates that the Co-W-B film is a promising catalyst for AB hydrolytic dehydrogenation in fuel cells and the related fields. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Effect of Au Precursor and Support on the Catalytic Activity of the Nano-Au-Catalysts for Propane Complete Oxidation

    Directory of Open Access Journals (Sweden)

    Arshid M. Ali

    2015-01-01

    Full Text Available Catalytic activity of nano-Au-catalyst(s for the complete propane oxidation was investigated. The results showed that the nature of both Au precursor and support strongly influences catalytic activity of the Au-catalyst(s for the propane oxidation. Oxidation state, size, and dispersion of Au nanoparticles in the Au-catalysts, surface area, crystallinity, phase structure, and redox property of the support are the key aspects for the complete propane oxidation. Among the studied Au-catalysts, the AuHAuCl4-Ce catalyst is found to be the most active catalyst.

  12. Chiral phosphites as ligands in asymmetric metal complex catalysis and synthesis of coordination compounds

    International Nuclear Information System (INIS)

    Gavrilov, Konstantin N; Bondarev, Oleg G; Polosukhin, Aleksei I

    2004-01-01

    The data published during the last five years on the application of chiral derivatives of phosphorous acid in coordination chemistry and enantioselective catalysis are summarised and discussed. The effect of the nature of these ligands on the structure of metal complexes and on the efficiency of catalytic organic syntheses is shown. Hydroformylation, hydrogenation, allylic substitution and conjugate addition catalysed by transition metal complexes with optically active phosphites and hydrophosphoranes are considered. The prospects for the development of this field of research are demonstrated.

  13. Effect of citrate on Aspergillus niger phytase adsorption and catalytic activity in soil

    Science.gov (United States)

    Mezeli, Malika; Menezes-Blackburn, Daniel; Zhang, Hao; Giles, Courtney; George, Timothy; Shand, Charlie; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Stutter, Marc; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip

    2015-04-01

    Current developments in cropping systems that promote mobilisation of phytate in agricultural soils, by exploiting plant-root exudation of phytase and organic acids, offer potential for developments in sustainable phosphorus use. However, phytase adsorption to soil particles and phytate complexion has been shown to inhibit phytate dephosphorylation, thereby inhibiting plant P uptake, increasing the risk of this pool contributing to diffuse pollution and reducing the potential benefits of biotechnologies and management strategies aimed to utilise this abundant reserve of 'legacy' phosphorus. Citrate has been seen to increase phytase catalytic efficiency towards complexed forms of phytate, but the mechanisms by which citrate promotes phytase remains poorly understood. In this study, we evaluated phytase (from Aspergillus niger) inactivation, and change in catalytic properties upon addition to soil and the effect citrate had on adsorption of phytase and hydrolysis towards free, precipitated and adsorbed phytate. A Langmuir model was fitted to phytase adsorption isotherms showing a maximum adsorption of 0.23 nKat g-1 (19 mg protein g-1) and affinity constant of 435 nKat gˉ1 (8.5 mg protein g-1 ), demonstrating that phytase from A.niger showed a relatively low affinity for our test soil (Tayport). Phytases were partially inhibited upon adsorption and the specific activity was of 40.44 nKat mgˉ1 protein for the free enzyme and 25.35 nKat mgˉ1 protein when immobilised. The kinetics of adsorption detailed that most of the adsorption occurred within the first 20 min upon addition to soil. Citrate had no effect on the rate or total amount of phytase adsorption or loss of activity, within the studied citrate concentrations (0-4mM). Free phytases in soil solution and phytase immobilised on soil particles showed optimum activity (>80%) at pH 4.5-5.5. Immobilised phytase showed greater loss of activity at pH levels over 5.5 and lower activities at the secondary peak at pH 2

  14. The influence of copper in dealloyed binary platinum–copper electrocatalysts on methanol electroxidation catalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Poochai, Chatwarin [Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Veerasai, Waret, E-mail: waret.vee@mahidol.ac.th [Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Somsook, Ekasith [Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Dangtip, Somsak [Department of Physics, and NANOTEC COE at Mahidol University, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand)

    2015-08-01

    In this study, we prepared and characterized carbon paper-supported dealloyed binary Pt–Cu core–shell electrocatalysts (denoted as Pt{sub x}Cu{sub (100−x)/}CP) by cyclic co-electrodeposition and selective copper dealloying in an acidic medium, and we investigated the effect of the copper content in the samples on the catalytic activities toward methanol electroxidation reaction (MOR). X-ray photo-emission spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) indicated that the structure of dealloyed binary Pt–Cu catalysts possessed a Pt-rich shell and a Cu rich core. X-ray absorption near edge spectroscopy (XANES) displayed that the oxidation states of Pt and Cu were zero and one, respectively, implying the formation of metallic Pt and Cu{sub 2}O, respectively. X-ray diffraction spectroscopy (XRD) confirmed that Cu was inserted into a face-centered cubic Pt structure forming Pt–Cu alloys. Scanning electron microscopy (SEM) and transmission electron microscope (TEM) displayed a cubic shape of Pt/CP and a spherical shape of Pt{sub x}Cu{sub (100−x)/}CP with several hundred nanometer sizes of agglomeration that depended on the Cu content. Cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy were performed to confirm that the sample of Pt{sub 70}Cu{sub 30}/CP exhibited the best catalytic activities in terms of the specific current, current density, catalytic poisoning tolerance, and stability. - Graphical abstract: Display Omitted - Highlights: • Binary electrocatalysts of Pt{sub x}Cu{sub (100−x)}/CP were prepared by cyclic co-electrodeposition and selective copper dealloying. • The structures of Pt{sub x}Cu{sub (100−x)}/CP were a Pt rich shell and a Cu rich core. • The Pt{sub 70}Cu{sub 30}/CP was the excellent catalytic activity towards methanol electrooxidation and CO{sub ads} tolerance.

  15. A recyclable Au(I) catalyst for selective homocoupling of arylboronic acids: significant enhancement of nano-surface binding for stability and catalytic activity.

    Science.gov (United States)

    Zhang, Xin; Zhao, Haitao; Wang, Jianhui

    2010-08-01

    Au nanoparticles stabilized by polystyrene-co-polymethacrylic acid microspheres (PS-co-PMAA) were prepared and characterized via X-ray diffraction (XRD), and transmission electron microscope (TEM). The Au nanoparticles supported on the microspheres showed highly selective catalytic activity for homo-coupling reactions of arylboronic acids in a system of aryl-halides and arylboronic acids. X-ray photoelectron spectroscopy (XPS) spectra of the catalyst shows large amounts of Au(I) complexes band to the surface of the Au nanoparticles, which contributes to the selective homocoupling of the arylboronic acids. More importantly, this supported Au complex is a highly recyclable catalyst. The supported Au catalyst can be recycled and reused at least 6 times for a phenylboronic acid reactant, whereas the parent complex shows very low catalytic activity for this compound. The high catalytic activity of this material is attributed to: (1) the high surface to volume ratio which leads to more active sites being exposed to reactants; (2) the strong surface binding of the Au nanoparticle to the Au(I) complexes, which enhances both the stability and the catalytic activity of these complexes.

  16. Coordination Environment of Copper Sites in Cu-CHA Zeolite Investigated by Electron Paramagnetic Resonance

    DEFF Research Database (Denmark)

    Godiksen, Anita; Stappen, Frederick N.; Vennestrøm, Peter N. R.

    2014-01-01

    Cu-CHA combines high activity for the selective catalytic reduction (SCR) reaction with better hydrothermal stability and selectivity compared to other copper-substituted zeolites. At the same time Cu-CHA offers an opportunity for unraveling the coordination environment of the copper centers since...... the zeolite framework is very simple with only one crystallographically independent tetrahedral site (T-site). In this study the results of an X-band electron paramagnetic resonance (EPR) investigation of ion-exchanged Cu-CHA zeolite with a Si/Al ratio of 14 ± 1 is presented. Different dehydration treatments...... of the EPR silent monomeric Cu2+ in copper-substituted zeolites is suggested to be copper species with an approximate trigonal coordination sphere appearing during the dehydration. After complete dehydration at 250 °C the majority of the EPR silent Cu2+ is suggested to exist as Cu2+–OH– coordinated to two...

  17. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  18. Catalytic cleavage activities of 10–23 DNAzyme analogs functionalized with an amino group in its catalytic core

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2012-02-01

    Full Text Available Functionalization of the catalytic loop of 10–23 DNAzyme with an amino group was performed by incorporation of 7-(3-aminopropyl-8-aza-7-deaza-2′-deoxyadenosine in different single positions. Among the nine modified positions in the catalytic loop, A9 is the unique position with positive contribution by such modification. These results indicated that more efficient deoxyribozymes remain to be explored by introduction of exogenous functional groups in an appropriate position in the catalytic loop of 10–23 DNAzyme, such as the combination of 7-functional group substituted 8-aza-7-deaza-2′-deoxyadenosine analogs and A9 position.

  19. Solid-State NMR Spectroscopy Proves the Presence of Penta-coordinated Sc Sites in MIL-100(Sc).

    Science.gov (United States)

    Giovine, Raynald; Volkringer, Christophe; Ashbrook, Sharon E; Trébosc, Julien; McKay, David; Loiseau, Thierry; Amoureux, Jean-Paul; Lafon, Olivier; Pourpoint, Frédérique

    2017-07-18

    Advanced solid-state NMR methods and first-principles calculations demonstrate for the first time the formation of penta-coordinated scandium sites. These coordinatively unsaturated sites were shown during the thermal activation of scandium-based metal-organic frameworks (MOFs). A 45 Sc NMR experiment allows their specific observation in activated Sc 3 BTB 2 (H 3 BTB=1,3,5-tris(4-carboxyphenyl)benzene) and MIL-100(Sc) MOFs. The assignment of the ScO 5 groups is supported by the DFT calculations of NMR parameters. The presence of ScO 5 Lewis acid sites in MIL-100(Sc) explains furthermore its catalytic activity. The first NMR experiment to probe 13 C- 45 Sc distances is also introduced. This advanced solid-state NMR pulse sequence allows the demonstration of the shrinkage of the MIL-100(Sc) network when the activation temperature is raised. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis, chemistry and catalytic activity of complexes of lanthanide and actinide metals in unusual oxidation states and coordination environments. Progress report, February 1, 1979-January 31, 1980

    International Nuclear Information System (INIS)

    Evans, W.J.

    1979-10-01

    The new synthetic and catalytic reactions involving lanthanide metals which were discovered in the first years of this project have been examined in more detail in the past year. Synthetic and catalytic model systems have been theoretically developed and experimental testing of these hypotheses is in progress. New techniques are being applied to the lanthanide metals to further elucidate the chemistry of these complexes

  1. Multifaceted catalytic hydrogenation of amides via diverse activation of a sterically confined bipyridine-ruthenium framework.

    Science.gov (United States)

    Miura, Takashi; Naruto, Masayuki; Toda, Katsuaki; Shimomura, Taiki; Saito, Susumu

    2017-05-16

    Amides are ubiquitous and abundant in nature and our society, but are very stable and reluctant to salt-free, catalytic chemical transformations. Through the activation of a "sterically confined bipyridine-ruthenium (Ru) framework (molecularly well-designed site to confine adsorbed H 2 in)" of a precatalyst, catalytic hydrogenation of formamides through polyamide is achieved under a wide range of reaction conditions. Both C=O bond and C-N bond cleavage of a lactam became also possible using a single precatalyst. That is, catalyst diversity is induced by activation and stepwise multiple hydrogenation of a single precatalyst when the conditions are varied. The versatile catalysts have different structures and different resting states for multifaceted amide hydrogenation, but the common structure produced upon reaction with H 2 , which catalyzes hydrogenation, seems to be "H-Ru-N-H."

  2. Process for forming a homogeneous oxide solid phase of catalytically active material

    Science.gov (United States)

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  3. Relief of autoinhibition by conformational switch explains enzyme activation by a catalytically dead paralog

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Oleg A.; Kinch, Lisa; Ariagno, Carson; Deng, Xiaoyi; Zhong, Shihua; Grishin, Nick; Tomchick, Diana R.; Chen, Zhe; Phillips, Margaret A.

    2016-12-15

    Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures ofTrypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomericTbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving acis-to-transproline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanism was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved.

  4. Growth of catalytically active nanostructures in the nonequilibrium epitaxy regime

    International Nuclear Information System (INIS)

    Gorshkov, V.M.; Kuzmenko, V.V.

    2015-01-01

    The dynamics of metal atom deposition on a flat metal substrate in the diffusion mode has been studied. Conditions for growing up the periodic structures with a developed surface morphology are found. The applicability of the results obtained to the manufacture of catalysts is analyzed. In particular, when platinum atoms are deposited on a gold substrate, which is expedient by cost reasons, a system of nanopyramids confined by (111) facets can be formed under special conditions. This structure possesses an ultrahigh catalytic activity and is promising for applications in chemical industry

  5. Ni-Pt nanoparticles growing on metal organic frameworks (MIL-96) with enhanced catalytic activity for hydrogen generation from hydrazine at room temperature.

    Science.gov (United States)

    Wen, Lan; Du, Xiaoqiong; Su, Jun; Luo, Wei; Cai, Ping; Cheng, Gongzhen

    2015-04-07

    Well-dispersed bimetallic Ni-Pt nanoparticles (NPs) with different compositions have been successfully grown on the MIL-96 by a simple liquid impregnation method using NaBH4 as the reducing agent. Powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, N2 adsorption-desorption, and inductively coupled plasma-atomic emission spectroscopy measurements were employed to characterize the NiPt/MIL-96. Catalytic activity of NiPt/MIL-96 catalysts was tested in the hydrogen generation from the aqueous alkaline solution of hydrazine at room temperature. These catalysts are composition dependent on their catalytic activity, while Ni64Pt36/MIL-96 exhibits the highest catalytic activity among all the catalysts tested, with a turnover frequency value of 114.3 h(-1) and 100% hydrogen selectivity. This excellent catalytic performance might be due to the synergistic effect of the MIL-96 support and NiPt NPs, while NiPt NPs supported on other conventional supports, such as SiO2, carbon black, γ-Al2O3, poly(N-vinyl-2-pyrrolidone) (PVP), and the physical mixture of NiPt and MIL-96, all of them exhibit inferior catalytic activity compared to that of NiPt/MIL-96.

  6. Piv site-specific invertase requires a DEDD motif analogous to the catalytic center of the RuvC Holliday junction resolvases.

    Science.gov (United States)

    Buchner, John M; Robertson, Anne E; Poynter, David J; Denniston, Shelby S; Karls, Anna C

    2005-05-01

    Piv, a unique prokaryotic site-specific DNA invertase, is related to transposases of the insertion elements from the IS110/IS492 family and shows no similarity to the site-specific recombinases of the tyrosine- or serine-recombinase families. Piv tertiary structure is predicted to include the RNase H-like fold that typically encompasses the catalytic site of the recombinases or nucleases of the retroviral integrase superfamily, including transposases and RuvC-like Holliday junction resolvases. Analogous to the DDE and DEDD catalytic motifs of transposases and RuvC, respectively, four Piv acidic residues D9, E59, D101, and D104 appear to be positioned appropriately within the RNase H fold to coordinate two divalent metal cations. This suggests mechanistic similarity between site-specific inversion mediated by Piv and transposition or endonucleolytic reactions catalyzed by enzymes of the retroviral integrase superfamily. The role of the DEDD motif in Piv catalytic activity was addressed using Piv variants that are substituted individually or multiply at these acidic residues and assaying for in vivo inversion, intermolecular recombination, and DNA binding activities. The results indicate that all four residues of the DEDD motif are required for Piv catalytic activity. The DEDD residues are not essential for inv recombination site recognition and binding, but this acidic tetrad does appear to contribute to the stability of Piv-inv interactions. On the basis of these results, a working model for Piv-mediated inversion that includes resolution of a Holliday junction is presented.

  7. Halide-Enhanced Catalytic Activity of Palladium Nanoparticles Comes at the Expense of Catalyst Recovery

    Directory of Open Access Journals (Sweden)

    Azzedine Bouleghlimat

    2017-09-01

    Full Text Available In this communication, we present studies of the oxidative homocoupling of arylboronic acids catalyzed by immobilised palladium nanoparticles in aqueous solution. This reaction is of significant interest because it shares a key transmetallation step with the well-known Suzuki-Miyaura cross-coupling reaction. Additives can have significant effects on catalysis, both in terms of reaction mechanism and recovery of catalytic species, and our aim was to study the effect of added halides on catalytic efficiency and catalyst recovery. Using kinetic studies, we have shown that added halides (added as NaCl and NaBr can increase the catalytic activity of the palladium nanoparticles more than 10-fold, allowing reactions to be completed in less than half a day at 30 °C. However, this increased activity comes at the expense of catalyst recovery. The results are in agreement with a reaction mechanism in which, under conditions involving high concentrations of chloride or bromide, palladium leaching plays an important role. Considering the evidence for analogous reactions occurring on the surface of palladium nanoparticles under different reaction conditions, we conclude that additives can exert a significant effect on the mechanism of reactions catalyzed by nanoparticles, including switching from a surface reaction to a solution reaction. The possibility of this switch in mechanism may also be the cause for the disagreement on this topic in the literature.

  8. DNA-Catalytically Active Gold Nanoparticle Conjugates-Based Colorimetric Multidimensional Sensor Array for Protein Discrimination.

    Science.gov (United States)

    Wei, Xiangcong; Chen, Zhengbo; Tan, Lulu; Lou, Tianhong; Zhao, Yan

    2017-01-03

    A series of single-strand oligonucleotides functionalized catalytically active gold nanoparticle (AuNPs) as nonspecific receptors have been designed to build a protein sensing array. We take advantage of the correlation between the catalytic activity and the exposed surface area of AuNPs, i.e., DNA-proteins interactions mask the surface area of AuNPs, leading to poor catalytic performance of AuNPs. As the number of DNA-bound proteins increases, the surfaces of AuNPs become more masked; thus, the time of 4- nitrophenol/NaBH 4 reaction for color change (yellow → colorless) of the solution increases. Taking advantage of three nonspecific SH-labeled DNA sequences (A15, C15, and T15) as array sensing elements and the color-change time (CCT) of the solution as signal readout, colorimetric response patterns can be obtained on the array and identified via linear discriminant analysis (LDA). Eleven proteins have been completely distinguished with 100% accuracy with the naked eye at the 30 nM level. Remarkably, two similar proteins (bovine serum albumin and human serum albumin), two different proteins (bovine serum albumin and concanavalin) at the same concentration, and the mixtures of the two proteins with different molar ratios have been discriminated with 100%. The practicability of this sensor array is further validated by high accuracy (100%) identification of 11 proteins in human serum samples.

  9. COMPARISON OF CATALYTIC ACTIVITIES BOTH FOR SELECTIVE OXIDATION AND DECOMPOSITION OF AMMONIA OVER Fe/HZβ CATALYST

    Directory of Open Access Journals (Sweden)

    YELİZ ÇETİN

    2016-11-01

    Full Text Available Ammonia is one of the syngas contaminants that must be removed before using the syngas downstream applications. The most promising hot-gas clean-up techniques of ammonia are selective catalytic oxidation (SCO and catalytic decomposition. In this study, the catalytic activities over Zeolite Hβ supported iron catalyst (Fe/HZβ were compared both for the two catalytic routes. For SCO experiments; temperature (300-550 °C, O2 (2000-6000 ppmv and (0-10% H2 concentrations were investigated with the presence of 800 ppm NH3 in each of the final gas mixture. In the second route, catalytic ammonia decomposition experiments were carried out with H2 in balance N2 (0-30% containing 800 ppm NH3 at 700°C and 800°C. In the SCO, NH3 conversions were increased with increasing reaction temperatures with the absence of H2 in the reaction mixture. With 10% H2, it was shown that NH3 conversions increased with decreasing the reaction temperature. This was interpreted as the competing H2 and NH3 oxidations over the catalyst. On the other hand, in the catalytic decomposition, thermodynamic equilibrium conversion of almost 100% was attained at both 700 and 800 °C. Upon H2 addition, all conversions decreased. The decrease in conversion seemed to be linear with inlet hydrogen concentration. Hydrogen was seen to inhibit ammonia decomposition reaction. It was shown that Fe/HZβ catalyst is better to use for catalytic decomposition of NH3 in syngas rather than SCO of NH3 in spite of higher reaction temperatures needed in the decomposition reaction.

  10. Structural Insight into the Critical Role of the N-Terminal Region in the Catalytic Activity of Dual-Specificity Phosphatase 26.

    Directory of Open Access Journals (Sweden)

    Eun-Young Won

    Full Text Available Human dual-specificity phosphatase 26 (DUSP26 is a novel target for anticancer therapy because its dephosphorylation of the p53 tumor suppressor regulates the apoptosis of cancer cells. DUSP26 inhibition results in neuroblastoma cell cytotoxicity through p53-mediated apoptosis. Despite the previous structural studies of DUSP26 catalytic domain (residues 61-211, DUSP26-C, the high-resolution structure of its catalytically active form has not been resolved. In this study, we determined the crystal structure of a catalytically active form of DUSP26 (residues 39-211, DUSP26-N with an additional N-terminal region at 2.0 Å resolution. Unlike the C-terminal domain-swapped dimeric structure of DUSP26-C, the DUSP26-N (C152S monomer adopts a fold-back conformation of the C-terminal α8-helix and has an additional α1-helix in the N-terminal region. Consistent with the canonically active conformation of its protein tyrosine phosphate-binding loop (PTP loop observed in the structure, the phosphatase assay results demonstrated that DUSP26-N has significantly higher catalytic activity than DUSP26-C. Furthermore, size exclusion chromatography-multiangle laser scattering (SEC-MALS measurements showed that DUSP26-N (C152S exists as a monomer in solution. Notably, the crystal structure of DUSP26-N (C152S revealed that the N-terminal region of DUSP26-N (C152S serves a scaffolding role by positioning the surrounding α7-α8 loop for interaction with the PTP-loop through formation of an extensive hydrogen bond network, which seems to be critical in making the PTP-loop conformation competent for phosphatase activity. Our study provides the first high-resolution structure of a catalytically active form of DUSP26, which will contribute to the structure-based rational design of novel DUSP26-targeting anticancer therapeutics.

  11. Coordinating complex decision support activities across distributed applications

    Science.gov (United States)

    Adler, Richard M.

    1994-01-01

    Knowledge-based technologies have been applied successfully to automate planning and scheduling in many problem domains. Automation of decision support can be increased further by integrating task-specific applications with supporting database systems, and by coordinating interactions between such tools to facilitate collaborative activities. Unfortunately, the technical obstacles that must be overcome to achieve this vision of transparent, cooperative problem-solving are daunting. Intelligent decision support tools are typically developed for standalone use, rely on incompatible, task-specific representational models and application programming interfaces (API's), and run on heterogeneous computing platforms. Getting such applications to interact freely calls for platform independent capabilities for distributed communication, as well as tools for mapping information across disparate representations. Symbiotics is developing a layered set of software tools (called NetWorks! for integrating and coordinating heterogeneous distributed applications. he top layer of tools consists of an extensible set of generic, programmable coordination services. Developers access these services via high-level API's to implement the desired interactions between distributed applications.

  12. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant

    Directory of Open Access Journals (Sweden)

    Mukhamad Nurhadi

    2017-04-01

    Full Text Available The modified coal char from low-rank coal by sulfonation, titanium impregnation and followed by alkyl silylation possesses high catalytic activity in styrene oxidation. The surface of coal char was undergone several steps as such: modification using concentrated sulfuric acid in the sulfonation process, impregnation of 500 mmol titanium(IV isopropoxide and followed by alkyl silylation of n-octadecyltriclorosilane (OTS. The catalysts were characterized by X-ray diffraction (XRD, IR spectroscopy, nitrogen adsorption, and hydrophobicity. The catalytic activity of the catalysts has been examined in the liquid phase styrene oxidation by using aqueous hydrogen peroxide as oxidant. The catalytic study showed the alkyl silylation could enhance the catalytic activity of Ti-SO3H/CC-600(2.0. High catalytic activity and reusability of the o-Ti-SO3H/CC-600(2.0 were related to the modification of local environment of titanium active sites and the enhancement the hydrophobicity of catalyst particle by alkyl silylation. Copyright © 2017 BCREC GROUP. All rights reserved Received: 24th May 2016; Revised: 11st October 2016; Accepted: 18th October 2016 How to Cite: Nurhadi, M. (2017. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 55-61 (doi:10.9767/bcrec.12.1.501.55-61 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.501.55-61

  13. Rhodium, iridium and nickel complexes with a 1,3,5-triphenylbenzene tris-MIC ligand. Study of the electronic properties and catalytic activities

    Directory of Open Access Journals (Sweden)

    Carmen Mejuto

    2015-12-01

    Full Text Available The coordination versatility of a 1,3,5-triphenylbenzene-tris-mesoionic carbene ligand is illustrated by the preparation of complexes with three different metals: rhodium, iridium and nickel. The rhodium and iridium complexes contained the [MCl(COD] fragments, while the nickel compound contained [NiCpCl]. The preparation of the tris-MIC (MIC = mesoionic carbene complex with three [IrCl(CO2] fragments, allowed the estimation of the Tolman electronic parameter (TEP for the ligand, which was compared with the TEP value for a related 1,3,5-triphenylbenzene-tris-NHC ligand. The electronic properties of the tris-MIC ligand were studied by cyclic voltammetry measurements. In all cases, the tris-MIC ligand showed a stronger electron-donating character than the corresponding NHC-based ligands. The catalytic activity of the tri-rhodium complex was tested in the addition reaction of arylboronic acids to α,β-unsaturated ketones.

  14. Preparation of CoFeO Nanocrystallites by Solvothermal Process and Its Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate

    Directory of Open Access Journals (Sweden)

    Shusen Zhao

    2010-01-01

    Full Text Available Nanometer cobalt ferrite (CoFe2O4 was synthesized by polyol-medium solvothermal method and characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, and selected area electron diffraction (SAED. Further, the catalytic activity and kinetic parameters of CoFe2O4 nanocrystallites on the thermal decomposition behavior of ammonium perchlorate (AP have been investigated by thermogravimetry and differential scanning calorimetry analysis (TG-DSC. The results imply that the catalytic performance of CoFe2O4 nanocrystallites is significant and the decrease in the activation energy and the increase in the rate constant for AP further confirm the enhancement in catalytic activity of CoFe2O4 nanocrystallites. A mechanism based on an proton transfer process has also been proposed for AP in the presence of CoFe2O4 nanocrystallites.

  15. Spatial decoupling of light absorption and catalytic activity of Ni-Mo-loaded high-aspect-ratio silicon microwire photocathodes

    Science.gov (United States)

    Vijselaar, Wouter; Westerik, Pieter; Veerbeek, Janneke; Tiggelaar, Roald M.; Berenschot, Erwin; Tas, Niels R.; Gardeniers, Han; Huskens, Jurriaan

    2018-03-01

    A solar-driven photoelectrochemical cell provides a promising approach to enable the large-scale conversion and storage of solar energy, but requires the use of Earth-abundant materials. Earth-abundant catalysts for the hydrogen evolution reaction, for example nickel-molybdenum (Ni-Mo), are generally opaque and require high mass loading to obtain high catalytic activity, which in turn leads to parasitic light absorption for the underlying photoabsorber (for example silicon), thus limiting production of hydrogen. Here, we show the fabrication of a highly efficient photocathode by spatially and functionally decoupling light absorption and catalytic activity. Varying the fraction of catalyst coverage over the microwires, and the pitch between the microwires, makes it possible to deconvolute the contributions of catalytic activity and light absorption to the overall device performance. This approach provided a silicon microwire photocathode that exhibited a near-ideal short-circuit photocurrent density of 35.5 mA cm-2, a photovoltage of 495 mV and a fill factor of 62% under AM 1.5G illumination, resulting in an ideal regenerative cell efficiency of 10.8%.

  16. Mechanism for Coordinated RNA Packaging and Genome Replication by Rotavirus Polymerase VP1

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaohui; McDonald, Sarah M.; Tortorici, M. Alejandra; Tao, Yizhi Jane; Vasquez-Del Carpio, Rodrigo; Nibert, Max L.; Patton, John T.; Harrison, Stephen C. (Harvard-Med); (NIH); (CH-Boston)

    2009-04-08

    Rotavirus RNA-dependent RNA polymerase VP1 catalyzes RNA synthesis within a subviral particle. This activity depends on core shell protein VP2. A conserved sequence at the 3' end of plus-strand RNA templates is important for polymerase association and genome replication. We have determined the structure of VP1 at 2.9 {angstrom} resolution, as apoenzyme and in complex with RNA. The cage-like enzyme is similar to reovirus {lambda}3, with four tunnels leading to or from a central, catalytic cavity. A distinguishing characteristic of VP1 is specific recognition, by conserved features of the template-entry channel, of four bases, UGUG, in the conserved 3' sequence. Well-defined interactions with these bases position the RNA so that its 3' end overshoots the initiating register, producing a stable but catalytically inactive complex. We propose that specific 3' end recognition selects rotavirus RNA for packaging and that VP2 activates the autoinhibited VP1/RNA complex to coordinate packaging and genome replication.

  17. Electrosynthesis and catalytic activity of polymer-nickel particles composite electrode materials

    International Nuclear Information System (INIS)

    Melki, Tahar; Zouaoui, Ahmed; Bendemagh, Barkahoum; Oliveira, Ione M.F. de; Oliveira, Gilver F. de; Lepretre, Jean-Claude; Bucher, Christophe; Mou tet, Jean-Claude

    2009-01-01

    Nickel-polymer composite electrode materials have been synthesized using various strategies, all comprising the electrochemical reduction of nickel(II) cations or complexes, incorporated by either ion-exchange or complexation into various poly(pyrrole-carboxylate) thin films coated by oxidative electropolymerization onto carbon electrodes. The electrocatalytic activity and the stability of the different composites have been then evaluated in the course of the electrocatalytic hydrogenation of ketones and enones in aqueous electrolytes. The best results were obtained using nickel-polymer composites synthesized by electroreduction of nickel(II) ions complexed into polycarboxylate films, which are characterized by a high catalytic activity and a good operational stability. (author)

  18. Electrosynthesis and catalytic activity of polymer-nickel particles composite electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Melki, Tahar; Zouaoui, Ahmed; Bendemagh, Barkahoum [Universite Ferhat Abbas, Setif (Algeria). Faculte des Sciences de l' Ingenieur. Dept. du Tronc Commun; Oliveira, Ione M.F. de; Oliveira, Gilver F. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Lepretre, Jean-Claude [UMR-5631 CNRS-INPG-UJF, St. Martin d' Heres Cedex (France). Lab. d' Electrochimie et de Physicochimie des Materiaux et Interfaces; Bucher, Christophe; Mou tet, Jean-Claude [Universite Joseph Fourier Grenoble 1 (France). Dept. de Chimie Moleculaire], e-mail: Jean-Claude.Moutet@ujf-grenoble.fr

    2009-07-01

    Nickel-polymer composite electrode materials have been synthesized using various strategies, all comprising the electrochemical reduction of nickel(II) cations or complexes, incorporated by either ion-exchange or complexation into various poly(pyrrole-carboxylate) thin films coated by oxidative electropolymerization onto carbon electrodes. The electrocatalytic activity and the stability of the different composites have been then evaluated in the course of the electrocatalytic hydrogenation of ketones and enones in aqueous electrolytes. The best results were obtained using nickel-polymer composites synthesized by electroreduction of nickel(II) ions complexed into polycarboxylate films, which are characterized by a high catalytic activity and a good operational stability. (author)

  19. Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Barroso-Quiroga, Maria Martha; Castro-Luna, Adolfo Eduardo [Facultad de Ingenieria y Ciencias Economico-Sociales INTEQUI-CONICET-UNSL, Av. 25 de Mayo 384 (5730) Villa Mercedes (S.L.) (Argentina)

    2010-06-15

    Ni catalysts supported on different ceramic oxides (Al{sub 2}O{sub 3}, CeO{sub 2}, La{sub 2}O{sub 3}, ZrO{sub 2}) were prepared by wet impregnation. The catalytic behavior toward hydrogen production through the dry reforming of methane using a fixed-bed reactor was evaluated under certain experimental conditions, and the catalyst supported on ZrO{sub 2} showed the highest stable activity during the period of time studied. The catalyst supported on CeO{sub 2} has a relatively good activity, but shows signs of deactivation after a certain time during the reaction. This catalyst was chosen to be studied after the addition of 0.5 wt% Li and K as activity modifiers. The introduction of the alkaline metals produces a reduction of the catalytic activity but a better stability over the reactant conversion time. The reverse water-gas shift reaction influences the global system of reactions, and as the results indicate, should be considered near equilibrium. (author)

  20. Mesoporous templated silicas: stability, pore size engineering and catalytic activation

    International Nuclear Information System (INIS)

    Vansant, Etienne

    2003-01-01

    The Laboratory of Adsorption and Catalysis has focused its research activities on the synthesis and activation of new porous materials. In the past few years, we have succeeded in developing easy and reproducible pathways to synthesize a huge variety of mesoporous crystalline materials. Points of interest in the synthesis of Mesoporous Templated Silicas are (i) stabilization of the structure, to withstand hydrothermal, thermal and mechanical pressure, (ii) pore size engineering to systematically control the pore size, pore volume and the ratio micro/mesopores and (iii) ease and reproducibility of the synthesis procedure, applying green principles, such as template recuperation. By carefully adapting the synthesis conditions and composition of the synthesis gel, using surfactants (long chain quaternary ammonium ions) and co-templates (long chain amines, alcohols or alkanes), the pore size of the obtained materials can be controlled from 1.5 to 7.0 nm, retaining the very narrow pore size distribution. Alternatively, materials with combined micro- and mesoporosity can be synthesized, using neutral surfactants (triblock copolymers). Hereby, the optimization of the SBA-15 and SBA-16 synthesis is being done in order to create mesoporous materials with microporous walls. The second research line is the controlled activation of MTS materials, by grafting or incorporation of catalytic active centers. We have developed for this purpose the Molecular Designed Dispersion method, which uses metal diketonate complexes as precursors. It is shown that in all cases the dispersion of the metal oxides on the surface is much better compared to the conventional grafting techniques. We have studied and published activation with V, Ti, Mo, Fe, Al and Cr species on different MTS materials. The structure and location of the active metal ion is the subject of an extensive spectroscopic investigation, using FT-IR, FT-Raman, UV-Vis DR coupled with selective chemisorption experiments and

  1. Catalytic oxidation of NO to NO2 on activated carbon

    International Nuclear Information System (INIS)

    Zhancheng Guo; Yusheng Xie

    2001-01-01

    Catalytic oxidation of NO to NO 2 over activated carbons PAN-ACF, pitch-ACF and coconut-AC at room temperature (30 o C) were studied to develop a method based on oxidative removal of NO from flue gases. For a dry gas, under the conditions of a gas space flow rate 1500 h -1 in the presence of oxygen of 2-20% in volume concentration, the activated coconut carbon with a surface area 1200 m 2 /g converted about 81-94% of NO with increasing oxygen concentration, the pitch based activated carbon fiber with a surface area 1000 m 2 /g about 44-75%, and the polyacrylonitrile-based activated carbon fiber with a surface area 1810 m 2 /g about 25-68%. The order of activity of the activated carbons was PAN-ACF c P NO P O2 β (F/W), where β is 0.042, 0.16, 0.31 for the coconut-AC, the pitch-ACF and the PAN-ACF respectively, and k c is 0.94 at 30 o C. (author)

  2. Pi-activated alcohols: an emerging class of alkylating agents for catalytic Friedel-Crafts reactions.

    Science.gov (United States)

    Bandini, Marco; Tragni, Michele

    2009-04-21

    The direct functionalization of aromatic compounds, via Friedel-Crafts alkylation reactions with alcohols, is one of the cornerstones in organic chemistry. The present emerging area deals with the recent advances in the use of pi-activated alcohols in the catalytic and stereoselective construction of benzylic stereocenters.

  3. Facile Fabrication of Highly Active Magnetic Aminoclay Supported Palladium Nanoparticles for the Room Temperature Catalytic Reduction of Nitrophenol and Nitroanilines

    Directory of Open Access Journals (Sweden)

    Lei Jia

    2018-06-01

    Full Text Available Magnetically recyclable nanocatalysts with excellent performance are urgent need in heterogeneous catalysis, due to their magnetic nature, which allows for convenient and efficient separation with the help of an external magnetic field. In this research, we developed a simple and rapid method to fabricate a magnetic aminoclay (AC based an AC@Fe3O4@Pd nanocatalyst by depositing palladium nanoparticles (Pd NPs on the surface of the magnetic aminoclay nanocomposite. The microstructure and the magnetic properties of as-prepared AC@Fe3O4@Pd were tested using transmission electron microscopy (TEM, energy-dispersive X-ray spectroscopy (EDS, X-ray diffraction (XRD, and vibrating sample magnetometry (VSM analyses. The resultant AC@Fe3O4@Pd nanocatalyst with the magnetic Fe-based inner shell, catalytically activate the outer noble metal shell, which when combined with ultrafine Pd NPs, synergistically enhanced the catalytic activity and recyclability in organocatalysis. As the aminoclay displayed good water dispersibility, the nanocatalyst indicated satisfactory catalytic performance in the reaction of reducing nitrophenol and nitroanilines to the corresponding aminobenzene derivatives. Meanwhile, the AC@Fe3O4@Pd nanocatalyst exhibited excellent reusability, while still maintaining good activity after several catalytic cycles.

  4. First-principles investigations of O2 dissociation on low-coordinated Pd ensembles over stepped Au surfaces

    International Nuclear Information System (INIS)

    Yuan, D.W.; Liu, Z.R.; Xu, Y.

    2012-01-01

    The adsorption and dissociation of O 2 on Pd monomer or trimer incorporated into Au(322) and Au(321) surfaces are systematically investigated by first-principles calculations and nudged-elastic-band simulations. We found that the contiguous low-coordinated Pd ensembles alloyed into step edges of Au surfaces are required for O 2 dissociation with an enhanced adsorption energy (∼−1.00 eV). The dissociative barrier of O 2 is mainly related to the size of Pd ensembles, and the activation energy is about 1.00 eV on Pd trimers. However, the Pd monomer is less active for the adsorption and dissociation of O 2 . Additionally, the O spillover from Pd to Au sites only occurs at elevated temperature, and the diffusion processes are highly endothermic. The calculated results indicate that the Pd-modified Au step edge with a contiguous Pd ensemble is the reactive center for supplying atomic oxygen on Pd-doped Au catalysts. -- Highlights: ► Our results reveal the mechanism of O 2 dissociation on Pd-decorated stepped Au surfaces. ► The adsorption energy of O 2 is related to both coordination numbers and geometrical arrangements of Pd atoms alloyed into Au surface. ► The Pd-modified Au step with a contiguous Pd ensemble is the reactive center for O 2 dissociation. ► Our results are important for understanding the catalytic properties of Pd-modified nanoporous gold, especially for those catalytic reactions related to O 2 activation.

  5. The effect of gallium supported on mesoporous silica and its catalytic activity for oxidation of benzene, toluene and o-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Schwanke, A.J.; Pergher, S.; Probst, L.F.D. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil); Balzer, R. [Universidade Federal do Parana (UFPR), PR (Brazil)

    2016-07-01

    Full text: Benzene, toluene and xylene (BTX) are a particular class of volatile organic compounds, which are highly toxic pollutants. In this study, samples of gallium-containing mesoporous silica (MS-Ga7% and MS-Ga11%) were synthesized and their catalytic activity in the oxidation of BTX was investigated. The physicochemical characterization by XRD, XPS, XRF, nitrogen adsorption and desorption isotherms at 77K, FTIR, SEM and TEM shows that the inclusion of gallium in the mesoporous silica structure leads to an increase in the number of oxygen vacancies in the structure of the MS-Ga system, which can result in an increase in the total and surface oxygen mobility. The results show the highest conversion for benzene (65%), with >40% for toluene and >28% for o-xylene. The high catalytic activity observed was attributed to a combination of several factors including a higher number of active sites (gallium and gallium oxide) being exposed, with a greater mobility of the active oxygen species on the surface of the catalyst promoting the catalytic activity. (author)

  6. Hydrophobic and hydrophilic nanosheet catalysts with high catalytic activity and recycling stability through control of the outermost ligand

    Science.gov (United States)

    Ko, Younji; Kim, Donghee; Kwon, Cheong Hoon; Cho, Jinhan

    2018-04-01

    In this study, we introduce hydrophobic and hydrophilic graphene oxide nanosheet (GON) catalysts prepared by consecutive ligand replacement of hydrophobically stabilized magnetic and catalytic nanoparticles (NPs); it exhibits high catalytic activity, fast magnetic response, and good dispersion in both nonpolar and aqueous media, allowing high loading amount of magnetic and catalytic NPs onto GON sheets. More specifically, these GON catalysts showed a high product yield of 66-99% and notable recyclability (93% of the initial product yield after 10 reaction cycles) in a Suzuki-Miyaura reaction in nonpolar media, outperforming the performance of the conventional hydrophilic GON catalysts. Additional coating of a hydrophilic layer onto GON catalysts also showed the notable performance (product yield ∼99%) in catalytic reactions performed in aqueous media. Given that ligand-controlled catalytic NPs adsorbed onto 2D nanosheets can be used as hydrophobic and hydrophilic stabilizers as well as catalysts, our approach can provide a tool for developing and designing 2D-nanosheet catalysts with high performance in nonpolar and polar media.

  7. Heterogeneous catalytic degradation of polyacrylamide solution | Hu ...

    African Journals Online (AJOL)

    Modified with trace metal elements, the catalytic activity of Fe2O3/Al2O3 could be changed greatly. Among various trace metal elements, Fe2O3/Al2O3 catalysts modified with Co and Cu showed great increase on catalytic activity. International Journal of Engineering, Science and Technology, Vol. 2, No. 7, 2010, pp. 110- ...

