WorldWideScience

Sample records for coordinate cell specification

  1. Dendritic Cells Coordinate the Development and Homeostasis of Organ-Specific Regulatory T Cells.

    Science.gov (United States)

    Leventhal, Daniel S; Gilmore, Dana C; Berger, Julian M; Nishi, Saki; Lee, Victoria; Malchow, Sven; Kline, Douglas E; Kline, Justin; Vander Griend, Donald J; Huang, Haochu; Socci, Nicholas D; Savage, Peter A

    2016-04-19

    Although antigen recognition mediated by the T cell receptor (TCR) influences many facets of Foxp3(+) regulatory T (Treg) cell biology, including development and function, the cell types that present antigen to Treg cells in vivo remain largely undefined. By tracking a clonal population of Aire-dependent, prostate-specific Treg cells in mice, we demonstrated an essential role for dendritic cells (DCs) in regulating organ-specific Treg cell biology. We have shown that the thymic development of prostate-specific Treg cells required antigen presentation by DCs. Moreover, Batf3-dependent CD8α(+) DCs were dispensable for the development of this clonotype and had negligible impact on the polyclonal Treg cell repertoire. In the periphery, CCR7-dependent migratory DCs coordinated the activation of organ-specific Treg cells in the prostate-draining lymph nodes. Our results demonstrate that the development and peripheral regulation of organ-specific Treg cells are dependent on antigen presentation by DCs, implicating DCs as key mediators of organ-specific immune tolerance.

  2. Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation.

    Science.gov (United States)

    Wu, Ling Juan; Ishikawa, Shu; Kawai, Yoshikazu; Oshima, Taku; Ogasawara, Naotake; Errington, Jeff

    2009-07-08

    Coordination of chromosome segregation and cytokinesis is crucial for efficient cell proliferation. In Bacillus subtilis, the nucleoid occlusion protein Noc protects the chromosomes by associating with the chromosome and preventing cell division in its vicinity. Using protein localization, ChAP-on-Chip and bioinformatics, we have identified a consensus Noc-binding DNA sequence (NBS), and have shown that Noc is targeted to about 70 discrete regions scattered around the chromosome, though absent from a large region around the replication terminus. Purified Noc bound specifically to an NBS in vitro. NBSs inserted near the replication terminus bound Noc-YFP and caused a delay in cell division. An autonomous plasmid carrying an NBS array recruited Noc-YFP and conferred a severe Noc-dependent inhibition of cell division. This shows that Noc is a potent inhibitor of division, but that its activity is strictly localized by the interaction with NBS sites in vivo. We propose that Noc serves not only as a spatial regulator of cell division to protect the nucleoid, but also as a timing device with an important role in the coordination of chromosome segregation and cell division.

  3. SepG coordinates sporulation-specific cell division and nucleoid organization in Streptomyces coelicolor.

    Science.gov (United States)

    Zhang, Le; Willemse, Joost; Claessen, Dennis; van Wezel, Gilles P

    2016-04-01

    Bacterial cell division is a highly complex process that requires tight coordination between septum formation and chromosome replication and segregation. In bacteria that divide by binary fission a single septum is formed at mid-cell, a process that is coordinated by the conserved cell division scaffold protein FtsZ. In contrast, during sporulation-specific cell division in streptomycetes, up to a hundred rings of FtsZ (Z rings) are produced almost simultaneously, dividing the multinucleoid aerial hyphae into long chains of unigenomic spores. This involves the active recruitment of FtsZ by the SsgB protein, and at the same time requires sophisticated systems to regulate chromosome dynamics. Here, we show that SepG is required for the onset of sporulation and acts by ensuring that SsgB is localized to future septum sites. Förster resonance energy transfer imaging suggests direct interaction between SepG and SsgB. The beta-lactamase reporter system showed that SepG is a transmembrane protein with its central domain oriented towards the cytoplasm. Without SepG, SsgB fails to localize properly, consistent with a crucial role for SepG in the membrane localization of the SsgB-FtsZ complex. While SsgB remains associated with FtsZ, SepG re-localizes to the (pre)spore periphery. Expanded doughnut-shaped nucleoids are formed in sepG null mutants, suggesting that SepG is required for nucleoid compaction. Taken together, our work shows that SepG, encoded by one of the last genes in the conserved dcw cluster of cell division and cell-wall-related genes in Gram-positive bacteria whose function was still largely unresolved,coordinates septum synthesis and chromosome organization in Streptomyces.

  4. B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo.

    Directory of Open Access Journals (Sweden)

    Yuichi Okuda

    2010-05-01

    Full Text Available The B1 SOX transcription factors SOX1/2/3/19 have been implicated in various processes of early embryogenesis. However, their regulatory functions in stages from the blastula to early neurula remain largely unknown, primarily because loss-of-function studies have not been informative to date. In our present study, we systematically knocked down the B1 sox genes in zebrafish. Only the quadruple knockdown of the four B1 sox genes sox2/3/19a/19b resulted in very severe developmental abnormalities, confirming that the B1 sox genes are functionally redundant. We characterized the sox2/3/19a/19b quadruple knockdown embryos in detail by examining the changes in gene expression through in situ hybridization, RT-PCR, and microarray analyses. Importantly, these phenotypic analyses revealed that the B1 SOX proteins regulate the following distinct processes: (1 early dorsoventral patterning by controlling bmp2b/7; (2 gastrulation movements via the regulation of pcdh18a/18b and wnt11, a non-canonical Wnt ligand gene; (3 neural differentiation by regulating the Hes-class bHLH gene her3 and the proneural-class bHLH genes neurog1 (positively and ascl1a (negatively, and regional transcription factor genes, e.g., hesx1, zic1, and rx3; and (4 neural patterning by regulating signaling pathway genes, cyp26a1 in RA signaling, oep in Nodal signaling, shh, and mdkb. Chromatin immunoprecipitation analysis of the her3, hesx1, neurog1, pcdh18a, and cyp26a1 genes further suggests a direct regulation of these genes by B1 SOX. We also found an interesting overlap between the early phenotypes of the B1 sox quadruple knockdown embryos and the maternal-zygotic spg embryos that are devoid of pou5f1 activity. These findings indicate that the B1 SOX proteins control a wide range of developmental regulators in the early embryo through partnering in part with Pou5f1 and possibly with other factors, and suggest that the B1 sox functions are central to coordinating cell fate

  5. Geometrical product specifications. Datums and coordinate systems

    Science.gov (United States)

    Glukhov, V. I.; Ivleva, I. A.; Zlatkina, O. Y.

    2017-06-01

    The work is devoted to the relevant topic such as the technical products quality improvement due to the geometrical specifications accuracy. The research purpose is to ensure the quality indicators on the basis of the systematic approach to the values normalization and geometrical specifications accuracy in the workpiece coordinate systems in the process of design. To achieve the goal two tasks are completed such as the datum features classification according to the number of linear and angular freedom degrees constraints, called the datums informativeness, and the rectangular coordinate systems identification, materialized by workpiece datums sets. The datum features informativeness characterizes the datums functional purpose to limit product workpiece linear and angular degrees of freedom. The datum features informativeness numerically coincides with the kinematic pairs classes and couplings in mechanics. The datum features informativeness identifies the coordinate system without the location redundancy. Each coordinate plane of a rectangular coordinate system has different informativeness 3 + 2 + 1. Each coordinate axis also has different informativeness 4+2+Θ (zero). It is possible to establish the associated workpiece position with three linear and three angular coordinates relative to two axes with the informativeness 4 and 2. is higher, the more informativeness of the coordinate axis or a coordinate plane is, the higher is the linear and angular coordinates accuracy, the coordinate being plotted along the coordinate axis or plane. The systematic approach to the geometrical products specifications positioning in coordinate systems is the scientific basis for a natural transition to the functional dimensions of features position - coordinating dimensions and the size of the features form - feature dimensions of two measures: linear and angular ones. The products technical quality improving is possible due to the coordinate systems introduction materialized by

  6. Coordinated cell type-specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood.

    Directory of Open Access Journals (Sweden)

    Hennady P Shulha

    2013-04-01

    Full Text Available Development of prefrontal and other higher-order association cortices is associated with widespread changes in the cortical transcriptome, particularly during the transitions from prenatal to postnatal development, and from early infancy to later stages of childhood and early adulthood. However, the timing and longitudinal trajectories of neuronal gene expression programs during these periods remain unclear in part because of confounding effects of concomitantly occurring shifts in neuron-to-glia ratios. Here, we used cell type-specific chromatin sorting techniques for genome-wide profiling of a histone mark associated with transcriptional regulation--H3 with trimethylated lysine 4 (H3K4me3--in neuronal chromatin from 31 subjects from the late gestational period to 80 years of age. H3K4me3 landscapes of prefrontal neurons were developmentally regulated at 1,157 loci, including 768 loci that were proximal to transcription start sites. Multiple algorithms consistently revealed that the overwhelming majority and perhaps all of developmentally regulated H3K4me3 peaks were on a unidirectional trajectory defined by either rapid gain or loss of histone methylation during the late prenatal period and the first year after birth, followed by similar changes but with progressively slower kinetics during early and later childhood and only minimal changes later in life. Developmentally downregulated H3K4me3 peaks in prefrontal neurons were enriched for Paired box (Pax and multiple Signal Transducer and Activator of Transcription (STAT motifs, which are known to promote glial differentiation. In contrast, H3K4me3 peaks subject to a progressive increase in maturing prefrontal neurons were enriched for activating protein-1 (AP-1 recognition elements that are commonly associated with activity-dependent regulation of neuronal gene expression. We uncovered a developmental program governing the remodeling of neuronal histone methylation landscapes in the prefrontal

  7. The brain-specific RasGEF very-KIND is required for normal dendritic growth in cerebellar granule cells and proper motor coordination

    Science.gov (United States)

    Hayashi, Kanehiro; Furuya, Asako; Sakamaki, Yuriko; Akagi, Takumi; Shinoda, Yo; Sadakata, Tetsushi; Hashikawa, Tsutomu; Shimizu, Kazuki; Minami, Haruka; Sano, Yoshitake; Nakayama, Manabu

    2017-01-01

    Very-KIND/Kndc1/KIAA1768 (v-KIND) is a brain-specific Ras guanine nucleotide exchange factor carrying two sets of the kinase non-catalytic C-lobe domain (KIND), and is predominantly expressed in cerebellar granule cells. Here, we report the impact of v-KIND deficiency on dendritic and synaptic growth in cerebellar granule cells in v-KIND knockout (KO) mice. Furthermore, we evaluate motor function in these animals. The gross anatomy of the cerebellum, including the cerebellar lobules, layered cerebellar cortex and densely-packed granule cell layer, in KO mice appeared normal, and was similar to wild-type (WT) mice. However, KO mice displayed an overgrowth of cerebellar granule cell dendrites, compared with WT mice, resulting in an increased number of dendrites, dendritic branches and terminals. Immunoreactivity for vGluT2 (a marker for excitatory presynapses of mossy fiber terminals) was increased in the cerebellar glomeruli of KO mice, compared with WT mice. The postsynaptic density around the terminals of mossy fibers was also increased in KO mice. Although there were no significant differences in locomotor ability between KO and WT animals in their home cages or in the open field, young adult KO mice had an increased grip strength and a tendency to exhibit better motor performance in balance-related tests compared with WT animals. Taken together, our results suggest that v-KIND is required for compact dendritic growth and proper excitatory synaptic connections in cerebellar granule cells, which are necessary for normal motor coordination and balance. PMID:28264072

  8. Cell context-specific expression of primary cilia in the human testis and ciliary coordination of Hedgehog signalling in mouse Leydig cells

    DEFF Research Database (Denmark)

    Berg Nygaard, Marie; Almstrup, Kristian; Lindbæk, Louise;

    2015-01-01

    Primary cilia are sensory organelles that coordinate numerous cellular signalling pathways during development and adulthood. Defects in ciliary assembly or function lead to a series of developmental disorders and diseases commonly referred to as ciliopathies. Still, little is known about...

  9. Cell context-specific expression of primary cilia in the human testis and ciliary coordination of Hedgehog signalling in mouse Leydig cells

    DEFF Research Database (Denmark)

    Berg Nygaard, Marie; Almstrup, Kristian; Lindbæk, Louise;

    2015-01-01

    cells of mature seminiferous epithelium, but present in Sertoli cell-only tubules in Klinefelter syndrome testis. Peritubular cells in atrophic testis produce overly long cilia. Furthermore cultures of growth-arrested immature mouse Leydig cells express primary cilia that are enriched in components...

  10. Cell context-specific expression of primary cilia in the human testis and ciliary coordination of Hedgehog signalling in mouse Leydig cells

    DEFF Research Database (Denmark)

    Berg Nygaard, Marie; Almstrup, Kristian; Lindbæk, Louise

    2015-01-01

    of Hedgehog signalling, including Smoothened, Patched-1, and GLI2, which are involved in regulating Leydig cell differentiation. Stimulation of Hedgehog signalling increases the localization of Smoothened to the cilium, which is followed by transactivation of the Hedgehog target genes, Gli1 and Ptch1. Our...... findings provide new information on the spatiotemporal formation of primary cilia in the testis and show that primary cilia in immature Leydig cells mediate Hedgehog signalling....

  11. Coordination of glioblastoma cell motility by PKCι

    Directory of Open Access Journals (Sweden)

    Baldwin R Mitchell

    2010-09-01

    Full Text Available Abstract Background Glioblastoma is one of the deadliest forms of cancer, in part because of its highly invasive nature. The tumor suppressor PTEN is frequently mutated in glioblastoma and is known to contribute to the invasive phenotype. However the downstream events that promote invasion are not fully understood. PTEN loss leads to activation of the atypical protein kinase C, PKCι. We have previously shown that PKCι is required for glioblastoma cell invasion, primarily by enhancing cell motility. Here we have used time-lapse videomicroscopy to more precisely define the role of PKCι in glioblastoma. Results Glioblastoma cells in which PKCι was either depleted by shRNA or inhibited pharmacologically were unable to coordinate the formation of a single leading edge lamellipod. Instead, some cells generated multiple small, short-lived protrusions while others generated a diffuse leading edge that formed around the entire circumference of the cell. Confocal microscopy showed that this behavior was associated with altered behavior of the cytoskeletal protein Lgl, which is known to be inactivated by PKCι phosphorylation. Lgl in control cells localized to the lamellipod leading edge and did not associate with its binding partner non-muscle myosin II, consistent with it being in an inactive state. In PKCι-depleted cells, Lgl was concentrated at multiple sites at the periphery of the cell and remained in association with non-muscle myosin II. Videomicroscopy also identified a novel role for PKCι in the cell cycle. Cells in which PKCι was either depleted by shRNA or inhibited pharmacologically entered mitosis normally, but showed marked delays in completing mitosis. Conclusions PKCι promotes glioblastoma motility by coordinating the formation of a single leading edge lamellipod and has a role in remodeling the cytoskeleton at the lamellipod leading edge, promoting the dissociation of Lgl from non-muscle myosin II. In addition PKCι is required

  12. Cdc42-mediated tubulogenesis controls cell specification

    DEFF Research Database (Denmark)

    Kesavan, Gokul; Sand, Fredrik Wolfhagen; Greiner, Thomas Uwe

    2009-01-01

    Understanding how cells polarize and coordinate tubulogenesis during organ formation is a central question in biology. Tubulogenesis often coincides with cell-lineage specification during organ development. Hence, an elementary question is whether these two processes are independently controlled......, or whether proper cell specification depends on formation of tubes. To address these fundamental questions, we have studied the functional role of Cdc42 in pancreatic tubulogenesis. We present evidence that Cdc42 is essential for tube formation, specifically for initiating microlumen formation and later...... for maintaining apical cell polarity. Finally, we show that Cdc42 controls cell specification non-cell-autonomously by providing the correct microenvironment for proper control of cell-fate choices of multipotent progenitors. For a video summary of this article, see the PaperFlick file with the Supplemental Data...

  13. Relationship between general and specific coordination in 8- to 17-year-old male basketball players.

    Science.gov (United States)

    Kamandulis, Sigitas; Venckūnas, Tomas; Masiulis, Nerijus; Matulaitis, Kestutis; Balciūnas, Mindaugas; Peters, Derek; Skurvydas, Albertas

    2013-12-01

    The purpose of the present study was to investigate the relationships between general coordination, sport-specific coordination, and sport-specific fitness of 8- to 17-year-old male basketball players. 312 males with training experience ranging from one year in the 8-year-old cohort up to 10 years for the 17-year-olds performed basketball-specific fitness (20 m sprint, Illinois, countermovement jump), general coordination (20 m run with three obstacles), semi-basketball-specific coordination (20 m sprint dribbling two balls, countermovement jump with arm swing) and basketball-specific coordination (Illinois ball dribbling) tests. There were moderate to large correlations between the results of both general and basketball-specific coordination with the results of most basketball-specific coordination tests in all age groups. Correlations between general and basketball-specific coordination were large in four age groups (11-14 yr., r = .52 to r = .76), moderate in five groups (8-10, 15 & 16 yr., r = .37 to r = .46), while not significant in the 17-year-olds. These results suggest that the importance of general coordination for sport-specific skills improvements during a sports-specific skill acquisition phase, remains high at the skill refinement phase, and decreases when sport-specific skills have been mastered to near-perfection.

  14. Planar cell polarity in coordinated and directed movements.

    Science.gov (United States)

    Tada, Masazumi; Kai, Masatake

    2012-01-01

    Planar cell polarity is a fundamental concept to understanding the coordination of cell movements in the plane of a tissue. Since the planar cell polarity pathway was discovered in mesenchymal tissues involving cell interaction during vertebrate gastrulation, there is an emerging evidence that a variety of mesenchymal and epithelial cells utilize this genetic pathway to mediate the coordination of cells in directed movements. In this review, we focus on how the planar cell polarity pathway is mediated by migrating cells to communicate with one another in different developmental processes.

  15. CCL22-specific T Cells

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Munir Ahmad, Shamaila; Hansen, Morten

    2016-01-01

    Tumor cells and tumor-infiltrating macrophages produce the chemokine CCL22, which attracts regulatory T cells (Tregs) into the tumor microenvironment, decreasing anticancer immunity. Here, we investigated the possibility of targeting CCL22-expressing cells by activating specific T cells. We...... analyzed the CCL22 protein signal sequence, identifying a human leukocyte antigen A2- (HLA-A2-) restricted peptide epitope, which we then used to stimulate peripheral blood mononuclear cells (PMBCs) to expand populations of CCL22-specific T cells in vitro. T cells recognizing an epitope derived from...... the signal-peptide of CCL22 will recognize CCL22-expressing cells even though CCL22 is secreted out of the cell. CCL22-specific T cells recognized and killed CCL22-expressing cancer cells. Furthermore, CCL22-specific T cells lysed acute monocytic leukemia cells in a CCL22 expression-dependent manner. Using...

  16. Coordinated regulation of myeloid cells by tumours.

    Science.gov (United States)

    Gabrilovich, Dmitry I; Ostrand-Rosenberg, Suzanne; Bronte, Vincenzo

    2012-03-22

    Myeloid cells are the most abundant nucleated haematopoietic cells in the human body and are a collection of distinct cell populations with many diverse functions. The three groups of terminally differentiated myeloid cells - macrophages, dendritic cells and granulocytes - are essential for the normal function of both the innate and adaptive immune systems. Mounting evidence indicates that the tumour microenvironment alters myeloid cells and can convert them into potent immunosuppressive cells. Here, we consider myeloid cells as an intricately connected, complex, single system and we focus on how tumours manipulate the myeloid system to evade the host immune response.

  17. Flagellar coordination in Chlamydomonas cells held on micropipettes.

    Science.gov (United States)

    Rüffer, U; Nultsch, W

    1998-01-01

    The two flagella of Chlamydomonas are known to beat synchronously: During breaststroke beating they are generally coordinated in a bilateral way while in shock responses during undulatory beating coordination is mostly parallel [Rüffer and Nultsch, 1995: Botanica Acta 108:169-276]. Analysis of a great number of shock responses revealed that in undulatory beats also periods of bilateral coordination are found and that the coordination type may change several times during a shock response, without concomitant changes of the beat envelope and the beat period. In normal wt cells no coordination changes are found during breaststroke beating, but only short temporary asynchronies: During 2 or 3 normal beats of the cis flagellum, the trans flagellum performs 3 or 4 flat beats with a reduced beat envelope and a smaller beat period, resulting in one additional trans beat. Long periods with flat beats of the same shape and beat period are found in both flagella of the non-phototactic mutant ptx1 and in defective wt 622E cells. During these periods, the coordination is parallel, the two flagella beat alternately. A correlation between normal asynchronous trans beats and the parallel-coordinated beats in the presumably cis defective cells and also the undulatory beats is discussed. In the cis defective cells, a perpetual spontaneous change between parallel beats with small beat periods (higher beat frequency) and bilateral beats with greater beat periods (lower beat frequency) are observed and render questionable the existence of two different intrinsic beat frequencies of the two flagella cis and trans. Asynchronies occur spontaneously but may also be induced by light changes, either step-up or step-down, but not by both stimuli in turn as breaststroke flagellar photoresponses (BFPRs). Asynchronies are not involved in phototaxis. They are independent of the BFPRs, which are supposed to be the basis of phototaxis. Both types of coordination must be assumed to be regulated

  18. Coordination of planar cell polarity pathways through Spiny-legs.

    Science.gov (United States)

    Ambegaonkar, Abhijit A; Irvine, Kenneth D

    2015-10-27

    Morphogenesis and physiology of tissues and organs requires planar cell polarity (PCP) systems that orient and coordinate cells and their behaviors, but the relationship between PCP systems has been controversial. We have characterized how the Frizzled and Dachsous-Fat PCP systems are connected through the Spiny-legs isoform of the Prickle-Spiny-legs locus. Two different components of the Dachsous-Fat system, Dachsous and Dachs, can each independently interact with Spiny-legs and direct its localization in vivo. Through characterization of the contributions of Prickle, Spiny-legs, Dachsous, Fat, and Dachs to PCP in the Drosophila wing, eye, and abdomen, we define where Dachs-Spiny-legs and Dachsous-Spiny-legs interactions contribute to PCP, and provide a new understanding of the orientation of polarity and the basis of PCP phenotypes. Our results support the direct linkage of PCP systems through Sple in specific locales, while emphasizing that cells can be subject to and must ultimately resolve distinct, competing PCP signals.

  19. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks

    Directory of Open Access Journals (Sweden)

    Edward B. Samson

    2017-06-01

    Full Text Available IQGAP1 is a large, multi-domain scaffold that helps orchestrate cell signaling and cytoskeletal mechanics by controlling interactions among a spectrum of receptors, signaling intermediates, and cytoskeletal proteins. While this coordination is known to impact cell morphology, motility, cell adhesion, and vesicular traffic, among other functions, the spatiotemporal properties and regulatory mechanisms of IQGAP1 have not been fully resolved. Herein, we describe a series of super-resolution and live-cell imaging analyses that identified a role for IQGAP1 in the regulation of an actin cytoskeletal shell surrounding a novel membranous compartment that localizes selectively to the basal cortex of polarized epithelial cells (MCF-10A. We also show that IQGAP1 appears to both stabilize the actin coating and constrain its growth. Loss of compartmental IQGAP1 initiates a disassembly mechanism involving rapid and unconstrained actin polymerization around the compartment and dispersal of its vesicle contents. Together, these findings suggest IQGAP1 achieves this control by harnessing both stabilizing and antagonistic interactions with actin. They also demonstrate the utility of these compartments for image-based investigations of the spatial and temporal dynamics of IQGAP1 within endosome-specific actin networks.

  20. Specific eye-head coordination enhances vision in progressive lens wearers.

    Science.gov (United States)

    Rifai, Katharina; Wahl, Siegfried

    2016-09-01

    In uncorrected vision all combinations of eye and head positions are visually equivalent; thus, there is no need for a specific modification of eye-head coordination in young healthy observers. In contrast, the quality of visual input indeed strongly depends on eye position in the majority of healthy elderly drivers, namely in progressive additional lens (PALs) wearers. For a given distance, only specific combinations of eye and head position provide clear vision in a progressive lens wearer. However, although head movements are an integral part of gaze behavior, it is not known if eye-head coordination takes part in the enhancement of visual input in healthy individuals. In the current study we determined changes in eye-head coordination in progressive lens wearers in challenging tasks with high cognitive load, in the situation of driving. During a real-world drive on an urban round track in Stuttgart, gaze movements and head movements were measured in 17 PAL wearers and eye-head coordination was compared to 27 controls with unrestricted vision. Head movement behavior, specific to progressive lens wearers, was determined in head gain and temporal properties of head movements. Furthermore, vertical eye-head coordination was consistent only among PAL wearers. The observed differences in eye-head coordination clearly demonstrate a contribution of head movements in the enhancement of visual input in the healthy human visual system.

  1. TRAINING STRATEGIES SPECIFIC TO THE PHYSICAL EDUCATION USED IN ORDER TO DEVELOP THE COORDINATIVE CAPACITIES - EQUILIBRIUM

    Directory of Open Access Journals (Sweden)

    FINICHIU Marin

    2010-04-01

    Full Text Available Coordinative capacities express themselves in the gesticulation sphere and help the motor learning being connected to the organization, control and movement adjustment processes; a good coordination represents the condition necessary to an execution as much as possible close to the established motor program.The equilibrium capacity is defined as being the maintaining capacity of the body in a certain established position and its re-equilibration after high amplitude shifting and solicitations; in maintaining the equilibrium the vestibular analyser’s role is determined.Methods: Proper investigation methods have been used among which - the observation method, the measurements and recording methods (The Bass test, the Flamingo test, the Matorin test, the experimentalmethod and the obtained data processing and interpretation methods – the statistic-mathematical method and the graphic one.Results: The use in a higher percentage the means specific to the coordinative capacities – equilibrium, had as effect a significant increase, from one measurement to another, by applying the three tests, both for the female students pattern and for the male students, fact emphasized also by presenting the three graphics.Conclusions: The use, in a higher percentage, the means specific to the development of the coordinative capacities – equilibrium, also the variety of working conditions during the physical education class, has contributed to the improvement of the calculated arithmetic means for the coordination tests – equilibrium. Onthis ground we can make a methodical line, in the analytical program, for the development of the students’ coordinative capacities.

  2. Asymmetric division coordinates collective cell migration in angiogenesis.

    Science.gov (United States)

    Costa, Guilherme; Harrington, Kyle I; Lovegrove, Holly E; Page, Donna J; Chakravartula, Shilpa; Bentley, Katie; Herbert, Shane P

    2016-12-01

    The asymmetric division of stem or progenitor cells generates daughters with distinct fates and regulates cell diversity during tissue morphogenesis. However, roles for asymmetric division in other more dynamic morphogenetic processes, such as cell migration, have not previously been described. Here we combine zebrafish in vivo experimental and computational approaches to reveal that heterogeneity introduced by asymmetric division generates multicellular polarity that drives coordinated collective cell migration in angiogenesis. We find that asymmetric positioning of the mitotic spindle during endothelial tip cell division generates daughters of distinct size with discrete 'tip' or 'stalk' thresholds of pro-migratory Vegfr signalling. Consequently, post-mitotic Vegfr asymmetry drives Dll4/Notch-independent self-organization of daughters into leading tip or trailing stalk cells, and disruption of asymmetry randomizes daughter tip/stalk selection. Thus, asymmetric division seamlessly integrates cell proliferation with collective migration, and, as such, may facilitate growth of other collectively migrating tissues during development, regeneration and cancer invasion.

  3. Dynamic Enhanced Inter-Cell Interference Coordination for Realistic Networks

    DEFF Research Database (Denmark)

    Pedersen, Klaus I.; Alvarez, Beatriz Soret; Barcos, Sonia;

    2016-01-01

    Enhanced Inter-Cell Interference Coordination (eICIC) is a key ingredient to boost the performance of co-channel Heterogeneous Networks (HetNets). eICIC encompasses two main techniques: Almost Blank Subframes (ABS), during which the macro cell remains silent to reduce the interference, and biased...... and an opportunistic approach exploiting the varying cell conditions. Moreover, an autonomous fast distributed muting algorithm is presented, which is simple, robust, and well suited for irregular network deployments. Performance results for realistic network deployments show that the traditional semi-static e...

  4. Brucella abortus Cell Cycle and Infection Are Coordinated.

    Science.gov (United States)

    De Bolle, Xavier; Crosson, Sean; Matroule, Jean-Yves; Letesson, Jean-Jacques

    2015-12-01

    Brucellae are facultative intracellular pathogens. The recent development of methods and genetically engineered strains allowed the description of cell-cycle progression of Brucella abortus, including unipolar growth and the ordered initiation of chromosomal replication. B. abortus cell-cycle progression is coordinated with intracellular trafficking in the endosomal compartments. Bacteria are first blocked at the G1 stage, growth and chromosome replication being resumed shortly before reaching the intracellular proliferation compartment. The control mechanisms of cell cycle are similar to those reported for the bacterium Caulobacter crescentus, and they are crucial for survival in the host cell. The development of single-cell analyses could also be applied to other bacterial pathogens to investigate their cell-cycle progression during infection.

  5. Working Memory and Learning in Children with Developmental Coordination Disorder and Specific Language Impairment

    Science.gov (United States)

    Alloway, Tracy Packiam; Archibald, Lisa

    2008-01-01

    The authors compared 6- to 11-year-olds with developmental coordination disorder (DCD) and those with specific language impairment (SLI) on measures of memory (verbal and visuospatial short-term and working memory) and learning (reading and mathematics). Children with DCD with typical language skills were impaired in all four areas of memory…

  6. Content-specific coordination of listeners' to speakers' EEG during communication.

    Science.gov (United States)

    Kuhlen, Anna K; Allefeld, Carsten; Haynes, John-Dylan

    2012-01-01

    Cognitive neuroscience has recently begun to extend its focus from the isolated individual mind to two or more individuals coordinating with each other. In this study we uncover a coordination of neural activity between the ongoing electroencephalogram (EEG) of two people-a person speaking and a person listening. The EEG of one set of twelve participants ("speakers") was recorded while they were narrating short stories. The EEG of another set of twelve participants ("listeners") was recorded while watching audiovisual recordings of these stories. Specifically, listeners watched the superimposed videos of two speakers simultaneously and were instructed to attend either to one or the other speaker. This allowed us to isolate neural coordination due to processing the communicated content from the effects of sensory input. We find several neural signatures of communication: First, the EEG is more similar among listeners attending to the same speaker than among listeners attending to different speakers, indicating that listeners' EEG reflects content-specific information. Secondly, listeners' EEG activity correlates with the attended speakers' EEG, peaking at a time delay of about 12.5 s. This correlation takes place not only between homologous, but also between non-homologous brain areas in speakers and listeners. A semantic analysis of the stories suggests that listeners coordinate with speakers at the level of complex semantic representations, so-called "situation models". With this study we link a coordination of neural activity between individuals directly to verbally communicated information.

  7. AspC-mediated aspartate metabolism coordinates the Escherichia coli cell cycle.

    Directory of Open Access Journals (Sweden)

    Feng Liu

    Full Text Available The fast-growing bacterial cell cycle consists of at least two independent cycles of chromosome replication and cell division. To ensure proper cell cycles and viability, chromosome replication and cell division must be coordinated. It has been suggested that metabolism could affect the Escherichia coli cell cycle, but the idea is still lacking solid evidences.We found that absence of AspC, an aminotransferase that catalyzes synthesis of aspartate, led to generation of small cells with less origins and slow growth. In contrast, excess AspC was found to exert the opposite effect. Further analysis showed that AspC-mediated aspartate metabolism had a specific effect in the cell cycle, as only extra aspartate of the 20 amino acids triggered production of bigger cells with more origins per cell and faster growth. The amount of DnaA protein per cell was found to be changed in response to the availability of AspC. Depletion of (pppGpp by ΔrelAΔspoT led to a slight delay in initiation of replication, but did not change the replication pattern found in the ΔaspC mutant.The results suggest that AspC-mediated metabolism of aspartate coordinates the E. coli cell cycle through altering the amount of the initiator protein DnaA per cell and the division signal UDP-glucose. Furthermore, AspC sequence conservation suggests similar functions in other organisms.

  8. Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins.

    Science.gov (United States)

    Hollenstein, Kaspar; Comellas-Bigler, Mireia; Bevers, Loes E; Feiters, Martin C; Meyer-Klaucke, Wolfram; Hagedoorn, Peter-Leon; Locher, Kaspar P

    2009-06-01

    Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO(4) (2-)) and tungstate (WO(4) (2-)). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across the cell membrane. We have recently reported a crystal structure of the molybdate/tungstate binding protein ModA/WtpA from Archaeoglobus fulgidus, which revealed an octahedrally coordinated central metal atom. By contrast, the previously determined structures of three bacterial homologs showed tetracoordinate molybdenum and tungsten atoms in their binding pockets. Until then, coordination numbers above four had only been found for molybdenum/tungsten in metalloenzymes where these metal atoms are part of the catalytic cofactors and coordinated by mostly non-oxygen ligands. We now report a high-resolution structure of A. fulgidus ModA/WtpA, as well as crystal structures of four additional homologs, all bound to tungstate. These crystal structures match X-ray absorption spectroscopy measurements from soluble, tungstate-bound protein, and reveal the details of the distorted octahedral coordination. Our results demonstrate that the distorted octahedral geometry is not an exclusive feature of the A. fulgidus protein, and suggest distinct binding modes of the binding proteins from archaea and bacteria.

  9. Planar Cell Polarity Pathway – Coordinating morphogenetic cell behaviors with embryonic polarity

    OpenAIRE

    2011-01-01

    Planar cell polarization entails establishment of cellular asymmetries within the tissue plane. An evolutionarily conserved Planar Cell Polarity (PCP) signaling system employs intra- and intercellular feedback interactions between its core components, including Frizzled, Van Gogh, Flamingo, Prickle and Dishevelled, to establish their characteristic asymmetric intracellular distributions and coordinate planar polarity of cell populations. By translating global patterning information into asymm...

  10. Spatial coordination between stem cell activity and cell differentiation in the root meristem.

    Science.gov (United States)

    Moubayidin, Laila; Di Mambro, Riccardo; Sozzani, Rosangela; Pacifici, Elena; Salvi, Elena; Terpstra, Inez; Bao, Dongping; van Dijken, Anja; Dello Ioio, Raffaele; Perilli, Serena; Ljung, Karin; Benfey, Philip N; Heidstra, Renze; Costantino, Paolo; Sabatini, Sabrina

    2013-08-26

    A critical issue in development is the coordination of the activity of stem cell niches with differentiation of their progeny to ensure coherent organ growth. In the plant root, these processes take place at opposite ends of the meristem and must be coordinated with each other at a distance. Here, we show that in Arabidopsis, the gene SCR presides over this spatial coordination. In the organizing center of the root stem cell niche, SCR directly represses the expression of the cytokinin-response transcription factor ARR1, which promotes cell differentiation, controlling auxin production via the ASB1 gene and sustaining stem cell activity. This allows SCR to regulate, via auxin, the level of ARR1 expression in the transition zone where the stem cell progeny leaves the meristem, thus controlling the rate of differentiation. In this way, SCR simultaneously controls stem cell division and differentiation, ensuring coherent root growth. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Changes in Predicted Muscle Coordination with Subject-Specific Muscle Parameters for Individuals after Stroke

    Directory of Open Access Journals (Sweden)

    Brian A. Knarr

    2014-01-01

    Full Text Available Muscle weakness is commonly seen in individuals after stroke, characterized by lower forces during a maximal volitional contraction. Accurate quantification of muscle weakness is paramount when evaluating individual performance and response to after stroke rehabilitation. The objective of this study was to examine the effect of subject-specific muscle force and activation deficits on predicted muscle coordination when using musculoskeletal models for individuals after stroke. Maximum force generating ability and central activation ratio of the paretic plantar flexors, dorsiflexors, and quadriceps muscle groups were obtained using burst superimposition for four individuals after stroke with a range of walking speeds. Two models were created per subject: one with generic and one with subject-specific activation and maximum isometric force parameters. The inclusion of subject-specific muscle data resulted in changes in the model-predicted muscle forces and activations which agree with previously reported compensation patterns and match more closely the timing of electromyography for the plantar flexor and hamstring muscles. This was the first study to create musculoskeletal simulations of individuals after stroke with subject-specific muscle force and activation data. The results of this study suggest that subject-specific muscle force and activation data enhance the ability of musculoskeletal simulations to accurately predict muscle coordination in individuals after stroke.

  12. Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis.

    Science.gov (United States)

    Araya, Claudio; Ward, Laura C; Girdler, Gemma C; Miranda, Miguel

    2016-03-01

    The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis.

  13. Metabolic and Epigenetic Coordination of T Cell and Macrophage Immunity.

    Science.gov (United States)

    Phan, Anthony T; Goldrath, Ananda W; Glass, Christopher K

    2017-05-16

    Recognition of pathogens by innate and adaptive immune cells instructs rapid alterations of cellular processes to promote effective resolution of infection. To accommodate increased bioenergetic and biosynthetic demands, metabolic pathways are harnessed to maximize proliferation and effector molecule production. In parallel, activation initiates context-specific gene-expression programs that drive effector functions and cell fates that correlate with changes in epigenetic landscapes. Many chromatin- and DNA-modifying enzymes make use of substrates and cofactors that are intermediates of metabolic pathways, providing potential cross talk between metabolism and epigenetic regulation of gene expression. In this review, we discuss recent studies of T cells and macrophages supporting a role for metabolic activity in integrating environmental signals with activation-induced gene-expression programs through modulation of the epigenome and speculate as to how this may influence context-specific macrophage and T cell responses to infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. PD-L1-specific T cells

    DEFF Research Database (Denmark)

    Ahmad, Shamaila Munir; Borch, Troels Holz; Hansen, Morten

    2016-01-01

    -specific T cells that recognize both PD-L1-expressing immune cells and malignant cells. Thus, PD-L1-specific T cells have the ability to modulate adaptive immune reactions by reacting to regulatory cells. Thus, utilization of PD-L1-derived T cell epitopes may represent an attractive vaccination strategy...... for targeting the tumor microenvironment and for boosting the clinical effects of additional anticancer immunotherapy. This review summarizes present information about PD-L1 as a T cell antigen, depicts the initial findings about the function of PD-L1-specific T cells in the adjustment of immune responses...

  15. Notch Signaling Coordinates Progenitor Cell-Mediated Biliary Regeneration Following Partial Hepatectomy

    Science.gov (United States)

    Lu, Jie; Zhou, Yingqun; Hu, Tianyuan; Zhang, Hui; Shen, Miao; Cheng, Ping; Dai, Weiqi; Wang, Fan; Chen, Kan; Zhang, Yan; Wang, Chengfeng; Li, Jingjing; Zheng, Yuanyuan; Yang, Jing; Zhu, Rong; Wang, Jianrong; Lu, Wenxia; Zhang, Huawei; Wang, Junshan; Xia, Yujing; De Assuncao, Thiago M.; Jalan-Sakrikar, Nidhi; Huebert, Robert C.; Bin Zhou; Guo, Chuanyong

    2016-01-01

    Aberrant transcriptional regulation contributes to the pathogenesis of both congenital and adult forms of liver disease. Although the transcription factor RBPJ is essential for liver morphogenesis and biliary development, its specific function in the differentiation of hepatic progenitor cells (HPC) has not been investigated, and little is known about its role in adult liver regeneration. HPCs are bipotent liver stem cells that can self-replicate and differentiate into hepatocytes or cholangiocytes in vitro. HPCs are thought to play an important role in liver regeneration and repair responses. While the coordinated repopulation of both hepatocyte and cholangiocyte compartment is pivotal to the structure and function of the liver after regeneration, the mechanisms coordinating biliary regeneration remain vastly understudied. Here, we utilized complex genetic manipulations to drive liver-specific deletion of the Rbpj gene in conjunction with lineage tracing techniques to delineate the precise functions of RBPJ during biliary development and HPC-associated biliary regeneration after hepatectomy. Furthermore, we demonstrate that RBPJ promotes HPC differentiation toward cholangiocytes in vitro and blocks hepatocyte differentiation through mechanisms involving Hippo-Notch crosstalk. Overall, this study demonstrates that the Notch-RBPJ signaling axis critically regulates biliary regeneration by coordinating the fate decision of HPC and clarifies the molecular mechanisms involved. PMID:26951801

  16. Coordinating cell polarity and cell cycle progression: what can we learn from flies and worms?

    Science.gov (United States)

    Noatynska, Anna; Tavernier, Nicolas; Gotta, Monica; Pintard, Lionel

    2013-08-07

    Spatio-temporal coordination of events during cell division is crucial for animal development. In recent years, emerging data have strengthened the notion that tight coupling of cell cycle progression and cell polarity in dividing cells is crucial for asymmetric cell division and ultimately for metazoan development. Although it is acknowledged that such coupling exists, the molecular mechanisms linking the cell cycle and cell polarity machineries are still under investigation. Key cell cycle regulators control cell polarity, and thus influence cell fate determination and/or differentiation, whereas some factors involved in cell polarity regulate cell cycle timing and proliferation potential. The scope of this review is to discuss the data linking cell polarity and cell cycle progression, and the importance of such coupling for asymmetric cell division. Because studies in model organisms such as Caenorhabditis elegans and Drosophila melanogaster have started to reveal the molecular mechanisms of this coordination, we will concentrate on these two systems. We review examples of molecular mechanisms suggesting a coupling between cell polarity and cell cycle progression.

  17. The coordination of ploidy and cell size differs between cell layers in leaves.

    Science.gov (United States)

    Katagiri, Yohei; Hasegawa, Junko; Fujikura, Ushio; Hoshino, Rina; Matsunaga, Sachihiro; Tsukaya, Hirokazu

    2016-04-01

    Growth and developmental processes are occasionally accompanied by multiple rounds of DNA replication, known as endoreduplication. Coordination between endoreduplication and cell size regulation often plays a crucial role in proper organogenesis and cell differentiation. Here, we report that the level of correlation between ploidy and cell volume is different in the outer and inner cell layers of leaves of Arabidopsis thaliana using a novel imaging technique. Although there is a well-known, strong correlation between ploidy and cell volume in pavement cells of the epidermis, this correlation was extremely weak in palisade mesophyll cells. Induction of epidermis cell identity based on the expression of the homeobox gene ATML1 in mesophyll cells enhanced the level of correlation between ploidy and cell volume to near that of wild-type epidermal cells. We therefore propose that the correlation between ploidy and cell volume is regulated by cell identity.

  18. Antigen-specific memory B cell development.

    Science.gov (United States)

    McHeyzer-Williams, Louise J; McHeyzer-Williams, Michael G

    2005-01-01

    Helper T (Th) cell-regulated B cell immunity progresses in an ordered cascade of cellular development that culminates in the production of antigen-specific memory B cells. The recognition of peptide MHC class II complexes on activated antigen-presenting cells is critical for effective Th cell selection, clonal expansion, and effector Th cell function development (Phase I). Cognate effector Th cell-B cell interactions then promote the development of either short-lived plasma cells (PCs) or germinal centers (GCs) (Phase II). These GCs expand, diversify, and select high-affinity variants of antigen-specific B cells for entry into the long-lived memory B cell compartment (Phase III). Upon antigen rechallenge, memory B cells rapidly expand and differentiate into PCs under the cognate control of memory Th cells (Phase IV). We review the cellular and molecular regulators of this dynamic process with emphasis on the multiple memory B cell fates that develop in vivo.

  19. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...

  20. Vertebrate Ctr1 coordinates morphogenesis and progenitor cell fate and regulates embryonic stem cell differentiation

    OpenAIRE

    Haremaki, Tomomi; Fraser, Stuart T.; Kuo, Yien-Ming; Baron, Margaret H.; Weinstein, Daniel C.

    2007-01-01

    Embryogenesis involves two distinct processes. On the one hand, cells must specialize, acquiring fates appropriate to their positions (differentiation); on the other hand, they must physically construct the embryo through coordinated mechanical activity (morphogenesis). In early vertebrate development, fibroblast growth factor (FGF) regulates multiple embryonic events, including germ layer differentiation and morphogenesis; the cellular components that direct FGF signaling to evoke these diff...

  1. Nitric oxide coordinates cell proliferation and cell movements during early development of Xenopus.

    Science.gov (United States)

    Peunova, Natalia; Scheinker, Vladimir; Ravi, Kandasamy; Enikolopov, Grigori

    2007-12-15

    The establishment of a vertebrate body plan during embryogenesis is achieved through precise coordination of cell proliferation and morphogenetic cell movements. Here we show that nitric oxide (NO) suppresses cell division and facilitates cell movements during early development of Xenopus, such that inhibition of NO synthase (NOS) increases proliferation in the neuroectoderm and suppresses convergent extension in the axial mesoderm and neuroectoderm. NO controls cell division and cell movement through two separate signaling pathways. Both rely on RhoA-ROCK signaling but can be distinguished by the involvement of either guanylate cyclase or the planar cell polarity regulator Dishevelled. Through the cGMP-dependent pathway, NO suppresses cell division by negatively regulating RhoA and controlling the nuclear distribution of ROCK and p21WAF1. Through the cGMP-independent pathway, NO facilitates cell movement by regulating the intracellular distribution and level of Dishevelled and the activity of RhoA, thereby controlling the activity of ROCK and regulating actin cytoskeleton remodeling and cell polarization. Concurrent control by NO helps ensure that the crucial processes of cell proliferation and morphogenetic movements are coordinated during early development.

  2. Primordial Germ Cell Specification and Migration.

    Science.gov (United States)

    Marlow, Florence

    2015-01-01

    Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration.

  3. Cell-Type-Specific Optogenetics in Monkeys.

    Science.gov (United States)

    Namboodiri, Vijay Mohan K; Stuber, Garret D

    2016-09-08

    The recent advent of technologies enabling cell-type-specific recording and manipulation of neuronal activity spurred tremendous progress in neuroscience. However, they have been largely limited to mice, which lack the richness in behavior of primates. Stauffer et al. now present a generalizable method for achieving cell-type specificity in monkeys.

  4. CD146 coordinates brain endothelial cell-pericyte communication for blood-brain barrier development.

    Science.gov (United States)

    Chen, Jianan; Luo, Yongting; Hui, Hui; Cai, Tanxi; Huang, Hongxin; Yang, Fuquan; Feng, Jing; Zhang, Jingjing; Yan, Xiyun

    2017-09-05

    The blood-brain barrier (BBB) establishes a protective interface between the central neuronal system and peripheral blood circulation and is crucial for homeostasis of the CNS. BBB formation starts when the endothelial cells (ECs) invade the CNS and pericytes are recruited to the nascent vessels during embryogenesis. Despite the essential function of pericyte-EC interaction during BBB development, the molecular mechanisms coordinating the pericyte-EC behavior and communication remain incompletely understood. Here, we report a single cell receptor, CD146, that presents dynamic expression patterns in the cerebrovasculature at the stages of BBB induction and maturation, coordinates the interplay of ECs and pericytes, and orchestrates BBB development spatiotemporally. In mouse brain, CD146 is first expressed in the cerebrovascular ECs of immature capillaries without pericyte coverage; with increased coverage of pericytes, CD146 could only be detected in pericytes, but not in cerebrovascular ECs. Specific deletion of Cd146 in mice ECs resulted in reduced brain endothelial claudin-5 expression and BBB breakdown. By analyzing mice with specific deletion of Cd146 in pericytes, which have defects in pericyte coverage and BBB integrity, we demonstrate that CD146 functions as a coreceptor of PDGF receptor-β to mediate pericyte recruitment to cerebrovascular ECs. Moreover, we found that the attached pericytes in turn down-regulate endothelial CD146 by secreting TGF-β1 to promote further BBB maturation. These results reveal that the dynamic expression of CD146 controls the behavior of ECs and pericytes, thereby coordinating the formation of a mature and stable BBB.

  5. Temporal and compartment-specific signals coordinate mitotic exit with spindle position.

    Science.gov (United States)

    Caydasi, Ayse Koca; Khmelinskii, Anton; Duenas-Sanchez, Rafael; Kurtulmus, Bahtiyar; Knop, Michael; Pereira, Gislene

    2017-01-24

    The spatiotemporal control of mitotic exit is crucial for faithful chromosome segregation during mitosis. In budding yeast, the mitotic exit network (MEN) drives cells out of mitosis, whereas the spindle position checkpoint (SPOC) blocks MEN activity when the anaphase spindle is mispositioned. How the SPOC operates at a molecular level remains unclear. Here, we report novel insights into how mitotic signalling pathways orchestrate chromosome segregation in time and space. We establish that the key function of the central SPOC kinase, Kin4, is to counterbalance MEN activation by the cdc fourteen early anaphase release (FEAR) network in the mother cell compartment. Remarkably, Kin4 becomes dispensable for SPOC function in the absence of FEAR. Cells lacking both FEAR and Kin4 show that FEAR contributes to mitotic exit through regulation of the SPOC component Bfa1 and the MEN kinase Cdc15. Furthermore, we uncover controls that specifically promote mitotic exit in the daughter cell compartment.

  6. Germ cell specification and regeneration in planarians.

    Science.gov (United States)

    Newmark, P A; Wang, Y; Chong, T

    2008-01-01

    In metazoans, two apparently distinct mechanisms specify germ cell fate: Determinate specification (observed in animals including Drosophila, Caenorhabditis elegans, zebra fish, and Xenopus) uses cytoplasmic factors localized to specific regions of the egg, whereas epigenetic specification (observed in many basal metazoans, urodeles, and mammals) involves inductive interactions between cells. Much of our understanding of germ cell specification has emerged from studies of model organisms displaying determinate specification. In contrast, our understanding of epigenetic/inductive specification is less advanced and would benefit from studies of additional organisms. Freshwater planarians--widely known for their remarkable powers of regeneration--are well suited for studying the mechanisms by which germ cells can be induced. Classic experiments showed that planarians can regenerate germ cells from body fragments entirely lacking reproductive structures, suggesting that planarian germ cells could be specified by inductive signals. Furthermore, the availability of the genome sequence of the planarian Schmidtea mediterranea, coupled with the animal's susceptibility to systemic RNA interference (RNAi), facilitates functional genomic analyses of germ cell development and regeneration. Here, we describe recent progress in studies of planarian germ cells and frame some of the critical unresolved questions for future work.

  7. Epb41l5 competes with Delta as a substrate for Mib1 to coordinate specification and differentiation of neurons.

    Science.gov (United States)

    Matsuda, Miho; Rand, Kinneret; Palardy, Greg; Shimizu, Nobuyuki; Ikeda, Hiromi; Dalle Nogare, Damian; Itoh, Motoyuki; Chitnis, Ajay B

    2016-09-01

    We identified Erythrocyte membrane protein band 4.1-like 5 (Epb41l5) as a substrate for the E3 ubiquitin ligase Mind bomb 1 (Mib1), which is essential for activation of Notch signaling. Although loss of Epb41l5 does not significantly alter the pattern of neural progenitor cells (NPCs) specified as neurons at the neural plate stage, it delays their delamination and differentiation after neurulation when NPCs normally acquire organized apical junctional complexes (AJCs) in the zebrafish hindbrain. Delays in differentiation are reduced by knocking down N-cadherin, a manipulation expected to help destabilize adherens junctions (AJs). This suggested that delays in neuronal differentiation in epb41l5-deficient embryos are related to a previously described role for Epb41l5 in facilitating disassembly of cadherin-dependent AJCs. Mib1 ubiquitylates Epb41l5 to promote its degradation. DeltaD can compete with Epb41l5 to reduce Mib1-dependent Epb41l5 degradation. In this context, increasing the number of NPCs specified to become neurons, i.e. cells expressing high levels of DeltaD, stabilizes Epb41l5 in the embryo. Together, these observations suggest that relatively high levels of Delta stabilize Epb41l5 in NPCs specified as neurons. This, we suggest, helps coordinate NPC specification with Epb41l5-dependent delamination and differentiation as neurons.

  8. Primordial Germ Cell Specification and Migration

    Science.gov (United States)

    Marlow, Florence

    2015-01-01

    Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration. PMID:26918157

  9. Back and forth between cell fate specification and movement during vertebrate gastrulation.

    Science.gov (United States)

    Heisenberg, Carl-Philipp; Solnica-Krezel, Lilianna

    2008-08-01

    Animal body plan arises during gastrulation and organogenesis by the coordination of inductive events and cell movements. Several signaling pathways, such as BMP, FGF, Hedgehog, Nodal, and Wnt have well-recognized instructive roles in cell fate specification during vertebrate embryogenesis. Growing evidence indicates that BMP, Nodal, and FGF signaling also regulate cell movements, and that they do so through mechanisms distinct from those that specify cell fates. Moreover, pathways controlling cell movements can also indirectly influence cell fate specification by regulating dimensions and relative positions of interacting tissues. The current challenge is to delineate the molecular mechanisms via which the major signaling pathways regulate cell fate specification and movements, and how these two processes are coordinated to ensure normal development.

  10. An Argonaute 2 Switch Regulates Circulating miR-210 to Coordinate Hypoxic Adaptation across Cells

    Science.gov (United States)

    Hale, Andrew; Lee, Changjin; Annis, Sofia; Min, Pil-Ki; Pande, Reena; Creager, Mark A.; Julian, Colleen G.; Moore, Lorna G.; Mitsialis, S. Alex; Hwang, Sarah J.; Kourembanas, Stella; Chan, Stephen Y.

    2014-01-01

    Complex organisms may coordinate molecular responses to hypoxia by specialized avenues of communication across multiple tissues, but these mechanisms are poorly understood. Plasma-based, extracellular microRNAs have been described, yet, their regulation and biological functions in hypoxia remain enigmatic. We found a unique pattern of release of the hypoxia-inducible microRNA-210 (miR-210) from hypoxic and reoxygenated cells. This microRNA is also elevated in human plasma in physiologic and pathologic conditions of altered oxygen demand and delivery. Released miR-210 can be delivered to recipient cells, and its direct suppression of its direct target ISCU and mitochondrial metabolism is primarily evident in hypoxia. To regulate these hypoxia-specific actions, prolyl-hydroxylation of Argonaute 2 acts as a molecular switch that reciprocally modulates miR-210 release and intracellular activity in source cells as well as regulates intracellular activity in recipient cells after miR-210 delivery. Therefore, Argonaute 2-dependent control of released miR-210 represents a unique communication system that integrates the hypoxic response across anatomically distinct cells, preventing unnecessary activity of delivered miR-210 in normoxia while still preparing recipient tissues for incipient hypoxic stress and accelerating adaptation. PMID:24983771

  11. The Effects of constructing domain-specific representations on coordination processes and learning in a CSCL-environment

    OpenAIRE

    Slof, Bert; Erkens, Gijsbert; Kirschner, Paul A.

    2012-01-01

    Slof, B., Erkens, G., & Kirschner, P. A. (2012). The effects of constructing domain-specific representations on coordination processes and learning in a CSCL-environment. Computers in Human Behavior, 28, 1478-1489. doi:10.1016/j.chb.2012.03.011

  12. Developmental Coordination Disorder in children with specific language impairment : Co-morbidity and impact on quality of life

    NARCIS (Netherlands)

    Flapper, Boudien C.T.; Schoemaker, Marina M.

    2013-01-01

    Co-morbidity of Developmental Coordination Disorder (DCD) in children with specific language impairment (SLI) and the impact of DCD on quality-of-life (QOL) was investigated in 65 5-8 year old children with SLI (43 boys, age 6.8 +/- 0.8; 22 girls, age 6.6 +/- 0.8). The prevalence of DCD was assessed

  13. Developmental Coordination Disorder in children with specific language impairment : Co-morbidity and impact on quality of life

    NARCIS (Netherlands)

    Flapper, Boudien C.T.; Schoemaker, Marina M.

    Co-morbidity of Developmental Coordination Disorder (DCD) in children with specific language impairment (SLI) and the impact of DCD on quality-of-life (QOL) was investigated in 65 5-8 year old children with SLI (43 boys, age 6.8 +/- 0.8; 22 girls, age 6.6 +/- 0.8). The prevalence of DCD was assessed

  14. Daple Coordinates Planar Polarized Microtubule Dynamics in Ependymal Cells and Contributes to Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Maki Takagishi

    2017-07-01

    Full Text Available Motile cilia in ependymal cells, which line the cerebral ventricles, exhibit a coordinated beating motion that drives directional cerebrospinal fluid (CSF flow and guides neuroblast migration. At the apical cortex of these multi-ciliated cells, asymmetric localization of planar cell polarity (PCP proteins is required for the planar polarization of microtubule dynamics, which coordinates cilia orientation. Daple is a disheveled-associating protein that controls the non-canonical Wnt signaling pathway and cell motility. Here, we show that Daple-deficient mice present hydrocephalus and their ependymal cilia lack coordinated orientation. Daple regulates microtubule dynamics at the anterior side of ependymal cells, which in turn orients the cilial basal bodies required for the directional cerebrospinal fluid flow. These results demonstrate an important role for Daple in planar polarity in motile cilia and provide a framework for understanding the mechanisms and functions of planar polarization in the ependymal cells.

  15. Nature and Specificity of Gestural Disorder in Children with Developmental Coordination Disorder: A Multiple Case Study

    Directory of Open Access Journals (Sweden)

    Orianne Costini

    2017-07-01

    Full Text Available Aim: Praxis assessment in children with developmental coordination disorder (DCD is usually based on tests of adult apraxia, by comparing across types of gestures and input modalities. However, the cognitive models of adult praxis processing are rarely used in a comprehensive and critical interpretation. These models generally involve two systems: a conceptual system and a production system. Heterogeneity of deficits is consistently reported in DCD, involving other cognitive skills such as executive or visual-perceptual and visuospatial functions. Surprisingly, few researches examined the impact of these functions in gestural production. Our study aimed at discussing the nature and specificity of the gestural deficit in DCD using a multiple case study approach.Method: Tasks were selected and adapted from protocols proposed in adult apraxia, in order to enable a comprehensive assessment of gestures. This included conceptual tasks (knowledge about tool functions and actions; recognition of gestures, representational (transitive, intransitive, and non-representational gestures (imitation of meaningless postures. We realized an additional assessment of constructional abilities and other cognitive domains (executive functions, visual-perceptual and visuospatial functions. Data from 27 patients diagnosed with DCD were collected. Neuropsychological profiles were classified using an inferential clinical analysis based on the modified t-test, by comparison with 100 typically developing children divided into five age groups (from 7 to 13 years old.Results: Among the 27 DCD patients, we first classified profiles that are characterized by impairment in tasks assessing perceptual visual or visuospatial skills (n = 8. Patients with a weakness in executive functions (n = 6 were then identified, followed by those with an impaired performance in conceptual knowledge tasks (n = 4. Among the nine remaining patients, six could be classified as having a visual

  16. A Retinoic Acid-Hedgehog Cascade Coordinates Mesoderm-Inducing Signals and Endoderm Competence during Lung Specification

    Directory of Open Access Journals (Sweden)

    Scott A. Rankin

    2016-06-01

    Full Text Available Organogenesis of the trachea and lungs requires a complex series of mesoderm-endoderm interactions mediated by WNT, BMP, retinoic acid (RA, and hedgehog (Hh, but how these pathways interact in a gene regulatory network is less clear. Using Xenopus embryology, mouse genetics, and human ES cell cultures, we identified a conserved signaling cascade that initiates respiratory lineage specification. We show that RA has multiple roles; first RA pre-patterns the lateral plate mesoderm and then it promotes Hh ligand expression in the foregut endoderm. Hh subsequently signals back to the pre-patterned mesoderm to promote expression of the lung-inducing ligands Wnt2/2b and Bmp4. Finally, RA regulates the competence of the endoderm to activate the Nkx2-1+ respiratory program in response to these mesodermal WNT and BMP signals. These data provide insights into early lung development and a paradigm for how mesenchymal signals are coordinated with epithelial competence during organogenesis.

  17. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function.

    Science.gov (United States)

    Krug, Anne; French, Anthony R; Barchet, Winfried; Fischer, Jens A A; Dzionek, Andrzej; Pingel, Jeanette T; Orihuela, Michael M; Akira, Shizuo; Yokoyama, Wayne M; Colonna, Marco

    2004-07-01

    Natural interferon-producing cells (IPC) respond to viruses by secreting type I interferon (IFN) and interleukin-12 (IL-12). Toll-like receptor (TLR) 9 mediates IPC recognition of some of these viruses in vitro. However, whether TLR9-induced activation of IPC is necessary for an effective antiviral response in vivo is not clear. Here, we demonstrate that IPC and dendritic cells (DC) recognize murine cytomegalovirus (MCMV) through TLR9. TLR9-mediated cytokine secretion promotes viral clearance by NK cells that express the MCMV-specific receptor Ly49H. Although depletion of IPC leads to a drastic reduction of the IFN-alpha response, this allows other cell types to secrete IL-12, ensuring normal IFN-gamma and NK cell responses to MCMV. We conclude that the TLR9/MyD88 pathway mediates antiviral cytokine responses by IPC, DC, and possibly other cell types, which are coordinated to promote effective NK cell function and MCMV clearance.

  18. Dynamics between cancer cell subpopulations reveals a model coordinating with both hierarchical and stochastic concepts.

    Directory of Open Access Journals (Sweden)

    Weikang Wang

    Full Text Available Tumors are often heterogeneous in which tumor cells of different phenotypes have distinct properties. For scientific and clinical interests, it is of fundamental importance to understand their properties and the dynamic variations among different phenotypes, specifically under radio- and/or chemo-therapy. Currently there are two controversial models describing tumor heterogeneity, the cancer stem cell (CSC model and the stochastic model. To clarify the controversy, we measured probabilities of different division types and transitions of cells via in situ immunofluorescence. Based on the experiment data, we constructed a model that combines the CSC with the stochastic concepts, showing the existence of both distinctive CSC subpopulations and the stochastic transitions from NSCCs to CSCs. The results showed that the dynamic variations between CSCs and non-stem cancer cells (NSCCs can be simulated with the model. Further studies also showed that the model can be used to describe the dynamics of the two subpopulations after radiation treatment. More importantly, analysis demonstrated that the experimental detectable equilibrium CSC proportion can be achieved only when the stochastic transitions from NSCCs to CSCs occur, indicating that tumor heterogeneity may exist in a model coordinating with both the CSC and the stochastic concepts. The mathematic model based on experimental parameters may contribute to a better understanding of the tumor heterogeneity, and provide references on the dynamics of CSC subpopulation during radiotherapy.

  19. The configuration of plantar pressure sensing cells for wearable measurement of COP coordinates.

    Science.gov (United States)

    Wang, Dian; Cai, Ping; Mao, Zhiyong

    2016-10-26

    Wearable measurement of center of pressure (COP) coordinates is the key of obtaining the measurement of natural gait. Plantar pressure insole is the right sensing unit for plantar pressure monitoring for long-term outdoor measurements and the control of walking assisting exoskeleton robot. It's necessary to study the configuration of pressure sensing cells. This study explored the sensing cell configuration for the plantar pressure insole. The data of plantar pressure of walking is collected for layout variants. The RMSE of COP coordinates estimations are used as the evaluation criteria. The RMSE of COP coordinates decreases from 8.00 to 3.20 mm as the amount of pressure sensing cells increases from 2 to 7. The size of pressure sensing cells contribute to reduce the RMSE of COP coordinates and 7 pressure sensing cells, with the size of 2.0-2.5 cm have the satisfying performance. Adding pressure sensing cell in the heel and hallux area increase the accuracy of estimating COP coordinates. Comparison results indicate that the configuration of 7 pressure sensing cells has a satisfying measurement performance.

  20. Learning LM Specificity for Ganglion Cells

    Science.gov (United States)

    Ahumada, Albert J.

    2015-01-01

    Unsupervised learning models have been proposed based on experience (Ahumada and Mulligan, 1990;Wachtler, Doi, Lee and Sejnowski, 2007) that allow the cortex to develop units with LM specific color opponent receptive fields like the blob cells reported by Hubel and Wiesel on the basis of visual experience. These models used ganglion cells with LM indiscriminate wiring as inputs to the learning mechanism, which was presumed to occur at the cortical level.

  1. Macro Cell Muting Coordination for Non-Uniform Topologies in LTE-A HetNets

    DEFF Research Database (Denmark)

    Soret, Beatriz; Pedersen, Klaus I.

    2013-01-01

    Enhanced Inter Cell Interference Coordination (eICIC) for co-channel deployments of pico cells throughout a macro cell layout is studied. In particular, we analyze a scenario where only some macro cells have picos deployed, while other macro cells have no small cells. The challenge for such highly...... irregular scenarios is how to operate eICIC, and especially how to coordinate macro-cell muting. Our analysis shows that for eICIC to provide gain in such scenarios, it is recommended to use fully time aligned traditional Almost Blank Subframes (ABS) in the macro-cells with picos, while first tier...... surrounding macro cells shall use low-power ABS. For such cases, user throughput gains of 30%-40% are still achievable. Moreover, it is demonstrated that if macro muting patterns are not fully time aligned, it causes additional interference fluctuations in the network, resulting in less efficient link...

  2. Comparing Language Profiles: Children with Specific Language Impairment and Developmental Coordination Disorder

    Science.gov (United States)

    Archibald, Lisa M. D.; Alloway, Tracy Packiam

    2008-01-01

    Background: Although it is widely recognized that substantial heterogeneity exists in the cognitive profiles of children with Developmental Coordination Disorder (DCD), very little is known about the language skills of this group. Aims: To compare the language abilities of children with DCD with a group whose language impairment has been well…

  3. Collective cancer cell invasion induced by coordinated contractile stresses.

    Science.gov (United States)

    Jimenez Valencia, Angela M; Wu, Pei-Hsun; Yogurtcu, Osman N; Rao, Pranay; DiGiacomo, Josh; Godet, Inês; He, Lijuan; Lee, Meng-Horng; Gilkes, Daniele; Sun, Sean X; Wirtz, Denis

    2015-12-22

    The physical underpinnings of fibrosarcoma cell dissemination from a tumor in a surrounding collagen-rich matrix are poorly understood. Here we show that a tumor spheroid embedded in a 3D collagen matrix exerts large contractile forces on the matrix before invasion. Cell invasion is accompanied by complex spatially and temporally dependent patterns of cell migration within and at the surface of the spheroids that are fundamentally different from migratory patterns of individual fibrosarcoma cells homogeneously distributed in the same type of matrix. Cells display a continuous transition from a round morphology at the spheroid core, to highly aligned elongated morphology at the spheroid periphery, which depends on both β1-integrin-based cell-matrix adhesion and myosin II/ROCK-based cell contractility. This isotropic-to-anisotropic transition corresponds to a shift in migration, from a slow and unpolarized movement at the core, to a fast, polarized and persistent one at the periphery. Our results also show that the ensuing collective invasion of fibrosarcoma cells is induced by anisotropic contractile stresses exerted on the surrounding matrix.

  4. Glucose Signaling-Mediated Coordination of Cell Growth and Cell Cycle in Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Stefano Busti

    2010-06-01

    Full Text Available Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module, the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.

  5. A Database of Transition-Metal-Coordinated Peptide Cross-Sections: Selective Interaction with Specific Amino Acid Residues

    Science.gov (United States)

    Dilger, Jonathan M.; Glover, Matthew S.; Clemmer, David E.

    2017-07-01

    Ion mobility mass spectrometry (IMS-MS) techniques were used to generate a database of 2288 collision cross sections of transition-metal-coordinated tryptic peptide ions. This database consists of cross sections for 1253 [Pep + X]2+ and 1035 [Pep + X + H]3+, where X2+ corresponds to Mn2+, Co2+, Ni2+, Cu2+, or Zn2+. This number of measurements enables the extraction of structural trends for transition-metal-coordinated peptide ions. The range of structures and changes in collision cross sections for X2+-coordinated species (compared with protonated species of the same charge state) is similar to Mg2+-coordinated species. This suggests that the structures are largely determined by similarities in cation size with differences among the cross section distributions presumably caused by X2+ interactions with specific functional groups offered by the residue R-groups or the peptide backbone. Cross section contributions for individual residues upon X2+ solvation are assessed with the derivation of intrinsic size parameters (ISPs). The comparison of the [Pep + X]2+ ISPs with those previously reported for [Pep + Mg]2+ ions displays a lower contribution to the cross section for His, carboxyamidomethylated Cys, and Met, and is consistent with specific metal-residue interactions identified within protein X-ray crystallography databases.

  6. Cell-Specific Aptamers as Emerging Therapeutics

    Directory of Open Access Journals (Sweden)

    Cindy Meyer

    2011-01-01

    Full Text Available Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected about two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment. Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have been selected. Their applications range from biosensing and diagnostics to therapy and target-oriented drug delivery. More recently, selections using complex targets such as live cells have become feasible. This paper summarizes progress in cell-SELEX techniques and highlights recent developments, particularly in the field of medically relevant aptamers with a focus on therapeutic and drug-delivery applications.

  7. Connecting the dots of the bacterial cell cycle: Coordinating chromosome replication and segregation with cell division.

    Science.gov (United States)

    Hajduk, Isabella V; Rodrigues, Christopher D A; Harry, Elizabeth J

    2016-05-01

    Proper division site selection is crucial for the survival of all organisms. What still eludes us is how bacteria position their division site with high precision, and in tight coordination with chromosome replication and segregation. Until recently, the general belief, at least in the model organisms Bacillus subtilis and Escherichia coli, was that spatial regulation of division comes about by the combined negative regulatory mechanisms of the Min system and nucleoid occlusion. However, as we review here, these two systems cannot be solely responsible for division site selection and we highlight additional regulatory mechanisms that are at play. In this review, we put forward evidence of how chromosome replication and segregation may have direct links with cell division in these bacteria and the benefit of recent advances in chromosome conformation capture techniques in providing important information about how these three processes mechanistically work together to achieve accurate generation of progenitor cells.

  8. Sensitivity and specificity of different measures of adiposity to distinguish between low/high motor coordination

    Directory of Open Access Journals (Sweden)

    Luís Lopes

    2015-02-01

    Full Text Available OBJECTIVE: This study aimed to determine the ability of different measures of adiposity to discriminate between low/high motor coordination and to evaluate the relationship between different measures of adiposity and motor coordination. METHODS: This study included 596 elementary school children aged 9 to 12 years (218 females - 47.1%. Weight, height, and waist circumference were objectively measured by standardized protocols. Body fat percentage was estimated by bioelectric impedance. Body mass index and waist-to-height ratio were computed. Motor coordination was assessed by the Körperkoordination Test für Kinder. Cardiorespiratory fitness was predicted by a maximal multistage 20 m shuttle-run test of the Fitnessgram Test Battery. A questionnaire was used to assess the maternal educational level. RESULTS: The receiver operating characteristic performance of body fat percentage in females and waist circumference in males presented a slightly better discriminatory accuracy than body mass index, waist circumference and waist-to-height ratio in predicting low motor coordination. After adjustments, logistic regression analyses showed that body mass index (ß = 2.155; 95% CI: 1.164-3.992; p = 0.015 for girls; ß = 3.255; 95% CI: 1.740-6.088; p < 0.001 for males, waist circumference (ß = 2.489; 95% CI: 1.242-4.988; p = 0.010 for girls; ß = 3.296; 95% CI: 1.784-6.090; p < 0.001 for males, body fat percentage (ß = 2.395; 95% CI: 1.234-4.646; p = 0.010 for girls; ß = 2.603; 95% CI: 1.462-4.634; p < 0.001 for males and waist-to-height ratio (ß = 3.840; 95% CI: 2.025-7.283; p < 0.001 for males were positively and significantly associated with motor coordination in both sexes, with the exception of waist-to-height ratio in girls (ß = 1.343; 95% CI: 0.713-2.528; p = 0.381. CONCLUSION: Body fat percentage and waist circumference showed a slightly better discriminatory accuracy in predicting low motor coordination for females and for males

  9. WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells.

    Science.gov (United States)

    Sarmiento, Corina; Wang, Weigang; Dovas, Athanassios; Yamaguchi, Hideki; Sidani, Mazen; El-Sibai, Mirvat; Desmarais, Vera; Holman, Holly A; Kitchen, Susan; Backer, Jonathan M; Alberts, Art; Condeelis, John

    2008-03-24

    We examined the role of the actin nucleation promoters neural Wiskott-Aldrich syndrome protein (N-WASP) and WAVE2 in cell protrusion in response to epidermal growth factor (EGF), a key regulator in carcinoma cell invasion. We found that WAVE2 knockdown (KD) suppresses lamellipod formation and increases filopod formation, whereas N-WASP KD has no effect. However, simultaneous KD of both proteins results in the formation of large jagged protrusions with lamellar properties and increased filopod formation. This suggests that another actin nucleation activity is at work in carcinoma cells in response to EGF. A mammalian Diaphanous-related formin, mDia1, localizes at the jagged protrusions in double KD cells. Constitutively active mDia1 recapitulated the phenotype, whereas inhibition of mDia1 blocked the formation of these protrusions. Increased RhoA activity, which stimulates mDia1 nucleation, was observed in the N-WASP/WAVE2 KD cells and was shown to be required for the N-WASP/WAVE2 KD phenotype. These data show that coordinate regulation between the WASP family and mDia proteins controls the balance between lamellar and lamellipodial protrusion activity.

  10. Cell Specific eQTL Analysis without Sorting Cells.

    Directory of Open Access Journals (Sweden)

    Harm-Jan Westra

    2015-05-01

    Full Text Available The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn's disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus.

  11. Developmental Coordination Disorder in Children with Specific Language Impairment: Co-Morbidity and Impact on Quality of Life

    Science.gov (United States)

    Flapper, Boudien C. T.; Schoemaker, Marina M.

    2013-01-01

    Co-morbidity of Developmental Coordination Disorder (DCD) in children with specific language impairment (SLI) and the impact of DCD on quality-of-life (QOL) was investigated in 65 5-8 year old children with SLI (43 boys, age 6.8 [plus or minus] 0.8; 22 girls, age 6.6 [plus or minus] 0.8). The prevalence of DCD was assessed using DSM-IV-TR criteria…

  12. Coordination of cell proliferation and differentiation during C. elegans development

    NARCIS (Netherlands)

    Ruijtenberg, S.A.

    2015-01-01

    The formation of a complex multi-cellular organism from a single fertilized egg is an intriguing yet highly complex process. It requires the generation of large numbers of cells, which at the appropriate times need to obtain specialized functions and morphologies, while assembling into well-defined

  13. Coordination of cell proliferation and differentiation during C. elegans development

    NARCIS (Netherlands)

    Ruijtenberg, S.A.

    2015-01-01

    The formation of a complex multi-cellular organism from a single fertilized egg is an intriguing yet highly complex process. It requires the generation of large numbers of cells, which at the appropriate times need to obtain specialized functions and morphologies, while assembling into well-defined

  14. A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus.

    Science.gov (United States)

    Beaufay, François; Coppine, Jérôme; Mayard, Aurélie; Laloux, Géraldine; De Bolle, Xavier; Hallez, Régis

    2015-07-01

    Coupling cell cycle with nutrient availability is a crucial process for all living cells. But how bacteria control cell division according to metabolic supplies remains poorly understood. Here, we describe a molecular mechanism that coordinates central metabolism with cell division in the α-proteobacterium Caulobacter crescentus. This mechanism involves the NAD-dependent glutamate dehydrogenase GdhZ and the oxidoreductase-like KidO. While enzymatically active GdhZ directly interferes with FtsZ polymerization by stimulating its GTPase activity, KidO bound to NADH destabilizes lateral interactions between FtsZ protofilaments. Both GdhZ and KidO share the same regulatory network to concomitantly stimulate the rapid disassembly of the Z-ring, necessary for the subsequent release of progeny cells. Thus, this mechanism illustrates how proteins initially dedicated to metabolism coordinate cell cycle progression with nutrient availability.

  15. Coordinated cell motility is regulated by a combination of LKB1 farnesylation and kinase activity

    Science.gov (United States)

    Wilkinson, S.; Hou, Y.; Zoine, J. T.; Saltz, J.; Zhang, C.; Chen, Z.; Cooper, L. A. D.; Marcus, A. I.

    2017-01-01

    Cell motility requires the precise coordination of cell polarization, lamellipodia formation, adhesion, and force generation. LKB1 is a multi-functional serine/threonine kinase that associates with actin at the cellular leading edge of motile cells and suppresses FAK. We sought to understand how LKB1 coordinates these multiple events by systematically dissecting LKB1 protein domain function in combination with live cell imaging and computational approaches. We show that LKB1-actin colocalization is dependent upon LKB1 farnesylation leading to RhoA-ROCK-mediated stress fiber formation, but membrane dynamics is reliant on LKB1 kinase activity. We propose that LKB1 kinase activity controls membrane dynamics through FAK since loss of LKB1 kinase activity results in morphologically defective nascent adhesion sites. In contrast, defective farnesylation mislocalizes nascent adhesion sites, suggesting that LKB1 farnesylation serves as a targeting mechanism for properly localizing adhesion sites during cell motility. Together, we propose a model where coordination of LKB1 farnesylation and kinase activity serve as a multi-step mechanism to coordinate cell motility during migration. PMID:28102310

  16. Planar Cell Polarity Signaling: Coordination of cellular orientation across tissues

    OpenAIRE

    Singh, Jaskirat; Mlodzik, Marek

    2012-01-01

    Establishment of Planar Cell Polarity (PCP) in epithelia, in the plane of an epithelium, is an important feature of the development and homeostasis of most organs. Studies in different model organisms have contributed a wealth of information regarding the mechanisms that govern PCP regulation. Genetic studies in Drosophila have identified two signaling systems, the Fz/PCP and Fat/Dachsous system, which are both required for PCP establishment in many different tissues in a largely non-redundan...

  17. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps

    Science.gov (United States)

    Takaku, Yasuharu; Hwang, Jung Shan; Wolf, Alexander; Böttger, Angelika; Shimizu, Hiroshi; David, Charles N.; Gojobori, Takashi

    2014-01-01

    Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia.

  18. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps

    KAUST Repository

    Takaku, Yasuharu

    2014-01-07

    Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia.

  19. Ultrasensitive Responses and Specificity in Cell Signaling

    Directory of Open Access Journals (Sweden)

    Haney Seth

    2010-08-01

    Full Text Available Abstract Background Interconnected cell signaling pathways are able to efficiently and accurately transmit a multitude of different signals, despite an inherent potential for undesirable levels of cross-talk. To ensure that an appropriate response is produced, biological systems have evolved network-level mechanisms that insulate pathways from crosstalk and prevent 'leaking' or 'spillover' between pathways. Many signaling pathways have been shown to respond in an ultrasensitive (switch-like fashion to graded input, and this behavior may influence specificity. The relationship of ultrasensitivity to signaling specificity has not been extensively explored. Results We studied the behavior of simple mathematical models of signaling networks composed of two interconnected pathways that share an intermediate component, asking if the two pathways in the network could exhibit both output specificity (preferentially activate their own output and input fidelity (preferentially respond to their own input. Previous results with weakly-activated pathways indicated that neither mutual specificity nor mutual fidelity were obtainable in the absence of an insulating mechanism, such as cross-pathway inhibition, combinatorial signaling or scaffolding/compartmentalization. Here we found that mutual specificity is obtainable for hyperbolic or ultrasensitive pathways, even in the absence of an insulating mechanism. However, mutual fidelity is impossible at steady-state, even if pathways are hyperbolic or ultrasensitive. Nevertheless, ultrasensitivity does provide advantages in attaining specificity and fidelity to networks that contain an insulating mechanism. For networks featuring cross-pathway inhibition or combinatorial signaling, ultrasensitive activation can increase specificity in a limited way, and can only be utilized by one of the two pathways. In contrast, for networks featuring scaffolding/compartmentalization, ultrasensitive activation of both pathways

  20. The reciprocal coordination and mechanics of molecular motors in living cells.

    Science.gov (United States)

    Laib, Jeneva A; Marin, John A; Bloodgood, Robert A; Guilford, William H

    2009-03-03

    Molecular motors in living cells are involved in whole-cell locomotion, contractility, developmental shape changes, and organelle movement and positioning. Whether motors of different directionality are functionally coordinated in cells or operate in a semirandom "tug of war" is unclear. We show here that anterograde and retrograde microtubule-based motors in the flagella of Chlamydomonas are regulated such that only motors of a common directionality are engaged at any single time. A laser trap was used to position microspheres on the plasma membrane of immobilized paralyzed Chlamydomonas flagella. The anterograde and retrograde movements of the microsphere were measured with nanometer resolution as microtubule-based motors engaged the transmembrane protein FMG-1. An average of 10 motors acted to move the microsphere in either direction. Reversal of direction during a transport event was uncommon, and quiescent periods separated every transport event, suggesting the coordinated and exclusive action of only a single motor type. After a jump to 32 degrees C, temperature-sensitive mutants of kinesin-2 (fla10) showed exclusively retrograde transport events, driven by 7 motors on average. These data suggest that molecular motors in living cells can be reciprocally coordinated to engage simultaneously in large numbers and for exclusive transport in a single direction, even when a mixed population of motors is present. This offers a unique model for studying the mechanics, regulation, and directional coordination of molecular motors in a living intracellular environment.

  1. Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division

    NARCIS (Netherlands)

    Gray, A.N.; Egan, A.J.F.; van 't Veer, I.L.; Verheul, J.; Colavin, A.; Koumoutsi, A.; Biboy, J.; Altelaar, A.F.M.; Damen, M.J.; Huang, K.C.; Simorre, J.P.; Breukink, E.; den Blaauwen, T.; Typas, A.; Gross, C.A.; Vollmer, W.

    2015-01-01

    To maintain cellular structure and integrity during division, Gram-negative bacteria must carefully coordinate constriction of a tripartite cell envelope of inner membrane, peptidoglycan (PG), and outer membrane (OM). It has remained enigmatic how this is accomplished. Here, we show that envelope ma

  2. BRCA1 in Gene-Specific Coordination of Transcription and DNA Damage Response

    Science.gov (United States)

    2008-03-01

    model under the low estrogen condition. A. Wester blot analy is of COBRA1 level in control and shCOBRA1 expressing ZR-75-1 cells. α-tubulin was...samples. Western blot analysis was used to analyze expression of COBRA1 in breast (MCF10A, MCF-7, SKBR3) and ovarian (ES2, SKOV3, H118) cancer cell...GFES HPGBE B C Figure 1. COBRA1 expression in established cell lines and clinical tissues. A. Western blot analysis of COBRA1 expression in multiple

  3. Co-ordinated synthesis of phytoalexin biosynthetic enzymes in biologically-stressed cells of bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Cramer, C L; Bell, J N; Ryder, T B; Bailey, J A; Schuch, W; Bolwell, G P; Robbins, M P; Dixon, R A; Lamb, C J

    1985-02-01

    Changes in the rates of synthesis of three enzymes of phenyl-propanoid biosynthesis in Phaseolus vulgaris L. (dwarf French bean) have been investigated by immunoprecipitation of [S]methionine-labeled enzyme subunits with mono-specific antisera. Elicitor causes marked, rapid but transient co-ordinated increases in the rate of synthesis of phenyl-alanine ammonia-lyase, chalcone synthase and chalcone isomerase concomitant with the phase of rapid increase in enzyme activity at the onset of accumulation of phenyl-propanoid-derived phytoalexin antibiotics in suspension cultures of P. vulgaris. Co-ordinate induction of enzyme synthesis is also observed in hypocotyl tissue during race:cultivar-specific interactions with Colletotrichum lindemuthianum, causal agent of anthracnose. In an incompatible interaction (host resistant) there are early increases apparently localized to the initial site of infection prior to the onset of phytoalexin accumulation and expression of hypersensitive resistance. In contrast, in a compatible interaction (host susceptible) there is no induction of synthesis in the early stages of infection, but a delayed widespread response at the onset of lesion formation associated with attempted lesion limitation. It is concluded that expression of the phytoalexin defense response in biologically stressed cells of P. vulgaris characteristically involves co-ordinate induction of synthesis of phytoalexin biosynthetic enzymes.

  4. Formal Specification and Verification of a Coordination Protocol for an Automated Air Traffic Control System

    Data.gov (United States)

    National Aeronautics and Space Administration — We detail all of the facets of adapting classical model checking to a real aerospace system, in- cluding deriving the formal model and a set of specifications from...

  5. Neuron specific Rab4 effector GRASP-1 coordinates membrane specialization and maturation of recycling endosomes

    NARCIS (Netherlands)

    C.C. Hoogenraad (Casper); I. Popa (Ioana); K. Futai (Kensuke); E. Sanchez-Martinez (Emma); P. Wulf (Phebe); T. van Vlijmen (Thijs); B.R. Dortland (Bjorn); V. Oorschot (Viola); R. Govers (Robert); M. Monti (Maria); A.J.R. Heck (Albert); M. Sheng (Morgan); J. Klumperman (Judith); H. Rehmann (Holger); D. Jaarsma (Dick); L.C. Kapitein (Lukas); P. van der Sluijs

    2010-01-01

    textabstractThe endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1

  6. The planar cell polarity protein VANGL2 coordinates remodeling of the extracellular matrix.

    Science.gov (United States)

    Williams, B Blairanne; Mundell, Nathan; Dunlap, Julie; Jessen, Jason

    2012-07-01

    Understanding how planar cell polarity (PCP) is established, maintained, and coordinated in migrating cell populations is an important area of research with implications for both embryonic morphogenesis and tumor cell invasion. We recently reported that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell surface level of membrane type-1 matrix metalloproteinase (MMP14 or MT1-MMP). Here, we further discuss these findings in terms of extracellular matrix (ECM) remodeling, cell migration, and zebrafish gastrulation. We also demonstrate that VANGL2 function impacts the focal degradation of ECM by human cancer cells including the formation or stability of invadopodia. Together, our findings implicate MMP14 as a downstream effector of VANGL2 signaling and suggest a model whereby the regulation of pericellular proteolysis is a fundamental aspect of PCP in migrating cells.

  7. Optogenetic toolkit reveals the role of Ca2+ sparklets in coordinated cell migration.

    Science.gov (United States)

    Kim, Jin Man; Lee, Minji; Kim, Nury; Heo, Won Do

    2016-05-24

    Cell migration is controlled by various Ca(2+) signals. Local Ca(2+) signals, in particular, have been identified as versatile modulators of cell migration because of their spatiotemporal diversity. However, little is known about how local Ca(2+) signals coordinate between the front and rear regions in directionally migrating cells. Here, we elucidate the spatial role of local Ca(2+) signals in directed cell migration through combinatorial application of an optogenetic toolkit. An optically guided cell migration approach revealed the existence of Ca(2+) sparklets mediated by L-type voltage-dependent Ca(2+) channels in the rear part of migrating cells. Notably, we found that this locally concentrated Ca(2+) influx acts as an essential transducer in establishing a global front-to-rear increasing Ca(2+) gradient. This asymmetrical Ca(2+) gradient is crucial for maintaining front-rear morphological polarity by restricting spontaneous lamellipodia formation in the rear part of migrating cells. Collectively, our findings demonstrate a clear link between local Ca(2+) sparklets and front-rear coordination during directed cell migration.

  8. Stem cell therapy and coordination dynamics therapy to improve spinal cord injury.

    Science.gov (United States)

    Schalow, G

    2008-01-01

    During competition a motocross athlete suffered a clinically complete spinal cord injury (SCI) at the Thoracic 11/12 levels according to MRIs (magnetic resonance imaging). Six weeks after the accident the subject began intensive Coordination Dynamics Therapy (CDT) at an up-to-date therapy centre. After 6 months of therapy, when further improvements were only marginal, the patient opted for haematopoietic stem cell therapy in addition to ongoing CDT. During two years of stem cell therapy, including 4 sessions of stem cell application, and ongoing coordination dynamics therapy, improvement remained marginal--no more than what would have been achieved with continuing only CDT. It is concluded that this haematopoietic stem cell therapy did not have any beneficial effect on the repair of the spinal cord in this patient. Differences in the regeneration capacity between commonly used laboratory animals and human are addressed. On the basis of a frog model for regeneration, cell communication, and neural control, it is discussed why complete SCI in human are difficult to improve and why for stem cell therapies more proper human knowledge is needed to induce structural repair and direct it to the injured sites of the neuronal networks. Further research is needed to improve and justify the clinical application of stem cell therapy. A thoughtful combination of stem cell therapy and CDT may have a chance of structural repair even in complete SCI. However, objective measures are needed to quantify improvement in MRI (anatomic measure), EMG (measuring of motor programs by sEMG, electrophysiologic measure), and measurements of coordination dynamics (kinesiologic measure).

  9. Chronophin coordinates cell leading edge dynamics by controlling active cofilin levels

    Science.gov (United States)

    Delorme-Walker, Violaine; Seo, Ji-Yeon; Gohla, Antje; Fowler, Bruce; Bohl, Ben; DerMardirossian, Céline

    2015-01-01

    Cofilin, a critical player of actin dynamics, is spatially and temporally regulated to control the direction and force of membrane extension required for cell locomotion. In carcinoma cells, although the signaling pathways regulating cofilin activity to control cell direction have been established, the molecular machinery required to generate the force of the protrusion remains unclear. We show that the cofilin phosphatase chronophin (CIN) spatiotemporally regulates cofilin activity at the cell edge to generate persistent membrane extension. We show that CIN translocates to the leading edge in a PI3-kinase–, Rac1-, and cofilin-dependent manner after EGF stimulation to activate cofilin, promotes actin free barbed end formation, accelerates actin turnover, and enhances membrane protrusion. In addition, we establish that CIN is crucial for the balance of protrusion/retraction events during cell migration. Thus, CIN coordinates the leading edge dynamics by controlling active cofilin levels to promote MTLn3 cell protrusion. PMID:26324884

  10. Calcium Imaging Reveals Coordinated Simple Spike Pauses in Populations of Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Jorge E. Ramirez

    2016-12-01

    Full Text Available The brain’s control of movement is thought to involve coordinated activity between cerebellar Purkinje cells. The results reported here demonstrate that somatic Ca2+ imaging is a faithful reporter of Na+-dependent “simple spike” pauses and enables us to optically record changes in firing rates in populations of Purkinje cells in brain slices and in vivo. This simultaneous calcium imaging of populations of Purkinje cells reveals a striking spatial organization of pauses in Purkinje cell activity between neighboring cells. The source of this organization is shown to be the presynaptic gamma-Aminobutyric acid producing (GABAergic network, and blocking ionotropic gamma-Aminobutyric acid receptor (GABAARs abolishes the synchrony. These data suggest that presynaptic interneurons synchronize (inactivity between neighboring Purkinje cells, and thereby maximize their effect on downstream targets in the deep cerebellar nuclei.

  11. Enhanced Inter-cell Interference Coordination for Heterogeneous Networks in LTE-Advanced: A Survey

    CERN Document Server

    Lindbom, Lars; Krishnamurthy, Sandeep; Yao, Chunhai; Miki, Nobuhiko; Chandrasekhar, Vikram

    2011-01-01

    Heterogeneous networks (het-nets) - comprising of conventional macrocell base stations overlaid with femtocells, picocells and wireless relays - offer cellular operators burgeoning traffic demands through cell-splitting gains obtained by bringing users closer to their access points. However, the often random and unplanned location of these access points can cause severe near-far problems, typically solved by coordinating base-station transmissions to minimize interference. Towards this direction, the 3rd generation partnership project Long Term Evolution-Advanced (3GPP-LTE or Rel-10) standard introduces time-domain inter-cell interference coordination (ICIC) for facilitating a seamless deployment of a het-net overlay. This article surveys the key features encompassing the physical layer, network layer and back-hauling aspects of time-domain ICIC in Rel-10.

  12. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells

    Science.gov (United States)

    Kiyonaka, Shigeki; Kubota, Ryou; Michibata, Yukiko; Sakakura, Masayoshi; Takahashi, Hideo; Numata, Tomohiro; Inoue, Ryuji; Yuzaki, Michisuke; Hamachi, Itaru

    2016-10-01

    The controlled activation of proteins in living cells is an important goal in protein-design research, but to introduce an artificial activation switch into membrane proteins through rational design is a significant challenge because of the structural and functional complexity of such proteins. Here we report the allosteric activation of two types of membrane-bound neurotransmitter receptors, the ion-channel type and the G-protein-coupled glutamate receptors, using coordination chemistry in living cells. The high programmability of coordination chemistry enabled two His mutations, which act as an artificial allosteric site, to be semirationally incorporated in the vicinity of the ligand-binding pockets. Binding of Pd(2,2‧-bipyridine) at the allosteric site enabled the active conformations of the glutamate receptors to be stabilized. Using this approach, we were able to activate selectively a mutant glutamate receptor in live neurons, which initiated a subsequent signal-transduction pathway.

  13. Site-specific control of N7-metal coordination in DNA by a fluorescent purine derivative.

    Science.gov (United States)

    Dumas, Anaëlle; Luedtke, Nathan W

    2012-01-01

    A synthetic strategy that utilizes O6-protected 8-bromoguanosine gives broad access to C8-guanine derivatives with phenyl, pyridine, thiophene, and furan substituents. The resulting 8-substituted 2'-deoxyguanosines are push-pull fluorophores that can exhibit environmentally sensitive quantum yields (Φ=0.001-0.72) due to excited-state proton-transfer reactions with bulk solvent. Changes in nucleoside fluorescence were used to characterize metal-binding affinity and specificity of 8-substituted 2'-deoxyguanosines. One derivative, 8-(2-pyridyl)-2'-deoxyguanosine (2PyG), exhibits selective binding of Cu(II), Ni(II), Cd(II), and Zn(II) through a bidentate effect provided by the N7 position of guanine and the 2-pyridyl nitrogen atom. Upon incorporation into DNA, 2-pyridine-modified guanine residues selectively bind to Cu(II) and Ni(II) with equilibrium dissociation constants (K(d)) that range from 25 to 850 nM; the affinities depend on the folded state of the oligonucleotide (duplex>G-quadruplex) as well as the identity of the metal ion (Cu>Ni≫Cd). These binding affinities are approximately 10 to 1 000 times higher than for unmodified metal binding sites in DNA, thereby providing site-specific control of metal localization in alternatively folded nucleic acids. Temperature-dependent circular-dichroism studies reveal metal-dependent stabilization of duplexes, but destabilization of G-quadruplex structures upon adding Cu(II) to 2PyG-modified oligonucleotides. These results demonstrate how the addition of a single pyridine group to the C8 position of guanine provides a powerful new tool for studying the effects of N7 metalation on the structure, stability, and electronic properties of nucleic acids.

  14. Complex Coordination of Cell Plasticity by a PGC-1α-controlled Transcriptional Network in Skeletal Muscle.

    Science.gov (United States)

    Kupr, Barbara; Handschin, Christoph

    2015-01-01

    Skeletal muscle cells exhibit an enormous plastic capacity in order to adapt to external stimuli. Even though our overall understanding of the molecular mechanisms that underlie phenotypic changes in skeletal muscle cells remains poor, several factors involved in the regulation and coordination of relevant transcriptional programs have been identified in recent years. For example, the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a central regulatory nexus in the adaptation of muscle to endurance training. Intriguingly, PGC-1α integrates numerous signaling pathways and translates their activity into various transcriptional programs. This selectivity is in part controlled by differential expression of PGC-1α variants and post-translational modifications of the PGC-1α protein. PGC-1α-controlled activation of transcriptional networks subsequently enables a spatio-temporal specification and hence allows a complex coordination of changes in metabolic and contractile properties, protein synthesis and degradation rates and other features of trained muscle. In this review, we discuss recent advances in our understanding of PGC-1α-regulated skeletal muscle cell plasticity in health and disease.