  8. Preparation and catalytic activities for H{sub 2}O{sub 2} decomposition of Rh/Au bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haijun, E-mail: zhanghaijun@wust.edu.cn [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Deng, Xiangong; Jiao, Chengpeng; Lu, Lilin; Zhang, Shaowei [The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2016-07-15

    Graphical abstract: PVP-protected Rh/Au bimetallic nanoparticles (BNPs) were prepared by using hydrogen sacrificial reduction method, the activity of Rh80Au20 BNPs were about 3.6 times higher than that of Rh NPs. - Highlights: • Rh/Au bimetallic nanoparticles (BNPs) of 3∼5 nm in diameter were prepared. • Activity for H{sub 2}O{sub 2} decomposition of BNPs is 3.6 times higher than that of Rh NPs. • The high activity of BNPs was caused by the existence of charged Rh atoms. • The apparent activation energy for H{sub 2}O{sub 2} decomposition over the BNPs was calculated. - Abstract: PVP-protected Rh/Au bimetallic nanoparticles (BNPs) were prepared by using hydrogen sacrificial reduction method and characterized by UV–vis, XRD, FT-IR, XPS, TEM, HR-TEM and DF-STEM, the effects of composition on their particle sizes and catalytic activities for H{sub 2}O{sub 2} decomposition were also studied. The as-prepared Rh/Au BNPs possessed a high catalytic activity for the H{sub 2}O{sub 2} decomposition, and the activity of the Rh{sub 80}Au{sub 20} BNPs with average size of 2.7 nm were about 3.6 times higher than that of Rh monometallic nanoparticles (MNPs) even the Rh MNPs possess a smaller particle size of 1.7 nm. In contrast, Au MNPs with size of 2.7 nm show no any activity. Density functional theory (DFT) calculation as well as XPS results showed that charged Rh and Au atoms formed via electronic charge transfer effects could be responsible for the high catalytic activity of the BNPs.

  9. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks

    Science.gov (United States)

    Amin, Hayder; Maccione, Alessandro; Nieus, Thierry

    2017-01-01

    Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs), interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities) that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity. PMID:28749937

  10. Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks.

    Directory of Open Access Journals (Sweden)

    Davide Lonardoni

    2017-07-01

    Full Text Available Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs, interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity.

  11. Catalytic pyrolysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Vail' eva, N A; Buyanov, R A

    1979-01-01

    Catalytic pyrolysis of petroleum fractions (undecane) was performed with the object of clarifying such questions as the mechanism of action of the catalyst, the concepts of activity and selectivity of the catalyst, the role of transport processes, the temperature ranges and limitations of the catalytic process, the effect of the catalyst on secondary processes, and others. Catalysts such as quartz, MgO, Al/sub 2/O/sub 3/, were used. Analysis of the experimental findings and the fact that the distribution of products is independent of the nature of the surface, demonstrate that the pyrolysis of hydrocarbons in the presence of catalysts is based on the heterogeneous-homogeneous radical-chain mechanism of action, and that the role of the catalysts reduces to increasing the concentration of free radicals. The concept of selectivity cannot be applied to catalysts here, since they do not affect the mechanism of the unfolding of the process of pyrolysis and their role consists solely in initiating the process. In catalytic pyrolysis the concepts of kinetic and diffusive domains of unfolding of the catalytic reaction do not apply, and only the outer surface of the catalyst is engaged, whereas the inner surface merely promotes deletorious secondary processes reducing the selectivity of the process and the activity of the catalyst. 6 references, 2 figures.

  12. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase.

    Science.gov (United States)

    Liu, C Tony; Layfield, Joshua P; Stewart, Robert J; French, Jarrod B; Hanoian, Philip; Asbury, John B; Hammes-Schiffer, Sharon; Benkovic, Stephen J

    2014-07-23

    Electrostatic interactions play an important role in enzyme catalysis by guiding ligand binding and facilitating chemical reactions. These electrostatic interactions are modulated by conformational changes occurring over the catalytic cycle. Herein, the changes in active site electrostatic microenvironments are examined for all enzyme complexes along the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) by incorporation of thiocyanate probes at two site-specific locations in the active site. The electrostatics and degree of hydration of the microenvironments surrounding the probes are investigated with spectroscopic techniques and mixed quantum mechanical/molecular mechanical (QM/MM) calculations. Changes in the electrostatic microenvironments along the catalytic environment lead to different nitrile (CN) vibrational stretching frequencies and (13)C NMR chemical shifts. These environmental changes arise from protein conformational rearrangements during catalysis. The QM/MM calculations reproduce the experimentally measured vibrational frequency shifts of the thiocyanate probes across the catalyzed hydride transfer step, which spans the closed and occluded conformations of the enzyme. Analysis of the molecular dynamics trajectories provides insight into the conformational changes occurring between these two states and the resulting changes in classical electrostatics and specific hydrogen-bonding interactions. The electric fields along the CN axes of the probes are decomposed into contributions from specific residues, ligands, and solvent molecules that make up the microenvironments around the probes. Moreover, calculation of the electric field along the hydride donor-acceptor axis, along with decomposition of this field into specific contributions, indicates that the cofactor and substrate, as well as the enzyme, impose a substantial electric field that facilitates hydride transfer. Overall, experimental and theoretical data provide evidence for

  13. Kinetic catalytic studies of scorpion's hemocyanin

    International Nuclear Information System (INIS)

    Queinnec, E.; Vuillaume, M.; Gardes-Albert, M.; Ferradini, C.; Ducancel, F.

    1991-01-01

    Hemocyanins are copper proteins which function as oxygen carriers in the haemolymph of Molluscs and Arthropods. They possess enzymatic properties: peroxidatic and catalatic activities, although they have neither iron nor porphyrin ring at the active site. The kinetics of the catalytic reaction is described. The reaction of superoxide anion with hemocyanin has been studied using pulse radiolysis at pH 9. The catalytic rate constant is 3.5 X 10 7 mol -1 .l.s -1 [fr

  14. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NO{sub x} with NH{sub 3} at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Dalian 116024 (China); Sun, Hong [School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian 116028 (China); Quan, Xie, E-mail: quanxie@dlut.edu.cn [School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Dalian 116024 (China); Chen, Shuo [School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Dalian 116024 (China)

    2016-01-15

    Highlights: • Nano-ceria was successfully encapsulated into MIL-100(Fe) for the SCR of NO{sub x}. • The incorporated ceria in MIL-100(Fe) showed high content of chemisorbed oxygen. • The added ceria into MIL-100(Fe) improved the formation of adsorbed NO{sub 2} species. • The addition of ceria into MIL-100(Fe) enhanced SCR activity at low temperature. - Abstract: The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO{sub 2} and H{sub 2}O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO{sub 2}/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NO{sub x} conversion ranges from 196 to 300 °C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO{sub 2} species responsible for fast SCR reactions.

  15. Efficient catalytic combustion in integrated micropellistors

    International Nuclear Information System (INIS)

    Bársony, I; Ádám, M; Fürjes, P; Dücső, Cs; Lucklum, R; Hirschfelder, M; Kulinyi, S

    2009-01-01

    This paper analyses two of the key issues of the development of catalytic combustion-type sensors: the selection and production of active catalytic particles on the micropellistor surface as well as the realization of a reliable thermal conduction between heater element and catalytic surface, for the sensing of temperature increase produced by the combustion. The report also demonstrates that chemical sensor product development by a MEMS process is a continuous struggle for elimination of all uncertainties influencing reliability and sensitivity of the final product

  16. Enhancement in catalytic activity of Aspergillus niger XynB by selective site-directed mutagenesis of active site amino acids.

    Science.gov (United States)

    Wu, Xiuyun; Tian, Zhennan; Jiang, Xukai; Zhang, Qun; Wang, Lushan

    2018-01-01

    XynB from Aspergillus niger ATCC1015 (AnXynB) is a mesophilic glycoside hydrolase (GH) family 11 xylanase which holds great potentials in a wide variety of industrial applications. In the present study, the catalytic activity and stability of AnXynB were improved by a combination of computational and experimental approaches. Virtual mutation and molecular dynamics simulations indicated that the introduction of Glu and Asn altered the interaction network at the - 3 subsite. Interestingly, the double mutant S41N/T43E displayed 72% increase in catalytic activity when compared to the wild type (WT). In addition, it also showed a better thermostability than the WT enzyme. Kinetic determination of the T43E and S41N/T43E mutants suggested that the higher xylanase activity is probably due to the increasing binding affinity of enzyme and substrate. Consequently, the enzyme activity and thermostability of AnXynB was both increased by selective site-directed mutagenesis at the - 3 subsite of its active site architecture which provides a good example for a successfully engineered enzyme for potential industrial application. Moreover, the molecular evolution approach adopted in this study led to the design of a library of sequences that captures a meaningful functional diversity in a limited number of protein variants.

  17. Catalytic conversion of ethanol on H-Y zeolite

    Directory of Open Access Journals (Sweden)

    Čegar Nedeljko

    2005-01-01

    Full Text Available The catalytic activity of the H-form of synthetic zeolite NaY was examined in this study. The catalytic activity was determined according to the rate of ethanol conversion in a gas phase in the static system. In the conversion of ethanol on synthetic NaY zeolite at 585, 595, and 610 K, on which the reaction develops at an optimal rate, ethene and diethyl ether are evolved in approximately the same quantity. After transforming the NaY zeolite into the H-form, its catalytic activity was extremely increases so, the reaction develops at a significantly lower temperature with a very large increase in the reaction rate. The distribution of the products also changes, so that at lower temperatures diethyl ether is elvolved in most cases, and the development of ethene is favored at higher ones, and after a certain period of time there is almost complete conversion of ethanol into ethene. The increase in catalytic activity, as well as the change of selectivity of conversion of ethanol on the H-form of zeolite, is the result of removing Na+ cations in the NaY zeolite, so that more acidic catalyst is obtained which contains a number of acidic catalytically active centers, as well as a more powerful one compared to the original NaY zeolite.

  18. Catalytic fast pyrolysis of biomass impregnated with potassium phosphate in a hydrogen atmosphere for the production of phenol and activated carbon

    Science.gov (United States)

    Lu, Qiang; Zhang, Zhen-xi; Wang, Xin; Guo, Hao-qiang; Cui, Min-shu; Yang, Yong-ping

    2018-02-01

    A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K3PO4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K3PO4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K3PO4 at 550 oC in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO2 activation method, the specific surface area was as high as 1605 m2/g.

  19. Coevolving residues of (beta/alpha)(8)-barrel proteins play roles in stabilizing active site architecture and coordinating protein dynamics.

    Science.gov (United States)

    Shen, Hongbo; Xu, Feng; Hu, Hairong; Wang, Feifei; Wu, Qi; Huang, Qiang; Wang, Honghai

    2008-12-01

    Indole-3-glycerol phosphate synthase (IGPS) is a representative of (beta/alpha)(8)-barrel proteins-the most common enzyme fold in nature. To better understand how the constituent amino-acids work together to define the structure and to facilitate the function, we investigated the evolutionary and dynamical coupling of IGPS residues by combining statistical coupling analysis (SCA) and molecular dynamics (MD) simulations. The coevolving residues identified by the SCA were found to form a network which encloses the active site completely. The MD simulations showed that these coevolving residues are involved in the correlated and anti-correlated motions. The correlated residues are within van der Waals contact and appear to maintain the active site architecture; the anti-correlated residues are mainly distributed on opposite sides of the catalytic cavity and coordinate the motions likely required for the substrate entry and product release. Our findings might have broad implications for proteins with the highly conserved (betaalpha)(8)-barrel in assessing the roles of amino-acids that are moderately conserved and not directly involved in the active site of the (beta/alpha)(8)-barrel. The results of this study could also provide useful information for further exploring the specific residue motions for the catalysis and protein design based on the (beta/alpha)(8)-barrel scaffold.

  20. Synthesis, Characterization, and Antimicrobial Activities of Coordination Compounds of Aspartic Acid

    Directory of Open Access Journals (Sweden)

    T. O. Aiyelabola

    2016-01-01

    Full Text Available Coordination compounds of aspartic acid were synthesized in basic and acidic media, with metal ligand M : L stoichiometric ratio 1 : 2. The complexes were characterized using infrared, electronic and magnetic susceptibility measurements, and mass spectrometry. Antimicrobial activity of the compounds was determined against three Gram-positive and three Gram-negative bacteria and one fungus. The results obtained indicated that the availability of donor atoms used for coordination was a function of the pH of the solution in which the reaction was carried out. This resulted in varying geometrical structures for the complexes. The compounds exhibited a broad spectrum of activity and in some cases better activity than the standard.

  1. Very Low Rate Constants of Bimolecular CO Adsorption on Anionic Gold Clusters: Implications for Catalytic Activity

    Czech Academy of Sciences Publication Activity Database

    Balteanu, I.; Balaj, O. P.; Fox, B. S.; Beyer, M. K.; Bastl, Zdeněk; Bondybey, V. E.

    2003-01-01

    Roč. 5, - (2003), s. 1213-1218 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z4040901 Keywords : bimolecular * adsorption * catalytic activity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.959, year: 2003

  2. Synthesis, characterization and catalytic activity toward methanol oxidation of electrocatalyst Pt4+-NH2-MCM-41

    International Nuclear Information System (INIS)

    Zheng Huajun; Chen Zuo; Wang Limin; Ma Chun’an

    2012-01-01

    Highlights: ► It was first confirmed that the Pt 4+ exhibited a good electro-catalytic property for methanol oxidation. ► The Pt 4+ perfectly distributed on a mesoporous molecular sieve matrix synthesis by a facile method. ► The good performance of catalyst resistance to poisoning because of a homogeneous distribution of Pt 4+ and large specific surface area. - Abstract: Mesoporous material with functional group (Pt 4+ -NH 2 -MCM-41) was prepared by grafting aminopropyl group and adsorbing platinum ions on the surface of the commercial molecular sieve (MCM-41). The characterization carried out by X-ray photoelectron spectroscopy, X-ray diffraction, and N 2 adsorption–desorption measurement pointed out that Pt was adsorbed on the NH 2 -MCM-41 surface as the oxidation state (Pt 4+ ) and the surface area of Pt 4+ -NH 2 -MCM-41 was up to 564 m 2 /g. Transmission electron microscopy and elemental mapping indicated a homogeneous distribution of Pt 4+ throughout all surface of the mesoporous materials. Electro-catalytic properties of methanol oxidation on the Pt 4+ -NH 2 -MCM-41 electrode were investigated with electrochemical methods. The results showed that the Pt 4+ -NH 2 -MCM-41 electrode exhibited catalytic activity in the methanol electro-oxidation with the apparent activation energy being 49.29 kJ/mol, and the control step of methanol electro-oxidation was the mass transfer process. It is first proved that platinum ions had good electro-catalytic property for methanol oxidation and provided a new idea for developing electrode materials in future.

  3. Understanding Catalytic Activity Trends for NO Decomposition and CO Oxidation using Density Functional Theory and Microkinetic Modeling

    DEFF Research Database (Denmark)

    Falsig, Hanne

    -metal surfaces by combining a database of adsorption energies on stepped metal surfaces with known Brønsted–Evans–Polanyi (BEP) relations for the activation barriers of dissociation of diatomic molecules over stepped transition- and noble-metal surfaces. The potential energy diagram directly points to why Pd......The main aim of this thesis is to understand the catalytic activity of transition metals and noble metals for the direct decomposition of NO and the oxidation of CO. The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step...... towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional theory calculations. We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition...

  4. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Relationships between physical activity, physical fitness, somatic fitness, and coordination along childhood and adolescence

    Directory of Open Access Journals (Sweden)

    João Paulo Saraiva

    2010-12-01

    Full Text Available The two main goals of this review were to understand how the relationships between physical activity, physical fitness, somatic fitness, and coordination are established along the motor development of children and adolescents, and how they would influence their future lives. The web based bibliographic database B-On was searched for peer-reviewed publications during the last decade (2000 to 2009. Search criteria included all articles on relationships between any two of the above named factors. Although different methodological designs and variables were found as markers for the same factor, overall results suggested the existence of a clear positive relationship among physical activity, physical fitness, somatic fitness, and coordination from childhood to adolescence, with a special relevance for the relationship between physical activity and coordination. It was also noted a renewed interest on physical activity and motor coordination developmental characteristics and relationships as well as on their lifelong health effects.

  6. Relationships between physical activity, physical fitness, somatic fitness, and coordination along childhood and adolescence

    Directory of Open Access Journals (Sweden)

    J.P. Saraiva

    2010-01-01

    Full Text Available The two main goals of this review were to understand how the relationships between physical activity, physical fitness, somatic fitness, and coordination are established along the motor development of children and adolescents, and how they would influence their future lives. The web based bibliographic database B-On was searched for peer-reviewed publications during the last decade (2000 to 2009. Search criteria included all articles on relationships between any two of the above named factors. Although different methodological designs and variables were found as markers for the same factor, overall results suggested the existence of a clear positive relationship among physical activity, physical fitness, somatic fitness, and coordination from childhood to adolescence, with a special relevance for the relationship between physical activity and coordination. It was also noted a renewed interest on physical activity and motor coordination developmental characteristics and relationships as well as on their lifelong health effects.

  7. Hydrothermal synthesis, structure, heterogeneous catalytic activity and photoluminescent properties of a novel homoleptic Sm(III)-organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Ay, Burak [Department of Chemistry, Arts and Science Faculty,Çukurova University, 01330 Adana (Turkey); Yildiz, Emel, E-mail: eeyildiz@cu.edu.tr [Department of Chemistry, Arts and Science Faculty,Çukurova University, 01330 Adana (Turkey); Felts, Ashley C.; Abboud, Khalil A. [Department of Chemistry, University of Florida, Gainesville, FL 32611 (United States)

    2016-12-15

    A novel metal-organic framework, (H{sub 2}pip){sub n}[Sm{sub 2}(pydc){sub 4}(H{sub 2}O){sub 2}]{sub n} (1) (H{sub 2}pydc=2,6-pyridinedicarboxylic acid, H{sub 2}pip=piperazine) has been synthesized under hydrothermal conditions and characterized by the elemental analysis, inductively coupled plasma (ICP) spectrometer, fourier transform infrared (FT-IR) spectra, thermogravimetric analysis (TGA), single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). The structure of 1 was determined to be three-dimensional, linked along Sm-O-Sm chains. The asymmetric unit consisted of one singly anionic fragment consisting of Sm(III) coordinated to two H{sub 2}pydc ligands and one water, and one half of a protonated H{sub 2}pip, which sits on an inversion center. 1 exhibited luminescence emission bands at 534 nm at room temperature when excited at 440 nm. Its thermal behavior and catalytic performance were investigated and the selectivity was measured as 100% for the oxidation of thymol to thymoquinone. - Graphical abstract: A novel 3D lanthanide-organic framework has been synthesized under hydrothermal conditions. The thermal behavior and catalytic performance of 1 were investigated and its selectivity was measured as 100% for the oxidation of thymol to thymoquinone.

  8. Highly effective catalytic peroxymonosulfate activation on N-doped mesoporous carbon for o-phenylphenol degradation.

    Science.gov (United States)

    Hou, Jifei; Yang, Shasha; Wan, Haiqin; Fu, Heyun; Qu, Xiaolei; Xu, Zhaoyi; Zheng, Shourong

    2018-04-01

    As a broad-spectrum preservative, toxic o-phenylphenol (OPP) was frequently detected in aquatic environments. In this study, N-doped mesoporous carbon was prepared by a hard template method using different nitrogen precursors and carbonization temperatures (i.e., 700, 850 and 1000 °C), and was used to activate peroxymonosulfate (PMS) for OPP degradation. For comparison, mesoporous carbon (CMK-3) was also prepared. Characterization results showed that the N-doped mesoporous carbon samples prepared under different conditions were perfect replica of their template. In comparison with ethylenediamine (EDA) and dicyandiamide (DCDA) as the precursors, N-doped mesoporous carbon prepared using EDA and carbon tetrachloride as the precursors displayed a higher catalytic activity for OPP degradation. Increasing carbonization temperature of N-doped mesoporous carbon led to decreased N content and increased graphitic N content at the expense of pyridinic and pyrrolic N. Electron paramagnetic resonance (EPR) analysis showed that PMS activation on N-doped mesoporous carbon resulted in highly active species and singlet oxygen, and catalytic PMS activation for OPP degradation followed a combined radical and nonradical reaction mechanism. Increasing PMS concentration enhanced OPP degradation, while OPP degradation rate was independent on initial OPP concentration. Furthermore, the dependency of OPP degradation on PMS concentration followed the Langmuir-Hinshelwood model, reflecting that the activation of adsorbed PMS was the rate controlling step. Based on the analysis by time-of-flight mass spectrometry, the degradation pathway of OPP was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The relationship between segmental coordination, agility and physical activity in adolescents

    Directory of Open Access Journals (Sweden)

    Eliseo García Cantó

    2015-06-01

    Full Text Available Motor competence (MC may be related to youth physical activity (PA level. In the last few years, MC has been studied as a possible determinant of children PA level, but has not been widely studied in adolescents. To analyze the relationship between MC and PA level 533 adolescents (271 men and 261 women from the southeast of Spain were assessed. To register weekly PA was used the International Physical Activity Questionnaire (IPAQ and for the MC, four coordination tests including throw and catch test, eye-hand and eye-foot coordination tests and agility circuit. Data were analyzed using ANOVA and binary logistic regression. The overall MC is consistently related with PA level. Eye-hand coordination test and the agility test define more accurately the tendency to high PA level. Programs to promote PA and focused on MC should be emphasized from early ages to adolescence.

  10. A Facile synthesis of superparamagnetic Fe3O4 nanofibers with superior peroxidase-like catalytic activity for sensitive colorimetric detection of L-cysteine

    Science.gov (United States)

    Chen, Sihui; Chi, Maoqiang; Zhu, Yun; Gao, Mu; Wang, Ce; Lu, Xiaofeng

    2018-05-01

    Superaramagnetic Fe3O4 nanomaterials are good candidates as enzyme mimics due to their excellent catalytic activity, high stability and facile synthesis. However, the morphology of Fe3O4 nanomaterials has much influence on their enzyme-like catalytic activity. In this work, we have developed a simple polymer-assisted thermochemical reduction approach to prepare Fe3O4 nanofibers for peroxidase-like catalytic applications. The as-prepared Fe3O4 nanofibers show a higher catalytic activity than commercial Fe3O4 nanoparticles. The steady-state kinetic assay result shows that the Michaelis-Menten constant value of the as-obtained Fe3O4 nanofibers is similar to that of horseradish peroxidase (HRP), indicating their superior affinity to the 3,3‧,5,5‧-tetramethylbenzidine (TMB) and H2O2 substrate. Based on the outstanding catalytic activity, a sensing platform for the detection of L-cysteine has been performed and the limit of detection is as low as 0.028 μM. In addition, an excellent selectivity toward L-cysteine over other types of amino acids, glucose and metal ions has been achieved as well. This work offers an original means for the fabrication of superparamagnetic Fe3O4 nanofibers and demonstrates their delightful potential applications in the fields of biosensing, environmental monitoring, and medical diagnostics.

  11. Coordinating technology introduction and entrepreneurial activities in rural areas

    NARCIS (Netherlands)

    Fokkema, J.E.; Pennink, B.J.W.; Simatupang, T.M.

    2017-01-01

    © Copyright 2017 Inderscience Enterprises Ltd. The main purpose of this research is to investigate how technology introduction projects in rural areas should be coordinated in order to achieve local economic development and the role of social capital and entrepreneurial activities. Characteristics

  12. Molecular dynamics characterization of five pathogenic factor X mutants associated with decreased catalytic activity

    KAUST Repository

    Abdel-Azeim, Safwat; Oliva, Romina M.; Chermak, Edrisse; De Cristofaro, Raimondo; Cavallo, Luigi

    2014-01-01

    Factor X (FX) is one of the major players in the blood coagulation cascade. Upon activation to FXa, it converts prothrombin to thrombin, which in turn converts fibrinogen into fibrin (blood clots). FXa deficiency causes hemostasis defects, such as intracranial bleeding, hemathrosis, and gastrointestinal blood loss. Herein, we have analyzed a pool of pathogenic mutations, located in the FXa catalytic domain and directly associated with defects in enzyme catalytic activity. Using chymotrypsinogen numbering, they correspond to D102N, T135M, V160A, G184S, and G197D. Molecular dynamics simulations were performed for 1.68 μs on the wild-type and mutated forms of FXa. Overall, our analysis shows that four of the five mutants considered, D102N, T135M, V160A, and G184S, have rigidities higher than those of the wild type, in terms of both overall protein motion and, specifically, subpocket S4 flexibility, while S1 is rather insensitive to the mutation. This acquired rigidity can clearly impact the substrate recognition of the mutants.

  13. Molecular dynamics characterization of five pathogenic factor X mutants associated with decreased catalytic activity

    KAUST Repository

    Abdel-Azeim, Safwat

    2014-11-11

    Factor X (FX) is one of the major players in the blood coagulation cascade. Upon activation to FXa, it converts prothrombin to thrombin, which in turn converts fibrinogen into fibrin (blood clots). FXa deficiency causes hemostasis defects, such as intracranial bleeding, hemathrosis, and gastrointestinal blood loss. Herein, we have analyzed a pool of pathogenic mutations, located in the FXa catalytic domain and directly associated with defects in enzyme catalytic activity. Using chymotrypsinogen numbering, they correspond to D102N, T135M, V160A, G184S, and G197D. Molecular dynamics simulations were performed for 1.68 μs on the wild-type and mutated forms of FXa. Overall, our analysis shows that four of the five mutants considered, D102N, T135M, V160A, and G184S, have rigidities higher than those of the wild type, in terms of both overall protein motion and, specifically, subpocket S4 flexibility, while S1 is rather insensitive to the mutation. This acquired rigidity can clearly impact the substrate recognition of the mutants.

  14. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity

    Directory of Open Access Journals (Sweden)

    González Celedonio

    2010-02-01

    Full Text Available Abstract Background The Botrytis cinerea xylanase Xyn11A has been previously shown to be required for full virulence of this organism despite its poor contribution to the secreted xylanase activity and the low xylan content of B. cinerea hosts. Intriguingly, xylanases from other fungi have been shown to have the property, independent of the xylan degrading activity, to induce necrosis when applied to plant tissues, so we decided to test the hypothesis that secreted Xyn11A contributes to virulence by promoting the necrosis of the plant tissue surrounding the infection, therefore facilitating the growth of this necrotroph. Results We show here that Xyn11A has necrotizing activity on plants and that this capacity is conserved in site-directed mutants of the protein lacking the catalytic activity. Besides, Xyn11A contributes to the infection process with the necrotizing and not with the xylan hydrolyzing activity, as the catalytically-impaired Xyn11A variants were able to complement the lower virulence of the xyn11A mutant. The necrotizing activity was mapped to a 30-amino acids peptide in the protein surface, and this region was also shown to mediate binding to tobacco spheroplasts by itself. Conclusions The main contribution of the xylanase Xyn11A to the infection process of B. cinerea is to induce necrosis of the infected plant tissue. A conserved 30-amino acids region on the enzyme surface, away from the xylanase active site, is responsible for this effect and mediates binding to plant cells.

  15. Catalytic activity of oxide cerium-molybdenum-tellurium catalysts in oxidation ammonolysis

    International Nuclear Information System (INIS)

    Dzhordano, N.; Bart, D.; Madzhori, R.

    1984-01-01

    A commercial catalyst containing a mixture of Ce-, Mo-, Te oxides deposited on SiO 2 is shown to manifest a high efficiency in oxidative ammonolysis of propylene (C 3 - ) to acrylonitrile (AN). The dependence of the catalytic properties on the catalyst composition and reaction conditions is studied. It is established that three-component mixtures are more active and selective than the systems with a lesser number of components. Using the catalyst with the optimum ratio of constituent oxides in a microreactor at 440 deg enabled one to achieve initial selectivity in terms of AN equal to 82.5% at 97% conversion of C 3 - . Acrolein, acetonitrile, HCN and nitrogen oxides are the reaction by-products. A supposition is made that the reaction proceeds via the formation of π-compleXes on the centres of Te(4). Setective oxidation occurs on oxygen atoms bonded with the Mo(6) ions. Tellurium enhances the molybdenum reducibleness due to delocalization of electrons, whereas the cerium addition to the mixture of tellurium- and molybdenum oxides increases the rate of molybdenum reoxidation and thus enhances the catalytic system stability

  16. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes

    International Nuclear Information System (INIS)

    Han, Zhenbang; Han, Xu; Zhao, Xiaoming; Yu, Jiantao; Xu, Hang

    2016-01-01

    Iron(II) phthalocyanine was immobilized onto amidoximated polyacrylonitrile fiber to construct a bioinspired catalytic system for oxidizing organic dyes by H 2 O 2 activation. The amidoxime groups greatly helped to anchor Iron(II) phthalocyanine molecules onto the fiber through coordination interaction, which has been confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and UV diffuse reflectance spectroscopy analyses. Electron spin resonance studies indicate that the catalytic process of physically anchored Iron(II) phthalocyanine performed via a hydroxyl radical pathway, while the catalyst bonded Iron(II) phthalocyanine through coordination effect could selectively catalyze the H 2 O 2 decomposition to generate high-valent iron-oxo species. This may result from the amidoxime groups functioning as the axial fifth ligands to favor the heterolytic cleavage of the peroxide O−O bond. This feature also enables the catalyst to only degrade the dyes adjacent to the catalytic active centers and enhances the efficient utilization of H 2 O 2 . In addition, this catalyst could effectively catalyze the mineralization of organic dyes and can be easily recycled without any loss of activity.

  17. The minimum activation peptide from ilvH can activate the catalytic subunit of AHAS from different species.

    Science.gov (United States)

    Zhao, Yuefang; Niu, Congwei; Wen, Xin; Xi, Zhen

    2013-04-15

    Acetohydroxyacid synthases (AHASs), which catalyze the first step in the biosynthesis of branched-chain amino acids, are composed of a catalytic subunit (CSU) and a regulatory subunit (RSU). The CSU harbors the catalytic site, and the RSU is responsible for the activation and feedback regulation of the CSU. Previous results from Chipman and co-workers and our lab have shown that heterologous activation can be achieved among isozymes of Escherichia coli AHAS. It would be interesting to find the minimum peptide of ilvH (the RSU of E. coli AHAS III) that could activate other E. coli CSUs, or even those of ## species. In this paper, C-terminal, N-terminal, and C- and N-terminal truncation mutants of ilvH were constructed. The minimum peptide to activate ilvI (the CSU of E. coli AHAS III) was found to be ΔN 14-ΔC 89. Moreover, this peptide could not only activate its homologous ilvI and heterologous ilvB (CSU of E. coli AHAS I), but also heterologously activate the CSUs of AHAS from Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana plumbaginifolia. However, this peptide totally lost its ability for feedback regulation by valine, thus suggesting different elements for enzymatic activation and feedback regulation. Additionally, the apparent dissociation constant (Kd ) of ΔN 14-ΔC 89 when binding CSUs of different species was found to be 9.3-66.5 μM by using microscale thermophoresis. The ability of this peptide to activate different CSUs does not correlate well with its binding ability (Kd ) to these CSUs, thus implying that key interactions by specific residues is more important than binding ability in promoting enzymatic reactions. The high sequence similarity of the peptide ΔN 14-ΔC 89 to RSUs across species hints that this peptide represents the minimum activation motif in RSU and that it regulates all AHASs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Understanding the catalytic activity of gold nanoparticles through multi-scale simulations

    DEFF Research Database (Denmark)

    Brodersen, Simon Hedegaard; Vej-Hansen, Ulrik Grønbjerg; Larsen, Britt Hvolbæk

    2011-01-01

    We investigate how the chemical reactivity of gold nanoparticles depends on the cluster size and shape using a combination of simulation techniques at different length scales, enabling us to model at the atomic level the shapes of clusters in the size range relevant for catalysis. The detailed......-coordinated active sites is found, and their reactivities are extracted from models based on Density Functional Theory calculations. This enables us to determine the chemical activity of clusters in the same range of particle sizes that is accessible experimentally. The variation of reactivity with particle size...... is in excellent agreement with experiments, and we conclude that the experimentally observed trends are mostly explained by the high reactivity of under-coordinated corner atoms on the gold clusters. Other effects, such as the effect of the substrate, may influence the reactivities significantly, but the presence...

  19. PEEM microscopy and DFT calculations of catalytically active platinum surfaces and interfaces

    International Nuclear Information System (INIS)

    Spiel, C.

    2012-01-01

    The aim of this thesis was to investigate the properties of catalytically active platinum surfaces and interfaces both with experimental and theoretical methods. Using experimental methods, catalytic CO oxidation on individual grains of a polycrystalline platinum foil was studied in situ under high vacuum (HV) conditions. A polycrystalline platinum foil consists of individual µm-sized crystal grains that are mainly [100]-, [110]- and [111]-oriented and differ significantly in their catalytic activity. In order to elucidate the differences existing between the reactivity of the individual grains, a combination of photoemission electron microscopy (PEEM) and quadrupole mass spectrometry (QMS) was used in this work. The working principle of PEEM is based on the photoelectric effect where illumination of the sample with (UV-)light causes emission of photoelectrons. The emitted photoelectrons are used to visualize the sample surface (with typical resolution in the low micrometer range). The PEEM image contrast originates from differences in the local work function that may arise due to different crystallographic orientations and/or changes in the adsorbate coverage. With a combination of PEEM and QMS, it was possible to study the kinetics of catalytic CO oxidation on polycrystalline platinum foil both in a global and a laterally-resolved way simultaneously. If catalytic CO oxidation on surfaces of platinum is followed at constant temperature and oxygen partial pressure under cyclic variation of the CO pressure, a hysteresis in the CO2 production rate is observed in the bistability region with two noticeable kinetic transitions (called tA and tB) taking place at different CO pressures when the catalyst surface switches back-and-forth between two steady states of high and low reactivity while the Pt-surface is, correspondingly, either oxygen- or CO-covered. In the bistability region between τ A and τ B , the system stays (at the same values of the external parameters p

  20. Catalysis by Glomerella cingulata cutinase requires conformational cycling between the active and inactive states of its catalytic triad.

    Science.gov (United States)

    Nyon, Mun Peak; Rice, David W; Berrisford, John M; Hounslow, Andrea M; Moir, Arthur J G; Huang, Huazhang; Nathan, Sheila; Mahadi, Nor Muhammad; Bakar, Farah Diba Abu; Craven, C Jeremy

    2009-01-09

    Cutinase belongs to a group of enzymes that catalyze the hydrolysis of esters and triglycerides. Structural studies on the enzyme from Fusarium solani have revealed the presence of a classic catalytic triad that has been implicated in the enzyme's mechanism. We have solved the crystal structure of Glomerella cingulata cutinase in the absence and in the presence of the inhibitors E600 (diethyl p-nitrophenyl phosphate) and PETFP (3-phenethylthio-1,1,1-trifluoropropan-2-one) to resolutions between 2.6 and 1.9 A. Analysis of these structures reveals that the catalytic triad (Ser136, Asp191, and His204) adopts an unusual configuration with the putative essential histidine His204 swung out of the active site into a position where it is unable to participate in catalysis, with the imidazole ring 11 A away from its expected position. Solution-state NMR experiments are consistent with the disrupted configuration of the triad observed crystallographically. H204N, a site-directed mutant, was shown to be catalytically inactive, confirming the importance of this residue in the enzyme mechanism. These findings suggest that, during its catalytic cycle, cutinase undergoes a significant conformational rearrangement converting the loop bearing the histidine from an inactive conformation, in which the histidine of the triad is solvent exposed, to an active conformation, in which the triad assumes a classic configuration.

  1. Importance of the oxygen bond strength for catalytic activity in soot oxidation

    DEFF Research Database (Denmark)

    Christensen, Jakob M.; Grunwaldt, Jan-Dierk; Jensen, Anker D.

    2016-01-01

    (loose contact) the rate constants for a number of catalytic materials outline a volcano curve when plotted against their heats of oxygen chemisorption. However, the optima of the volcanoes correspond to different heats of chemisorption for the two contact situations. In both cases the activation...... oxidation. The optimum of the volcano curve in loose contact is estimated to occur between the bond strengths of α-Fe2O3 and α-Cr2O3. Guided by an interpolation principle FeaCrbOx binary oxides were tested, and the activity of these oxides was observed to pass through an optimum for an FeCr2Ox binary oxide...

  2. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C. Part 9: reference procedure for the measurement of catalytic concentration of alkaline phosphatase International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Scientific Division, Committee on Reference Systems of Enzymes (C-RSE) (1)).

    Science.gov (United States)

    Schumann, Gerhard; Klauke, Rainer; Canalias, Francesca; Bossert-Reuther, Steffen; Franck, Paul F H; Gella, F-Javier; Jørgensen, Poul J; Kang, Dongchon; Lessinger, Jean-Marc; Panteghini, Mauro; Ceriotti, Ferruccio

    2011-09-01

    Abstract This paper is the ninth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C and the certification of reference preparations. Other parts deal with: Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes; Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase; Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase; Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase; Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase; Part 6. Reference procedure for the measurement of catalytic concentration of γ-glutamyltransferase; Part 7. Certification of four reference materials for the determination of enzymatic activity of γ-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase at 37 °C; Part 8. Reference procedure for the measurement of catalytic concentration of α-amylase. The procedure described here is derived from the previously described 30 °C IFCC reference method. Differences are tabulated and commented on in Appendix 1.

  3. Tunable preparation of ruthenium nanoparticles with superior size-dependent catalytic hydrogenation properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuan; Luo, Yaodong; Yang, Xuan; Yang, Yaxin; Song, Qijun, E-mail: qsong@jiangnan.edu.cn

    2017-06-15

    Highlights: • A facile and efficient strategy is firstly developed for the synthesis of Ru NPs. • Ru NPs are stable and uniform with the controllable sizes from 2.6 to 51.5 nm. • Ru NPs exhibit size-dependent and superior catalytic hydrogenation activity. - Abstract: Ruthenium (Ru) featured with an unusual catalytic behavior is of great significance in several heterogeneous and electro-catalytic reactions. The preparation of tractable Ru nanocatalysts and the building of highly active catalytic system at ambient temperature remains a grand challenge. Herein, a facile strategy is developed for the controllable preparation of Ru nanoparticles (NPs) with the sizes ranging from 2.6 to 51.5 nm. Ru NPs show superior size-dependent catalytic performance with the best kinetic rate constant as high as −1.52 min{sup −1}, which could far surpass the other traditional noble metals. Ru NPs exert exceedingly efficient low-temperature catalytic activity and good recyclability in the catalytic reduction of nitroaromatic compounds (NACs) and azo dyes. The developed catalytic system provides a distinguishing insight for the artificial preparation of Ru NPs with desired sizes, and allows for the development of rational design rules for exploring catalysts with superior catalytic performances, potentially broadening the applications of metallic NP-enabled catalytic analysis.

  4. Catalytic Fast Pyrolysis of Biomass Impregnated with Potassium Phosphate in a Hydrogen Atmosphere for the Production of Phenol and Activated Carbon

    Science.gov (United States)

    Lu, Qiang; Zhang, Zhen-xi; Wang, Xin; Guo, Hao-qiang; Cui, Min-shu; Yang, Yong-ping

    2018-01-01

    A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K3PO4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K3PO4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K3PO4 at 550°C in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO2 activation method, the specific surface area was as high as 1,605 m2/g. PMID:29515994

  5. Catalytic Performance of Co3O4 on Different Activated Carbon Supports in the Benzyl Alcohol Oxidation

    Directory of Open Access Journals (Sweden)

    Misael Cordoba

    2017-12-01

    Full Text Available Co3O4 particles were supported on a series of activated carbons (G60, CNR, RX3, and RB3. Incipient wetness method was used to prepare these catalysts. The effect of the structural and surface properties of the carbonaceous supports during oxidation of benzyl alcohol was evaluated. The synthetized catalysts were characterized via IR, TEM, TGA/MS, XRD, TPR, AAS, XPS, and N2 adsorption/desorption isotherm techniques. Co3O4/G60 and Co3O4/RX3 catalysts have high activity and selectivity on the oxidation reaction reaching conversions above 90% after 6 h, without the presence of promoters. Catalytic performances show that differences in chemistry of support surface play an important role in activity and suggest that the presence of different ratios of species of cobalt and oxygenated groups on surface in Co3O4/G60 and Co3O4/RX3 catalysts, offered a larger effect synergic between both active phase and support increasing their catalytic activity when compared to the other tested catalysts.

  6. Fabrication of Core-Shell Structural SiO2@H3[PM12O40] Material and Its Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2014-01-01

    Full Text Available Through a natural tree grain template and sol-gel technology, the heterogeneous catalytic materials based on polyoxometalate compounds H3[PM12O40] encapsulating SiO2: SiO2@H3[PM12O40] (SiO2@PM12, M = W, Mo with core-shell structure had been prepared. The structure and morphology of the core-shell microspheres were characterized by the XRD, IR spectroscopy, UV-Vis absorbance, and SEM. These microsphere materials can be used as heterogeneous catalysts with high activity and stability for catalytic wet air oxidation of pollutant dyes safranine T (ST at room condition. The results show that the catalysts have excellent catalytic activity in treatment of wastewater containing 10 mg/L ST, and 94% of color can be removed within 60 min. Under different cycling runs, it is shown that the catalysts are stable under such operating conditions and the leaching tests show negligible leaching effect owing to the lesser dissolution.

  7. Co-ordinating Product Developing Activities

    DEFF Research Database (Denmark)

    Terkelsen, Søren Bendix

    1996-01-01

    The paper contains a presentation of research methods to be used in case studies in product development and a presentation on how to deal with Design Co-ordination according to litterature......The paper contains a presentation of research methods to be used in case studies in product development and a presentation on how to deal with Design Co-ordination according to litterature...

  8. Synthesis, characterisation and catalytic activity of 4, 5-imidazoledicarboxylate ligated Co(II) and Cd(II) metal-organic coordination complexes

    Science.gov (United States)

    Gangu, Kranthi Kumar; Maddila, Suresh; Mukkamala, Saratchandra Babu; Jonnalagadda, Sreekantha B.

    2017-09-01

    Two mono nuclear coordination complexes, namely, [Co(4,5-Imdc)2 (H2O)2] (1) and [Cd(4,5-Imdc)2(H2O)3]·H2O (2) were constructed using Co(II) and Cd(II) metal salts with 4,5-Imidazoledicarboxylic acid (4,5-Imdc) as organic ligand. Both 1, 2 were structurally characterized by single crystal XRD and the results reveal that 1 belongs to P21/n space group with unit cell parameters [a = 5.0514(3) Å, b = 22.5786(9) Å, c = 6.5377(3) Å, β = 111.5°] whereas, 2 belongs to P21/c space group with unit cell parameters [a = 6.9116(1) Å, b = 17.4579(2) Å, c = 13.8941(2) Å, β = 97.7°]. While Co(II) in 1 exhibited a six coordination geometry with 4,5-Imdc and water molecules, Cd(II) ion in 2 showed a seven coordination with the same ligand and solvent. In both 1 and 2, the hydrogen bond interactions with mononuclear unit generated 3D-supramolecular structures. Both complexes exhibit solid state fluorescent emission at room temperature. The efficacy of both the complexes as heterogeneous catalysts was examined in the green synthesis of six pyrano[2,3,c]pyrazole derivatives with ethanol as solvent via one-pot reaction between four components, a mixture of aromatic aldehyde, malononitrile, hydrazine hydrate and dimethyl acetylenedicarboxylate. Both 1 and 2 have produced pyrano [2,3,c]pyrazoles in impressive yields (92-98%) at room temperature in short interval of times (<20 min), with no need for any chromatographic separations. With good stability, ease of preparation and recovery plus reusability up to six cycles, both 1 and 2 prove to be excellent environmental friendly catalysts for the value-added organic transformations using green principles.

  9. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Science.gov (United States)

    Prashar, Vishal; Bihani, Subhash; Das, Amit; Ferrer, Jean-Luc; Hosur, Madhusoodan

    2009-11-17

    It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  10. Preliminary X-ray crystallographic studies of BthTX-II, a myotoxic Asp49-phospholipase A2 with low catalytic activity from Bothrops jararacussu venom

    International Nuclear Information System (INIS)

    Corrêa, L. C.; Marchi-Salvador, D. P.; Cintra, A. C. O.; Soares, A. M.; Fontes, M. R. M.

    2006-01-01

    A myotoxic Asp49-PLA 2 with low catalytic activity from B. jararacussu (BthTX-II) was crystallized in the monoclinic crystal system; a complete X-ray diffraction data set was collected and a molecular-replacement solution was obtained. The oligomeric structure of BthTX-II resembles those of the Asp49-PLA 2 PrTX-III and all bothropic Lys49-PLA 2 s. For the first time, a complete X-ray diffraction data set has been collected from a myotoxic Asp49-phospholipase A 2 (Asp49-PLA 2 ) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) and a molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resembles the myotoxin Asp49-PLA 2 PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA 2 s. In contrast, the oligomeric structure of BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA 2 from B. jararacussu). Thus, comparison between these structures should add insight into the catalytic and myotoxic activities of bothropic PLA 2 s

  11. Highly Oriented Growth of Catalytically Active Zeolite ZSM‐5 Films with a Broad Range of Si/Al Ratios

    OpenAIRE

    Fu, Donglong; Schmidt, Joel E.; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian; Weckhuysen, Bert M.

    2017-01-01

    Abstract Highly b‐oriented zeolite ZSM‐5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al3+ usually disrupts the orientation of zeolite films. Herein, using structure‐directing agents with hydroxy groups, we demonstrate a new method to prepare highly b‐oriented zeolite ZSM‐5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞)...

  12. Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant

    International Nuclear Information System (INIS)

    Yang, Liuqing; Liu, Xiaoying; Lu, Qiujun; Huang, Na; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2016-01-01

    In this report, carbon-based AuPd bimetallic nanocomposite (AuPd/C NC) was synthesized using carbon dots (C-dots) as the reducing agent and stabilizer by a simple green sequential reduction strategy, without adding other agents. The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like property. The structure and morphology of these nanoparticles were clearly characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The AuPd/C NC catalyst exhibits noticeably higher catalytic activity than Pd and Au nanoparticles in catalysis reduction of 4-nitrophenol (4-NP). Moreover, based on the high peroxidase-like property of AuPd/C NC, a new colorimetric detection method for hydrogen peroxide (H 2 O 2 ) has been designed using 3,3′,5,5′-tetramethyl-benzidine (TMB) as the substrate, which provides a simple and sensitive means to detect H 2 O 2 in wide linear range of 5 μM–500 μM and 500 μM–4 mM with low detection limit of 1.6 μM (S/N = 3). Therefore, the facile synthesis strategy for bimetallic nanoparticles by the mild reductant of carbon dot will provide some new thoughts for preparing of carbon-based metal nanomaterials and expand their application in catalysis and analytical chemistry areas. - Highlights: • Carbon-based AuPd bimetallic nanocomposite was synthesized using carbon dots. • The green sequential reduction strategy synthesis method is simple, green, convenient and effective. • The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like activity. • The AuPd/C NC exhibits noticeably higher catalytic activity in reduction of 4-nitrophenol. • A new colorimetric detection method for hydrogen peroxide based on AuPd/C NC was proposed.

  13. Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liuqing [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Liu, Xiaoying [College of Science, Science and Technological Innovation Platform, Hunan Agricultural University, Hunan, Changsha 410128 (China); Lu, Qiujun; Huang, Na [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Liu, Meiling, E-mail: liumeilingww@126.com [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Zhang, Youyu; Yao, Shouzhuo [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China)

    2016-08-03

    In this report, carbon-based AuPd bimetallic nanocomposite (AuPd/C NC) was synthesized using carbon dots (C-dots) as the reducing agent and stabilizer by a simple green sequential reduction strategy, without adding other agents. The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like property. The structure and morphology of these nanoparticles were clearly characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The AuPd/C NC catalyst exhibits noticeably higher catalytic activity than Pd and Au nanoparticles in catalysis reduction of 4-nitrophenol (4-NP). Moreover, based on the high peroxidase-like property of AuPd/C NC, a new colorimetric detection method for hydrogen peroxide (H{sub 2}O{sub 2}) has been designed using 3,3′,5,5′-tetramethyl-benzidine (TMB) as the substrate, which provides a simple and sensitive means to detect H{sub 2}O{sub 2} in wide linear range of 5 μM–500 μM and 500 μM–4 mM with low detection limit of 1.6 μM (S/N = 3). Therefore, the facile synthesis strategy for bimetallic nanoparticles by the mild reductant of carbon dot will provide some new thoughts for preparing of carbon-based metal nanomaterials and expand their application in catalysis and analytical chemistry areas. - Highlights: • Carbon-based AuPd bimetallic nanocomposite was synthesized using carbon dots. • The green sequential reduction strategy synthesis method is simple, green, convenient and effective. • The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like activity. • The AuPd/C NC exhibits noticeably higher catalytic activity in reduction of 4-nitrophenol. • A new colorimetric detection method for hydrogen peroxide based on AuPd/C NC was proposed.

  14. Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation

    Science.gov (United States)

    Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.

    2018-02-01

    Understanding the nature and effect of the multitude of plasma-surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.

  15. Supported rhodium catalysts for ammonia-borane hydrolysis. Dependence of the catalytic activity on the highest occupied state of the single rhodium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liangbing; Li, Hongliang; Zhang, Wenbo; Zhao, Xiao; Qiu, Jianxiang; Li, Aowen; Zheng, Xusheng; Zeng, Jie [Hefei National Lab. for Physical Sciences at the Microscale, Key Lab. of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei, Anhui(China); Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui (China); Hu, Zhenpeng [School of Physics, Nankai University, Tianjin (China); Si, Rui [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China)

    2017-04-18

    Supported metal nanocrystals have exhibited remarkable catalytic performance in hydrogen generation reactions, which is influenced and even determined by their supports. Accordingly, it is of fundamental importance to determine the direct relationship between catalytic performance and metal-support interactions. Herein, we provide a quantitative profile for exploring metal-support interactions by considering the highest occupied state in single-atom catalysts. The catalyst studied consisted of isolated Rh atoms dispersed on the surface of VO{sub 2} nanorods. It was observed that the activation energy of ammonia-borane hydrolysis changed when the substrate underwent a phase transition. Mechanistic studies indicate that the catalytic performance depended directly on the highest occupied state of the single Rh atoms, which was determined by the band structure of the substrates. Other metal catalysts, even with non-noble metals, that exhibited significant catalytic activity towards NH{sub 3}BH{sub 3} hydrolysis were rationally designed by adjusting their highest occupied states. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Spectrophotometric evaluation of surface morphology dependent catalytic activity of biosynthesized silver and gold nanoparticles using UV–vis spectra: A comparative kinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Ankamwar, Balaprasad, E-mail: bankamwar@yahoo.com [Bio-inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune 411007 (India); Kamble, Vaishali; Sur, Ujjal Kumar [Bio-inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune 411007 (India); Santra, Chittaranjan [Department of Chemistry, Netaji Nagar Day College, Regent Park, Kolkata 700092 (India)

    2016-03-15

    Graphical abstract: - Highlights: • The biosynthesized silver nanoparticles were stable for 6 months and used as effective SERS active substrate. • They are effective catalyst in the chemical reduction of 4-nitrophenol to 4-aminophenol. • Comparative catalytic efficiency of both silver and gold nanoparticles was studied spectrophotometrically. • Our results demonstrate surface morphology dependent catalytic activity of both nanoparticles. - Abstract: The development of eco-friendly and cost-effective synthetic protocol for the preparation of nanomaterials, especially metal nanoparticles is an emerging area of research in nanotechnology. These metal nanoparticles, especially silver can play a crucial role in various catalytic reactions. The biosynthesized silver nanoparticles described here was very stable up to 6 months and can be further exploited as an effective catalyst in the chemical reduction of 4-nitrophenol to 4-aminophenol. The silver nanoparticles were utilized as an efficient surface-enhanced Raman scattering (SERS) active substrate using Rhodamine 6G as Raman probe molecule. We have also carried out systematic comparative studies on the catalytic efficiency of both silver and gold nanoparticles using UV–vis spectra to monitor the above reaction spectrophotometrically. We find that the reaction follows pseudo-first order kinetics and the catalytic activity can be explained by a simple model based on Langmuir–Hinshelwood mechanism for heterogeneous catalysis. We also find that silver nanoparticles are more efficient as a catalyst compare to gold nanoparticles in the reduction of 4-nitrophenol to 4-aminophenol, which can be explained by the morphology of the nanoparticles as determined by transmission electron microscopy.

  17. Spectrophotometric evaluation of surface morphology dependent catalytic activity of biosynthesized silver and gold nanoparticles using UV–vis spectra: A comparative kinetic study

    International Nuclear Information System (INIS)

    Ankamwar, Balaprasad; Kamble, Vaishali; Sur, Ujjal Kumar; Santra, Chittaranjan

    2016-01-01

    Graphical abstract: - Highlights: • The biosynthesized silver nanoparticles were stable for 6 months and used as effective SERS active substrate. • They are effective catalyst in the chemical reduction of 4-nitrophenol to 4-aminophenol. • Comparative catalytic efficiency of both silver and gold nanoparticles was studied spectrophotometrically. • Our results demonstrate surface morphology dependent catalytic activity of both nanoparticles. - Abstract: The development of eco-friendly and cost-effective synthetic protocol for the preparation of nanomaterials, especially metal nanoparticles is an emerging area of research in nanotechnology. These metal nanoparticles, especially silver can play a crucial role in various catalytic reactions. The biosynthesized silver nanoparticles described here was very stable up to 6 months and can be further exploited as an effective catalyst in the chemical reduction of 4-nitrophenol to 4-aminophenol. The silver nanoparticles were utilized as an efficient surface-enhanced Raman scattering (SERS) active substrate using Rhodamine 6G as Raman probe molecule. We have also carried out systematic comparative studies on the catalytic efficiency of both silver and gold nanoparticles using UV–vis spectra to monitor the above reaction spectrophotometrically. We find that the reaction follows pseudo-first order kinetics and the catalytic activity can be explained by a simple model based on Langmuir–Hinshelwood mechanism for heterogeneous catalysis. We also find that silver nanoparticles are more efficient as a catalyst compare to gold nanoparticles in the reduction of 4-nitrophenol to 4-aminophenol, which can be explained by the morphology of the nanoparticles as determined by transmission electron microscopy.

  18. Electroless preparation and characterization of Ni-B nanoparticles supported on multi-walled carbon nanotubes and their catalytic activity towards hydrogenation of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zheng; Li, Zhilin [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Feng, E-mail: wangf@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Liu, Jingjun; Ji, Jing [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Park, Ki Chul [Institute of Carbon Science and Technology (ICST), Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan); Endo, Morinobu [Department of Electrical and Electronic Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan)

    2012-02-15

    Graphical abstract: The MWCNT/Ni-B catalyst has been successfully prepared by an electroless deposition process. The Ni-B nanoparticles on the supporter are amorphous and are well-distributed. The catalytic conversion towards hydrogenation of styrene shows excellent catalytic activity of the obtained materials. Highlights: Black-Right-Pointing-Pointer A two-step treatment of MWCNTs enabled the homogeneous growth of Ni-B nanoparticles. Black-Right-Pointing-Pointer Ni-B nanoparticles were amorphous with an average size of 60 nm. Black-Right-Pointing-Pointer There were electron transfer between Ni and B. Black-Right-Pointing-Pointer The catalyst had excellent catalytic activity towards hydrogenation of styrene. -- Abstract: Nickel-boron (Ni-B) nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully synthesized through an electroless deposition process using the plating bath with sodium borohydride as a reducing agent. The structural and morphological analyses using field-emission scanning electron microscopy, X-ray diffractometry and high-resolution transmission electron microscopy have shown that the Ni-B nanoparticles deposited on the sidewalls of MWCNTs are fine spheres comprised of amorphous structure with the morphologically unique fine-structure like flowers, and homogenously dispersed with a narrow particle size distribution centered at around 60 nm diameter. The catalytic activity of MWCNT/Ni-B nanoparticles was evaluated with respect to hydrogenation of styrene. The hydrogenation catalyzed by MWCNT-supported Ni-B nanoparticles has been found to make styrene selectively converted into ethylbenzene. The highest conversion reaches 99.8% under proper reaction conditions, which demonstrates the high catalytic activity of MWCNT/Ni-B nanoparticles.

  19. Facile synthesis of polypyrrole functionalized nickel foam with catalytic activity comparable to Pt for the poly-generation of hydrogen and electricity

    Science.gov (United States)

    Tang, Tiantian; Li, Kan; Shen, Zhemin; Sun, Tonghua; Wang, Yalin; Jia, Jinping

    2016-01-01

    Polypyrrole functionalized nickel foam is facilely prepared through the potentiostatic electrodeposition. The PPy-functionalized Ni foam functions as a hydrogen-evolution cathode in a rotating disk photocatalytic fuel cell, in which hydrogen energy and electric power are generated by consuming organic wastes. The PPy-functionalized Ni foam cathode exhibits stable catalytic activities after thirteen continuous runs. Compared with net or plate structure, the Ni foam with a unique three-dimensional reticulate structure is conducive to the electrodeposition of PPy. Compared with Pt-group electrode, PPy-coated Ni foam shows a satisfactory catalytic performance for the H2 evolution. The combination of PPy and Ni forms a synergistic effect for the rapid trapping and removal of proton from solution and the catalytic reduction of proton to hydrogen. The PPy-functionalized Ni foam could be applied in photocatalytic and photoelectrochemical generation of H2. In all, we report a low cost, high efficient and earth abundant PPy-functionalized Ni foam with a satisfactory catalytic activities comparable to Pt for the practical application of poly-generation of hydrogen and electricity.

  20. Impact of orientation of carbohydrate binding modules family 22 and 6 on the catalytic activity of Thermotoga maritima xylanase XynB.

    Science.gov (United States)

    Tajwar, Razia; Shahid, Saher; Zafar, Rehan; Akhtar, Muhammad Waheed

    2017-11-01

    Xylanase XynB of the hyperthermophile Thermotoga maritima, which belongs to glycoside hydrolase family 10 (GH10), does not have an associated carbohydrate binding module (CBM) in the native state. CBM6 and CBM22 from a thermophile Clostridium thermocellum were fused to the catalytic domain of XynB (XynB-C) to determine the effects on activity and other properties. XynB-B22C and XynB-CB22, produced by fusing CBM22 to the N- and C-terminal of XynB-C, showed 1.7- and 3.24-fold increase in activity against the insoluble birchwood xylan, respectively. Similarly, CBM6 when attached to the C-terminal of XynB-C resulted in 2.0-fold increase in activity, whereas its attachment to the N-terminal did not show any increase of activity. XynB-B22C and XynB-CB22 retained all the activity, whereas XynB-B6C and XynB-CB6 lost 17 and 11% of activity, respectively, at 60°C for 4h. Thermostability data and the secondary structure contents obtained by molecular modelling are in agreement with the data from circular dichroism analysis. Molecular modelling analysis showed that the active site residues of the catalytic domain and the binding residues of CBM6 and CBM22 were located on the surface of molecule, except XynB-B6C, where the binding residues were found somewhat buried. In the case of XynB-CB22, the catalytic and the binding residues seem to be located favorably adjacent to each other, thus showing higher increase in activity. This study shows that the active site residues of the catalytic domain and the binding residues of the CBM are arranged in a unique fashion, not reported before. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Facile synthesis of pristine graphene-palladium nanocomposites with extraordinary catalytic activities using swollen liquid crystals

    Science.gov (United States)

    Vats, T.; Dutt, S.; Kumar, R.; Siril, P. F.

    2016-09-01

    Amazing conductivity, perfect honeycomb sp2 arrangement and the high theoretical surface area make pristine graphene as one of the best materials suited for application as catalyst supports. Unfortunately, the low reactivity of the material makes the formation of nanocomposite with inorganic materials difficult. Here we report an easy approach to synthesize nanocomposites of pristine graphene with palladium (Pd-G) using swollen liquid crystals (SLCs) as a soft template. The SLC template gives the control to deposit very small Pd particles of uniform size on G as well as RGO. The synthesized nanocomposite (Pd-G) exhibited exceptionally better catalytic activity compared with Pd-RGO nanocomposite in the hydrogenation of nitrophenols and microwave assisted C-C coupling reactions. The catalytic activity of Pd-G nanocomposite during nitrophenol reduction reaction was sixteen times higher than Pd nanoparticles and more than double than Pd-RGO nanocomposite. The exceptionally high activity of pristine graphene supported catalysts in the organic reactions is explained on the basis of its better pi interacting property compared to partially reduced RGO. The Pd-G nanocomposite showed exceptional stability under the reaction conditions as it could be recycled upto a minimum of 15 cycles for the C-C coupling reactions without any loss in activity.

  2. Catalytic performance of activated carbon supported cobalt catalyst for CO2 reforming of CH4.

    Science.gov (United States)

    Zhang, Guojie; Su, Aiting; Du, Yannian; Qu, Jiangwen; Xu, Ying

    2014-11-01

    Syngas production by CO2 reforming of CH4 in a fixed bed reactor was investigated over a series of activated carbon (AC) supported Co catalysts as a function of Co loading (between 15 and 30wt.%) and calcination temperature (Tc=300, 400 or 500°C). The catalytic performance was assessed through CH4 and CO2 conversions and long-term stability. XRD and SEM were used to characterize the catalysts. It was found that the stability of Co/AC catalysts was strongly dependent on the Co loading and calcination temperature. For the loadings (25wt.% for Tc=300°C), stable activities have been achieved. The loading of excess Co (>wt.% 25) causes negative effects not only on the performance of the catalysts but also on the support surface properties. In addition, the experiment showed that ultrasound can enhance and promote dispersion of the active metal on the carrier, thus improving the catalytic performance of the catalyst. The catalyst activity can be long-term stably maintained, and no obvious deactivation has been observed in the first 2700min. After analyzing the characteristics, a reaction mechanism for CO2 reforming of CH4 over Co/AC catalyst was proposed. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Co-ordinated research activities: Annual report and statistics for 2003

    International Nuclear Information System (INIS)

    2004-07-01

    Article III of the IAEA Statute authorises the Agency to encourage and assist research on, and development and practical application of, atomic energy for peaceful purposes throughout the world and to foster the exchange of scientific and technical information, as well as the exchange of scientists in the field of peaceful uses of atomic energy. The research supported by the Agency is within the framework of the Agency's programmes, sub-programmes and projects that are listed in the approved Programme and Budget of the Agency. These co-ordinated research activities are normally implemented through Co-ordinated Research Projects (CRPs) that bring together research institutes in both developing and developed Member States to collaborate on the research topic of interest. The Agency may also respond to proposals from institutes for participation in the research activities by awarding individual contracts not related to a CRP. A small portion of available funds is used to finance individual projects, which deal with topics covered by the Agency's scientific programme. The Agency also supports several Doctoral CRPs. This new, optional type of CRP has been designed to strengthen promotion of research on nuclear technologies in developing Member States through pair building between agreement holders and contract holders. These CRPs include a PhD training programme at the contract holders' institutions. Three doctoral CRPs are currently being carried out by the Human Health programme. Further information on the Agency's co-ordinated research activities, including current information on CRPs and programme areas supported, information on policies and procedures and the administration of the activities is contained in the Agency's website at http://www-crp.iaea.org. The co-ordinated research activities reported in this document are conducted in support of the following Agency programmes: Nuclear Power; Nuclear Fuel Cycle and Material Technologies; Analysis for Sustainable

  4. Co-ordinated research activities: Annual report and statistics for 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-15

    Article III of the IAEA Statute authorises the Agency to encourage and assist research on, and development and practical application of, atomic energy for peaceful purposes throughout the world and to foster the exchange of scientific and technical information, as well as the exchange of scientists in the field of peaceful uses of atomic energy. The research supported by the Agency is within the framework of the Agency's programmes, sub-programmes and projects that are listed in the approved Programme and Budget of the Agency. These co-ordinated research activities are normally implemented through Co-ordinated Research Projects (CRPs) that bring together research institutes in both developing and developed Member States to collaborate on the research topic of interest. The Agency may also respond to proposals from institutes for participation in the research activities by awarding individual contracts not related to a CRP. A small portion of available funds is used to finance individual projects, which deal with topics covered by the Agency's scientific programme. The Agency also supports several Doctoral CRPs. This new, optional type of CRP has been designed to strengthen promotion of research on nuclear technologies in developing Member States through pair building between agreement holders and contract holders. These CRPs include a PhD training programme at the contract holders' institutions. Three doctoral CRPs are currently being carried out by the Human Health programme. Further information on the Agency's co-ordinated research activities, including current information on CRPs and programme areas supported, information on policies and procedures and the administration of the activities is contained in the Agency's website at http://www-crp.iaea.org. The co-ordinated research activities reported in this document are conducted in support of the following Agency programmes: Nuclear Power; Nuclear Fuel Cycle and Material Technologies; Analysis for Sustainable

  5. Synthesis, characterization and catalytic activity of two novel cis - dioxovanadium(V) complexes: [VO{sub 2}(L)] and [VO{sub 2}(HLox)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Natalia M.L.; Chacon, Eluzir P.; Resende, Jackson A.L.C.; Carneiro, Jose Walkimar de M.; Lanznaster, Mauricio, E-mail: mlanz@vm.uff.b [Universidade Federal Fluminense (IQ/UFF), Niteroi, RJ (Brazil). Inst. de Quimica; Pinheiro, Carlos B. [Universidade Federal de Minas Gerais (DF/UFMG), Belo Horizonte (Brazil). Dept. de Fisica; Fernandez, Tatiana L.; Scarpellini, Marciela [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica

    2011-07-01

    Two novel complexes, [VO{sub 2}(L)] (1) and [VO{sub 2}(HLox)] (2), were synthesized and characterized by IV, UV-Vis and NMR spectroscopy, cyclic voltammetry, elemental analysis and X-ray diffraction. The synthesis of a new ligand, H{sub 2}Lox, is also described. Complexes 1 and 2 were obtained by the reaction of [VO(acac){sub 2}] with the ligands HL and H{sub 2}Lox, respectively. Alternatively, 2 was also obtained by the reaction of HL with [VO(acac)2] in the presence of hydroxylamine, and by the reaction of 1 with hydroxylamine. Crystallographic data show that complexes 1 and 2 have similar molecular structures, in which the cis-dioxovanadium(V) center is coordinated to L- or HLox{sup -}, respectively, in a distorted octahedral environment. The catalytic activity of these compounds towards cyclohexane oxidation was evaluated using H{sub 2}O{sub 2} and t-BuOOH as oxidants. Both complexes presented > 70% selectivity for cyclohexylhydroperoxide formation. B3LYP/6.31G(d) calculations were used to confirm the geometry and to help assign the electronic spectra. (author)

  6. Formulation and catalytic performance of MOF-derived Fe@C/Al composites for high temperature Fischer–Tropsch synthesis

    KAUST Repository

    Oar-Arteta, Lide; Valero-Romero, Marí a José ; Wezendonk, Tim; Kapteijn, Freek; Gascon, Jorge

    2017-01-01

    High productivity towards C-2-C-4 olefins together with high catalyst stability are key for optimum operation in high temperature Fischer-Tropsch synthesis (HT-FTS). Here, we report the fabrication of Fe@C/Al composites that combine both the outstanding catalytic properties of the Fe-BTC MOF-derived Fe catalyst and the excellent mechanical resistance and textural properties provided by the inorganic AlOOH binder. The addition of AlOOH to Fe-BTC followed by pyrolysis in N-2 atmosphere at 500 degrees C results in composites with a large mesoporosity, a high Fe/Fe3O4 ratio, 10-35 nm average Fe crystallite size and coordinatively unsaturated Al3+ sites. In catalytic terms, the addition of AlOOH binder gives rise to enhanced C-2-C-4 selectivity and catalyst mechanical stability in HT-FTS, but at high Al contents the activity decreases. Altogether, the productivity of these Fe@C/Al composites is well above most known Fe catalysts for this process.

  7. A PEG/copper(i) halide cluster as an eco-friendly catalytic system for C-N bond formation.

    Science.gov (United States)

    Li, Cheng-An; Ji, Wei; Qu, Jian; Jing, Su; Gao, Fei; Zhu, Dun-Ru

    2018-05-22

    The catalytic activities of eight copper(i) halide clusters assembled from copper(i) halide and ferrocenyltelluroethers, 1-8, were investigated in C-N formation under various conditions. A catalytic procedure using poly(ethylene glycol) (PEG-400) as a greener alternative organic solvent has been developed. The PEG-400/5 system can achieve 99% targeted yield with a mild reaction temperature and short reaction time. After the isolation of the products by extraction with diethyl ether, this PEG-400/cluster system could be easily recycled. Spectroscopic studies elucidate a stepwise mechanism: firstly, proton-coupled electron transfer (PCET) involving the transfer of an electron from Cu+ and a proton from imidazole results in the formation of a labile penta-coordinated Cu2+ and aryl radical; the following effective electron transfer from the ferrocene unit reduces Cu2+ and forms the target product; finally, the ferrocenium unit is reduced by the I- anion. The merits of this eco-friendly synthesis are the efficient utilization of reagents and easy recyclability.

  8. Formulation and catalytic performance of MOF-derived Fe@C/Al composites for high temperature Fischer–Tropsch synthesis

    KAUST Repository

    Oar-Arteta, Lide

    2017-11-15

    High productivity towards C-2-C-4 olefins together with high catalyst stability are key for optimum operation in high temperature Fischer-Tropsch synthesis (HT-FTS). Here, we report the fabrication of Fe@C/Al composites that combine both the outstanding catalytic properties of the Fe-BTC MOF-derived Fe catalyst and the excellent mechanical resistance and textural properties provided by the inorganic AlOOH binder. The addition of AlOOH to Fe-BTC followed by pyrolysis in N-2 atmosphere at 500 degrees C results in composites with a large mesoporosity, a high Fe/Fe3O4 ratio, 10-35 nm average Fe crystallite size and coordinatively unsaturated Al3+ sites. In catalytic terms, the addition of AlOOH binder gives rise to enhanced C-2-C-4 selectivity and catalyst mechanical stability in HT-FTS, but at high Al contents the activity decreases. Altogether, the productivity of these Fe@C/Al composites is well above most known Fe catalysts for this process.

  9. Precursor type affecting surface properties and catalytic activity of sulfated zirconia

    Directory of Open Access Journals (Sweden)

    Zarubica Aleksandra R.

    2007-01-01

    Full Text Available Zirconium-hydroxide precursor samples are synthesized from Zr-hydroxide, Zr-nitrate, and Zr-alkoxide, by precipitation/impregnation, as well as by a modified sol-gel method. Precursor samples are further sulphated for the intended SO4 2- content of 4 wt.%, and calcined at 500-700oC. Differences in precursors’ origin and calcination temperature induce the incorporation of SO4 2- groups into ZrO2 matrices by various mechanisms. As a result, different amounts of residual sulphates are coupled with other structural, as well as surface properties, resulting in various catalytic activities of sulphated zirconia samples. Catalyst activity and selectivity are a complex synergistic function of tetragonal phase fraction, sulphates contents, textural and surface characteristics. Superior activity of SZ of alkoxide origin can be explained by a beneficial effect of meso-pores owing to a better accommodation of coke deposits.

  10. TET2 Regulates Mast Cell Differentiation and Proliferation through Catalytic and Non-catalytic Activities

    Directory of Open Access Journals (Sweden)

    Sara Montagner

    2016-05-01

    Full Text Available Summary: Dioxygenases of the TET family impact genome functions by converting 5-methylcytosine (5mC in DNA to 5-hydroxymethylcytosine (5hmC. Here, we identified TET2 as a crucial regulator of mast cell differentiation and proliferation. In the absence of TET2, mast cells showed disrupted gene expression and altered genome-wide 5hmC deposition, especially at enhancers and in the proximity of downregulated genes. Impaired differentiation of Tet2-ablated cells could be relieved or further exacerbated by modulating the activity of other TET family members, and mechanistically it could be linked to the dysregulated expression of C/EBP family transcription factors. Conversely, the marked increase in proliferation induced by the loss of TET2 could be rescued exclusively by re-expression of wild-type or catalytically inactive TET2. Our data indicate that, in the absence of TET2, mast cell differentiation is under the control of compensatory mechanisms mediated by other TET family members, while proliferation is strictly dependent on TET2 expression. : The impact of TET enzymes on gene expression and cell function is incompletely understood. Montagner et al. investigate the TET-mediated regulation of mast cell differentiation and function, uncover transcriptional pathways regulated by TET2, and identify both enzymatic activity-dependent and -independent functions of TET2. Keywords: differentiation, DNA hydroxymethylation, epigenetics, mast cells, proliferation, TET

  11. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    International Nuclear Information System (INIS)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail

    2012-01-01

    Graphical abstract: NiWO 4 nanoparticles were prepared via precipitation technique. Experimental parameters of procedure were optimized statistically. Highlights: ► NiWO 4 spherical nanoparticles were synthesized via direct precipitation method. ► Taguchi robust design was used for optimization of synthesis reaction parameters. ► Composition and structural properties of NiWO 4 nanoparticles were characterized. ► EDAX, XRD, SEM, FT-IR, UV–vis and photoluminescence techniques were employed. ► Catalytic activity of the product in a cyclo-addition reaction was investigated. - Abstract: Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO 4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO 4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO 4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV–vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  12. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pourmortazavi, Seied Mahdi, E-mail: pourmortazavi@yahoo.com [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Rahimi-Nasrabadi, Mehdi, E-mail: rahiminasrabadi@gmail.com [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Khalilian-Shalamzari, Morteza [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh [Islamic Azad University, Varamin Pishva Branch, Varamin (Iran, Islamic Republic of); Omrani, Ismail [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of)

    2012-12-15

    Graphical abstract: NiWO{sub 4} nanoparticles were prepared via precipitation technique. Experimental parameters of procedure were optimized statistically. Highlights: Black-Right-Pointing-Pointer NiWO{sub 4} spherical nanoparticles were synthesized via direct precipitation method. Black-Right-Pointing-Pointer Taguchi robust design was used for optimization of synthesis reaction parameters. Black-Right-Pointing-Pointer Composition and structural properties of NiWO{sub 4} nanoparticles were characterized. Black-Right-Pointing-Pointer EDAX, XRD, SEM, FT-IR, UV-vis and photoluminescence techniques were employed. Black-Right-Pointing-Pointer Catalytic activity of the product in a cyclo-addition reaction was investigated. - Abstract: Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO{sub 4} nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO{sub 4} particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO{sub 4} were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV

  13. Catalytic oxidative desulfurization of diesel utilizing hydrogen peroxide and functionalized-activated carbon in a biphasic diesel-acetonitrile system

    Energy Technology Data Exchange (ETDEWEB)

    Haw, Kok-Giap; Bakar, Wan Azelee Wan Abu; Ali, Rusmidah; Chong, Jiunn-Fat [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kadir, Abdul Aziz Abdul [Department of Petroleum Engineering, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2010-09-15

    This paper presents the development of granular functionalized-activated carbon as catalysts in the catalytic oxidative desulfurization (Cat-ODS) of commercial Malaysian diesel using hydrogen peroxide as oxidant. Granular functionalized-activated carbon was prepared from oil palm shell using phosphoric acid activation method and carbonized at 500 C and 700 C for 1 h. The activated carbons were characterized using various analytical techniques to study the chemistry underlying the preparation and calcination treatment. Nitrogen adsorption/desorption isotherms exhibited the characteristic of microporous structure with some contribution of mesopore property. The Fourier Transform Infrared Spectroscopy results showed that higher activation temperature leads to fewer surface functional groups due to thermal decomposition. Micrograph from Field Emission Scanning Electron Microscope showed that activation at 700 C creates orderly and well developed pores. Furthermore, X-ray Diffraction patterns revealed that pyrolysis has converted crystalline cellulose structure of oil palm shell to amorphous carbon structure. The influence of the reaction temperature, the oxidation duration, the solvent, and the oxidant/sulfur molar ratio were examined. The rates of the catalytic oxidative desulfurization reaction were found to increase with the temperature, and H{sub 2}O{sub 2}/S molar ratio. Under the best operating condition for the catalytic oxidative desulfurization: temperature 50 C, atmospheric pressure, 0.5 g activated carbon, 3 mol ratio of hydrogen peroxide to sulfur, 2 mol ratio of acetic acid to sulfur, 3 oxidation cycles with 1 h for each cycle using acetonitrile as extraction solvent, the sulfur content in diesel was reduced from 2189 ppm to 190 ppm with 91.3% of total sulfur removed. (author)

  14. Boosting catalytic activity of metal nanoparticles for 4-nitrophenol reduction: Modification of metal naoparticles with poly(diallyldimethylammonium chloride)

    Energy Technology Data Exchange (ETDEWEB)

    You, Jyun-Guo; Shanmugam, Chandirasekar [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); Liu, Yao-Wen; Yu, Cheng-Ju [Department of Applied Physics and Chemistry, University of Taipei, Taiwan (China); Tseng, Wei-Lung, E-mail: tsengwl@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan (China)

    2017-02-15

    Highlights: • The choice of capping ligand determines catalytic activity of metal nanocatalysts. • PDDA-capped metal nanoparticles electrostatically interact with 4-NP and BH4{sup −}. • PDDA-capped metal nanoparticles have good recyclability and large scalability. • PDDA-capped Pd nanoparticles show the highest rate constant and activity parameter. - Abstract: Most of the previously reported studies have focused on the change in the size, morphology, and composition of metal nanocatalysts for improving their catalytic activity. Herein, we report poly(diallyldimethylammonium chloride) [PDDA]-stabilized nanoparticles (NPs) of platinum (Pt) and palladium (Pd) as highly active and efficient catalysts for hydrogenation of 4-nitrophenol (4-NP) in the presence of NaBH4. PDDA-stabilized Pt and Pd NPs possessed similar particle size and same facet with citrate-capped Pt and Pd NPs, making this study to investigate the inter-relationship between catalytic activity and surface ligand without the consideration of the effects of particle size and facet. Compared to citrate-capped Pt and Pd NPs, PDDA-stabilized Pt and Pd NPs exhibited excellent pH and salt stability. PDDA could serve as an electron acceptor for metal NPs to produce the net positive charges on the metal surface, which provide strong electrostatic attraction with negatively charged nitrophenolate and borohydride ions. The activity parameter and rate constant of PDDA-stabilized metal NPs were higher than those of citrate-capped metal NPs. Compared to the previously reported Pd nanomaterials for the catalysis of NaBH4-mediated reduction of 4-NP, PDDA-stabilized Pd NPs exhibited the extremely high activity parameter (195 s{sup −1} g{sup −1}) and provided excellent scalability and reusability.

  15. Large stability and high catalytic activities of sub-nm metal (0) clusters: implications into the nucleation and growth theory.

    Science.gov (United States)

    Piñeiro, Yolanda; Buceta, David; Calvo, Javier; Huseyinova, Shahana; Cuerva, Miguel; Pérez, Ángel; Domínguez, Blanca; López-Quintela, M Arturo

    2015-07-01

    Clusters are stable catalytic species, which are produced during the synthesis of nanoparticles (NPs). Their existence contradicts the thermodynamic principles used to explain the formation of NPs by the classical nucleation and growth theories (NGTs). Using chemical and electrochemical methods we will show that depending on the experimental conditions one can produce either Ag clusters or Ag NPs. Moreover, using already prepared Ag clusters one can observe the disappearance of the usual induction period observed for the kinetics of NP formation, indicating that clusters catalyze the formation of NPs. Taking these data together with some previous examples of cluster-catalyzed anisotropic growth, we derived a qualitative approach to include the catalytic activities of clusters into the formation of NPs, which is incorporated into the NGT. Some qualitative conclusions about the main experimental parameters, which affect the formation of clusters versus NPs, as well as the catalytic mechanism versus the non-catalytic one, are also described. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Catalytic Activities of Noble Metal Phosphides for Hydrogenation and Hydrodesulfurization Reactions

    Directory of Open Access Journals (Sweden)

    Yasuharu Kanda

    2018-04-01

    Full Text Available In this work, the development of a highly active noble metal phosphide (NMXPY-based hydrodesulfurization (HDS catalyst with a high hydrogenating ability for heavy oils was studied. NMXPY catalysts were obtained by reduction of P-added noble metals (NM-P, NM: Rh, Pd, Ru supported on SiO2. The order of activities for the hydrogenation of biphenyl was Rh-P > NiMoS > Pd-P > Ru-P. This order was almost the same as that of the catalytic activities for the HDS of dibenzothiophene. In the HDS of 4,6-dimethyldibenzothiophene (4,6-DMDBT, the HDS activity of the Rh-P catalyst increased with increasing reaction temperature, but the maximum HDS activity for the NiMoS catalyst was observed at 270 °C. The Rh-P catalyst yielded fully hydrogenated products with high selectivity compared with the NiMoS catalyst. Furthermore, XRD analysis of the spent Rh-P catalysts revealed that the Rh2P phase possessed high sulfur tolerance and resistance to sintering.

  17. Plasma-catalytic reforming of ethanol: influence of air activation rate and reforming temperature

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Chernyak, V.Ya.; Fedirchuk, I.I.; Demchina, V.P.; Bortyshevsky, V.A.; Korzh, R.V.

    2016-01-01

    This paper presents the study of the influence that air activation rate and reforming temperature have on the gaseous products composition and conversion efficiency during the plasma-catalytic reforming of ethanol. The analysis of product composition showed that the conversion efficiency of ethanol has a maximum in the studied range of reforming temperatures. Researched system provided high reforming efficiency and high hydrogen energy yield at the lower temperatures than traditional conversion technologies

  18. Reaction Coordinate Leading to H2 Production in [FeFe]-Hydrogenase Identified by Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory.

    Science.gov (United States)

    Pelmenschikov, Vladimir; Birrell, James A; Pham, Cindy C; Mishra, Nakul; Wang, Hongxin; Sommer, Constanze; Reijerse, Edward; Richers, Casseday P; Tamasaku, Kenji; Yoda, Yoshitaka; Rauchfuss, Thomas B; Lubitz, Wolfgang; Cramer, Stephen P

    2017-11-22

    [FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (H hyd ) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using 57 Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that H hyd is the catalytic state one step prior to H 2 formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H 2 bond formation by [FeFe]-hydrogenases.

  19. Synthesis of monodisperse palladium nanocubes and their catalytic activity for methanol electrooxidation

    Science.gov (United States)

    Ding, Hao; Shi, Xue-Zhao; Shen, Cheng-Min; Hui, Chao; Xu, Zhi-Chuan; Li, Chen; Tian, Yuan; Wang, Deng-Ke; Gao, Hong-Jun

    2010-10-01

    The single crystalline palladium nanocubes with an average size of 7 nm were prepared in the presence of poly (vinyl pyrrolidone) (PVP) and KBr using the polyol method. The as-prepared Pd nanocubes were highly uniform in both size and shape. The ordered packing structures including monolayer and multilayer can be fabricated via the rate-controlled evaporation of solution solvent. The electrochemical catalytic activity of these Pd nanocubes towards methanol oxidation was found to be higher than that of spherical Pd nanoparticles of similar size.

  20. Theophylline-assisted, eco-friendly synthesis of PtAu nanospheres at reduced graphene oxide with enhanced catalytic activity towards Cr(VI) reduction.

    Science.gov (United States)

    Hu, Ling-Ya; Chen, Li-Xian; Liu, Meng-Ting; Wang, Ai-Jun; Wu, Lan-Ju; Feng, Jiu-Ju

    2017-05-01

    Theophylline as a naturally alkaloid is commonly employed to treat asthma and chronic obstructive pulmonary disorder. Herein, a facile theophylline-assisted green approach was firstly developed for synthesis of PtAu nanospheres/reduced graphene oxide (PtAu NSs/rGO), without any surfactant, polymer, or seed involved. The obtained nanocomposites were applied for the catalytic reduction and removal of highly toxic chromium (VI) using formic acid as a model reductant at 50°C, showing the significantly enhanced catalytic activity and improved recyclability when compared with commercial Pt/C (50%) and home-made Au nanocrystals supported rGO (Au NCs/rGO). It demonstrates great potential applications of the catalyst in wastewater treatment and environmental protection. The eco-friendly route provides a new platform to fabricate other catalysts with enhanced catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Novel Metal Nanomaterials and Their Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Jiaqing Wang

    2015-09-01

    Full Text Available In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe2O3 nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts and their new catalytic applications in our group, to establish heterogeneous catalytic system in “green” environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials’ development that leads to new opportunities in nanocatalysis.

  2. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    -ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation......Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X...