  15. Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Barbara eKupr

    2015-11-01

    Full Text Available Skeletal muscle cells exhibit an enormous plastic capacity in order to adapt to external stimuli. Even though our overall understanding of the molecular mechanisms that underlie phenotypic changes in skeletal muscle cells remains poor, several factors involved in the regulation and coordination of relevant transcriptional programs have been identified in recent years. For example, the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α is a central regulatory nexus in the adaptation of muscle to endurance training. Intriguingly, PGC-1α integrates numerous signaling pathways and translates their activity into various transcriptional programs. This selectivity is in part controlled by differential expression of PGC-1α variants and post-translational modifications of the PGC-1α protein. PGC-1α-controlled activation of transcriptional networks subsequently enables a spatio-temporal specification and hence allows a complex coordination of changes in metabolic and contractile properties, protein synthesis and degradation rates and other features of trained muscle. In this review, we discuss recent advances in our understanding of PGC-1α-regulated skeletal muscle cell plasticity in health and disease.

  16. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development.

    Science.gov (United States)

    Lu, Cecilia S; Zhai, Bo; Mauss, Alex; Landgraf, Matthias; Gygi, Stephen; Van Vactor, David

    2014-09-26

    Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila. However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins.

  17. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    OpenAIRE

    2014-01-01

    Author Summary DNA replication must be coordinated with cellular physiology to ensure proper genome inheritance. Model bacteria such as the soil-dwelling Bacillus subtilis can achieve a wide range of growth rates in response to nutritional and chemical signals. In order to match the rate of DNA synthesis to the rate of nutrient-mediated cell growth, bacteria regulate the initiation frequency of DNA replication. This control of bacterial DNA replication initiation was first observed over forty...

  18. A novel method for neck coordination exercise – a pilot study on persons with chronic non-specific neck pain

    Directory of Open Access Journals (Sweden)

    Björklund Martin

    2008-12-01

    Full Text Available Abstract Background Chronic neck pain is a common problem and is often associated with changes in sensorimotor functions, such as reduced proprioceptive acuity of the neck, altered coordination of the cervical muscles, and increased postural sway. In line with these findings there are studies supporting the efficacy of exercises targeting different aspects of sensorimotor function, for example training aimed at improving proprioception and muscle coordination. To further develop this type of exercises we have designed a novel device and method for neck coordination training. The aim of the study was to investigate the clinical applicability of the method and to obtain indications of preliminary effects on sensorimotor functions, symptoms and self-rated characteristics in non-specific chronic neck pain Methods The study was designed as an uncontrolled clinical trial including fourteen subjects with chronic non-specific neck pain. A new device was designed to allow for an open skills task with adjustable difficulty. With visual feedback, subjects had to control the movement of a metal ball on a flat surface with a rim strapped on the subjects' head. Eight training sessions were performed over a four week period. Skill acquisition was measured throughout the intervention period. After intervention subjects were interviewed about their experience of the exercise and pain and sensorimotor functions, including the fast and slow components of postural sway and jerkiness-, range-, position sense-, movement time- and velocity of cervical rotation, were measured. At six-month follow up, self-rated pain, health and functioning was collected. Results The subjects improved their skill to perform the exercise and were overall positive to the method. No residual negative side-effects due to the exercise were reported. After intervention the fast component of postural sway (p = 0.019 and jerkiness of cervical rotation (p = 0.032 were reduced. The follow up

  19. Prkci is required for a non-autonomous signal that coordinates cell polarity during cavitation.

    Science.gov (United States)

    Mah, In Kyoung; Soloff, Rachel; Izuhara, Audrey K; Lakeland, Daniel L; Wang, Charles; Mariani, Francesca V

    2016-08-01

    Polarized epithelia define boundaries, spaces, and cavities within organisms. Cavitation, a process by which multicellular hollow balls or tubes are produced, is typically associated with the formation of organized epithelia. In order for these epithelial layers to form, cells must ultimately establish a distinct apical-basal polarity. Atypical PKCs have been proposed to be required for apical-basal polarity in diverse species. Here we show that while cells null for the Prkci isozyme exhibit some polarity characteristics, they fail to properly segregate apical-basal proteins, form a coordinated ectodermal epithelium, or participate in normal cavitation. A failure to cavitate could be due to an overgrowth of interior cells or to an inability of interior cells to die. Null cells however, do not have a marked change in proliferation rate and are still capable of undergoing cell death, suggesting that alterations in these processes are not the predominant cause of the failed cavitation. Overexpression of BMP4 or EZRIN can partially rescue the phenotype possibly by promoting cell death, polarity, and differentiation. However, neither is sufficient to provide the required cues to generate a polarized epithelium and fully rescue cavitation. Interestingly, when wildtype and Prkci(-/-) ES cells are mixed together, a polarized ectodermal epithelium forms and cavitation is rescued, likely due to the ability of wildtype cells to produce non-autonomous polarity cues. We conclude that Prkci is not required for cells to respond to these cues, though it is required to produce them. Together these findings indicate that environmental cues can facilitate the formation of polarized epithelia and that cavitation requires the proper coordination of multiple basic cellular processes including proliferation, differentiation, cell death, and apical-basal polarization.

  20. A novel schiff base zinc coordination compound inhibits proliferation and induces apoptosis of human osteosarcoma cells.

    Science.gov (United States)

    Yan, Ming; Pang, Li; Ma, Tan-tan; Zhao, Cheng-liang; Zhang, Nan; Yu, Bing-xin; Xia, Yan

    2015-10-01

    Various kinds of schiff base metal complexes have been proven to induce apoptosis of tumor cells. However, it remains largely unknown whether schiff base zinc complexes induce apoptosis in human cancer cells. Here, we synthesized a novel schiff base zinc coordination compound (SBZCC) and investigated its effects on the growth, proliferation and apoptosis of human osteosarcoma MG-63 cells. A novel SBZCC was synthesized by chemical processes and used to treat MG-63 cells. The cell viability was determined by CCK-8 assay. The cell cycle progression, mitochondrial membrane potential and apoptotic cells were analyzed by flow cytometry. The apoptosis-related proteins levels were determined by immunoblotting. Treatment of MG-63 cells with SBZCC resulted in inhibition of cell proliferation and cell cycle arrest at G1 phase. Moreover, SBZCC significantly reduced the mitochondrial membrane potential and induced apoptosis, accompanied with increased Bax/Bcl-2 and FlasL/Fas expression as well as caspase-3/8/9 cleavage. Our results demonstrated that the synthesized novel SBZCC could inhibit the proliferation and induce apoptosis of MG-63 cells via activating both the mitochondrial and cell death receptor apoptosis pathways, suggesting that SBZCC is a promising agent for the development as anticancer drugs.

  1. Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification

    OpenAIRE

    Ahmad, Shaad M.; Busser, Brian W; Huang, Di; Cozart, Elizabeth J.; Michaud, Sébastien; Zhu, Xianmin; Jeffries, Neal; Aboukhalil, Anton; Bulyk, Martha L.; Ovcharenko, Ivan; Michelson, Alan M.

    2014-01-01

    The Drosophila heart is composed of two distinct cell types, the contractile cardial cells (CCs) and the surrounding non-muscle pericardial cells (PCs), development of which is regulated by a network of conserved signaling molecules and transcription factors (TFs). Here, we used machine learning with array-based chromatin immunoprecipitation (ChIP) data and TF sequence motifs to computationally classify cell type-specific cardiac enhancers. Extensive testing of predicted enhancers at single-c...

  2. Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila.

    Science.gov (United States)

    Köppen, Mathias; Fernández, Beatriz García; Carvalho, Lara; Jacinto, Antonio; Heisenberg, Carl-Philipp

    2006-07-01

    Epithelial morphogenesis depends on coordinated changes in cell shape, a process that is still poorly understood. During zebrafish epiboly and Drosophila dorsal closure, cell-shape changes at the epithelial margin are of critical importance. Here evidence is provided for a conserved mechanism of local actin and myosin 2 recruitment during theses events. It was found that during epiboly of the zebrafish embryo, the movement of the outer epithelium (enveloping layer) over the yolk cell surface involves the constriction of marginal cells. This process depends on the recruitment of actin and myosin 2 within the yolk cytoplasm along the margin of the enveloping layer. Actin and myosin 2 recruitment within the yolk cytoplasm requires the Ste20-like kinase Msn1, an orthologue of Drosophila Misshapen. Similarly, in Drosophila, actin and myosin 2 localization and cell constriction at the margin of the epidermis mediate dorsal closure and are controlled by Misshapen. Thus, this study has characterized a conserved mechanism underlying coordinated cell-shape changes during epithelial morphogenesis.

  3. Spatial and temporal coordination of traction forces in one-dimensional cell migration.

    Science.gov (United States)

    Han, Sangyoon J; Rodriguez, Marita L; Al-Rekabi, Zeinab; Sniadecki, Nathan J

    2016-09-02

    Migration of a fibroblast along a collagen fiber can be regarded as cell locomotion in one-dimension (1D). In this process, a cell protrudes forward, forms a new adhesion, produces traction forces, and releases its rear adhesion in order to advance itself along a path. However, how a cell coordinates its adhesion formation, traction forces, and rear release in 1D migration is unclear. Here, we studied fibroblasts migrating along a line of microposts. We found that when the front of a cell protruded onto a new micropost, the traction force produced at its front increased steadily, but did so without a temporal correlation in the force at its rear. Instead, the force at the front coordinated with a decrease in force at the micropost behind the front. A similar correlation in traction forces also occurred at the rear of a cell, where a decrease in force due to adhesion detachment corresponded to an increase in force at the micropost ahead of the rear. Analysis with a bio-chemo-mechanical model for traction forces and adhesion dynamics indicated that the observed relationship between traction forces at the front and back of a cell is possible only when cellular elasticity is lower than the elasticity of the cellular environment.

  4. Cell and plastid division are coordinated through the prereplication factor AtCDT1

    Science.gov (United States)

    Raynaud, Cécile; Perennes, Claudette; Reuzeau, Christophe; Catrice, Olivier; Brown, Spencer; Bergounioux, Catherine

    2005-01-01

    The cell division cycle involves nuclear and cytoplasmic events, namely organelle multiplication and distribution between the daughter cells. Until now, plastid and plant cell division have been considered as independent processes because they can be uncoupled. Here, down-regulation of AtCDT1a and AtCDT1b, members of the prereplication complex, is shown to alter both nuclear DNA replication and plastid division in Arabidopsis thaliana. These data constitute molecular evidence for relationships between the cell-cycle and plastid division. Moreover, the severe developmental defects observed in AtCDT1-RNA interference (RNAi) plants underline the importance of coordinated cell and organelle division for plant growth and morphogenesis. PMID:15928083

  5. During Drosophila disc regeneration, JAK/STAT coordinates cell proliferation with Dilp8-mediated developmental delay.

    Science.gov (United States)

    Katsuyama, Tomonori; Comoglio, Federico; Seimiya, Makiko; Cabuy, Erik; Paro, Renato

    2015-05-05

    Regeneration of fragmented Drosophila imaginal discs occurs in an epimorphic manner involving local cell proliferation at the wound site. After disc fragmentation, cells at the wound site activate a restoration program through wound healing, regenerative cell proliferation, and repatterning of the tissue. However, the interplay of signaling cascades driving these early reprogramming steps is not well-understood. Here, we profiled the transcriptome of regenerating cells in the early phase within 24 h after wounding. We found that JAK/STAT signaling becomes activated at the wound site and promotes regenerative cell proliferation in cooperation with Wingless (Wg) signaling. In addition, we showed that the expression of Drosophila insulin-like peptide 8 (dilp8), which encodes a paracrine peptide to delay the onset of pupariation, is controlled by JAK/STAT signaling in early regenerating discs. Our findings suggest that JAK/STAT signaling plays a pivotal role in coordinating regenerative disc growth with organismal developmental timing.

  6. Development of a model of machine hand eye coordination and program specifications for a topological machine vision system

    Science.gov (United States)

    1972-01-01

    A unified approach to computer vision and manipulation is developed which is called choreographic vision. In the model, objects to be viewed by a projected robot in the Viking missions to Mars are seen as objects to be manipulated within choreographic contexts controlled by a multimoded remote, supervisory control system on Earth. A new theory of context relations is introduced as a basis for choreographic programming languages. A topological vision model is developed for recognizing objects by shape and contour. This model is integrated with a projected vision system consisting of a multiaperture image dissector TV camera and a ranging laser system. System program specifications integrate eye-hand coordination and topological vision functions and an aerospace multiprocessor implementation is described.

  7. Cognate and noncognate metal ion coordination in metal-specific metallothioneins: the Helix pomatia system as a model.

    Science.gov (United States)

    Palacios, Oscar; Pérez-Rafael, Sílvia; Pagani, Ayelen; Dallinger, Reinhard; Atrian, Sílvia; Capdevila, Mercè

    2014-08-01

    The Helix pomatia metallothionein (MT) system, namely, its two highly specific forms, HpCdMT and HpCuMT, has offered once again an optimum model to study metal-protein specificity. The present work investigates the most unexplored aspect of the coordination behavior of MT polypeptides with respect to either cognate or noncognate metal ions, as opposed to the standard studies of cognate metal ion coordination. To this end, we analyzed the in vivo synthesis of the corresponding complexes with their noncognate metals, and we performed a detailed spectroscopic and spectrometric study of the Zn(2+)/Cd(2+) and Zn(2+)/Cu(+) in vitro replacement reactions on the initial Zn-HpMT species. An HpCuMTAla site-directed mutant, exhibiting differential Cu(+)-binding abilities in vivo, was also included in this study. We demonstrate that when an MT binds its cognate metal, it yields well-folded complexes of limited stoichiometry, representative of minimal-energy conformations. In contrast, the incorporation of noncognate metal ions is better attributed to an unspecific reaction of cysteinic thiolate groups with metal ions, which is dependent on their concentration in the surrounding milieu, where no minimal-energy structure is reached, and otherwise, the MT peptide acts as a multidentate ligand that will bind metal ions until its capacity has been saturated. Additionally, we suggest that previous binding of an MT polypeptide with its noncognate metal ion (e.g., binding of Zn(2+) to the HpCuMT isoform) may preclude the correct folding of the complex with its cognate metal ion.

  8. The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching.

    Science.gov (United States)

    Yang, Li; Vaitheesvaran, Bhavapriya; Hartil, Kirsten; Robinson, Alan J; Hoopmann, Michael R; Eng, Jimmy K; Kurland, Irwin J; Bruce, James E

    2011-09-02

    The elucidation of extra-nuclear lysine acetylation has been of growing interest, as the cosubstrate for acetylation, acetyl CoA, is at a key metabolic intersection. Our hypothesis was that mitochondrial and cytoplasmic protein acetylation may be part of a fasted/re-fed feedback control system for the regulation of the metabolic network in fuel switching, where acetyl CoA would be provided by fatty acid oxidation, or glycolysis, respectively. To test this, we characterized the mitochondrial and cytoplasmic acetylome in various organs that have a high metabolic rate relative to their mass, and/or switch fuels, under fasted and re-fed conditions (brain, kidney, liver, skeletal muscle, heart muscle, white and brown adipose tissues). Using immunoprecipitation, coupled with LC-MS/MS label free quantification, we show there is a dramatic variation in global quantitative profiles of acetylated proteins from different organs. In total, 733 acetylated peptides from 337 proteins were identified and quantified, out of which 31 acetylated peptides from the metabolic proteins that may play organ-specific roles were analyzed in detail. Results suggest that fasted/re-fed acetylation changes coordinated by organ-specific (de)acetylases in insulin-sensitive versus -insensitive organs may underlie fuel use and switching. Characterization of the tissue-specific acetylome should increase understanding of metabolic conditions wherein normal fuel switching is disrupted, such as in Type II diabetes.

  9. Organ-specific effects of brassinosteroids on stomatal production coordinate with the action of TOO MANY MOUTHS

    Institute of Scientific and Technical Information of China (English)

    Ming Wang; Kezhen Yang; Jie Le

    2015-01-01

    In Arabidopsis, stomatal development initiates after protodermal cel s acquire stomatal lineage cel fate. Stomata or their precursors communicate with their neighbor epidermal cel s to ensure the“one cel spacing”rule. The signals from EPF/EPFL peptide ligands received by TOO MANY MOUTHS (TMM) and ERECTA‐family receptors are supposed to be transduced by YODA MAPK cascade. A basic helix‐loop‐helix transcription factor SPEECHLESS (SPCH) is another key regulator of stomatal cel fate determination and asymmetric entry divisions, and SPCH activity is regulated by YODA MAPK cascade. Brassinos-teroid (BR) signaling, one of the most wel characterized signal transduction pathways in plants, contributes to the control of stomatal production. But opposite organ‐specific effects of BR on stomatal production were reported. Here we confirm that stomatal production in hypocotyls is control ed by BR levels. YODA and CYCD4 are not essential for BR stomata‐promoting function. Furthermore, we found that BR could confer tmm hypocotyls clustered stomatal phenotype, indicating that the BR organ‐specific effects on stomatal production might coordi-nate with the TMM organ‐specific actions.

  10. Direction-specific impairment of stability limits and falls in children with developmental coordination disorder: Implications for rehabilitation.

    Science.gov (United States)

    Fong, Shirley S M; Ng, Shamay S M; Chung, Louisa M Y; Ki, W Y; Chow, Lina P Y; Macfarlane, Duncan J

    2016-01-01

    Limit of stability (LOS) is an important yet under-examined postural control ability in children with developmental coordination disorder (DCD). This study aimed to (1) compare the LOS and fall frequencies of children with and without DCD, and (2) explore the relationships between LOS parameters and falls in the DCD population. Thirty primary school-aged children with DCD and twenty age- and sex-matched typically-developing children participated in the study. Postural control ability, specifically LOS in standing, was evaluated using the LOS test. Reaction time, movement velocity, maximum excursion, end point excursion, and directional control were then calculated. Self-reported fall incidents in the previous week were also documented. Multivariate analysis of variance results revealed that children with DCD had shorter LOS maximum excursion in the backward direction compared to the control group (p=0.003). This was associated with a higher number of falls in daily life (rho=-0.556, p=0.001). No significant between-groups differences were found in other LOS-derived outcomes (p>0.05). Children with DCD had direction-specific postural control impairment, specifically, diminished LOS in the backward direction. This is related to their falls in daily life. Therefore, improving LOS should be factored into rehabilitation treatment for children with DCD.

  11. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes

    Science.gov (United States)

    Bolisetty, Mohan; Kursawe, Romy; Sun, Lili; Sivakamasundari, V.; Kycia, Ina

    2017-01-01

    Blood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets. Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular components of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic polypeptide (PP) cells. Here, we report single-cell transcriptomes for 638 cells from nondiabetic (ND) and T2D human islet samples. Analyses of ND single-cell transcriptomes identified distinct alpha, beta, delta, and PP/gamma cell-type signatures. Genes linked to rare and common forms of islet dysfunction and diabetes were expressed in the delta and PP/gamma cell types. Moreover, this study revealed that delta cells specifically express receptors that receive and coordinate systemic cues from the leptin, ghrelin, and dopamine signaling pathways implicating them as integrators of central and peripheral metabolic signals into the pancreatic islet. Finally, single-cell transcriptome profiling revealed genes differentially regulated between T2D and ND alpha, beta, and delta cells that were undetectable in paired whole islet analyses. This study thus identifies fundamental cell-type–specific features of pancreatic islet (dys)function and provides a critical resource for comprehensive understanding of islet biology and diabetes pathogenesis. PMID:27864352

  12. Cell-Specific Promoters Enable Lipid-Based Nanoparticles to Deliver Genes to Specific Cells of the Retina In Vivo.

    Science.gov (United States)

    Wang, Yuhong; Rajala, Ammaji; Cao, Binrui; Ranjo-Bishop, Michelle; Agbaga, Martin-Paul; Mao, Chuanbin; Rajala, Raju V S

    2016-01-01

    Non-viral vectors, such as lipid-based nanoparticles (liposome-protamine-DNA complex [LPD]), could be used to deliver a functional gene to the retina to correct visual function and treat blindness. However, one of the limitations of LPD is the lack of cell specificity, as the retina is composed of seven types of cells. If the same gene is expressed in multiple cell types or is absent from one desired cell type, LPD-mediated gene delivery to every cell may have off-target effects. To circumvent this problem, we have tested LPD-mediated gene delivery using various generalized, modified, and retinal cell-specific promoters. We achieved retinal pigment epithelium cell specificity with vitelliform macular dystrophy (VMD2), rod cell specificity with mouse rhodopsin, cone cell specificity with red/green opsin, and ganglion cell specificity with thymocyte antigen promoters. Here we show for the first time that cell-specific promoters enable lipid-based nanoparticles to deliver genes to specific cells of the retina in vivo. This work will inspire investigators in the field of lipid nanotechnology to couple cell-specific promoters to drive expression in a cell- and tissue-specific manner.

  13. Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification.

    Science.gov (United States)

    Ahmad, Shaad M; Busser, Brian W; Huang, Di; Cozart, Elizabeth J; Michaud, Sébastien; Zhu, Xianmin; Jeffries, Neal; Aboukhalil, Anton; Bulyk, Martha L; Ovcharenko, Ivan; Michelson, Alan M

    2014-02-01

    The Drosophila heart is composed of two distinct cell types, the contractile cardial cells (CCs) and the surrounding non-muscle pericardial cells (PCs), development of which is regulated by a network of conserved signaling molecules and transcription factors (TFs). Here, we used machine learning with array-based chromatin immunoprecipitation (ChIP) data and TF sequence motifs to computationally classify cell type-specific cardiac enhancers. Extensive testing of predicted enhancers at single-cell resolution revealed the added value of ChIP data for modeling cell type-specific activities. Furthermore, clustering the top-scoring classifier sequence features identified novel cardiac and cell type-specific regulatory motifs. For example, we found that the Myb motif learned by the classifier is crucial for CC activity, and the Myb TF acts in concert with two forkhead domain TFs and Polo kinase to regulate cardiac progenitor cell divisions. In addition, differential motif enrichment and cis-trans genetic studies revealed that the Notch signaling pathway TF Suppressor of Hairless [Su(H)] discriminates PC from CC enhancer activities. Collectively, these studies elucidate molecular pathways used in the regulatory decisions for proliferation and differentiation of cardiac progenitor cells, implicate Su(H) in regulating cell fate decisions of these progenitors, and document the utility of enhancer modeling in uncovering developmental regulatory subnetworks.

  14. GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells.

    Science.gov (United States)

    Gao, Xia; Bali, Aman S; Randell, Scott H; Hogan, Brigid L M

    2015-11-09

    Pseudostratified airway epithelium of the lung is composed of polarized ciliated and secretory cells maintained by basal stem/progenitor cells. An important question is how lineage choice and differentiation are coordinated with apical-basal polarity and epithelial morphogenesis. Our previous studies indicated a key integrative role for the transcription factor Grainyhead-like 2 (Grhl2). In this study, we present further evidence for this model using conditional gene deletion during the regeneration of airway epithelium and clonal organoid culture. We also use CRISPR/Cas9 genome editing in primary human basal cells differentiating into organoids and mucociliary epithelium in vitro. Loss of Grhl2 inhibits organoid morphogenesis and the differentiation of ciliated cells and reduces the expression of both notch and ciliogenesis genes (Mcidas, Rfx2, and Myb) with distinct Grhl2 regulatory sites. The genome editing of other putative target genes reveals roles for zinc finger transcription factor Znf750 and small membrane adhesion glycoprotein in promoting ciliogenesis and barrier function as part of a network of genes coordinately regulated by Grhl2.

  15. ATM prevents DSB formation by coordinating SSB repair and cell cycle progression.

    Science.gov (United States)

    Khoronenkova, Svetlana V; Dianov, Grigory L

    2015-03-31

    DNA single-strand breaks (SSBs) arise as a consequence of spontaneous DNA instability and are also formed as DNA repair intermediates. Their repair is critical because they otherwise terminate gene transcription and generate toxic DNA double-strand breaks (DSBs) on replication. To prevent the formation of DSBs, SSB repair must be completed before DNA replication. To accomplish this, cells should be able to detect unrepaired SSBs, and then delay cell cycle progression to allow more time for repair; however, to date there is no evidence supporting the coordination of SSB repair and replication in human cells. Here we report that ataxia-telangiectasia mutated kinase (ATM) plays a major role in restricting the replication of SSB-containing DNA and thus prevents DSB formation. We show that ATM is activated by SSBs and coordinates their repair with DNA replication. SSB-mediated ATM activation is followed by a G1 cell cycle delay that allows more time for repair and thus prevents the replication of damaged DNA and DSB accrual. These findings establish an unanticipated role for ATM in the signaling of DNA SSBs and provide important insight into the molecular defects leading to genetic instability in patients with ataxia-telangiectasia.

  16. Stimulation of adult oligodendrogenesis by myelin-specific T cells

    DEFF Research Database (Denmark)

    Hvilsted Nielsen, Helle; Toft-Hansen, Henrik; Lambertsen, Kate Lykke

    2011-01-01

    investigated the effect of myelin-specific T cells on oligodendrocyte formation at sites of axonal damage in the mouse hippocampal dentate gyrus. Infiltrating T cells specific for myelin proteolipid protein stimulated proliferation of chondroitin sulfate NG2-expressing oligodendrocyte precursor cells early...... of calretinergic associational/commissural fibers within the dentate gyrus. These results have implications for the perception of MS pathogenesis because they show that infiltrating myelin-specific T cells can stimulate oligodendrogenesis in the adult central nervous system....

  17. Coordination of opposing sex-specific and core muscle groups regulates male tail posture during Caenorhabditis elegans male mating behavior

    Directory of Open Access Journals (Sweden)

    Sternberg Paul W

    2009-06-01

    Full Text Available Abstract Background To survive and reproduce, animals must be able to modify their motor behavior in response to changes in the environment. We studied a complex behavior of Caenorhabditis elegans, male mating behavior, which provided a model for understanding motor behaviors at the genetic, molecular as well as circuit level. C. elegans male mating behavior consists of a series of six sub-steps: response to contact, backing, turning, vulva location, spicule insertion, and sperm transfer. The male tail contains most of the sensory structures required for mating, in addition to the copulatory structures, and thus to carry out the steps of mating behavior, the male must keep his tail in contact with the hermaphrodite. However, because the hermaphrodite does not play an active role in mating and continues moving, the male must modify his tail posture to maintain contact. We provide a better understanding of the molecular and neuro-muscular pathways that regulate male tail posture during mating. Results Genetic and laser ablation analysis, in conjunction with behavioral assays were used to determine neurotransmitters, receptors, neurons and muscles required for the regulation of male tail posture. We showed that proper male tail posture is maintained by the coordinated activity of opposing muscle groups that curl the tail ventrally and dorsally. Specifically, acetylcholine regulates both ventral and dorsal curling of the male tail, partially through anthelmintic levamisole-sensitive, nicotinic receptor subunits. Male-specific muscles are required for acetylcholine-driven ventral curling of the male tail but dorsal curling requires the dorsal body wall muscles shared by males and hermaphrodites. Gamma-aminobutyric acid activity is required for both dorsal and ventral acetylcholine-induced curling of the male tail and an inhibitory gamma-aminobutyric acid receptor, UNC-49, prevents over-curling of the male tail during mating, suggesting that cross

  18. Pneumococcal Competence Coordination Relies on a Cell-Contact Sensing Mechanism.

    Directory of Open Access Journals (Sweden)

    Marc Prudhomme

    2016-06-01

    Full Text Available Bacteria have evolved various inducible genetic programs to face many types of stress that challenge their growth and survival. Competence is one such program. It enables genetic transformation, a major horizontal gene transfer process. Competence development in liquid cultures of Streptococcus pneumoniae is synchronized within the whole cell population. This collective behavior is known to depend on an exported signaling Competence Stimulating Peptide (CSP, whose action generates a positive feedback loop. However, it is unclear how this CSP-dependent population switch is coordinated. By monitoring spontaneous competence development in real time during growth of four distinct pneumococcal lineages, we have found that competence shift in the population relies on a self-activated cell fraction that arises via a growth time-dependent mechanism. We demonstrate that CSP remains bound to cells during this event, and conclude that the rate of competence development corresponds to the propagation of competence by contact between activated and quiescent cells. We validated this two-step cell-contact sensing mechanism by measuring competence development during co-cultivation of strains with altered capacity to produce or respond to CSP. Finally, we found that the membrane protein ComD retains the CSP, limiting its free diffusion in the medium. We propose that competence initiator cells originate stochastically in response to stress, to form a distinct subpopulation that then transmits the CSP by cell-cell contact.

  19. Skin Biopsy and Patient-Specific Stem Cell Lines

    Science.gov (United States)

    Li, Yao; Nguyen, Huy V.; Tsang, Stephen H.

    2016-01-01

    The generation of patient-specific induced pluripotent stem (iPS) cells permits the development of next-generation patient-specific systems biology models reflecting personalized genomics profiles to better understand pathophysiology. In this chapter, we describe how to create a patient-specific iPS cell line. There are three major steps: (1) performing a skin biopsy procedure on the patient; (2) extracting human fibroblast cells from the skin biopsy tissue; and (3) reprogramming patient-specific fibroblast cells into the pluripotent stem cell stage. PMID:26141312

  20. Infected cell protein 0 functional domains and their coordination in herpes simplex virus replication.

    Science.gov (United States)

    Gu, Haidong

    2016-02-12

    Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that establishes latent infection in ganglia neurons. Its unique life cycle requires a balanced "conquer and compromise" strategy to deal with the host anti-viral defenses. One of HSV-1 α (immediate early) gene products, infected cell protein 0 (ICP0), is a multifunctional protein that interacts with and modulates a wide range of cellular defensive pathways. These pathways may locate in different cell compartments, which then migrate or exchange factors upon stimulation, for the purpose of a concerted and effective defense. ICP0 is able to simultaneously attack multiple host pathways by either degrading key restrictive factors or modifying repressive complexes. This is a viral protein that contains an E3 ubiquitin ligase, translocates among different cell compartments and interacts with major defensive complexes. The multiple functional domains of ICP0 can work independently and at the same time coordinate with each other. Dissecting the functional domains of ICP0 and delineating the coordination of these domains will help us understand HSV-1 pathogenicity as well as host defense mechanisms. This article focuses on describing individual ICP0 domains, their biochemical properties and their implication in HSV-1 infection. By putting individual domain functions back into the picture of host anti-viral defense network, this review seeks to elaborate the complex interactions between HSV-1 and its host.

  1. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression.

    Science.gov (United States)

    Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A

    2014-05-02

    To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.

  2. Decipher the dynamic coordination between enzymatic activity and structural modulation at focal adhesions in living cells

    Science.gov (United States)

    Lu, Shaoying; Seong, Jihye; Wang, Yi; Chang, Shiou-Chi; Eichorst, John Paul; Ouyang, Mingxing; Li, Julie Y.-S.; Chien, Shu; Wang, Yingxiao

    2014-07-01

    Focal adhesions (FAs) are dynamic subcellular structures crucial for cell adhesion, migration and differentiation. It remains an enigma how enzymatic activities in these local complexes regulate their structural remodeling in live cells. Utilizing biosensors based on fluorescence resonance energy transfer (FRET), we developed a correlative FRET imaging microscopy (CFIM) approach to quantitatively analyze the subcellular coordination between the enzymatic Src activation and the structural FA disassembly. CFIM reveals that the Src kinase activity only within the microdomain of lipid rafts at the plasma membrane is coupled with FA dynamics. FA disassembly at cell periphery was linearly dependent on this raft-localized Src activity, although cells displayed heterogeneous levels of response to stimulation. Within lipid rafts, the time delay between Src activation and FA disassembly was 1.2 min in cells seeded on low fibronectin concentration ([FN]) and 4.3 min in cells on high [FN]. CFIM further showed that the level of Src-FA coupling, as well as the time delay, was regulated by cell-matrix interactions, as a tight enzyme-structure coupling occurred in FA populations mediated by integrin αvβ3, but not in those by integrin α5β1. Therefore, different FA subpopulations have distinctive regulation mechanisms between their local kinase activity and structural FA dynamics.

  3. Functional cooperation between FACT and MCM is coordinated with cell cycle and differential complex formation

    Directory of Open Access Journals (Sweden)

    Lin Chih-Li

    2010-02-01

    Full Text Available Abstract Background Functional cooperation between FACT and the MCM helicase complex constitutes an integral step during DNA replication initiation. However, mode of regulation that underlies the proper functional interaction of FACT and MCM is poorly understood. Methods & Results Here we present evidence indicating that such interaction is coordinated with cell cycle progression and differential complex formation. We first demonstrate the existence of two distinct FACT-MCM subassemblies, FACT-MCM2/4/6/7 and FACT-MCM2/3/4/5. Both complexes possess DNA unwinding activity and are subject to cell cycle-dependent enzymatic regulation. Interestingly, analysis of functional attributes further suggests that they act at distinct, and possibly sequential, steps during origin establishment and replication initiation. Moreover, we show that the phosphorylation profile of the FACT-associated MCM4 undergoes a cell cycle-dependent change, which is directly correlated with the catalytic activity of the FACT-MCM helicase complexes. Finally, at the quaternary structure level, physical interaction between FACT and MCM complexes is generally dependent on persistent cell cycle and further stabilized upon S phase entry. Cessation of mitotic cycle destabilizes the complex formation and likely leads to compromised coordination and activities. Conclusions Together, our results correlate FACT-MCM functionally and temporally with S phase and DNA replication. They further demonstrate that enzymatic activities intrinsically important for DNA replication are tightly controlled at various levels, thereby ensuring proper progression of, as well as exit from, the cell cycle and ultimately euploid gene balance.

  4. Chapter 10 the primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair

    DEFF Research Database (Denmark)

    Christensen, Søren T; Pedersen, Stine F; Satir, Peter

    2008-01-01

    Cell cycle control and migration are critical processes during development and maintenance of tissue functions. Recently, primary cilia were shown to take part in coordination of the signaling pathways that control these cellular processes in human health and disease. In this review, we present...... with the extracellular matrix, coordinate Wnt signaling, and modulate cytoskeletal changes that impinge on both cell cycle control and cell migration....... an overview of the function of primary cilia and the centrosome in the signaling pathways that regulate cell cycle control and migration with focus on ciliary signaling via platelet-derived growth factor receptor alpha (PDGFRalpha). We also consider how the primary cilium and the centrosome interact...

  5. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Heath Murray

    2014-10-01

    Full Text Available In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  6. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-10-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  7. Performance Analysis of enhanced Inter-cell Interference Coordination in LTE-Advanced Heterogeneous Networks

    DEFF Research Database (Denmark)

    Wang, Yuanye; Pedersen, Klaus I.

    2012-01-01

    in the downlink by means of extensive system level simulations that follow the 3GPP guidelines. The overall network performance is analyzed for different number of pico-eNBs, transmit power levels, User Equipment (UE) distributions, and packet schedulers. Recommended settings of the RE offset and TDM muting ratio......The performance of enhanced Inter-Cell Interference Coordination (eICIC) for Long Term Evolution (LTE)- Advanced with co-channel deployment of both macro and pico is analyzed. The use of pico-cell Range Extension (RE) and time domain eICIC (TDM muting) is combined. The performance is evaluated...... in different scenarios are identified. The presented performance results and findings can serve as input to guidelines for co-channel deployment of macro and pico-eNBs with eICIC....

  8. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation.

    Science.gov (United States)

    Pei, Bo; Zhao, Meng; Miller, Brian C; Véla, Jose Luis; Bruinsma, Monique W; Virgin, Herbert W; Kronenberg, Mitchell

    2015-06-15

    Autophagy regulates cell differentiation, proliferation, and survival in multiple cell types, including cells of the immune system. In this study, we examined the effects of a disruption of autophagy on the differentiation of invariant NKT (iNKT) cells. Using mice with a T lymphocyte-specific deletion of Atg5 or Atg7, two members of the macroautophagic pathway, we observed a profound decrease in the iNKT cell population. The deficit is cell-autonomous, and it acts predominantly to reduce the number of mature cells, as well as the function of peripheral iNKT cells. In the absence of autophagy, there is reduced progression of iNKT cells in the thymus through the cell cycle, as well as increased apoptosis of these cells. Importantly, the reduction in Th1-biased iNKT cells is most pronounced, leading to a selective reduction in iNKT cell-derived IFN-γ. Our findings highlight the unique metabolic and genetic requirements for the differentiation of iNKT cells.

  9. Coordinate reduction in cell proliferation and cell death in mouse olfactory epithelium from birth to maturity

    NARCIS (Netherlands)

    Fung, KM; Peringa, J; Venkatachalam, S; Lee, VMY; Trojanowski, JQ

    1997-01-01

    We investigated cell proliferation and cell death in the olfactory epithelium (OE) of mice from birth to maturity using bromodeoxyuridine and terminal deoxynucleotidyl transferase nick end labeling. We show that cell death events and proliferative activity diminish concomitantly with age in the OE.

  10. Coordinate reduction in cell proliferation and cell death in mouse olfactory epithelium from birth to maturity

    NARCIS (Netherlands)

    Fung, KM; Peringa, J; Venkatachalam, S; Lee, VMY; Trojanowski, JQ

    1997-01-01

    We investigated cell proliferation and cell death in the olfactory epithelium (OE) of mice from birth to maturity using bromodeoxyuridine and terminal deoxynucleotidyl transferase nick end labeling. We show that cell death events and proliferative activity diminish concomitantly with age in the OE.

  11. Nac1 Coordinates a Sub-network of Pluripotency Factors to Regulate Embryonic Stem Cell Differentiation.

    Science.gov (United States)

    Malleshaiah, Mohan; Padi, Megha; Rué, Pau; Quackenbush, John; Martinez-Arias, Alfonso; Gunawardena, Jeremy

    2016-02-01

    Pluripotent cells give rise to distinct cell types during development and are regulated by often self-reinforcing molecular networks. How such networks allow cells to differentiate is less well understood. Here, we use integrative methods to show that external signals induce reorganization of the mouse embryonic stem cell pluripotency network and that a sub-network of four factors, Nac1, Oct4, Tcf3, and Sox2, regulates their differentiation into the alternative mesendodermal and neuroectodermal fates. In the mesendodermal fate, Nac1 and Oct4 were constrained within quantitative windows, whereas Sox2 and Tcf3 were repressed. In contrast, in the neuroectodermal fate, Sox2 and Tcf3 were constrained while Nac1 and Oct4 were repressed. In addition, we show that Nac1 coordinates differentiation by activating Oct4 and inhibiting both Sox2 and Tcf3. Reorganization of progenitor cell networks around shared factors might be a common differentiation strategy and our integrative approach provides a general methodology for delineating such networks.

  12. Nac1 Coordinates a Sub-network of Pluripotency Factors to Regulate Embryonic Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Mohan Malleshaiah

    2016-02-01

    Full Text Available Pluripotent cells give rise to distinct cell types during development and are regulated by often self-reinforcing molecular networks. How such networks allow cells to differentiate is less well understood. Here, we use integrative methods to show that external signals induce reorganization of the mouse embryonic stem cell pluripotency network and that a sub-network of four factors, Nac1, Oct4, Tcf3, and Sox2, regulates their differentiation into the alternative mesendodermal and neuroectodermal fates. In the mesendodermal fate, Nac1 and Oct4 were constrained within quantitative windows, whereas Sox2 and Tcf3 were repressed. In contrast, in the neuroectodermal fate, Sox2 and Tcf3 were constrained while Nac1 and Oct4 were repressed. In addition, we show that Nac1 coordinates differentiation by activating Oct4 and inhibiting both Sox2 and Tcf3. Reorganization of progenitor cell networks around shared factors might be a common differentiation strategy and our integrative approach provides a general methodology for delineating such networks.

  13. Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells.

    Science.gov (United States)

    Round, June L; Tomassian, Tamar; Zhang, Min; Patel, Viresh; Schoenberger, Stephen P; Miceli, M Carrie

    2005-02-07

    Lipid raft membrane compartmentalization and membrane-associated guanylate kinase (MAGUK) family molecular scaffolds function in establishing cell polarity and organizing signal transducers within epithelial cell junctions and neuronal synapses. Here, we elucidate a role for the MAGUK protein, Dlgh1, in polarized T cell synapse assembly and T cell function. We find that Dlgh1 translocates to the immune synapse and lipid rafts in response to T cell receptor (TCR)/CD28 engagement and that LckSH3-mediated interactions with Dlgh1 control its membrane targeting. TCR/CD28 engagement induces the formation of endogenous Lck-Dlgh1-Zap70-Wiskott-Aldrich syndrome protein (WASp) complexes in which Dlgh1 acts to facilitate interactions of Lck with Zap70 and WASp. Using small interfering RNA and overexpression approaches, we show that Dlgh1 promotes antigen-induced actin polymerization, synaptic raft and TCR clustering, nuclear factor of activated T cell activity, and cytokine production. We propose that Dlgh1 coordinates TCR/CD28-induced actin-driven T cell synapse assembly, signal transduction, and effector function. These findings highlight common molecular strategies used to regulate cell polarity, synapse assembly, and transducer organization in diverse cellular systems.

  14. Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis.

    Science.gov (United States)

    Mohapatra, A; Van Dyken, S J; Schneider, C; Nussbaum, J C; Liang, H-E; Locksley, R M

    2016-01-01

    Group 2 innate lymphoid cells (ILC2s) have an important role in acute allergic lung inflammation. Given their distribution and function, lung ILC2s are hypothesized to coordinate epithelial responses to the external environment; however, how barrier surveillance is linked to ILC2 activation remains unclear. Here, we demonstrate that alveolar type II cells are the main source of interleukin (IL)-33 and thymic stromal lymphopoietin (TSLP) generated in response to chitin or migratory helminths. IL-33 and TSLP synergistically induce an interferon regulatory factor 4 (IRF4)-IL-9 program in ILC2s, and autocrine IL-9 promotes rapid IL-5 and IL-13 production required for optimal epithelial responses in the conducting airways. Thus, ILC2s link alveolar function to regulation of airway flow, revealing a key interaction between resident lymphoid and structural cells that might underlie similar organizational hierarchies in other organs.

  15. A xylogalacturonan epitope is specifically associated with plant cell detachment

    DEFF Research Database (Denmark)

    Willats, William George Tycho; McCartney, L.; Steele-King, C.G.

    2004-01-01

    A monoclonal antibody (LM8) was generated with specificity for xyloglacturonan (XGA) isolated from pea (Pisum sativum L.) testae. Characterization of the LM8 epitope indicates that it is a region of XGA that is highly substituted with xylose. Immunocytochemical analysis indicates that this epitope...... that is specifically associated with a plant cell separation process that results in complete cell detachment....

  16. Developmental coordination disorder in children with specific language impairment: co-morbidity and impact on quality of life.

    Science.gov (United States)

    Flapper, Boudien C T; Schoemaker, Marina M

    2013-02-01

    Co-morbidity of Developmental Coordination Disorder (DCD) in children with specific language impairment (SLI) and the impact of DCD on quality-of-life (QOL) was investigated in 65 5-8 year old children with SLI (43 boys, age 6.8±0.8; 22 girls, age 6.6±0.8). The prevalence of DCD was assessed using DSM-IV-TR criteria (American Psychiatric Association (APA), 2000) operationally defined in the clinical practice guideline (CPG): movement ABC scores below 15th percentile, scores on DCDQ and/or MOQ-T below 15th percentile, absence of medical condition according to paediatric-neurological exam. Quality of life (QOL) was measured with the TNO-AZL-Child-Quality-Of-Life (TACQOL) Questionnaire filled out by parents for the SLI group with and without DCD, and compared to a reference group (N=572; age 6.9±0.9). The TACQOL covers 7 QOL domains: physical, motor, cognitive and social functioning, autonomy, positive and negative moods. Prevalence of DCD in children with SLI was 32.3%. In children with SLI, mean QOL scores were significantly lower in the autonomy, cognitive, social and positive moods domains compared to the reference group. Children with SLI and DCD differed from children with SLI without DCD by significantly lower mean overall-, motor-, autonomy-, and cognitive domain-QOL scores. Clinicians should be aware that about one third of children with SLI can also be diagnosed with DCD. Assessment of QOL is warranted in order to assess which domains are affected in children with SLI with or without DCD.

  17. Sex Specification and Heterogeneity of Primordial Germ Cells in Mice.

    Science.gov (United States)

    Sakashita, Akihiko; Kawabata, Yukiko; Jincho, Yuko; Tajima, Shiun; Kumamoto, Soichiro; Kobayashi, Hisato; Matsui, Yasuhisa; Kono, Tomohiro

    2015-01-01

    In mice, primordial germ cells migrate into the genital ridges by embryonic day 13.5 (E13.5), where they are then subjected to a sex-specific fate with female and male primordial germ cells undergoing mitotic arrest and meiosis, respectively. However, the sex-specific basis of primordial germ cell differentiation is poorly understood. The aim of this study was to investigate the sex-specific features of mouse primordial germ cells. We performed RNA-sequencing (seq) of E13.5 female and male mouse primordial germ cells using next-generation sequencing. We identified 651 and 428 differentially expressed transcripts (>2-fold, P primordial germ cells, respectively. Of these, many transcription factors were identified. Gene ontology and network analysis revealed differing functions of the identified female- and male-specific genes that were associated with primordial germ cell acquisition of sex-specific properties required for differentiation into germ cells. Furthermore, DNA methylation and ChIP-seq analysis of histone modifications showed that hypomethylated gene promoter regions were bound with H3K4me3 and H3K27me3. Our global transcriptome data showed that in mice, primordial germ cells are decisively assigned to a sex-specific differentiation program by E13.5, which is necessary for the development of vital germ cells.

  18. Non-overlapping progesterone receptor cistromes contribute to cell-specific transcriptional outcomes.

    Directory of Open Access Journals (Sweden)

    Christine L Clarke

    Full Text Available The transcriptional effects of the ovarian hormone progesterone are pleiotropic, and binding to DNA of the nuclear progesterone receptor (PR, a ligand-activated transcription factor, results in diverse outcomes in a range of target tissues. To determine whether distinct patterns of genomic interaction of PR contribute to the cell specificity of the PR transcriptome, we have compared the genomic binding sites for PR in breast cancer cells and immortalized normal breast cells. PR binding was correlated with transcriptional outcome in both cell lines, with 60% of progestin-regulated genes associated with one or more PR binding regions. There was a remarkably low overlap between the PR cistromes of the two cell lines, and a similarly low overlap in transcriptional targets. A conserved PR binding element was identified in PR binding regions from both cell lines, but there were distinct patterns of enrichment of known cofactor binding motifs, with FOXA1 sites over-represented in breast cancer cell binding regions and NF1 and AP-1 motifs uniquely enriched in the immortalized normal line. Downstream analyses suggested that differential cofactor availability may generate these distinct PR cistromes, indicating that cofactor levels may modulate PR specificity. Taken together these data suggest that cell-specificity of PR binding is determined by the coordinated effects of key binding cofactors.

  19. ALIX and ESCRT-III coordinately control cytokinetic abscission during germline stem cell division in vivo.

    Directory of Open Access Journals (Sweden)

    Åsmund H Eikenes

    2015-01-01

    Full Text Available Abscission is the final step of cytokinesis that involves the cleavage of the intercellular bridge connecting the two daughter cells. Recent studies have given novel insight into the spatiotemporal regulation and molecular mechanisms controlling abscission in cultured yeast and human cells. The mechanisms of abscission in living metazoan tissues are however not well understood. Here we show that ALIX and the ESCRT-III component Shrub are required for completion of abscission during Drosophila female germline stem cell (fGSC division. Loss of ALIX or Shrub function in fGSCs leads to delayed abscission and the consequent formation of stem cysts in which chains of daughter cells remain interconnected to the fGSC via midbody rings and fusome. We demonstrate that ALIX and Shrub interact and that they co-localize at midbody rings and midbodies during cytokinetic abscission in fGSCs. Mechanistically, we show that the direct interaction between ALIX and Shrub is required to ensure cytokinesis completion with normal kinetics in fGSCs. We conclude that ALIX and ESCRT-III coordinately control abscission in Drosophila fGSCs and that their complex formation is required for accurate abscission timing in GSCs in vivo.