  3. Influence of preparation conditions of hollow silica–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Seki, Ayano [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-03-05

    Highlights: • We study influence of preparation conditions on activity of hollow silica–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} increases with increase of Si+Ni content. • The particle size distribution affects the activity and reducibility of active nickel species. • The amount of PS residue in the hollow spheres decreases by treatment of as-prepared sample in toluene. -- Abstract: In this paper, we investigated influence of preparation conditions of hollow silica–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane. In the preparation method of this study, when silica–nickel composite shells were coated on polystyrene templates by the sol–gel method using L(+)-arginine as the promoter for the reaction to form silica–nickel composite shell, the polystyrene templates were dissolved subsequently, even synchronously, in the same medium to form hollow spheres. The as-prepared silica–nickel composite spheres were characterized by transmission electron microscopy and scanning electron microscopy. The effects of Si+Ni content on the morphology were systematically evaluated. All the as-prepared hollow silica–nickel composite spheres have the similar morphology as identified by SEM and TEM measurement. Homogeneity of the hollow silica–nickel composite spheres increases with the increase in the Si+Ni content as shown by the laser diffraction particle size analysis. The catalytic activities of the hollow silica–nickel composite spheres for hydrolytic dehydrogenation of ammonia borane prepared with different Si+Ni contents were compared. The catalytic activity for the hydrogen evolution in the presence of the hollow spheres increases with the increase of Si+Ni content. The results of FTIR spectra of the hollow silica–nickel composite spheres indicate that a certain amount of residual PS templates exists in hollow silica

  4. synthesis, characterization, electrical and catalytic studies of some

    African Journals Online (AJOL)

    B. S. Chandravanshi

    catalytic activity of the VO(IV) and Mn(III) complexes have been tested in the epoxidation reaction of styrene ... Vanadyl sulfate pentahydrate, chromium chloride hexahydrate, anhydrous ferric ..... The catalytic oxidation of styrene gives the products styrene oxide, benzaldehyde, benzoic acid, ... bond via a radical mechanism.

  5. Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation

    Directory of Open Access Journals (Sweden)

    Feng Lili

    2011-01-01

    Full Text Available Abstract In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future.

  6. The Impact of the Polymer Chain Length on the Catalytic Activity of Poly(N-vinyl-2-pyrrolidone)-supported Gold Nanoclusters.

    Science.gov (United States)

    Haesuwannakij, Setsiri; Kimura, Tetsunari; Furutani, Yuji; Okumura, Kazu; Kokubo, Ken; Sakata, Takao; Yasuda, Hidehiro; Yakiyama, Yumi; Sakurai, Hidehiro

    2017-08-29

    Poly(N-vinyl-2-pyrrolidone) (PVP) of varying molecular weight (M w  = 40-360 kDa) were employed to stabilize gold nanoclusters of varying size. The resulting Au:PVP clusters were subsequently used as catalysts for a kinetic study on the sized-dependent aerobic oxidation of 1-indanol, which was monitored by time-resolved in situ infrared spectroscopy. The obtained results suggest that the catalytic behaviour is intimately correlated to the size of the clusters, which in turn depends on the molecular weight of the PVPs. The highest catalytic activity was observed for clusters with a core size of ~7 nm, and the size of the cluster should increase with the molecular weight of the polymer in order to maintain optimal catalytic activity. Studies on the electronic and colloid structure of these clusters revealed that the negative charge density on the cluster surface also strongly depends on the molecular weight of the stabilizing polymers.

  7. Catalytic oxidation of sulfide in drinking water treatment: activated carbon as catalyst; Katalytische Oxidation von Sulfid bei der Trinkwasseraufbereitung: Aktivkohle als Katalysator

    Energy Technology Data Exchange (ETDEWEB)

    Hultsch, V; Grischek, T; Wolff, D; Worch, E [Technische Univ. Dresden (Germany). Inst. fuer Wasserchemie; Gun, J [Hebrew Univ. of Jerusalem (Israel). Div. of Environmental Sciences, Fredy and Nadine Herrmann School of Applied Science

    2001-07-01

    In regions with warm climate and limited water resources high sulfide concentrations in groundwater can cause problems during drinking water treatment. Aeration of the raw water is not always sufficient to ensure the hydrogen sulfide concentration below the odour threshold value for hydrogen sulfide. As an alternative, activated carbon can be used as a catalyst for sulfide oxidation of raw water. The use of different types of activated carbon was investigated in kinetic experiments. Both Catalytic Carbon from Calgon Carbon and granulated activated carbon from Norit showed high catalytic activities. The results of the experiments are discussed with regard to the practical use of activated carbon for the elimination of hydrogen sulfide during drinking water treatment. (orig.)

  8. Shape-dependent plasma-catalytic activity of ZnO nanomaterials coated on porous ceramic membrane for oxidation of butane.

    Science.gov (United States)

    Sanjeeva Gandhi, M; Mok, Young Sun

    2014-12-01

    In order to explore the effects of the shape of ZnO nanomaterials on the plasma-catalytic decomposition of butane and the distribution of byproducts, three types of ZnO nanomaterials (nanoparticles (NPs), nanorods (NRs) and nanowires (NWs)) were prepared and coated on multi-channel porous alumina ceramic membrane. The structures and morphologies of the nanomaterials were confirmed by X-ray diffraction method and scanning electron microscopy. The observed catalytic activity of ZnO in the oxidative decomposition of butane was strongly shape-dependent. It was found that the ZnO NWs exhibited higher catalytic activity than the other nanomaterials and could completely oxidize butane into carbon oxides (COx). When using the bare or ZnO NPs-coated ceramic membrane, several unwanted partial oxidation and decomposition products like acetaldehyde, acetylene, methane and propane were identified during the decomposition of butane. When the ZnO NWs- or ZnO NRs-coated membrane was used, however, the formation of such unwanted byproducts except methane was completely avoided, and full conversion into COx was achieved. Better carbon balance and COx selectivity were obtained with the ZnO NWs and NRs than with the NPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Catalytic antibodies in clinical and experimental pathology: human and mouse models.

    Science.gov (United States)

    Ponomarenko, Natalya A; Durova, Oxana M; Vorobiev, Ivan I; Aleksandrova, Elena S; Telegin, Georgy B; Chamborant, Olga G; Sidorik, Lyudmila L; Suchkov, Sergei V; Alekberova, Zemfira S; Gnuchev, Nikolay V; Gabibov, Alexander G

    2002-11-01

    Most of the data accumulated through studies on natural catalytic autoantibodies indicate that production scales up markedly in pathological abnormalities. We have previously described an increased level of DNA-hydrolyzing autoantibodies in the sera of patients with various autoimmune disorders [systemic lupus erythematosus (SLE), rheumatoid arthritis, scleroderma], HIV infection and lymphoproliferative diseases accompanied by autoimmune manifestations. In the present study, we show that an increased level of catalytic activity of autoantibodies can be observed in the sera of autoimmune mice, thus providing a fundamental insight into the medical relevance of abzymes. Polyclonal autoantibodies purified from sera of NZB/W, MRL-lpr/lpr and SJL/J mice show proteolytic and DNA-hydrolyzing activities, as opposed to those harvested from non-autoimmune BALB/c mice. The expressiveness of the catalytic activity was strongly dependent on the age of the animal. The highest levels of catalytic activity were found in the sera of mice aged between 8 and 12 months; the lowest level was typical of younger animals whose age ranged from 6 to 8 weeks. Specific inhibition assays of the catalytic activities were performed to throw light on the nature of the abzyme activity. Within a cohort of aging animals, a strong correlation between marked autoimmune abnormalities and levels of catalytic activities has been established. Nonimmunized SJL/J mice revealed specific immune responses to myelin basic protein (MBP), skeletal muscle myosin (skMyo) and cardiac myosin (Myo), and highly purified antibodies from their serum show specific proteolytic attack against the target antigens. This finding prompted us to undertake a more detailed study of specific antibody-mediated proteolysis in diseased humans. A targeted catalytic response was originally demonstrated against MBP and Myo in multiple sclerosis and myocarditis patients, respectively.

  10. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate

    Directory of Open Access Journals (Sweden)

    Anandakumari Chandrasekharan Sunil Sekhar

    2016-05-01

    Full Text Available Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 103 for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to –NO2 group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies.

  11. Catalytic characterization of bi-functional catalysts derived from Pd ...

    Indian Academy of Sciences (India)

    Unknown

    1995; Lyubovsky and Pfefferle 1999; Sales et al 1999;. Hill et al 2000). ... For a catalytic system, whose activity ... catalytic systems containing Pd, supported on various acid- ..... Further studies are needed to optimize a balance between.

  12. Silver nanoparticles containing hybrid polymer microgels with tunable surface plasmon resonance and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ajmal, Muhammad; Siddiq, Mohammad [Quaid-I-Azam University, Islamabad (Pakistan); Farooqi, Zahoor Hussain [University of the Punjab, Lahore (Pakistan)

    2013-11-15

    Multi-responsive poly(N-isopropylacrylamide-methacrylic acid-acrylamide) [P(NIPAM-MAA-AAm)] copolymer microgel was prepared by free radical emulsion polymerization. Silver nanoparticles were fabricated inside the microgel network by in-situ reduction of silver nitrate. Swelling and deswelling behavior of the pure microgels was studied under various conditions of pH and temperature using dynamic light scattering. A red shift was observed in surface plasmon resonance wavelength of Ag nanoparticles with pH induced swelling of hybrid microgel. The catalytic activity of the hybrid system was investigated by monitoring the reduction of p-nitrophenol under different conditions of temperature and amount of catalysts. For this catalytic reaction a time delay of 8 to 10min was observed at room temperature, which was reduced to 2 min at high temperature due to swelling of microgels, which facilitated diffusion of reactants to catalyst surface and increased rate of reaction.

  13. Selective metal binding to Cys-78 within endonuclease V causes an inhibition of catalytic activities without altering nontarget and target DNA binding

    International Nuclear Information System (INIS)

    Prince, M.A.; Friedman, B.; Gruskin, E.A.; Schrock, R.D. III; Lloyd, R.S.

    1991-01-01

    T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer

  14. New potential nonsteroidal anti-inflammatory drugs with antileukotrienic effects: influence on model proteins with catalytic activity.

    Science.gov (United States)

    Netopilová, Miloslava; Drsata, Jaroslav; Beránek, Martin; Palicka, Vladimír

    2002-01-01

    Unspecific and side effects caused by interaction with proteins belong to common problems of many structures synthesized as potential medicaments. Possible in vitro interactions with proteins of a group of phenylsulfonyl benzoic acid derivatives (VUFB 19363, 19369, 19370, 19371, and 19760) as new potential anti-inflammatory compounds with anti-leukotrienic activities were studied in the present work. Three purified enzymes were used as model proteins with catalytic activities: Pig heart aspartate aminotransferase (AST, EC 2.6.1.1), alanine aminotransferase (ALT, EC 2.6.1.2), and glutamate decarboxylase (GAD, EC 4.1.1.15) from E. coli. Catalytic activities during incubation of individual compounds (6 x 10(-5) M solution to 5 x 10(-2) M suspension) at 37 degrees C with enzymes served as criteria of stability and function of the proteins. No immediate influence of any compound studied on enzyme activities was found. Aminotransferase activities were not affected even during incubation up to 20 d. In the case of GAD, the compounds VUFB 19369, 19370, 19371, and 19760 had stabilizing influence on GAD activity during incubation at enzyme concentrations of 11.25 and 5.62 mg prot/l. The lack of an immediate effect of compounds and the stability of enzymes during incubation them are favorable and support the prospective of the compounds as potential drugs.

  15. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    Science.gov (United States)

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  16. Synthesis of monodisperse palladium nanocubes and their catalytic activity for methanol electrooxidation

    International Nuclear Information System (INIS)

    Hao, Ding; Xue-Zhao, Shi; Cheng-Min, Shen; Chao, Hui; Zhi-Chuan, Xu; Chen, Li; Yuan, Tian; Deng-Ke, Wang; Hong-Jun, Gao

    2010-01-01

    The single crystalline palladium nanocubes with an average size of 7 nm were prepared in the presence of poly (vinyl pyrrolidone) (PVP) and KBr using the polyol method. The as-prepared Pd nanocubes were highly uniform in both size and shape. The ordered packing structures including monolayer and multilayer can be fabricated via the rate-controlled evaporation of solution solvent. The electrochemical catalytic activity of these Pd nanocubes towards methanol oxidation was found to be higher than that of spherical Pd nanoparticles of similar size. (condensed matter: structure, thermal and mechanical properties)

  17. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Directory of Open Access Journals (Sweden)

    Vishal Prashar

    Full Text Available BACKGROUND: It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS. In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. PRINCIPAL FINDINGS: We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. CONCLUSIONS/SIGNIFICANCE: The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  18. Comparison and analysis of zinc and cobalt-based systems as catalytic entities for the hydration of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    Edmond Y Lau

    Full Text Available In nature, the zinc metalloenzyme carbonic anhydrase II (CAII efficiently catalyzes the conversion of carbon dioxide (CO2 to bicarbonate under physiological conditions. Many research efforts have been directed towards the development of small molecule mimetics that can facilitate this process and thus have a beneficial environmental impact, but these efforts have met very limited success. Herein, we undertook quantum mechanical calculations of four mimetics, 1,5,9-triazacyclododedacane, 1,4,7,10-tetraazacyclododedacane, tris(4,5-dimethyl-2-imidazolylphosphine, and tris(2-benzimidazolylmethylamine, in their complexed form either with the Zn(2+ or the Co(2+ ion and studied their reaction coordinate for CO2 hydration. These calculations demonstrated that the ability of the complex to maintain a tetrahedral geometry and bind bicarbonate in a unidentate manner were vital for the hydration reaction to proceed favorably. Furthermore, these calculations show that the catalytic activity of the examined zinc complexes was insensitive to coordination states for zinc, while coordination states above four were found to have an unfavorable effect on product release for the cobalt counterparts.

  19. Time dependent growth of vertically aligned carbon nanotube forest using a laser activated catalytical CVD method

    NARCIS (Netherlands)

    Haluska, M.; Bellouard, Y.J.; Dietzel, A.H.

    2008-01-01

    We report the growth of vertically aligned single-wall and multi-wall carbon nanotube forest using a Laser Activated - Catalytic Chemical Vapor Deposition process. The experiments were performed in a cold-wall reactor filled with an ethylene-hydrogen-argon gas mixture in a 5:2:8 ratio at ambient

  20. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Zhenbang, E-mail: hzbang@aliyun.com [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin 300387 (China); Han, Xu [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Xiaoming, E-mail: zhaoxiaoming@tjpu.edu.cn [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin 300387 (China); Yu, Jiantao; Xu, Hang [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China)

    2016-12-15

    Iron(II) phthalocyanine was immobilized onto amidoximated polyacrylonitrile fiber to construct a bioinspired catalytic system for oxidizing organic dyes by H{sub 2}O{sub 2} activation. The amidoxime groups greatly helped to anchor Iron(II) phthalocyanine molecules onto the fiber through coordination interaction, which has been confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and UV diffuse reflectance spectroscopy analyses. Electron spin resonance studies indicate that the catalytic process of physically anchored Iron(II) phthalocyanine performed via a hydroxyl radical pathway, while the catalyst bonded Iron(II) phthalocyanine through coordination effect could selectively catalyze the H{sub 2}O{sub 2} decomposition to generate high-valent iron-oxo species. This may result from the amidoxime groups functioning as the axial fifth ligands to favor the heterolytic cleavage of the peroxide O−O bond. This feature also enables the catalyst to only degrade the dyes adjacent to the catalytic active centers and enhances the efficient utilization of H{sub 2}O{sub 2}. In addition, this catalyst could effectively catalyze the mineralization of organic dyes and can be easily recycled without any loss of activity.

  1. Annihilation characteristics of positrons in oxide powders in relation to catalytic activities

    International Nuclear Information System (INIS)

    Ito, K.; Ohtsu, Y.; Tanigawa, S.; Enomura, A.; Tsuda, N.

    1982-01-01

    The annihilation chaaracteristics in magnesium oxide powders were studied by the measurements of Doppler broadening of annihilation radiations. MgO powders are well known as a solid base and are utilized as a catalyst for the reactions which start by extracting protons from molecules such as decomposition of alcohol. The isochronal annealing behavior of annihilation characteristics in the process Mg(OH) 2 → MgO was found to correspond just to the change in the number of basic points, specific surface area and catalytic activities in some reactions. From the results of the thermal equilibrium measurements of MgO powders after dehydration, the temperature dependence of S parameter can be considered as the thermal activation process of the escape of positrons from trapped states at surface to form positroniums. The derived value of this activation energy was 0.187 eV. (Auth.)

  2. A Ta/W mixed addenda heteropolyacid with excellent acid catalytic activity and proton-conducting property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shujun; Peng, Qingpo [School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007 (China); Chen, Xuenian, E-mail: xnchen@htu.edu.cn [School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007 (China); Wang, Ruoya; Zhai, Jianxin; Hu, Weihua [School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007 (China); Ma, Fengji, E-mail: fengji.ma@yahoo.com [College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 453000 (China); Zhang, Jie, E-mail: jie.zhang@htu.edu.cn [School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007 (China); Liu, Shuxia [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun City, Jilin 130024 (China)

    2016-11-15

    A new HPAs H{sub 20}[P{sub 8}W{sub 60}Ta{sub 12}(H{sub 2}O){sub 4}(OH){sub 8}O{sub 236}]·125H{sub 2}O (H-1) which comprises a Ta/W mixed addenda heteropolyanion, 20 protons, and 125 crystalline water molecules has been prepared through ion-exchange method. The structure and properties of H-1 have been explored in detail. AC impedance measurements indicate that H-1 is a good solid state proton conducting material at room temperature with a conductivity value of 7.2×10{sup −3} S cm{sup −1} (25 °C, 30% RH). Cyclic voltammograms of H-1 indicate the electrocatalytic activity towards the reduction of nitrite. Hammett acidity constant H{sub 0} of H-1 in CH{sub 3}CN is −2.91, which is the strongest among the present known HPAs. Relatively, H-1 exhibits excellent catalytic activities toward acetal reaction. - Highlights: • A Ta/W mixed addenda Heteropolyacid (H-1) was isolated. • Hammett acidity constant H{sub 0} of H-1 is the strongest among the present known HPAs. • H-1 exhibits excellent catalytic activities toward acetal reaction. • H-1 is a good solid state proton conducting material at room temperature.

  3. Application of BiFeO3-based on nickel foam composites with a highly efficient catalytic activity and easily recyclable in Fenton-like process under microwave irradiation

    Science.gov (United States)

    Li, Shuo; Zhang, Guangshan; Zheng, Heshan; Zheng, Yongjie; Wang, Peng

    2018-05-01

    In this study, BiFeO3 (BFO) powders decorated on nickel foam (NF) with a high catalytic activity are prepared via a one-step microwave-assisted hydrothermal method. The factors that influence the degradation of bisphenol A (BPA) with BFO/NFs as catalysts are optimized to improve the catalytic activity in a microwave-enhanced Fenton-like process. BFO/NF exhibit a superior catalytic activity with a high BPA removal ratio (98.4%) and TOC removal ratio (69.5%) within 5 min. Results indicate that NF significantly affect the improvement of the catalytic activity of BFO because it served as a source of hydroxyl radicals (•OH) during degradation. The amount of •OH generated by BFO/NF is approximately 1.65-fold higher than that by pure BFO. After six reaction cycles, the stability and reusability of •OH remain high. These findings provide new insights into the synthesis of composites on heterogeneous catalysts with high efficiency and easy recyclability for water treatment applications.

  4. Enhancement of oxygen reduction at Fe tetrapyridyl porphyrin by pyridyl-N coordination to transition metal ions

    International Nuclear Information System (INIS)

    Maruyama, Jun; Baier, Claudia; Wolfschmidt, Holger; Bele, Petra; Stimming, Ulrich

    2012-01-01

    One of the promising candidates as noble-metal-free electrode catalysts for polymer electrolyte fuel cells (PEFCs) is a carbon material with nitrogen atoms coordinating iron ions embedded on the surface (Fe-N x moiety) as the active site, although the activity is insufficient compared to conventional platinum-based electrocatalysts. In order to obtain fundamental information on the activity enhancement, a simple model of the Fe-N x active site was formed by adsorbing 5,10,15,20-Tetrakis(4-pyridyl)-21H,23H-porphine iron(III) chloride (FeTPyPCl) on the basal plane of highly oriented pyrolytic graphite (HOPG), and cathodic oxygen reduction was investigated on the surface in 0.1 M HClO 4 . The catalytic activity for oxygen reduction was enhanced by loading transition metal ions (Co 2+ , Ni 2+ , Cu 2+ ) together with FeTPyPCl. The X-ray photoelectron spectrum of the surface suggested that the metal was coordinated by the pyridine-N. The enhancement effect of the transition metals was supported by two different measurements: oxygen reduction at HOPG in 0.1 M HClO 4 dissolving FeTPyPCl and the metal ions; oxygen reduction in 0.1 M HClO 4 at the subsequently well-rinsed and dried HOPG. The ultraviolet–visible spectrum for the solution also suggested the coordination between the pyridyl-N and the metal ions. The oxygen reduction enhancement was attributed to the electronic interaction between the additional transition metal and the Fe center of the porphyrin through the coordination bonds. These results implied that the improvement of the activity of the noble-metal-free catalyst would be possible by the proper introduction of the transition metal ions around the active site.

  5. Catalytic activity of hydrophobic Pt/C/PTFE catalysts of different PTFE content for hydrogen-water liquid exchange reaction

    International Nuclear Information System (INIS)

    Hu Sheng; Xiao Chengjian; Zhu Zuliang; Luo Shunzhong; Wang Heyi; Luo Yangming; Wang Changbin

    2007-01-01

    10%Pt/C catalysts were prepared by liquid reduction method. PTFE and Pt/ C catalysts were adhered to porous metal and hydrophobic Pt/C/PTFE catalysts were prepared. The structure and size of Pt crystal particles of Pt/C catalysts were analyzed by XRD, and their mean size was 3.1 nm. The dispersion state of Pt/C and PTFE was analyzed by SEM, and they had good dispersion mostly, but PTFE membrane could be observed on local parts of Pt/C/PTFE surface. Because of low hydrophobicity, Pt/C/ PTFE catalysts have low activity when the mass ratio of PTFE and Pt/C is 0.5: 1, and their catalytic activity increases markedly when the ratio is 1:1. When the ratio increases again, more Pt active sites would be covered by PTFE and interior diffusion effect would increase, which result in the decrease of catalytic activity of Pt/C/PTFE. By PTFE pretreatment of porous metal carrier, the activity of Pt/C/PTFE catalysts decreases when the mass ratio of PTFE and Pt/C is 0.5:1, and their activity decreases when the mass ratio is 1:1. (authors)

  6. Catalytic membrane in reduction of aqueous nitrates: operational principles and catalytic performance

    NARCIS (Netherlands)

    Ilinitch, O.M.; Cuperus, F.P.; Nosova, L.V.; Gribov, E.N.

    2000-01-01

    The catalytic membrane with palladium-copper active component supported over the macroporous ceramic membrane, and a series of γ-Al 2O 3 supported Pd-Cu catalysts were prepared and investigated. In reduction of nitrate ions by hydrogen in water at ambient temperature, pronounced internal diffusion

  7. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Alcinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Shindler, Y.; Tatrtakovsky, L.; Zvirin, Y.

    1998-01-01

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  8. Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; DeLaRiva, Andrew T.; Challa, Sivakumar R.

    2013-01-01

    deactivation, is an important mechanism for the loss of catalyst activity. This is especially true for high temperature catalytic processes, such as steam reforming, automotive exhaust treatment, or catalytic combustion. With dwindling supplies of precious metals and increasing demand, fundamental...

  9. Catalytic synthesis of ammonia using vibrationally excited nitrogen molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, Gert D.

    1992-01-01

    The dissociation of nitrogen is the rate-limiting step in the catalytic synthesis of ammonia. Theoretical calculations have shown that the dissociative sticking probability of molecular nitrogen on catalytic active metal surfaces is enhanced by orders of magnitude when the molecules...

  10. Catalytic Activity of Silicon Nanowires Decorated with Gold and Copper Nanoparticles Deposited by Pulsed Laser Ablation

    Directory of Open Access Journals (Sweden)

    Michele Casiello

    2018-01-01

    Full Text Available Silicon nanowires (SiNWs decorated by pulsed laser ablation with gold or copper nanoparticles (labeled as AuNPs@SiNWs and CuNPs@SiNWs were investigated for their catalytic properties. Results demonstrated high catalytic performances in the Caryl–N couplings and subsequent carbonylations for gold and copper catalysts, respectively, that have no precedents in the literature. The excellent activity, attested by the very high turn over number (TON values, was due both to the uniform coverage along the NW length and to the absence of the chemical shell surrounding the metal nanoparticles (MeNPs. A high recyclability was also observed and can be ascribed to the strong covalent interaction at the Me–Si interface by virtue of metal “silicides” formation.

  11. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    Science.gov (United States)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  12. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    Science.gov (United States)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  13. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities.

    Science.gov (United States)

    Aboelfetoh, Eman F; El-Shenody, Rania A; Ghobara, Mohamed M

    2017-07-01

    Stable colloidal silver nanoparticles (AgNPs) were synthesized using Caulerpa serrulata (green marine algae) aqueous extract as an efficient reducing and stabilizing agent. This method is considered to be a sustainable alternate to the more complicated chemical procedures. To achieve the optimization synthesis of AgNPs, several effects such as extract concentration, contact time, pH values, and temperature were examined. The synthesized AgNPs were characterized by UV-Vis spectroscopy, FT-IR, XRD, and HR-TEM. The synthesized AgNPs showed an intense surface plasmon resonance band at 412 nm at the optimal conditions (20% (v/v) extract and 95 °C). TEM reveal that higher extract concentration and higher temperature leading to the formation of spherical AgNPs with an average particle size of 10 ± 2 nm. The synthesized AgNPs showed excellent catalytic reduction activity of Congo red (CR) dye from aqueous solutions. The degradation percentage of CR with AgNPs accelerated by increasing either NaBH 4 concentration or catalytic dosage. The AgNPs synthesized at higher temperature (e.g., 10Ag-95) exhibited the highest catalytic activity. The reaction kinetics was found to be pseudo first order with respect to the dye concentration. Moreover, the AgNPs displayed antibacterial activity at lower concentration against Staphylococcus aureus, Pseudomonas aeruginosa, Shigella sp., Salmonella typhi, and Escherichia coli and may be a good alternative therapeutic approach. The outcomes of the current study confirmed that the synthesized AgNPs had an awesome guarantee for application in catalysis and wastewater treatment.

  14. Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of polyhexamethylene biguanidine

    KAUST Repository

    Liu, Yan

    2014-03-01

    Hierarchically porous SAPO-11 zeolite (H-SAPO-11) is rationally synthesized from a starting silicoaluminophosphate gel in the presence of polyhexamethylene biguanidine as a mesoscale template. The sample is well characterized by XRD, N2 sorption, SEM, TEM, NMR, XPS, NH3-TPD, and TG techniques. The results show that the sample obtained has good crystallinity, hierarchical porosity (mesopores at ca. 10nm and macropores at ca. 50-200nm), high BET surface area (226m2/g), large pore volume (0.25cm3/g), and abundant medium and strong acidic sites (0.36mmol/g). After loading Pt (0.5wt.%) on H-SAPO-11 by using wet impregnation method, catalytic hydroisomerization tests of n-dodecane show that the hierarchical Pt/SAPO-11 zeolite exhibits high conversion of n-dodecane and enhanced selectivity for branched products as well as reduced selectivity for cracking products, compared with conventional Pt/SAPO-11 zeolite. This phenomenon is reasonably attributed to the presence of hierarchical porosity, which is favorable for access of reactants on catalytically active sites. The improvement in catalytic performance in long-chain paraffin hydroisomerization over Pt/SAPO-11-based catalyst is of great importance for its industrial applications in the future. © 2013 Elsevier Inc.

  15. Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions

    Science.gov (United States)

    Hejral, U.; Franz, D.; Volkov, S.; Francoual, S.; Strempfer, J.; Stierle, A.

    2018-03-01

    Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution.

  16. Catalytic ozonation of pentachlorophenol in aqueous solutions using granular activated carbon

    Science.gov (United States)

    Asgari, Ghorban; Samiee, Fateme; Ahmadian, Mohammad; Poormohammadi, Ali; solimanzadeh, Bahman

    2017-03-01

    The efficiency of granular activated carbon (GAC) was investigated in this study as a catalyst for the elimination of pentachlorophenol (PCP) from contaminated streams in a laboratory-scale semi-batch reactor. The influence of important parameters including solution pH (2-10), radical scavenger (tert-butanol, 0.04 mol/L), catalyst dosage (0.416-8.33 g/L), initial PCP concentration (100-1000 mg/L) and ozone flow rate (2.3-12 mg/min) was examined on the efficiency of the catalytic ozonation process (COP) in degradation and mineralization of PCP in aqueous solution. The experimental results showed that catalytic ozonation with GAC was most effective at pH of 8 with ozone flow rate of 12 mg/min and a GAC dosage of 2 g. Compared to the sole ozonation process (SOP), the removal levels of PCP and COP were, 98, and 79 %, respectively. The degradation rate of kinetics was also investigated. The results showed that using a GAC catalyst in the ozonation of PCP produced an 8.33-fold increase in rate kinetic compared to the SOP under optimum conditions. Tert-butanol alcohol (TBA) was used as a radical scavenger. The results demonstrated that COP was affected less by TBA than by SOP. These findings suggested that GAC acts as a suitable catalyst in COP to remove refractory pollutants from aqueous solution.

  17. Fabrication of a PANI/CPs composite material: a feasible method to enhance the photocatalytic activity of coordination polymers.

    Science.gov (United States)

    Xu, Xin-Xin; Cui, Zhong-Ping; Qi, Ji; Liu, Xiao-Xia

    2013-03-21

    To improve the photocatalytic activity of a coordination polymer in the visible light region, polyaniline (PANI) was loaded onto its surface through a facile in situ chemical oxidation polymerization process. The resulting PANI loaded coordination polymer composite materials with excellent stability exhibit significantly higher photocatalytic activities than the pure coordination polymer photocatalyst on the degradation of methyl orange (MO) under visible light irradiation. This enhancement can be ascribed to the introduction of PANI on the surface of the coordination polymer, which leads to efficient separation of photogenerated electron-hole pairs as well as a significant expansion of the photoresponse region. Finally, we discussed the influence of acidity on the morphology and photocatalytic activity of the composite material. An optimal condition to obtain the PANI loaded coordination polymer composite material with excellent photocatalytic activity has been obtained.

  18. Effects of Mn- and K-addition on catalytic activity of calcium oxide for methane activation

    International Nuclear Information System (INIS)

    Park, Jong Sik; Kong, Jang Il; Lee, Sung Han; Jun, Jong Ho

    1998-01-01

    Pure CaO, Mn-doped CaO, Mn/CaO, and K/CaO catalysts were prepared and tested as catalysts for the oxidative coupling of methane in the temperature range of 600 to 800 .deg. C to investigate the effects of Mn- and K-addition on the catalytic activity of calcium oxide. To characterize the catalysts, X-ray powder diffraction (XRD), XPS, SEM, DSC, and TG analyses were performed. The catalytic reaction was carried out in a single-pass flow reactor using on-line gas chromatography system. Normalized reaction conditions were generally p(CH 4 )/p(O 2 )=250 Torr/50 Torr, total feed flow rate=30 mL/min, and 1 atm of total pressure with He being used as diluent gas. Among the catalysts tested, 6.3 mol% Mn-doped CaO catalyst showed the best C 2 yield of 8.0% with a selectivity of 43.2% at 775 .deg. C. The C 2 selectivity increased on lightly doped CaO catalysts, while decreased on heavily doped CaO((Mn)>6.3 mol%)catalysts. 6 wt.% Mn/CaO and 6 wt.% K/CaO catalysts showed the C 2 selectivities of 13.2% and 30.9%, respectively, for the reaction. Electrical conductivities of CaO and Mn-doped CaO were measured in the temperature range of 500 to 1000 .deg. C at Po2's of 10 -3 to 10 -1 atm. The electrical conductivity was decreased with Mn-doping and increased with increasing Po 2 in the range of 10 -3 to 10 -1 atm, indicating the specimens to be p-type semiconductors. It was suggested that the interstitial oxygen ions formed near the surface can activate methane and the formation of interstitial oxygen ions was discussed on the basis of solid-state chemistry

  19. Hydrogen Production From catalytic reforming of greenhouse gases ...

    African Journals Online (AJOL)

    ADOWIE PERE

    a fixed bed stainless steel reactor. The 20wt%. ... catalytic activity for hydrogen production with the highest yield and selectivity of 32.5% and 17.6% respectively. © JASEM ... CO2 reforming of methane is however not fully developed ..... Design and preparation of .... catalytic nickel membrane for gas to liquid (GTL) process.

  20. Catalytic activity of bimetal-containing Co,Pd systems in the oxidation of carbon monoxide

    Science.gov (United States)

    Oleksenko, L. P.; Lutsenko, L. V.

    2013-02-01

    The catalytic activity of low-percentage Co,Pd systems on ZSM-5, ERI, SiO2, and Al2O3 supports in the oxidation of CO was studied. The activity of bimetal-containing catalysts was shown to depend on the nature of the catalyst and the amount and ratio of their active components. According to the results of thermoprogrammed reduction with H2 (H2 TPR) and X-ray photoelectron spectroscopy (XPS) data, the metals are distributed as isolated cations or Coδ+-O-Pdδ+ clusters with cobalt and palladium cations surrounded by off-lattice oxygen in Co,Pd systems. The 0.8% Co,0.5% Pd-ZSM-5 bimetal catalysts were found to be more active due to the presence of clusters.

  1. Synthesis, chemistry and catalytic activity of complexes of lanthanide and actinide metals in unusual oxidation states and coordination environments. Progress report, February 1, 1978--January 31, 1979

    International Nuclear Information System (INIS)

    Evans, W.J.

    1978-11-01

    Previous syntheses of Ln(olefin) complexes and their catalytic effect on the hydrogenation of the olefin are discussed. The tert-butyl complexes of Sn, Er, and Yb were synthesized and their decomposition studied

  2. Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons.

    Science.gov (United States)

    Huang, Hsu-Hui; Lu, Ming-Chun; Chen, Jong-Nan; Lee, Cheng-Te

    2003-06-01

    The objective of this research was to examine the heterogeneous catalytic decomposition of H(2)O(2) and 4-chlorophenol (4-CP) in the presence of activated carbons modified with chemical pretreatments. The decomposition of H(2)O(2) was suppressed significantly by the change of surface properties including the decreased pH(pzc) modified with oxidizing agent and the reduced active sites occupied by the adsorption of 4-CP. The apparent reaction rate of H(2)O(2) decomposition was dominated by the intrinsic reaction rates on the surface of activated carbon rather than the mass transfer rate of H(2)O(2) to the solid surface. By the detection of chloride ion in suspension, the reduction of 4-CP was not only attributed to the advanced adsorption but also the degradation of 4-CP. The catalytic activity toward 4-CP for the activated carbon followed the inverse sequence of the activity toward H(2)O(2), suggesting that acidic surface functional group could retard the H(2)O(2) loss and reduce the effect of surface scavenging resulting in the increase of the 4-CP degradation efficiency. Few effective radicals were expected to react with 4-CP for the strong effect of surface scavenging, which could explain why the degradation rate of 4-CP observed in this study was so slow and the dechlorination efficiency was independent of the 4-CP concentration in aqueous phase. Results show that the combination of H(2)O(2) and granular activated carbon (GAC) did increase the total removal of 4-CP than that by single GAC adsorption.

  3. Synthesis, Characterization and catalytic activity of triorganotin(IV) carboxylates for the production of biodiesel from rocket seed oil

    International Nuclear Information System (INIS)

    Tariq, M.; Ali, S.

    2013-01-01

    Organotin(IV) carboxylates have a wide range of industrial applications such as antifouling paints, PVC stabilization, ion carries in electrochemical membranes and homogeneous catalysts. The catalytic application of organotin carboxylates are in the field of silicone curing, polyurethane formation and esterification. Only a limited literature is available regarding the use of organotin carboxylates in the transesterification of vegetable oil to produce biodiesel . The present study deals with the synthesis of some new triorganotin(IV) carboxylates for their subsequent use as catalyst for transesterification of rocket seed oil to produce biodiesel. The three new triorganotin(IV) i.e. (Me/sub 3/SnL) (1),(Bu/sub 3/Snl) (2) and (Ph/sub 3/SnL) (3), were synthesized by refluxing sodium salt of ligand (NaL), where L=O/sub 2/C(CH/sub 3/)C=CHC/sub 6/H/sub 4/F with trimethyl, tributyl and triphenyl tin(IV) chlorides, respectively for 10 hrs. The synthesized compounds were characterized by instrumental techniques like FT-IR and NMR (1H, 13C). The catalytic activity of these compounds was assessed for transesterification of triglycerides in rocket seed oil to produce biodiesel. All the tested compounds showed good catalytic activity in the order 1> 2 > 3. (author)

  4. Identification of residues in the heme domain of soluble guanylyl cyclase that are important for basal and stimulated catalytic activity.

    Directory of Open Access Journals (Sweden)

    Padmamalini Baskaran

    Full Text Available Nitric oxide signals through activation of soluble guanylyl cyclase (sGC, a heme-containing heterodimer. NO binds to the heme domain located in the N-terminal part of the β subunit of sGC resulting in increased production of cGMP in the catalytic domain located at the C-terminal part of sGC. Little is known about the mechanism by which the NO signaling is propagated from the receptor domain (heme domain to the effector domain (catalytic domain, in particular events subsequent to the breakage of the bond between the heme iron and Histidine 105 (H105 of the β subunit. Our modeling of the heme-binding domain as well as previous homologous heme domain structures in different states point to two regions that could be critical for propagation of the NO activation signal. Structure-based mutational analysis of these regions revealed that residues T110 and R116 in the αF helix-β1 strand, and residues I41 and R40 in the αB-αC loop mediate propagation of activation between the heme domain and the catalytic domain. Biochemical analysis of these heme mutants allows refinement of the map of the residues that are critical for heme stability and propagation of the NO/YC-1 activation signal in sGC.

  5. De novo design, synthesis and characterisation of MP3, a new catalytic four-helix bundle hemeprotein.

    Science.gov (United States)

    Faiella, Marina; Maglio, Ornella; Nastri, Flavia; Lombardi, Angela; Lista, Liliana; Hagen, Wilfred R; Pavone, Vincenzo

    2012-12-07

    A new artificial metalloenzyme, MP3 (MiniPeroxidase 3), designed by combining the excellent structural properties of four-helix bundle protein scaffolds with the activity of natural peroxidases, was synthesised and characterised. This new hemeprotein model was developed by covalently linking the deuteroporphyrin to two peptide chains of different compositions to obtain an asymmetric helix-loop-helix/heme/helix-loop-helix sandwich arrangement, characterised by 1) a His residue on one chain that acts as an axial ligand to the iron ion; 2) a vacant distal site that is able to accommodate exogenous ligands or substrates; and 3) an Arg residue in the distal site that should assist in hydrogen peroxide activation to give an HRP-like catalytic process. MP3 was synthesised and characterised as its iron complex. CD measurements revealed the high helix-forming propensity of the peptide, confirming the appropriateness of the model procedure; UV/Vis, MCD and EPR experiments gave insights into the coordination geometry and the spin state of the metal. Kinetic experiments showed that Fe(III)-MP3 possesses peroxidase-like activity comparable to R38A-hHRP, highlighting the possibility of mimicking the functional features of natural enzymes. The synergistic application of de novo design methods, synthetic procedures, and spectroscopic characterisation, described herein, demonstrates a method by which to implement and optimise catalytic activity for an enzyme mimetic. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Activation of Al–Cu–Fe quasicrystalline surface: fabrication of a fine nanocomposite layer with high catalytic performance

    Directory of Open Access Journals (Sweden)

    Satoshi Kameoka

    2014-01-01

    Full Text Available A fine layered nanocomposite with a total thickness of about 200 nm was formed on the surface of an Al63Cu25Fe12 quasicrystal (QC. The nanocomposite was found to exhibit high catalytic performance for steam reforming of methanol. The nanocomposite was formed by a self-assembly process, by leaching the Al–Cu–Fe QC using a 5 wt% Na2CO3 aqueous solution followed by calcination in air at 873 K. The quasiperiodic nature of the QC played an important role in the formation of such a structure. Its high catalytic activity originated from the presence of highly dispersed copper and iron species, which also suppressed the sintering of nanoparticles.

  7. Research nurse manager perceptions about research activities performed by non-nurse clinical research coordinators.

    Science.gov (United States)

    Jones, Carolynn Thomas; Hastings, Clare; Wilson, Lynda Law

    2015-01-01

    There has been limited research to document differences in roles between nurses and non-nurses who assume clinical research coordination and management roles. Several authors have suggested that there is no acknowledged guidance for the licensure requirements for research study coordinators and that some non-nurse research coordinators may be assuming roles that are outside of their legal scopes of practice. There is a need for further research on issues related to the delegation of clinical research activities to non-nurses. This study used nominal group process focus groups to identify perceptions of experienced research nurse managers at an academic health science center in the Southern United States about the clinical research activities that are being performed by non-nurse clinical research coordinators without supervision that they believed should only be performed by a nurse or under the supervision of a nurse. A total of 13 research nurse managers volunteered to be contacted about the study. Of those, 8 participated in two separate nominal group process focus group sessions. The group members initially identified 22 activities that they felt should only be performed by a nurse or under the direct supervision of a nurse. After discussion and clarification of results, activities were combined into 12 categories of clinical research activities that participants believed should only be performed by a nurse or under the direct supervision of a nurse. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The roles of the catalytic and noncatalytic activities of Rpd3L and Rpd3S in the regulation of gene transcription in yeast.

    Directory of Open Access Journals (Sweden)

    Daniella Yeheskely-Hayon

    Full Text Available In budding yeasts, the histone deacetylase Rpd3 resides in two different complexes called Rpd3L (large and Rpd3S (small that exert opposing effects on the transcription of meiosis-specific genes. By introducing mutations that disrupt the integrity and function of either Rpd3L or Rpd3S, we show here that Rpd3 function is determined by its association with either of these complexes. Specifically, the catalytic activity of Rpd3S activates the transcription of the two major positive regulators of meiosis, IME1 and IME2, under all growth conditions and activates the transcription of NDT80 only during vegetative growth. In contrast, the effects of Rpd3L depends on nutrients; it represses or activates transcription in the presence or absence of a nitrogen source, respectively. Further, we show that transcriptional activation does not correlate with histone H4 deacetylation, suggesting an effect on a nonhistone protein. Comparison of rpd3-null and catalytic-site point mutants revealed an inhibitory activity that is independent of either the catalytic activity of Rpd3 or the integrity of Rpd3L and Rpd3S.

  9. The Roles of the Catalytic and Noncatalytic Activities of Rpd3L and Rpd3S in the Regulation of Gene Transcription in Yeast

    Science.gov (United States)

    Yeheskely-Hayon, Daniella; Kotler, Anat; Stark, Michal; Hashimshony, Tamar; Sagee, Shira; Kassir, Yona

    2013-01-01

    In budding yeasts, the histone deacetylase Rpd3 resides in two different complexes called Rpd3L (large) and Rpd3S (small) that exert opposing effects on the transcription of meiosis-specific genes. By introducing mutations that disrupt the integrity and function of either Rpd3L or Rpd3S, we show here that Rpd3 function is determined by its association with either of these complexes. Specifically, the catalytic activity of Rpd3S activates the transcription of the two major positive regulators of meiosis, IME1 and IME2, under all growth conditions and activates the transcription of NDT80 only during vegetative growth. In contrast, the effects of Rpd3L depends on nutrients; it represses or activates transcription in the presence or absence of a nitrogen source, respectively. Further, we show that transcriptional activation does not correlate with histone H4 deacetylation, suggesting an effect on a nonhistone protein. Comparison of rpd3-null and catalytic-site point mutants revealed an inhibitory activity that is independent of either the catalytic activity of Rpd3 or the integrity of Rpd3L and Rpd3S. PMID:24358376

  10. Antibody proteases: induction of catalytic response.

    Science.gov (United States)

    Gabibov, A G; Friboulet, A; Thomas, D; Demin, A V; Ponomarenko, N A; Vorobiev, I I; Pillet, D; Paon, M; Alexandrova, E S; Telegin, G B; Reshetnyak, A V; Grigorieva, O V; Gnuchev, N V; Malishkin, K A; Genkin, D D

    2002-10-01

    Most of the data accumulated throughout the years on investigation of catalytic antibodies indicate that their production increases on the background of autoimmune abnormalities. The different approaches to induction of catalytic response toward recombinant gp120 HIV-1 surface protein in mice with various autoimmune pathologies are described. The peptidylphosphonate conjugate containing structural part of gp120 molecule is used for reactive immunization of NZB/NZW F1, MRL, and SJL mice. The specific modification of heavy and light chains of mouse autoantibodies with Val-Ala-Glu-Glu-Glu-Val-PO(OPh)2 reactive peptide was demonstrated. Increased proteolytic activity of polyclonal antibodies in SJL mice encouraged us to investigate the production of antigen-specific catalytic antibodies on the background of induced experimental autoimmune encephalomyelitis (EAE). The immunization of autoimmune-prone mice with the engineered fusions containing the fragments of gp120 and encephalitogenic epitope of myelin basic protein (MBP(89-104)) was made. The proteolytic activity of polyclonal antibodies isolated from the sera of autoimmune mice immunized by the described antigen was shown. Specific immune response of SJL mice to these antigens was characterized. Polyclonal antibodies purified from sera of the immunized animals revealed proteolytic activity. The antiidiotypic approach to raise the specific proteolytic antibody as an "internal image" of protease is described. The "second order" monoclonal antibodies toward subtilisin Carlsberg revealed pronounced proteolytic activity.

  11. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  12. Electrochemical catalytic treatment of phenol wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu, E-mail: hzmachem@snnu.edu.cn [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Zhang Xinhai [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Ma Qingliang [Department of Applied Physics, College of Sciences, Taiyuan University of Technology, 030024 Taiyuan (China); Wang Bo [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2009-06-15

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  13. N-Methylamino Pyrimidyl Amides (MAPA): Highly Reactive, Electronically-Activated Amides in Catalytic N-C(O) Cleavage.

    Science.gov (United States)

    Meng, Guangrong; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2017-09-01

    Despite recent progress in catalytic cross-coupling technologies, the direct activation of N-alkyl-N-aryl amides has been a challenging transformation. Here, we report the first Suzuki cross-coupling of N-methylamino pyrimidyl amides (MAPA) enabled by the controlled n N → π Ar conjugation and the resulting remodeling of the partial double bond character of the amide bond. The new mode of amide activation is suitable for generating acyl-metal intermediates from unactivated primary and secondary amides.

  14. Catalytic Kinetic Resolution of Biaryl Compounds.

    Science.gov (United States)

    Ma, Gaoyuan; Sibi, Mukund P

    2015-08-10

    Biaryl compounds with axial chirality are very common in synthetic chemistry, especially in catalysis. Axially chiral biaryls are important due to their biological activities and extensive applications in asymmetric catalysis. Thus the development of efficient enantioselective methods for their synthesis has attracted considerable attention. This Minireview discusses the progress made in catalytic kinetic resolution of biaryl compounds and chronicles significant advances made recently in catalytic kinetic resolution of biaryl scaffolds. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Pyrolysis of Helical Coordination Polymers for Metal-Sulfide-Based Helices with Broadband Chiroptical Activity.

    Science.gov (United States)

    Hirai, Kenji; Yeom, Bongjun; Sada, Kazuki

    2017-06-27

    Fabrication of chiroptical materials with broadband response in the visible light region is vital to fully realize their potential applications. One way to achieve broadband chiroptical activity is to fabricate chiral nanostructures from materials that exhibit broadband absorption in the visible light region. However, the compounds used for chiroptical materials have predominantly been limited to materials with narrowband spectral response. Here, we synthesize Ag 2 S-based nanohelices derived from helical coordination polymers. The right- and left-handed coordination helices used as precursors are prepared from l- and d-glutathione with Ag + and a small amount of Cu 2+ . The pyrolysis of the coordination helices yields right- and left-handed helices of Cu 0.12 Ag 1.94 S/C, which exhibit chiroptical activity spanning the entire visible light region. Finite element method simulations substantiate that the broadband chiroptical activity is attributed to synergistic broadband light absorption and light scattering. Furthermore, another series of Cu 0.10 Ag 1.90 S/C nanohelices are synthesized by choosing the l- or d-Glu-Cys as starting materials. The pitch length of nanohelicies is controlled by changing the peptides, which alters their chiroptical properties. The pyrolysis of coordination helices enables one to fabricate helical Ag 2 S-based materials that enable broadband chiroptical activity but have not been explored owing to the lack of synthetic routes.

  16. Synthesis and characterization of supported heteropolymolybdate nanoparticles between silicate layers of Bentonite with enhanced catalytic activity for epoxidation of alkenes

    International Nuclear Information System (INIS)

    Salavati, Hossein; Rasouli, Nahid

    2011-01-01

    Highlights: → The PVMo and nanocomposite catalyst (PVMo/Bentonite) as catalyst for epoxidation of alkenes. → The composite catalyst showed higher catalytic activity than parent heteropolymolybdate (PVMo). →The use of ultrasonic irradiation increased the conversions and reduced the reaction times. → The H 2 O 2 is a green and eco-friendly oxidant in this catalytic system. -- Abstract: A new heterogeneous catalyst (PVMo/Bentonite) consisting of vanadium substituted heteropolymolybdate with Keggin-type structure Na 5 [PV 2 Mo 10 O 40 ].14H 2 O (PVMo) supported between silicate layers of bentonite has been synthesized by impregnation method and characterized using X-ray diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy and elemental analysis. X-ray diffraction and scanning electron microscopy analysis indicated that PVMo was finely dispersed into layers of bentonite as support. The PVMo/Bentonite used as an efficient heterogeneous catalyst for epoxidation of alkenes. Various cyclic and linear alkenes were oxidized into the corresponding epoxides in high yields and selectivity with 30% aqueous H 2 O 2 . The catalyst was reused several times, without observable loss of activity and selectivity. The obtained results showed that the catalytic activity of the PVMo/Bentonite was higher than that of pure heteropolyanion (PVMo).

  17. Influence of preparation conditions of hollow titania–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Ohashi, Takato [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-04-01

    Highlights: • We study influence of preparation conditions on activity of hollow titania–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} increases with increase of Ti + Ni content. • The activity depends on the amount of PS residue in the hollow spheres. - Abstract: The present work reports influence of preparation conditions of hollow titania–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane (NH{sub 3}BH{sub 3}). The as-prepared hollow titania–nickel composite spheres were characterized by transmission electron microscopy (TEM). Catalytic activities of the hollow spheres for hydrolytic dehydrogenation of aqueous NaBH{sub 4}/NH{sub 3}BH{sub 3} solution improve with the decrease of Ti + Ni content. From the results of FTIR spectra and elemental analysis, the amount of residual polystyrene (PS) templates is able to be reduced by increasing aging time for the preparation, and the catalytic activity of the hollow spheres increases when the amount of residual PS templates decreases. The carbon content in the hollow spheres prepared with aging time = 24 h is 17.3 wt.%, and the evolution of 62 mL hydrogen is finished in about 22 min in the presence of the hollow spheres from aqueous NaBH{sub 4}/NH{sub 3}BH{sub 3} solution. The molar ratio of the hydrolytically generated hydrogen to the initial NH{sub 3}BH{sub 3} in the presence of the hollow spheres is 2.7.

  18. Organization of the ITER Co-ordinated Technical Activities International Team

    International Nuclear Information System (INIS)

    2001-01-01

    At its meeting in Toronto on 7 November 2001, the ITER Co-ordinated Technical Activities (CTA) project board took note of the organizational arrangements for the CTA International Team at the Garching and Naka joint work sites. The organization chart of the team remains almost unchanged from that of the ITER Engineering Design Activities (EDA). However, there is no special division responsible for plasma and field control. Activities in plasma control will be taken over by the Physics Unit. This newsletter also includes the ITER CTA International Team structure

  19. Pair Interaction of Catalytical Sphere Dimers in Chemically Active Media

    Directory of Open Access Journals (Sweden)

    Jing-Min Shi

    2018-01-01

    Full Text Available We study the pair dynamics of two self-propelled sphere dimers in the chemically active medium in which a cubic autocatalytic chemical reaction takes place. Concentration gradient around the dimer, created by reactions occurring on the catalytic sphere surface and responsible for the self-propulsion, is greatly influenced by the chemical activities of the environment. Consequently, the pair dynamics of two dimers mediated by the concentration field are affected. In the particle-based mesoscopic simulation, we combine molecular dynamics (MD for potential interactions and reactive multiparticle collision dynamics (RMPC for solvent flow and bulk reactions. Our results indicate three different configurations between a pair of dimers after the collision, i.e., two possible scenarios of bound dimer pairs and one unbound dimer pair. A phase diagram is sketched as a function of the rate coefficients of the environment reactions. Since the pair interactions are the basic elements of larger scale systems, we believe the results may shed light on the understanding of the collective dynamics.

  20. Catalytic oxidation of soot over alkaline niobates

    International Nuclear Information System (INIS)

    Pecchi, G.; Cabrera, B.; Buljan, A.; Delgado, E.J.; Gordon, A.L.; Jimenez, R.

    2013-01-01

    Highlights: ► No previous reported studies about alkaline niobates as catalysts for soot oxidation. ► NaNbO 3 and KNbO 3 perovskite-type oxides show lower activation energy than other lanthanoid perovskite-type oxides. ► The alkaline niobate does not show deactivation by metal loss. - Abstract: The lack of studies in the current literature about the assessment of alkaline niobates as catalysts for soot oxidation has motivated this research. In this study, the synthesis, characterization and assessment of alkaline metal niobates as catalysts for soot combustion are reported. The solids MNbO 3 (M = Li, Na, K, Rb) are synthesized by a citrate method, calcined at 450 °C, 550 °C, 650 °C, 750 °C, and characterized by AAS, N 2 adsorption, XRD, O 2 -TPD, FTIR and SEM. All the alkaline niobates show catalytic activity for soot combustion, and the activity depends basically on the nature of the alkaline metal and the calcination temperature. The highest catalytic activity, expressed as the temperature at which combustion of carbon black occurs at the maximum rate, is shown by KNbO 3 calcined at 650 °C. At this calcination temperature, the catalytic activity follows an order dependent on the atomic number, namely: KNbO 3 > NaNbO 3 > LiNbO 3 . The RbNbO 3 solid do not follow this trend presumably due to the perovskite structure was not reached. The highest catalytic activity shown by of KNbO 3 , despite the lower apparent activation energy of NaNbO 3 , stress the importance of the metal nature and suggests the hypothesis that K + ions are the active sites for soot combustion. It must be pointed out that alkaline niobate subjected to consecutive soot combustion cycles does not show deactivation by metal loss, due to the stabilization of the alkaline metal inside the perovskite structure.

  1. Catalytic oxidation of dibromomethane over Ti-modified Co3O4 catalysts: Structure, activity and mechanism.

    Science.gov (United States)

    Mei, Jian; Huang, Wenjun; Qu, Zan; Hu, Xiaofang; Yan, Naiqiang

    2017-11-01

    Ti-modified Co 3 O 4 catalysts with various Co/Ti ratios were synthesized using the co-precipitation method and were used in catalytic oxidation of dibromomethane (CH 2 Br 2 ), which was selected as the model molecule for brominated volatile organic compounds (BVOCs). Addition of Ti distorted the crystal structure and led to the formation of a Co-O-Ti solid solution. Co 4 Ti 1 (Co/Ti molar ratio was 4) achieved higher catalytic activity with a T 90 (the temperature needed for 90% conversion) of approximately 245°C for CH 2 Br 2 oxidation and higher selectivity to CO 2 at a low temperature than the other investigated catalysts. In addition, Co 4 Ti 1 was stable for at least 30h at 500ppm CH 2 Br 2 , 0 or 2vol% H 2 O, 0 or 500ppm p-xylene (PX), and 10% O 2 at a gas hourly space velocity of 60,000h -1 . The final products were CO x , Br 2 , and HBr, without the formation of other Br-containing organic byproducts. The high catalytic activity was attributed to the high Co 3+ /Co 2+ ratio and high surface acidity. Additionally, the synergistic effect of Co and Ti made it superior for CH 2 Br 2 oxidation. Furthermore, based on the analysis of products and in situ DRIFTs studies, a receivable reaction mechanism for CH 2 Br 2 oxidation over Ti-modified Co 3 O 4 catalysts was proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Catalytic activity of supported silver and potassium salts of tungstophosphoric acid in dehydration of ethanol

    International Nuclear Information System (INIS)

    Haber, J.; Matachowski, L.; Pamin, K.; Napruszewska, B.

    2002-01-01

    Potassium and silver salts of tungstophosphoric acid (HPW) have been supported on silica. Two series of potassium and silver salts of tungstophosphoric acid K x H 3-x PW 12 O 40 and Ag x H 3-x PW 12 O 40 where x = 1;2;3 supported on silica were prepared using incipient wetness method. In a typical synthesis, the heteropolyacid which after deposition on silica was washed with water to remove the part of heteropolyacid not bound to the support was reacted with silver or potassium salt. The vapor-phase dehydration of ethanol was employed as a test reaction. All the catalytic tests were carried out in a conventional flow type reactor, under atmospheric pressure, in the temperature range 125-500 o C. The results of these studies were used to explain the differences between the catalytic activities of heteropolysalts of potassium and silver supported on silica. (author)

  3. Influence of peracetic acid modification on the physicochemical properties of activated carbon and its performance in the ozone-catalytic oxidation of gaseous benzene

    Science.gov (United States)

    Fang, Ruimei; Huang, Haibao; Huang, Wenjun; Ji, Jian; Feng, Qiuyu; Shu, Yajie; Zhan, Yujie; Liu, Gaoyuan; Xie, Ruijie

    2017-10-01

    Coal based activated carbon (AC) was pretreated by peracetic acid solution and used for supporting Mn catalyst towards oxidation of gaseous benzene by catalytic ozonation. The as-obtained activated carbon was characterized by XPS, BET, SEM, and TG technologies. It indicates that peracetic acid solution modification not only raised the quantity of chemisorbed oxygen or water, and hydroxyl group on activated carbon material surface, but also increased the specific surface area and benzene adsorption capacity of activated carbon. Benzene could be completely removed in 300 min and CO2 selectivity reached to 61.9% over Mn/AC-modified catalyst. A possible catalytic ozonation mechanism of activated carbon which was treated by peracetic acid solution supported Mn catalyst for oxidation of benzene was proposed.

  4. New Ag(I)-iminophosphorane coordination polymers as efficient catalysts precursors for the MW-assisted Meyer-Schuster rearrangement of propargylic alcohols in water.

    Science.gov (United States)

    García-Álvarez, Joaquín; Díez, Josefina; Vidal, Cristian; Vicent, Cristian

    2013-06-03

    Treatment of the N-thiophosphorylated iminophosphorane ligands (PTA)═NP(═S)(OR)2 [PTA = 1,3,5-triaza-7-phosphaadamantane, 3a and 3b] and (DAPTA)═NP(═S)(OR)2 [DAPTA = 3,7-diacetyl-1,3,7-triaza-5-bicyclo[3.3.1]nonane, 4a and 4b] with an equimolecular amount of AgSbF6 leads to high-yield formation of the new one-dimensional coordination polymers [Ag{μ(2)-N,S-(PTA)═NP(═S)(OR)2}]x[SbF6]x (5a and 5b) and [Ag{μ(2)-O,S-(DAPTA)═NP(═S)(OR)2}]x[SbF6]x (6a and 6b), respectively. These new (iminophosphorane)silver(I) coordination polymers are efficient catalyst precursors for the Meyer-Schuster isomerization of both terminal and internal alkynols. Reactions proceeded in water, under aerobic conditions and using microwave irradiation as heating source, to afford the corresponding α,β-unsaturated carbonyl compounds in excellent yields, without the addition of any cocatalyst. Remarkably, it should be noted that this catalytic system can be recycled up to 10 consecutive runs (1st cycle 45 min, 99%; 10th cycle 6 h, 97%). ESI-MS analysis of 5a in water has been carried out providing valuable insight into the monomeric active species responsible for catalytic activity in water.

  5. Factors influencing catalytic behavior of titanium complexes bearing bisphenolate ligands toward ring-opening polymerization of L-lactide and ε-caprolactone

    Directory of Open Access Journals (Sweden)

    M-T. Jiang

    2018-02-01

    Full Text Available A series of titanium complexes bearing substituted diphenolate ligands (RCH(phenolate2, where R = H, CH3, o-OTs-phenyl, o-F-phenyl, o-OMe-phenyl, 2,4-OMe-phenyl was synthesized and studied as catalysts for the ring opening polymerization of L-lactide and ε-caprolactone. Ligands were designed to probe the role of chelate effect and steric effect in the catalytic performance. From the structure of triphenolate (with one extra coordination site than diphenolate ligand Ti complex, TriOTiOiPr2, we found no additional chelation to influence the catalytic activity of Ti complexes. It was found that bulky aryl groups in the diphenolate ligands decreased the rate of polymerization most. We conclude that steric effect is the most controlling factor in these polymerization reactions by using Ti complexes bearing diphenolate ligands as catalysts since it is responsible for the exclusion of needed space for incoming monomer by the bulky substituents on the catalyst.

  6. Validation of the catalytic properties of Cu-Os/13X using single fixed bed reactor in selective catalytic reduction of NO

    International Nuclear Information System (INIS)

    Oh, Kwang Seok; Woo, Seong Ihl

    2007-01-01

    Catalytic decomposition of NO over Cu-Os/13X has been carried out in a tubular fixed bed reactor at atmospheric pressure and the results were compared with literature data performed by high-throughput screening (HTS). The activity and durability of Cu-Os/13X prepared by conventional ion-exchange method have been investigated in the presence of H 2 O and SO 2 . It was found that Cu-Os/13X prepared by ion-exchange shows a high activity in a wide temperature range in selective catalytic reduction (SCR) of NO with C 3 H 6 compared to Cu/13X, proving the existence of more NO adsorption site on Cu-Os/13X. However, Cu-Os/13X exhibited low activity in the presence of water, and was quite different from the result reported in literature. SO 2 resistance is also low and does not recover its original activity when the SO 2 was blocked in the feed gas stream. This result suggested that catalytic activity between combinatorial screening and conventional testing should be compared to confirm the validity of high-throughput screening

  7. Facile synthesis and photocatalytic activity of zinc oxide hierarchical microcrystals

    KAUST Repository

    Xu, Xinjiang

    2013-04-04

    ZnO microcrystals with hierarchical structure have been synthesized by a simple solvothermal approach. The microcrystals were studied by means of X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Research on the formation mechanism of the hierarchical microstructure shows that the coordination solvent and precursor concentration have considerable influence on the size and morphology of the microstructures. A possible formation mechanism of the hierarchical structure was suggested. Furthermore, the catalytic activity of the ZnO microcrystals was studied by treating low concentration Rhodamine B (RhB) solution under UV light, and research results show the hierarchical microstructures of ZnO display high catalytic activity in photocatalysis, the catalysis process follows first-order reaction kinetics, and the apparent rate constant k = 0.03195 min-1.

  8. Dopamine D1 receptor activation maintains motor coordination and balance in rats.

    Science.gov (United States)

    Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Durand-Rivera, Alfredo; Ramos-Languren, Laura-Elisa; Ríos, Camilo; Arias-Montaño, José-Antonio; Bueno-Nava, Antonio

    2018-02-01

    Dopamine (DA) modulates motor coordination, and its depletion, as in Parkinson's disease, produces motor impairment. The basal ganglia, cerebellum and cerebral cortex are interconnected, have functional roles in motor coordination, and possess dopamine D 1 receptors (D 1 Rs), which are expressed at a particularly high density in the basal ganglia. In this study, we examined whether the activation of D 1 Rs modulates motor coordination and balance in the rat using a beam-walking test that has previously been used to detect motor coordination deficits. The systemic administration of the D 1 R agonist SKF-38393 at 2, 3, or 4 mg/kg did not alter the beam-walking scores, but the subsequent administration of the D 1 R antagonist SCH-23390 at 1 mg/kg did produce deficits in motor coordination, which were reversed by the full agonist SKF-82958. The co-administration of SKF-38393 and SCH-23390 did not alter the beam-walking scores compared with the control group, but significantly prevented the increase in beam-walking scores induced by SCH-23390. The effect of the D 1 R agonist to prevent and reverse the effect of the D 1 R antagonist in beam-walking scores is an indicator that the function of D 1 Rs is necessary to maintain motor coordination and balance in rats. Our results support that D 1 Rs mediate the SCH-23390-induced deficit in motor coordination.

  9. Fundamental study of manganese dioxide for catalytic recombustion of exhaust gas of motor car

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyamada, T

    1974-01-01

    The catalytic activities of five manganese dioxide preparations were tested in a pulse reactor to assess their carbon monoxide-oxidizing capability in relation to the catalytic afterburning of automobile exhaust gases. Catalysts prepared from manganese sulfate showed diminished catalytic activity as a result of sulfate poisoning. Higher oxidation activity was obtained with a catalyst prepared by precipitating the permanganate salt in acidic solution. Two forms of carbon monoxide adsorption were demonstrated, each with a characteristic activation energy and reaction temperature.

  10. The catalytic cracking mechanism of lignite pyrolysis char on tar

    International Nuclear Information System (INIS)

    Lei, Z.; Huibin, H.; Xiangling, S.; Zhenhua, M.; Lei, Z.

    2017-01-01

    The influence of different pyrolysis conditions for tar catalytic cracking will be analyzed according to the lignite pyrolysis char as catalyst on pyrolytic tar in this paper. The pyrolysis char what is the by-product of the cracking of coal has an abundant of pore structure and it has good catalytic activity. On this basis, making the modified catalyst when the pyrolysis char is activation and loads Fe by impregnation method. The cracking mechanism of lignite pyrolytic tar is explored by applying gas chromatograph to analyze splitting products of tar. The experimental results showed that: (1) The effect of tar cracking as the pyrolysis temperature, the heating rate, the volatilization of pyrolysis char and particle size increasing is better and better. The effect of the catalytic and cracking of lignite pyrolysis char in tar is best when the heating rate, the pyrolysis temperature, the volatiles of pyrolysis char, particle size is in specific conditions.(2) The activation of pyrolysis char can improve the catalytic effect of pyrolysis char on the tar cracking. But it reduces the effect of the tar cracking when the pyrolysis char is activation loading Fe. (author)

  11. Pulsed laser synthesis in liquid of efficient visible-light-active ZnO/rGO nanocomposites for improved photo-catalytic activity

    Science.gov (United States)

    Moqbel, Redhwan A.; Gondal, Mohammed A.; Qahtan, Talal F.; Dastageer, Mohamed A.

    2018-03-01

    In this work the synthesis of visible light active zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposite by laser induced fragmentation of particulates in liquid, its morphological/optical characterizations, and its application in the process of photo-catalytic degradation of toxic Rhodamine B (RhB) dye under visible radiation were studied. It is observed from the optical and morphological characterization that the anchoring of ZnO on the rGO sheets in ZnO/rGO nanocomposite considerably reduced the aggregation of ZnO (increased surface area), reduced the recombination of photo-induced charge carriers, promoted more adsorption of reactants on the catalytic surface and also enhanced and extended the light absorption in the visible spectral region. With all these improved characteristics of ZnO/rGO nanocomposite, it was found that this material as a photo-catalyst yielded an RhB degradation efficiency of 86%, as compared to the 40% degradation with pure ZnO NPs under the same experimental conditions. In the ZnO/rGO nanocomposite, rGO functions as an electron acceptor to promote charge separation, an aggregation inhibitor to enhance the active surface area, a co-catalyst, a good dye adsorber and also as a supporting matrix for ZnO.

  12. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water

    KAUST Repository

    Zhang, Tao

    2012-06-01

    Oxalate is usually used as a refractory model compound that cannot be effectively removed by ozone and hydroxyl radical oxidation in water. In this study, we found that ceria supported CuO significantly improved oxalate degradation in reaction with ozone. The optimum CuO loading amount was 12%. The molar ratio of oxalate removed/ozone consumption reached 0.84. The catalytic ozonation was most effective in a neutral pH range (6.7-7.9) and became ineffective when the water solution was acidic or alkaline. Moreover, bicarbonate, a ubiquitous hydroxyl radical scavenger in natural waters, significantly improved the catalytic degradation of oxalate. Therefore, the degradation relies on neither hydroxyl radical oxidation nor acid assistance, two pathways usually proposed for catalytic ozonation. These special characters of the catalyst make it suitable to be potentially used for practical degradation of refractory hydrophilic organic matter and compounds in water and wastewater. With in situ characterization, the new surface Cu(II) formed from ozone oxidation of the trace Cu(I) of the catalyst was found to be an active site in coordination with oxalate forming multi-dentate surface complex. It is proposed that the complex can be further oxidized by molecular ozone and then decomposes through intra-molecular electron transfer. The ceria support enhanced the activity of the surface Cu(I)/Cu(II) in this process. © 2012 Elsevier B.V.

  13. In situ formed catalytically active ruthenium nanocatalyst in room temperature dehydrogenation/dehydrocoupling of ammonia-borane from Ru(cod)(cot) precatalyst.

    Science.gov (United States)

    Zahmakiran, Mehmet; Ayvalı, Tuğçe; Philippot, Karine

    2012-03-20

    The development of simply prepared and effective catalytic materials for dehydrocoupling/dehydrogenation of ammonia-borane (AB; NH(3)BH(3)) under mild conditions remains a challenge in the field of hydrogen economy and material science. Reported herein is the discovery of in situ generated ruthenium nanocatalyst as a new catalytic system for this important reaction. They are formed in situ during the dehydrogenation of AB in THF at 25 °C in the absence of any stabilizing agent starting with homogeneous Ru(cod)(cot) precatalyst (cod = 1,5-η(2)-cyclooctadiene; cot = 1,3,5-η(3)-cyclooctatriene). The preliminary characterization of the reaction solutions and the products was done by using ICP-OES, ATR-IR, TEM, XPS, ZC-TEM, GC, EA, and (11)B, (15)N, and (1)H NMR, which reveal that ruthenium nanocatalyst is generated in situ during the dehydrogenation of AB from homogeneous Ru(cod)(cot) precatalyst and B-N polymers formed at the initial stage of the catalytic reaction take part in the stabilization of this ruthenium nanocatalyst. Moreover, following the recently updated approach (Bayram, E.; et al. J. Am. Chem. Soc.2011, 133, 18889) by performing Hg(0), CS(2) poisoning experiments, nanofiltration, time-dependent TEM analyses, and kinetic investigation of active catalyst formation to distinguish single metal or in the present case subnanometer Ru(n) cluster-based catalysis from polymetallic Ru(0)(n) nanoparticle catalysis reveals that in situ formed Ru(n) clusters (not Ru(0)(n) nanoparticles) are kinetically dominant catalytically active species in our catalytic system. The resulting ruthenium catalyst provides 120 total turnovers over 5 h with an initial turnover frequency (TOF) value of 35 h(-1) at room temperature with the generation of more than 1.0 equiv H(2) at the complete conversion of AB to polyaminoborane (PAB; [NH(2)BH(2)](n)) and polyborazylene (PB; [NHBH](n)) units.

  14. Directed evolution of a β-mannanase from Rhizomucor miehei to improve catalytic activity in acidic and thermophilic conditions.

    Science.gov (United States)

    Li, Yan-Xiao; Yi, Ping; Yan, Qiao-Juan; Qin, Zhen; Liu, Xue-Qiang; Jiang, Zheng-Qiang

    2017-01-01

    β-Mannanase randomly cleaves the β-1,4-linked mannan backbone of hemicellulose, which plays the most important role in the enzymatic degradation of mannan. Although the industrial applications of β-mannanase have tremendously expanded in recent years, the wild-type β-mannanases are still defective for some industries. The glycoside hydrolase (GH) family 5 β-mannanase ( Rm Man5A) from Rhizomucor miehei shows many outstanding properties, such as high specific activity and hydrolysis property. However, owing to the low catalytic activity in acidic and thermophilic conditions, the application of Rm Man5A to the biorefinery of mannan biomasses is severely limited. To overcome the limitation, Rm Man5A was successfully engineered by directed evolution. Through two rounds of screening, a mutated β-mannanase (m Rm Man5A) with high catalytic activity in acidic and thermophilic conditions was obtained, and then characterized. The mutant displayed maximal activity at pH 4.5 and 65 °C, corresponding to acidic shift of 2.5 units in optimal pH and increase by 10 °C in optimal temperature. The catalytic efficiencies ( k cat / K m ) of m Rm Man5A towards many mannan substrates were enhanced more than threefold in acidic and thermophilic conditions. Meanwhile, the high specific activity and excellent hydrolysis property of Rm Man5A were inherited by the mutant m Rm Man5A after directed evolution. According to the result of sequence analysis, three amino acid residues were substituted in m Rm Man5A, namely Tyr233His, Lys264Met, and Asn343Ser. To identify the function of each substitution, four site-directed mutations (Tyr233His, Lys264Met, Asn343Ser, and Tyr233His/Lys264Met) were subsequently generated, and the substitutions at Tyr233 and Lys264 were found to be the main reason for the changes of m Rm Man5A. Through directed evolution of Rm Man5A, two key amino acid residues that controlled its catalytic efficiency under acidic and thermophilic conditions were identified

  15. Key Feature of the Catalytic Cycle of TNF-α Converting Enzyme Involves Communication Between Distal Protein Sites and the Enzyme Catalytic Core

    International Nuclear Information System (INIS)

    Solomon, A.; Akabayov, B.; Frenkel, A.; Millas, M.; Sagi, I.

    2007-01-01

    Despite their key roles in many normal and pathological processes, the molecular details by which zinc-dependent proteases hydrolyze their physiological substrates remain elusive. Advanced theoretical analyses have suggested reaction models for which there is limited and controversial experimental evidence. Here we report the structure, chemistry and lifetime of transient metal-protein reaction intermediates evolving during the substrate turnover reaction of a metalloproteinase, the tumor necrosis factor-α converting enzyme (TACE). TACE controls multiple signal transduction pathways through the proteolytic release of the extracellular domain of a host of membrane-bound factors and receptors. Using stopped-flow x-ray spectroscopy methods together with transient kinetic analyses, we demonstrate that TACE's catalytic zinc ion undergoes dynamic charge transitions before substrate binding to the metal ion. This indicates previously undescribed communication pathways taking place between distal protein sites and the enzyme catalytic core. The observed charge transitions are synchronized with distinct phases in the reaction kinetics and changes in metal coordination chemistry mediated by the binding of the peptide substrate to the catalytic metal ion and product release. Here we report key local charge transitions critical for proteolysis as well as long sought evidence for the proposed reaction model of peptide hydrolysis. This study provides a general approach for gaining critical insights into the molecular basis of substrate recognition and turnover by zinc metalloproteinases that may be used for drug design

  16. Enhanced activity and stability of copper oxide/γ-alumina catalyst in catalytic wet-air oxidation: Critical roles of cerium incorporation

    Science.gov (United States)

    Zhang, Yongli; Zhou, Yanbo; Peng, Chao; Shi, Junjun; Wang, Qingyu; He, Lingfeng; Shi, Liang

    2018-04-01

    By successive impregnation method, the Ce-modified Cu-O/γ-Al2O3 catalyst was prepared and characterized using nitrogen adsorption-desorption, scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, and H2-Temperature programming reduction (H2-TPR). In catalytic wet-air oxidation (CWAO) process for the printing and dyeing wastewater (PDW), the effects of Ce addition on performance, mechanism and kinetics of the catalyst were investigated. The Ce addition increases the Brunauer-Emmett-Teller (BET) surface area and pore volume of the catalyst and makes the active components uniformly distributed on the catalyst surface. Formation of a stable CuAl2O4 solid solution by anchoring Cu onto the γ-Al2O3 crystal lattice leads to a significant decrease in metal leaching of the Ce-modified catalyst. The proportion of lattice oxygen in the catalyst substantially increases and the apparent activation energy of Cu-O/γ-Al2O3 catalyst decreases owing to Ce addition. Therefore, the catalytic activity and stability of the Ce-modified catalyst are considerably improved. The scavengers experiments identify the active species existed in the CWAO reaction system, with the order of reactivity: h+ > O2•- > H2O2 > HO•. This novel Cu-Ce-O/γ-Al2O3 catalyst has great potential in applications for treatment of concentrated organic wastewater due to its superior catalytic activity and improved stability.

  17. Highly active self-immobilized FI-Zr catalysts in a PCP framework for ethylene polymerization.

    Science.gov (United States)

    Li, He; Xu, Bo; He, Jianghao; Liu, Xiaoming; Gao, Wei; Mu, Ying

    2015-12-04

    A series of zirconium-based porous coordination polymers (PCPs) containing FI catalysts in the frameworks have been developed and studied as catalysts for ethylene polymerization. These PCPs exhibit good catalytic activities and long life times, producing polyethylenes with high molecular weights and bimodal molecular weight distribution in the form of particles.

  18. Electro-catalytic degradation of sulfisoxazole by using graphene anode.

    Science.gov (United States)

    Wang, Yanyan; Liu, Shuan; Li, Ruiping; Huang, Yingping; Chen, Chuncheng

    2016-05-01

    Graphite and graphene electrodes were prepared by using pure graphite as precursor. The electrode materials were characterized by a scanning electron microscope (SEM), X-ray diffraction (XRD) and cyclic voltammetry (CV) measurements. The electro-catalytic activity for degradation of sulfisoxazole (SIZ) was investigated by using prepared graphene or graphite anode. The results showed that the degradation of SIZ was much more rapid on the graphene than that on the graphite electrode. Moreover, the graphene electrode exhibited good stability and recyclability. The analysis on the intermediate products and the measurement of active species during the SIZ degradation demonstrated that indirect oxidation is the dominant mechanism, involving the electro-catalytic generation of OH and O2(-) as the main active oxygen species. This study implies that graphene is a promising potential electrode material for long-term application to electro-catalytic degradation of organic pollutants. Copyright © 2015. Published by Elsevier B.V.

  19. The effect of antimony-tin and indium-tin oxide supports on the catalytic activity of Pt nanoparticles for ammonia electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Júlio César M. [Department of Chemical & Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada); Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitária, CEP 05508-900, São Paulo, SP (Brazil); Piasentin, Ricardo M.; Spinacé, Estevam V.; Neto, Almir O. [Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitária, CEP 05508-900, São Paulo, SP (Brazil); Baranova, Elena A., E-mail: elena.baranova@uottawa.ca [Department of Chemical & Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada)

    2016-09-01

    Platinum nanoparticles supported on carbon (Pt/C) and carbon with addition of ITO (Pt/C-ITO (In{sub 2}O{sub 3}){sub 9}·(SnO{sub 2}){sub 1}) and ATO (Pt/C-ATO (SnO{sub 2}){sub 9}·(Sb{sub 2}O{sub 5}){sub 1}) oxides were prepared by sodium borohydride reduction method and used for ammonia electro-oxidation reaction (AmER) in alkaline media. The effect of the supports on the catalytic activity of Pt for AmER was investigated using electrochemical (cyclic voltammetry and chronoamperometry) and direct ammonia fuel cell (DAFC) experiments. X-ray diffraction (XRD) showed Pt peaks attributed to the face-centered cubic (fcc) structure, as well as peaks characteristic of In{sub 2}O{sub 3} in ITO support and cassiterite SnO{sub 2} phase of ATO support. According to transmission electron micrographs the mean particles sizes of Pt over carbon were 5.4, 4.9 and 4.7 nm for Pt/C, Pt/C-ATO and Pt/C-ITO, respectively. Pt/C-ITO catalysts showed the highest catalytic activity for ammonia electrooxidation in both electrochemical and fuel cell experiments. We attributed this to the presence of In{sub 2}O{sub 3} phase in ITO, which provides oxygenated or hydroxide species at lower potentials resulting in the removal of poisonous intermediate, i.e., atomic nitrogen (N{sub ads}) and promotion of ammonia electro-oxidation. - Highlights: • Oxide support effect on the catalytic activity of Pt towards ammonia electro-oxidation. • Direct ammonia fuel cell (DAFC) performance using Pt over different supports as anode. • Pt/C-ITO shows better catalytic activity for ammonia oxidation than Pt/C and Pt/C-ATO.

  20. Producing carbon-based boundary films from catalytically active lubricant additives

    Science.gov (United States)

    Erdemir, Ali; Mane, Anil U.; Elam, Jeffrey W.; Ramirez, Giovanni; Eryilmaz, Osman

    2018-04-24

    A lubricant composition includes an oil including a plurality of long-chain hydrocarbon molecules. A quantity of a catalytically active metal-organic additive is mixed with the oil. The metal-organic additive is formulated to fragment the long-chain hydrocarbon molecules of the oil into at least one of dimers and trimers under the influence of at least one of a mechanical loading and a thermal loading. In some embodiments, the metal-organic additive includes a compound of formula II: ##STR00001## where: X is Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg or Cn, and R.sub.1, R.sub.2, R.sub.3 and R.sub.4 are alkyl or alkyl halide.

  1. LASER INDUCED SELECTIVE ACTIVATION UTILIZING AUTO-CATALYTIC ELECTROLESS PLATING ON POLYMER SURFACE

    DEFF Research Database (Denmark)

    Zhang, Yang; Nielsen, Jakob Skov; Tang, Peter Torben

    2009-01-01

    . Characterization of the deposited copper layer was used to select and improve laser parameters. Several types of polymers with different melting points were used as substrate. Using the above mentioned laser treatment, standard grades of thermoplastic materials such as ABS, SAN, PE, PC and others have been......This paper presents a new method for selective micro metallization of polymers induced by laser. An Nd: YAG laser was employed to draw patterns on polymer surfaces using a special set-up. After subsequent activation and auto-catalytic electroless plating, copper only deposited on the laser tracks....... Induced by the laser, porous and rough structures are formed on the surface, which favours the palladium attachment during the activation step prior to the metallization. Laser focus detection, scanning electron microscopy (SEM) and other instruments were used to analyze the topography of the laser track...

  2. A facile strategy for the preparation of ZnS nanoparticles deposited on montmorillonite and their higher catalytic activity for rapidly colorimetric detection of H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yanyuan; Sun, Lifang; Jiang, Yanling; Liu, Shunxiang; Chen, Mingxing; Chen, Miaomiao; Ding, Yanan; Liu, Qingyun, E-mail: qyliu@sdust.edu.cn

    2016-10-01

    In this paper, ZnS nanoparticles deposited on montmorillonite (ZnS-MMT) were prepared by a facile method at room temperature and characterized by powder X-ray diffraction (XRD), Energy-dispersive X-ray Detector (EDX) and transmission electron microscope (TEM), respectively. Significantly, the as-prepared ZnS-MMT nanocomposites have been proven to possess intrinsic peroxidase-like activity that can rapidly catalyze the reaction of peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H{sub 2}O{sub 2} and produce a blue color product in less than 30 seconds, which provides a sensitive colorimetric sensor to detect H{sub 2}O{sub 2}. Due to the synergistic effects between montmorillonite and ZnS nanoparticles, the obtained ZnS-MMT nanocomposites exhibit higher catalytic activity than that of MMT or ZnS alone. The catalytic behaviors of the ZnS-MMT nanocomposites showed a typical Michaelis–Menten kinetics. The catalytic activity and the catalytic mechanism were investigated using the procedures of steady-state kinetics and hydroxyl radical detection. ESR data revealed that the peroxidase-like activity of ZnS-MMT originated from the generation of ·OH radicals. - Highlights: • ZnS nanocomposites deposited on MMT was synthesized by a facile one step method. • MMT-ZnS nanocomposites possess excellent intrinsic peroxidase-like activity and show highly catalytic activity. • A sensitive colorimetric sensor for H{sub 2}O{sub 2} is provided based on MMT-ZnS nanocomposites. • The catalytic mechanism is from the generation of hydroxyl radical (·OH) decomposed from H{sub 2}O{sub 2}.