  20. Load-adaptive frequency reuse scheme for inter-cell interference coordination in relay networks

    Institute of Scientific and Technical Information of China (English)

    CHEN Mu-qiong; JI Hong; LI Xi

    2010-01-01

    Cellular relay networks adopting orthogonal frequency division multiple(OFDM)technology has been widely accepted for next generation wireless communication due to its advantage in enlarging coverage scale as well as improving data rate.In order to improve the performance of user equipments(UEs)near the cell edge,especially to avoid the interference from inter-cell and intra cell,an enhanced soft frequency reuse scheme is adopted in this paper to assure inter-cell interference coordination(ICIC).Compared with traditional frequency allocation work,the proposed scheme is interference-aware and load-adaptive,which dynamically assigns available frequency among UES under certain schedule method in variable traffic load condition and mitigates interference using information provided by interference indicator.It can improve signal-to-interference plus noise ratio(SINR)of the UE in each sub channel thus enable the system achieve better throughput and blocking probability performance.Simulation results prove that the proposed scheme may achieve desirable performance on throughput,blocking probability and spectral utilization in the sector under different traffic load compared with other schemes.

  1. Six2 Is a Coordinator of LiCl-Induced Cell Proliferation and Apoptosis

    Directory of Open Access Journals (Sweden)

    Jianing Liu

    2016-09-01

    Full Text Available The metanephric mesenchyme (MM cells are a subset of kidney progenitor cells and play an essential role in mesenchymal-epithelial transition (MET, the key step of nephron generation. Six2, a biological marker related to Wnt signaling pathway, promotes the proliferation, inhibits the apoptosis and maintains the un-differentiation of MM cells. Besides, LiCl is an activator of Wnt signaling pathway. However, the role of LiCl in cellular regulation of MM cells remains unclear, and the relationship between LiCl and Six2 in this process is also little known. Here, we performed EdU assay and flow cytometry assay to, respectively, detect the proliferation and apoptosis of MM cells treated with LiCl of increasing dosages. In addition, reverse transcription-PCR (RT-PCR and Western-blot were conducted to measure the expression of Six2 and some maker genes of Wnt and bone-morphogenetic-protein (BMP signaling pathway. Furthermore, luciferase assay was also carried out to detect the transcriptional regulation of Six2. Then we found LiCl promoted MM cell proliferation at low-concentration (10, 20, 30, and 40 mM. The expression of Six2 was dose-dependently increased in low-concentration (10, 20, 30, and 40 mM at both mRNA and protein level. In addition, both of cell proliferation and Six2 expression in MM cells declined when dosage reached high-concentration (50 mM. However, Six2 knock-down converted the proliferation reduction at 50 mM. Furthermore, Six2 deficiency increased the apoptosis of MM cells, compared with negative control cells at relative LiCl concentration. However, the abnormal rise of apoptosis at 30 mM of LiCl concentration implies that it might be the reduction of GSK3β that increased cell apoptosis. Together, these demonstrate that LiCl can induce the proliferation and apoptosis of MM cells coordinating with Six2.

  2. Cell type-specific bipolar cell input to ganglion cells in the mouse retina.

    Science.gov (United States)

    Neumann, S; Hüser, L; Ondreka, K; Auler, N; Haverkamp, S

    2016-03-01

    Many distinct ganglion cell types, which are the output elements of the retina, were found to encode for specific features of a visual scene such as contrast, color information or movement. The detailed composition of retinal circuits leading to this tuning of retinal ganglion cells, however, is apart from some prominent examples, largely unknown. Here we aimed to investigate if ganglion cell types in the mouse retina receive selective input from specific bipolar cell types or if they sample their synaptic input non-selectively from all bipolar cell types stratifying within their dendritic tree. To address this question we took an anatomical approach and immunolabeled retinae of two transgenic mouse lines (GFP-O and JAM-B) with markers for ribbon synapses and type 2 bipolar cells. We morphologically identified all green fluorescent protein (GFP)-expressing ganglion cell types, which co-stratified with type 2 bipolar cells and assessed the total number of bipolar input synapses and the proportion of synapses deriving from type 2 bipolar cells. Only JAM-B ganglion cells received synaptic input preferentially from bipolar cell types other than type 2 bipolar cells whereas the other analyzed ganglion cell types sampled their bipolar input most likely from all bipolar cell terminals within their dendritic arbor.

  3. Blood-neural barrier: its diversity and coordinated cell-to-cell communication.

    Science.gov (United States)

    Choi, Yoon Kyung; Kim, Kyu-Won

    2008-05-31

    The cerebral microvessels possess barrier characteristics which are tightly sealed excluding many toxic substances and protecting neural tissues. The specialized blood-neural barriers as well as the cerebral microvascular barrier are recognized in the retina, inner ear, spinal cord, and cerebrospinal fluid. Microvascular endothelial cells in the brain closely interact with other components such as astrocytes, pericytes, perivascular microglia and neurons to form functional 'neurovascular unit'. Communication between endothelial cells and other surrounding cells enhances the barrier functions, consequently resulting in maintenance and elaboration of proper brain homeostasis. Furthermore, the disruption of the neurovascular unit is closely involved in cerebrovascular disorders. In this review, we focus on the location and function of these various blood-neural barriers, and the importance of the cell-to-cell communication for development and maintenance of the barrier integrity at the neurovascular unit. We also demonstrate the close relation between the alteration of the blood-neural barriers and cerebrovascular disorders.

  4. Systematic and Cell Type-Specific Telomere Length Changes in Subsets of Lymphocytes

    Directory of Open Access Journals (Sweden)

    Jue Lin

    2016-01-01

    Full Text Available Telomeres, the protective DNA-protein complexes at the ends of linear chromosomes, are important for genome stability. Leukocyte or peripheral blood mononuclear cell (PBMC telomere length is a potential biomarker for human aging that integrates genetic, environmental, and lifestyle factors and is associated with mortality and risks for major diseases. However, only a limited number of studies have examined longitudinal changes of telomere length and few have reported data on sorted circulating immune cells. We examined the average telomere length (TL in CD4+, CD8+CD28+, and CD8+CD28− T cells, B cells, and PBMCs, cross-sectionally and longitudinally, in a cohort of premenopausal women. We report that TL changes over 18 months were correlated among these three T cell types within the same participant. Additionally, PBMC TL change was also correlated with those of all three T cell types, and B cells. The rate of shortening for B cells was significantly greater than for the three T cell types. CD8+CD28− cells, despite having the shortest TL, showed significantly more rapid attrition when compared to CD8+CD28+ T cells. These results suggest systematically coordinated, yet cell type-specific responses to factors and pathways contribute to telomere length regulation.

  5. Systematic and Cell Type-Specific Telomere Length Changes in Subsets of Lymphocytes.

    Science.gov (United States)

    Lin, Jue; Cheon, Joshua; Brown, Rashida; Coccia, Michael; Puterman, Eli; Aschbacher, Kirstin; Sinclair, Elizabeth; Epel, Elissa; Blackburn, Elizabeth H

    2016-01-01

    Telomeres, the protective DNA-protein complexes at the ends of linear chromosomes, are important for genome stability. Leukocyte or peripheral blood mononuclear cell (PBMC) telomere length is a potential biomarker for human aging that integrates genetic, environmental, and lifestyle factors and is associated with mortality and risks for major diseases. However, only a limited number of studies have examined longitudinal changes of telomere length and few have reported data on sorted circulating immune cells. We examined the average telomere length (TL) in CD4+, CD8+CD28+, and CD8+CD28- T cells, B cells, and PBMCs, cross-sectionally and longitudinally, in a cohort of premenopausal women. We report that TL changes over 18 months were correlated among these three T cell types within the same participant. Additionally, PBMC TL change was also correlated with those of all three T cell types, and B cells. The rate of shortening for B cells was significantly greater than for the three T cell types. CD8+CD28- cells, despite having the shortest TL, showed significantly more rapid attrition when compared to CD8+CD28+ T cells. These results suggest systematically coordinated, yet cell type-specific responses to factors and pathways contribute to telomere length regulation.

  6. Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters.

    Science.gov (United States)

    Aldea, M; Garrido, T; Pla, J; Vicente, M

    1990-11-01

    The cell division ftsQAZ cluster and the ftsZ-dependent bolA morphogene of Escherichia coli are found to be driven by gearboxes, a distinct class of promoters characterized by showing an activity that is inversely dependent on growth rate. These promoters contain specific sequences upstream from the mRNA start point, and their -10 region is essential for the inverse growth rate dependence. Gearbox promoters are essential for driving ftsQAZ and bolA gene expression so that the encoded products are synthesized at constant amounts per cell independently of cell size. This mode of regulation would be expected for the expression of proteins that either play a regulatory role in cell division or form a stoichiometric component of the septum, a structure that, independently of cell size and growth rate, is produced once per cell cycle.

  7. Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number.

    Science.gov (United States)

    Sankaran, Vijay G; Ludwig, Leif S; Sicinska, Ewa; Xu, Jian; Bauer, Daniel E; Eng, Jennifer C; Patterson, Heide Christine; Metcalf, Ryan A; Natkunam, Yasodha; Orkin, Stuart H; Sicinski, Piotr; Lander, Eric S; Lodish, Harvey F

    2012-09-15

    Genome-wide association studies (GWASs) have identified a genetic variant of moderate effect size at 6p21.1 associated with erythrocyte traits in humans. We show that this variant affects an erythroid-specific enhancer of CCND3. A Ccnd3 knockout mouse phenocopies these erythroid phenotypes, with a dramatic increase in erythrocyte size and a concomitant decrease in erythrocyte number. By examining human and mouse primary erythroid cells, we demonstrate that the CCND3 gene product cyclin D3 regulates the number of cell divisions that erythroid precursors undergo during terminal differentiation, thereby controlling erythrocyte size and number. We illustrate how cell type-specific specialization can occur for general cell cycle components-a finding resulting from the biological follow-up of unbiased human genetic studies.

  8. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    NARCIS (Netherlands)

    Coccoris, Miriam

    2009-01-01

    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  9. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    NARCIS (Netherlands)

    Coccoris, Miriam

    2009-01-01

    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  10. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis.

    Science.gov (United States)

    Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang; Zhao, Zhongying

    2016-06-10

    Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development.

  11. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  12. Contribution of distinct homeodomain DNA binding specificities to Drosophila embryonic mesodermal cell-specific gene expression programs.

    Directory of Open Access Journals (Sweden)

    Brian W Busser

    Full Text Available Homeodomain (HD proteins are a large family of evolutionarily conserved transcription factors (TFs having diverse developmental functions, often acting within the same cell types, yet many members of this family paradoxically recognize similar DNA sequences. Thus, with multiple family members having the potential to recognize the same DNA sequences in cis-regulatory elements, it is difficult to ascertain the role of an individual HD or a subclass of HDs in mediating a particular developmental function. To investigate this problem, we focused our studies on the Drosophila embryonic mesoderm where HD TFs are required to establish not only segmental identities (such as the Hox TFs, but also tissue and cell fate specification and differentiation (such as the NK-2 HDs, Six HDs and identity HDs (I-HDs. Here we utilized the complete spectrum of DNA binding specificities determined by protein binding microarrays (PBMs for a diverse collection of HDs to modify the nucleotide sequences of numerous mesodermal enhancers to be recognized by either no or a single subclass of HDs, and subsequently assayed the consequences of these changes on enhancer function in transgenic reporter assays. These studies show that individual mesodermal enhancers receive separate transcriptional input from both I-HD and Hox subclasses of HDs. In addition, we demonstrate that enhancers regulating upstream components of the mesodermal regulatory network are targeted by the Six class of HDs. Finally, we establish the necessity of NK-2 HD binding sequences to activate gene expression in multiple mesodermal tissues, supporting a potential role for the NK-2 HD TF Tinman (Tin as a pioneer factor that cooperates with other factors to regulate cell-specific gene expression programs. Collectively, these results underscore the critical role played by HDs of multiple subclasses in inducing the unique genetic programs of individual mesodermal cells, and in coordinating the gene regulatory

  13. Contribution of distinct homeodomain DNA binding specificities to Drosophila embryonic mesodermal cell-specific gene expression programs.

    Science.gov (United States)

    Busser, Brian W; Gisselbrecht, Stephen S; Shokri, Leila; Tansey, Terese R; Gamble, Caitlin E; Bulyk, Martha L; Michelson, Alan M

    2013-01-01

    Homeodomain (HD) proteins are a large family of evolutionarily conserved transcription factors (TFs) having diverse developmental functions, often acting within the same cell types, yet many members of this family paradoxically recognize similar DNA sequences. Thus, with multiple family members having the potential to recognize the same DNA sequences in cis-regulatory elements, it is difficult to ascertain the role of an individual HD or a subclass of HDs in mediating a particular developmental function. To investigate this problem, we focused our studies on the Drosophila embryonic mesoderm where HD TFs are required to establish not only segmental identities (such as the Hox TFs), but also tissue and cell fate specification and differentiation (such as the NK-2 HDs, Six HDs and identity HDs (I-HDs)). Here we utilized the complete spectrum of DNA binding specificities determined by protein binding microarrays (PBMs) for a diverse collection of HDs to modify the nucleotide sequences of numerous mesodermal enhancers to be recognized by either no or a single subclass of HDs, and subsequently assayed the consequences of these changes on enhancer function in transgenic reporter assays. These studies show that individual mesodermal enhancers receive separate transcriptional input from both I-HD and Hox subclasses of HDs. In addition, we demonstrate that enhancers regulating upstream components of the mesodermal regulatory network are targeted by the Six class of HDs. Finally, we establish the necessity of NK-2 HD binding sequences to activate gene expression in multiple mesodermal tissues, supporting a potential role for the NK-2 HD TF Tinman (Tin) as a pioneer factor that cooperates with other factors to regulate cell-specific gene expression programs. Collectively, these results underscore the critical role played by HDs of multiple subclasses in inducing the unique genetic programs of individual mesodermal cells, and in coordinating the gene regulatory networks

  14. Freedom of expression: cell-type-specific gene profiling.

    Science.gov (United States)

    Otsuki, Leo; Cheetham, Seth W; Brand, Andrea H

    2014-01-01

    Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling.

  15. The selection and function of cell type-specific enhancers.

    Science.gov (United States)

    Heinz, Sven; Romanoski, Casey E; Benner, Christopher; Glass, Christopher K

    2015-03-01

    The human body contains several hundred cell types, all of which share the same genome. In metazoans, much of the regulatory code that drives cell type-specific gene expression is located in distal elements called enhancers. Although mammalian genomes contain millions of potential enhancers, only a small subset of them is active in a given cell type. Cell type-specific enhancer selection involves the binding of lineage-determining transcription factors that prime enhancers. Signal-dependent transcription factors bind to primed enhancers, which enables these broadly expressed factors to regulate gene expression in a cell type-specific manner. The expression of genes that specify cell type identity and function is associated with densely spaced clusters of active enhancers known as super-enhancers. The functions of enhancers and super-enhancers are influenced by, and affect, higher-order genomic organization.

  16. Micro RNA-126 coordinates cell behavior and signaling cascades according to characteristics of breast cancer cells.

    Science.gov (United States)

    Turgut Cosan, D; Oner, C; Mutlu Sahin, F

    2016-01-01

    Micro RNA-126 is known to enhance apoptotic processes and also plays a role in vascular growth through the regulation of vascular endothelial growth factor-mediated signaling, angiogenesis, and vascular integrity. We aimed to determine the role of miR-126 in breast cancer cell lines with a variety of different characteristics to evaluate its interaction with certain cancer-related molecules and mechanisms. To determine the effect of presence and absence of miR-126 in MCF-7 and MDA-MB-231 breast cancer cells, miR-126 mimics and inhibitor were transfected. miRNA and gene expressions were observed by using RT-PCR. Viability, proliferation, adhesion, invasion and lateral motility assays were performed to determine cell behavior changes. miR-126 is more effective on MDA-MB-231 cells on cell behavior. We observed an increase in miR-126 expression when miR-126 mimics was transfected to MCF-7 and MDA-MB-231 cells. Also, there was a decrease in miR-126 expression when MCF-7 and MDA-MB-231 cells were transfected with miR-126 inhibitor. Furthermore, presence and absence of miR-126 modulated the gene expressions of VEGF/PI3K/AKT and MAPK signaling in MCF-7 and MDA-MB-231. Our study showed that miR-126 is in a state of interaction with a multitude molecules playing a role in breast cancer. According to obtained data, we can say that miR-126 may be more effective in inhibition of metastatic breast cancer (Tab. 4, Fig. 3, Ref. 46).

  17. Galactose/N-acetylgalactosamine lectin: the coordinator of host cell killing

    Indian Academy of Sciences (India)

    Douglas R Boettner; Christopher Huston; William A Petri Jr

    2002-11-01

    Entamoeba histolytica is an enteric parasite that can kill host cells via a contact-dependent mechanism. This killing involves the amoebic surface protein referred to as the Gal/GalNAc lectin. The Gal/GalNAc lectin binds galactose and N-acetylgalactosamine allowing the adherence of amoebas to host cells. Involvement of the lectin in the pathogenesis of E. histolytica infection will be reviewed in this paper. The lectin has been shown to have very specific and substantial effects on adherence, cytotoxicity, and encystation. There is also possible involvement of the lectin in phagocytosis and caspase activation in host cells.

  18. Cell Sorting and Noise-Induced Cell Plasticity Coordinate to Sharpen Boundaries between Gene Expression Domains

    Science.gov (United States)

    2017-01-01

    A fundamental question in biology is how sharp boundaries of gene expression form precisely in spite of biological variation/noise. Numerous mechanisms position gene expression domains across fields of cells (e.g. morphogens), but how these domains are refined remains unclear. In some cases, domain boundaries sharpen through differential adhesion-mediated cell sorting. However, boundaries can also sharpen through cellular plasticity, with cell fate changes driven by up- or down-regulation of gene expression. In this context, we have argued that noise in gene expression can help cells transition to the correct fate. Here we investigate the efficacy of cell sorting, gene expression plasticity, and their combination in boundary sharpening using multi-scale, stochastic models. We focus on the formation of hindbrain segments (rhombomeres) in the developing zebrafish as an example, but the mechanisms investigated apply broadly to many tissues. Our results indicate that neither sorting nor plasticity is sufficient on its own to sharpen transition regions between different rhombomeres. Rather the two have complementary strengths and weaknesses, which synergize when combined to sharpen gene expression boundaries. PMID:28135279

  19. SON controls cell-cycle progression by coordinated regulation of RNA splicing.

    Science.gov (United States)

    Ahn, Eun-Young; DeKelver, Russell C; Lo, Miao-Chia; Nguyen, Tuyet Ann; Matsuura, Shinobu; Boyapati, Anita; Pandit, Shatakshi; Fu, Xiang-Dong; Zhang, Dong-Er

    2011-04-22

    It has been suspected that cell-cycle progression might be functionally coupled with RNA processing. However, little is known about the role of the precise splicing control in cell-cycle progression. Here, we report that SON, a large Ser/Arg (SR)-related protein, is a splicing cofactor contributing to efficient splicing of cell-cycle regulators. Downregulation of SON leads to severe impairment of spindle pole separation, microtubule dynamics, and genome integrity. These molecular defects result from inadequate RNA splicing of a specific set of cell-cycle-related genes that possess weak splice sites. Furthermore, we show that SON facilitates the interaction of SR proteins with RNA polymerase II and other key spliceosome components, suggesting its function in efficient cotranscriptional RNA processing. These results reveal a mechanism for controlling cell-cycle progression through SON-dependent constitutive splicing at suboptimal splice sites, with strong implications for its role in cancer and other human diseases.

  20. Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration

    DEFF Research Database (Denmark)

    Lammermann, Tim; Renkawitz, Jorg; Wu, Xunwei;

    2009-01-01

    Mature dendritic cells (DCs) moving from the skin to the lymph node are a prototypic example of rapidly migrating amoeboid leukocytes. Interstitial DC migration is directionally guided by chemokines, but independent of specific adhesive interactions with the tissue as well as pericellular...

  1. Early specification of dopaminergic phenotype during ES cell differentiation

    Directory of Open Access Journals (Sweden)

    Li Meng

    2007-07-01

    Full Text Available Abstract Background Understanding how lineage choices are made during embryonic stem (ES cell differentiation is critical for harnessing strategies for controlled production of therapeutic somatic cell types for cell transplantation and pharmaceutical drug screens. The in vitro generation of dopaminergic neurons, the type of cells lost in Parkinson's disease patients' brains, requires the inductive molecules sonic hedgehog and FGF8, or an unknown stromal cell derived inducing activity (SDIA. However, the exact identity of the responding cells and the timing of inductive activity that specify a dopaminergic fate in neural stem/progenitors still remain elusive. Results Using ES cells carrying a neuroepithelial cell specific vital reporter (Sox1-GFP and FACS purification of Sox1-GFP neural progenitors, we have investigated the temporal aspect of SDIA mediated dopaminergic neuron specification during ES cell differentiation. Our results establish that SDIA induces a dopaminergic neuron fate in nascent neural stem or progenitor cells at, or prior to, Sox1 expression and does not appear to have further instructive role or neurotrophic activity during late neuronal differentiation of neural precursors. Furthermore, we show that dopaminergic neurons could be produced efficiently in a monolayer differentiation paradigm independent of SDIA activity or exogenous signalling molecules. In this case, the competence for dopaminergic neuron differentiation is also established at the level of Sox1 expression. Conclusion Dopaminergic neurons are specified early during mouse ES cell differentiation. The subtype specification seems to be tightly linked with the acquisition of a pan neuroectoderm fate.

  2. Specific nature of Trichomonas vaginalis parasitism of host cell surfaces.

    Science.gov (United States)

    Alderete, J F; Garza, G E

    1985-01-01

    The adherence of Trichomonas vaginalis NYH 286 to host cells was evaluated by using monolayer cultures of HeLa and HEp-2 epithelial cells and human fibroblast cell lines. Saturation of sites on HeLa cells was achieved, yielding a maximal T. vaginalis NYH 286-to-cell ratio of two. The ability of radiolabeled NYH 286 to compete with unlabeled trichomonads for attachment and the time, temperature, and pH-dependent nature of host cell parasitism reinforced the idea of specific parasite-cell associations. Other trichomonal isolates (JH31A, RU375, and JHHR) were also found to adhere to cell monolayers, albeit to different degrees, and all isolates produced maximal contact-dependent HeLa cell cytotoxicity. The avirulent trichomonad, Trichomonas tenax, did not adhere to cell monolayers and did not cause host cell damage. Interestingly, parasite cytadherence was greater with HeLa and HEp-2 epithelial cells than with fibroblast cells. In addition, cytotoxicity with fibroblast cells never exceeded 20% of the level of cell killing observed for epithelial cells. Elucidation of properties of the pathogenic human trichomonads that allowed for host cell surface parasitism was also attempted. Treatment of motile T. vaginalis NYH 286 with trypsin diminished cell parasitism. Incubation of trypsinized organisms in growth medium allowed for regeneration of trichomonal adherence, and cycloheximide inhibited the regeneration of attachment. Organisms poisoned with metronidazole or iodoacetate failed to attach to host cells, and adherent trichomonads exposed to metronidazole or iodoacetate were readily released from parasitized cells. Coincubation experiments with polycationic proteins and sugars and pretreatment of parasites or cells with neuraminidase or periodate had no effect on host cell parasitism. Colchicine and cytochalasin B, however, did produce some inhibition of adherence to HeLa cells. The data suggest that metabolizing T. vaginalis adheres to host cells via parasite surface

  3. Hand-Ground Nanoscale Zn(II) -Based Coordination Polymers Derived from NSAIDs: Cell Migration Inhibition of Human Breast Cancer Cells.

    Science.gov (United States)

    Paul, Mithun; Sarkar, Koushik; Deb, Jolly; Dastidar, Parthasarathi

    2017-04-27

    Increased levels of intracellular prostaglandin E2 (PGE2 ) have been linked with the unregulated cancer cell migration that often leads to metastasis. Non-steroidal anti-inflammatory drugs (NSAIDs) are known inhibitors of cyclooxygenase (COX) enzymes, which are responsible for the increased PGE2 concentration in inflamed as well as cancer cells. Here, we demonstrate that NSAID-derived Zn(II) -based coordination polymers are able to inhibit cell migration of human breast cancer cells. Various NSAIDs were anchored to a series of 1D Zn(II) coordination polymers through carboxylate-Zn coordination, and these structures were fully characterized by single-crystal X-ray diffraction. Hand grinding in a pestle and mortar resulted in the first reported example of nanoscale coordination polymers that were suitable for biological studies. Two such hand-ground nanoscale coordination polymers NCP1 a and NCP2 a, which contained naproxen (a well-studied NSAID), were successfully internalized by the human breast cancer cells MDA-MB-231, as was evident from cellular imaging by using a fluorescence microscope. They were able to kill the cancer cells (MTT assay) more efficiently than the corresponding mother drug naproxen, and most importantly, they significantly inhibited cancer cell migration thereby displaying anticancer activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Substrate stiffness and matrix composition coordinately control the differentiation of liver progenitor cells.

    Science.gov (United States)

    Kourouklis, Andreas P; Kaylan, Kerim B; Underhill, Gregory H

    2016-08-01

    Recent approaches have utilized microfabricated platforms to examine combinations of microenvironmental signals that regulate stem and progenitor cell differentiation. However, the majority of these efforts have focused on the biochemical properties of extracellular matrix (ECM) or soluble factors without simultaneously exploring the biomechanical effects of cell-substrate interactions. To address this need, we combined a high-throughput approach for the analysis of combinatorial ECM cues with substrates of modular stiffness and traction force microscopy. This integrated approach enabled the characterization of cell-generated traction stress and phenotypic expression in response to ECM cues. We investigated the impact of substrate stiffness and ECM composition on the differentiation of bipotential mouse embryonic liver (BMEL) progenitor cells. We observed that hepatocyte differentiation was primarily regulated by ECM composition, and cholangiocyte differentiation was cooperatively influenced by ECM proteins and stiffness properties. In particular, stiffness-mediated cholangiocyte differentiation was observed for cells cultured on fibronectin, while collagen IV promoted differentiation independent of substrate stiffness. We demonstrated the influence of cell contractility and traction stress in early cholangiocyte specification and further uncovered the roles of ERK and ROCK in this differentiation process. Overall, these findings illustrate the involvement of biomechanical signals in liver progenitor differentiation. Further, this approach could enable investigations for a broad range of cell types and ECM proteins, providing an integrated platform for evaluating the combinatorial effects of biochemical and biophysical signals in cell differentiation.

  5. Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity.

    Science.gov (United States)

    Zhou, Jiehua; Satheesan, Sangeetha; Li, Haitang; Weinberg, Marc S; Morris, Kevin V; Burnett, John C; Rossi, John J

    2015-03-19

    The C-C chemokine receptor type 5 (CCR5) is a receptor expressed by T cells and macrophages that serves as a coreceptor for macrophage-tropic HIV-1. Loss of CCR5 is associated with resistance to HIV-1. Here, we combine the live-cell-based SELEX with high-throughput sequencing technology to generate CCR5 RNA aptamers capable of specifically targeting HIV-1 susceptible cells (as small interfering RNA [siRNA] delivery agent) and inhibiting HIV-1 infectivity (as antiviral agent) via block of the CCR5 required for HIV-1 to enter cells. One of the best candidates, G-3, efficiently bound and was internalized into human CCR5-expressing cells. The G-3 specifically neutralized R5 virus infection in primary peripheral blood mononuclear cells, and in vivo generated human CD4(+) T cells with a nanomolar inhibitory concentration 50%. G-3 was also capable of transferring functional siRNAs to CCR5-expressing cells. Collectively, the cell-specific, internalizing, CCR5-targeted aptamers and aptamer-siRNA conjugates offer promise for overcoming some of the current challenges of drug resistance in HIV-1 by providing cell-type- or tissue-specific delivery of various therapeutic moieties.

  6. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  7. Stem cell lineage specification: you become what you eat.

    Science.gov (United States)

    Folmes, Clifford D L; Terzic, Andre

    2014-09-02

    Nutrient availability and intermediate metabolism are increasingly recognized to govern stem cell behavior. Oburoglu et al. (2014) now demonstrate that glutamine- and glucose-dependent nucleotide synthesis segregate erythroid versus myeloid differentiation during hematopoietic stem cell specification, implicating a metabolism-centric regulation of lineage choices.

  8. Procedural learning in Parkinson's disease, specific language impairment, dyslexia, schizophrenia, developmental coordination disorder, and autism spectrum disorders: A second-order meta-analysis.

    Science.gov (United States)

    Clark, Gillian M; Lum, Jarrad A G

    2017-10-01

    The serial reaction time task (SRTT) has been used to study procedural learning in clinical populations. In this report, second-order meta-analysis was used to investigate whether disorder type moderates performance on the SRTT. Using this approach to quantitatively summarise past research, it was tested whether autism spectrum disorder, developmental coordination disorder, dyslexia, Parkinson's disease, schizophrenia, and specific language impairment differentially affect procedural learning on the SRTT. The main analysis revealed disorder type moderated SRTT performance (p=0.010). This report demonstrates comparable levels of procedural learning impairment in developmental coordination disorder, dyslexia, Parkinson's disease, schizophrenia, and specific language impairment. However, in autism, procedural learning is spared. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. In Vitro Generation of Antigen-Specific T Cells from Induced Pluripotent Stem Cells of Antigen-Specific T Cell Origin.

    Science.gov (United States)

    Kaneko, Shin

    2016-01-01

    Induced pluripotent stem (iPS) cells derived from T lymphocyte (T-iPS cells) preserve the T cell receptor (TCR) α and β gene rearrangements identical to the original T cell clone. Re-differentiated CD8 single positive αβ T cells from the T-iPS cells exhibited antigen-specific cytotoxicity, improved proliferative response, and elongation of telomere indicating rejuvenation of antigen specific T cell immunity in vitro. To regenerate antigen specific cytotoxic T lymphocytes (CTL), first, we have optimized a method for reprogramming-resistant CD8 T cell clones into T-iPS cells by using sendaiviral vectors. Second, we have optimized stepwise differentiation methods for inducing hematopoietic progenitor cells, T cell progenitors, and functionally matured CD8 single positive CTL. These protocols provide useful in vitro tools and models both for research of antigen-specific T cell immunotherapy and for research of normal and pathological thymopoiesis.

  10. A co-ordinated interaction between CTCF and ER in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Ross-Innes Caryn S

    2011-12-01

    Full Text Available Abstract Background CCCTC-binding factor (CTCF is a conserved zinc finger transcription factor that is involved in both intra- and interchromasomal looping. Recent research has shown a role for CTCF in estrogen receptor (ER biology, at some individual loci, but a multi-context global analysis of CTCF binding and transcription activity is lacking. Results We now map CTCF binding genome wide in breast cancer cells and find that CTCF binding is unchanged in response to estrogen or tamoxifen treatment. We find a small but reproducible set of CTCF binding events that overlap with both the nuclear receptor, estrogen receptor, and the forkhead protein FOXA1. These overlapping binding events are likely functional as they are biased towards estrogen-regulated genes, compared to regions lacking either CTCF or ER binding. In addition we identify cell-line specific CTCF binding events. These binding events are more likely to be associated with cell-line specific ER binding events and are also more likely to be adjacent to genes that are expressed in that particular cell line. Conclusion The evolving role for CTCF in ER biology is complex, but is likely to be multifunctional and possibly influenced by the specific genomic locus. Our data suggest a positive, pro-transcriptional role for CTCF in ER-mediated gene expression in breast cancer cells. CTCF not only provides boundaries for accessible and 'protected' transcriptional blocks, but may also influence the actual binding of ER to the chromatin, thereby modulating the estrogen-mediated gene expression changes observed in breast cancer cells.

  11. High dosage of monosodium glutamate causes deficits of the motor coordination and the number of cerebellar Purkinje cells of rats.

    Science.gov (United States)

    Prastiwi, D; Djunaidi, A; Partadiredja, G

    2015-11-01

    Monosodium glutamate (MSG) has been widely used throughout the world as a flavoring agent of food. However, MSG at certain dosages is also thought to cause damage to many organs, including cerebellum. This study aimed at investigating the effects of different doses of MSG on the motor coordination and the number of Purkinje cells of the cerebellum of Wistar rats. A total of 24 male rats aged 4 to 5 weeks were divided into four groups, namely, control (C), T2.5, T3, and T3.5 groups, which received intraperitoneal injection of 0.9% sodium chloride solution, 2.5 mg/g body weight (bw) of MSG, 3.0 mg/g bw of MSG, and 3.5 mg/g bw of MSG, respectively, for 10 consecutive days. The motor coordination of the rats was examined prior and subsequent to the treatment. The number of cerebellar Purkinje cells was estimated using physical fractionator method. It has been found that the administration of MSG at a dosage of 3.5 mg/g bw, but not at lower dosages, caused a significant decrease of motor coordination and the estimated total number of Purkinje cells of rats. There was also a significant correlation between motor coordination and the total number of Purkinje cells.

  12. Enhanced Inter-Cell Interference Coordination in Co-Channel Multi-Layer LTE-Advanced Networks

    DEFF Research Database (Denmark)

    Pedersen, Klaus I.; Wang, Yuanye; Strzyz, Stanislav;

    2013-01-01

    management. The network controlled time-domain enhanced inter-cell interference coordination (eICIC) concept is outlined by explaining the benefits and characteristics of this solution. The benefits of using advanced terminal device receiver architectures with interference suppression capabilities...

  13. Three dimensional nano-assemblies of noble metal nanoparticle-infinite coordination polymers as specific oxidase mimetics for degradation of methylene blue without adding any cosubstrate.

    Science.gov (United States)

    Wang, Lihua; Zeng, Yi; Shen, Aiguo; Zhou, Xiaodong; Hu, Jiming

    2015-02-07

    Novel three-dimensional (3D) nano-assemblies of noble metal nanoparticle (NP)-infinite coordination polymers (ICPs) are conveniently fabricated through the infiltration of HAuCl4 into hollow Au@Ag@ICPs core-shell nanostructures and its replacement reaction with Au@Ag NPs. The present 3D nano-assemblies exhibit highly efficient and specific intrinsic oxidase-like activity even without adding any cosubstrate.

  14. Task-Specific Balance Training Improves the Sensory Organisation of Balance Control in Children with Developmental Coordination Disorder: A Randomised Controlled Trial

    OpenAIRE

    Fong, Shirley S.M.; Guo, X.; Liu, Karen P.Y.; Ki, W.Y.; Louie, Lobo H.T.; Chung, Raymond C.K.; Macfarlane, Duncan J

    2016-01-01

    Sensory organisation of balance control is compromised in children with developmental coordination disorder (DCD). A randomised controlled trial involving 88 children with DCD was conducted to evaluate the efficacy of a task-specific balance training (functional-movement training, FMT) programme in improving balance deficits in a DCD population. The DCD participants were randomly assigned to either a FMT group or a control group. The FMT group received two training sessions/ week for 3 months...

  15. CDP-Diacylglycerol Synthetase Coordinates Cell Growth and Fat Storage through Phosphatidylinositol Metabolism and the Insulin Pathway

    Science.gov (United States)

    Liu, Yuan; Wang, Wei; Shui, Guanghou; Huang, Xun

    2014-01-01

    During development, animals usually undergo a rapid growth phase followed by a homeostatic stage when growth has ceased. The increase in cell size and number during the growth phase requires a large amount of lipids; while in the static state, excess lipids are usually stored in adipose tissues in preparation for nutrient-limited conditions. How cells coordinate growth and fat storage is not fully understood. Through a genetic screen we identified Drosophila melanogaster CDP-diacylglycerol synthetase (CDS/CdsA), which diverts phosphatidic acid from triacylglycerol synthesis to phosphatidylinositol (PI) synthesis and coordinates cell growth and fat storage. Loss of CdsA function causes significant accumulation of neutral lipids in many tissues along with reduced cell/organ size. These phenotypes can be traced back to reduced PI levels and, subsequently, low insulin pathway activity. Overexpressing CdsA rescues the fat storage and cell growth phenotypes of insulin pathway mutants, suggesting that CdsA coordinates cell/tissue growth and lipid storage through the insulin pathway. We also revealed that a DAG-to-PE route mediated by the choline/ethanolamine phosphotransferase Bbc may contribute to the growth of fat cells in CdsA RNAi. PMID:24603715

  16. MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation.

    Science.gov (United States)

    Shostak, Anton; Ruppert, Bianca; Ha, Nati; Bruns, Philipp; Toprak, Umut H; Eils, Roland; Schlesner, Matthias; Diernfellner, Axel; Brunner, Michael

    2016-06-24

    The circadian clock and the cell cycle are major cellular systems that organize global physiology in temporal fashion. It seems conceivable that the potentially conflicting programs are coordinated. We show here that overexpression of MYC in U2OS cells attenuates the clock and conversely promotes cell proliferation while downregulation of MYC strengthens the clock and reduces proliferation. Inhibition of the circadian clock is crucially dependent on the formation of repressive complexes of MYC with MIZ1 and subsequent downregulation of the core clock genes BMAL1 (ARNTL), CLOCK and NPAS2. We show furthermore that BMAL1 expression levels correlate inversely with MYC levels in 102 human lymphomas. Our data suggest that MYC acts as a master coordinator that inversely modulates the impact of cell cycle and circadian clock on gene expression.

  17. Purkinje-cell-restricted restoration of Kv3.3 function restores complex spikes and rescues motor coordination in Kcnc3 mutants.

    Science.gov (United States)

    Hurlock, Edward C; McMahon, Anne; Joho, Rolf H

    2008-04-30

    The fast-activating/deactivating voltage-gated potassium channel Kv3.3 (Kcnc3) is expressed in various neuronal cell types involved in motor function, including cerebellar Purkinje cells. Spinocerebellar ataxia type 13 (SCA13) patients carrying dominant-negative mutations in Kcnc3 and Kcnc3-null mutant mice both display motor incoordination, suggested in mice by increased lateral deviation while ambulating and slips on a narrow beam. Motor skill learning, however, is spared. Mice lacking Kcnc3 also exhibit muscle twitches. In addition to broadened spikes, recordings of Kcnc3-null Purkinje cells revealed fewer spikelets in complex spikes and a lower intraburst frequency. Targeted reexpression of Kv3.3 channels exclusively in Purkinje cells in Kcnc3-null mice as well as in mice also heterozygous for Kv3.1 sufficed to restore simple spike brevity along with normal complex spikes and to rescue specifically coordination. Therefore, spike parameters requiring Kv3.3 function in Purkinje cells are involved in the ataxic null phenotype and motor coordination, but not motor learning.

  18. Co-ordinated regulation of plasmacytoid dendritic cell surface receptors upon stimulation with herpes simplex virus type 1.

    Science.gov (United States)

    Schuster, Philipp; Donhauser, Norbert; Pritschet, Kathrin; Ries, Moritz; Haupt, Sabrina; Kittan, Nicolai A; Korn, Klaus; Schmidt, Barbara

    2010-02-01

    Human plasmacytoid dendritic cells (PDC) are crucial for innate and adaptive immune responses against viral infections, mainly through production of type I interferons. Evidence is accumulating that PDC surface receptors play an important role in this process. To investigate the PDC phenotype in more detail, a chip-based expression analysis of surface receptors was combined with respective flow cytometry data obtained from fresh PDC, PDC exposed to interleukin-3 (IL-3) and/or herpes simplex virus type 1 (HSV-1). CD156b, CD229, CD305 and CD319 were newly identified on the surface of PDC, and CD180 was identified as a new intracellular antigen. After correction for multiple comparisons, a total of 33 receptors were found to be significantly regulated upon exposure to IL-3, HSV-1 or IL-3 and HSV-1. These were receptors involved in chemotaxis, antigen uptake, activation and maturation, migration, apoptosis, cytotoxicity and costimulation. Infectious and ultraviolet-inactivated HSV-1 did not differentially affect surface receptor regulation, consistent with the lack of productive virus infection in PDC, which was confirmed by HSV-1 real-time polymerase chain reaction and experiments involving autofluorescing HSV-1 particles. Viral entry was mediated at least in part by endocytosis. Time-course experiments provided evidence of a co-ordinated regulation of PDC surface markers, which play a specific role in different aspects of PDC function such as attraction to inflamed tissue, antigen recognition and subsequent migration to secondary lymphatic tissue. This knowledge can be used to investigate PDC surface receptor functions in interactions with other cells of the innate and adaptive immune system, particularly natural killer cells and cytotoxic T lymphocytes.

  19. Cbf11 and Cbf12, the fission yeast CSL proteins, play opposing roles in cell adhesion and coordination of cell and nuclear division

    Energy Technology Data Exchange (ETDEWEB)

    Prevorovsky, Martin; Grousl, Tomas; Stanurova, Jana; Rynes, Jan [Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2 (Czech Republic); Nellen, Wolfgang [Department of Genetics, Kassel University, Heinrich Plett Strasse 40, 34132 Kassel (Germany); Puta, Frantisek [Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2 (Czech Republic); Folk, Petr, E-mail: folk@natur.cuni.cz [Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2 (Czech Republic)

    2009-05-01

    The CSL (CBF1/RBP-J{kappa}/Suppressor of Hairless/LAG-1) family is comprised of transcription factors essential for metazoan development, mostly due to their involvement in the Notch receptor signaling pathway. Recently, we identified two novel classes of CSL genes in the genomes of several fungal species, organisms lacking the Notch pathway. In this study, we characterized experimentally cbf11{sup +} and cbf12{sup +}, the two CSL genes of Schizosaccharomyces pombe, in order to elucidate the CSL function in fungi. We provide evidence supporting their identity as genuine CSL genes. Both cbf11{sup +} and cbf12{sup +} are non-essential; they have distinct expression profiles and code for nuclear proteins with transcription activation potential. Significantly, we demonstrated that Cbf11 recognizes specifically the canonical CSL response element GTG{sup A}/{sub G}GAA in vitro. The deletion of cbf11{sup +} is associated with growth phenotypes and altered colony morphology. Furthermore, we found that Cbf11 and Cbf12 play opposite roles in cell adhesion, nuclear and cell division and their coordination. Disturbed balance of the two CSL proteins leads to cell separation defects (sep phenotype), cut phenotype, and high-frequency diploidization in heterothallic strains. Our data show that CSL proteins operate in an organism predating the Notch pathway, which should be of relevance to the understanding of (Notch-independent) CSL functions in metazoans.

  20. Limbal Stromal Tissue Specific Stem Cells and Their Differentiation Potential to Corneal Epithelial Cells.

    Science.gov (United States)

    Katikireddy, Kishore Reddy; Jurkunas, Ula V

    2016-01-01

    From the derivation of the first human embryonic stem (hES) cell line to the development of induced pluripotent stem (iPS) cells; it has become evident that tissue specific stem cells are able to differentiate into a specific somatic cell types. The understanding of key processes such as the signaling pathways and the role of the microenvironment in epidermal/epithelial development has provided important clues for the derivation of specific epithelial cell types.Various differentiation protocols/methods were used to attain specific epithelial cell types. Here, we describe in detail the procedure to follow for isolation of tissue specific stem cells, mimicking their microenvironment to attain stem cell characteristics, and their potential differentiation to corneal epithelial cells.

  1. Study on the coordination structure of pt sorbed on bacterial cells using x-ray absorption fine structure spectroscopy.

    Directory of Open Access Journals (Sweden)

    Kazuya Tanaka

    Full Text Available Biosorption has been intensively investigated as a promising technology for the recovery of precious metals from solution. However, the detailed mechanism responsible for the biosorption of Pt on a biomass is not fully understood because of a lack of spectroscopic studies. We applied X-ray absorption fine structure spectroscopy to elucidate the coordination structure of Pt sorbed on bacterial cells. We examined the sorption of Pt(II and Pt(IV species on bacterial cells of Bacillus subtilis and Shewanella putrefaciens in NaCl solutions. X-ray absorption near-edge structure and extended X-ray absorption fine structure (EXAFS of Pt-sorbed bacteria suggested that Pt(IV was reduced to Pt(II on the cell's surface, even in the absence of an organic material as an exogenous electron donor. EXAFS spectra demonstrated that Pt sorbed on bacterial cells has a fourfold coordination of chlorine ions, similar to PtCl42-, which indicated that sorption on the protonated amine groups of the bacterial cells. This work clearly demonstrated the coordination structure of Pt sorbed on bacterial cells. The findings of this study will contribute to the understanding of Pt biosorption on biomass, and facilitate the development of recovery methods for rare metals using biosorbent materials.

  2. Cell-specific DNA methylation patterns of retina-specific genes.

    Directory of Open Access Journals (Sweden)

    Shannath L Merbs

    Full Text Available Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO, retinal binding protein 3 (RBP3, IRBP cone opsin, short-wave-sensitive (OPN1SW, cone opsin, middle-wave-sensitive (OPN1MW, and cone opsin, long-wave-sensitive (OPN1LW was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl -/- mouse and Opn1sw in rods. These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA

  3. Improved Interference-Free Channel Allocation in Coordinated Multiuser Multi-Antenna Open-Access Small Cells

    KAUST Repository

    Radaydeh, Redha

    2016-02-16

    This paper investigates low-complexity joint interference avoidance and desired link improvement for single channel allocation in multiuser multi-antenna access points (APs) for open-access small cells. It is considered that an active user is equipped with an atenna array that can be used to suppress interference sources but not to provide spatial diversity. On the other hand, the operation of APs can be coordinated to meet design requirements, and each of which can unconditionally utilize assigned physical channels. Moreover, each AP is equipped with uncorrelated antennas that can be reused simultaneously to serve many active users. The analysis provides new approaches to exploit physical channels, transmit antennas, and APs to mitigate interference, while providing the best possible link gain to an active user through the most suitable interference-free channel. The event of concurrent service requests placed by active users on a specific interference-free channel is discussed for either interference avoidance through identifying unshared channels or desired link improvement via multiuser scheduling. The applicability of the approaches to balance downlink loads is explained, and practical scenarios due to imperfect identification of interference-free channels and/or scheduled user are thoroughly investigated. The developed results are applicable for any statistical and geometric models of the allocated channel to an active user as well as channel conditions of interference users. They can be used to study various performance measures. Numerical and simulation results are presented to explain some outcomes of this work.

  4. Tumor-derived mural-like cells coordinate with endothelial cells: role of YKL-40 in mural cell-mediated angiogenesis.

    Science.gov (United States)

    Francescone, R; Ngernyuang, N; Yan, W; Bentley, B; Shao, R

    2014-04-17

    Tumor neo-vasculature is characterized by spatial coordination of endothelial cells with mural cells, which delivers oxygen and nutrients. Here, we explored a key role of the secreted glycoprotein YKL-40, a mesenchymal marker, in the interaction between endothelial cells and mesenchymal mural-like cells for tumor angiogenesis. Xenotransplantation of tumor-derived mural-like cells (GSDCs) expressing YKL-40 in mice developed extensive and stable blood vessels covered with more GSDCs than those in YKL-40 gene knockdown tumors. YKL-40 expressed by GSDCs was associated with increased interaction of neural cadherin/β-catenin/smooth muscle alpha actin; thus, mediating cell-cell adhesion and permeability. YKL-40 also induced the interaction of vascular endothelial cadherin/β-catenin/actin in endothelial cells (HMVECs). In cell co-culture systems, YKL-40 enhanced both GSDC and HMVEC contacts, restricted vascular leakage, and stabilized vascular networks. Collectively, the data inform new mechanistic insights into the cooperation of mural cells with endothelial cells induced by YKL-40 during tumor angiogenesis, and also enhance our understanding of YKL-40 in both mural and endothelial cell biology.

  5. Curcumin alters motor coordination but not total number of Purkinje cells in the cerebellum of adolescent male Wistar rats

    Institute of Scientific and Technical Information of China (English)

    Ginus Partadiredja; Sutarman; Taufik Nur Yahya; Christiana Tri Nuryana; Rina Susilowati

    2013-01-01

    OBJECTIVE:The present study aimed at investigating the effects of curcumin on the motor coordination and the estimate of the total number of cerebellar Purkinje cells of adolescent Wistar rats exposed to ethanol.METHODS:The total of 21 male Wistar rats aged 37 d old were divided into three groups,namely ethanol,ethanol-curcumin,and control groups.The ethanol group received 1.5 g/kg ethanol injected intraperitoneally and water given per oral; the ethanol-curcumin group received 1.5 g/kg ethanol injected intraperitoneally and curcumin extract given per oral; the control group received saline injection and oral water.The treatment was carried out daily for one month,after which the motor coordination performance of the rats was examined using revolving drum apparatus at test days 1,8,and 15.The rats were finally sacrificed and the cerebellum of the rats was further processed for stereological analysis.The estimate of the total number of Purkinje cells was calculated using physical fractionator method.RESULTS:The ethanol-curcumin group performed better than both ethanol and control groups in the motor coordination ability at day 8 of testing (P< 0.01).No Purkinje cell loss was observed as a result of one month intraperitoneal injection of ethanol.CONCLUSION:Curcumin may exert beneficial effects on the motor coordination of adolescent rats exposed to ethanol via undetermined hormetic mechanisms.

  6. Cell-specific monitoring of protein synthesis in vivo.

    Directory of Open Access Journals (Sweden)

    Nikos Kourtis

    Full Text Available Analysis of general and specific protein synthesis provides important information, relevant to cellular physiology and function. However, existing methodologies, involving metabolic labelling by incorporation of radioactive amino acids into nascent polypeptides, cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. We have developed a novel approach for monitoring protein synthesis in specific cells or tissues, in vivo. Fluorescent reporter proteins such as GFP are expressed in specific cells and tissues of interest or throughout animals using appropriate promoters. Protein synthesis rates are assessed by following fluorescence recovery after partial photobleaching of the fluorophore at targeted sites. We evaluate the method by examining protein synthesis rates in diverse cell types of live, wild type or mRNA translation-defective Caenorhabditis elegans animals. Because it is non-invasive, our approach allows monitoring of protein synthesis in single cells or tissues with intrinsically different protein synthesis rates. Furthermore, it can be readily implemented in other organisms or cell culture systems.

  7. Metal Ion Coordination Essential for Specific Molecular Interactions of Butea monosperma Lectin: ITC and MD Simulation Studies.

    Science.gov (United States)

    Abhilash, J; Haridas, M

    2015-05-01

    Crystal structure of Butea monosperma seed lectin (BML) was analyzed and the metal ion geometry identified. In order to understand the role of metal ions for the structural stability and ligand binding, studies of demetallized protein were carried out. Binding of different ligands like GalNAc, lactose, and galactose onto native and demetallized protein was studied by isothermal titration calorimetry as well as molecular simulation methods. Molecular dynamics was applied to the structure after removing the coordinates of metal ions, to identify the effect of demetallization in silico. Docking studies of different sugar molecules as well as the fungal α-amylase was carried out and compared the interactions in the native and apo states. It was found that metal ions are important for the ligand binding with increased affinity. However, their absence did not make any alteration to the secondary structure. Though the metal ions were not coordinated to the loops contacting the α-amylase, the absence of metal ions reduced the protein-protein binding strength due to long-range changes in irregular structures of the lectin.

  8. Pre-Meiotic Anther Development: Cell Fate Specification and Differentiation.

    Science.gov (United States)

    Walbot, Virginia; Egger, Rachel L

    2016-04-29

    Research into anther ontogeny has been an active and developing field, transitioning from a strictly lineage-based view of cellular differentiation events to a more complex understanding of cell fate specification. Here we describe the modern interpretation of pre-meiotic anther development, from the earliest cell specifications within the anther lobes through SPL/NZZ-, MSP1-, and MEL1-dependent pathways as well as the initial setup of the abaxial and adaxial axes and outgrowth of the anther lobes. We then continue with a look at the known information regarding further differentiation of the somatic layers of the anther (the epidermis, endothecium, middle layer, and tapetum), with an emphasis on male-sterile mutants identified as defective in somatic cell specification. We also describe the differences in developmental stages among species and use this information to discuss molecular studies that have analyzed transcriptome, proteome, and small-RNA information in the anther.

  9. Specification of Epidermal Cell Fate in Plant Shoots

    Directory of Open Access Journals (Sweden)

    Shinobu eTakada

    2014-02-01

    Full Text Available Land plants have evolved a single layer of epidermal cells, which are characterized by mostly anticlinal cell division patterns, formation of a waterproof coat called cuticle, and unique cell types such as stomatal guard cells and trichomes. The shoot epidermis plays important roles not only to protect plants from dehydration and pathogens but also to ensure their proper organogenesis and growth control. Extensive molecular genetic studies in Arabidopsis and maize have identified a number of genes that are required for epidermal cell differentiation. However, the mechanism that specifies shoot epidermal cell fate during plant organogenesis remains largely unknown. Particularly, little is known regarding positional information that should restrict epidermal cell fate to the outermost cell layer of the developing organs. Recent studies suggested that certain members of the HD-ZIP class IV homeobox genes are possible master regulators of shoot epidermal cell fate. Here, we summarize the roles of the regulatory genes that are involved in epidermal cell fate specification and discuss the possible mechanisms that limit the expression and/or activity of the master transcriptional regulators to the outermost cell layer in plant shoots.

  10. Cell-type specific four-component hydrogel.

    Directory of Open Access Journals (Sweden)

    Timo Aberle

    Full Text Available In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin to generate a blend (technical term: quattroGel, an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering.

  11. Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen

    Directory of Open Access Journals (Sweden)

    Michael C. Gong

    1999-06-01

    Full Text Available The expression of immunoglobulin-based artificial receptors in normal T lymphocytes provides a means to target lymphocytes to cell surface antigens independently of major histocompatibility complex restriction. Such artificial receptors have been previously shown to confer antigen-specific tumoricidal properties in murine T cells. We constructed a novel ζ chain fusion receptor specific for prostate-specific membrane antigen (PSMA termed Pz-1. PSMA is a cell-surface glycoprotein expressed on prostate cancer cells and the neovascular endothelium of multiple carcinomas. We show that primary T cells harvested from five of five patients with different stages of prostate cancer and transduced with the Pz-1 receptor readily lyse prostate cancer cells. Having established a culture system using fibroblasts that express PSMA, we next show that T cells expressing the Pz-1 receptor release cytokines in response to cell-bound PSMA. Furthermore, we show that the cytokine release is greatly augmented by B7.1-mediated costimulation. Thus, our findings support the feasibility of adoptive cell therapy by using genetically engineered T cells in prostate cancer patients and suggest that both CD4+ and CD8+ T lymphocyte functions can be synergistically targeted against tumor cells.

  12. Rescue of motor coordination by Purkinje cell-targeted restoration of Kv3.3 channels in Kcnc3-null mice requires Kcnc1.

    Science.gov (United States)

    Hurlock, Edward C; Bose, Mitali; Pierce, Ganon; Joho, Rolf H

    2009-12-16

    The role of cerebellar Kv3.1 and Kv3.3 channels in motor coordination was examined with an emphasis on the deep cerebellar nuclei (DCN). Kv3 channel subunits encoded by Kcnc genes are distinguished by rapid activation and deactivation kinetics that support high-frequency, narrow action potential firing. Previously we reported that increased lateral deviation while ambulating and slips while traversing a narrow beam of ataxic Kcnc3-null mice were corrected by restoration of Kv3.3 channels specifically to Purkinje cells, whereas Kcnc3-mutant mice additionally lacking one Kcnc1 allele were partially rescued. Here, we report mice lacking all Kcnc1 and Kcnc3 alleles exhibit no such rescue. For Purkinje cell output to reach the rest of the brain it must be conveyed by neurons of the DCN or vestibular nuclei. As Kcnc1, but not Kcnc3, alleles are lost, mutant mice exhibit increasing gait ataxia accompanied by spike broadening and deceleration in DCN neurons, suggesting the facet of coordination rescued by Purkinje-cell-restricted Kv3.3 restoration in mice lacking just Kcnc3 is hypermetria, while gait ataxia emerges when additionally Kcnc1 alleles are lost. Thus, fast repolarization in Purkinje cells appears important for normal movement velocity, whereas DCN neurons are a prime candidate locus where fast repolarization is necessary for normal gait patterning.

  13. Rescue of Motor Coordination by Purkinje Cell-Targeted Restoration of Kv3.3 Channels in Kcnc3-Null Mice Requires Kcnc1

    Science.gov (United States)

    Hurlock, Edward C.; Bose, Mitali; Pierce, Ganon

    2009-01-01

    The role of cerebellar Kv3.1 and Kv3.3 channels in motor coordination was examined with an emphasis on the deep cerebellar nuclei (DCN). Kv3 channel subunits encoded by Kcnc genes are distinguished by rapid activation and deactivation kinetics that support high-frequency, narrow action potential firing. Previously we reported that increased lateral deviation while ambulating and slips while traversing a narrow beam of ataxic Kcnc3-null mice were corrected by restoration of Kv3.3 channels specifically to Purkinje cells, whereas Kcnc3-mutant mice additionally lacking one Kcnc1 allele were partially rescued. Here, we report mice lacking all Kcnc1 and Kcnc3 alleles exhibit no such rescue. For Purkinje cell output to reach the rest of the brain it must be conveyed by neurons of the DCN or vestibular nuclei. As Kcnc1, but not Kcnc3, alleles are lost, mutant mice exhibit increasing gait ataxia accompanied by spike broadening and deceleration in DCN neurons, suggesting the facet of coordination rescued by Purkinje-cell-restricted Kv3.3 restoration in mice lacking just Kcnc3 is hypermetria, while gait ataxia emerges when additionally Kcnc1 alleles are lost. Thus, fast repolarization in Purkinje cells appears important for normal movement velocity, whereas DCN neurons are a prime candidate locus where fast repolarization is necessary for normal gait patterning. PMID:20016089

  14. Lab-specific gene expression signatures in pluripotent stem cells.

    Science.gov (United States)

    Newman, Aaron M; Cooper, James B

    2010-08-06

    Pluripotent stem cells derived from both embryonic and reprogrammed somatic cells have significant potential for human regenerative medicine. Despite similarities in developmental potential, however, several groups have found fundamental differences between embryonic stem cell (ESC) and induced-pluripotent stem cell (iPSC) lines that may have important implications for iPSC-based medical therapies. Using an unsupervised clustering algorithm, we further studied the genetic homogeneity of iPSC and ESC lines by reanalyzing microarray gene expression data from seven different laboratories. Unexpectedly, this analysis revealed a strong correlation between gene expression signatures and specific laboratories in both ESC and iPSC lines. Nearly one-third of the genes with lab-specific expression signatures are also differentially expressed between ESCs and iPSCs. These data are consistent with the hypothesis that in vitro microenvironmental context differentially impacts the gene expression signatures of both iPSCs and ESCs.

  15. Cancer specificity of promoters of the genes controlling cell proliferation.

    Science.gov (United States)

    Kashkin, Kirill; Chernov, Igor; Stukacheva, Elena; Monastyrskaya, Galina; Uspenskaya, Natalya; Kopantzev, Eugene; Sverdlov, Eugene

    2015-02-01

    Violation of proliferation control is a common feature of cancer cells. We put forward the hypothesis that promoters of genes involved in the control of cell proliferation should possess intrinsic cancer specific activity. We cloned promoter regions of CDC6, POLD1, CKS1B, MCM2, and PLK1 genes into pGL3 reporter vector and studied their ability to drive heterologous gene expression in transfected cancer cells of different origin and in normal human fibroblasts. Each promoter was cloned in short (335-800 bp) and long (up to 2.3 kb) variants to cover probable location of core and whole promoter regulatory elements. Cloned promoters were significantly more active in cancer cells than in normal fibroblasts that may indicate their cancer specificity. Both versions of CDC6 promoters were shown to be most active while the activities of others were close to that of BIRC5 gene (survivin) gene promoter. Long and short variants of each cloned promoter demonstrated very similar cancer specificity with the exception of PLK1-long promoter that was substantially more specific than its short variant and other promoters under study. The data indicate that most of the important cis-regulatory transcription elements responsible for intrinsic cancer specificity are located in short variants of the promoters under study. CDC6 short promoter may serve as a promising candidate for transcription targeted cancer gene therapy.

  16. Nucleus- and cell-specific gene expression in monkey thalamus.

    Science.gov (United States)

    Murray, Karl D; Choudary, Prabhakara V; Jones, Edward G

    2007-02-06

    Nuclei of the mammalian thalamus are aggregations of neurons with unique architectures and input-output connections, yet the molecular determinants of their organizational specificity remain unknown. By comparing expression profiles of thalamus and cerebral cortex in adult rhesus monkeys, we identified transcripts that are unique to dorsal thalamus or to individual nuclei within it. Real-time quantitative PCR and in situ hybridization analyses confirmed the findings. Expression profiling of individual nuclei microdissected from the dorsal thalamus revealed additional subsets of nucleus-specific genes. Functional annotation using Gene Ontology (GO) vocabulary and Ingenuity Pathways Analysis revealed overrepresentation of GO categories related to development, morphogenesis, cell-cell interactions, and extracellular matrix within the thalamus- and nucleus-specific genes, many involved in the Wnt signaling pathway. Examples included the transcription factor TCF7L2, localized exclusively to excitatory neurons; a calmodulin-binding protein PCP4; the bone extracellular matrix molecules SPP1 and SPARC; and other genes involved in axon outgrowth and cell matrix interactions. Other nucleus-specific genes such as CBLN1 are involved in synaptogenesis. The genes identified likely underlie nuclear specification, cell phenotype, and connectivity during development and their maintenance in the adult thalamus.

  17. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency.

    Science.gov (United States)

    Yan, Keyou; Long, Mingzhu; Zhang, Tiankai; Wei, Zhanhua; Chen, Haining; Yang, Shihe; Xu, Jianbin

    2015-04-01

    The precursor of solution-processed perovskite thin films is one of the most central components for high-efficiency perovskite solar cells. We first present the crucial colloidal chemistry visualization of the perovskite precursor solution based on analytical spectra and reveal that perovskite precursor solutions for solar cells are generally colloidal dispersions in a mother solution, with a colloidal size up to the mesoscale, rather than real solutions. The colloid is made of a soft coordination complex in the form of a lead polyhalide framework between organic and inorganic components and can be structurally tuned by the coordination degree, thereby primarily determining the basic film coverage and morphology of deposited thin films. By utilizing coordination engineering, particularly through employing additional methylammonium halide over the stoichiometric ratio for tuning the coordination degree and mode in the initial colloidal solution, along with a thermal leaching for the selective release of excess methylammonium halides, we achieved full and even coverage, the preferential orientation, and high purity of planar perovskite thin films. We have also identified that excess organic component can reduce the colloidal size of and tune the morphology of the coordination framework in relation to final perovskite grains and partial chlorine substitution can accelerate the crystalline nucleation process of perovskite. This work demonstrates the important fundamental chemistry of perovskite precursors and provides genuine guidelines for accurately controlling the high quality of hybrid perovskite thin films without any impurity, thereby delivering efficient planar perovskite solar cells with a power conversion efficiency as high as 17% without distinct hysteresis owing to the high quality of perovskite thin films.

  18. Specific uptake of serotonin by murine lymphoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.C.; Walker, R.F.; Brooks, W.H.; Roszman, T.L.

    1986-03-01

    Recently the authors confirmed and extended earlier observations that serotonin (5-hydroxytryptamine, 5HT) can influence immune function. Both 5HT and its precursor, 5-hydroxytryptophan inhibit the primary, in vivo antibody response to sheep red blood cells, in mice. Here, the authors report specific in vitro association of this amine with mouse splenocytes. Spleen cells from 6-8 week old CBA/J mice incorporated /sup 3/H-5HT(10/sup -8/ to 2.5 x 10/sup -6/M) in a saturable manner, at 37/sup 0/C. Specificity of uptake was indicated by competition with excess (10/sup -5/M) unlabelled 5HT and with 10/sup -5/M fluoxetine, a selective inhibitor of active 5HT reuptake in rat brain. The 5HT receptor antagonists, methysergide and cyproheptadine, also blocked 5HT uptake. Cell lysis and displacement studies revealed largely intracellular accumulation of /sup 3/H-5HT with little membrane association, in splenocytes. Hofstee analysis of uptake kinetics yielded an apparent Km of 0.82 +/- 0.22 x 10/sup -7/M and Vmax of 501 +/- 108 pM/3 x 10/sup 6/ cells/10 min. Spleen cells fractionated on Sephadex G10 showed virtually no specific 5HT uptake while peritoneal exudate cells from thioglycollate treated mice displayed 5HT uptake kinetics similar to those of splenocytes. The site of specific /sup 3/H-5HT incorporation within a population of spleen cells and the functional significance of this phenomenon to immunomodulation by 5HT remain to be elucidated.

  19. Micro-magnet arrays for specific single bacterial cell positioning

    Science.gov (United States)

    Pivetal, Jérémy; Royet, David; Ciuta, Georgeta; Frenea-Robin, Marie; Haddour, Naoufel; Dempsey, Nora M.; Dumas-Bouchiat, Frédéric; Simonet, Pascal

    2015-04-01

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications.

  20. Optimization Manufacture of Virus- and Tumor-Specific T Cells

    Directory of Open Access Journals (Sweden)

    Natalia Lapteva

    2011-01-01

    Full Text Available Although ex vivo expanded T cells are currently widely used in pre-clinical and clinical trials, the complexity of manufacture remains a major impediment for broader application. In this review we discuss current protocols for the ex vivo expansion of virus- and tumor-specific T cells and describe our experience in manufacture optimization using a gas-permeable static culture flask (G-Rex. This innovative device has revolutionized the manufacture process by allowing us to increase cell yields while decreasing the frequency of cell manipulation and in vitro culture time. It is now being used in good manufacturing practice (GMP facilities for clinical cell production in our institution as well as many others in the US and worldwide.

  1. Characterization of temperature-sensitive mutants reveals a role for receptor-like kinase SCRAMBLED/STRUBBELIG in coordinating cell proliferation and differentiation during Arabidopsis leaf development.

    Science.gov (United States)

    Lin, Lin; Zhong, Si-Hui; Cui, Xiao-Feng; Li, Jianming; He, Zu-Hua

    2012-12-01

    The balance between cell proliferation and cell differentiation is essential for leaf patterning. However, identification of the factors coordinating leaf patterning and cell growth behavior is challenging. Here, we characterized a temperature-sensitive Arabidopsis mutant with leaf blade and venation defects. We mapped the mutation to the sub-2 allele of the SCRAMBLED/STRUBBELIG (SCM/SUB) receptor-like kinase gene whose functions in leaf development have not been demonstrated. The sub-2 mutant displayed impaired blade development, asymmetric leaf shape and altered venation patterning under high ambient temperature (30°C), but these defects were less pronounced at normal growth temperature (22°C). Loss of SCM/SUB function results in reduced cell proliferation and abnormal cell expansion, as well as altered auxin patterning. SCM/SUB is initially expressed throughout leaf primordia and becomes restricted to the vascular cells, coinciding with its roles in early leaf patterning and venation formation. Furthermore, constitutive expression of the SCM/SUB gene also restricts organ growth by inhibiting the transition from cell proliferation to expansion. We propose the existence of a SCM/SUB-mediated developmental stage-specific signal for leaf patterning, and highlight the importance of the balance between cell proliferation and differentiation for leaf morphogenesis.

  2. CELL DETACHMENT BY PROLYL-SPECIFIC ENDOPEPTIDASE FROM WOLFIPORIA COCOS

    Directory of Open Access Journals (Sweden)

    Katharina Cierpka

    2014-01-01

    Full Text Available As requirements for Advanced Therapy Medicinal Product (ATMP production differ from other production processes (e.g., therapeutic protein production, cell detachment is often a crucial step for the process success. In most cases, cell detachment is done enzymatically. Although many peptidases are established in cell culture in R&D, e.g., Trypsin as gold standard, many of them seem to be unsuitable in ATMP production processes. Therefore, the present study investigated a novel endopeptidase used in food biotechnology for its applicability in ATMP processes where cell detachment is needed. The Prolyl-specific Peptidase (PsP is of non-mammalian origin and considered as safe for humans. PsP was purified from the supernatant of the fungus Wolfiporia cocos. The isolation and purification resulted in an enzyme solution with 0.19 U mg-1 prolyl-specific activity. By in silico analysis it was confirmed that attachment-promoting proteins can be cleaved by PsP in a similar amount than with Trypsin. Further the proteolytic activity was determined for PsP and Trypsin by using the same enzymatic assay. Detachment with both enzymes was compared for cells used in typical therapeutic production processes namely a mesenchymal stem cell line (hMSC-TERT as a model for a cell therapeutic, Vero and MA104 cells used for viral therapeutic or vaccine production. The cell detachment experiments were performed with comparable enzyme activities (1.6 U mL-1. hMSC-TERT detachment was faster with PsP than with Trypsin. For Vero cells the detachment with PsP was not only faster but also more efficient. For MA104 cells the detachment rate with PsP was similar to Trypsin. For all cell types, detachment with PsP showed less influence on cell growth and metabolism compared to standard Trypsin.Thus, three cell types used in ATMP, viral therapeutics or vaccine production can be detached efficiently and gently with PsP. Therefore, PsP shows

  3. Patient-Specific Pluripotent Stem Cells in Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Serpen Durnaoglu

    2011-01-01

    Full Text Available Many human neurological diseases are not currently curable and result in devastating neurologic sequelae. The increasing availability of induced pluripotent stem cells (iPSCs derived from adult human somatic cells provides new prospects for cellreplacement strategies and disease-related basic research in a broad spectrum of human neurologic diseases. Patient-specific iPSC-based modeling of neurogenetic and neurodegenerative diseases is an emerging efficient tool for in vitro modeling to understand disease and to screen for genes and drugs that modify the disease process. With the exponential increase in iPSC research in recent years, human iPSCs have been successfully derived with different technologies and from various cell types. Although there remain a great deal to learn about patient-specific iPSC safety, the reprogramming mechanisms, better ways to direct a specific reprogramming, ideal cell source for cellular grafts, and the mechanisms by which transplanted stem cells lead to an enhanced functional recovery and structural reorganization, the discovery of the therapeutic potential of iPSCs offers new opportunities for the treatment of incurable neurologic diseases. However, iPSC-based therapeutic strategies need to be thoroughly evaluated in preclinical animal models of neurological diseases before they can be applied in a clinical setting.

  4. Specific organization of Golgi apparatus in plant cells.

    Science.gov (United States)

    Vildanova, M S; Wang, W; Smirnova, E A

    2014-09-01

    Microtubules, actin filaments, and Golgi apparatus are connected both directly and indirectly, but it is manifested differently depending on the cell organization and specialization, and these connections are considered in many original studies and reviews. In this review we would like to discuss what underlies differences in the structural organization of the Golgi apparatus in animal and plant cells: specific features of the microtubule cytoskeleton organization, the use of different cytoskeleton components for Golgi apparatus movement and maintenance of its integrity, or specific features of synthetic and secretory processes. We suppose that a dispersed state of the Golgi apparatus in higher plant cells cannot be explained only by specific features of the microtubule system organization and by the absence of centrosome as an active center of their organization because the Golgi apparatus is organized similarly in the cells of other organisms that possess the centrosome and centrosomal microtubules. One of the key factors determining the Golgi apparatus state in plant cells is the functional uniformity or functional specialization of stacks. The functional specialization does not suggest the joining of the stacks to form a ribbon; therefore, the disperse state of the Golgi apparatus needs to be supported, but it also can exist "by default". We believe that the dispersed state of the Golgi apparatus in plants is supported, on one hand, by dynamic connections of the Golgi apparatus stacks with the actin filament system and, on the other hand, with the endoplasmic reticulum exit sites distributed throughout the endoplasmic reticulum.

  5. Specification of Region-Specific Neurons Including Forebrain Glutamatergic Neurons from Human Induced Pluripotent Stem Cells

    Science.gov (United States)

    Martins-Taylor, Kristen; Wang, Xiaofang; Zhang, Zheng; Park, Jung Woo; Zhan, Shuning; Kronenberg, Mark S.; Lichtler, Alexander; Liu, Hui-Xia; Chen, Fang-Ping; Yue, Lixia; Li, Xue-Jun; Xu, Ren-He

    2010-01-01

    Background Directed differentiation of human induced pluripotent stem cells (hiPSC) into functional, region-specific neural cells is a key step to realizing their therapeutic promise to treat various neural disorders, which awaits detailed elucidation. Methodology/Principal Findings We analyzed neural differentiation from various hiPSC lines generated by others and ourselves. Although heterogeneity in efficiency of neuroepithelial (NE) cell differentiation was observed among different hiPSC lines, the NE differentiation process resembles that from human embryonic stem cells (hESC) in morphology, timing, transcriptional profile, and requirement for FGF signaling. NE cells differentiated from hiPSC, like those from hESC, can also form rostral phenotypes by default, and form the midbrain or spinal progenitors upon caudalization by morphogens. The rostrocaudal neural progenitors can further mature to develop forebrain glutamatergic projection neurons, midbrain dopaminergic neurons, and spinal motor neurons, respectively. Typical ion channels and action potentials were recorded in the hiPSC-derived neurons. Conclusions/Significance Our results demonstrate that hiPSC, regardless of how they were derived, can differentiate into a spectrum of rostrocaudal neurons with functionality, which supports the considerable value of hiPSC for study and treatment of patient-specific neural disorders. PMID:20686615

  6. Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hui Zeng

    Full Text Available BACKGROUND: Directed differentiation of human induced pluripotent stem cells (hiPSC into functional, region-specific neural cells is a key step to realizing their therapeutic promise to treat various neural disorders, which awaits detailed elucidation. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed neural differentiation from various hiPSC lines generated by others and ourselves. Although heterogeneity in efficiency of neuroepithelial (NE cell differentiation was observed among different hiPSC lines, the NE differentiation process resembles that from human embryonic stem cells (hESC in morphology, timing, transcriptional profile, and requirement for FGF signaling. NE cells differentiated from hiPSC, like those from hESC, can also form rostral phenotypes by default, and form the midbrain or spinal progenitors upon caudalization by morphogens. The rostrocaudal neural progenitors can further mature to develop forebrain glutamatergic projection neurons, midbrain dopaminergic neurons, and spinal motor neurons, respectively. Typical ion channels and action potentials were recorded in the hiPSC-derived neurons. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that hiPSC, regardless of how they were derived, can differentiate into a spectrum of rostrocaudal neurons with functionality, which supports the considerable value of hiPSC for study and treatment of patient-specific neural disorders.

  7. High efficiency cell-specific targeting of cytokine activity

    Science.gov (United States)

    Garcin, Geneviève; Paul, Franciane; Staufenbiel, Markus; Bordat, Yann; van der Heyden, José; Wilmes, Stephan; Cartron, Guillaume; Apparailly, Florence; de Koker, Stefaan; Piehler, Jacob; Tavernier, Jan; Uzé, Gilles

    2014-01-01

    Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This ‘activity-by-targeting’ concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.

  8. Ex vivo expansion protocol for human tumor specific T cells for adoptive T cell therapy.

    Science.gov (United States)

    Rasmussen, Anne-Marie; Borelli, Gabriel; Hoel, Hanna Julie; Lislerud, Kari; Gaudernack, Gustav; Kvalheim, Gunnar; Aarvak, Tanja

    2010-04-15

    Adoptive T cell therapy is a promising treatment strategy for patients with different types of cancer. The methods used for generation of high numbers of tumor specific T cells usually require long-term ex vivo culture, which frequently lead to generation of terminally differentiated effector cells, demonstrating low persistence in vivo. Therefore, optimization of protocols for generation of T cells for adoptive cell therapy is warranted. The aim of this work was to develop a protocol for expansion of antigen-specific T cells using Dynabeads CD3/CD28 to obtain T cells expressing markers important for in vivo persistence and survival. To achieve high numbers of antigen-specific T cells following expansion, we have tested the effect of depleting regulatory T cells using Dynabeads CD25 and including a pre-stimulation step with peptide prior to the non-specific expansion with Dynabeads. Our data demonstrate that virus- and tumor specific T cells can be expanded to high numbers using Dynabeads CD3/CD28 following optimization of the culture conditions. The expansion protocol presented here results in enrichment of antigen-specific CD8(+) T cells with an early/intermediate memory phenotype. This is observed even when the antigen-specific CD8(+) T cells demonstrated a terminal effector phenotype prior to expansion. This protocol thus results in expanded T cells with a phenotypic profile which may increase the chance of retaining long-term persistence following adoptive transfer. Based on these data we have developed a cGMP protocol for expansion of tumor specific T cells for adoptive T cell therapy.

  9. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells

    Directory of Open Access Journals (Sweden)

    Chansavath Phetsouphanh

    2015-08-01

    Full Text Available A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.

  10. Micro-magnet arrays for specific single bacterial cell positioning

    Energy Technology Data Exchange (ETDEWEB)

    Pivetal, Jérémy, E-mail: jeremy.piv@netcmail.com [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Royet, David [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Ciuta, Georgeta [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Frenea-Robin, Marie [Université de Lyon, Université Lyon 1, CNRS UMR 5005, Laboratoire Ampère, F-69622 Villeurbanne (France); Haddour, Naoufel [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Dempsey, Nora M. [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Dumas-Bouchiat, Frédéric [Univ Limoges, CNRS, SPCTS UMR 7513, 12 Rue Atlantis, F-87068 Limoges (France); Simonet, Pascal [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France)

    2015-04-15

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications. - Highlights: 1.We report a new approach to selectively micropattern bacterial cells individually upon micro-magnet arrays. 2.Permanent micro-magnets of a size approaching that of bacteria could be fabricated using a Thermo-Magnetic Patterning process. 3.Bacterial cells were labeled using two different magnetic labeling strategies providing flexible approach adaptable to several applications in the field of microbiology.

  11. Circadian control of antigen-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Nobis CC

    2016-09-01

    Full Text Available Chloé C Nobis,1–3 Nathalie Labrecque,2–4 Nicolas Cermakian1,5–8 1Douglas Mental Health University Institute, 2Maisonneuve-Rosemont Hospital Research Centre, 3Department of Microbiology, Infectious Diseases and Immunology, 4Department of Medicine, University of Montreal, 5Department of Psychiatry, 6Department of Microbiology and Immunology, 7Department of Neurology and Neurosurgery, 8Department of Physiology, McGill University, Montreal, QC, Canada Abstract: The immune system is composed of two arms, the innate and the adaptive immunity. While the innate response constitutes the first line of defense and is not specific for a particular pathogen, the adaptive response is highly specific and allows for long-term memory of the pathogen encounter. T lymphocytes (or T cells are central players in the adaptive immune response. Various aspects of T cell functions vary according to the time of day. Circadian clocks located in most tissues and cell types generate 24-hour rhythms of various physiological processes. These clocks are based on a set of clock genes, and this timing mechanism controls rhythmically the expression of numerous other genes. Clock genes are expressed in cells of the immune system, including T cells. In this review, we provide an overview of the circadian control of the adaptive immune response, with emphasis on T cells, including their development, trafficking, response to antigen, and effector functions. Keywords: circadian clock, adaptive immune response, T lymphocyte, antigen, cytokine, proliferation

  12. Cell-specific proteomic analysis in Caenorhabditis elegans.

    Science.gov (United States)

    Yuet, Kai P; Doma, Meenakshi K; Ngo, John T; Sweredoski, Michael J; Graham, Robert L J; Moradian, Annie; Hess, Sonja; Schuman, Erin M; Sternberg, Paul W; Tirrell, David A

    2015-03-03

    Proteomic analysis of rare cells in heterogeneous environments presents difficult challenges. Systematic methods are needed to enrich, identify, and quantify proteins expressed in specific cells in complex biological systems including multicellular plants and animals. Here, we have engineered a Caenorhabditis elegans phenylalanyl-tRNA synthetase capable of tagging proteins with the reactive noncanonical amino acid p-azido-L-phenylalanine. We achieved spatiotemporal selectivity in the labeling of C. elegans proteins by controlling expression of the mutant synthetase using cell-selective (body wall muscles, intestinal epithelial cells, neurons, and pharyngeal muscle) or state-selective (heat-shock) promoters in several transgenic lines. Tagged proteins are distinguished from the rest of the protein pool through bioorthogonal conjugation of the azide side chain to probes that permit visualization and isolation of labeled proteins. By coupling our methodology with stable-isotope labeling of amino acids in cell culture (SILAC), we successfully profiled proteins expressed in pharyngeal muscle cells, and in the process, identified proteins not previously known to be expressed in these cells. Our results show that tagging proteins with spatiotemporal selectivity can be achieved in C. elegans and illustrate a convenient and effective approach for unbiased discovery of proteins expressed in targeted subsets of cells.

  13. Dopaminergic modulation of the striatal microcircuit: receptor-specific configuration of cell assemblies.

    Science.gov (United States)

    Carrillo-Reid, Luis; Hernández-López, Salvador; Tapia, Dagoberto; Galarraga, Elvira; Bargas, José

    2011-10-19

    Selection and inhibition of motor behaviors are related to the coordinated activity and compositional capabilities of striatal cell assemblies. Striatal network activity represents a main step in basal ganglia processing. The dopaminergic system differentially regulates distinct populations of striatal medium spiny neurons (MSNs) through the activation of D(1)- or D(2)-type receptors. Although postsynaptic and presynaptic actions of these receptors are clearly different in MSNs during cell-focused studies, their activation during network activity has shown inconsistent responses. Therefore, using electrophysiological techniques, functional multicell calcium imaging, and neuronal population analysis in rat corticostriatal slices, we describe the effect of selective dopaminergic receptor activation in the striatal network by observing cell assembly configurations. At the microcircuit level, during striatal network activity, the selective activation of either D(1)- or D(2)-type receptors is reflected as overall increases in neuronal synchronization. However, graph theory techniques applied to the transitions between network states revealed receptor-specific configurations of striatal cell assemblies: D(1) receptor activation generated closed trajectories with high recurrence and few alternate routes favoring the selection of specific sequences, whereas D(2) receptor activation created trajectories with low recurrence and more alternate pathways while promoting diverse transitions among neuronal pools. At the single-cell level, the activation of dopaminergic receptors enhanced the negative-slope conductance region (NSCR) in D(1)-type-responsive cells, whereas in neurons expressing D(2)-type receptors, the NSCR was decreased. Consequently, receptor-specific network dynamics most probably result from the interplay of postsynaptic and presynaptic dopaminergic actions.

  14. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  15. Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. METHODS AND FINDINGS: We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. CONCLUSIONS: The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis

  16. Extracellular Vesicles from Ovarian Carcinoma Cells Display Specific Glycosignatures

    Directory of Open Access Journals (Sweden)

    Joana Gomes

    2015-08-01

    Full Text Available Cells release vesicles to the extracellular environment with characteristic nucleic acid, protein, lipid, and glycan composition. Here we have isolated and characterized extracellular vesicles (EVs and total cell membranes (MBs from ovarian carcinoma OVMz cells. EVs were enriched in specific markers, including Tsg101, CD63, CD9, annexin-I, and MBs contained markers of cellular membrane compartments, including calnexin, GRASP65, GS28, LAMP-1, and L1CAM. The glycoprotein galectin-3 binding protein (LGALS3BP was strongly enriched in EVs and it contained sialylated complex N-glycans. Lectin blotting with a panel of lectins showed that EVs had specific glycosignatures relative to MBs. Furthermore, the presence of glycoproteins bearing complex N-glycans with α2,3-linked sialic acid, fucose, bisecting-GlcNAc and LacdiNAc structures, and O-glycans with the T-antigen were detected. The inhibition of N-glycosylation processing from high mannose to complex glycans using kifunensine caused changes in the composition of EVs and induced a decrease of several glycoproteins. In conclusion, the results showed that glycosignatures of EVs were specific and altered glycosylation within the cell affected the composition and/or dynamics of EVs release. Furthermore, the identified glycosignatures of EVs could provide novel biomarkers for ovarian cancer.

  17. Specific binding of benzodiazepines to human breast cancer cell lines.

    Science.gov (United States)

    Beinlich, A; Strohmeier, R; Kaufmann, M; Kuhl, H

    1999-01-01

    Binding of [3H]Ro5-4864, a peripheral benzodiazepine receptor (PBR) agonist, to BT-20 human, estrogen- (ER) and progesterone- (PR) receptor negative breast cancer cells was characterized. It was found to be specific, dose-dependent and saturable with a single population of binding sites. Dissociation constant (K(D)) was 8.5 nM, maximal binding capacity (Bmax) 339 fM/10(6) cells. Ro5-4864 (IC50 17.3 nM) and PK 11195 (IC50 12.3 nM) were able to compete with [3H]Ro5-4864 for binding, indicating specificity of interaction with PBR. Diazepam was able to displace [3H]Ro5-4864 from binding only at high concentrations (>1 microM), while ODN did not compete for PBR binding. Thymidine-uptake assay showed a biphasic response of cell proliferation. While low concentrations (100 nM) of Ro5-4864, PK 11195 and diazepam increased cell growth by 10 to 20%, higher concentrations (10-100 microM) significantly inhibited cell proliferation. PK 11195, a potent PBR ligand, was able to attenuate growth of BT-20 cells stimulated by 100 nM Ro5-4864 and to reverse growth reduction caused by 1 and 10 microM Ro5-4864, but not by 50 microM and 100 microM. This indicates that the antimitotic activity of higher concentrations of Ro5-4864 is independent of PBR binding. It is suggested, that PBR are involved in growth regulation of certain human breast cancer cell lines, possibly by supplying proliferating cells with energy, as their endogenous ligand is a polypeptide transporting Acyl-CoA.

  18. CatacLysMic specificity when targeting myeloid cells?

    Science.gov (United States)

    Blank, Thomas; Prinz, Marco

    2016-06-01

    The antibacterial enzyme lysozyme M (LysM) encoded by the Lyz2 gene is broadly expressed in myeloblasts, macrophages, and neutrophils, and thus has been used for a long time as a cell-specific marker for myeloid cells in mice. In order to delete loxP-site flanked genes in myeloid cells, a Cre-recombinase (Cre) expressing mouse line was created by inserting Cre-coding sequence into the translational start site of the LysM gene. In this issue of the European Journal of Immunology [2016. 46: 1529-1532], Orthgiess et al. verify, with the help of tdTomato and YFP reporter mouse lines, LysM-driven recombination. Unexpectedly, the authors also describe major expression of the tdTomato reporter protein in brain neurons of the central nervous system (CNS), with only a very small percentage of gene recombination in myeloid cells of the brain, called microglia. These findings cause justified concerns regarding the efficient and specific targeting of microglia and peripheral myeloid cells using LysM-Cre mice and should stimulate thoughts on conclusions drawn from past experiments on the diseased CNS employing this Cre/loxP-deleter line. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Weighted MMSE Beamforming Design for Weighted Sum-rate Maximization in Coordinated Multi-Cell MIMO Systems

    DEFF Research Database (Denmark)

    Sun, Fan; De Carvalho, Elisabeth

    2012-01-01

    This paper proposes a low-complexity design for the linear weighted MMSE (WMMSE) transmit filters of a coordinated multi-cell system with multiple users per cell. This design is based on a modified WMMSE approach applied to each transmitting base station individually incorporating the signals sent...... the linear transmit filter maximizing the weighted sum-rate of the multicell system. This algorithm is based on WMMSE where the MSE weights are optimally adjusted so that the WMMSE optimum coincides with the WSR optimum....

  20. [Establishment of hemophilia A patient-specific inducible pluripotent stem cells with urine cells].

    Science.gov (United States)

    Hu, Zhiqing; Hu, Xuyun; Pang, Jialun; Wang, Xiaolin; Lin Peng, Siyuan; Li, Zhuo; Wu, Yong; Wu, Lingqian; Liang, Desheng

    2015-10-01

    OBJECTIVE To generate hemophilia A (HA) patient-specific inducible pluripotent stem cells (iPSCs) and induce endothelial differentiation. METHODS Tubular epithelial cells were isolated and cultured from the urine of HA patients. The iPSCs were generated by forced expression of Yamanaka factors (Oct4, Sox2, c-Myc and Klf4) using retroviruses and characterized by cell morphology, pluripotent marker staining and in vivo differentiation through teratoma formation. Induced endothelial differentiation of the iPSCs was achieved with the OP9 cell co-culture method. RESULTS Patient-specific iPSCs were generated from urine cells of the HA patients, which could be identified by cell morphology, pluripotent stem cell surface marker staining and in vivo differentiation of three germ layers. The teratoma experiment has confirmed that such cells could differentiate into endothelial cells expressing the endothelial-specific markers CD144, CD31 and vWF. CONCLUSION HA patient-specific iPSCs could be generated from urine cells and can differentiate into endothelial cells. This has provided a new HA disease modeling approach and may serve as an applicable autologous cell source for gene correction and cell therapy studies for HA.

  1. Specific Control of Immunity by Regulatory CD8 T Cells

    Institute of Scientific and Technical Information of China (English)

    XiaoleiTang; TrevorRFSmith

    2005-01-01

    T lymphocytes with dedicated suppressor function (Treg) play a crucial role in the homeostatic control of immunity in the periphery. Several Treg phenotypes have now been identified in the CD4 and CD8 T cell populations, suggesting their down-regulatory function in both human and animal models of autoimmunity, transplantation and tumor immunity. Here we will focus on the CD8 Treg population and their ability to specifically inhibit a pathogenic autoimmune response. This review will detail the current advances in the knowledge of CD8 Treg in the context of antigen specificity, phenotype, MHC restriction, mechanism of action, and priming. Cellular & Molecular Immunology. 2005;2(1):11-19.

  2. Specific Control of Immunity by Regulatory CD8 T Cells

    Institute of Scientific and Technical Information of China (English)

    Xiaolei Tang; Trevor RF Smith; Vipin Kumar

    2005-01-01

    T lymphocytes with dedicated suppressor function (Treg) play a crucial role in the homeostatic control of immunity in the periphery. Several Treg phenotypes have now been identified in the CD4 and CD8 T cell populations,suggesting their down-regulatory function in both human and animal models of autoimmunity, transplantation and tumor immunity. Here we will focus on the CD8 Treg population and their ability to specifically inhibit a pathogenic autoimmune response. This review will detail the current advances in the knowledge of CD8 Treg in the context of antigen specificity, phenotype, MHC restriction, mechanism of action, and priming.

  3. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells

    Science.gov (United States)

    Arner, Erik; Daub, Carsten O.; Vitting-Seerup, Kristoffer; Andersson, Robin; Lilje, Berit; Drabløs, Finn; Lennartsson, Andreas; Rönnerblad, Michelle; Hrydziuszko, Olga; Vitezic, Morana; Freeman, Tom C.; Alhendi, Ahmad M. N.; Arner, Peter; Axton, Richard; Baillie, J. Kenneth; Beckhouse, Anthony; Bodega, Beatrice; Briggs, James; Brombacher, Frank; Davis, Margaret; Detmar, Michael; Ehrlund, Anna; Endoh, Mitsuhiro; Eslami, Afsaneh; Fagiolini, Michela; Fairbairn, Lynsey; Faulkner, Geoffrey J.; Ferrai, Carmelo; Fisher, Malcolm E.; Forrester, Lesley; Goldowitz, Daniel; Guler, Reto; Ha, Thomas; Hara, Mitsuko; Herlyn, Meenhard; Ikawa, Tomokatsu; Kai, Chieko; Kawamoto, Hiroshi; Khachigian, Levon M.; Klinken, S. Peter; Kojima, Soichi; Koseki, Haruhiko; Klein, Sarah; Mejhert, Niklas; Miyaguchi, Ken; Mizuno, Yosuke; Morimoto, Mitsuru; Morris, Kelly J.; Mummery, Christine; Nakachi, Yutaka; Ogishima, Soichi; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Qin, Xian-Yang; Roy, Sugata; Sato, Hiroki; Savvi, Suzana; Saxena, Alka; Schwegmann, Anita; Sugiyama, Daisuke; Swoboda, Rolf; Tanaka, Hiroshi; Tomoiu, Andru; Winteringham, Louise N.; Wolvetang, Ernst; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Zabierowski, Susan; Zhang, Peter; Abugessaisa, Imad; Bertin, Nicolas; Diehl, Alexander D.; Fukuda, Shiro; Furuno, Masaaki; Harshbarger, Jayson; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Ishizu, Yuri; Itoh, Masayoshi; Kawashima, Tsugumi; Kojima, Miki; Kondo, Naoto; Lizio, Marina; Meehan, Terrence F.; Mungall, Christopher J.; Murata, Mitsuyoshi; Nishiyori-Sueki, Hiromi; Sahin, Serkan; Nagao-Sato, Sayaka; Severin, Jessica; de Hoon, Michiel J. L.; Kawai, Jun; Kasukawa, Takeya; Lassmann, Timo; Suzuki, Harukazu; Kawaji, Hideya; Summers, Kim M.; Wells, Christine; Hume, David A.; Forrest, Alistair R. R.; Sandelin, Albin; Carninci, Piero; Hayashizaki, Yoshihide

    2015-01-01

    Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we simultaneously measured their activity in 19 human and 14 mouse time courses covering a wide range of cell types and biological stimuli. Enhancer RNAs, then messenger RNAs encoding transcription factors, dominated the earliest responses. Binding sites for key lineage transcription factors were simultaneously overrepresented in enhancers and promoters active in each cellular system. Our data support a highly generalizable model in which enhancer transcription is the earliest event in successive waves of transcriptional change during cellular differentiation or activation. PMID:25678556

  4. Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells

    DEFF Research Database (Denmark)

    Jørgensen, Claus; Sherman, Andrew; Chen, Ginny I

    2009-01-01

    Cells have self-organizing properties that control their behavior in complex tissues. Contact between cells expressing either B-type Eph receptors or their transmembrane ephrin ligands initiates bidirectional signals that regulate cell positioning. However, simultaneously investigating how...... information is processed in two interacting cell types remains a challenge. We implemented a proteomic strategy to systematically determine cell-specific signaling networks underlying EphB2- and ephrin-B1-controlled cell sorting. Quantitative mass spectrometric analysis of mixed populations of EphB2......- and ephrin-B1-expressing cells that were labeled with different isotopes revealed cell-specific tyrosine phosphorylation events. Functional associations between these phosphotyrosine signaling networks and cell sorting were established with small interfering RNA screening. Data-driven network modeling...

  5. Site-Specific Genome Engineering in Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Sylvia Merkert

    2016-06-01

    Full Text Available The possibility to generate patient-specific induced pluripotent stem cells (iPSCs offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.

  6. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Merkert, Sylvia; Martin, Ulrich

    2016-06-24

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.

  7. Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors

    Institute of Scientific and Technical Information of China (English)

    Huiqun YIN; Heng WANG; Hongguo CAO; Yunhai ZHANG; Yong TAO; Xiaorong ZHANG

    2009-01-01

    Pluripotent stem cells (PSCs), characterized by being able to differentiate into various types of cells, are generally regarded as the most promising sources for cell replacement therapies. However, as typical PSCs, embryonic stem cells (ESCs) are still far away from human clinics so far due to ethical issues and immune rejection response. One way to avoid such problems is to use stem cells derived from autologous somatic cells. Up to date, PSCs could be obtained by reprogramming somatic cells to pluripotent state with approaches including somatic cell nuclear transfer (SCNT), fusion with stem cells, coculture with cells' extracts, and induction with defined factors. Among these, through reprogramming somatic cells directly by retroviral transduction of transcription factors, induced pluripotent stem (iPS) cells have been successfully generated in both mouse and human recently. These iPS cells shared similar morphology and growth properties to ESCs, could express ESCs marker genes, and could produce adult or germline-competent chimaeras and differentiate into a variety of cell types, including germ cells. Moreover, with iPS technique, patient specific PSCs could be derived more easily from handful somatic cells in human without immune rejection responses innately connected to ESCs. Consequently, generation of iPS cells would be of great help to further understand disease mechanisms, drug screening, and cell transplantation therapies as well.In summary,the recent progress in the study of cell reprogramming for the creation of patientspecific pluripotent stem cells, some existing problems, and research perspectives were suggested.

  8. Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2012-01-01

    Full Text Available Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.