  3. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    International Nuclear Information System (INIS)

    Sardar, Debasmita; Sengupta, Manideepa; Bordoloi, Ankur; Ahmed, Md. A.; Neogi, S.K.; Bandyopadhyay, Sudipta; Jain, Ruchi; Gopinath, Chinnakonda S.; Bala, Tanushree

    2017-01-01

    Highlights: • Ni nanoparticles were synthesized in polymer to form Ni-Polymer composite. • Ni nanoparticles retain their superparamagnetism in the composite. • Ni-Polymer composites showed catalytic activity. - Abstract: Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH_4, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV–vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  4. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Sardar, Debasmita [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Sengupta, Manideepa; Bordoloi, Ankur [Nano Catalysis, Catalytic Conversion and Process Division, CSIR—Indian Institute of Petroleum (IIP), Mohkampur, Dehradun 248005 (India); Ahmed, Md. A.; Neogi, S.K.; Bandyopadhyay, Sudipta [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Jain, Ruchi; Gopinath, Chinnakonda S. [Catalysis Division and Center of Excellence on Surface Science, CSIR—National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (India); Bala, Tanushree, E-mail: tanushreebala@gmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India)

    2017-05-31

    Highlights: • Ni nanoparticles were synthesized in polymer to form Ni-Polymer composite. • Ni nanoparticles retain their superparamagnetism in the composite. • Ni-Polymer composites showed catalytic activity. - Abstract: Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH{sub 4}, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV–vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  5. Promoting Effect of CeO2 Addition on Activity and Catalytic Stability in Steam Reforming of Methane over Ni/Al2O3

    International Nuclear Information System (INIS)

    Rakib, A.; Gennequin, C.; Ringot, S.; Aboukais, A.; Abi-Aad, E.; Dhainaut, T.

    2011-01-01

    Hydrogen production by steam reforming of methane was studied over Ni catalysts supported on CeO 2 , Al 2 O 3 and CeO 2 -Al 2 O 3 . These catalysts were prepared using the impregnation method and characterized by XRD. The effect of CeO2 promoter on the catalytic performance of Ni/Al 2 O 3 catalyst for methane steam reforming reaction was investigated. In fact, CeO 2 had a positive effect on the catalytic activity in this reaction. Experimental results demonstrated that Ni/CeO 2 -Al 2 O 3 catalyst showed excellent catalytic activity and high reaction performance. In addition, the effects of reaction temperature and metal content on the conversion of CH 4 and H 2 /CO ratio were also investigated. Results indicated that CH4 conversion increased significantly with the increase of the reaction temperature and metal content. (author)

  6. Enhancement of the catalytic activity of Pt nanoparticles toward methanol electro-oxidation using doped-SnO2 supporting materials

    Science.gov (United States)

    Merati, Zohreh; Basiri Parsa, Jalal

    2018-03-01

    Catalyst supports play important role in governing overall catalyst activity and durability. In this study metal oxides (SnO2, Sb and Nb doped SnO2) were electrochemically deposited on titanium substrate (Ti) as a new support material for Pt catalyst in order to electro-oxidation of methanol. Afterward platinum nanoparticles were deposited on metal oxide film via electro reduction of platinum salt in an acidic solution. The surface morphology of modified electrodes were evaluated by field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray analysis (EDX) techniques. The electro-catalytic activities of prepared electrodes for methanol oxidation reaction (MOR) and oxidation of carbon monoxide (CO) absorbed on Pt was considered with cyclic voltammetry. The results showed high catalytic activity for Pt/Nb-SnO2/Ti electrode. The electrochemical surface area (ECSA) of a platinum electro-catalyst was determined by hydrogen adsorption. Pt/Nb-SnO2/Ti electrode has highest ECSA compared to other electrode resulting in high activity toward methanol electro-oxidation and CO stripping experiments. The doping of SnO2 with Sb and Nb improved ECSA and MOR activity, which act as electronic donors to increase electronic conductivity.

  7. High Resolution Crystal Structures of Streptococcus pneumoniae Nicotinamidase with Trapped Intermediates Provide Insights into Catalytic Mechanism and Inhibition by Aldehydes∥,‡

    Science.gov (United States)

    French, Jarrod B.; Cen, Yana; Sauve, Anthony A.; Ealick, Steven E.

    2010-01-01

    Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD+ in most prokaryotes, most single cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD+ homeostasis has increased interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD+ consuming enzymes, such as the NAD+-dependent deacetylases (sirtuins). Here, we report several high resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. The structure of the C136S mutant in complex with nicotinamide provides details about substrate binding while a trapped nicotinoyl-thioester complexed with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features including a metal ion that coordinates the substrate and the catalytically relevant water molecule, and an oxyanion hole which both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence for several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme. PMID:20853856

  8. High-resolution crystal structures of Streptococcus pneumoniae nicotinamidase with trapped intermediates provide insights into the catalytic mechanism and inhibition by aldehydes .

    Science.gov (United States)

    French, Jarrod B; Cen, Yana; Sauve, Anthony A; Ealick, Steven E

    2010-10-12

    Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD(+) in most prokaryotes and most single-cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD(+) homeostasis has stimulated interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD(+)-consuming enzymes, such as the NAD(+)-dependent deacetylases (sirtuins). Here, we report several high-resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. The structure of the C136S mutant in complex with nicotinamide provides details about substrate binding, while a trapped nicotinoyl thioester in a complex with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features, including a metal ion that coordinates the substrate and the catalytically relevant water molecule and an oxyanion hole that both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence of several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme.

  9. Bi–Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    International Nuclear Information System (INIS)

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-01-01

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn–Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi 2 O(1,3,5-BTC) 2 ] n (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi 4 O 2 (COO) 12 clusters which are further connected to Mn(COO) 6 fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of (4 13 .6 2 )(4 13 .6 8 )(4 16 .6 5 )(4 18 .6 10 )(4 22 .6 14 )(4 3 ) corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones. - Graphical abstract: This metal organic framework (MOF) is the essence of a 2D metal organic oxide (MOO). - Highlights: • New concept of metal organic oxide (MOO) was defined and made difference from metal organic framework. • New MOO of MOOMnBi was synthesized by hydrothermal method. • Crystal structure of MOOMnBi was determined by single crystal X-ray analysis. • The catalytic activity of MOOMnBi was studied showing reusable after 2 cycles

  10. Combustion synthesis and catalytic activity of LaCoO{sub 3} for HMX thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Zhi-Xian; Chi, Ying-Nan [Department of Chemistry, Institute for Chemical Physics, Beijing Institute of Technology (China); Hu, Chang-Wen [State Key Laboratory of Explosion Science, Technology Beijing Institute of Technology, Beijing (China); Liu, Hai-Yan [Department of Chemistry, Science Institute, North China University, Taiyuan, Shanxi (China)

    2009-10-15

    Perovskite-type LaCoO{sub 3} was prepared by stearic acid solution combustion method and characterized by XRD, DSC-TG, and XPS techniques. The catalytic activities of LaCoO{sub 3} for HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) thermal decomposition were investigated. The as-prepared LaCoO{sub 3} shows higher activity than the calcined one. This could be due to higher concentration of surface-adsorbed oxygen and hydroxyl species as well as higher BET surface area of the as-prepared LaCoO{sub 3}. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Ordered micro/macro porous K-OMS-2/SiO2 nanocatalysts: Facile synthesis, low cost and high catalytic activity for diesel soot combustion

    Science.gov (United States)

    Yu, Xuehua; Zhao, Zhen; Wei, Yuechang; Liu, Jian

    2017-04-01

    A series of novel oxide catalysts, which contain three-dimensionally ordered macroporous (3DOM) and microporous structure, were firstly designed and successfully synthesized by simple method. In the as-prepared catalysts, 3DOM SiO2 is used as support and microporous K-OMS-2 oxide nanoparticles are supported on the wall of SiO2. 3DOM K-OMS-2/SiO2 oxide catalysts were firstly used in soot particle oxidation reaction and they show very high catalytic activities. The high activities of K-OMS-2/SiO2 oxide catalysts can be assigned to three possible reasons: macroporous effect of 3DOM structure for improving contact between soot and catalyst, microporous effect of K-OMS-2 for adsorption of small gas molecules and interaction of K and Mn for activation of gas molecules. The catalytic activities of catalysts are comparable to or even higher than noble metal catalyst in the medium and high temperature range. For example, the T50 of K-OMS-2/SiO2-50, 328 °C, is much lower than those of Pt/Al2O3 and 3DOM Au/LaFeO3, 464 and 356 °C,respectively. Moreover, catalysts exhibited high catalytic stability. It is attributed to that the K+ ions are introduced into the microporous structure of OMS-2 and stabilized in the catalytic reaction. Meanwhile, the K+ ions play an important role in templating and stabilizing the tunneled framework of OMS-2.

  12. Association of coordination compounds of cobalt and molybdenum in solution

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, A.B.; Sapunov, V.N. (Moskovskij Lesotekhnicheskij Inst. (USSR))

    1981-01-01

    Association of acetylacetonates Co(2) and MoO/sub 2/(6) in CHCl/sub 3/ is studied using the PMR method. In the absence of hydroxyl-containing substances the compounds form labile complex with the bond through molybdenyl oxygen. Equilibrium constant at 23 deg is equal to 2.2+-0.6 l/mol. Alcohol introduction results in partial dischelating of MoO/sub 2/(Acac)/sub 2/ and formation of mixed acetylacetonate-alcoholate complex of molybdenyl. Equilibrium constant of the reaction at 23 deg constitutes 0.14+-0.02 l/mol. Under the conditions Co(2) acetylacetonate is introduced into the first coordination sphere of MoO/sub 2/, the splitting off of the second acetylacetonate ligand and formation of strong associate which might condition the decrease of catalytic activity of mixed cobaltmolybdenum catalysts of epoxidation.

  13. Flexible coordination of stationary and mobile conversations with gaze: Resource allocation among multiple joint activities

    Directory of Open Access Journals (Sweden)

    Eric Mayor

    2016-10-01

    Full Text Available Gaze is instrumental in coordinating face-to-face social interactions. But little is known about gaze use when social interactions co-occur with other joint activities. We investigated the case of walking while talking. We assessed how gaze gets allocated among various targets in mobile conversations, whether allocation of gaze to other targets affects conversational coordination, and whether reduced availability of gaze for conversational coordination affects conversational performance and content. In an experimental study, pairs were videotaped in four conditions of mobility (standing still, talking while walking along a straight-line itinerary, talking while walking along a complex itinerary, or walking along a complex itinerary with no conversational task. Gaze to partners was substantially reduced in mobile conversations, but gaze was still used to coordinate conversation via displays of mutual orientation, and conversational performance and content was not different between stationary and mobile conditions. Results expand the phenomena of multitasking to joint activities.

  14. Relationship between the catalytic activity of Pt/alumina and the relaxation process of the photoexcited electrons

    International Nuclear Information System (INIS)

    Ito, Junji; Hanaki, Yasunari; Shen, Qing; Toyoda, Taro

    2012-01-01

    Highlights: ► We determined the decay time of photoexcited electrons of Pt/Al 2 O 3 . ► Faster decay of excited electrons in Pt/Al 2 O 3 leads to its faster oxidation rate. ► Decreasing excited electron lifetime in Pt/Al 2 O 3 may decrease Pt consumption in catalytic convertors. - Abstract: In order to decrease the consumption of precious metals used in the catalytic converters used in automobiles, we studied the relationship between the catalytic activity of Pt/alumina (Pt/Al 2 O 3 ) and the relaxation process of photoexcited electrons. Firstly, we studied the relationship between the size of the Pt particles in Pt/Al 2 O 3 and catalytic performance. Secondly, the relationship between the size of the Pt particles in Pt/Al 2 O 3 and the decay time of the excited electrons was studied using an improved transient grating (TG) technique. The results showed that faster decay of the excited electrons leads to greater oxidation rates. The decay time obtained with the improved TG technique gives an indication of the time that the exited electrons take to return to the ground state. According to studies utilizing FT-IR, one of the processes necessary for quickly generating CO 2 with Pt is that the electron in the Pt-O bond moves to the Pt side and that the Pt + becomes Pt metal. Thus, the decay time obtained with the improved TG technique corresponds to the process whereby Pt + returns to Pt metal. Thus, we found that the consumption of precious metals can be reduced by increasing the speed of the decay of the excited electrons.

  15. Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios.

    Science.gov (United States)

    Fu, Donglong; Schmidt, Joel E; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian; Weckhuysen, Bert M

    2017-09-04

    Highly b-oriented zeolite ZSM-5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al 3+ usually disrupts the orientation of zeolite films. Herein, using structure-directing agents with hydroxy groups, we demonstrate a new method to prepare highly b-oriented zeolite ZSM-5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞). Fluorescence micro-(spectro)scopy was used to monitor misoriented microstructures, which are invisible to X-ray diffraction, and show Al 3+ framework incorporation and illustrate the differences between misoriented and b-oriented films. The methanol-to-hydrocarbons process was studied by operando UV/Vis diffuse reflectance micro-spectroscopy with on-line mass spectrometry, showing that the b-oriented zeolite ZSM-5 films are active and stable under realistic process conditions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  17. Fabrication of highly electro catalytic active layer of multi walled carbon nanotube/enzyme for Pt-free dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Arbab, Alvira Ayoub, E-mail: alvira_arbab@yahoo.com [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Sun, Kyung Chul, E-mail: hytec@hanyang.ac.kr [Department of Fuel cells and hydrogen technology, Hanyang University, Seoul 133-791 (Korea, Republic of); Sahito, Iftikhar Ali, E-mail: iftikhar.sahito@faculty.muet.edu.pk [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Qadir, Muhammad Bilal, E-mail: bilal_ntu81@hotmail.com [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeong, Sung Hoon, E-mail: shjeong@hanyang.ac.kr [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-09-15

    Graphical abstract: - Highlights: • We prepared three different types of enzyme dispersed multiwall carbon nanotube (E-MWCNT) layer for application in Pt-free dye sensitized solar cell (DSSCs). • E-MWCNT catalysts exhibited an extremely good electro-catalytic activity (ECA), compared with the conventional catalyst, when synthesized with lipase enzyme. • E-MWCNT as counter electrode exhibits a high power conversion efficiency (PCE) of 7.5%, which can be compared to 8% efficiency of Pt catalyst. - Abstract: Highly dispersed conductive suspensions of multi walled carbon nanotubes (MWCNT) can have intrinsic electrical and electrochemical characteristics, which make them useful candidate for platinum (Pt)-free, dye sensitized solar cells (DSSCs). High energy conversion efficiency of 7.52% is demonstrated in DSSCs, based on enzyme dispersed MWCNT (E-MWCNT) layer deposited on fluorine doped tin oxide (FTO) glass. The E-MWCNT layer shows a pivotal role as platform to reduce large amount of iodide species via electro catalytically active layer, fabricated by facile tape casting under air drying technique. The E-MWCNT layer with large surface area, high mechanical adhesion, and good interconnectivity is derived from an appropriate enzyme dispersion, which provides not only enhanced interaction sites for the electrolyte/counter electrode interface but also improved electron transport mechanism. The surface morphology and structural characterization were investigated using field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy and electronic microscopy techniques. Electro catalytic activity (ECA) and electrochemical properties of E-MWCNT counter electrode (CE) were investigated using cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) measurements. The high power conversion efficiency (PCE) of E-MWCNT CE is associated with the low charge transfer

  18. Fabrication of highly electro catalytic active layer of multi walled carbon nanotube/enzyme for Pt-free dye sensitized solar cells

    International Nuclear Information System (INIS)

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-01-01

    Graphical abstract: - Highlights: • We prepared three different types of enzyme dispersed multiwall carbon nanotube (E-MWCNT) layer for application in Pt-free dye sensitized solar cell (DSSCs). • E-MWCNT catalysts exhibited an extremely good electro-catalytic activity (ECA), compared with the conventional catalyst, when synthesized with lipase enzyme. • E-MWCNT as counter electrode exhibits a high power conversion efficiency (PCE) of 7.5%, which can be compared to 8% efficiency of Pt catalyst. - Abstract: Highly dispersed conductive suspensions of multi walled carbon nanotubes (MWCNT) can have intrinsic electrical and electrochemical characteristics, which make them useful candidate for platinum (Pt)-free, dye sensitized solar cells (DSSCs). High energy conversion efficiency of 7.52% is demonstrated in DSSCs, based on enzyme dispersed MWCNT (E-MWCNT) layer deposited on fluorine doped tin oxide (FTO) glass. The E-MWCNT layer shows a pivotal role as platform to reduce large amount of iodide species via electro catalytically active layer, fabricated by facile tape casting under air drying technique. The E-MWCNT layer with large surface area, high mechanical adhesion, and good interconnectivity is derived from an appropriate enzyme dispersion, which provides not only enhanced interaction sites for the electrolyte/counter electrode interface but also improved electron transport mechanism. The surface morphology and structural characterization were investigated using field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy and electronic microscopy techniques. Electro catalytic activity (ECA) and electrochemical properties of E-MWCNT counter electrode (CE) were investigated using cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) measurements. The high power conversion efficiency (PCE) of E-MWCNT CE is associated with the low charge transfer

  19. Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal-Organic Frameworks for Batch and Flow Reactions.

    Science.gov (United States)

    Chen, Xu; Jiang, Hong; Hou, Bang; Gong, Wei; Liu, Yan; Cui, Yong

    2017-09-27

    A key challenge in heterogeneous catalysis is the design and synthesis of heterogeneous catalysts featuring high catalytic activity, selectivity, and recyclability. Here we demonstrate that high-performance heterogeneous asymmetric catalysts can be engineered from a metal-organic framework (MOF) platform by using a ligand design strategy. Three porous chiral MOFs with the framework formula [Mn 2 L(H 2 O) 2 ] are prepared from enantiopure phosphono-carboxylate ligands of 1,1'-biphenol that are functionalized with 3,5-bis(trifluoromethyl)-, bismethyl-, and bisfluoro-phenyl substituents at the 3,3'-position. For the first time, we show that not only chemical stability but also catalytic activity and stereoselectivity of the MOFs can be tuned by modifying the ligand structures. Particularly, the MOF incorporated with -CF 3 groups on the pore walls exhibits enhanced tolerance to water, weak acid, and base compared with the MOFs with -F and -Me groups. Under both batch and flow reaction systems, the CF 3 -containing MOF demonstrated excellent reactivity, selectivity, and recyclability, affording high yields and enantioselectivities for alkylations of indoles and pyrrole with a range of ketoesters or nitroalkenes. In contrast, the corresponding homogeneous catalysts gave low enantioselectivity in catalyzing the tested reactions.

  20. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo, E-mail: wushuo@dlut.edu.cn; Song, Jie; Zhao, Yanqiu; Ge, Yanqiu; Meng, Changgong

    2016-02-04

    Silver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H{sub 2}O{sub 2}. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong π-π stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs. Using AgNCs/GRO as signal amplification tag, an enzyme-free electrochemical immunosensing protocol is designed for the highly sensitive detection of CEA on the capture antibody functionalized immunosensing interface. Under optimal conditions, the designed immunosensor exhibits a wide linear range from 0.1 pg mL{sup −1} to 100 ng mL{sup −1} and a low limit of detection of 0.037 pg mL{sup −1}. Practical sample analysis reveals the sensor has good accuracy and reproducibility, indicating the great application prospective of the AgNCs/GRO in fabricating highly sensitive immunosensors, which can be extended to the detection of various kinds of low abundance disease related proteins. - Highlights: • An enzyme-free electrochemical immunosensor is reported for detecting proteins. • A silver nanocluster/graphene oxide composite is synthesized as nanotag. • The nanotags exhibit highly catalytic activity to the electro-reduction of H{sub 2}O{sub 2}. • The as-fabricated immunosensor could detect protein in serum samples.

  1. A Review on Catalytic Membranes Production and Applications

    Directory of Open Access Journals (Sweden)

    Heba Abdallah

    2017-05-01

    Full Text Available The development of the chemical industry regarding reducing the production cost and obtaining a high-quality product with low environmental impact became the essential requirements of the world in these days. The catalytic membrane is considered as one of the new alternative solutions of catalysts problems in the industries, where the reaction and separation can be amalgamated in one unit. The catalytic membrane has numerous advantages such as breaking the thermodynamic equilibrium limitation, increasing conversion rate, reducing the recycle and separation costs. But the limitation or most disadvantages of catalytic membranes related to the high capital costs for fabrication or the fact that manufacturing process is still under development. This review article summarizes the most recent advances and research activities related to preparation, characterization, and applications of catalytic membranes. In this article, various types of catalytic membranes are displayed with different applications and explained the positive impacts of using catalytic membranes in various reactions. Copyright © 2017 BCREC Group. All rights reserved. Received: 1st April 2016; Revised: 14th February 2017; Accepted: 22nd February 2017 How to Cite: Abdallah, H. (2017. A Review on Catalytic Membranes Production and Applications. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 136-156 (doi:10.9767/bcrec.12.2.462.136-156 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.462.136-156

  2. Preparation and Characterization of Cu loaded TiO2 Nano tube Arrays and their Photo catalytic Activity

    International Nuclear Information System (INIS)

    Syazwani Mohd Zaki; Sreekantan, Srimala

    2011-01-01

    This paper described the preparation of Cu loaded TiO 2 nano tube arrays. Firstly, TiO 2 nano tube arrays were formed by anodization. Afterwards, the formed nano tube arrays were incorporated with Cu by wet impregnation method. The soaking time and concentration were varied to obtain an optimum set of parameter for Cu incorporation in TiO 2 nano tubes. After anodization, all samples were annealed at 400 degree Celsius for 4 hours to obtain anatase phase. The nano tube arrays were characterized by field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD) and x-ray photoelectron spectra (XPS). An average diameter 63.02 nm and length 12.15 μm were obtained for TiO 2 nano tubes. The photo catalytic activity of these nano tubes were investigated with methyl orange (MO) and the TiO 2 nano tube prepared in 0.01 M of Cu (NO 3 ) 2 solution within 3 hours demonstrates the highest photo catalytic activity with 83.6 % degradation of methyl orange. (author)

  3. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.

    Science.gov (United States)

    Sun, Daohua; Mazumder, Vismadeb; Metin, Önder; Sun, Shouheng

    2011-08-23

    Monodisperse 8 nm CoPd nanoparticles (NPs) with controlled compositions were synthesized by the reduction of cobalt acetylacetonate and palladium bromide in the presence of oleylamine and trioctylphosphine. These NPs were active catalysts for hydrogen generation from the hydrolysis of ammonia borane (AB), and their activities were composition dependent. Among the 8 nm CoPd catalysts tested for the hydrolysis of AB, the Co(35)Pd(65) NPs exhibited the highest catalytic activity and durability. Their hydrolysis completion time and activation energy were 5.5 min and 27.5 kJ mol(-1), respectively, which were comparable to the best Pt-based catalyst reported. The catalytic performance of the CoPd/C could be further enhanced by a preannealing treatment at 300 °C under air for 15 h with the hydrolysis completion time reduced to 3.5 min. This high catalytic performance of Co(35)Pd(65) NP catalyst makes it an exciting alternative in pursuit of practical implementation of AB as a hydrogen storage material for fuel cell applications. © 2011 American Chemical Society

  4. Muscle activity during functional coordination training: implications for strength gain and rehabilitation

    DEFF Research Database (Denmark)

    Jørgensen, Marie Birk; Andersen, Lars Louis; Kirk, Niels

    2010-01-01

    The purpose of this study was to evaluate if different types, body positions, and levels of progression of functional coordination exercises can provide sufficiently high levels of muscle activity to improve strength of the neck, shoulder, and trunk muscles. Nine untrained women were familiarized...... to the maximal EMG activity during maximal voluntary contractions, and a p value 60% of maximal EMG activity). Type of exercise played a significant role...

  5. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  6. Src kinase conformational activation: thermodynamics, pathways, and mechanisms.

    Directory of Open Access Journals (Sweden)

    Sichun Yang

    2008-03-01

    Full Text Available Tyrosine kinases of the Src-family are large allosteric enzymes that play a key role in cellular signaling. Conversion of the kinase from an inactive to an active state is accompanied by substantial structural changes. Here, we construct a coarse-grained model of the catalytic domain incorporating experimental structures for the two stable states, and simulate the dynamics of conformational transitions in kinase activation. We explore the transition energy landscapes by constructing a structural network among clusters of conformations from the simulations. From the structural network, two major ensembles of pathways for the activation are identified. In the first transition pathway, we find a coordinated switching mechanism of interactions among the alphaC helix, the activation-loop, and the beta strands in the N-lobe of the catalytic domain. In a second pathway, the conformational change is coupled to a partial unfolding of the N-lobe region of the catalytic domain. We also characterize the switching mechanism for the alphaC helix and the activation-loop in detail. Finally, we test the performance of a Markov model and its ability to account for the structural kinetics in the context of Src conformational changes. Taken together, these results provide a broad framework for understanding the main features of the conformational transition taking place upon Src activation.

  7. Catalytic Oxidation of Allylic Alcohols to Methyl Esters

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata; Kotni, Rama Krishna; Nielsen, Martin

    2017-01-01

    Aerobic oxidation of allylic alcohols to methyl esters using gold nanoparticles supported on different metal oxide carriers has been performed successfully under mild conditions (room temperature, 0.1 MPa O2) without significant loss of catalytic activity. The effects of different reaction...... parameters are studied to find the suitable reaction conditions. All catalysts are characterised by XRD, XRF and TEM. Among these catalysts, Au/TiO2 showed the most efficient catalytic activity towards the selective oxidation of allylic alcohols to the corresponding esters. Moreover, the same Au/TiO2...... to synthesize methyl esters from allylic alcohols....

  8. The catalytic activity of Ag{sub 2}S-montmorillonites as peroxidase mimetic toward colorimetric detection of H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingyun, E-mail: qyliu@sdust.edu.cn [School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Jiang, Yanling; Zhang, Leyou; Zhou, Xinpei [School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Lv, Xintian [School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000 (China); Ding, Yanyuan; Sun, Lifang; Chen, Pengpeng [School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Yin, Hailiang [Academy of Science & Technology, China University of Petroleum, Dongying 257061 (China)

    2016-08-01

    Nanocomposites based on silver sulfide (Ag{sub 2}S) and Ca-montmorillonite (Ca{sup 2+}-MMT) were synthesized by a simple hydrothermal method. The nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectra (FTIR). The as-prepared Ag{sub 2}S-MMT nanocomposites were firstly demonstrated to possess intrinsic peroxidase-like activity and could rapidly catalytically oxidize the substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H{sub 2}O{sub 2} to produce a blue product which can be seen by the naked eye in only one minute. The experimental results revealed that the Ag{sub 2}S-MMT nanocomposites exhibit higher thermal durance. Based on the TMB–H{sub 2}O{sub 2} catalyzed color reaction, the Ag{sub 2}S-MMT nanocomposites were exploited as a new type of biosensor for detection and estimation of H{sub 2}O{sub 2} through a simple, cheap and selective colorimetric method. - Highlights: • Ag{sub 2}S – montmorillonites (MMT) was synthesized by a facile one step method. • The as-prepared Ag{sub 2}S-MMT nanocomposites firstly demonstrate to possess intrinsic peroxidase-like activity. • Ag{sub 2}S-MMT nanocomposites showed highly catalytic activity. • Ag{sub 2}S-MMT could rapidly catalytically oxidize substrates TMB in the presence of H{sub 2}O{sub 2} in 1 min. • The catalytic mechanism is from the generation of hydroxyl radical (·OH) decomposed from H{sub 2}O{sub 2}.

  9. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  10. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun

    2012-01-01

    The ruthenium(II) complex [Ru(bpy) 2 -(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  11. High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoguang; Wang, Weimin; Qi, Zhen; Zhao, Changchun; Ji, Hong; Zhang, Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (MOE), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-10-15

    Nanoporous palladium (NPPd) with ultrafine ligament size of 3-6 nm was fabricated by dealloying of an Al-Pd alloy in an alkaline solution. Electrochemical measurements indicate that NPPd exhibits significantly high electrochemical active specific surface area (23 m{sup 2} g{sup -1}), and high catalytic activity for electro-oxidation of methanol, ethanol, and formic acid. Mass activities can reach 149, 148, 262 mA mg{sup -1} for the oxidation of methanol, ethanol and formic acid, respectively. Moreover, superior steady-state activities can be observed for all the electro-oxidation processes. NPPd will be a promising candidate for the anode catalyst for direct alcohol or formic acid fuel cells. (author)

  12. Contributions to the coordination chemistry of technetium

    International Nuclear Information System (INIS)

    Lorenz, B.

    1989-08-01

    New types of technetium complexes were synthesized and analyzed by IR-, 1 H- and 99 Tc nmr as well as EPR spectra. They were tested for their potential catalytic activity in special organic reactions and their relevance to catalytic reactions, for example as intermediate compounds, is discussed in depth. 317 refs., 20 figs. (BBR) [de

  13. Effect of the dispersants on Pd species and catalytic activity of supported palladium catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yue [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Yang, Xiaojun, E-mail: 10100201@wit.edu.cn [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Cao, Shuo, E-mail: cao23@email.sc.edu [North America R& D Center, Clariant BU Catalysts, Louisville, 40209, KY (United States); Zhou, Jie [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Wu, Yuanxin [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Han, Jinyu [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yan, Zhiguo [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Zheng, Mingming [Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Oilcrops Lipid Chemistry and Nutrition, Wuhan 430062 (China)

    2017-04-01

    Highlights: • Polyvinyl alcohol (PVA) inhibited the sintering and reduction of Pd nanoparticles. • Activity was improved for supported Pd catalysts with PVA modified method. • PVA modified method minimized the catalyst deactivation. • This work provides an insight of the regeneration strategies for Pd catalysts. - Abstract: A series of supported palladium catalysts has been prepared through the precipitation method and the reduction method, using polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as dispersants. The effects of the dispersants on the properties of catalysts were evaluated and the catalytic performance of the new materials was investigated for the oxidative carbonylation of phenol to diphenyl carbonate (DPC). The catalysts as prepared were also characterized by the X-ray diffraction (XRD), transmission electron microscope (TEM), Brunner-Emmet-Teller (BET) measurements and X-ray photoelectron spectroscopy (XPS) techniques. The results show that the addition of the dispersants had no effect on the crystal phase of the catalysts. However, the dispersion of Pd particles was improved when the dispersants were used. Moreover, the particle sizes of Pd nanoparticles modified by PVA were smaller than those modified by PVP. The catalysts prepared using the dispersants gave better yields of DPC than the catalysts prepared without the dispersants. The highest yield of DPC was 17.9% with the PVA-Red catalyst. The characterization results for the used catalysts showed that the Pd species in the PVA-Red catalyst remained mostly divalent and the lattice oxygen species were consumed during the reaction, which could lead to the higher catalytic activity of the PVA-Red catalyst. The experimental results confirm that PVA effectively inhibited the sintering and reduction of active Pd species in the oxidative carbonylation of phenol.

  14. A Novel Regulator of Activation-Induced Cytidine Deaminase/APOBECs in Immunity and Cancer: Schrödinger’s CATalytic Pocket

    Directory of Open Access Journals (Sweden)

    Mani Larijani

    2017-04-01

    Full Text Available Activation-induced cytidine deaminase (AID and its relative APOBEC3 cytidine deaminases boost immune response by mutating immune or viral genes. Because of their genome-mutating activities, AID/APOBECs are also drivers of tumorigenesis. Due to highly charged surfaces, extensive non-specific protein–protein/nucleic acid interactions, formation of polydisperse oligomers, and general insolubility, structure elucidation of these proteins by X-ray crystallography and NMR has been challenging. Hence, almost all available AID/APOBEC structures are of mutated and/or truncated versions. In 2015, we reported a functional structure for AID using a combined computational–biochemical approach. In so doing, we described a new regulatory mechanism that is a first for human DNA/RNA-editing enzymes. This mechanism involves dynamic closure of the catalytic pocket. Subsequent X-ray and NMR studies confirmed our discovery by showing that other APOBEC3s also close their catalytic pockets. Here, we highlight catalytic pocket closure as an emerging and important regulatory mechanism of AID/APOBEC3s. We focus on three sub-topics: first, we propose that variable pocket closure rates across AID/APOBEC3s underlie differential activity in immunity and cancer and review supporting evidence. Second, we discuss dynamic pocket closure as an ever-present internal regulator, in contrast to other proposed regulatory mechanisms that involve extrinsic binding partners. Third, we compare the merits of classical approaches of X-ray and NMR, with that of emerging computational–biochemical approaches, for structural elucidation specifically for AID/APOBEC3s.

  15. ACTIVATION OF ACETYLENE BY COORDINATION TO BIS-TRIPHENYLPHOSPHINE COMPLEX OF Pt(0: DFT STUDY

    Directory of Open Access Journals (Sweden)

    N. N. Gorinchoy

    2009-06-01

    Full Text Available The present work is devoted to the theoretical study of the activation of the acetylene molecule coordinated in the [Pt(PPh32C2H2] complex. By means of DFT calculations it is shown that the geometrical and electronic characteristics of the C2H2 are essentially changed due to its coordination. The subsequent detailed analysis of the molecular orbitals (MO of the active valence zone of this complex allows one to make important conclusion that this activation is being realized mainly due to the orbital back donation of 5d-electronic density from one of the occupied MOs of the complex [Pt(PPh32] to the unoccupied antibonding π*-MO of C2H2.

  16. A practical approach for active camera coordination based on a fusion-driven multi-agent system

    Science.gov (United States)

    Bustamante, Alvaro Luis; Molina, José M.; Patricio, Miguel A.

    2014-04-01

    In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed for the coordinated operation of multiple cameras are based on the centralisation of management decisions at the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the possibility of conceiving alternative decentralised architectures. This problem is approached by means of a MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes. This paper presents the MAS architecture and system agents.

  17. Anodically-grown TiO_2 nanotubes: Effect of the crystallization on the catalytic activity toward the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Sacco, Adriano; Garino, Nadia; Lamberti, Andrea; Pirri, Candido Fabrizio; Quaglio, Marzia

    2017-01-01

    Highlights: • Anodically-grown TiO_2 nanotubes as catalysts for the oxygen reduction reaction. • Amorphous NTs compared to thermal- and vapor-treated crystalline nanostructures. • The selection of the crystallization conditions leads to performance similar to Pt. - Abstract: In this work we investigated the behavior of TiO_2 nanotube (NT) arrays, grown by anodic oxidation of Ti foil, as catalysts for the oxygen reduction reaction (ORR) in alkaline water solution. In particular, as-grown amorphous NTs were compared to crystalline anatase nanostructures, obtained following two different procedures, namely thermal and vapor-induced crystallizations. The catalytic activity of these materials toward the ORR was evaluated by cyclic voltammetry measurements. ORR polarization curves, combined with the rotating disk technique, indicated a predominant four-electrons reduction path, especially for crystalline samples. The effect of the structural characteristics of the investigated materials on the catalytic activity was analyzed in details by electrochemical impedance spectroscopy. The catalytic performance of the crystalline NTs is only slightly lower with respect to the reference material for fuel cell applications, namely platinum, but is in line with other cost-effective catalysts recently proposed in the literature. However, if compared to the larger part of these low-cost catalysts, anodically-grown TiO_2 NTs are characterized by a synthesis route which is highly reproducible and easily up-scalable.

  18. Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity

    International Nuclear Information System (INIS)

    Gon Corradini, Patricia; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma; Antolini, Ermete

    2012-01-01

    The effect of the relationship between particle size (d), inter-particle distance (x i ), and metal loading (y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5–3 nm) and x i /d (>5) values, was evaluated. It was found that for y i /d can be always obtained. For y ≥ 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y i /d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x i /d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x i /d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

  19. Relationship between the catalytic activity of Pt/alumina and the relaxation process of the photoexcited electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Junji, E-mail: j-itou@mail.nissan.co.jp [Advanced Materials Laboratory, Nissan Research Center, NISSAN MOTOR CO., LTD., 1 Natsushima-cho, Yokosuka-shi, Kanagawa 237-8523 (Japan); Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Hanaki, Yasunari [Advanced Materials Laboratory, Nissan Research Center, NISSAN MOTOR CO., LTD., 1 Natsushima-cho, Yokosuka-shi, Kanagawa 237-8523 (Japan); Shen, Qing [Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Toyoda, Taro [Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We determined the decay time of photoexcited electrons of Pt/Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Faster decay of excited electrons in Pt/Al{sub 2}O{sub 3} leads to its faster oxidation rate. Black-Right-Pointing-Pointer Decreasing excited electron lifetime in Pt/Al{sub 2}O{sub 3} may decrease Pt consumption in catalytic convertors. - Abstract: In order to decrease the consumption of precious metals used in the catalytic converters used in automobiles, we studied the relationship between the catalytic activity of Pt/alumina (Pt/Al{sub 2}O{sub 3}) and the relaxation process of photoexcited electrons. Firstly, we studied the relationship between the size of the Pt particles in Pt/Al{sub 2}O{sub 3} and catalytic performance. Secondly, the relationship between the size of the Pt particles in Pt/Al{sub 2}O{sub 3} and the decay time of the excited electrons was studied using an improved transient grating (TG) technique. The results showed that faster decay of the excited electrons leads to greater oxidation rates. The decay time obtained with the improved TG technique gives an indication of the time that the exited electrons take to return to the ground state. According to studies utilizing FT-IR, one of the processes necessary for quickly generating CO{sub 2} with Pt is that the electron in the Pt-O bond moves to the Pt side and that the Pt{sup +} becomes Pt metal. Thus, the decay time obtained with the improved TG technique corresponds to the process whereby Pt{sup +} returns to Pt metal. Thus, we found that the consumption of precious metals can be reduced by increasing the speed of the decay of the excited electrons.

  20. Enhanced catalytic activity through the tuning of micropore environment and supercritical CO2 processing: Al(porphyrin)-based porous organic polymers for the degradation of a nerve agent simulant.

    Science.gov (United States)

    Totten, Ryan K; Kim, Ye-Seong; Weston, Mitchell H; Farha, Omar K; Hupp, Joseph T; Nguyen, SonBinh T

    2013-08-14

    An Al(porphyrin) functionalized with a large axial ligand was incorporated into a porous organic polymer (POP) using a cobalt-catalyzed acetylene trimerization strategy. Removal of the axial ligand afforded a microporous POP that is catalytically active in the methanolysis of a nerve agent simulant. Supercritical CO2 processing of the POP dramatically increased the pore size and volume, allowing for significantly higher catalytic activities.

  1. Polyvinylpyrrolidone adsorption effects on the morphologies of synthesized platinum particles and its catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, Mahayatun Dayana Johan [Nano - Optoelectronic Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang (Malaysia); Aziz, Azlan Abdul [Nano - Optoelectronic Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang (Malaysia); Nanobiotechnology Research and Innovation (NanoBRI), INFORMM, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang (Malaysia)

    2015-04-24

    Flower-like Platinum micro-structures were synthesized from different concentration of the PVP using solvothermal method. At 5.0×10{sup −3} mmol of PVP, well-defined flower-like pattern consists of triangular petals radiating from the centre were produced whereas larger flower network developed at higher PVP concentration. High degree of crystallinity was obtained upon each increment of PVP. The well defined flower like pattern synthesized using 5.0×10{sup −3} mmol PVP exhibit the highest catalytic activity and stability towards electro-oxidation of formic acid.

  2. 2D/2D nano-hybrids of γ-MnO{sub 2} on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxian [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Xie, Yongbing, E-mail: ybxie@ipe.ac.cn [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Sun, Hongqi [Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Xiao, Jiadong; Cao, Hongbin [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Shaobin, E-mail: shaobin.wang@curtin.edu.au [Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)

    2016-01-15

    Highlights: • 2D γ-MnO{sub 2}/2D rGO hybrids (MnO{sub 2}/rGO) via a facile hydrothermal route were prepared. • MnO{sub 2}/rGO exhibits high activity in catalytic ozonation of 4-nitrophenol. • ·O{sub 2}{sup ̄} and {sup 1}O{sub 2} are the major radicals for 4-nitrophenol degradation and mineralization. • A synergistic effect of ozonation and peroxymonosulfate oxidation was evaluated. - Abstract: Two-dimensional reduced graphene oxide (2D rGO) was employed as both a shape-directing medium and support to fabricate 2D γ-MnO{sub 2}/2D rGO nano-hybrids (MnO{sub 2}/rGO) via a facile hydrothermal route. For the first time, the 2D/2D hybrid materials were used for catalytic ozonation of 4-nitrophenol. The catalytic efficiency of MnO{sub 2}/rGO was much higher than either MnO{sub 2} or rGO only, and rGO was suggested to play the role for promoting electron transfers. Quenching tests using tert-butanol, p-benzoquinone, and sodium azide suggested that the major radicals responsible for 4-nitrophenol degradation and mineralization are O{sub 2}{sup ̄} and {sup 1}O{sub 2}, but not ·OH. Reusability tests demonstrated a high stability of the materials in catalytic ozonation with minor Mn leaching below 0.5 ppm. Degradation mechanism, reaction kinetics, reusability and a synergistic effect between catalytic ozonation and coupling peroxymonosulfate (PMS) activation were also discussed.

  3. On the mechanism of sulfite activation of chloroplast thylakoid ATPase and the relation of ADP tightly bound at a catalytic site to the binding change mechanism

    International Nuclear Information System (INIS)

    Du, Z.; Boyer, P.D.