  9. Cell theory, specificity, and reproduction, 1837-1870.

    Science.gov (United States)

    Müller-Wille, Staffan

    2010-09-01

    The cell is not only the structural, physiological, and developmental unit of life, but also the reproductive one. So far, however, this aspect of the cell has received little attention from historians and philosophers of biology. I will argue that cell theory had far-reaching consequences for how biologists conceptualized the reproductive relationships between germs and adult organisms. Cell theory, as formulated by Theodor Schwann in 1839, implied that this relationship was a specific and lawful one, that is, that germs of a certain kind, all else being equal, would produce adult organisms of the same kind, and vice versa. Questions of preformation and epigenesis took on a new meaning under this presupposition. The question then became one of whether cells could be considered as autonomous agents producing adult organisms of a given species, or whether they were the product of external, organizing forces and thus only a stage in the development of the whole organism. This question became an important issue for nineteenth-century biology. As I will demonstrate, it was the view of cells as autonomous agents which helped both Charles Darwin and Gregor Mendel to think of inheritance as a lawful process.

  10. Specific insulin binding in bovine chromaffin cells; demonstration of preferential binding to adrenalin-storing cells

    Energy Technology Data Exchange (ETDEWEB)

    Serck-Hanssen, G.; Soevik, O.

    1987-12-28

    Insulin binding was studied in subpopulations of bovine chromaffin cells enriched in adrenalin-producing cells (A-cells) or noradrenalin-producing cells (NA-cells). Binding of /sup 125/I-insulin was carried out at 15/sup 0/C for 3 hrs in the absence or presence of excess unlabeled hormone. Four fractions of cells were obtained by centrifugation on a stepwise bovine serum albumin gradient. The four fractions were all shown to bind insulin in a specific manner and the highest binding was measured in the cell layers of higher densities, containing mainly A-cells. The difference in binding of insulin to the four subpopulations of chromaffin cells seemed to be related to differences in numbers of receptors as opposed to receptor affinities. The authors conclude that bovine chromaffin cells possess high affinity binding sites for insulin and that these binding sites are mainly confined to A-cells. 24 references, 2 figures, 1 table.

  11. Detection and specifity of class specific antibodies to whole bacteria cells using a solid phase radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Czerkinsky, C.; Rees, A.S.; Bergimeier, L.A.; Challacombe, S.J. (Guy' s Hospital Medical and Dental Schools, London (UK))

    1983-07-01

    A solid phase radioimmunoassay has been developed which can be used for the detection of isotype specific antibodies to whole bacteria and other particulate antigens, and is applicable to a variety of species. Bacteria are bound to the solid phase by the use either of antibodies, or of methyl glyoxal. Both methods result in a sensitive and reproducible assay, and bacteria do not appear to desorb from the solid phase. The specificity of antibodies to whole bacteria was examined by absorption of antisera with various species of bacteria and retesting, or by determining the binding of antisera to various bacteria bound to the solid phase. Both methods revealed specificity for the bacteria examined. Inhibition studies showed that antibodies to Streptococcus mutans whole cells could be inhibited by purified cell surface antigens glucosyltransferase and antigen I/II, but only minimally by lipoteichoic acid, c polysaccharide or dextran. In murine antisera antibodies of the IgG, IgM, and IgA classes could be detected at amounts of less than 1 ng/ml.

  12. Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates

    Science.gov (United States)

    Lehe, Remi; Kirchen, Manuel; Godfrey, Brendan B.; Maier, Andreas R.; Vay, Jean-Luc

    2016-11-01

    Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover, it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.

  13. Elimination of Numerical Cherenkov Instability in flowing-plasma Particle-In-Cell simulations by using Galilean coordinates

    CERN Document Server

    Lehe, Remi; Godfrey, Brendan B; Maier, Andreas R; Vay, Jean-Luc

    2016-01-01

    Particle-In-Cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including e.g. laser-wakefield acceleration, when viewed in a Lorentz-boosted frame), but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover, it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.

  14. Rac1-Rab11-FIP3 regulatory hub coordinates vesicle traffic with actin remodeling and T-cell activation.

    Science.gov (United States)

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Lasserre, Rémi; Agüera-Gonzalez, Sonia; Cuche, Céline; Danckaert, Anne; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2016-06-01

    The immunological synapse generation and function is the result of a T-cell polarization process that depends on the orchestrated action of the actin and microtubule cytoskeleton and of intracellular vesicle traffic. However, how these events are coordinated is ill defined. Since Rab and Rho families of GTPases control intracellular vesicle traffic and cytoskeleton reorganization, respectively, we investigated their possible interplay. We show here that a significant fraction of Rac1 is associated with Rab11-positive recycling endosomes. Moreover, the Rab11 effector FIP3 controls Rac1 intracellular localization and Rac1 targeting to the immunological synapse. FIP3 regulates, in a Rac1-dependent manner, key morphological events, like T-cell spreading and synapse symmetry. Finally, Rab11-/FIP3-mediated regulation is necessary for T-cell activation leading to cytokine production. Therefore, Rac1 endosomal traffic is key to regulate T-cell activation.

  15. Cell type-specific synaptic dynamics of synchronized bursting in the juvenile CA3 rat hippocampus.

    Science.gov (United States)

    Aradi, Ildiko; Maccaferri, Gianmaria

    2004-10-27

    Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA(A) receptors. Here, we show that the first manifestation of a burst event is a cell type-specific flurry of GABA(A) receptor-mediated inhibitory input to pyramidal cells, but not to stratum oriens horizontal interneurons. Moreover, GABA(A) receptor-mediated synaptic input is proportionally smaller in these interneurons compared with pyramidal cells. Computational models and dynamic-clamp studies using experimentally derived conductance waveforms indicate that both these factors modulate spike timing during synchronized activity. In particular, the different kinetics and the larger strength of GABAergic input to pyramidal cells defer action potential initiation and contribute to the observed delay of firing, so that the interneuronal activity leads the burst cycle. In contrast, excitatory inputs to both neuronal populations during a burst are kinetically similar, as required to maintain synchronicity. We also show that the natural pattern of activation of inhibitory and excitatory conductances during a synchronized burst cycle is different within the same neuronal population. In particular, GABA(A) receptor-mediated currents activate earlier and outlast the excitatory components driving the bursts. Thus, cell type-specific balance and timing of GABA(A) receptor-mediated input are critical to set the appropriate spike timing in pyramidal cells and interneurons and coordinate additional neurotransmitter release modulating burst strength and network frequency.

  16. NK cells require antigen-specific memory CD4+ T cells to mediate superior effector functions during HSV-2 recall responses in vitro.

    Science.gov (United States)

    Chen, Branson; Lee, Amanda J; Chew, Marianne V; Ashkar, Ali A

    2016-12-14

    Natural killer (NK) cells have an important role in mounting protective innate responses against genital herpes simplex virus type 2 (HSV-2) infections. However their role as effectors in adaptive immune responses against HSV-2 is unclear. Here, we demonstrate that NK cells from C57BL/6 mice in an ex vivo splenocyte culture produce significantly more interferon γ (IFN-γ) upon re-exposure to HSV-2 antigens in a mouse model of genital HSV-2 immunization. We find that naïve NK cells do not require any prior stimulation or priming to be activated to produce IFN-γ. Our results demonstrate that HSV-2-experienced CD4(+) T cells have a crucial role in coordinating NK cell activation and that their presence during HSV-2 antigen presentation is required to activate NK cells in this model of secondary immune response. We also examined the requirement of cell-to-cell contacts for both CD4(+) T cells and NK cells. NK cells are dependent on direct interactions with other HSV-2-experienced splenocytes, and CD4(+) T cells need to be in close proximity to NK cells to activate them. This study revealed that NK cells do not exhibit any memory toward HSV-2 antigens and, in fact, require specific interactions with HSV-2-experienced CD4(+) T cells to produce IFN-γ.

  17. Coordination Polymers Derived from Non-Steroidal Anti-Inflammatory Drugs for Cell Imaging and Drug Delivery.

    Science.gov (United States)

    Paul, Mithun; Dastidar, Parthasarathi

    2016-01-18

    A new series of Mn(II) coordination polymers, namely, [{Mn(L)(H2 O)2 }⋅2 Nap]∞ (CP1), [{Mn(L)(Ibu)2 (H2 O)2 }]∞ (CP2), [{Mn(L)(Flr)2 (H2 O)2 }]∞ (CP3), [{Mn(L)(Ind)2 (H2 O)2 }⋅H2 O]∞ (CP4), [{Mn2 (L)2 (μ-Flu)4 (H2 O)}⋅L]∞ (CP5), [{Mn2 (L)2 (μ-Tol)4 (H2 O)2 }]∞ (CP6) and [{Mn2 (L)2 (μ-Mef)4 (H2 O)2 }]∞ (CP7) (Nap=naproxen, Ibu=ibuprofen, Flr=flurbiprofen, Ind=indometacin, Flu=flufenamic acid, Tol=tolfenamic acid and Mef=mefenamic acid) derived from various non-steroidal anti-inflammatory drugs (NSAIDs) and the organic linker 1,2-bis(4-pyridyl)ethylene (L) have been synthesized with the aim of being used for cell imaging and drug delivery. Single-crystal X-ray diffraction (SXRD) studies revealed that the NSAID molecules were part of the coordination polymeric network either through coordination to the metal center (in the majority of the cases) or through hydrogen bonding. Remarkably, all the Mn(II) coordination polymers were found to be soluble in DMSO, thereby making them particularly suitable for the desired biological applications. Two of the coordination polymers (namely, CP1 and CP3) reported herein, were found to be photoluminescent both in the solid as well as in the solution state. Subsequent experiments (namely, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), and PGE2 (prostaglandin E2 ) assays) established their biocompatibility and anti-inflammatory response. In vitro studies by using a macrophage cell line (i.e., RAW 264.7) revealed that both CP1 and CP3 were excellent cell imaging agents. Finally, biodegradability studies under simulated physiological conditions in phosphate-buffered saline (PBS) at pH 7.6 showed that slow and sustained release of the corresponding NSAID was indeed possible from both CP1 and CP3.

  18. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses.

    Science.gov (United States)

    Heidrich, Katharina; Wirthmueller, Lennart; Tasset, Céline; Pouzet, Cécile; Deslandes, Laurent; Parker, Jane E

    2011-12-01

    Pathogen effectors are intercepted by plant intracellular nucleotide binding-leucine-rich repeat (NB-LRR) receptors. However, processes linking receptor activation to downstream defenses remain obscure. Nucleo-cytoplasmic basal resistance regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) is indispensible for immunity mediated by TIR (Toll-interleukin-1 receptor)-NB-LRR receptors. We show that Arabidopsis EDS1 molecularly connects TIR-NB-LRR disease resistance protein RPS4 recognition of bacterial effector AvrRps4 to defense pathways. RPS4-EDS1 and AvrRps4-EDS1 complexes are detected inside nuclei of living tobacco cells after transient coexpression and in Arabidopsis soluble leaf extracts after resistance activation. Forced AvrRps4 localization to the host cytoplasm or nucleus reveals cell compartment-specific RPS4-EDS1 defense branches. Although nuclear processes restrict bacterial growth, programmed cell death and transcriptional resistance reinforcement require nucleo-cytoplasmic coordination. Thus, EDS1 behaves as an effector target and activated TIR-NB-LRR signal transducer for defenses across cell compartments.

  19. Stem/progenitor cells: a potential source of retina-specific cells for retinal repair.

    Science.gov (United States)

    Bi, Yong-Yan; Feng, Dong-Fu; Pan, Dong-Chao

    2009-11-01

    Retinal injury generally results in permanent visual disturbance or even blindness. Any effort to restore vision in such condition would require replacement of the highly specialized retinal cells. Stem/progenitor cells have been proposed as a potential source of new retina-specific cells to replace those lost due to retina injury. Evidence to date suggests that continued development of stem cell therapies may ultimately lead to viable treatment options for retina injury. A wide range of stem/progenitor cells from various sources is currently being investigated for the treatment of retinal injury. This article reviews the recent achievements about stem/progenitor cell source for retinal repair.

  20. Evolution of Cell-Type-Specific RNA Aptamers Via Live Cell-Based SELEX.

    Science.gov (United States)

    Zhou, Jiehua; Rossi, John J

    2016-01-01

    Live cell-based SELEX (Systematic Evolution of Ligand EXponential enrichment) is a promising approach for identifying aptamers that can selectively bind to a cell-surface antigen or a particular target cell population. In particular, it offers a facile selection strategy for some special cell-surface proteins that are original glycosylated or heavily post-translationally modified, and are unavailable in their native/active conformation after in vitro expression and purification. In this chapter, we describe evolution of cell-type-specific RNA aptamers targeting the human CCR5 by combining the live cell-based SELEX strategy with high-throughput sequencing (HTS) and bioinformatics analysis.

  1. Estrogen Promotes the Development of Mouse Cumulus Cells in Coordination with Oocyte-Derived GDF9 and BMP15

    Science.gov (United States)

    Sugiura, Koji; Su, You-Qiang; Li, Qinglei; Wigglesworth, Karen; Matzuk, Martin M.; Eppig, John J.

    2010-01-01

    The differentiation and function of cumulus cells depend upon oocyte-derived paracrine factors, but studies on the estrogen receptor knockout mice suggested that estrogen also participates in these processes. This study investigates the possible coordination of estrogen and oocytes in the development and function of cumulus cells using cumulus expansion and the expression of transcripts required for expansion as functional endpoints. Preantral granulosa cell-oocyte complexes developed in vitro with 17β-estradiol (E2) exhibited increased levels of cumulus expansion and Has2 transcripts, encoding hyaluronan synthase 2, compared with those developed without E2. Moreover, cumulus cell-oocyte complexes (COCs) isolated from antral follicles and maintained in culture without E2 exhibited reduced cumulus expansion and Has2 mRNA levels compared with freshly isolated COCs. Exogenous E2, provided during the maintenance culture, alleviated these deficiencies. However, when oocytes were removed from COCs, E2 supplementation did not maintain competence to undergo expansion; the presence in culture of either fully grown oocytes or recombinant growth differentiation factor 9 (GDF9) was required. Recombinant bone morphogenetic protein 15, but not fibroblast growth factor 8, augmented the GDF9 effect. Oocytes or GDF9 suppressed cumulus cell levels of Nrip1 transcripts encoding nuclear receptor-interacting protein 1, a potential inhibitor of estrogen receptor signals. Therefore, E2 and oocyte-derived paracrine factors GDF9 and bone morphogenetic protein 15 coordinate to promote the development of cumulus cells and maintain their competence to undergo expansion. Furthermore, suppression of Nrip1 expression in cumulus cells by oocyte may be one mechanism mediating cross talk between oocyte and E2 signals that promotes follicular development. PMID:21047911

  2. MicroRNA-183-96-182 Cluster Regulates Bovine Granulosa Cell Proliferation and Cell Cycle Transition by Coordinately Targeting FOXO1.

    Science.gov (United States)

    Gebremedhn, Samuel; Salilew-Wondim, Dessie; Hoelker, Michael; Rings, Franca; Neuhoff, Christiane; Tholen, Ernst; Schellander, Karl; Tesfaye, Dawit

    2016-06-01

    Large-scale expression profiling of micro-RNAs (miRNAs) in bovine granulosa cells from dominant and subordinate follicles on Day 19 of the estrous cycle revealed enriched micro-RNA-183-96-182 cluster miRNAs in preovulatory dominant follicles that coordinately regulate the forkhead box protein O1 (FOXO1) gene. However, little is known about the role of this cluster in bovine granulosa cell function. We used an in vitro granulosa cell culture model to investigate this role. Granulosa cells aspirated from small growing follicles (3-5 mm in diameter) were cultured in Dulbecco modified Eagle medium/F-12 medium supplemented with fetal bovine serum and transfected with locked nucleic acid-based miRNA mimics, inhibitors, and corresponding negative controls. Overexpression of the miRNA cluster resulted in suppression of FOXO1 mRNA and protein, whereas inhibition of the cluster increased expression of FOXO1 mRNA. Overexpression also increased the relative rate of cell proliferation, whereas inhibition slowed it down. Similarly, the proportion of cells under G0/G1 arrest declined, whereas the ratio of cells in S phase increased in response to miR-183-96-182 overexpression. Selective knockdown of FOXO1 mRNA using anti-FOXO1 small interfering RNA increased the rate of granulosa cell proliferation, decreased the proportion of cells under G0/G1 arrest, and increased the proportion of cells in the S phase of cell cycle. Our data suggest that miR-183-96-182 cluster miRNAs promote proliferation and G1/S transition of bovine granulosa cells by coordinately targeting FOXO1, suggesting a critical role in granulosa cell function. MicroRNA-183-96-182 cluster regulates bovine granulosa cell function by targeting FOXO1 gene.

  3. Liver-specific gene expression in mesenchymal stem cells is induced by liver cells

    Institute of Scientific and Technical Information of China (English)

    Claudia Lange; Philipp Bassler; Michael V. Lioznov; Helge Bruns; Dietrich Kluth; Axel R. Zander; Henning C. Fiegel

    2005-01-01

    AIM: The origin of putative liver cells from distinct bone marrow stem cells, e.g. hematopoietic stem cells or multipotent adult progenitor cells was found in recent in vitro studies. Cell culture experiments revealed a key role of growth factors for the induction of liver-specific genes in stem cell cultures. We investigated the potential of rat mesenchymal stem cells (MSC) from bone marrow to differentiate into hepatocytic cells in vitro. Furthermore,we assessed the influence of cocultured liver cells on induction of liver-specific gene expression.METHODS: Mesenchymal stem cells were marked with green fluorescent protein (GFP) by retroviral gene transduction. Clonal marked MSC were either cultured under liver stimulating conditions using fibronectin-coated culture dishes and medium supplemented with SCF, HGF,EGF, and FGF-4 alone, or in presence of freshly isolated rat liver cells. Cells in cocultures were harvested and GFP+ or GFP- cells were separated using fluorescence activated cell sorting. RT-PCR analysis for the stem cell marker Thy1 and the hepatocytic markers CK-18, albumin, CK-19,and AFP was performed in the different cell populations.RESULTS: Under the specified culture conditions, rat MSC cocultured with liver cells expressed albumin-, CK-18,CK-19, and AFP-RNA over 3 weeks, whereas MSC cultured alone did not show liver specific gene expression.CONCLUSION: The results indicate that (1) rat MSC from bone marrow can differentiate towards hepatocytic lineage in vitro, and (2) that the microenvironment plays a decisive role for the induction of hepatic differentiation of rMSC.

  4. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice.

    Science.gov (United States)

    Mendonça, Liliana S; Nóbrega, Clévio; Hirai, Hirokazu; Kaspar, Brian K; Pereira de Almeida, Luís

    2015-02-01

    Machado-Joseph disease is a neurodegenerative disease without effective treatment. Patients with Machado-Joseph disease exhibit significant motor impairments such as gait ataxia, associated with multiple neuropathological changes including mutant ATXN3 inclusions, marked neuronal loss and atrophy of the cerebellum. Thus, an effective treatment of symptomatic patients with Machado-Joseph disease may require cell replacement, which we investigated in this study. For this purpose, we injected cerebellar neural stem cells into the cerebellum of adult Machado-Joseph disease transgenic mice and assessed the effect on the neuropathology, neuroinflammation mediators and neurotrophic factor levels and motor coordination. We found that upon transplantation into the cerebellum of adult Machado-Joseph disease mice, cerebellar neural stem cells differentiate into neurons, astrocytes and oligodendrocytes. Importantly, cerebellar neural stem cell transplantation mediated a significant and robust alleviation of the motor behaviour impairments, which correlated with preservation from Machado-Joseph disease-associated neuropathology, namely reduction of Purkinje cell loss, reduction of cellular layer shrinkage and mutant ATXN3 aggregates. Additionally, a significant reduction of neuroinflammation and an increase of neurotrophic factors levels was observed, indicating that transplantation of cerebellar neural stem cells also triggers important neuroprotective effects. Thus, cerebellar neural stem cells have the potential to be used as a cell replacement and neuroprotective approach for Machado-Joseph disease therapy.

  5. Comparative cell-specific transcriptomics reveals differentiation of C4 photosynthesis pathways in switchgrass and other C4 lineages.

    Science.gov (United States)

    Rao, Xiaolan; Lu, Nan; Li, Guifen; Nakashima, Jin; Tang, Yuhong; Dixon, Richard A

    2016-03-01

    Almost all C4 plants require the co-ordination of the adjacent and fully differentiated cell types, mesophyll (M) and bundle sheath (BS). The C4 photosynthetic pathway operates through two distinct subtypes based on how malate is decarboxylated in BS cells; through NAD-malic enzyme (NAD-ME) or NADP-malic enzyme (NADP-ME). The diverse or unique cell-specific molecular features of M and BS cells from separate C4 subtypes of independent lineages remain to be determined. We here provide an M/BS cell type-specific transcriptome data set from the monocot NAD-ME subtype switchgrass (Panicum virgatum). A comparative transcriptomics approach was then applied to compare the M/BS mRNA profiles of switchgrass, monocot NADP-ME subtype C4 plants maize and Setaria viridis, and dicot NAD-ME subtype Cleome gynandra. We evaluated the convergence in the transcript abundance of core components in C4 photosynthesis and transcription factors to establish Kranz anatomy, as well as gene distribution of biological functions, in these four independent C4 lineages. We also estimated the divergence between NAD-ME and NADP-ME subtypes of C4 photosynthesis in the two cell types within C4 species, including differences in genes encoding decarboxylating enzymes, aminotransferases, and metabolite transporters, and differences in the cell-specific functional enrichment of RNA regulation and protein biogenesis/homeostasis. We suggest that C4 plants of independent lineages in both monocots and dicots underwent convergent evolution to establish C4 photosynthesis, while distinct C4 subtypes also underwent divergent processes for the optimization of M and BS cell co-ordination. The comprehensive data sets in our study provide a basis for further research on evolution of C4 species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. A cancer cell-specific fluorescent probe for imaging Cu2 + in living cancer cells

    Science.gov (United States)

    Wang, Chao; Dong, Baoli; Kong, Xiuqi; Song, Xuezhen; Zhang, Nan; Lin, Weiying

    2017-07-01

    Monitoring copper level in cancer cells is important for the further understanding of its roles in the cell proliferation, and also could afford novel copper-based strategy for the cancer therapy. Herein, we have developed a novel cancer cell-specific fluorescent probe for the detecting Cu2 + in living cancer cells. The probe employed biotin as the cancer cell-specific group. Before the treatment of Cu2 +, the probe showed nearly no fluorescence. However, the probe can display strong fluorescence at 581 nm in response to Cu2 +. The probe exhibited excellent sensitivity and high selectivity for Cu2 + over the other relative species. Under the guidance of biotin group, could be successfully used for detecting Cu2 + in living cancer cells. We expect that this design strategy could be further applied for detection of the other important biomolecules in living cancer cells.

  7. Highly efficient site-specific transgenesis in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Michael Iacovos P

    2012-12-01

    Full Text Available Abstract Background Transgenes introduced into cancer cell lines serve as powerful tools for identification of genes involved in cancer. However, the random nature of genomic integration site of a transgene highly influences the fidelity, reliability and level of its expression. In order to alleviate this bottleneck, we characterized the potential utility of a novel PhiC31 integrase-mediated site-specific insertion system (PhiC31-IMSI for introduction of transgenes into a pre-inserted docking site in the genome of cancer cells. Methods According to this system, a “docking-site” was first randomly inserted into human cancer cell lines and clones with a single copy were selected. Subsequently, an “incoming” vector containing the gene of interest was specifically inserted in the docking-site using PhiC31. Results Using the Pc-3 and SKOV-3 cancer cell lines, we showed that transgene insertion is reproducible and reliable. Furthermore, the selection system ensured that all surviving stable transgenic lines harbored the correct integration site. We demonstrated that the expression levels of reporter genes, such as green fluorescent protein and luciferase, from the same locus were comparable among sister, isogenic clones. Using in vivo xenograft studies, we showed that the genetically altered cancer cell lines retain the properties of the parental line. To achieve temporal control of transgene expression, we coupled our insertion strategy with the doxycycline inducible system and demonstrated tight regulation of the expression of the antiangiogenic molecule sFlt-1-Fc in Pc-3 cells. Furthermore, we introduced the luciferase gene into the insertion cassette allowing for possible live imaging of cancer cells in transplantation assays. We also generated a series of Gateway cloning-compatible intermediate cassettes ready for high-throughput cloning of transgenes and demonstrated that PhiC31-IMSI can be achieved in a high throughput 96-well plate

  8. Tract specific analysis in patients with sickle cell disease

    Science.gov (United States)

    Chai, Yaqiong; Coloigner, Julie; Qu, Xiaoping; Choi, Soyoung; Bush, Adam; Borzage, Matt; Vu, Chau; Lepore, Natasha; Wood, John

    2015-12-01

    Sickle cell disease (SCD) is a hereditary blood disorder in which the oxygen-carrying hemoglobin molecule in red blood cells is abnormal. It affects numerous people in the world and leads to a shorter life span, pain, anemia, serious infections and neurocognitive decline. Tract-Specific Analysis (TSA) is a statistical method to evaluate white matter alterations due to neurocognitive diseases, using diffusion tensor magnetic resonance images. Here, for the first time, TSA is used to compare 11 major brain white matter (WM) tracts between SCD patients and age-matched healthy subjects. Alterations are found in the corpus callosum (CC), the cortico-spinal tract (CST), inferior fronto-occipital fasciculus (IFO), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinated fasciculus (UNC). Based on previous studies on the neurocognitive functions of these tracts, the significant areas found in this paper might be related to several cognitive impairments and depression, both of which are observed in SCD patients.

  9. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development

    Science.gov (United States)

    Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J.; Cohen, Idan; Santoriello, Francis J.; Zhao, Dejian; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-01-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures. PMID:27414999

  10. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development.

    Directory of Open Access Journals (Sweden)

    Carolina N Perdigoto

    2016-07-01

    Full Text Available An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2 in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.

  11. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    Science.gov (United States)

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies.

  12. Btbd7 is essential for region-specific epithelial cell dynamics and branching morphogenesis in vivo

    DEFF Research Database (Denmark)

    Daley, William P; Matsumoto, Kazue; Doyle, Andrew D

    2017-01-01

    Branching morphogenesis of developing organs requires coordinated but poorly understood changes in epithelial cell-cell adhesion and cell motility. We report that Btbd7 is a crucial regulator of branching morphogenesis in vivo. Btbd7 levels are elevated in peripheral cells of branching epithelial...... end buds, where it enhances cell motility and cell-cell adhesion dynamics. Genetic ablation of Btbd7 in mice disrupts branching morphogenesis of salivary gland, lung, and kidney. Btbd7 knockout results in more tightly packed outer bud cells, which display stronger E-cadherin localization, reduced cell...... motility, and decreased dynamics of transient cell separations associated with cleft formation; inner bud cells remain unaffected. Mechanistic analyses using in vitro MDCK cells to mimic outer bud cell behavior establish that Btbd7 promotes loss of E-cadherin from cell-cell adhesions with enhanced...

  13. Coordinate suppression of B cell lymphoma by PTEN and SHIP phosphatases

    DEFF Research Database (Denmark)

    Miletic, Ana V; Anzelon-Mills, Amy N; Mills, David M

    2010-01-01

    results in lethal T cell lymphomas, we find that animals lacking PTEN or SHIP in B cells show no evidence of malignancy. However, concomitant deletion of PTEN and SHIP (bPTEN/SHIP(-/-)) results in spontaneous and lethal mature B cell neoplasms consistent with marginal zone lymphoma or, less frequently......, follicular or centroblastic lymphoma. bPTEN/SHIP(-/-) B cells exhibit enhanced survival and express more MCL1 and less Bim. These cells also express low amounts of p27(kip1) and high amounts of cyclin D3 and thus appear poised to undergo proliferative expansion. Unlike normal B cells, bPTEN/SHIP(-/-) B cells...... proliferate to the prosurvival factor B cell activating factor (BAFF). Interestingly, although BAFF availability may promote lymphoma progression, we demonstrate that BAFF is not required for the expansion of transferred bPTEN/SHIP(-/-) B cells. This study reveals that PTEN and SHIP act cooperatively...

  14. The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity.

    Science.gov (United States)

    Robles, Estuardo; Laurell, Eva; Baier, Herwig

    2014-09-22

    Visual information is transmitted to the vertebrate brain exclusively via the axons of retinal ganglion cells (RGCs). The functional diversity of RGCs generates multiple representations of the visual environment that are transmitted to several brain areas. However, in no vertebrate species has a complete wiring diagram of RGC axonal projections been constructed. We employed sparse genetic labeling and in vivo imaging of the larval zebrafish to generate a cellular-resolution map of projections from the retina to the brain. Our data define 20 stereotyped axonal projection patterns, the majority of which innervate multiple brain areas. Morphometric analysis of pre- and postsynaptic RGC structure revealed more than 50 structural RGC types with unique combinations of dendritic and axonal morphologies, exceeding current estimates of RGC diversity in vertebrates. These single-cell projection mapping data indicate that specific projection patterns are nonuniformly specified in the retina to generate retinotopically biased visual maps throughout the brain. The retinal projectome also successfully predicted a functional subdivision of the pretectum. Our data indicate that RGC projection patterns are precisely coordinated to generate brain-area-specific visual representations originating from RGCs with distinct dendritic morphologies and topographic distributions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma.

    Science.gov (United States)

    Spel, Lotte; Boelens, Jaap-Jan; van der Steen, Dirk M; Blokland, Nina J G; van Noesel, Max M; Molenaar, Jan J; Heemskerk, Mirjam H M; Boes, Marianne; Nierkens, Stefan

    2015-11-01

    Neuroblastoma is the most common solid tumor in children with an estimated 5-year progression free survival of 20-40% in stage 4 disease. Neuroblastoma actively avoids recognition by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Although immunotherapy has gained traction for neuroblastoma treatment, these immune escape mechanisms restrain clinical results. Therefore, we aimed to improve neuroblastoma immunogenicity to further the development of antigen-specific immunotherapy against neuroblastoma. We found that neuroblastoma cells significantly increase surface expression of MHC I upon exposure to active NK cells which thereby readily sensitize neuroblastoma cells for recognition by CTLs. We show that oncoprotein PRAME serves as an immunodominant antigen for neuroblastoma as NK-modulated neuroblastoma cells are recognized by PRAMESLLQHLIGL/A2-specific CTL clones. Furthermore, NK cells induce MHC I upregulation in neuroblastoma through contact-dependent secretion of IFNγ. Our results demonstrate remarkable plasticity in the peptide/MHC I surface expression of neuroblastoma cells, which is reversed when neuroblastoma cells experience innate immune attack by sensitized NK cells. These findings support the exploration of NK cells as adjuvant therapy to enforce neuroblastoma-specific CTL responses.

  16. Molecular basis of sidekick-mediated cell-cell adhesion and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Kerry M.; Yamagata, Masahito; Jin, Xiangshu; Mannepalli, Seetha; Katsamba, Phinikoula S.; Ahlsén, Göran; Sergeeva, Alina P.; Honig, Barry; Sanes, Joshua R.; Shapiro, Lawrence

    2016-09-19

    Sidekick (Sdk) 1 and 2 are related immunoglobulin superfamily cell adhesion proteins required for appropriate synaptic connections between specific subtypes of retinal neurons. Sdks mediate cell-cell adhesion with homophilic specificity that underlies their neuronal targeting function. Here we report crystal structures of Sdk1 and Sdk2 ectodomain regions, revealing similar homodimers mediated by the four N-terminal immunoglobulin domains (Ig1–4), arranged in a horseshoe conformation. These Ig1–4 horseshoes interact in a novel back-to-back orientation in both homodimers through Ig1:Ig2, Ig1:Ig1 and Ig3:Ig4 interactions. Structure-guided mutagenesis results show that this canonical dimer is required for both Sdk-mediated cell aggregation (viatransinteractions) and Sdk clustering in isolated cells (viacisinteractions). Sdk1/Sdk2 recognition specificity is encoded across Ig1–4, with Ig1–2 conferring the majority of binding affinity and differential specificity. We suggest that competition betweencisandtransinteractions provides a novel mechanism to sharpen the specificity of cell-cell interactions.

  17. Identification of an RNA element for specific coordination of A-to-I RNA editing on HTR2C pre-mRNA.

    Science.gov (United States)

    Fukuda, Masatora; Oyama, Yui; Nishitarumizu, Azusa; Omura, Miki; Nose, Kanako; Deshimaru, Masanobu

    2015-10-01

    Adenosine-to-Inosine (A-to-I) RNA editing is an intracellular mechanism in which inosine is specifically substituted against adenosine by the action of adenosine deaminases acting on RNA (ADARs). Serotonin 2C receptor (HTR2C) is encoded through combinatorial A-to-I RNA editing at recoding sites (A - E site) on its pre-mRNA. Although the efficiency of RNA editing at particular sites is known to be critical for modulating the serotonin signaling, the mechanistic details of site-specific editing on HTR2C pre-mRNA are not fully understood. Toward complete understanding of this mechanism, we discovered an RNA element, which coordinates site-specific RNA editing on HTR2C pre-mRNA by an in vitro editing assay and secondary structural analysis of mutant HTR2C RNA fragments. Our results showed that HTR2C pre-mRNA forms a characteristic structure, which was restricted by the internal loop and Watson-Crick base-pair interaction on site E, for intrinsic editing. We suggest that the internal loop would contribute toward adjusting the relative distance and/or geometry between the editing sites and the scaffold for ADAR.

  18. Coordination Capacity

    CERN Document Server

    Cuff, Paul; Cover, Thomas

    2009-01-01

    We develop elements of a theory of cooperation and coordination in networks. Rather than considering a communication network as a means of distributing information, or of reconstructing random processes at remote nodes, we ask what dependence can be established among the nodes given the communication constraints. Specifically, in a network with communication rates between the nodes, we ask what is the set of all achievable joint distributions p(x1, ..., xm) of actions at the nodes on the network. Several networks are solved, including arbitrarily large cascade networks. Distributed cooperation can be the solution to many problems such as distributed games, distributed control, and establishing mutual information bounds on the influence of one part of a physical system on another.

  19. Upregulated WDR26 serves as a scaffold to coordinate PI3K/ AKT pathway-driven breast cancer cell growth, migration, and invasion.

    Science.gov (United States)

    Ye, Yuanchao; Tang, Xiaoyun; Sun, Zhizeng; Chen, Songhai

    2016-04-01

    The phosphatidylinositol 3-kinase (PI3K)/AKT pathway transmits signals downstream of receptor tyrosine kinases and G protein-coupled receptors (GPCRs), and is one of the most dysregulated pathways in breast cancer. PI3Ks and AKTs consist of multiple isoforms that play distinct and even opposite roles in breast cancer cell growth and metastasis. However, it remains unknown how the activities of various PI3K and AKT isoforms are coordinated during breast cancer progression. Previously, we showed WDR26 is a novel WD40 protein that binds Gβγ and promotes Gβγ signaling. Here, we demonstrate that WDR26 is overexpressed in highly malignant breast tumor cell lines and human breast cancer samples, and that WDR26 overexpression correlates with shortened survival of breast cancer patients. In highly malignant cell lines (MDA-MB231, DU4475 and BT549), downregulation of WDR26 expression selectively alleviated GPCR- but not EGF receptor-stimulated PI3K/AKT signaling and tumor cell growth, migration and invasion. In contrast, in a less malignant cell line (MCF7), WDR26 overexpression had the opposite effect. Additional studies indicate that downstream of GPCR stimulation, WDR26 serves as a scaffold that fosters assembly of a specific signaling complex consisting of Gβγ, PI3Kβ and AKT2. In an orthotopic xenograft mouse model of breast cancer, disrupting formation of this complex, by overexpressing WDR26 mutants in MDA-MB231 cells, abrogated PI3K/AKT activation and tumor cell growth and metastasis. Together, our results identify a novel mechanism regulating GPCR-dependent activation of the PI3K/AKT signaling axis in breast tumor cells, and pinpoint WDR26 as a potential therapeutic target for breast cancer.

  20. Successful Reconstruction of Tooth Germ with Cell Lines Requires Coordinated Gene Expressions from the Initiation Stage

    Directory of Open Access Journals (Sweden)

    Yasuhiro Tomooka

    2012-10-01

    Full Text Available Tooth morphogenesis is carried out by a series of reciprocal interactions between the epithelium and mesenchyme in embryonic germs. Previously clonal dental epithelial cell (epithelium of molar tooth germ (emtg lines were established from an embryonic germ. They were odontogenic when combined with a dental mesenchymal tissue, although the odontogenesis was quantitatively imperfect. To improve the microenvironment in the germs, freshly isolated dental epithelial cells were mixed with cells of lines, and germs were reconstructed in various combinations. The results demonstrated that successful tooth construction depends on the mixing ratio, the age of dental epithelial cells and the combination with cell lines. Analyses of gene expression in these germs suggest that some signal(s from dental epithelial cells makes emtg cells competent to communicate with mesenchymal cells and the epithelial and mesenchymal compartments are able to progress  odontogenesis from the initiation stage.

  1. Necrosis: a specific form of programmed cell death?

    Science.gov (United States)

    Proskuryakov, Sergey Ya; Konoplyannikov, Anatoli G; Gabai, Vladimir L

    2003-02-01

    For a long time necrosis was considered as an alternative to programmed cell death, apoptosis. Indeed, necrosis has distinct morphological features and it is accompanied by rapid permeabilization of plasma membrane. However, recent data indicate that, in contrast to necrosis caused by very extreme conditions, there are many examples when this form of cell death may be a normal physiological and regulated (programmed) event. Various stimuli (e.g., cytokines, ischemia, heat, irradiation, pathogens) can cause both apoptosis and necrosis in the same cell population. Furthermore, signaling pathways, such as death receptors, kinase cascades, and mitochondria, participate in both processes, and by modulating these pathways, it is possible to switch between apoptosis and necrosis. Moreover, antiapoptotic mechanisms (e.g., Bcl-2/Bcl-x proteins, heat shock proteins) are equally effective in protection against apoptosis and necrosis. Therefore, necrosis, along with apoptosis, appears to be a specific form of execution phase of programmed cell death, and there are several examples of necrosis during embryogenesis, a normal tissue renewal, and immune response. However, the consequences of necrotic and apoptotic cell death for a whole organism are quite different. In the case of necrosis, cytosolic constituents that spill into extracellular space through damaged plasma membrane may provoke inflammatory response; during apoptosis these products are safely isolated by membranes and then are consumed by macrophages. The inflammatory response caused by necrosis, however, may have obvious adaptive significance (i.e., emergence of a strong immune response) under some pathological conditions (such as cancer and infection). On the other hand, disturbance of a fine balance between necrosis and apoptosis may be a key element in development of some diseases.

  2. Concurrent inhibition of kit- and FcepsilonRI-mediated signaling: coordinated suppression of mast cell activation

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Beaven, Michael A; Iwaki, Shoko

    2008-01-01

    Although primarily required for the growth, differentiation, and survival of mast cells, Kit ligand (stem cell factor) is also required for optimal antigen-mediated mast cell activation. Therefore, concurrent inhibition of Kit- and FcepsilonRI-mediated signaling would be an attractive approach fo...

  3. The Caenorhabditis elegans Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity.

    Science.gov (United States)

    Sundaram, Meera V; Buechner, Matthew

    2016-05-01

    The excretory system of the nematode Caenorhabditis elegans is a superb model of tubular organogenesis involving a minimum of cells. The system consists of just three unicellular tubes (canal, duct, and pore), a secretory gland, and two associated neurons. Just as in more complex organs, cells of the excretory system must first adopt specific identities and then coordinate diverse processes to form tubes of appropriate topology, shape, connectivity, and physiological function. The unicellular topology of excretory tubes, their varied and sometimes complex shapes, and the dynamic reprogramming of cell identity and remodeling of tube connectivity that occur during larval development are particularly fascinating features of this organ. The physiological roles of the excretory system in osmoregulation and other aspects of the animal's life cycle are only beginning to be explored. The cellular mechanisms and molecular pathways used to build and shape excretory tubes appear similar to those used in both unicellular and multicellular tubes in more complex organs, such as the vertebrate vascular system and kidney, making this simple organ system a useful model for understanding disease processes.

  4. Low-Complexity Interference-Free Downlink Channel Assignment with Improved Performance in Coordinated Small Cells

    KAUST Repository

    Radaydeh, Redha M.

    2015-05-01

    This paper proposes a low-complexity interference-free channel assignment scheme with improved desired downlink performance in coordinated multi-antenna small-coverage access points (APs) that employ the open-access control strategy. The adopted system treats the case when each user can be granted an access to one of the available channels at a time. Moreover, each receive terminal can suppress a limited number of resolvable interfering sources via its highly-correlated receive array. On the other hand, the operation of the deployed APs can be coordinated to serve active users, and the availability of multiple physical channels and the use of uncorrelated transmit antennas at each AP are exploited to improve the performance of supported users. The analysis provides new approaches to use the transmit antenna array at each AP, the multiple physical channels, the receive antenna array at each user in order to identify interference-free channels per each user, and then to select a downlink channel that provides the best possible improved performance. The event of concurrent interference-free channel identification by different users is also treated to further improve the desired link associated with the scheduled user. The analysis considers the practical scenario of imperfect identification of interference-free channel by an active user and/or the imperfectness in scheduling concurrent users requests on the same channel. The developed formulations can be used to study any performance metric and they are applicable for any statistical and geometric channel models. © 2015 IEEE.

  5. Bistable cell fate specification as a result of stochastic fluctuations and collective spatial cell behaviour.

    Directory of Open Access Journals (Sweden)

    Daniel Stockholm

    Full Text Available BACKGROUND: In culture, isogenic mammalian cells typically display enduring phenotypic heterogeneity that arises from fluctuations of gene expression and other intracellular processes. This diversity is not just simple noise but has biological relevance by generating plasticity. Noise driven plasticity was suggested to be a stem cell-specific feature. RESULTS: Here we show that the phenotypes of proliferating tissue progenitor cells such as primary mononuclear muscle cells can also spontaneously fluctuate between different states characterized by the either high or low expression of the muscle-specific cell surface molecule CD56 and by the corresponding high or low capacity to form myotubes. Although this capacity is a cell-intrinsic property, the cells switch their phenotype under the constraints imposed by the highly heterogeneous microenvironment created by their own collective movement. The resulting heterogeneous cell population is characterized by a dynamic equilibrium between "high CD56" and "low CD56" phenotype cells with distinct spatial distribution. Computer simulations reveal that this complex dynamic is consistent with a context-dependent noise driven bistable model where local microenvironment acts on the cellular state by encouraging the cell to fluctuate between the phenotypes until the low noise state is found. CONCLUSIONS: These observations suggest that phenotypic fluctuations may be a general feature of any non-terminally differentiated cell. The cellular microenvironment created by the cells themselves contributes actively and continuously to the generation of fluctuations depending on their phenotype. As a result, the cell phenotype is determined by the joint action of the cell-intrinsic fluctuations and by collective cell-to-cell interactions.

  6. Coordination between chromosome replication, segregation, and cell division in Caulobacter crescentus

    DEFF Research Database (Denmark)

    Jensen, Rasmus Bugge

    2006-01-01

    Progression through the Caulobacter crescentus cell cycle is coupled to a cellular differentiation program. The swarmer cell is replicationally quiescent, and DNA replication initiates at the swarmer-to-stalked cell transition. There is a very short delay between initiation of DNA replication......, and the completely replicated terminus regions stay associated with each other after chromosome replication is completed, disassociating very late in the cell cycle shortly before the final cell division event. Invagination of the cytoplasmic membrane occurs earlier than separation of the replicated terminus regions...

  7. Generation of patient-specific pluripotent stem cells and directed differentiation of embryonic stem cells for regenerative medicine

    Institute of Scientific and Technical Information of China (English)

    Minyue Ma; Jiahao Sha; Zuomin Zhou; Qi Zhou; Qingzhang Li

    2008-01-01

    Embryonic stem(ES) cells are pluripotent cells that can give rise to derivatives of all three embryonic germ layers. Due to its characteristics, the patient-specific ES cells are of great potential for transplantation therapies. Several strategies can reprogramme somatic cells back to pluripotent stem cells: nuclear transfer, fusion with ES cells, treatment with cell extract and induction by specific factors. Considering the future clinical use, the differentiation from ES to neurons, cardiomyocytes and many other types of cell scurrently provide basic cognition and experience to regenerative medicine. This article will review two courses, the reprogramming of differentiated cells and the differentiation of ES cells to specific cell types.

  8. Sinorhizobium meliloti CpdR1 is critical for co-ordinating cell cycle progression and the symbiotic chronic infection.

    Science.gov (United States)

    Kobayashi, Hajime; De Nisco, Nicole J; Chien, Peter; Simmons, Lyle A; Walker, Graham C

    2009-08-01

    ATP-driven proteolysis plays a major role in regulating the bacterial cell cycle, development and stress responses. In the nitro -fixing symbiosis with host plants, Sinorhizobium meliloti undergoes a profound cellular differentiation, including endoreduplication of the ome. The regulatory mechanisms governing the alterations of the S. meliloti cell cycle in planta are largely unknown. Here, we report the characterization of two cpdR homologues, cpdR1 and cpdR2, of S. meliloti that encode single-domain response regulators. In Caulobacter crescentus, CpdR controls the polar localization of the ClpXP protease, thereby mediating the regulated proteolysis of key protein(s), such as CtrA, involved in cell cycle progression. The S. meliloti cpdR1-null mutant can invade the host cytoplasm, however, the intracellular bacteria are unable to differentiate into bacteroids. We show that S. meliloti CpdR1 has a polar localization pattern and a role in ClpX positioning similar to C. crescentus CpdR, suggesting a conserved function of CpdR proteins among alpha-proteobacteria. However, in S. meliloti, free-living cells of the cpdR1-null mutant show a striking morphology of irregular coccoids and aberrant DNA replication. Thus, we demonstrate that CpdR1 mediates the co-ordination of cell cycle events, which are critical for both the free-living cell division and the differentiation required for the chronic intracellular infection.

  9. Autophagy and proteasome interconnect to coordinate cross-presentation through MHC class I pathway in B cells.

    Science.gov (United States)

    Dasari, Vijayendra; Rehan, Sweera; Tey, Siok-Keen; Smyth, Mark J; Smith, Corey; Khanna, Rajiv

    2016-11-01

    Cross-presentation of exogenous protein antigens by B cells through the major histocompatibility complex (MHC) class I pathway in lymphoid malignancies, and transplant setting has been recognised as an important mediator of immune pathogenesis and T cell-mediated immune regulation. However, the precise mechanism of cross-presentation of exogenous antigens in B cells has remained unresolved. Here we have delineated a novel pathway for cross-presentation in B cells, which involves synergistic cooperation of the proteasome and autophagy. After endocytosis, protein antigen is processed through an autophagy- and proteasome-dependent pathway and CD8(+) T-cell epitopes are loaded onto MHC class I molecules within the autophagolysomal compartment rather than the conventional secretory pathway, which requires transporters associated with antigen processing-dependent transport. Interestingly, this cross-presentation was critically dependent on valosin-containing protein (VCP)/p97 ATPase through its participation in autophagy. Loss of VCP/p97 ATPase was coincident with accumulation of LC3-II and marked reduction in antigen presentation. These observations provide unique insight on how the autophagy and proteasomal degradation systems interconnect to coordinate MHC class I-restricted cross-presentation in B cells.

  10. c-Myb Regulates the T-Bet-Dependent Differentiation Program in B Cells to Coordinate Antibody Responses

    Directory of Open Access Journals (Sweden)

    Dana Piovesan

    2017-04-01

    Full Text Available Humoral immune responses are tailored to the invading pathogen through regulation of key transcription factors and their networks. This is critical to establishing effective antibody-mediated responses, yet it is unknown how B cells integrate pathogen-induced signals to drive or suppress transcriptional programs specialized for each class of pathogen. Here, we detail the key role of the transcription factor c-Myb in regulating the T-bet-mediated anti-viral program. Deletion of c-Myb in mature B cells significantly increased serum IgG2c and CXCR3 expression by upregulating T-bet, normally suppressed during Th2-cell-mediated responses. Enhanced expression of T-bet resulted in aberrant plasma cell differentiation within the germinal center, mediated by CXCR3 expression. These findings identify a dual role for c-Myb in limiting inappropriate effector responses while coordinating plasma cell differentiation with germinal center egress. Identifying such intrinsic regulators of specialized antibody responses can assist in vaccine design and therapeutic intervention in B-cell-mediated immune disorders.