    1990-01-01

    Washed chloroplast thylakoid membranes upon exposure to [ 3 H]ADP retain in tightly bound [ 3 H]ADP on a catalytic site of the ATP synthase. The presence of sufficient endogenous or added Mg 2+ results in an enzyme with essentially no ATPase activity. Sulfite activates the ATPase, and many molecules of ATP per synthase can be hydrolyzed before most of the bound [ 3 H]ADP is released, a result interpreted as indicating that the ADP is not bound at a site participating in catalysis by the sulfite-activated enzyme. The authors present evidence that this is not the case. The Mg 2+ - and ADP-inhibited enzyme when exposed to MgATP and 20-100 mM sulfite shows a lag of about 1 min at 22 degree C and of about 15 s at 37 degree C before reaching the same steady-state rate as attained with light-activated ATPase that has not been inhibited by Mg 2+ and ADP. The lag is not eliminated if the enzyme is exposed to sulfite prior to MgATP addition, indicating that ATPase turnover is necessary for the activation. The release of most of the bound [ 3 H]ADP parallels the onset of ATPase activity, although some [ 3 H]ADP is not released even with prolonged catalytic turnover and may be on poorly active or inactive enzyme or at noncatalytic sites. The results are consistent with most of the tightly bound [ 3 H]ADP being at a catalytic site and being replaced as this Mg 2+ - and ADP-inhibited site regains equivalent participation with other catalytic sites on the activated enzyme. The sulfite activation can be explained by sulfite combination at a P i binding site of the enzyme-ADP-Mg 2+ complex to give a form more readily activated by ATP binding at an alternative site

  4. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Xue, Shuang; Song, Youtao; Shen, Manli [School of Environment Science, Liaoning University, Shenyang 110036 (China); Zhang, Zhaohong, E-mail: lnuhjhx@163.com [School of Environment Science, Liaoning University, Shenyang 110036 (China); Yuan, Tianxin; Tian, Fangyuan [School of Environment Science, Liaoning University, Shenyang 110036 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2016-06-05

    Highlights: • Microwave-induced CNTs-based catalytic degradation technology is developed. • Microwave catalytic activities of CNTs with different diameters are compared. • Organic pollutants with different structure can be degraded in MW/CNTs system. • The 10–20 nm CNTs shows the higher catalytic activity under MW irradiation. - Abstract: In this study, a new catalytic degradation technology using microwave induced carbon nanotubes (MW/CNTs) was proposed and applied in the treatment of organic pollutants in aqueous solution. The catalytic activity of three CNTs of 10–20 nm, 20–40 nm, and 40–60 nm diameters were compared. The results showed that organic pollutants such as methyl orange (MO), methyl parathion (MP), sodium dodecyl benzene sulfonate (SDBS), bisphenol A (BPA), and methylene blue (MB) in aqueous solution could be degraded effectively and rapidly in MW/CNTs system. CNTs with diameter of 10–20 nm exhibited the highest catalytic activity of the three CNTs under MW irradiation. Further, complete degradation was obtained using 10–20 nm CNTs within 7.0 min irradiation when 25 mL MO solution (25 mg/L), 1.2 g/L catalyst dose, 450 W, 2450 MHz, and pH = 6.0 were applied. The rate constants (k) for the degradation of SDBS, MB, MP, MO and BPA using 10–20 nm CNTs/MW system were 0.726, 0.679, 0.463, 0.334 and 0.168 min{sup −1}, respectively. Therefore, this technology may have potential application for the treatment of targeted organic pollutants in wastewaters.

  5. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution

    International Nuclear Information System (INIS)

    Chen, Jing; Xue, Shuang; Song, Youtao; Shen, Manli; Zhang, Zhaohong; Yuan, Tianxin; Tian, Fangyuan; Dionysiou, Dionysios D.

    2016-01-01

    Highlights: • Microwave-induced CNTs-based catalytic degradation technology is developed. • Microwave catalytic activities of CNTs with different diameters are compared. • Organic pollutants with different structure can be degraded in MW/CNTs system. • The 10–20 nm CNTs shows the higher catalytic activity under MW irradiation. - Abstract: In this study, a new catalytic degradation technology using microwave induced carbon nanotubes (MW/CNTs) was proposed and applied in the treatment of organic pollutants in aqueous solution. The catalytic activity of three CNTs of 10–20 nm, 20–40 nm, and 40–60 nm diameters were compared. The results showed that organic pollutants such as methyl orange (MO), methyl parathion (MP), sodium dodecyl benzene sulfonate (SDBS), bisphenol A (BPA), and methylene blue (MB) in aqueous solution could be degraded effectively and rapidly in MW/CNTs system. CNTs with diameter of 10–20 nm exhibited the highest catalytic activity of the three CNTs under MW irradiation. Further, complete degradation was obtained using 10–20 nm CNTs within 7.0 min irradiation when 25 mL MO solution (25 mg/L), 1.2 g/L catalyst dose, 450 W, 2450 MHz, and pH = 6.0 were applied. The rate constants (k) for the degradation of SDBS, MB, MP, MO and BPA using 10–20 nm CNTs/MW system were 0.726, 0.679, 0.463, 0.334 and 0.168 min"−"1, respectively. Therefore, this technology may have potential application for the treatment of targeted organic pollutants in wastewaters.

  6. Mn-Ce-V-WOx/TiO2 SCR Catalysts: Catalytic Activity, Stability and Interaction among Catalytic Oxides

    Directory of Open Access Journals (Sweden)

    Xuteng Zhao

    2018-02-01

    Full Text Available A series of Mn-Ce-V-WOx/TiO2 composite oxide catalysts with different molar ratios (active components/TiO2 = 0.1, 0.2, 0.3, 0.6 have been prepared by wet impregnation method and tested in selective catalytic reduction (SCR of NO by NH3 in a wide temperature range. These catalysts were also characterized by X-ray diffraction (XRD, Transmission Electron Microscope (TEM, in situ Fourier Transform infrared spectroscopy (in situ FTIR, H2-Temperature programmed reduction (H2-TPR and X-ray photoelectron spectroscopy (XPS. The results show the catalyst with a molar ratio of active components/TiO2 = 0.2 exhibits highest NO conversion value between 150 °C to 400 °C and good resistance to H2O and SO2 at 250 °C with a gas hourly space velocity (GHSV value of 40,000 h−1. Different oxides are well dispersed and interact with each other. NH3 and NO are strongly adsorbed on the catalyst surface and the adsorption of the reactant gas leads to a redox cycle with the valence state change among the surface oxides. The adsorption of SO2 on Mn4+ and Ce4+ results in good H2O and SO2 resistance of the catalyst, but the effect of Mn and Ce are more than superior water and sulfur resistance. The diversity of valence states of the four active components and their high oxidation-reduction performance are the main reasons for the high NO conversion in this system.

  7. Catalytic applications of bio-inspired nanomaterials

    Science.gov (United States)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  8. Modeling the active site of [FeFe]-hydrogenase: Electro-catalytic ...

    Indian Academy of Sciences (India)

    The mechanistic aspects of relevant electro–catalytic proton reductions have been discussed in detail. ... in the presence of a weak acid.4 This prompted us to investigate whether .... shifted to lower magnetic field strengths than those in parent ...

  9. Near-IR MCD of the nonheme ferrous active site in naphthalene 1,2-dioxygenase: correlation to crystallography and structural insight into the mechanism of Rieske dioxygenases.

    Science.gov (United States)

    Ohta, Takehiro; Chakrabarty, Sarmistha; Lipscomb, John D; Solomon, Edward I

    2008-02-06

    Near-IR MCD and variable temperature, variable field (VTVH) MCD have been applied to naphthalene 1,2-dioxygenase (NDO) to describe the coordination geometry and electronic structure of the mononuclear nonheme ferrous catalytic site in the resting and substrate-bound forms with the Rieske 2Fe2S cluster oxidized and reduced. The structural results are correlated with the crystallographic studies of NDO and other related Rieske nonheme iron oxygenases to develop molecular level insights into the structure/function correlation for this class of enzymes. The MCD data for resting NDO with the Rieske center oxidized indicate the presence of a six-coordinate high-spin ferrous site with a weak axial ligand which becomes more tightly coordinated when the Rieske center is reduced. Binding of naphthalene to resting NDO (Rieske oxidized and reduced) converts the six-coordinate sites into five-coordinate (5c) sites with elimination of a water ligand. In the Rieske oxidized form the 5c sites are square pyramidal but transform to a 1:2 mixture of trigonal bipyramial/square pyramidal sites when the Rieske center is reduced. Thus the geometric and electronic structure of the catalytic site in the presence of substrate can be significantly affected by the redox state of the Rieske center. The catalytic ferrous site is primed for the O2 reaction when substrate is bound in the active site in the presence of the reduced Rieske site. These structural changes ensure that two electrons and the substrate are present before the binding and activation of O2, which avoids the uncontrolled formation and release of reactive oxygen species.

  10. Surface electronic structure-catalytic activity correlation of partially reduced molybdenum oxide(s) for the isomerization of light alkenes and alkanes

    International Nuclear Information System (INIS)

    Al-Kandari, S; Al-Kandari, H; Al-Kharafi, F; Katrib, A

    2008-01-01

    Catalytic activity-surface electronic structure correlation was carried out using surface XPS-UPS techniques. In situ reduction by hydrogen, were carried out at similar experimental conditions to those employed for the catalytic reactions. In the case of MoO 3 deposited on TiO 2 , the reduction to MoO 2 state with the bifunctional MoO 2 (H x ) ac phase on its surface starts at 573 K and reaches a stable state at temperatures between 653-673 K. In the case of alumina support, a strong metal-support interaction takes place during the catalyst preparation, leading to Al 2 (MoO 4 ) 3 complex formation as characterized by XRD. The reduction process(s) of this complex by hydrogen as a function of temperature is different from what is observed in the case of titania support. The changes in the chemical structure of the sample surface in both systems were tested for the catalytic reactions of 1-pentene and n-pentane

  11. QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes.

    Science.gov (United States)

    Lence, Emilio; van der Kamp, Marc W; González-Bello, Concepción; Mulholland, Adrian J

    2018-05-16

    Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis (MtDHQ2) and Helicobacter pylori (HpDHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in MtDHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than HpDHQ2. Further, a water molecule, which is absent in MtDHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in HpDHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.

  12. Catalytic pyrolysis of Laminaria japonica over nanoporous catalysts using Py-GC/MS

    Directory of Open Access Journals (Sweden)

    Jeon Jong-Ki

    2011-01-01

    Full Text Available Abstract The catalytic pyrolysis of Laminaria japonica was carried out over a hierarchical meso-MFI zeolite (Meso-MFI and nanoporous Al-MCM-48 using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS. The effect of the catalyst type on the product distribution and chemical composition of the bio-oil was examined using Py-GC/MS. The Meso-MFI exhibited a higher activity in deoxygenation and aromatization during the catalytic pyrolysis of L. japonica. Meanwhile, the catalytic activity of Al-MCM-48 was lower than that of Meso-MFI due to its weak acidity.

  13. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid.

    Science.gov (United States)

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-07-05

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane.

  14. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid

    Science.gov (United States)

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-01-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  15. Synthesis, characterization and study of catalytic activity of Silver ...

    Indian Academy of Sciences (India)

    The XRD results revealed that all the samples show wurtzite hexagonal phase of ZnO. .... (Zn(Ac)2.2H2O) was used as zinc oxide source. ... The catalytic experiments ... were filtered out from the catalyst and then oxidation ..... As shown in table 5, the best results were obtained when acetonitrile was used as the sol- vent.

  16. On-surface synthesis of covalent coordination polymers on micrometer scale

    Institute of Scientific and Technical Information of China (English)

    Mathieu Koudia; Elena Nardi; Olivier Siri; Mathieu Abel

    2017-01-01

    On-surface synthesis under ultrahigh vacuum provides a promising strategy to control matter at the atomic level,with important implications for the design of new two-dimensional materials having remarkable electronic,magnetic,or catalytic properties.This strategy must address the problem of limited extension of the domains due to the irreversible nature of covalent bonds,which prevents the ripening of defects.We show here that extended materials can be produced by a controlled co-deposition process.In particular,co-deposition of quinoid zwitterion molecules with iron atoms on a Ag(111) surface held at 570 K allows the formation of micrometer-sized domains based on covalent coordination bonds.This work opens up the construction of micrometer-scale single-layer covalent coordination materials under vacuum conditions.

  17. Insight into the mechanism revealing the peroxidase mimetic catalytic activity of quaternary CuZnFeS nanocrystals: colorimetric biosensing of hydrogen peroxide and glucose

    Science.gov (United States)

    Dalui, Amit; Pradhan, Bapi; Thupakula, Umamahesh; Khan, Ali Hossain; Kumar, Gundam Sandeep; Ghosh, Tanmay; Satpati, Biswarup; Acharya, Somobrata

    2015-05-01

    Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been evaluated by catalytic oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). CZIS NCs demonstrate the synergistic effect of elemental composition and photoactivity towards peroxidase-like activity. The quaternary CZIS NCs show enhanced intrinsic peroxidase-like activity compared to the binary NCs with the same constituent elements. Intrinsic peroxidase-like activity has been correlated with the energy band position of CZIS NCs extracted using scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy. Kinetic analyses indicate Michaelis-Menten enzyme kinetic model catalytic behavior describing the rate of the enzymatic reaction by correlating the reaction rate with substrate concentration. Typical color reactions arising from the catalytic oxidation of TMB over CZIS NCs with H2O2 have been utilized to establish a simple and sensitive colorimetric assay for detection of H2O2 and glucose. CZIS NCs are recyclable catalysts showing high efficiency in multiple uses. Our study may open up the possibility of designing new photoactive multi-component alloyed NCs as enzyme mimetics in biotechnology applications.Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been

  18. Catalytic Activity of Sulfated and Phosphated Catalysts towards the Synthesis of Substituted Coumarin

    Directory of Open Access Journals (Sweden)

    Nagi R. E. Radwan

    2018-01-01

    Full Text Available New modified acidic catalysts were prepared from the treatment of silica, titania and silica prepared from hydrolyzed tetraethyl orthosilicate (TEOS with sulfuric and phosphoric acid. The sulfated and phosphated silica synthesized from TEOS were calcined at 450 and 650 °C. These catalysts were characterized by X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FTIR, transmission electron microscope (TEM, and scanning electron microscope (SEM. The surface areas, total pore volume, and mean pore radius of the acidic catalysts were investigated, while the pore size distribution was determined by the Barrett, Joyner and Halenda (BJH method. The catalytic activity of the sulfated and phosphated silica and/or titania were examined with the Pechmann condensation reaction, in which different phenols reacted with ethyl acetoacetate as a neat reaction to obtain the corresponding coumarin derivatives. The results indicated that the treatment of the catalysts with sulfuric or phosphoric acid led to a decrease in the phases’ crystallinity to a certain degree. The morphology and the structure of the acidified catalysts were examined and their particle size was calculated. Furthermore, the amount of the used catalysts played a vital role in controlling the formation of the products as well as their performance was manipulated by the number and nature of the active acidic sites on their surfaces. The obtained results suggested that the highest catalytic conversion of the reaction was attained at 20 wt % of the catalyst and no further increase in the product yield was detected when the amount of catalyst exceeded this value. Meanwhile the phenol molecules were a key feature in obtaining the final product.

  19. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress.

    Science.gov (United States)

    Benoit, Stéphane L; Maier, Robert J

    2016-11-04

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H 2 O 2 ). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains ( katA H56A and katA Y339A ) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H 2 O 2 -dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Catalytic activity trends of CO oxidation – A DFT study

    DEFF Research Database (Denmark)

    Jiang, Tao

    theoretical study of CO oxidation with experimental studies. The latter shows promoted catalytic activity when gold particle size decreases to 5 nm. Oxidizing CO by N2O was found to involve a CO␣O transition state, with atomic O adsorbed on the gold B5 sites and CO on the corners. On the other hand, CO...... and experiment were found to be the same. The experiment findings are in good agreement with our theoretical calculations. The second part of the thesis focuses on improving the convergence property of Quasi-Newton algorithm. The eigenvalues of the Hessian matrix of 54 atoms bulk Cu model are calculated......, and the sizes of eigenvalues follow power-law distribution. It is found that the anharmonicity of the weak modes lead to poor Newton step and poor Hessian update in BFGS type Quasi-Newton algorithm, which slow down the geometry optimization. Line search that fulfills Wolff conditions is then applied to improve...

  1. Three-Dimensional Structure and Catalytic Mechanism of Cytosine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    R Hall; A Fedorov; C Xu; E Fedorov; S Almo; F Raushel

    2011-12-31

    Cytosine deaminase (CDA) from E. coli is a member of the amidohydrolase superfamily. The structure of the zinc-activated enzyme was determined in the presence of phosphonocytosine, a mimic of the tetrahedral reaction intermediate. This compound inhibits the deamination of cytosine with a K{sub i} of 52 nM. The zinc- and iron-containing enzymes were characterized to determine the effect of the divalent cations on activation of the hydrolytic water. Fe-CDA loses activity at low pH with a kinetic pKa of 6.0, and Zn-CDA has a kinetic pKa of 7.3. Mutation of Gln-156 decreased the catalytic activity by more than 5 orders of magnitude, supporting its role in substrate binding. Mutation of Glu-217, Asp-313, and His-246 significantly decreased catalytic activity supporting the role of these three residues in activation of the hydrolytic water molecule and facilitation of proton transfer reactions. A library of potential substrates was used to probe the structural determinants responsible for catalytic activity. CDA was able to catalyze the deamination of isocytosine and the hydrolysis of 3-oxauracil. Large inverse solvent isotope effects were obtained on k{sub cat} and k{sub cat}/K{sub m}, consistent with the formation of a low-barrier hydrogen bond during the conversion of cytosine to uracil. A chemical mechanism for substrate deamination by CDA was proposed.

  2. PREPARATION AND CATALYTIC ACTIVITY FOR ISOPROPYL BENZENE CRACKING OF Co, Mo AND Co/Mo-Al2O3-PILLARED MONTMORILLONITE CATALYSTS

    Directory of Open Access Journals (Sweden)

    Hasanudin Hasanudin

    2010-06-01

    Full Text Available It has been prepared Co, Mo and Co/Mo-Al2O3-pillared montmorillonite catalysts using montmorillonite clay  as raw material. The structure and porosity of the catalysts were determined using N2 adsorption-desorption and FT-IR spectroscopy analysis methods. Isopropyl benzene cracking using these catalysts were used to test the catalytic activity and performance of Co, Mo and Co/Mo-Al2O3-pillared montmorillonites.  Characterization results showed that pillarization resulted in the increase of the total pore volume and specific surface area of the clay. Meanwhile, transition metals (Co, Mo and Co/Mo loaded on Al2O3-pillared monmorillonites could increase the catalytic activity of the catalysts for isopropyl benzene cracking significantly.   Keywords: pillared monmorillonite, isopropyl benzene  and cracking catalyst

  3. Catalytic Oxidation of Soot on a Novel Active Ca-Co Dually-Doped Lanthanum Tin Pyrochlore Oxide

    Directory of Open Access Journals (Sweden)

    Lijie Ai

    2018-04-01

    Full Text Available A novel active Ca-Co dually-doping pyrochlore oxide La2−xCaxSn2−yCoyO7 catalyst was synthesized by the sol-gel method for catalytic oxidation of soot particulates. The microstructure, atomic valence, reduction, and adsorption performance were investigated by X-ray powder diffraction (XRD, scanning electron microscope (SEM, Fourier-transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, H2-TPR (temperature-programmed reduction, and in situ diffuse reflection infrared Fourier transformed (DRIFTS techniques. Temperature programmed oxidation (TPO tests were performed with the mixture of soot-catalyst under tight contact conditions to evaluate the catalytic activity for soot combustion. Synergetic effect between Ca and Co improved the structure and redox properties of the solids, increased the surface oxygen vacancies, and provided a suitable electropositivity for oxide, directly resulting in the decreased ignition temperature for catalyzed soot oxidation as low as 317 °C. The presence of NO in O2 further promoted soot oxidation over the catalysts with the ignition temperature decreased to about 300 °C. The DRIFTS results reveal that decomposition of less stable surface nitrites may account for NO2 formation in the ignition period of soot combustion, which thus participate in the auxiliary combustion process.

  4. Enhanced catalytic hydrogenation activity of Ni/reduced graphene oxide nanocomposite prepared by a solid-state method

    Science.gov (United States)

    Li, Yizhao; Cao, Yali; Jia, Dianzeng

    2018-01-01

    A simple solid-state method has been applied to synthesize Ni/reduced graphene oxide (Ni/rGO) nanocomposite under ambient condition. Ni nanoparticles with size of 10-30 nm supported on reduced graphene oxide (rGO) nanosheets are obtained through one-pot solid-state co-reduction among nickel chloride, graphene oxide, and sodium borohydride. The Ni/rGO nanohybrid shows enhanced catalytic activity toward the reduction of p-nitrophenol (PNP) into p-aminophenol compared with Ni nanoparticles. The results of kinetic research display that the pseudo-first-order rate constant for hydrogenation reaction of PNP with Ni/rGO nanocomposite is 7.66 × 10-3 s-1, which is higher than that of Ni nanoparticles (4.48 × 10-3 s-1). It also presents superior turnover frequency (TOF, 5.36 h-1) and lower activation energy ( E a, 29.65 kJ mol-1) in the hydrogenation of PNP with Ni/rGO nanocomposite. Furthermore, composite catalyst can be magnetically separated and reused for five cycles. The large surface area and high electron transfer property of rGO support are beneficial for good catalytic performance of Ni/rGO nanocomposite. Our study demonstrates a simple approach to fabricate metal-rGO heterogeneous nanostructures with advanced functions.

  5. Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle

    DEFF Research Database (Denmark)

    Bultot, Laurent; Jensen, Thomas Elbenhardt; Lai, Yu-Chiang

    2016-01-01

    AMP-activated protein kinase (AMPK) plays diverse roles and coordinates complex metabolic pathways for maintenance of energy homeostasis. This could be explained by the fact that AMPK exists as multiple heterotrimer complexes comprising a catalytic α-subunit (α1 and α2) and regulatory β (β1 and β...

  6. High-Resolution Crystal Structures of Streptococcus pneumoniae Nicotinamidase with Trapped Intermediates Provide Insights into the Catalytic Mechanism and Inhibition by Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Cen, Yana; Sauve, Anthony A.; Ealick, Steven E. (Cornell); (Weill-Med)

    2010-11-11

    Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD{sup +} in most prokaryotes and most single-cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD{sup +} homeostasis has stimulated interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD{sup +}-consuming enzymes, such as the NAD{sup +}-dependent deacetylases (sirtuins). Here, we report several high-resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. The structure of the C136S mutant in complex with nicotinamide provides details about substrate binding, while a trapped nicotinoyl thioester in a complex with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features, including a metal ion that coordinates the substrate and the catalytically relevant water molecule and an oxyanion hole that both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence of several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme.

  7. Novel Zinc-Catalytic Systems for Ring-Opening Polymerization of ε-Caprolactone

    Directory of Open Access Journals (Sweden)

    Karolina Żółtowska

    2015-02-01

    Full Text Available Polycaprolactone (PCL is a biodegradable synthetic polymer that is currently widely used in many pharmaceutical and medical applications. In this paper we describe the coordination ring-opening polymerization of ε-caprolactone in the presence of two newly synthesized catalytic systems: diethylzinc/gallic acid and diethylzinc/propyl gallate. The chemical structures of the obtained PCLs were characterized by 1H- or 13C-NMR, FTIR spectroscopy and MALDI TOF mass spectrometry. The average molecular weight of the resulting polyesters was analysed by gel permeation chromatography and a viscosity method. The effects of temperature, reaction time and type of catalytic system on the polymerization process were examined. Linear PCLs with defined average molecular weight were successfully obtained. Importantly, in some cases the presence of macrocyclic products was not observed during the polymerization process. This study provides an effective method for the synthesis of biodegradable polyesters for medical and pharmaceutical applications due to the fact that gallic acid/propyl gallate are commonly used in the pharmaceutical industry.

  8. Targeted Catalytic Inactivation of Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    Science.gov (United States)

    Joyner, Jeff C.; Hocharoen, Lalintip; Cowan, J. A.

    2012-01-01

    A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine sidechain of lisinopril by EDC/NHS coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following pre-incubation with metal-chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal-chelate-lisinopril complexes revealed IC50 values ranging from 44 nM to 4,500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal-chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second order rate constants as high as 150,000 M−1min−1 (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primary from sidechain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein

  9. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates.

    Science.gov (United States)

    Joyner, Jeff C; Hocharoen, Lalintip; Cowan, J A

    2012-02-22

    A series of compounds that target reactive transition-metal chelates to somatic angiotensin converting enzyme (sACE-1) have been synthesized. Half-maximal inhibitory concentrations (IC(50)) and rate constants for both inactivation and cleavage of full-length sACE-1 have been determined and evaluated in terms of metal chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine side chain of lisinopril by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride/N-hydroxysuccinimide coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel, and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following preincubation with metal chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal chelate-lisinopril complexes revealed IC(50) values ranging from 44 to 4500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second-order rate constants as high as 150,000 M(-1) min(-1) (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primarily from side chain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the

  10. Modeling and Simulation of the Hydrogenation of α-Methylstyrene on Catalytically Active Metal Foams as Tubular Reactor Packing

    Directory of Open Access Journals (Sweden)

    Farzad Lali

    2016-01-01

    Full Text Available This work presents a one-dimensional reactor model for a tubular reactor packed with a catalytically active foam packing with a pore density of 30 PPI in cocurrent upward flow in the example of hydrogenation reaction of α-methylstyrene to cumene. This model includes material, enthalpy, and momentum balances as well as continuity equations. The model was solved within the parameter space applied for experimental studies under assumption of a bubbly flow. The method of orthogonal collocation on finite elements was applied. For isothermal and polytropic processes and steady state conditions, axial profiles for concentration, temperature, fluid velocities, pressure, and liquid holdup were computed and the conversions for various gas and liquid flow rates were validated with experimental results. The obtained results were also compared in terms of space time yield and catalytic activity with experimental results and stirred tank and also with random packed bed reactor. The comparison shows that the application of solid foams as reactor packing is advantageous compared to the monolithic honeycombs and random packed beds.

  11. Bi–Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Fa-Nian, E-mail: fshi@ua.pt [School of Science, Shenyang University of Technology, 110870 Shenyang (China); Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Rosa Silva, Ana [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Bian, Liang [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China)

    2015-05-15

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn–Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi{sub 2}O(1,3,5-BTC){sub 2}]{sub n} (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi{sub 4}O{sub 2}(COO){sub 12} clusters which are further connected to Mn(COO){sub 6} fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of (4{sup 13}.6{sup 2})(4{sup 13}.6{sup 8})(4{sup 16}.6{sup 5})(4{sup 18}.6{sup 10})(4{sup 22}.6{sup 14})(4{sup 3}) corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones. - Graphical abstract: This metal organic framework (MOF) is the essence of a 2D metal organic oxide (MOO). - Highlights: • New concept of metal organic oxide (MOO) was defined and made difference from metal organic framework. • New MOO of MOOMnBi was synthesized by hydrothermal method. • Crystal structure of MOOMnBi was determined by single crystal X-ray analysis. • The catalytic activity of MOOMnBi was studied showing reusable after 2 cycles.

  12. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  13. Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.

    Science.gov (United States)

    Manzoor, Dar; Pal, Sourav

    2015-06-18

    Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.

  14. PREPARATION, CHARACTERIZATION AND CATALYTIC ACTIVITY TEST OF CoMo/ZnO CATALYST ON ETHANOL CONVERSION USING STEAM REFORMING METHOD

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2010-06-01

    Full Text Available Preparation, characterization and catalytic activity test of CoMo/ZnO catalyst for steam reforming of ethanol have been investigated. The catalysts preparation was carried out by impregnation of Co and/or Mo onto ZnO sample. Water excess was used in ethanol feed for steam reforming process under mol ratio of ethanol:water (1:10. Characterizations of catalysts were conducted by analysis of metal content using Atomic Absorption Spectroscopy (AAS. Determination of catalysts acidity was conducted by gravimetric method of adsorption of pyridine base. Catalytic activity test on ethanol conversion using steam reforming method was conducted in a semi-flow reactor system, at a temperature of 400 oC, for 1.5 h under N2 flow rate of 10 mL/min. Gas product was analyzed by gas chromatograph with TCD system. The results of catalysts characterizations showed that the impregnation of Co and/or Mo metals on ZnO sample increased its acidity and specific surface area. The content of Co in Co/ZnO and CoMo/ZnO catalysts was 1.14 and 0.49 wt%. The Mo content in CoMo/ZnO catalyst was 0.36 wt%. The catalytic activity test result on ethanol conversion showed that the ZnO, Co/ZnO, and CoMo/ZnO catalysts produced gas fraction of 16.73, 28.53, and 35.53 wt%, respectively. The coke production of ZnO, Co/ZnO, and CoMo/ZnO catalysts was 0.86, 0.24, and 0.08 wt%, respectively. The gas products consisted mainly of hydrogen.   Keywords: CoMo/ZnO catalyst, steam reforming, ethanol

  15. Catalytic and physical properties of γ-irradiated catalase in dilute solution

    International Nuclear Information System (INIS)

    Gasyna, Z.; Bachman, S.

    1974-01-01

    The catalytic and physical properties of irradiated beef liver catalase have been studied. Modification of the enzyme by γ-rays brings about its reducibility by dithionite. The decrease of the catalytic activity is found to correspond to the decrease in the content of nonreducible catalase. Microaggregates of catalase molecules induced by irradiation have been fractionated. The results lead to the conclusion that aggregates are composed of active and modified catalase monomers. (author)

  16. Catalytic Ammonia Decomposition Over Ruthenium Nanoparticles Supported on Nano-Titanates

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Klitgaard, Søren Kegnæs; Fehrmann, Rasmus

    2009-01-01

    Nanosized Na2Ti3O7, K2Ti6O13 and Cs2Ti6O13 materials were prepared and used as supports of ruthenium nanoparticles for catalytic ammonia decomposition. It is shown that these catalysts exhibit higher catalytic activity than ruthenium supported on TiO2 nanoparticles promoted with cesium. The diffe...

  17. Atomically Precise Metal Nanoclusters for Catalytic Application

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Rongchao [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily high selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au25(SR)18, Au28(SR)20, Au38(SR)24, Au99(SR)42, Au144(SR)60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our

  18. Agro-industrial waste-mediated synthesis and characterization of gold and silver nanoparticles and their catalytic activity for 4-nitroaniline hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Dauthal, Preeti; Mukhopadhyay, Mausumi [S.V. National Institute of Technology, Surat (India)

    2015-05-15

    The biosynthesis of gold (Au-NPs) and silver nanoparticles (Ag-NPs) using agro-industrial waste Citrus aurantifolia peel extract as a bio-reducing agent is reported. Catalytic activity of nanoparticles (NPs) was evaluated for hydrogenation of anthropogenic pollutant 4-nitroaniline (4-NA). Both synthesized NPs were nearly spherical and distributed in size range of 6-46 and 10-32 nm for Au-NPs and Ag-NPs, respectively. XRD analysis revealed face centered cubic (fcc) structure of both NPs. ζ potential value obtained from colloidal solution of Au-NPs and Ag-NPs was −28.0 and −26.1mV, respectively, indicating the stability of the NPs in colloidal solution. FTIR spectra supported the role of citric and ascorbic acids of peel extract for biosynthesis and stabilization of NPs. The biosynthesized NPs exhibited excellent catalytic activity for hydrogenation of 4-NA in the presence of NaBH{sub 4}.

  19. Preparation and photo-catalytic activities of FeOOH/ZnO/MMT composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao, E-mail: zy19830808@163.com [College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Liu, Fusheng; Yu, Shitao [College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2015-11-15

    Highlights: • The montmorillonite was used as the carrier for the synthesis of FeOOH nano-material and FeOOH/ZnO nano-material. • TEM was used to study the structure of the two nano-materials with the composite structure of goethite and wurtzite. • TEM was used to demonstrate FeOOH/ZnO nano-material can formed with the appropriate interface: wurtzite-(1 0 1)/(1 1 1)-goethite. • There were some coupling effect between FeOOH and ZnO, which can improve the photo-catalytic activities of FeOOH. • According to FTIR and TOC, PCP was degraded to aromatic ketone compounds and then to H{sub 2}O, CO{sub 2}, HCl. - Abstract: Montmorillonite (MMT) was used as the carrier for synthesis of FeOOH and FeOOH/ZnO nano-material. FeOOH and FeOOH/ZnO were synthesized by the aqueous solutions of Fe(NO{sub 3}){sub 3}–HNO{sub 3} and Zn(NO{sub 3}){sub 2}–NaOH/Fe(NO{sub 3}){sub 3}–HNO{sub 3} with the carrier of montmorillonite respectively. Transmission electron-microscopy (TEM) and X-ray diffraction (XRD) were used to study the morphology form and structure of the nano-materials. TEM was also used to demonstrate that FeOOH/ZnO can be formed with the appropriate interface. According to UV–vis absorption spectra, FeOOH/ZnO has a better response to visible light than FeOOH and ZnO, which indicates there is some coupling effect between FeOOH and ZnO. Pentachlorophenol (PCP) was used as a representative organic pollutant to evaluate the photo-catalytic efficiency of the FeOOH/ZnO and FeOOH catalysts in visible light (λ > 400 nm). The photo-catalytic efficiency of FeOOH/ZnO/MMT is better than FeOOH/MMT. According to FTIR, changes of pH and TOC, the degradation mechanism was also discussed. PCP was degraded to aromatic ketone and chloro-hydrocarbon compounds and then to H{sub 2}O, CO{sub 2} and HCl.

  20. Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine

    International Nuclear Information System (INIS)

    Kim, Moon-Jung; Lee, Byung Cheon; Hwang, Kwang Yeon; Gladyshev, Vadim N.; Kim, Hwa-Young

    2015-01-01

    Thioredoxin (Trx) is a major thiol-disulfide reductase that plays a role in many biological processes, including DNA replication and redox signaling. Although selenocysteine (Sec)-containing Trxs have been identified in certain bacteria, their enzymatic properties have not been characterized. In this study, we expressed a selenoprotein Trx from Treponema denticola, an oral spirochete, in Escherichia coli and characterized this selenoenzyme and its natural cysteine (Cys) homologue using E. coli Trx1 as a positive control. 75 Se metabolic labeling and mutation analyses showed that the SECIS (Sec insertion sequence) of T. denticola selenoprotein Trx is functional in the E. coli Sec insertion system with specific selenium incorporation into the Sec residue. The selenoprotein Trx exhibited approximately 10-fold higher catalytic activity than the Sec-to-Cys version and natural Cys homologue and E. coli Trx1, suggesting that Sec confers higher catalytic activity on this thiol-disulfide reductase. Kinetic analysis also showed that the selenoprotein Trx had a 30-fold higher K m than Cys-containing homologues, suggesting that this selenoenzyme is adapted to work efficiently with high concentrations of substrate. Collectively, the results of this study support the hypothesis that selenium utilization in oxidoreductase systems is primarily due to the catalytic advantage provided by the rare amino acid, Sec. - Highlights: • The first characterization of a selenoprotein Trx is presented. • The selenoenzyme Trx exhibits 10-fold higher catalytic activity than Cys homologues. • Se utilization in Trx is primarily due to the catalytic advantage provided by Sec residue

  1. Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon-Jung [Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717 (Korea, Republic of); Lee, Byung Cheon [Division of Genetics, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Hwang, Kwang Yeon [Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Gladyshev, Vadim N. [Division of Genetics, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr [Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717 (Korea, Republic of)

    2015-06-12

    Thioredoxin (Trx) is a major thiol-disulfide reductase that plays a role in many biological processes, including DNA replication and redox signaling. Although selenocysteine (Sec)-containing Trxs have been identified in certain bacteria, their enzymatic properties have not been characterized. In this study, we expressed a selenoprotein Trx from Treponema denticola, an oral spirochete, in Escherichia coli and characterized this selenoenzyme and its natural cysteine (Cys) homologue using E. coli Trx1 as a positive control. {sup 75}Se metabolic labeling and mutation analyses showed that the SECIS (Sec insertion sequence) of T. denticola selenoprotein Trx is functional in the E. coli Sec insertion system with specific selenium incorporation into the Sec residue. The selenoprotein Trx exhibited approximately 10-fold higher catalytic activity than the Sec-to-Cys version and natural Cys homologue and E. coli Trx1, suggesting that Sec confers higher catalytic activity on this thiol-disulfide reductase. Kinetic analysis also showed that the selenoprotein Trx had a 30-fold higher K{sub m} than Cys-containing homologues, suggesting that this selenoenzyme is adapted to work efficiently with high concentrations of substrate. Collectively, the results of this study support the hypothesis that selenium utilization in oxidoreductase systems is primarily due to the catalytic advantage provided by the rare amino acid, Sec. - Highlights: • The first characterization of a selenoprotein Trx is presented. • The selenoenzyme Trx exhibits 10-fold higher catalytic activity than Cys homologues. • Se utilization in Trx is primarily due to the catalytic advantage provided by Sec residue.

  2. Catalytic activity of catalysts for steam reforming reaction. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hirofumi; Inagaki, Yoshiyuki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-05-01

    Japan Atomic Energy Research Institute has been developing a hydrogen production system by means of steam reforming of methane (chemical reation: CH{sub 4} + H{sub 2}O = CO + 3H{sub 2}) coupling with High Temperature Engineering Test Reactor (HTTR) to demonstrate effectiveness of high-temperature nuclear heat utilization. Prior to construction of HTTR hydrogen production system, a mock-up test facility with a full-scale reaction tube was constructed to investigate transient behavior of the hydrogen production system an establish system controllability. In order to predict transient behavior and hydrogen productivity of the hydrogen production system, it is important to estimate the reaction characteristics under the same temperature and pressure conditions as those of HTTR hydrogen production system. For the purpose of investigate an apparent activation energy of catalysts, catalytic activity test using small apparatus was carried out under the condition of methane flow rate from 1.18 x 10{sup -3} to 3.19 x 10{sup -3} mol/s, temperature from 500 to 900degC, pressure from 1.1 to 4.1MPa, and mol ratio of steam to methane from 2.5 to 3.5. It was confirmed that apparent activation energies of two kinds of Ni catalysts which are to be used in the mock-up test were 51.7 and 57.4kJ/mol, respectively, and reaction rate constants were propositional to the value from P{sup -0.15} to P{sup -0.33}. (author)

  3. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    Science.gov (United States)

    Abdullah, N.; Rinaldi, A.; Muhammad, I. S.; Hamid, S. B. Abd.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300° C for an hour in each step. The catalytic growth of nanocarbon in C2H4/H2 was carried out at temperature of 550° C for 2 hrs with different rotating angle in the fluidization system. SEM and N2 isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  4. Catalytic Conversion of Glucose into 5-Hydroxymethylfurfural by Hf(OTf4 Lewis Acid in Water

    Directory of Open Access Journals (Sweden)

    Junjie Li

    2015-12-01

    Full Text Available A series of Lewis acidic metal salts were used for glucose dehydration to 5-hydroymethylfurfural (HMF in water. Effect of valence state, ionic radii of Lewis acidic cation, and the type of anions on the catalytic performance have been studied systematically. The experimental results showed that the valence state played an important role in determining catalytic activity and selectivity. It was found that a higher glucose conversion rate and HMF selectivity could be obtained over high valent Lewis acid salts, where the ionic radii of these Lewis acidic metal salts are usually relatively small. Analysis on the effect of the anions of Lewis acid salts on the catalytic activity and the selectivity suggested that a higher glucose conversion and HMF selectivity could be readily obtained with Cl−. Furthermore, the recyclability of high valence state Lewis acid salt was also studied, however, inferior catalytic performance was observed. The deactivation mechanism was speculated to be the fact that high valence state Lewis acid salt was comparatively easier to undergo hydrolysis to yield complicated metal aqua ions with less catalytic activity. The Lewis acidic activity could be recovered by introducing a stoichiometric amount of hydrochloric acid (HCl to the catalytic before the reaction.

  5. Effect of Dopant Loading on the Structural and Catalytic Properties of Mn-Doped SrTiO3 Catalysts for Catalytic Soot Combustion

    Directory of Open Access Journals (Sweden)

    Santiago Iván Suárez-Vázquez

    2018-02-01

    Full Text Available Soot particles have been associated with respiratory diseases and cancer. To decrease these emissions, perovskite-mixed oxides have been proposed due to their thermal stability and redox surface properties. In this work, SrTiO3 doped with different amounts of Mn were synthesized by the hydrothermal method and tested for soot combustion. Results show that at low Mn content, structural distortion, and higher Oads/Olat ratio were observed which was attributed to the high content of Mn3+ in Ti sites. On the other hand, increasing the Mn content led to surface segregation of manganese oxide. All synthesized catalysts showed mesopores in the range of 32–47 nm. In the catalytic combustion of soot, the samples synthesized in this work lowered the combustion temperature by more than 100 °C compared with the uncatalyzed reaction. The sample doped with 1 wt % of Mn showed the best catalytic activity. The activation energy of these samples was also calculated, and the order of decreasing activation energy is as follows: uncatalyzed > Mn0 > Mn8 > Mn4 > Mn1. The best catalytic activity for Mn1 was attributed to its physicochemical properties and the mobility of the oxygen from the bulk to the surface at temperatures higher than 500 °C.

  6. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  7. Catalytic role of Au-TiO{sub 2} nanocomposite on enhanced degradation of an azo-dye by electrochemically active biofilms: a quantized charging effect

    Energy Technology Data Exchange (ETDEWEB)

    Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan, E-mail: mhcho@ynu.ac.kr [Yeungnam University, School of Chemical Engineering (Korea, Republic of)

    2013-01-15

    A green and sustainable approach to azo dye degradation by an electrochemically active biofilm (EAB) with Au-TiO{sub 2} nanocomposite assistance (average size of Au {approx}8 nm) has been developed with high efficiency and mineralization of toxic intermediates. The EAB-Au-TiO{sub 2} system degraded the dye more rapidly than the EAB without the nanocomposite, which indicated the catalytic role of the Au-TiO{sub 2} nanocomposite on the dye degradation. Toxicity measurements showed that the dye wastewater treated by the EAB-Au-TiO{sub 2} system was almost non-toxic while the dye wastewater treated by the EAB without the nanocomposite showed a high toxicity compared to the parent dye. Quantized charging and Fermi level equilibration within the Au-TiO{sub 2} nanocomposite may be attributed to the excellent catalytic activity of the nanocomposite on the dye degradation. A mechanism of the catalytic activity is also proposed. Redox behavior and quantized charging of the nanocomposite were confirmed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), respectively. The proposed protocol can be effectively utilized in wastewater treatment applications.