  11. Kinetics of antigen specific and non-specific polyclonal B-cell responses during lethal Plasmodium yoelii malaria

    Directory of Open Access Journals (Sweden)

    Laurence Rolland

    1992-06-01

    Full Text Available In order to study the kinetics and composition of the polyclonal B-cell activation associated to malaria infection, antigen-specific and non-specific B-cell responses were evaluated in the spleens of mice infected with Plasmodium yoelii 17 XL or injected with lysed erythrocytes or plasma from P. yoelii infected mice or with P. falciparum culture supernatants. Spleen/body weigth ratio, numbers of nucleated spleen cells and Immunoglobulin-containing and Immunoglobulin-secreting cells increased progressively during the course of infection,in parallel to the parasitemia. A different pattern of kinetics was observed when anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell plaque forming cells response were studied: maximum values were observed at early stages of infection, whereas the number of total Immunoglobulin-containing and Immunoglobulin-secreting cells were not yet altered. Conversely, at the end of infection, when these latter values reached their maximum, the anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell specific responses were normal or even infranormal. In mice injected with Plasmodium-derived material, a higher increase in antigen-specific PFC was observed, as compared to the increase of Immunoglobulin-containing and Immunoglobulin-secreting cell numbers. This suggested a "preferential" (antigen-plus mitogen-induced stimulation of antigen-specific cells rather than a generalized non-specific (mitogen-induced triggering of B-lymphocytes. On the basis of these and previous results, it is suggested that polyclonal B-cell activation that takes place during the course of infection appears as a result of successive waves of antigen-specific B-cell activation.

  12. Cell-specific modulation of surfactant proteins by ambroxol treatment.

    Science.gov (United States)

    Seifart, Carola; Clostermann, Ursula; Seifart, Ulf; Müller, Bernd; Vogelmeier, Claus; von Wichert, Peter; Fehrenbach, Heinz

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  13. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Klier Ulrike

    2011-09-01

    Full Text Available Abstract Background Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. Methods We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. Results The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested could be observed. Conclusion Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These

  14. Transient Tissue-Scale Deformation Coordinates Alignment of Planar Cell Polarity Junctions in the Mammalian Skin.

    Science.gov (United States)

    Aw, Wen Yih; Heck, Bryan W; Joyce, Bradley; Devenport, Danelle

    2016-08-22

    Planar cell polarity (PCP) refers to the collective alignment of polarity along the tissue plane. In skin, the largest mammalian organ, PCP aligns over extremely long distances, but the global cues that orient tissue polarity are unknown. Here, we show that Celsr1 asymmetry arises concomitant with a gradient of tissue deformation oriented along the medial-lateral axis. This uniaxial tissue tension, whose origin remains unknown, transiently transforms basal epithelial cells from initially isotropic and disordered states into highly elongated and aligned morphologies. Reorienting tissue deformation is sufficient to shift the global axis of polarity, suggesting that uniaxial tissue strain can act as a long-range polarizing cue. Observations both in vivo and in vitro suggest that the effect of tissue anisotropy on Celsr1 polarity is not a direct consequence of cell shape but rather reflects the restructuring of cell-cell interfaces during oriented cell divisions and cell rearrangements that serve to relax tissue strain. We demonstrate that cell intercalations remodel intercellular junctions predominantly between the mediolateral interfaces of neighboring cells. This restructuring of the cell surface polarizes Celsr1, which is slow to accumulate at nascent junctions yet stably associates with persistent junctions. We propose that tissue anisotropy globally aligns Celsr1 polarity by creating a directional bias in the formation of new cell interfaces while simultaneously aligning the persistent interfaces at which Celsr1 prefers to accumulate.

  15. Asymmetric division of clonal muscle stem cells coordinates muscle regeneration in vivo.

    Science.gov (United States)

    Gurevich, David B; Nguyen, Phong Dang; Siegel, Ashley L; Ehrlich, Ophelia V; Sonntag, Carmen; Phan, Jennifer M N; Berger, Silke; Ratnayake, Dhanushika; Hersey, Lucy; Berger, Joachim; Verkade, Heather; Hall, Thomas E; Currie, Peter D

    2016-07-01

    Skeletal muscle is an example of a tissue that deploys a self-renewing stem cell, the satellite cell, to effect regeneration. Recent in vitro studies have highlighted a role for asymmetric divisions in renewing rare "immortal" stem cells and generating a clonal population of differentiation-competent myoblasts. However, this model currently lacks in vivo validation. We define a zebrafish muscle stem cell population analogous to the mammalian satellite cell and image the entire process of muscle regeneration from injury to fiber replacement in vivo. This analysis reveals complex interactions between satellite cells and both injured and uninjured fibers and provides in vivo evidence for the asymmetric division of satellite cells driving both self-renewal and regeneration via a clonally restricted progenitor pool.

  16. Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fuelled matrix metalloproteinase production.

    Science.gov (United States)

    Hall, Christopher J; Boyle, Rachel H; Sun, Xueying; Wicker, Sophie M; Misa, June P; Krissansen, Geoffrey W; Print, Cristin G; Crosier, Kathryn E; Crosier, Philip S

    2014-05-23

    In addition to satisfying the metabolic demands of cells, mitochondrial metabolism helps regulate immune cell function. To date, such cell-intrinsic metabolic-immunologic cross-talk has only been described operating in cells of the immune system. Here we show that epidermal cells utilize fatty acid β-oxidation to fuel their contribution to the immune response during cutaneous inflammation. By live imaging metabolic and immunological processes within intact zebrafish embryos during cutaneous inflammation, we uncover a mechanism where elevated β-oxidation-fuelled mitochondria-derived reactive oxygen species within epidermal cells helps guide matrix metalloproteinase-driven leukocyte recruitment. This mechanism requires the activity of a zebrafish homologue of the mammalian mitochondrial enzyme, Immunoresponsive gene 1. This study describes the first example of metabolic reprogramming operating within a non-immune cell type to help control its contribution to the immune response. Targeting of this metabolic-immunologic interface within keratinocytes may prove useful in treating inflammatory dermatoses.

  17. Rare earth fluorescent nanoparticles for specific cancer cell targeting

    Science.gov (United States)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F.

    2016-07-01

    Terbium layered hydroxide nanoparticles (Tb2(OH)5NO3) were synthesized by a one-pot coprecipitation method. The characterization of this preparation revealed highly oriented fluorescent nanoparticles. An attempt to improve the properties of Tb2(OH)5NO3 resulted in the preparation of two optimized nanoparticles. In particular, Tb2(OH)5NO3:Eu and Tb2(OH)5NO3-FA were prepared when Tb2(OH)5NO3 was doped with Europium and when the surface was modified with folic acid (FA), respectively. The size of the above nanoparticles was below 100 nm, and thus they have the potential to be used for biomedical applications. The interaction of nanoparticles with human cells was studied using confocal microscopy. This study revealed that only the nanoparticles modified with folic acid have the ability to be targeted to HeLa cells. This specific identification of cancer cells, in combination with the fluorescent properties of Tb2(OH)5NO3, could render these nanoparticles appropriate for biomedical applications.

  18. Efficient generation of lens progenitor cells from cataract patient-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Xiaodi Qiu

    Full Text Available The development of a technique to induce the transformation of somatic cells to a pluripotent state via the ectopic expression of defined transcription factors was a transformational event in the field of regenerative medicine. The development of this technique also impacted ophthalmology, as patient-specific induced pluripotent stemcells (iPSCs may be useful resources for some ophthalmological diseases. The lens is a key refractive element in the eye that focuses images of the visual world onto the retina. To establish a new model for drug screening to treat lens diseases and investigating lens aging and development, we examined whether human lens epithelial cells (HLECs could be induced into iPSCs and if lens-specific differentiation of these cells could be achieved under defined chemical conditions. We first efficiently reprogrammed HLECs from age-related cataract patients to iPSCs with OCT-4, SOX-2, and KLF-4. The resulting HLEC-derived iPS (HLE-iPS colonies were indistinguishable from human ES cells with respect to morphology, gene expression, pluripotent marker expression and their ability to generate all embryonic germ-cell layers. Next, we performed a 3-step induction procedure: HLE-iPS cells were differentiated into large numbers of lens progenitor-like cells with defined factors (Noggin, BMP and FGF2, and we determined that these cells expressed lens-specific markers (PAX6, SOX2, SIX3, CRYAB, CRYAA, BFSP1, and MIP. In addition, HLE-iPS-derived lens cells exhibited reduced expression of epithelial mesenchymal transition (EMT markers compared with human embryonic stem cells (hESCs and fibroblast-derived iPSCs. Our study describes a highly efficient procedure for generating lens progenitor cells from cataract patient HLEC-derived iPSCs. These patient-derived pluripotent cells provide a valuable model for studying the developmental and molecular biological mechanisms that underlie cell determination in lens development and cataract

  19. Control of high affinity interactions in the talin C terminus: how talin domains coordinate protein dynamics in cell adhesions.

    Science.gov (United States)

    Himmel, Mirko; Ritter, Anett; Rothemund, Sven; Pauling, Björg V; Rottner, Klemens; Gingras, Alexandre R; Ziegler, Wolfgang H

    2009-05-15

    In cell-extracellular matrix junctions (focal adhesions), the cytoskeletal protein talin is central to the connection of integrins to the actin cytoskeleton. Talin is thought to mediate this connection via its two integrin, (at least) three actin, and several vinculin binding sites. The binding sites are cryptic in the head-to-rod autoinhibited cytoplasmic form of the protein and require (stepwise) conformational activation. This activation process, however, remains poorly understood, and there are contradictory models with respect to the determinants of adhesion site localization. Here, we report turnover rates and protein-protein interactions in a range of talin rod domain constructs varying in helix bundle structure. We conclude that several bundles of the C terminus cooperate to regulate targeting and concomitantly tailor high affinity interactions of the talin rod in cell adhesions. Intrinsic control of ligand binding activities is essential for the coordination of adhesion site function of talin.

  20. IL-2 production by virus- and tumor-specific human CD8 T cells is determined by their fine specificity.

    Science.gov (United States)

    Mallard, Eric; Vernel-Pauillac, Frédérique; Velu, Thierry; Lehmann, Frédéric; Abastado, Jean-Pierre; Salcedo, Margarita; Bercovici, Nadège

    2004-03-15

    Memory CD8 T cells mediate rapid and effective immune responses against previously encountered Ags. However, these cells display considerable phenotypic and functional heterogeneity. In an effort to identify parameters that correlate with immune protection, we compared cell surface markers, proliferation, and cytokine production of distinct virus- and tumor-specific human CD8 populations. Phenotypic analysis of epitope-specific CD8 T cells showed that Ag specificity is associated with distinct CCR7/CD45RA expression profiles, suggesting that Ag recognition drives the expression of these molecules on effector/memory T cells. Moreover, the majority of central memory T cells (CD45RAlowCCR7dull) secreting cytokines in response to an EBV epitope produces both IL-2 and IFN-gamma, whereas effector memory CD8 cells (CD45RAdullCCR7-) found in EBV, CMV, or Melan-A memory pools are mostly composed of cells secreting exclusively IFN-gamma. However, these various subsets, including Melan-A-specific effector memory cells differentiated in cancer patients, display similar Ag-driven proliferation in vitro. Our findings show for the first time that human epitope-specific CD8 memory pools differ in IL-2 production after antigenic stimulation, although they display similar intrinsic proliferation capacity. These results provide new insights in the characterization of human virus- and tumor-specific CD8 lymphocytes.

  1. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  2. Induction of apoptotic cell death specifically in rat and human cancer cells by pancratistatin.

    Science.gov (United States)

    Pandey, Siyaram; Kekre, Natasha; Naderi, Jafar; McNulty, James

    2005-01-01

    The major challenge in the battle against cancer is the specific targeting of cancer cells. Most chemotherapeutics and radiotherapies induce cancer cell death by inducing DNA damage. These treatments also cause severe side effects by affecting normal cells causing toxicity and mutations that may predispose them to become cancerous. Some non-genotoxic drugs such as tamoxifen are useful but are of limited applicability. Natural compounds such as paclitaxel have been useful in cancer treatment, but due to its effect as a general microtubule stabilizer and genotoxic agent, it also induces death of normal cells. Pancratistatin is a natural compound isolated from Pancratium littorale that has been shown to have anti-viral and anti-neoplastic activity. The objective in the present study was to elucidate the mechanism of the anti-neoplastic action of pancratistatin and evaluate the specificity of this compound for cancer cells. We used cancer cell lines and normal human endothelial and fibroblast cells to investigate the effect of pancratistatin treatment. Further, we compared the toxic effects of paclitaxel and VP-16 to that of pancratistatin on non-cancerous cells. Pancratistatin induced apoptosis in all the cancer cell lines used in this study at sub-micromolar concentrations. Interestingly, normal human fibroblasts and endothelial cells remained unaffected by pancratistatin treatment under identical conditions whereas paclitaxel and VP-16 were both toxic to these two normal cell lines. The capability of pancratistatin to selectively induce apoptosis in cancer cells is an exciting finding and makes it a suitable anti-cancer agent. Since pancratistatin shows little structural similarity to any DNA intercalating drug or to paclitaxel derivatives, it appears to be non-genotoxic. Additionally, due to the unprecedented differential cytotoxicity observed in cancerous cells, we believe pancratistatin may act upon a novel target, allowing selective induction of apoptosis in

  3. Regulatory Domain Selectivity in the Cell-Type Specific PKN-Dependence of Cell Migration

    OpenAIRE

    Sylvie Lachmann; Amy Jevons; Manu De Rycker; Adele Casamassima; Simone Radtke; Alejandra Collazos; Peter J Parker

    2011-01-01

    The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relativel...

  4. Direct evidence of specific localization of sesquiterpenes and marchantin A in oil body cells of Marchantia polymorpha L.

    Science.gov (United States)

    Tanaka, M; Esaki, T; Kenmoku, H; Koeduka, T; Kiyoyama, Y; Masujima, T; Asakawa, Y; Matsui, K

    2016-10-01

    Liverworts are a rich source of a diverse array of specialized metabolites, such as terpenoids and benzenoids, which are potentially useful for pharmaceutical or agrochemical applications, and also provide clues to elucidate the strategy by which liverworts adapt to the terrestrial environment. Liverworts, belonging to orders Marchantiales and Jungermanniales, possess oil bodies. In Marchantia polymorpha L., oil bodies are confined to scattered idioblastic oil body cells. It has been assumed that the specialized metabolites in M. polymorpha specifically accumulate in the oil bodies in oil body cells; however, no direct evidence was previously available for this specific accumulation. In this study, direct evidence was obtained using micromanipulation techniques coupled with MS analysis that demonstrated the specific accumulation of sesquiterpenoids and marchantin A in the oil body cells of M. polymorpha thalli. It was also observed that the number of oil body cells increased in thalli grown in low-mineral conditions. The amounts of sesquiterpenoids and marchantin A detected in crude extract prepared from the whole thallus were roughly proportional to the number of oil body cells found in a given volume of thallus, suggesting that oil body cell differentiation and sesquiterpenoid and marchantin A biosynthetic pathways are coordinated with each other.

  5. Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade.

    Science.gov (United States)

    Carins Murphy, Madeline R; Jordan, Gregory J; Brodribb, Timothy J

    2016-11-01

    It has been proposed that modification of leaf size, driven by epidermal cell size, balances leaf water supply (determined by veins) with transpirational demand (generated by stomata) during acclimation to local irradiance. We aimed to determine whether this is a general pattern among plant species with contrasting growth habits. We compared observed relationships between leaf minor vein density, stomatal density, epidermal cell size and leaf size in four pairs of herbs and woody species from the same families grown under sun and shade conditions with modelled relationships assuming vein and stomatal densities respond passively to epidermal cell expansion. Leaf lignin content was also quantified to assess whether construction costs of herbaceous leaf veins differ from those of woody plants and the leaf mass fraction invested in veins. Modelled relationships accurately described observed relationships, indicating that in all species, co-ordinated changes to the density of minor veins and stomata were mediated by a common relationship between epidermal cell size, vein density and stomatal density, with little or no impact from stomatal index. This co-ordination was independent of changes in leaf size and is likely to be an adaptive process driven by the significant proportion of biomass invested in veins (13·1 % of sun leaf dry weight and 21·7 % of shade leaf dry weight). Relative costs of venation increased in the shade, intensifying selective pressure towards economizing investment in vein density. Modulation of epidermal cell size appears to be a general mechanism among our experimental species to maintain a constant ratio between leaf anatomical traits that control leaf water fluxes independently of habit. We propose that this process may co-ordinate plasticity in hydraulic supply and demand in the majority of eudicot angiosperms. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For

  6. Human antigen-specific regulatory T cells generated by T cell receptor gene transfer.

    Directory of Open Access Journals (Sweden)

    Todd M Brusko

    Full Text Available BACKGROUND: Therapies directed at augmenting regulatory T cell (Treg activities in vivo as a systemic treatment for autoimmune disorders and transplantation may be associated with significant off-target effects, including a generalized immunosuppression that may compromise beneficial immune responses to infections and cancer cells. Adoptive cellular therapies using purified expanded Tregs represents an attractive alternative to systemic treatments, with results from animal studies noting increased therapeutic potency of antigen-specific Tregs over polyclonal populations. However, current methodologies are limited in terms of the capacity to isolate and expand a sufficient quantity of endogenous antigen-specific Tregs for therapeutic intervention. Moreover, FOXP3+ Tregs fall largely within the CD4+ T cell subset and are thus routinely MHC class II-specific, whereas class I-specific Tregs may function optimally in vivo by facilitating direct tissue recognition. METHODOLOGY/PRINCIPAL FINDINGS: To overcome these limitations, we have developed a novel means for generating large numbers of antigen-specific Tregs involving lentiviral T cell receptor (TCR gene transfer into in vitro expanded polyclonal natural Treg populations. Tregs redirected with a high-avidity class I-specific TCR were capable of recognizing the melanoma antigen tyrosinase in the context of HLA-A*0201 and could be further enriched during the expansion process by antigen-specific reactivation with peptide loaded artificial antigen presenting cells. These in vitro expanded Tregs continued to express FOXP3 and functional TCRs, and maintained the capacity to suppress conventional T cell responses directed against tyrosinase, as well as bystander T cell responses. Using this methodology in a model tumor system, murine Tregs designed to express the tyrosinase TCR effectively blocked antigen-specific effector T cell (Teff activity as determined by tumor cell growth and luciferase reporter

  7. Hematopoietic stem cells are coordinated by the molecular cues of the endosteal niche.

    NARCIS (Netherlands)

    Huurne, M.C. ter; Figdor, C.G.; Torensma, R.

    2010-01-01

    Hematopoietic stem cells (HSCs) accomplish a complex task. On a daily base billions of the 8 different mature cells are delivered in the right proportions. HSCs are located in niches located at several locations in the body. Communication between these spatially separated niches is accomplished by s

  8. Recombinant spider silk with cell binding motifs for specific adherence of cells.

    Science.gov (United States)

    Widhe, Mona; Johansson, Ulrika; Hillerdahl, Carl-Olof; Hedhammar, My

    2013-11-01

    Silk matrices have previously been shown to possess general properties governing cell viability. However, many cell types also require specific adhesion sites for successful in vitro culture. Herein, we have shown that cell binding motifs can be genetically fused to a partial spider silk protein, 4RepCT, without affecting its ability to self-assemble into stable matrices directly in a physiological-like buffer. The incorporated motifs were exposed in the formed matrices, and available for binding of integrins. Four different human primary cell types; fibroblasts, keratinocytes, endothelial cells and Schwann cells, were applied to the matrices and investigated under serum-free culture conditions. Silk matrices with cell binding motifs, especially RGD, were shown to promote early adherence of cells, which formed stress fibers and distinct focal adhesion points. Schwann cells acquired most spread-out morphology on silk matrices with IKVAV, where significantly more viable cells were found, also when compared to wells coated with laminin. This strategy is thus suitable for development of matrices that allow screening of various cell binding motifs and their effect on different cell types. © 2013 Elsevier Ltd. All rights reserved.

  9. A ribosomal protein L23-nucleophosmin circuit coordinates Miz1 function with cell growth

    DEFF Research Database (Denmark)

    Wanzel, Michael; Russ, Annika C; Kleine-Kohlbrecher, Daniela

    2008-01-01

    The Myc-associated zinc-finger protein, Miz1, is a negative regulator of cell proliferation and induces expression of the cell-cycle inhibitors p15(Ink4b) and p21(Cip1). Here we identify the ribosomal protein L23 as a negative regulator of Miz1-dependent transactivation. L23 exerts this function...... by retaining nucleophosmin, an essential co-activator of Miz1 required for Miz1-induced cell-cycle arrest, in the nucleolus. Mutant forms of nucleophosmin found in acute myeloid leukaemia fail to co-activate Miz1 and re-localize it to the cytosol. As L23 is encoded by a direct target gene of Myc......, this regulatory circuit may provide a feedback mechanism that links translation of Myc target genes and cell growth to Miz1-dependent cell-cycle arrest....

  10. On the cell biology of pit cells, the liver-specific NK cells

    Institute of Scientific and Technical Information of China (English)

    Dian Zhong Luo; David Vermijlen; Bülent Ahishali; Vasilis Triantis; Georgia Plakoutsi; Filip Braet; Karin Vanderkerken; Eddie Wisse

    2000-01-01

    @@ INTRODUCTION Natural killer (NK) cells are functionally defined by their ability to kill certain tumor cells and virusinfected cells without prior sensitization[1]. NK cells comprise about 10% to 15% of lymphocytes in the peripheral blood and most of these cells in human and rat have the morphology of large granular lymphocytes ( LGL )[2]. However, recent studies have demonstrated that small agranular lymphocytes, lacking CD3 expression, have cytolytic activity comparable to NK cells[3].

  11. Enteroendocrine cells are specifically marked by cell surface expression of claudin-4 in mouse small intestine.

    Directory of Open Access Journals (Sweden)

    Takahiro Nagatake

    Full Text Available Enteroendocrine cells are solitary epithelial cells scattered throughout the gastrointestinal tract and produce various types of hormones, constituting one of the largest endocrine systems in the body. The study of these rare epithelial cells has been hampered by the difficulty in isolating them because of the lack of specific cell surface markers. Here, we report that enteroendocrine cells selectively express a tight junction membrane protein, claudin-4 (Cld4, and are efficiently isolated with the use of an antibody specific for the Cld4 extracellular domain and flow cytometry. Sorted Cld4+ epithelial cells in the small intestine exclusively expressed a chromogranin A gene (Chga and other enteroendocrine cell-related genes (Ffar1, Ffar4, Gpr119, and the population was divided into two subpopulations based on the activity of binding to Ulex europaeus agglutinin-1 (UEA-1. A Cld4+UEA-1- cell population almost exclusively expressed glucose-dependent insulinotropic polypeptide gene (Gip, thus representing K cells, whereas a Cld4+UEA-1+ cell population expressed other gut hormone genes, including glucagon-like peptide 1 (Gcg, pancreatic polypeptide-like peptide with N-terminal tyrosine amide (Pyy, cholecystokinin (Cck, secretin (Sct, and tryptophan hydroxylase 1 (Tph1. In addition, we found that orally administered luminal antigens were taken up by the solitary Cld4+ cells in the small intestinal villi, raising the possibility that enteroendocrine cells might also play a role in initiation of mucosal immunity. Our results provide a useful tool for the cellular and functional characterization of enteroendocrine cells.

  12. Mammary epithelial tubes elongate through MAPK-dependent coordination of cell migration.

    Science.gov (United States)

    Huebner, Robert J; Neumann, Neil M; Ewald, Andrew J

    2016-03-15

    Mammary branching morphogenesis is regulated by receptor tyrosine kinases (RTKs). We sought to determine how these RTK signals alter proliferation and migration to accomplish tube elongation in mouse. Both behaviors occur but it has been difficult to determine their relative contribution to elongation in vivo, as mammary adipocytes scatter light and limit the depth of optical imaging. Accordingly, we utilized 3D culture to study elongation in an experimentally accessible setting. We first used antibodies to localize RTK signals and discovered that phosphorylated ERK1/2 (pERK) was spatially enriched in cells near the front of elongating ducts, whereas phosphorylated AKT was ubiquitous. We next observed a gradient of cell migration speeds from rear to front of elongating ducts, with the front characterized by both high pERK and the fastest cells. Furthermore, cells within elongating ducts oriented both their protrusions and their migration in the direction of tube elongation. By contrast, cells within the organoid body were isotropically protrusive. We next tested the requirement for proliferation and migration. Early inhibition of proliferation blocked the creation of migratory cells, whereas late inhibition of proliferation did not block continued duct elongation. By contrast, pharmacological inhibition of either MEK or Rac1 signaling acutely blocked both cell migration and duct elongation. Finally, conditional induction of MEK activity was sufficient to induce collective cell migration and ductal elongation. Our data suggest a model for ductal elongation in which RTK-dependent proliferation creates motile cells with high pERK, the collective migration of which acutely requires both MEK and Rac1 signaling.

  13. The effects of MicroRNA transfections on global patterns of gene expression in ovarian cancer cells are functionally coordinated

    Directory of Open Access Journals (Sweden)

    Shahab Shubin W

    2012-08-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a class of small RNAs that have been linked to a number of diseases including cancer. The potential application of miRNAs in the diagnostics and therapeutics of ovarian and other cancers is an area of intense interest. A current challenge is the inability to accurately predict the functional consequences of exogenous modulations in the levels of potentially therapeutic miRNAs. Methods In an initial effort to systematically address this issue, we conducted miRNA transfection experiments using two miRNAs (miR-7, miR-128. We monitored the consequent changes in global patterns of gene expression by microarray and quantitative (real-time polymerase chain reaction. Network analysis of the expression data was used to predict the consequence of each transfection on cellular function and these predictions were experimentally tested. Results While ~20% of the changes in expression patterns of hundreds to thousands of genes could be attributed to direct miRNA-mRNA interactions, the majority of the changes are indirect, involving the downstream consequences of miRNA-mediated changes in regulatory gene expression. The changes in gene expression induced by individual miRNAs are functionally coordinated but distinct between the two miRNAs. MiR-7 transfection into ovarian cancer cells induces changes in cell adhesion and other developmental networks previously associated with epithelial-mesenchymal transitions (EMT and other processes linked with metastasis. In contrast, miR-128 transfection induces changes in cell cycle control and other processes commonly linked with cellular replication. Conclusions The functionally coordinated patterns of gene expression displayed by different families of miRNAs have the potential to provide clinicians with a strategy to treat cancers from a systems rather than a single gene perspective.

  14. Coordinate amplification of metallothionein I and II genes in cadmium-resistant Chinese hamster cells: implications for mechanisms regulating metallothionein gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B.D.; Enger, M.D.; Griffith, B.B.; Griffith, J.K.; Hanners, J.L.; Longmire, J.L.; Munk, A.C.; Stallings, R.L.; Tesmer, J.G.; Walters, R.A.; Hildebrand, C.E.

    1985-02-01

    The authors describe here the derivation, characterization, and use of clonal cadmium-resistance (Cd/sup r) strains of the Chinese hamster cell line CHO which differ in their metallothionein (MT) induction capacity. By nondenaturing polyacrylaminde gel electrophoresis, the authors showed that the stable Cd/sup r/ phenotype is correlated with the augmented expression of both isometallothioneins (MTI and MTII). In cells resistant to concentrations of CdCl2 exceeding 20 M, coordinate amplifications of genes encoding both isometallothioneins was demonstrated by using cDNA MT-coding sequence probes and probes specific for 3'-noncoding regions of Chinese hamster MTI and MTII genes. Molecular and in situ hybridization analyses supported close linkage of Chinese hamster MTI and MTII genes, which the authors have mapped previously to Chinese hamster chromosome 3. This suggests the existence of a functionally related MT gene cluster in this species. Amplified Cd/sup r/ variants expressing abundant MT and their corresponding Cd/sup s/ parental CHO cells should be useful for future studies directed toward elucidating the mechanisms that regulate expressions of the isometallothioneins. 59 references, 8 figures.

  15. Establishment of human cell type-specific iPS cells with enhanced chondrogenic potential.

    Science.gov (United States)

    Guzzo, Rosa M; Scanlon, Vanessa; Sanjay, Archana; Xu, Ren-He; Drissi, Hicham

    2014-12-01

    The propensity of induced pluripotent stem (iPS) cells to differentiate into specific lineages may be influenced by a number of factors, including the selection of the somatic cell type used for reprogramming. Herein we report the generation of new iPS cells, which we derived from human articular chondrocytes and from cord blood mononucleocytes via lentiviral-mediated delivery of Oct4, Klf4, Sox2, and cMyc. Molecular, cytochemical, and cytogenic analyses confirmed the acquisition of hallmark features of pluripotency, as well as the retention of normal karyotypes following reprogramming of both the human articular chondrocytes (AC) and the cord blood (CB) cells. In vitro and in vivo functional analyses formally established the pluripotent differentiation capacity of all cell lines. Chondrogenic differentiation assays comparing iPS cells derived from AC, CB, and a well established dermal fibroblast cell line (HDFa-Yk26) identified enhanced proteoglycan-rich matrix formation and cartilage-associated gene expression from AC-derived iPS cells. These findings suggest that the tissue of origin may impact the fate potential of iPS cells for differentiating into specialized cell types, such as chondrocytes. Thus, we generated new cellular tools for the identification of inherent features driving high chondrogenic potential of reprogrammed cells.

  16. Coordinated Molecular Cross-Talk between Staphylococcus aureus, Endothelial Cells and Platelets in Bloodstream Infection

    Directory of Open Access Journals (Sweden)

    Carolina D. Garciarena

    2015-12-01

    Full Text Available Staphylococcus aureus is an opportunistic pathogen often carried asymptomatically on the human body. Upon entry to the otherwise sterile environment of the cardiovascular system, S. aureus can lead to serious complications resulting in organ failure and death. The success of S. aureus as a pathogen in the bloodstream is due to its ability to express a wide array of cell wall proteins on its surface that recognise host receptors, extracellular matrix proteins and plasma proteins. Endothelial cells and platelets are important cells in the cardiovascular system and are a major target of bloodstream infection. Endothelial cells form the inner lining of a blood vessel and provide an antithrombotic barrier between the vessel wall and blood. Platelets on the other hand travel throughout the cardiovascular system and respond by aggregating around the site of injury and initiating clot formation. Activation of either of these cells leads to functional dysregulation in the cardiovascular system. In this review, we will illustrate how S. aureus establish intimate interactions with both endothelial cells and platelets leading to cardiovascular dysregulation.

  17. Modeling of hemophilia A using patient-specific induced pluripotent stem cells derived from urine cells.

    Science.gov (United States)

    Jia, Bei; Chen, Shen; Zhao, Zhiju; Liu, Pengfei; Cai, Jinglei; Qin, Dajiang; Du, Juan; Wu, Changwei; Chen, Qianyu; Cai, Xiujuan; Zhang, Hui; Yu, Yanhong; Pei, Duanqing; Zhong, Mei; Pan, Guangjin

    2014-07-11

    Hemophilia A (HA) is a severe, congenital bleeding disorder caused by the deficiency of clotting factor VIII (FVIII). For years, traditional laboratory animals have been used to study HA and its therapies, although animal models may not entirely mirror the human pathophysiology. Human induced pluripotent stem cells (iPSCs) can undergo unlimited self-renewal and differentiate into all cell types. This study aims to generate hemophilia A (HA) patient-specific iPSCs that differentiate into disease-affected hepatocyte cells. These hepatocytes are potentially useful for in vitro disease modeling and provide an applicable cell source for autologous cell therapy after genetic correction. In this study, we mainly generated iPSCs from urine collected from HA patients with integration-free episomal vectors PEP4-EO2S-ET2K containing human genes OCT4, SOX2, SV40LT and KLF4, and differentiated these iPSCs into hepatocyte-like cells. We further identified the genetic phenotype of the FVIII genes and the FVIII activity in the patient-specific iPSC derived hepatic cells. HA patient-specific iPSCs (HA-iPSCs) exhibited typical pluripotent properties evident by immunostaining, in vitro assays and in vivo assays. Importantly, we showed that HA-iPSCs could differentiate into functional hepatocyte-like cells and the HA-iPSC-derived hepatocytes failed to produce FVIII, but otherwise functioned normally, recapitulating the phenotype of HA disease in vitro. HA-iPSCs, particular those generated from the urine using a non-viral approach, provide an efficient way for modeling HA in vitro. Furthermore, HA-iPSCs and their derivatives serve as an invaluable cell source that can be used for gene and cell therapy in regenerative medicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Molecular Cloning and Functional Analysis of ESGP, an Embryonic Stem Cell and Germ Cell Specific Protein

    Institute of Scientific and Technical Information of China (English)

    Yan-Mei CHEN; Zhong-Wei DU; Zhen YAO

    2005-01-01

    Several putative Oct-4 downstream genes from mouse embryonic stem (ES) cells have been identified using the suppression-subtractive hybridization method. In this study, one of the novel genes encoding an ES cell and germ cell specific protein (ESGP) was cloned by rapid amplification of cDNA ends.ESGP contains 801 bp encoding an 84 amino acid small protein and has no significant homology to any known genes. There is a signal peptide at the N-terminal of ESGP protein as predicted by SeqWeb (GCG)(SeqWeb version 2.0.2, http://gcg.biosino.org:8080/). The result of immunofluorescence assay suggested that ESGP might encode a secretory protein. The expression pattern of ESGP is consistent with the expression of Oct-4 during embryonic development. ESGP protein was detected in fertilized oocyte, from 3.5 day postcoital (dpc) blastocyst to 17.5 dpc embryo, and was only detected in testis and ovary tissues in adult. In vitro, ESGP was only expressed in pluripotent cell lines, such as embryonic stem cells, embryonic carcinoma cells and embryonic germ cells, but not in their differentiated progenies. Despite its specific expression,forced expression of ESGP is not indispensable for the effect of Oct-4 on ES cell self-renewal, and does not affect the differentiation to three germ layers.

  19. GFP-specific CD8 T cells enable targeted cell depletion and visualization of T-cell interactions.

    Science.gov (United States)

    Agudo, Judith; Ruzo, Albert; Park, Eun Sook; Sweeney, Robert; Kana, Veronika; Wu, Meng; Zhao, Yong; Egli, Dieter; Merad, Miriam; Brown, Brian D

    2015-12-01

    There are numerous cell types with scarcely understood functions, whose interactions with the immune system are not well characterized. To facilitate their study, we generated a mouse bearing enhanced green fluorescent protein (EGFP)-specific CD8(+) T cells. Transfer of the T cells into EGFP reporter animals can be used to kill EGFP-expressing cells, allowing selective depletion of desired cell types, or to interrogate T-cell interactions with specific populations. Using this system, we eliminate a rare EGFP-expressing cell type in the heart and demonstrate its role in cardiac function. We also show that naive T cells are recruited into the mouse brain by antigen-expressing microglia, providing evidence of an immune surveillance pathway in the central nervous system. The just EGFP death-inducing (Jedi) T cells enable visualization of a T-cell antigen. They also make it possible to utilize hundreds of existing EGFP-expressing mice, tumors, pathogens and other tools, to study T-cell interactions with many different cell types, to model disease states and to determine the functions of poorly characterized cell populations.

  20. Inflammasomes Coordinate Pyroptosis and Natural Killer Cell Cytotoxicity to Clear Infection by a Ubiquitous Environmental Bacterium.

    Science.gov (United States)

    Maltez, Vivien I; Tubbs, Alan L; Cook, Kevin D; Aachoui, Youssef; Falcone, E Liana; Holland, Steven M; Whitmire, Jason K; Miao, Edward A

    2015-11-17

    Defective neutrophils in patients with chronic granulomatous disease (CGD) cause susceptibility to extracellular and intracellular infections. Microbes must first be ejected from intracellular niches to expose them to neutrophil attack, so we hypothesized that inflammasomes detect certain CGD pathogens upstream of neutrophil killing. Here, we identified one such ubiquitous environmental bacterium, Chromobacterium violaceum, whose extreme virulence was fully counteracted by the NLRC4 inflammasome. Caspase-1 protected via two parallel pathways that eliminated intracellular replication niches. Pyroptosis was the primary bacterial clearance mechanism in the spleen, but both pyroptosis and interleukin-18 (IL-18)-driven natural killer (NK) cell responses were required for liver defense. NK cells cleared hepatocyte replication niches via perforin-dependent cytotoxicity, whereas interferon-γ was not required. These insights suggested a therapeutic approach: exogenous IL-18 restored perforin-dependent cytotoxicity during infection by the inflammasome-evasive bacterium Listeria monocytogenes. Therefore, inflammasomes can trigger complementary programmed cell death mechanisms, directing sterilizing immunity against intracellular bacterial pathogens.

  1. Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions

    DEFF Research Database (Denmark)

    Tumova, S; Woods, A; Couchman, J R

    2000-01-01

    Heparan sulfate proteoglycans are complex molecules composed of a core protein with covalently attached glycosaminoglycan chains. While the protein part determines localization of the proteoglycan on the cell surfaces or in the extracellular matrix, the glycosaminoglycan component, heparan sulfate......, mediates interactions with a variety of extracellular ligands such as growth factors and adhesion molecules. Through these interactions, heparan sulfate proteoglycans participate in many events during cell adhesion, migration, proliferation and differentiation. We are determining the multitude...... of proteoglycan functions, as their intricate roles in many pathways are revealed. They act as coreceptors for growth factors, participate in signalling during cell adhesion, modulate the activity of a broad range of molecules, and partake in many developmental and pathological processes, including tumorigenesis...

  2. Task-Specific Balance Training Improves the Sensory Organisation of Balance Control in Children with Developmental Coordination Disorder: A Randomised Controlled Trial.

    Science.gov (United States)

    Fong, Shirley S M; Guo, X; Liu, Karen P Y; Ki, W Y; Louie, Lobo H T; Chung, Raymond C K; Macfarlane, Duncan J

    2016-02-11

    Sensory organisation of balance control is compromised in children with developmental coordination disorder (DCD). A randomised controlled trial involving 88 children with DCD was conducted to evaluate the efficacy of a task-specific balance training (functional-movement training, FMT) programme in improving balance deficits in a DCD population. The DCD participants were randomly assigned to either a FMT group or a control group. The FMT group received two training sessions/ week for 3 months. Measurements of the participants' sensory organisation (somatosensory, vestibular and visual ratios), balance and motor proficiency (Movement Assessment Battery for Children, MABC scores) and center of pressure sway velocity (Unilateral Stance Test, UST scores) were taken at baseline, immediately after FMT and 3 months after FMT. The FMT group showed greater improvements than the controls in somatosensory ratio at 3 and 6 months (all P  0.05). The results of both the MABC and the UST also indicated that the balance performance of the FMT group was significantly better than that of the control group at 3 and 6 months (all P balance training was found to marginally improve the somatosensory function and somewhat improve the balance performance of children with DCD.

  3. Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms.

    Science.gov (United States)

    Carins Murphy, Madeline R; Jordan, Gregory J; Brodribb, Timothy J

    2017-01-01

    Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by "passive dilution" via expansion of surrounding cells. However, it is not known whether this 'passive dilution' mechanism is present in plant lineages other than angiosperms and is another key feature of the angiosperms' evolutionary success. Consequently, we sought to determine whether the 'passive dilution' mechanism is; (i) exclusive to the angiosperms, (ii) a conserved mechanism that evolved in the common ancestor of ferns and angiosperms, or (iii) has evolved continuously over time. To do this we first we assessed the plasticity of vein and stomatal density and epidermal cell size in ferns in response to light environment. We then compared the relationships between these traits found among ferns with modelled relationships that assume vein and stomatal density respond passively to epidermal cell expansion, and with those previously observed in angiosperms. Vein density, stomatal density and epidermal cell size were linked in ferns with remarkably similar relationships to those observed in angiosperms, except that fern leaves had fewer veins per stomata. However, plasticity was limited in ferns and stomatal spacing was dependent on active stomatal differentiation as well as passive cell expansion. Thus, ferns (like angiosperms) appear to coordinate vein and stomatal density with epidermal cell expansion to some extent to maintain a constant ratio between veins and stomata in the leaf. The different general relationships between vein density and stomatal density in ferns and angiosperms suggests the groups have different optimum balances between the production of vein tissue dedicated to water supply and stomatal tissue for gas exchange.

  4. Flexible and Lightweight Fuel Cell with High Specific Power Density.

    Science.gov (United States)

    Ning, Fandi; He, Xudong; Shen, Yangbin; Jin, Hehua; Li, Qingwen; Li, Da; Li, Shuping; Zhan, Yulu; Du, Ying; Jiang, Jingjing; Yang, Hui; Zhou, Xiaochun

    2017-06-27

    Flexible devices have been attracting great attention recently due to their numerous advantages. But the energy densities of current energy sources are still not high enough to support flexible devices for a satisfactory length of time. Although proton exchange membrane fuel cells (PEMFCs) do have a high-energy density, traditional PEMFCs are usually too heavy, rigid, and bulky to be used in flexible devices. In this research, we successfully invented a light and flexible air-breathing PEMFC by using a new design of PEMFC and a flexible composite electrode. The flexible air-breathing PEMFC with 1 × 1 cm(2) working area can be as light as 0.065 g and as thin as 0.22 mm. This new PEMFC exhibits an amazing specific volume power density as high as 5190 W L(-1), which is much higher than traditional (air-breathing) PEMFCs. Also outstanding is that the flexible PEMFC retains 89.1% of its original performance after being bent 600 times, and it retains its original performance after being dropped five times from a height of 30 m. Moreover, the research has demonstrated that when stacked, the flexible PEMFCs are also useful in mobile applications such as mobile phones. Therefore, our research shows that PEMFCs can be made light, flexible, and suitable for applications in flexible devices. These innovative flexible PEMFCs may also notably advance the progress in the PEMFC field, because flexible PEMFCs can achieve high specific power density with small size, small volume, low weight, and much lower cost; they are also much easier to mass produce.

  5. C. elegans EVI1 proto-oncogene, EGL-43, is necessary for Notch-mediated cell fate specification and regulates cell invasion.

    Science.gov (United States)

    Hwang, Byung Joon; Meruelo, Alejandro D; Sternberg, Paul W

    2007-02-01

    During C. elegans development, LIN-12 (Notch) signaling specifies the anchor cell (AC) and ventral uterine precursor cell (VU) fates from two equivalent pre-AC/pre-VU cells in the hermaphrodite gonad. Once specified, the AC induces patterned proliferation of vulva via expression of LIN-3 (EGF) and then invades into the vulval epithelium. Although these cellular processes are essential for the proper organogenesis of vulva and appear to be temporally regulated, the mechanisms that coordinate the processes are not well understood. We computationally identified egl-43 as a gene likely to be expressed in the pre-AC/pre-VU cells and the AC, based on the presence of an enhancer element similar to the one that transcribes lin-3 in the same cells. Genetic epistasis analyses reveal that egl-43 acts downstream of or parallel to lin-12 in AC/VU cell fate specification at an early developmental stage, and functions downstream of fos-1 as well as upstream of zmp-1 and him-4 to regulate AC invasion at a later developmental stage. Characterization of the egl-43 regulatory region suggests that EGL-43 is a direct target of LIN-12 and HLH-2 (E12/47), which is required for the specification of the VU fate during AC/VU specification. EGL-43 also regulates basement membrane breakdown during AC invasion through a FOS-1-responsive regulatory element that drives EGL-43 expression in the AC and VU cells at the later stage. Thus, egl-43 integrates temporally distinct upstream regulatory events and helps program cell fate specification and cell invasion.

  6. Coordinated miRNA/mRNA expression profiles for understanding breed-specific metabolic characters of liver between Erhualian and large white pigs.

    Directory of Open Access Journals (Sweden)

    Runsheng Li

    Full Text Available MicroRNAs (miRNAs are involved in the regulation of various metabolic processes in the liver, yet little is known on the breed-specific expression profiles of miRNAs in coordination with those of mRNAs. Here we used two breeds of male newborn piglets with distinct metabolic characteristics, Large White (LW and Erhualian (EHL, to delineate the hepatic expression profiles of mRNA with microarray and miRNAs with both deep sequencing and microarray, and to analyze the functional relevance of integrated miRNA and mRNA expression in relation to the physiological and biochemical parameters. EHL had significantly lower body weight and liver weight at birth, but showed elevated serum levels of total cholesterol (TCH, high-density lipoprotein cholesterol (HDLC and low-density lipoprotein cholesterol (LDLC, as well as higher liver content of cholesterol. Higher serum cortisol and lower serum insulin and leptin were also observed in EHL piglets. Compared to LW, 30 up-regulated and 18 down-regulated miRNAs were identified in the liver of EHL, together with 298 up-regulated and 510 down-regulated mRNAs (FDR<10%. RT-PCR validation of some differentially expressed miRNAs (DEMs further confirmed the high-throughput data analysis. Using a target prediction algorithm, we found significant correlation between the up-regulated miRNAs and down-regulated mRNAs. Moreover, differentially expressed genes (DEGs, which are involved in proteolysis, were predicted to be mediated by DEMs. These findings provide new information on the miRNA and mRNA profiles in porcine liver, which would shed light on the molecular mechanisms underlying the breed-specific traits in the pig, and may serve as a basis for further investigation into the biological functions of miRNAs in porcine liver.

  7. N-methylpurine DNA glycosylase inhibits p53-mediated cell cycle arrest and coordinates with p53 to determine sensitivity to alkylating agents

    Institute of Scientific and Technical Information of China (English)

    Shanshan Song; Guichun Xing; Lin Yuan; Jian Wang; Shan Wang; Yuxin Yin; Chunyan Tian; Fuchu He; Lingqiang Zhang

    2012-01-01

    Alkylating agents induce genome-wide base damage,which is repaired mainly by N-methylpurine DNA glycosylase (MPG).An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks.However,the determinant of drug sensitivity or insensitivity still remains unclear.Here,we report that the p53 status coordinates with MPG to play a pivotal role in such process.MPG expression is positive in breast,lung and colon cancers (38.7%,43.4% and 25.3%,respectively) but negative in all adjacent normal tissues.MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells.The overexpression of MPG reduced,whereas depletion of MPG increased,the expression levels of pro-arrest gene downstream of p53 including p21,14-3-3σ and Gadd45 but not pro-apoptotic ones.The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53.Upon DNA alkylation stress,in p53 wild-type tumor cells,p53 dissociated from MPG and induced cell growth arrest.Then,AP sites were repaired efficiently,which led to insensitivity to alkylating agents.By contrast,in p53-mutated cells,the AP sites were repaired with low efficacy.To our knowledge,this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53,and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy.