  8. Al-doped TiO{sub 2} mesoporous material supported Pd with enhanced catalytic activity for complete oxidation of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jing, E-mail: mlczjsls123@163.com; Mu, Wentao, E-mail: mwt15035687833@163.com; Su, Liqing, E-mail: suliqing0163@163.com; Li, Xingying, E-mail: lixingying0479@link.tyut.edu.cn; Guo, Yuyu, E-mail: guoyuyu0455@link.tyut.edu.cn; Zhang, Shen, E-mail: zhangshen0472@link.tyut.edu.cn; Li, Zhe, E-mail: lizhe@tyut.edu.cn

    2017-04-15

    Pd catalysts supported on Al-doped TiO{sub 2} mesoporous materials were evaluated in complete oxidation of ethanol. The catalysts synthesized by wet impregnation based on evaporation-induced self-assembly were characterized by X-ray diffraction, measurement of pore structure, XPS, FT-IR, temperature programmed reduction and TEM. Characteristic results showed that the aluminium was doped into the lattice of mesoporous anatase TiO{sub 2} to form Al-O-Ti defect structure. Catalytic results revealed that Al-doped catalysts were much more active than the pristine one, especially at low temperature (≤200 °C). This should be ascribed to the introduction of aluminium ions that suppressed the strong metal-support interaction and increased the active sites of Pd oxides, enhanced the stabilized anatase TiO{sub 2}, improved well dispersed high valence palladium species with high reducibility and enriched chemisorption oxygen. - Graphical abstract: Al-doped Pd/TiO{sub 2} exhibited optimal catalytic performance for ethanol oxidation and CO{sub 2} yield by the suppression of SMSI. - Highlights: • Palladium catalysts supported on Al-doped TiO{sub 2} mesoporous materials were studied. • The introduction of Al can enhance anatase stabilization and increase defect TiO{sub 2}. • The Pd/Al-TiO{sub 2} catalysts show higher ethanol conversion and CO{sub 2} yield than Pd/TiO{sub 2}. • The influence of Al on SMSI and catalytic performance were evaluated by TPR and XPS.

  9. Surface chemistry and catalytic activity of Ni/Al{sub 2}O{sub 3} irradiated with high-energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jin [Department of Optometry and Optic Science, Dongshin University, 252 Daeho-Dong, Naju 520-714 (Korea, Republic of)], E-mail: jinjun@dsu.ac.kr; Dhayal, Marshal [Liquid Crystal and Self Assembled Monolayer Section, National Physical Laboratory, Dr. KS Krisnan Marg, New Delhi 120011 (India); Shin, Joong-Hyeok [Department of Environmental Engineering, Dongshin University, 252 Daeho-Dong, Naju 520-714 (Korea, Republic of); Han, Young Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Getoff, Nikola [Department of Nutrition, Section Radiation Biology, University of Vienna, Althanstr. 14, A-1090 Vienna (Austria)

    2008-05-30

    The radiation effects induced effects by electron beam (EB) treatment on the catalytic activity of Ni/{gamma}-Al{sub 2}O{sub 3} were studied for the carbon dioxide reforming of methane with different EB energy and absorbed radiation dose. Transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to determine the change in structure and surface states of Ni/{gamma}-Al{sub 2}O{sub 3} catalyst before and after the EB treatment. Higher energy EB treatment is useful for increasing the proportion of the active sites (such as Ni{sup 0} and NiAl{sub 2}O{sub 4}-phase) on the surface. The increase of Ni/Al-ratio indicates that the Ni dispersion on the surface increased with the EB-treatment, resulting in an increase of the active sites, which leads to improving the catalytic activity. XPS measurement also showed a decrease of the surface carbon with EB dose. The maximum 20% increase in the conversion of CO{sub 2}/CH{sub 4}-mixture into CO/H{sub 2} gas was observed for the catalyst treated with 2 MeV energy and 600 kGy dose of EB relative to untreated.

  10. On the Pt(+) and Rh(+) Catalytic Activity in the Nitrous Oxide Reduction by Carbon Monoxide.

    Science.gov (United States)

    Rondinelli, F; Russo, N; Toscano, M

    2008-11-11

    Nitrous oxide activation by CO in the presence of platinum and rhodium monocations was elucidated by density functional methods for ground and first excited states. Platinum and rhodium cations fulfill the thermodynamic request for the oxygen-atom transport that allows the catalytic cycle to be completed, but actually, just the first one meaningfully improves the kinetics of the process. For both catalysts, the reaction pathways show the only activation barrier in correspondence of nitrogen release and monoxide cation formation. The kinetic analysis of the potential energy profile, in agreement with ICP/SIFT MS experimental data, indicates that platinum performs more in the reduction, while the whole process is not sufficiently fast in the case of rhodium ionic catalyst.

  11. The N domain of somatic angiotensin-converting enzyme negatively regulates ectodomain shedding and catalytic activity

    OpenAIRE

    Woodman, Zenda L.; Schwager, Sylva L. U.; Redelinghuys, Pierre; Carmona, Adriana K.; Ehlers, Mario R. W.; Sturrock, Edward D.

    2005-01-01

    sACE (somatic angiotensin-converting enzyme) consists of two homologous, N and C domains, whereas the testis isoenzyme [tACE (testis ACE)] consists of a single C domain. Both isoenzymes are shed from the cell surface by a sheddase activity, although sACE is shed much less efficiently than tACE. We hypothesize that the N domain of sACE plays a regulatory role, by occluding a recognition motif on the C domain required for ectodomain shedding and by influencing the catalytic efficiency. To test ...

  12. The Enhanced Catalytic Activities of Asymmetric Au-Ni Nanoparticle Decorated Halloysite-Based Nanocomposite for the Degradation of Organic Dyes

    Science.gov (United States)

    Jia, Lei; Zhou, Tao; Xu, Jun; Li, Xiaohui; Dong, Kun; Huang, Jiancui; Xu, Zhouqing

    2016-02-01

    Janus particles (JPs) are unique among the nano-/microobjects because they provide asymmetry and can thus impart drastically different chemical or physical properties. In this work, we have fabricated the magnetic halloysite nanotube (HNT)-based HNTs@Fe3O4 nanocomposite (NCs) and then anchored the Janus Au-Ni or isotropic Au nanoparticles (NPs) to the surface of external wall of sulfydryl modified magnetic nanotubes. The characterization by physical methods authenticates the successful fabrication of two different magnetic HNTs@Fe3O4@Au and HNTs@Fe3O4@Au-Ni NCs. The catalytic activity and recyclability of the two NCs have been evaluated considering the degradation of Congo red (CR) and 4-nitrophenol (4-NP) using sodium borohydride as a model reaction. The results reveal that the symmetric Au NPs participated NCs display low activity in the degradation of the above organic dyes. However, a detailed kinetic study demonstrates that the employ of bimetallic Janus Au-Ni NPs in the NCs indicates enhanced catalytic activity, owing to the structurally specific nature. Furthermore, the magnetic functional NCs reported here can be used as recyclable catalyst which can be recovered simply by magnet.

  13. Ensemble averaged structure–function relationship for nanocrystals: effective superparamagnetic Fe clusters with catalytically active Pt skin [Ensemble averaged structure-function relationship for composite nanocrystals: magnetic bcc Fe clusters with catalytically active fcc Pt skin

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, Valeri [Central Michigan University, Mt. Pleasant, MI (United States); Prasai, Binay [Central Michigan University, Mt. Pleasant, MI (United States); Shastri, Sarvjit [Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Division; Park, Hyun-Uk [Sungkyunkwan University, Suwon (Korea). Department of Chemistry; Kwon, Young-Uk [Sungkyunkwan University, Suwon (Korea). Department of Chemistry; Skumryev, Vassil [Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain); Universitat Autònoma de Barcelona (Spain). Department of Physics

    2017-09-12

    Practical applications require the production and usage of metallic nanocrystals (NCs) in large ensembles. Besides, due to their cluster-bulk solid duality, metallic NCs exhibit a large degree of structural diversity. This poses the question as to what atomic-scale basis is to be used when the structure–function relationship for metallic NCs is to be quantified precisely. In this paper, we address the question by studying bi-functional Fe core-Pt skin type NCs optimized for practical applications. In particular, the cluster-like Fe core and skin-like Pt surface of the NCs exhibit superparamagnetic properties and a superb catalytic activity for the oxygen reduction reaction, respectively. We determine the atomic-scale structure of the NCs by non-traditional resonant high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Using the experimental structure data we explain the observed magnetic and catalytic behavior of the NCs in a quantitative manner. Lastly, we demonstrate that NC ensemble-averaged 3D positions of atoms obtained by advanced X-ray scattering techniques are a very proper basis for not only establishing but also quantifying the structure–function relationship for the increasingly complex metallic NCs explored for practical applications.

  14. Anodically-grown TiO{sub 2} nanotubes: Effect of the crystallization on the catalytic activity toward the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Adriano, E-mail: adriano.sacco@iit.it [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Garino, Nadia [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Lamberti, Andrea, E-mail: andrea.lamberti@polito.it [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Pirri, Candido Fabrizio [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Quaglio, Marzia [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy)

    2017-08-01

    Highlights: • Anodically-grown TiO{sub 2} nanotubes as catalysts for the oxygen reduction reaction. • Amorphous NTs compared to thermal- and vapor-treated crystalline nanostructures. • The selection of the crystallization conditions leads to performance similar to Pt. - Abstract: In this work we investigated the behavior of TiO{sub 2} nanotube (NT) arrays, grown by anodic oxidation of Ti foil, as catalysts for the oxygen reduction reaction (ORR) in alkaline water solution. In particular, as-grown amorphous NTs were compared to crystalline anatase nanostructures, obtained following two different procedures, namely thermal and vapor-induced crystallizations. The catalytic activity of these materials toward the ORR was evaluated by cyclic voltammetry measurements. ORR polarization curves, combined with the rotating disk technique, indicated a predominant four-electrons reduction path, especially for crystalline samples. The effect of the structural characteristics of the investigated materials on the catalytic activity was analyzed in details by electrochemical impedance spectroscopy. The catalytic performance of the crystalline NTs is only slightly lower with respect to the reference material for fuel cell applications, namely platinum, but is in line with other cost-effective catalysts recently proposed in the literature. However, if compared to the larger part of these low-cost catalysts, anodically-grown TiO{sub 2} NTs are characterized by a synthesis route which is highly reproducible and easily up-scalable.

  15. Comparative catalytic reduction of 4-nitrophenol by polyacrylamide-gold nanocomposite synthesized by hydrothermal autoclaving and conventional heating routes

    Science.gov (United States)

    Salaheldin, Hosam I.

    2017-12-01

    Gold nanoparticles (AuNPs) in polymeric polyacrylamide (PAAm) matrix were synthesized using conventional heating and autoclaving thermal techniques. The synthesized Au/PAAm nanocomposite was characterized using UV-vis spectroscopy and high-resolution transmission electron microscopy. The size of the synthesized particles was approximately 6.37 nm and 8.19 nm with the conventional heating and autoclaving thermal techniques, respectively. Electron diffraction x-ray spectroscopy and the Fourier transformation infrared spectroscopy were used for the composition and elemental studies, which confirmed that the Au metallic atoms were synthesized and embedded within a PAAm matrix via a coordination bond between the carbonyl (-CONH2) group and the metallic NPs. X-ray diffraction confirmed the crystalline nature of the fabricated AuNPs with face centered cubic of nanocrystals. The catalytic activity of the as-prepared Au/PAAm nanocomposite for the reduction of 4-nitrophenol to 4-aminophenol was studied in the presence of sodium borohydrate. The synthesized AuNPs had an effective catalytic activity; the smaller NPs synthesized NPs with the conventional heating technique had a higher reaction kinetic rate in comparation with those synthesized with the autoclaving technique. Therefore, the Au/PAAm nanocomposite can be widely used as an eco-friendly, non-toxic, a fast and cost-effective product to remove versatile organic pollutants such as aromatic nitro compounds.

  16. A catalytic approach to estimate the redox potential of heme-peroxidases

    International Nuclear Information System (INIS)

    Ayala, Marcela; Roman, Rosa; Vazquez-Duhalt, Rafael

    2007-01-01

    The redox potential of heme-peroxidases varies according to a combination of structural components within the active site and its vicinities. For each peroxidase, this redox potential imposes a thermodynamic threshold to the range of oxidizable substrates. However, the instability of enzymatic intermediates during the catalytic cycle precludes the use of direct voltammetry to measure the redox potential of most peroxidases. Here we describe a novel approach to estimate the redox potential of peroxidases, which directly depends on the catalytic performance of the activated enzyme. Selected p-substituted phenols are used as substrates for the estimations. The results obtained with this catalytic approach correlate well with the oxidative capacity predicted by the redox potential of the Fe(III)/Fe(II) couple

  17. Catalytic activity of some oxime-based Pd(II-complexes in Suzuki coupling of aryl and heteroaryl bromides in water

    Directory of Open Access Journals (Sweden)

    Kamal M. Dawood

    2017-05-01

    Full Text Available The catalytic activity of four Pd(II-complexes of benzoazole-oximes was extensively studied in Suzuki–Miyaura C–C cross coupling reactions in water, as an eco-friendly green solvent, under both thermal heating as well as microwave irradiation conditions. The cross-coupling reactions included different activated and deactivated aryl- or heteroaryl-bromides with several arylboronic acids. The protected oxime-complexes were found to be more efficient than the free ones.

  18. Preparation of Agcore/Aushell bimetallic nanoparticles from physical mixtures of Au clusters and Ag ions under dark conditions and their catalytic activity for aerobic glucose oxidation

    International Nuclear Information System (INIS)

    Zhang, Haijun; Toshima, Naoki; Takasaki, Kanako; Okumura, Mitsutaka

    2014-01-01

    Graphical abstract: The synthesis, characterization and catalytic activities for glucose oxidation of AgAu bimetallic nanoparticles (BNPs) with size of less than 2 nm are reported. The catalytic activity of Ag 10 Au 90 BNPs was about two times higher than that of Au NPs, even the BNPs have a larger particle size than that of Au NPs. -- Highlights: • Ag core /Au shell BNPs with size of less than 2.0 nm were prepared. • No any reducing reagents and lights were used for the preparation of the BNPs. • The catalytic activity of the BNPs is about two times higher than that of Au NPs. -- Abstract: AgAu bimetallic nanoparticles (BNPs), one of the most extensively studied bimetallic systems in the literatures, could have various structures and compositions depending on their preparation conditions. In the present work, catalytically highly active PVP-protected Ag core /Au shell BNPs of about 2.5 nm in diameter were fabricated from physical mixtures of aqueous dispersions of Au nanoparticles and Ag + ions under dark conditions without using any reducing agents. The prepared Ag core /Au shell BNP colloidal catalysts, which possessed a high activity for aerobic glucose oxidation, were characterized by Ultraviolet–visible spectrophotometry (UV–Vis), Inductive coupled plasma emission spectrometer (ICP), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Energy disperse spectroscopy (EDS) in High-resolution scanning transmission electron microscopy (HR-STEM). The highest activity (11,360 mol-glucose h −1 mol-metal −1 ) was observed for the BNPs with the Ag/Au atomic ratio of 1/9, the TOF value of which is about two times higher than that of Au nanoparticles with the particle size of 1.3 nm. The enhanced catalytic activity of the prepared Ag core /Au shell BNPs compared to Au NPs can be ascribed to the presence of negatively charged Au atoms resulted from electron donations from neighboring Ag atoms and PVP due to electronic charge

  19. Crystal Structure of Mn2+-bound Escherichia coli L-arabinose Isomerase (ECAI) and Implications in Protein Catalytic Mechanism and Thermo-Stability

    International Nuclear Information System (INIS)

    Zhu, W.; Manjasetty, B.; Chance, M.

    2007-01-01

    The functional properties of proteins depend on their three-dimensional shapes. Protein structures can be determined by X-ray crystallography as a tool. The three-dimensional structure of the apo form of the Escherichia coli L-arabinose isomerase (ECAI) has recently been determined. ECAI is responsible for the initial stage of L-arabinose catabolism, converting arabinose into ribulose in vivo. This enzyme also plays a crucial role in catalyzing the conversion of galactose into tagatose (low calorie natural sugar) in vitro. ECAI utilizes Mn 2+ for its catalytic activity. Crystals of the ECAI + Mn 2+ complex helps to investigate the catalytic properties of the enzyme. Therefore, crystals of ECAI + Mn 2+ complex were grown using hanging drop vapor diffusion method at room temperature. Diffraction data were collected at X4C beamline, National Synchrotron Light Source, Brookhaven National Laboratory. The structure was solved by the molecular replacement technique and has been refined to Rwork of 0.23 at 2.8 (angstrom) resolution using X3A beamline computational facility. The structure was deposited to Protein Data Bank (PDB ID 2HXG). Mn 2+ ion was localized to the previously identified putative active site with octahedral coordination. Comparison of apo and holo form of ECAI structures permits the identification of structural features that are of importance to the intrinsic activity and heat stability of AI

  20. Redox-active porous coordination polymer based on trinuclear pivalate: Temperature-dependent crystal rearrangement and redox-behavior

    Energy Technology Data Exchange (ETDEWEB)

    Lytvynenko, Anton S. [L.V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kiev 03028 (Ukraine); Kiskin, Mikhail A., E-mail: mkiskin@igic.ras.ru [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospect 31, GSP-1, 119991 Moscow (Russian Federation); Dorofeeva, Victoria N.; Mishura, Andrey M.; Titov, Vladimir E.; Kolotilov, Sergey V. [L.V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kiev 03028 (Ukraine); Eremenko, Igor L.; Novotortsev, Vladimir M. [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospect 31, GSP-1, 119991 Moscow (Russian Federation)

    2015-03-15

    Linking of trinuclear pivalate Fe{sub 2}NiO(Piv){sub 6} (Piv=O{sub 2}CC(CH{sub 3}){sub 3}) by 2,6-bis(4-pyridyl)-4-(1-naphthyl)pyridine (L) resulted in formation of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)·Solv, which was characterized in two forms: DMSO solvate Fe{sub 2}NiO(Piv){sub 6}(L)(DMSO)·2.5DMSO (1) or water solvate Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) (2). X-ray structure of 1 was determined. Crystal lattice of 1 at 160 K contained open channels, filled by captured solvent, while temperature growth to 296 K led to the crystal lattice rearrangement and formation of closed voids. Redox-behavior of 2 was studied by cyclic voltammetry for a solid compound, deposited on glassy-carbon electrode. Redox-activity of L preserved upon incorporation in the coordination polymer. The presence of pores in desolvated sample Fe{sub 2}NiO(Piv){sub 6}(L) was confirmed by the measurements of N{sub 2} and H{sub 2} adsorption at 77 K. Potential barriers of the different molecules diffusion through pores were estimated by the means of molecular mechanics. - Graphical abstract: Redox-behavior of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) was studied by cyclic voltammetry in thin film, deposited on glassy-carbon electrode. Redox-activity of L preserved upon incorporation in the coordination polymer. Potential barriers of different molecules diffusion through pores were estimated by the means of molecular mechanics. - Highlights: • Porous 1D coordination polymer was synthesized. • Temperature growth led to pores closing due to crystal lattice rearrangement. • Redox-activity of ligand preserved upon incorporation into coordination polymer. • Redox-properties of solid coordination polymer were studied in thin film. • Diffusion barriers were evaluated by molecular mechanics.

  1. Controlled synthesis, formation mechanism, and carbon oxidation properties of Ho{sub 2}Cu{sub 2}O{sub 5} nanoplates prepared with a coordination-complex method

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Rui [School of Resources and Materials, Northeastern University at Qinhuangdao 066004 (China); School of Metallurgy, Northeastern University, Shenyang 110004 (China); You, Junhua [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 (China); Han, Fei; Li, Chaoyang; Zheng, Guiyuan; Xiao, Weicheng [School of Resources and Materials, Northeastern University at Qinhuangdao 066004 (China); Liu, Xuanwen, E-mail: lxw@mail.neuq.edu.cn [School of Resources and Materials, Northeastern University at Qinhuangdao 066004 (China); School of Metallurgy, Northeastern University, Shenyang 110004 (China)

    2017-02-28

    Highlights: • The crystallization mechanism relies on Ho{sup 3+} and Cu{sup 2+} diffusion. • The Ho{sub 2}Cu{sub 2}O{sub 5} particles are refined by the coordination complex method under N{sub 2} environment. • The catalytic oxidation activity of Ho{sub 2}Cu{sub 2}O{sub 5} samples for carbon is enhanced. - Abstract: Ho{sub 2}Cu{sub 2}O{sub 5} nanoplates with perovskite structures were synthesized via a simple solution method (SSM) and a coordination-complex method (CCM) using [HoCu(3,4-pdc){sub 2}(OAc)(H{sub 2}O){sub 3}]·8H{sub 2}O (L = 3,4-pyridinedicarboxylic acid) as a precursor. The CCM was also performed in an N{sub 2} environment (CCMN) under various calcination conditions. The crystallization processes were characterized using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Ho{sub 2}Cu{sub 2}O{sub 5} formed through the diffusion of CuO into Ho{sub 2}O{sub 3} particles. Cu{sup 2+} diffused faster than Ho{sup 3+} during this process. The initial products of CCMN (along with the thermal decomposition products) were initially laminarized in the N{sub 2} atmosphere, which prevented the growth of CuO particles and decreased the size of the Ho{sub 2}Cu{sub 2}O{sub 5} particles. The final Ho{sub 2}Cu{sub 2}O{sub 5} particles from CCMN had a nanoplate morphology with an average thickness of 75 nm. The decomposition of organic molecules and protection from N{sub 2} played important roles in determining the morphology of the resulting Ho{sub 2}Cu{sub 2}O{sub 5}. The catalytic oxidation activity of Ho{sub 2}Cu{sub 2}O{sub 5} samples for carbon was characterized using a specific surface area measurement and thermogravimetric analysis, which revealed that the samples produced by CCMN had the highest catalytic activity.

  2. Pyroelectrically Induced Pyro-Electro-Chemical Catalytic Activity of BaTiO3 Nanofibers under Room-Temperature Cold–Hot Cycle Excitations

    Directory of Open Access Journals (Sweden)

    Yuntao Xia

    2017-04-01

    Full Text Available A pyro-electro-chemical catalytic dye decomposition using lead-free BaTiO3 nanofibers was realized under room-temperature cold–hot cycle excitation (30–47 °C with a high Rhodamine B (RhB decomposition efficiency ~99%, which should be ascribed to the product of pyro-electric effect and electrochemical redox reaction. Furthermore, the existence of intermediate product of hydroxyl radical in pyro-electro-chemical catalytic process was also observed. There is no significant decrease in pyro-electro-chemical catalysis activity after being recycled five times. The pyro-electrically induced pyro-electro-chemical catalysis provides a high-efficient, reusable and environmentally friendly technology to remove organic pollutants from water.

  3. Catalytic reduction of nitric oxide with ammonia over transition metal ion-exchanged Y zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Sciyama, T; Arakawa, T; Matsuda, T; Yamazoe, N; Takita, Y

    1975-01-01

    The catalytic reduction of nitric oxide with ammonia was studied over transition metal ion-exchanged Y zeolite (Me-Y) catalysts. The reaction products are nitrogen, nitrous oxide, and water in all cases. Selectivities to N/sub 2/ are 60 to 80% on all the cation exchanged zeolite catalysts exhibiting a relatively minor variation with the cationic species exchanged. The copper (II)-Y catalyst exhibits low temperature activity and has an unusual catalytic activity-temperature profile with a maximum at 120/sup 0/C. The catalytic activity is enhanced considerably when a second cation, especially cobalt (II) or iron (III) is coexchanged together with Cu (II) in Y zeolite.

  4. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  5. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity.

    Science.gov (United States)

    Yang, Guang; Yao, Hua; Mozzicafreddo, Matteo; Ballarini, Patrizia; Pucciarelli, Sandra; Miceli, Cristina

    2017-07-01

    The α-amylases are endo-acting enzymes that hydrolyze starch by randomly cleaving the 1,4-α-d-glucosidic linkages between the adjacent glucose units in a linear amylose chain. They have significant advantages in a wide range of applications, particularly in the food industry. The eukaryotic α-amylase isolated from the Antarctic ciliated protozoon Euplotes focardii ( Ef Amy) is an alkaline enzyme, different from most of the α-amylases characterized so far. Furthermore, Ef Amy has the characteristics of a psychrophilic α-amylase, such as the highest hydrolytic activity at a low temperature and high thermolability, which is the major drawback of cold-active enzymes in industrial applications. In this work, we applied site-directed mutagenesis combined with rational design to generate a cold-active Ef Amy with improved thermostability and catalytic efficiency at low temperatures. We engineered two Ef Amy mutants. In one mutant, we introduced Pro residues on the A and B domains in surface loops. In the second mutant, we changed Val residues to Thr close to the catalytic site. The aim of these substitutions was to rigidify the molecular structure of the enzyme. Furthermore, we also analyzed mutants containing these combined substitutions. Biochemical enzymatic assays of engineered versions of Ef Amy revealed that the combination of mutations at the surface loops increased the thermostability and catalytic efficiency of the enzyme. The possible mechanisms responsible for the changes in the biochemical properties are discussed by analyzing the three-dimensional structural model. IMPORTANCE Cold-adapted enzymes have high specific activity at low and moderate temperatures, a property that can be extremely useful in various applications as it implies a reduction in energy consumption during the catalyzed reaction. However, the concurrent high thermolability of cold-adapted enzymes often limits their applications in industrial processes. The α-amylase from the

  6. On the mechanism of sulfite activation of chloroplast thylakoid ATPase and the relation of ADP tightly bound at a catalytic site to the binding change mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z.; Boyer, P.D. (Univ. of California, Los Angeles (USA))

    1990-01-16

    Washed chloroplast thylakoid membranes upon exposure to ({sup 3}H)ADP retain in tightly bound ({sup 3}H)ADP on a catalytic site of the ATP synthase. The presence of sufficient endogenous or added Mg{sup 2+} results in an enzyme with essentially no ATPase activity. Sulfite activates the ATPase, and many molecules of ATP per synthase can be hydrolyzed before most of the bound ({sup 3}H)ADP is released, a result interpreted as indicating that the ADP is not bound at a site participating in catalysis by the sulfite-activated enzyme. The authors present evidence that this is not the case. The Mg{sup 2+}- and ADP-inhibited enzyme when exposed to MgATP and 20-100 mM sulfite shows a lag of about 1 min at 22{degree}C and of about 15 s at 37{degree}C before reaching the same steady-state rate as attained with light-activated ATPase that has not been inhibited by Mg{sup 2+} and ADP. The lag is not eliminated if the enzyme is exposed to sulfite prior to MgATP addition, indicating that ATPase turnover is necessary for the activation. The release of most of the bound ({sup 3}H)ADP parallels the onset of ATPase activity, although some ({sup 3}H)ADP is not released even with prolonged catalytic turnover and may be on poorly active or inactive enzyme or at noncatalytic sites. The results are consistent with most of the tightly bound ({sup 3}H)ADP being at a catalytic site and being replaced as this Mg{sup 2+}- and ADP-inhibited site regains equivalent participation with other catalytic sites on the activated enzyme. The sulfite activation can be explained by sulfite combination at a P{sub i} binding site of the enzyme-ADP-Mg{sup 2+} complex to give a form more readily activated by ATP binding at an alternative site.

  7. Light controllable catalytic activity of Au clusters decorated with photochromic molecules

    Science.gov (United States)

    Guo, Na; Meng Yam, Kah; Zhang, Chun

    2018-06-01

    By ab initio calculations, we show that when decorated with a photochromic molecule, the catalytic activity of an Au nanocluster can be reversibly controlled by light. The combination of a photochromic thiol-pentacarbonyl azobenzene (TPA) molecule and an Au8 cluster is chosen as a model catalyst. The TPA molecule has two configurations (trans and cis) that can be reversibly converted to each other upon photo-excitation. Our calculations show that when the TPA takes the trans configuration, the combined system (trans-Au8) is an excellent catalyst for CO oxidation. The reaction barrier of the catalyzed CO oxidation is less than 0.4 eV. While, the reaction barrier of CO oxidation catalyzed by cis-Au8 is very high (>2.7 eV), indicating that the catalyst is inactive. These results pave the way for a new class of light controllable nanoscale catalysts.

  8. Catalytic dehydration of ethanol using transition metal oxide catalysts.

    Science.gov (United States)

    Zaki, T

    2005-04-15

    The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.

  9. The catalytic activity of several tungsten oxides for the oxidation of propene

    International Nuclear Information System (INIS)

    De Rossi, S.; Schiavello, M.; Rome Univ.; Iguchi, E.; Tilley, R.J.D.

    1976-01-01

    A study has been made of the catalytic oxidation of propene over the oxides WO 3 , WOsub(2,95), WOsub(2,90), WOsub(2,72) and Wo 2 , which were selected because they possess specific features of chemical and structural interest rather than for their catalytic ability. It was found that the oxides WOsub(2,95), WOsub(2,90) and WOsub(2,72) all selectively produce acrolein in small amounts. The oxides WO 3 and WO 2 were non-selective and rather inactive. The results are discussed in terms of a mechanism involving both variable valence in the crystal and the specific structural geometry of these compounds. (orig.) [de

  10. Dimerization interface of 3-hydroxyacyl-CoA dehydrogenase tunes the formation of its catalytic intermediate.

    Directory of Open Access Journals (Sweden)

    Yingzhi Xu

    Full Text Available 3-Hydroxyacyl-CoA dehydrogenase (HAD, EC 1.1.1.35 is a homodimeric enzyme localized in the mitochondrial matrix, which catalyzes the third step in fatty acid β-oxidation. The crystal structures of human HAD and subsequent complexes with cofactor/substrate enabled better understanding of HAD catalytic mechanism. However, numerous human diseases were found related to mutations at HAD dimerization interface that is away from the catalytic pocket. The role of HAD dimerization in its catalytic activity needs to be elucidated. Here, we solved the crystal structure of Caenorhabditis elegans HAD (cHAD that is highly conserved to human HAD. Even though the cHAD mutants (R204A, Y209A and R204A/Y209A with attenuated interactions on the dimerization interface still maintain a dimerization form, their enzymatic activities significantly decrease compared to that of the wild type. Such reduced activities are in consistency with the reduced ratios of the catalytic intermediate formation. Further molecular dynamics simulations results reveal that the alteration of the dimerization interface will increase the fluctuation of a distal region (a.a. 60-80 that plays an important role in the substrate binding. The increased fluctuation decreases the stability of the catalytic intermediate formation, and therefore the enzymatic activity is attenuated. Our study reveals the molecular mechanism about the essential role of the HAD dimerization interface in its catalytic activity via allosteric effects.

  11. New insight in the microscopic mechanism of the catalytic synthesis of ammonia

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, Gert D.

    1995-01-01

    Theoretical quantum calculations and molecular beam experiments of the dissociative chemisorption of N-2 molecules on catalytic active metal surfaces have given new insight in the fundamental process of the ammonia synthesis. This new approach to the study of catalytic process supplements the con...

  12. Functional cooperation between FACT and MCM is coordinated with cell cycle and differential complex formation

    Directory of Open Access Journals (Sweden)

    Lin Chih-Li

    2010-02-01

    Full Text Available Abstract Background Functional cooperation between FACT and the MCM helicase complex constitutes an integral step during DNA replication initiation. However, mode of regulation that underlies the proper functional interaction of FACT and MCM is poorly understood. Methods & Results Here we present evidence indicating that such interaction is coordinated with cell cycle progression and differential complex formation. We first demonstrate the existence of two distinct FACT-MCM subassemblies, FACT-MCM2/4/6/7 and FACT-MCM2/3/4/5. Both complexes possess DNA unwinding activity and are subject to cell cycle-dependent enzymatic regulation. Interestingly, analysis of functional attributes further suggests that they act at distinct, and possibly sequential, steps during origin establishment and replication initiation. Moreover, we show that the phosphorylation profile of the FACT-associated MCM4 undergoes a cell cycle-dependent change, which is directly correlated with the catalytic activity of the FACT-MCM helicase complexes. Finally, at the quaternary structure level, physical interaction between FACT and MCM complexes is generally dependent on persistent cell cycle and further stabilized upon S phase entry. Cessation of mitotic cycle destabilizes the complex formation and likely leads to compromised coordination and activities. Conclusions Together, our results correlate FACT-MCM functionally and temporally with S phase and DNA replication. They further demonstrate that enzymatic activities intrinsically important for DNA replication are tightly controlled at various levels, thereby ensuring proper progression of, as well as exit from, the cell cycle and ultimately euploid gene balance.

  13. Coordinated activation of the secretory pathway during notochord formation in the Xenopus embryo.

    Science.gov (United States)

    Tanegashima, Kosuke; Zhao, Hui; Rebbert, Martha L; Dawid, Igor B

    2009-11-01

    We compared the transcriptome in the developing notochord of Xenopus laevis embryos with that of other embryonic regions. A coordinated and intense activation of a large set of secretory pathway genes was observed in the notochord, but not in notochord precursors in the axial mesoderm at early gastrula stage. The genes encoding Xbp1 and Creb3l2 were also activated in the notochord. These two transcription factors are implicated in the activation of secretory pathway genes during the unfolded protein response, where cells react to the stress of a build-up of unfolded proteins in their endoplasmic reticulum. Xbp1 and Creb3l2 are differentially expressed but not differentially activated in the notochord. Reduction of expression of Xbp1 or Creb3l2 by injection of antisense morpholinos led to strong deficits in notochord but not somitic muscle development. In addition, the expression of some, but not all, genes encoding secretory proteins was inhibited by injection of xbp1 morpholinos. Furthermore, expression of activated forms of Xbp1 or Creb3l2 in animal explants could activate a similar subset of secretory pathway genes. We conclude that coordinated activation of a battery of secretory pathway genes mediated by Xbp1 and Creb/ATF factors is a characteristic and necessary feature of notochord formation.

  14. Catalytic hydrogen recombination for nuclear containments

    International Nuclear Information System (INIS)

    Koroll, G.W.; Lau, D.W.P.; Dewit, W.A.; Graham, W.R.C.

    1994-01-01

    Catalytic recombiners appear to be a credible option for hydrogen mitigation in nuclear containments. The passive operation, versatility and ease of back fitting are appealing for existing stations and new designs. Recently, a generation of wet-proofed catalyst materials have been developed at AECL which are highly specific to H 2 -O 2 , are active at ambient temperatures and are being evaluated for containment applications. Two types of catalytic recombiners were evaluated for hydrogen removal in containments based on the AECL catalyst. The first is a catalytic combustor for application in existing air streams such as provided by fans or ventilation systems. The second is an autocatalytic recombiner which uses the enthalpy of reaction to produce natural convective flow over the catalyst elements. Intermediate-scale results obtained in 6 m 3 and 10 m 3 spherical and cylindrical vessels are given to demonstrate self-starting limits, operating limits, removal capacity, scaling parameters, flow resistance, mixing behaviour in the vicinity of an operating recombiner and sensitivity to poisoning, fouling and radiation. (author). 13 refs., 10 figs

  15. Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma

    KAUST Repository

    Cheng, Chia-Chin

    2016-09-10

    Two-dimensional layered transition metal dichalcogenide (TMD) materials such as Molybdenum disufide (MoS2) have been recognized as one of the low-cost and efficient electrocatalysts for hydrogen evolution reaction (HER). The crystal edges that account for a small percentage of the surface area, rather than the basal planes, of MoS2 monolayer have been confirmed as their active catalytic sites. As a result, extensive efforts have been developing in activating the basal planes of MoS2 for enhancing their HER activity. Here, we report a simple and efficient approach-using a remote hydrogen-plasma process-to creating S-vacancies on the basal plane of monolayer crystalline MoS2; this process can generate high density of S-vacancies while mainly maintaining the morphology and structure of MoS2 monolayer. The density of S-vacancies (defects) on MoS2 monolayers resulted from the remote hydrogen-plasma process can be tuned and play a critical role in HER, as evidenced in the results of our spectroscopic and electrical measurements. The H2-plasma treated MoS2 also provides an excellent platform for systematic and fundamental study of defect-property relationships in TMDs, which provides insights for future applications including electrical, optical and magnetic devices. © 2016 Elsevier Ltd.

  16. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rosal, Roberto, E-mail: roberto.rosal@uah.es [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain); Gonzalo, Maria S.; Rodriguez, Antonio; Garcia-Calvo, Eloy [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain)

    2010-11-15

    The catalytic ozonation of fenofibric acid was studied using activated alumina and alumina-supported manganese oxide in a semicontinuous reactor. The rate constants at 20 deg. C for the non-catalytic reaction of fenofibric acid with ozone and hydroxyl radicals were 3.43 {+-} 0.20 M{sup -1} s{sup -1} and (6.55 {+-} 0.33) x 10{sup 9} M{sup -1} s{sup -1}, respectively. The kinetic constant for the catalytic reaction between fenofibric acid and hydroxyl radicals did not differ significantly from that of homogeneous ozonation, either using Al{sub 2}O{sub 3} or MnO{sub x}/Al{sub 2}O{sub 3}. The results showed a considerable increase in the generation of hydroxyl radicals due to the use of catalysts even in the case of catalytic runs performed using a real wastewater matrix. Both catalysts promoted the decomposition of ozone in homogeneous phase, but the higher production of hydroxyl radicals corresponded to the catalyst with more activity in terms of ozone decomposition. We did not find evidence of the catalysts having any effect on rate constants, which suggests that the reaction may not involve the adsorption of organics on catalyst surface.

  17. Inner-Sphere versus Outer-Sphere Coordination of BF4– in a NHC-Gold(I) Complex

    KAUST Repository

    Veenboer, Richard M. P.

    2017-07-20

    The role of counterions in chemistry mediated by gold complexes stretches much further than merely providing charge balance to cationic gold species. Interplay between their basicities and coordination strengths influences interactions with both the gold center and substrates in catalysis. Actual monogold(I) active species are generally believed to be monocoordinated species, formed from the abstraction or the decoordination of a second ligand from precursor complexes, but only a small amount of experimental evidence exists to underpin the existence of these transient species. The formation of a bench-stable neutral IPrCl-gold(I) tetrafluoroborate complex is reported herein. Experimental studies by X-ray diffraction analysis and NMR spectroscopy and theoretical studies by DFT calculations were conducted to determine the composition, structure, and behavior of this complex. The absence of an auxiliary ligand resulted in inner-sphere coordination of the counterion in the solid state. In solution, an equilibrium between two conformations was found with the counterion occupying inner-sphere and outer-sphere positions, respectively. Stoichiometric and catalytic reactivity studies with the tetrafluoroborate complex have been conducted. These confirmed the lability of the inner-sphere coordinating counterion that gives the IPrCl-gold(I) fragment behavior similar to that of related systems.

  18. Inner-Sphere versus Outer-Sphere Coordination of BF4– in a NHC-Gold(I) Complex

    KAUST Repository

    Veenboer, Richard M. P.; Collado, Alba; Dupuy, Sté phanie; Lebl, Tomas; Falivene, Laura; Cavallo, Luigi; Cordes, David B.; Slawin, Alexandra M. Z.; Cazin, Catherine S. J.; Nolan, Steven P.

    2017-01-01

    The role of counterions in chemistry mediated by gold complexes stretches much further than merely providing charge balance to cationic gold species. Interplay between their basicities and coordination strengths influences interactions with both the gold center and substrates in catalysis. Actual monogold(I) active species are generally believed to be monocoordinated species, formed from the abstraction or the decoordination of a second ligand from precursor complexes, but only a small amount of experimental evidence exists to underpin the existence of these transient species. The formation of a bench-stable neutral IPrCl-gold(I) tetrafluoroborate complex is reported herein. Experimental studies by X-ray diffraction analysis and NMR spectroscopy and theoretical studies by DFT calculations were conducted to determine the composition, structure, and behavior of this complex. The absence of an auxiliary ligand resulted in inner-sphere coordination of the counterion in the solid state. In solution, an equilibrium between two conformations was found with the counterion occupying inner-sphere and outer-sphere positions, respectively. Stoichiometric and catalytic reactivity studies with the tetrafluoroborate complex have been conducted. These confirmed the lability of the inner-sphere coordinating counterion that gives the IPrCl-gold(I) fragment behavior similar to that of related systems.

  19. Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties.

    Science.gov (United States)

    Somturk, Burcu; Yilmaz, Ismail; Altinkaynak, Cevahir; Karatepe, Aslıhan; Özdemir, Nalan; Ocsoy, Ismail

    2016-05-01

    Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to enhance catalytic activity and stability. Although stability of enzyme was accomplished with immobilization approaches, activity of the most of the enzymes was declined after immobilization. Herein, we synthesize the flower shaped-hybrid nanomaterials called hybrid nanoflower (HNF) consisting of urease enzyme and copper ions (Cu(2+)) and report a mechanistic elucidation of enhancement in both activity and stability of the HNF. We demonstrated how experimental factors influence morphology of the HNF. We proved that the HNF (synthesized from 0.02mgmL(-1) urease in 10mM PBS (pH 7.4) at +4°C) exhibited the highest catalytic activity of ∼2000% and ∼4000% when stored at +4°C and RT, respectively compared to free urease. The highest stability was also achieved by this HNF by maintaining 96.3% and 90.28% of its initial activity within storage of 30 days at +4°C and RT, respectively. This dramatically enhanced activity is attributed to high surface area, nanoscale-entrapped urease and favorable urease conformation of the HNF. The exceptional catalytic activity and stability properties of HNF can be taken advantage of to use it in fields of biomedicine and chemistry. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effect of Co3O4 and Co3O4/CeO2 infiltration on the catalytic and electro-catalytic activity of LSM15/CGO10 porous cells stacks for oxidation of propene

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    The objective of this work was to study the effect of Co3O4 and Co3O4/CeO2 infiltration on the propene oxidation catalytic activity of a La0.85Sr0.15MnO3/Ce0.9Gd0.1O1.95 electrochemical porous cell stack (11 layers, 5 single cells in series). The effect of the infiltration of Co3O4 and Co3O4/CeO2...... on the electrochemical properties of the porous cell stack was also investigated by electrochemical impedance spectroscopy (EIS). Co3O4 and Co3O4/CeO2 exhibited high catalytic activity for propene oxidation. The increase of propene oxidation rate with +4 V (0.8 V/cell) polarization reached 10% for the Co3O4 infiltrated...... reactor and 48% of efficiency at 300 °C. The Co3O4/CeO2 co-infiltration decreased the reactor polarization resistance, while Co3O4 infiltration had negligible effect on reactor electrochemical performance. The beneficial effect of CeO2 on the electrode activity was attributed to the increased...