  8. Tuning of Nafion{sup ®} by HKUST-1 as coordination network to enhance proton conductivity for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Jin, E-mail: zammanbo814@knu.ac.kr [Kyungpook National University, Research Institute of Advanced Energy Technology (Korea, Republic of); Talukdar, Krishan, E-mail: krishantu@yahoo.com; Choi, Sang-June, E-mail: sjchoi@knu.ac.kr [Kyungpook National University, Department of Environmental Engineering (Korea, Republic of)

    2016-02-15

    Metal-organic frameworks can be intentionally coordinated to achieve improved proton conductivity because they have highly ordered structures and modular nature that serve as a scaffold to anchor acidic groups and develop efficient proton transfer pathways for fuel cell application. Using the concept of a coordination network, the conductivity of Nafion{sup ®} was tuned by the incorporation of HKUST-1. It has Cu{sup II}–paddle wheel type nodes and 1,3,5-benzenetricarboxylate struts, feature accessible sites that provides an improved protonic channel depending on the water content. In spite of the fact that HKUST-1 is neutral, coordinated water molecules are contributed adequately acidic by Cu{sup II} to supply protons to enhance proton conductivity. Water molecules play a vital part in transfer of proton as conducting media and serve as triggers to change proton conductivity through reforming hydrogen bonding networks by water adsorption/desorption process. Increased ion exchange capacity and proton conductivity with lower water uptake of the H{sub 3}PO{sub 4}-doped material, and improved thermal stability (as confirmed by thermogravimetric analysis) were achieved. The structure of HKUST-1 was confirmed via field emission scanning electron microscopy and X-ray diffraction, while the porosity and adsorption desorption capacity were characterized by porosity analysis. Graphical abstract: The H{sub 3}PO{sub 4}-doped HKUST-1/Nafion® composite membrane is demonstrated to be a promising material based on its proton conductivity. HKUST-1 has an average particle diameter of around 15–20 µm. The proton conductivity, IEC values, and the thermal stability of the 2.5 wt% HKUST-1/Nafion® composite membrane suggest that HKUST-1 may be a promising candidate as a proton-conductive material in the polymer electrolyte fuel cell membrane due to its reasonable proton passageway, favorable surface area, lower water uptake with the higher IEC, and proton conductivity of the H

  9. Specific targeting of whole lymphoma cells to dendritic cells ex vivo provides a potent antitumor vaccine

    Directory of Open Access Journals (Sweden)

    Mocikat Ralph

    2007-03-01

    Full Text Available Abstract Background Dendritic cells (DC pulsed with tumor-derived antigenic material have widely been used in antitumor vaccination protocols. However, the optimal strategy of DC loading has not yet been established. Our aim was to define requirements of optimal DC vaccines in terms of in vivo protection in a murine B-cell lymphoma model. Methods We compare various loading reagents including whole parental and modified tumor cells and a single tumor-specific antigen, namely the lymphoma idiotype (Id. Bone marrow-derived DC were pulsed in vitro and used for therapy of established A20 lymphomas. Results We show that a vaccine with superior antitumor efficacy can be generated when DC are loaded with whole modified tumor cells which provide both (i antigenic polyvalency and (ii receptor-mediated antigen internalization. Uptake of cellular material was greatly enhanced when the tumor cells used for DC pulsing were engineered to express an anti-Fc receptor immunoglobulin specificity. Upon transfer of these DC, established tumor burdens were eradicated in 50% of mice. By contrast, pulsing DC with unmodified lymphoma cells or with the lymphoma Id, even when it was endowed with the anti-Fc receptor binding arm, was far less effective. A specific humoral anti-Id response could be detected, particularly following delivery of Id protein-pulsed DC, but it was not predictive of tumor protection. Instead a T-cell response was pivotal for successful tumor protection. Interaction of the transferred DC with CD8+ T lymphocytes seemed to play a role for induction of the immune response but was dispensable when DC had received an additional maturation stimulus. Conclusion Our analyses show that the advantages of specific antigen redirection and antigenic polyvalency can be combined to generate DC-based vaccines with superior antitumor efficacy. This mouse model may provide information for the standardization of DC-based vaccination protocols.

  10. Spatially Coordinated Changes in Intracellular Rheology and Extracellular Force Exertion during Mesenchymal Stem Cell Differentiation

    Science.gov (United States)

    McAndrews, Kathleen M.; McGrail, Daniel J.; Quach, Nhat D.; Dawson, Michelle R.

    2014-01-01

    The mechanical properties within the cell are regulated by the organization of the actin cytoskeleton, which is linked to the extracellular environment through focal adhesion proteins that transmit force. Chemical and mechanical stimuli alter the organization of cytoskeletal actin, which results in changes in cell shape, adhesion, and differentiation. By combining particle-tracking microrheology and traction force cytometry, we can monitor the mechanical properties of the actin meshwork and determine how changes in the intracellular network contribute to force generation. In this study, we investigated the effects of chemical (differentiation factors) and mechanical (substrate rigidity) stimuli important in mesenchymal stem cell (MSC) differentiation on the intracellular mechanics and traction stress generation. We found the presence of adipogenic factors resulted in stiffening of the actin meshwork regardless of substrate rigidity. In contrast, these factors increased traction stresses on hard substrates, which was associated with increased expression of contractility genes. Furthermore, MSCs cultured on hard substrates expressed both adipogenic and osteogenic markers indicative of mixed differentiation. On hard substrates, heterogeneity in the local elastic modulus-traction stress correlation was also increased in response to adipogenic factors, indicating that these mechanical properties may be reflective of differences in level of MSC differentiation. These results suggest intracellular rheology and traction stress generation are spatially regulated and contribute insight into how single cell mechanical forces contribute to MSC differentiation. PMID:25156989

  11. A Centralized Inter-Cell Rank Coordination Mechanism for 5G Systems

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Pedersen, Klaus I.; Mogensen, Preben Elgaard

    2017-01-01

    Multiple transmit and receive antennas can be used to increase the number of independent streams between a transmitter-receiver pair, or to improve the interference resilience property with the help of linear minimum mean squared error (MMSE) receivers. An interference aware inter-cell rank coord...

  12. Toward Coordinated Robust Allocation of Reserve Policies for a Cell-based Power System

    DEFF Research Database (Denmark)

    Hu, Junjie; Heussen, Kai; Claessens, Bert;

    2016-01-01

    Conventional regulation reserves have fixed participation factors and are thus not well suited to utilize differentiated capabilities of ancillary service providers. This study applies linear decision rules-based (LDR) control policies, which effectively adapt the present participation factor in ...... to the cooperation of multiple cells. Two illustrating examples are presented to show the functioning of the proposed LDR method....

  13. Spatially coordinated changes in intracellular rheology and extracellular force exertion during mesenchymal stem cell differentiation

    Science.gov (United States)

    McAndrews, Kathleen M.; McGrail, Daniel J.; Quach, Nhat D.; Dawson, Michelle R.

    2014-10-01

    The mechanical properties within the cell are regulated by the organization of the actin cytoskeleton, which is linked to the extracellular environment through focal adhesion proteins that transmit force. Chemical and mechanical stimuli alter the organization of cytoskeletal actin, which results in changes in cell shape, adhesion, and differentiation. By combining particle-tracking microrheology and traction force cytometry, we can monitor the mechanical properties of the actin meshwork and determine how changes in the intracellular network contribute to force generation. In this study, we investigated the effects of chemical (differentiation factors) and mechanical (substrate rigidity) stimuli important in mesenchymal stem cell (MSC) differentiation on the intracellular mechanics and traction stress generation. We found the presence of adipogenic factors resulted in stiffening of the actin meshwork regardless of substrate rigidity. In contrast, these factors increased traction stresses on hard substrates, which was associated with increased expression of contractility genes. Furthermore, MSCs cultured on hard substrates expressed both adipogenic and osteogenic markers indicative of mixed differentiation. On hard substrates, heterogeneity in the local elastic modulus-traction stress correlation was also increased in response to adipogenic factors, indicating that these mechanical properties may be reflective of differences in the level of MSC differentiation. These results suggest intracellular rheology and traction stress generation are spatially regulated and contribute insight into how single cell mechanical forces contribute to MSC differentiation.

  14. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells

    DEFF Research Database (Denmark)

    Arner, Erik; Daub, Carsten O.; Vitting-Seerup, Kristoffer

    2015-01-01

    Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we...

  15. Construction of cell type-specific logic models of signaling networks using CellNOpt.

    Science.gov (United States)

    Morris, Melody K; Melas, Ioannis; Saez-Rodriguez, Julio

    2013-01-01

    Mathematical models are useful tools for understanding protein signaling networks because they provide an integrated view of pharmacological and toxicological processes at the molecular level. Here we describe an approach previously introduced based on logic modeling to generate cell-specific, mechanistic and predictive models of signal transduction. Models are derived from a network encoding prior knowledge that is trained to signaling data, and can be either binary (based on Boolean logic) or quantitative (using a recently developed formalism, constrained fuzzy logic). The approach is implemented in the freely available tool CellNetOptimizer (CellNOpt). We explain the process CellNOpt uses to train a prior knowledge network to data and illustrate its application with a toy example as well as a realistic case describing signaling networks in the HepG2 liver cancer cell line.

  16. Coordinating Etk/Bmx activation and VEGF upregulation to promote cell survival and proliferation.

    Science.gov (United States)

    Chau, Cindy H; Chen, Kai-Yun; Deng, Hong-Tao; Kim, Kwang-Jin; Hosoya, Ken-ichi; Terasaki, Tetsuya; Shih, Hsiu-Ming; Ann, David K

    2002-12-12

    Etk/Bmx, a member of the Tec family of non-receptor tyrosine kinase, is characterized by an N-terminal PH domain and has recently been shown to be involved in the regulation of various cellular processes, including proliferation, differentiation, motility and apoptosis. Since VEGF and the activation of its signaling pathway have been implicated in modulating a variety of biological responses, we characterized the role of Etk-dependent signaling pathways involved in the upregulation of VEGF expression, and explored the functional implications of this enhancement in sustaining cell proliferation and survival. Using Northern and Western analyses, transient transfections, and pharmacological agents, we demonstrate that Etk activation alone is sufficient to transcriptionally induce VEGF expression, independent of the previously identified hypoxia response element (HRE), in both Pa-4 epithelial and TR-BBB endothelial cells under normoxia. In addition, Etk utilizes both MEK/ERK and PI3-K/Pak1 signaling pathways in concert to activate VEGF transcription. Functionally, Etk activation elicits a profound stimulatory effect on TR-BBB cell proliferation and formation of capillary-like networks in Matrigel containing reduced levels of growth factors. Finally, antisense oligonucleotides against either endogenous VEGF or Etk abrogate the proliferation of Etk-activated TR-BBB cells, and exogenous VEGF treatment stimulates endogenous Etk tyrosine phosphorylation in HUVECs. Taken together, these results indicate that VEGF is both an Etk downstream target gene and an Etk upstream activator, constituting a reciprocal Etk-VEGF autoregulatory loop. These findings, to our knowledge, are the first delineation of a network of positive feedforward signaling pathways that converge on the Etk-VEGF axis, causally associating Etk-mediation of VEGF induction with enhanced cellular processes in both epithelial and endothelial cells.

  17. Cell type-specific glycoconjugates of collecting duct cells during maturation of the rat kidney.

    Science.gov (United States)

    Holthöfer, H

    1988-08-01

    The ontogeny of lectin-positive epithelial cell types and the maturation of polarized expression of the glycocalyx of the collecting ducts (CD) of the rat kidney were studied from samples of 18th-day fetal and neonatal kidneys of various ages. Lectins from Dolichos biflorus (DBA) and Vicia villosa (VVA), with preferential affinity to principal cells, stained virtually all CD cells of the fetal kidneys. However, within two days postnatally, the number of cells positive for DBA and VVA decreased to amounts found in the adult kidneys. Moreover, a characteristic change occurred rapidly after birth in the intracellular polarization of the reactive glycoconjugates, from a uniform plasmalemmal to a preferentially apical staining. In contrast, lectins from Arachis hypogaea (PNA), Maclura pomifera (MPA) and Lotus tetragonolobus (LTA), reacting indiscriminatively with principal and intercalated cells of adult kidneys, stained most CD cells in the fetal kidneys, and failed to show any postnatal change in the amount of positive cells or in the intracellular polarization. The immunocytochemical tests for (Na + K)-ATPase and carbonic anhydrase (CA II) revealed the characteristic postnatal decrease in the amount of principal cells and simultaneous increase in the amount of CA II rich intercalated cells. DBA and VVA reactive cells also decreased postnatally, paralleling the changes observed in the (Na + K)-ATPase positive principal cells. The present results suggest that the expression of the cell type-specific glycocalyx of principal and intercalated cells is developmentally regulated, undergoes profound changes during maturation, and is most likely associated with electrolyte transport phenomena.

  18. Coordinate regulation of stem cell competition by Slit-Robo and JAK-STAT signaling in the Drosophila testis.

    Directory of Open Access Journals (Sweden)

    Rachel R Stine

    2014-11-01

    Full Text Available Stem cells in tissues reside in and receive signals from local microenvironments called niches. Understanding how multiple signals within niches integrate to control stem cell function is challenging. The Drosophila testis stem cell niche consists of somatic hub cells that maintain both germline stem cells and somatic cyst stem cells (CySCs. Here, we show a role for the axon guidance pathway Slit-Roundabout (Robo in the testis niche. The ligand Slit is expressed specifically in hub cells while its receptor, Roundabout 2 (Robo2, is required in CySCs in order for them to compete for occupancy in the niche. CySCs also require the Slit-Robo effector Abelson tyrosine kinase (Abl to prevent over-adhesion of CySCs to the niche, and CySCs mutant for Abl outcompete wild type CySCs for niche occupancy. Both Robo2 and Abl phenotypes can be rescued through modulation of adherens junction components, suggesting that the two work together to balance CySC adhesion levels. Interestingly, expression of Robo2 requires JAK-STAT signaling, an important maintenance pathway for both germline and cyst stem cells in the testis. Our work indicates that Slit-Robo signaling affects stem cell function downstream of the JAK-STAT pathway by controlling the ability of stem cells to compete for occupancy in their niche.

  19. Coordinate regulation of stem cell competition by Slit-Robo and JAK-STAT signaling in the Drosophila testis.

    Science.gov (United States)

    Stine, Rachel R; Greenspan, Leah J; Ramachandran, Kapil V; Matunis, Erika L

    2014-11-01

    Stem cells in tissues reside in and receive signals from local microenvironments called niches. Understanding how multiple signals within niches integrate to control stem cell function is challenging. The Drosophila testis stem cell niche consists of somatic hub cells that maintain both germline stem cells and somatic cyst stem cells (CySCs). Here, we show a role for the axon guidance pathway Slit-Roundabout (Robo) in the testis niche. The ligand Slit is expressed specifically in hub cells while its receptor, Roundabout 2 (Robo2), is required in CySCs in order for them to compete for occupancy in the niche. CySCs also require the Slit-Robo effector Abelson tyrosine kinase (Abl) to prevent over-adhesion of CySCs to the niche, and CySCs mutant for Abl outcompete wild type CySCs for niche occupancy. Both Robo2 and Abl phenotypes can be rescued through modulation of adherens junction components, suggesting that the two work together to balance CySC adhesion levels. Interestingly, expression of Robo2 requires JAK-STAT signaling, an important maintenance pathway for both germline and cyst stem cells in the testis. Our work indicates that Slit-Robo signaling affects stem cell function downstream of the JAK-STAT pathway by controlling the ability of stem cells to compete for occupancy in their niche.

  20. Targeting breast cancer stem cells with HER2-specific antibodies and natural killer cells.

    Science.gov (United States)

    Diessner, Joachim; Bruttel, Valentin; Becker, Kathrin; Pawlik, Miriam; Stein, Roland; Häusler, Sebastian; Dietl, Johannes; Wischhusen, Jörg; Hönig, Arnd

    2013-01-01

    Breast cancer is the most common cancer among women worldwide. Every year, nearly 1.4 million new cases of breast cancer are diagnosed, and about 450.000 women die of the disease. Approximately 15-25% of breast cancer cases exhibit increased quantities of the trans-membrane receptor tyrosine kinase human epidermal growth factor receptor 2 (HER2) on the tumor cell surface. Previous studies showed that blockade of this HER2 proto-oncogene with the antibody trastuzumab substantially improved the overall survival of patients with this aggressive type of breast cancer. Recruitment of natural killer (NK) cells and subsequent induction of antibody-dependent cell-mediated cytotoxicity (ADCC) contributed to this beneficial effect. We hypothesized that antibody binding to HER2-positive breast cancer cells and thus ADCC might be further improved by synergistically applying two different HER2-specific antibodies, trastuzumab and pertuzumab. We found that tumor cell killing via ADCC was increased when the combination of trastuzumab, pertuzumab, and NK cells was applied to HER2-positive breast cancer cells, as compared to the extent of ADCC induced by a single antibody. Furthermore, a subset of CD44(high)CD24(low)HER2(low) cells, which possessed characteristics of cancer stem cells, could be targeted more efficiently by the combination of two HER2-specific antibodies compared to the efficiency of one antibody. These in vitro results demonstrated the immunotherapeutic benefit achieved by the combined application of trastuzumab and pertuzumab. These findings are consistent with the positive results of the clinical studies, CLEOPATRA and NEOSPHERE, conducted with patients that had HER2-positive breast cancer. Compared to a single antibody treatment, the combined application of trastuzumab and pertuzumab showed a stronger ADCC effect and improved the targeting of breast cancer stem cells.

  1. Recombinant scorpion insectotoxin AaIT kills specifically insect cells but not human cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The nucleotide sequence deduced from the amino acid sequence of the scorpion insectotoxin AaIT was chemically synthesized and was expressed in Escherichia coli. The authenticity of this in vitro expressed peptide was confirmed by N-terminal peptide sequencing. Two groups of bioassays, artificial diet incorporation assay and contact insecticidal effect assay, were carried out separately to verify the toxicity of this recombinant toxin. At the end of a 24 h experimental period, more than 60% of the testing diamondback moth (Plutella xylostella) larvae were killed in both groups with LCs0 value of 18.4 uM and 0.70 μM respectively. Cytotoxicity assay using cultured Sf9 insect cells and MCF-7 human cells demonstrated that the toxin AaIT had specific toxicity against insect cells but not human cells. Only 0.13 μM recombinant toxin was needed to kill 50% of cultured insect cells while as much as 1.3μM toxin had absolutely no effect on human cells. Insect cells produced obvious intrusions from their plasma membrane before broken up. We infer that toxin AaIT bind to a putative sodium channel in these insect cells and open the channel persistently, which would result in Na+ influx and finally cause destruction of insect cells.

  2. Tissue-specific stem cells: friend or foe?

    Institute of Scientific and Technical Information of China (English)

    Joerg Huelsken

    2009-01-01

    @@ In the face of a hostile environ-ment, the integrity of many tissues in the adult organism is maintained by a constant replacement of cells. This involves a hierarchical organization of the tissue with rare multi-potent stem cells giving rise to proliferating cells of limited proliferative capacity which in turn produce differentiating cells.

  3. Allogeneic Mesenchymal Stem Cell Treatment Induces Specific Alloantibodies in Horses

    Directory of Open Access Journals (Sweden)

    Sean D. Owens

    2016-01-01

    Full Text Available Background. It is unknown whether horses that receive allogeneic mesenchymal stem cells (MSCs injections develop specific humoral immune response. Our goal was to develop and validate a flow cytometric MSC crossmatch procedure and to determine if horses that received allogeneic MSCs in a clinical setting developed measurable antibodies following MSC administration. Methods. Serum was collected from a total of 19 horses enrolled in 3 different research projects. Horses in the 3 studies all received unmatched allogeneic MSCs. Bone marrow (BM or adipose tissue derived MSCs (ad-MSCs were administered via intravenous, intra-arterial, intratendon, or intraocular routes. Anti-MSCs and anti-bovine serum albumin antibodies were detected via flow cytometry and ELISA, respectively. Results. Overall, anti-MSC antibodies were detected in 37% of the horses. The majority of horses (89% were positive for anti-bovine serum albumin (BSA antibodies prior to and after MSC injection. Finally, there was no correlation between the amount of anti-BSA antibody and the development of anti-MSC antibodies. Conclusion. Anti allo-MSC antibody development was common; however, the significance of these antibodies is unknown. There was no correlation between either the presence or absence of antibodies and the percent antibody binding to MSCs and any adverse reaction to a MSC injection.

  4. A Comprehensive, Ethnically Diverse Library of Sickle Cell Disease-Specific Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Seonmi Park

    2017-04-01

    Full Text Available Sickle cell anemia affects millions of people worldwide and is an emerging global health burden. As part of a large NIH-funded NextGen Consortium, we generated a diverse, comprehensive, and fully characterized library of sickle-cell-disease-specific induced pluripotent stem cells (iPSCs from patients of different ethnicities, β-globin gene (HBB haplotypes, and fetal hemoglobin (HbF levels. iPSCs stand to revolutionize the way we study human development, model disease, and perhaps eventually, treat patients. Here, we describe this unique resource for the study of sickle cell disease, including novel haplotype-specific polymorphisms that affect disease severity, as well as for the development of patient-specific therapeutics for this phenotypically diverse disorder. As a complement to this library, and as proof of principle for future cell- and gene-based therapies, we also designed and employed CRISPR/Cas gene editing tools to correct the sickle hemoglobin (HbS mutation.

  5. A Comprehensive, Ethnically Diverse Library of Sickle Cell Disease-Specific Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Park, Seonmi; Gianotti-Sommer, Andreia; Molina-Estevez, Francisco Javier; Vanuytsel, Kim; Skvir, Nick; Leung, Amy; Rozelle, Sarah S; Shaikho, Elmutaz Mohammed; Weir, Isabelle; Jiang, Zhihua; Luo, Hong-Yuan; Chui, David H K; Figueiredo, Maria Stella; Alsultan, Abdulraham; Al-Ali, Amein; Sebastiani, Paola; Steinberg, Martin H; Mostoslavsky, Gustavo; Murphy, George J

    2017-04-11

    Sickle cell anemia affects millions of people worldwide and is an emerging global health burden. As part of a large NIH-funded NextGen Consortium, we generated a diverse, comprehensive, and fully characterized library of sickle-cell-disease-specific induced pluripotent stem cells (iPSCs) from patients of different ethnicities, β-globin gene (HBB) haplotypes, and fetal hemoglobin (HbF) levels. iPSCs stand to revolutionize the way we study human development, model disease, and perhaps eventually, treat patients. Here, we describe this unique resource for the study of sickle cell disease, including novel haplotype-specific polymorphisms that affect disease severity, as well as for the development of patient-specific therapeutics for this phenotypically diverse disorder. As a complement to this library, and as proof of principle for future cell- and gene-based therapies, we also designed and employed CRISPR/Cas gene editing tools to correct the sickle hemoglobin (HbS) mutation.

  6. Heterogeneity, Cell Biology and Tissue Mechanics of Pseudostratified Epithelia: Coordination of Cell Divisions and Growth in Tightly Packed Tissues.

    Science.gov (United States)

    Strzyz, P J; Matejcic, M; Norden, C

    2016-01-01

    Pseudostratified epithelia (PSE) are tightly packed proliferative tissues that are important precursors of the development of diverse organs in a plethora of species, invertebrate and vertebrate. PSE consist of elongated epithelial cells that are attached to the apical and basal side of the tissue. The nuclei of these cells undergo interkinetic nuclear migration (IKNM) which leads to all mitotic events taking place at the apical surface of the epithelium. In this review, we discuss the intricacies of proliferation in PSE, considering cell biological, as well as the physical aspects. First, we summarize the principles governing the invariability of apical nuclear migration and apical cell division as well as the importance of apical mitoses for tissue proliferation. Then, we focus on the mechanical and structural features of these tissues. Here, we discuss how the overall architecture of pseudostratified tissues changes with increased cell packing. Lastly, we consider possible mechanical cues resulting from these changes and their potential influence on cell proliferation.

  7. A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells

    DEFF Research Database (Denmark)

    Andersen, P S; Stryhn, A; Hansen, B E

    1996-01-01

    lead to novel approaches in immunotherapy. However, it has proven difficult to generate antibodies with the specificity of T cells by conventional hybridoma techniques. Here we report that the phage display technology is a feasible alternative to generate antibodies recognizing specific, predetermined...

  8. Lineage-specific reprogramming as a strategy for cell therapy.

    Science.gov (United States)

    Darabi, Radbod; Perlingeiro, Rita C R

    2008-06-15

    Embryonic stem (ES) cells are endowed with extensive ability for self renewal and differentiation. These features make them a promising candidate for cell therapy. However, despite the enthusiasm and hype surrounding the potential therapeutic use of human ES cells and more recently induced pluripotent stem (iPS) cells, to date few reports have documented successful therapeutic outcome with ES-derived cell populations. This is probably due to two main caveats associated with ES cells, their capacity to form teratomas and the challenge of isolating the appropriate therapeutic cell population from differentiating ES cells. We have focused our efforts on the derivation of skeletal muscle progenitors from ES cells and here we will discuss the strategy of reprogramming lineage choices by overexpression of a master regulator, which has proven successful for the generation of the skeletal myogenic lineage from mouse ES cells.

  9. Feedback regulation between atypical E2Fs and APC/CCdh1 coordinates cell cycle progression.

    Science.gov (United States)

    Boekhout, Michiel; Yuan, Ruixue; Wondergem, Annelotte P; Segeren, Hendrika A; van Liere, Elsbeth A; Awol, Nesibu; Jansen, Imke; Wolthuis, Rob M F; de Bruin, Alain; Westendorp, Bart

    2016-03-01

    E2F transcription factors control the oscillating expression pattern of multiple target genes during the cell cycle. Activator E2Fs, E2F1-3, induce an upswing of E2F targets, which is essential for the G1-to-S phase transition, whereas atypical E2Fs, E2F7 and E2F8, mediate a downswing of the same targets during late S, G2, and M phases. Expression of atypical E2Fs is induced by E2F1-3, but it is unknown how atypical E2Fs are inactivated in a timely manner. Here, we demonstrate that E2F7 and E2F8 are substrates of the anaphase-promoting complex/cyclosome (APC/C). Removal of CDH1, or mutating the CDH1-interacting KEN boxes, stabilized E2F7/8 from anaphase onwards and during G1. Expressing KEN mutant E2F7 during G1 impairs S phase entry and eventually results in cell death. Furthermore, we show that E2F8, but not E2F7, interacts also with APC/C(C) (dc20). Importantly, atypical E2Fs can activate APC/C(C) (dh1) by repressing its inhibitors cyclin A, cyclin E, and Emi1. In conclusion, we discovered a feedback loop between atypical E2Fs and APC/C(C) (dh1), which ensures balanced expression of cell cycle genes and normal cell cycle progression.

  10. Identification of Pathways Required for the Coordination of Late Mitotic Events in Animal Cells

    Science.gov (United States)

    2006-08-01

    prevent the recognition of chromosome ends by DNA repair pathways. Repair of telomeres as DSBs can lead to dicentric chromosomes , which are very...a more appropriate telomere-specific pathway. If telomeres are repaired by NHEJ, dicentric chromosomes are created, which lead to breakage-fusion...chromatin structures that protect chromosomes ends from the DNA repair pathways. Telomeres are re-formed after each round of DNA replication. The

  11. Coordinated encoding between cell types in the retina: insights from the theory of phase transitions

    Science.gov (United States)

    Sharpee, Tatyana

    2015-03-01

    In this talk I will describe how the emergence of some types of neurons in the brain can be quantitatively described by the theory of transitions between different phases of matter. The two key parameters that control the separation of neurons into subclasses are the mean and standard deviation of noise levels among neurons in the population. The mean noise level plays the role of temperature in the classic theory of phase transitions, whereas the standard deviation is equivalent to pressure, in the case of liquid-gas transitions, or to magnetic field for magnetic transitions. Our results account for properties of two recently discovered types of salamander OFF retinal ganglion cells, as well as the absence of multiple types of ON cells. We further show that, across visual stimulus contrasts, retinal circuits continued to operate near the critical point whose quantitative characteristics matched those expected near a liquid-gas critical point and described by the nearest-neighbor Ising model in three dimensions. Because the retina needs to operate under changing stimulus conditions, the observed parameters of cell types corresponded to metastable states in the region between the spinodal line and the line describing maximally informative solutions. Such properties of neural circuits can maximize information transmission in a given environment while retaining the ability to quickly adapt to a new environment. NSF CAREER award 1254123 and NIH R01EY019493

  12. Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins.

    Science.gov (United States)

    Schofield, Whitman B; Lim, Hoong Chuin; Jacobs-Wagner, Christine

    2010-09-15

    What regulates chromosome segregation dynamics in bacteria is largely unknown. Here, we show in Caulobacter crescentus that the polarity factor TipN regulates the directional motion and overall translocation speed of the parS/ParB partition complex by interacting with ParA at the new pole. In the absence of TipN, ParA structures can regenerate behind the partition complex, leading to stalls and back-and-forth motions of parS/ParB, reminiscent of plasmid behaviour. This extrinsic regulation of the parS/ParB/ParA system directly affects not only division site selection, but also cell growth. Other mechanisms, including the pole-organizing protein PopZ, compensate for the defect in segregation regulation in ΔtipN cells. Accordingly, synthetic lethality of PopZ and TipN is caused by severe chromosome segregation and cell division defects. Our data suggest a mechanistic framework for adapting a self-organizing oscillator to create motion suitable for chromosome segregation.

  13. Foxg1 localizes to mitochondria and coordinates cell differentiation and bioenergetics.

    Science.gov (United States)

    Pancrazi, Laura; Di Benedetto, Giulietta; Colombaioni, Laura; Della Sala, Grazia; Testa, Giovanna; Olimpico, Francesco; Reyes, Aurelio; Zeviani, Massimo; Pozzan, Tullio; Costa, Mario

    2015-11-10

    Forkhead box g1 (Foxg1) is a nuclear-cytosolic transcription factor essential for the forebrain development and involved in neurodevelopmental and cancer pathologies. Despite the importance of this protein, little is known about the modalities by which it exerts such a large number of cellular functions. Here we show that a fraction of Foxg1 is localized within the mitochondria in cell lines, primary neuronal or glial cell cultures, and in the mouse cortex. Import of Foxg1 in isolated mitochondria appears to be membrane potential-dependent. Amino acids (aa) 277-302 were identified as critical for mitochondrial localization. Overexpression of full-length Foxg1 enhanced mitochondrial membrane potential (ΔΨm) and promoted mitochondrial fission and mitosis. Conversely, overexpression of the C-term Foxg1 (aa 272-481), which is selectively localized in the mitochondrial matrix, enhanced organelle fusion and promoted the early phase of neuronal differentiation. These findings suggest that the different subcellular localizations of Foxg1 control the machinery that brings about cell differentiation, replication, and bioenergetics, possibly linking mitochondrial functions to embryonic development and pathological conditions.

  14. Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration.

    Science.gov (United States)

    Lachmann, Sylvie; Jevons, Amy; De Rycker, Manu; Casamassima, Adele; Radtke, Simone; Collazos, Alejandra; Parker, Peter J

    2011-01-01

    The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types.

  15. Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration.

    Directory of Open Access Journals (Sweden)

    Sylvie Lachmann

    Full Text Available The mammalian protein kinase N (PKN family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types.

  16. Cell-type-specific recruitment of amygdala interneurons to hippocampal theta rhythm and noxious stimuli in vivo.

    Science.gov (United States)

    Bienvenu, Thomas C M; Busti, Daniela; Magill, Peter J; Ferraguti, Francesco; Capogna, Marco

    2012-06-21

    Neuronal synchrony in the basolateral amygdala (BLA) is critical for emotional behavior. Coordinated theta-frequency oscillations between the BLA and the hippocampus and precisely timed integration of salient sensory stimuli in the BLA are involved in fear conditioning. We characterized GABAergic interneuron types of the BLA and determined their contribution to shaping these network activities. Using in vivo recordings in rats combined with the anatomical identification of neurons, we found that the firing of BLA interneurons associated with network activities was cell type specific. The firing of calbindin-positive interneurons targeting dendrites was precisely theta-modulated, but other cell types were heterogeneously modulated, including parvalbumin-positive basket cells. Salient sensory stimuli selectively triggered axo-axonic cells firing and inhibited firing of a disctinct projecting interneuron type. Thus, GABA is released onto BLA principal neurons in a time-, domain-, and sensory-specific manner. These specific synaptic actions likely cooperate to promote amygdalo-hippocampal synchrony involved in emotional memory formation.

  17. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yoshikazu [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Itoh, Tohru, E-mail: itohru@iam.u-tokyo.ac.jp [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Miyajima, Atsushi [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2009-09-10

    Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk{sup +} hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk{sup +} hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk{sup +} hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally.

  18. The bi-specific CD3 × NCAM antibody: a model to preactivate T cells prior to tumour cell lysis

    Science.gov (United States)

    JENSEN, M; ERNESTUS, K; KEMSHEAD, J; KLEHR, M; VON BERGWELT-BAILDON, M S; SCHINKÖTHE, T; SCHULTZE, J L; BERTHOLD, F

    2003-01-01

    To target the neural cell adhesion molecule (NCAM, CD56) on neuroblastoma by T cell-based immunotherapy we have generated a bi-specific CD3 × NCAM antibody (OE-1). This antibody can be used to redirect T cells to NCAM+ cells. Expectedly, the antibody binds specifically to NCAM+ neuroblastoma cells and CD3+ T cells. OE-1 induces T cell activation, expansion and effector function in peripheral blood mononuclear cell (PBMC)-derived CD4+ and CD8+ T cells. T cell activation was shown to depend on the presence of normal natural killer (NK) cells in the culture. Interestingly, while PBMC- derived T cells were activated by OE-1, NK cells were almost completely depleted, suggesting that T cells activated by OE-1 deleted the NK cells. Activated CD4+ and CD8+ T cells differentiate into a larger CCR7+ central memory and a smaller CCR7– effector memory cell population. Most importantly, preactivated T cells were highly cytotoxic for neuroblastoma cells. In eight of 11 experiments tumour-directed cytotoxicity was enhanced when NK cells were present during preactivation with OE-1. These data strongly support a bi-phasic therapeutic concept of primarily stimulating T cells with the bi-specific antibody in the presence of normal NCAM+ cells to induce T cell activation, migratory capacity and finally tumour cell lysis. PMID:14616785

  19. Antigen-specific in vitro expansion of functional redirected NY-ESO-1-specific human CD8+ T-cells in a cell-free system.

    Science.gov (United States)

    Jakka, Gopinadh; Schuberth, Petra C; Thiel, Markus; Held, Gerhard; Stenner, Frank; Van Den Broek, Maries; Renner, Christoph; Mischo, Axel; Petrausch, Ulf

    2013-10-01

    Tumors can be targeted by the adoptive transfer of chimeric antigen receptor (CAR) redirected T-cells. Antigen-specific expansion protocols are needed to generate large quantities of redirected T-cells. We aimed to establish a protocol to expand functional active NY-ESO-1-specific redirected human CD8(+) T-cells. The anti-idiotypic Fab antibody A4 with specificity for HLA-A 0201/NY-ESO-1157-165 was tested by competition assays using a HLA-A 0201/NY-ESO-1157-165 tetramer. HLA-A 0201/NY-ESO-1157-165 redirected T-cells were generated, expanded and tested for CAR expression, cytokine release, in vitro cytolysis and protection against xenografted HLA-A 0201/NY-ESO-1157-165-positive multiple myeloma cells. A4 demonstrated antigen-specific binding to HLA-A 0201/NY-ESO-1157-165 redirected T-cells. Expansion with A4 resulted in 98% of HLA-A 0201/NY-ESO-1157-165 redirected T-cells. A4 induced strong proliferation, resulting in a 300-fold increase of redirected T-cells. After expansion protocols, redirected T-cells secreted Interleukin-2, (IL-2), interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) and lysed target cells in vitro and were protective in vivo. A4 expanded HLA-A 0201/NY-ESO-1157-165 redirected T-cells with preservation of antigen-specific function.

  20. Poisson Coordinates.

    Science.gov (United States)

    Li, Xian-Ying; Hu, Shi-Min

    2013-02-01

    Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.

  1. Dendritic Cells Coordinate Innate Immunity via MyD88 Signaling to Control Listeria monocytogenes Infection

    Directory of Open Access Journals (Sweden)

    Catharina Arnold-Schrauf

    2014-02-01

    Full Text Available Listeria monocytogenes (LM, a facultative intracellular Gram-positive pathogen, can cause life-threatening infections in humans. In mice, the signaling cascade downstream of the myeloid differentiation factor 88 (MyD88 is essential for proper innate immune activation against LM, as MyD88-deficient mice succumb early to infection. Here, we show that MyD88 signaling in dendritic cells (DCs is sufficient to mediate the protective innate response, including the production of proinflammatory cytokines, neutrophil infiltration, bacterial clearance, and full protection from lethal infection. We also demonstrate that MyD88 signaling by DCs controls the infection rates of CD8α+ cDCs and thus limits the spread of LM to the T cell areas. Furthermore, in mice expressing MyD88 in DCs, inflammatory monocytes, which are required for bacterial clearance, are activated independently of intrinsic MyD88 signaling. In conclusion, CD11c+ conventional DCs critically integrate pathogen-derived signals via MyD88 signaling during early infection with LM in vivo.

  2. FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells.

    Science.gov (United States)

    Yeo, Hyeonju; Lyssiotis, Costas A; Zhang, Yuqing; Ying, Haoqiang; Asara, John M; Cantley, Lewis C; Paik, Ji-Hye

    2013-10-02

    Forkhead Box O (FoxO) transcription factors act in adult stem cells to preserve their regenerative potential. Previously, we reported that FoxO maintains the long-term proliferative capacity of neural stem/progenitor cells (NPCs), and that this occurs, in part, through the maintenance of redox homeostasis. Herein, we demonstrate that among the FoxO3-regulated genes in NPCs are a host of enzymes in central carbon metabolism that act to combat reactive oxygen species (ROS) by directing the flow of glucose and glutamine carbon into defined metabolic pathways. Characterization of the metabolic circuit observed upon loss of FoxO3 revealed a drop in glutaminolysis and filling of the tricarboxylic acid (TCA) cycle. Additionally, we found that glucose uptake, glucose metabolism and oxidative pentose phosphate pathway activity were similarly repressed in the absence of FoxO3. Finally, we demonstrate that impaired glucose and glutamine metabolism compromises the proliferative potential of NPCs and that this is exacerbated following FoxO3 loss. Collectively, our findings show that a FoxO3-dependent metabolic programme supports redox balance and the neurogenic potential of NPCs.

  3. Tissue-specific designs of stem cell hierarchies

    NARCIS (Netherlands)

    Visvader, Jane E; Clevers, Hans

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in

  4. Tissue-specific designs of stem cell hierarchies

    NARCIS (Netherlands)

    Visvader, Jane E; Clevers, Hans

    2016-01-01

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in quiesc

  5. Dissection of T-cell antigen specificity in human melanoma

    DEFF Research Database (Denmark)

    Andersen, Rikke Sick; Albæk Thrue, Charlotte; Junker, Niels

    2012-01-01

    -associated antigens and applying a novel technology for high-throughput analysis of T-cell responses, we dissected the composition of melanoma-restricted T-cell responses in 63 TIL cultures. T-cell reactivity screens against 175 melanoma-associated epitopes detected 90 responses against 18 different epitopes...

  6. T cell homing to tumors detected by 3D-coordinated positron emission tomography and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Agger, Ralf; Petersen, Mikkel; Petersen, Charlotte Christie;

    2007-01-01

    A general hindrance to progress in adoptive cellular therapy is the lack of detailed knowledge of the fate of transferred cells in the body of the recipient. In this study, we present a novel technique for tracking of 124I-labeled cells in situ, which combines the high spatial resolution of magne......A general hindrance to progress in adoptive cellular therapy is the lack of detailed knowledge of the fate of transferred cells in the body of the recipient. In this study, we present a novel technique for tracking of 124I-labeled cells in situ, which combines the high spatial resolution...... of magnetic resonance imaging with the high sensitivity and spatial accuracy of positron emission tomography. We have used this technique, together with determination of tissue radioactivity, flow cytometry, and microscopy, to characterize and quantitate the specific accumulation of transferred CD8+ T cells...... was determined by flow cytometry each day for 8 consecutive days after adoptive transfer. From low levels 1 day after injection, their number gradually increased until day 5 when an average of 3.3x10(6) SIINFEKL-specific cells per gram tumor tissue was found. By applying the combined positron emission tomography/magnetic...

  7. Arf6 coordinates actin assembly through the WAVE complex, a mechanism usurped by Salmonella to invade host cells

    Science.gov (United States)

    Humphreys, Daniel; Davidson, Anthony C.; Hume, Peter J.; Makin, Laura E.; Koronakis, Vassilis

    2013-01-01

    ADP ribosylation factor (Arf) 6 anchors to the plasma membrane, where it coordinates membrane trafficking and cytoskeleton remodelling, but how it assembles actin filaments is unknown. By reconstituting membrane-associated actin assembly mediated by the WASP family veroprolin homolog (WAVE) regulatory complex (WRC), we recapitulated an Arf6-driven actin polymerization pathway. We show that Arf6 is divergent from other Arf members, as it was incapable of directly recruiting WRC. We demonstrate that Arf6 triggers actin assembly at the membrane indirectly by recruiting the Arf guanine nucleotide exchange factor (GEF) ARNO that activates Arf1 to enable WRC-dependent actin assembly. The pathogen Salmonella usurped Arf6 for host cell invasion by recruiting its canonical GEFs EFA6 and BRAG2. Arf6 and its GEFs facilitated membrane ruffling and pathogen invasion via ARNO, and triggered actin assembly by generating an Arf1–WRC signaling hub at the membrane in vitro and in cells. This study reconstitutes Arf6-dependent actin assembly to reveal a mechanism by which related Arf GTPases orchestrate distinct steps in the WRC cytoskeleton remodelling pathway. PMID:24085844

  8. Coordinated actions of SLX1-SLX4 and MUS81-EME1 for Holliday junction resolution in human cells.

    Science.gov (United States)

    Wyatt, Haley D M; Sarbajna, Shriparna; Matos, Joao; West, Stephen C

    2013-10-24

    Holliday junctions (HJs) are four-way DNA intermediates that form during homologous recombination, and their efficient resolution is essential for chromosome segregation. Here, we show that three structure-selective endonucleases, namely SLX1-SLX4, MUS81-EME1, and GEN1, define two pathways of HJ resolution in human cells. One pathway is mediated by GEN1, whereas SLX1-SLX4 and MUS81-EME1 provide a second and genetically distinct pathway (SLX-MUS). Cells depleted for SLX-MUS or GEN1 pathway proteins exhibit severe defects in chromosome segregation and reduced survival. In response to CDK-mediated phosphorylation, SLX1-SLX4 and MUS81-EME1 associate at the G2/M transition to form a stable SLX-MUS holoenzyme, which can be reconstituted in vitro. Biochemical studies show that SLX-MUS is a HJ resolvase that coordinates the active sites of two distinct endonucleases during HJ resolution. This cleavage reaction is more efficient and orchestrated than that mediated by SLX1-SLX4 alone, which exhibits a potent nickase activity that acts promiscuously upon DNA secondary structures. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Regeneration of adenovirus specific T-cells after allogeneic, hematopietic stem cell transplantation in children and adolescents

    OpenAIRE

    2010-01-01

    Adenovirus is a significant cause of morbidity and mortality in pediatric allogeneic hematopoietic stem cell transplant recipients, and control of infection seems to require antigen-specific T cells. Aim of this Work was to estimate the Regeneration of Adenovirus-specific T-cells In 26 children (Age 8 months -25 years) over 6 months after HSCT and to investigate the effects of the transplantations parameter, Virus reactivation and the Transplantations complications on the adv-specific cell...

  10. Spontaneous presence of FOXO3-specific T cells in cancer patients

    DEFF Research Database (Denmark)

    Larsen, Stine Kiaer; Ahmad, Shamaila Munir; Idorn, Manja

    2014-01-01

    In the present study, we describe forkhead box O3 (FOXO3)-specific, cytotoxic CD8(+) T cells existent among peripheral-blood mononuclear cells (PBMCs) of cancer patients. FOXO3 immunogenicity appears specific, as we did not detect reactivity toward FOXO3 among T cells in healthy individuals. FOXO3...... may naturally serve as a target antigen for tumor-reactive T cells as it is frequently over-expressed in cancer cells. In addition, expression of FOXO3 plays a critical role in immunosuppression mediated by tumor-associated dendritic cells (TADCs). Indeed, FOXO3-specific cytotoxic T lymphocytes (CTLs......) were able to specifically recognize and kill both FOXO3-expressing cancer cells as well as dendritic cells. Thus, FOXO3 was processed and presented by HLA-A2 on the cell surface of both immune cells and cancer cells. As FOXO3 programs TADCs to become tolerogenic, FOXO3 signaling thereby comprises...

  11. Equal modulation of endothelial cell function by four distinct tissue-specific mesenchymal stem cells.

    Science.gov (United States)

    Lin, Ruei-Zeng; Moreno-Luna, Rafael; Zhou, Bin; Pu, William T; Melero-Martin, Juan M

    2012-09-01

    Mesenchymal stem cells (MSCs) can generate multiple end-stage mesenchymal cell types and constitute a promising population of cells for regenerative therapies. Additionally, there is increasing evidence supporting other trophic activities of MSCs, including the ability to enable formation of vasculature in vivo. Although MSCs were originally isolated from the bone marrow, the presence of these cells in the stromal vascular fraction of multiple adult tissues has been recently recognized. However, it is unknown whether the capacity to modulate vasculogenesis is ubiquitous to all MSCs regardless of their tissue of origin. Here, we demonstrated that tissue-resident MSCs isolated from four distinct tissues have equal capacity to modulate endothelial cell function, including formation of vascular networks in vivo. MSCs were isolated from four murine tissues, including bone marrow, white adipose tissue, skeletal muscle, and myocardium. In culture, all four MSC populations secreted a plethora of pro-angiogenic factors that unequivocally induced proliferation, migration, and tube formation of endothelial colony-forming cells (ECFCs). In vivo, co-implantation of MSCs with ECFCs into mice generated an extensive network of blood vessels with ECFCs specifically lining the lumens and MSCs occupying perivascular positions. Importantly, there were no differences among all four MSCs evaluated. Our studies suggest that the capacity to modulate the formation of vasculature is a ubiquitous property of all MSCs, irrespective of their original anatomical location. These results validate multiple tissues as potential sources of MSCs for future cell-based vascular therapies.

  12. High specific power, direct methanol fuel cell stack

    Science.gov (United States)

    Ramsey, John C.; Wilson, Mahlon S.

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  13. Cell-Specific Cre Strains For Genetic Manipulation in Salivary Glands.

    Directory of Open Access Journals (Sweden)

    Eri O Maruyama

    Full Text Available The secretory acinar cells of the salivary gland are essential for saliva secretion, but are also the cell type preferentially lost following radiation treatment for head and neck cancer. The source of replacement acinar cells is currently a matter of debate. There is evidence for the presence of adult stem cells located within specific ductal regions of the salivary glands, but our laboratory recently demonstrated that differentiated acinar cells are maintained without significant stem cell contribution. To enable further investigation of salivary gland cell lineages and their origins, we generated three cell-specific Cre driver mouse strains. For genetic manipulation in acinar cells, an inducible Cre recombinase (Cre-ER was targeted to the prolactin-induced protein (Pip gene locus. Targeting of the Dcpp1 gene, encoding demilune cell and parotid protein, labels intercalated duct cells, a putative site of salivary gland stem cells, and serous demilune cells of the sublingual gland. Duct cell-specific Cre expression was attempted by targeting the inducible Cre to the Tcfcp2l1 gene locus. Using the R26Tomato Red reporter mouse, we demonstrate that these strains direct inducible, cell-specific expression. Genetic tracing of acinar cells using PipGCE supports the recent finding that differentiated acinar cells clonally expand. Moreover, tracing of intercalated duct cells expressing DcppGCE confirms evidence of duct cell proliferation, but further analysis is required to establish that renewal of secretory acinar cells is dependent on stem cells within these ducts.

  14. Cell-Specific Cre Strains For Genetic Manipulation in Salivary Glands.

    Science.gov (United States)

    Maruyama, Eri O; Aure, Marit H; Xie, Xiaoling; Myal, Yvonne; Gan, Lin; Ovitt, Catherine E

    2016-01-01

    The secretory acinar cells of the salivary gland are essential for saliva secretion, but are also the cell type preferentially lost following radiation treatment for head and neck cancer. The source of replacement acinar cells is currently a matter of debate. There is evidence for the presence of adult stem cells located within specific ductal regions of the salivary glands, but our laboratory recently demonstrated that differentiated acinar cells are maintained without significant stem cell contribution. To enable further investigation of salivary gland cell lineages and their origins, we generated three cell-specific Cre driver mouse strains. For genetic manipulation in acinar cells, an inducible Cre recombinase (Cre-ER) was targeted to the prolactin-induced protein (Pip) gene locus. Targeting of the Dcpp1 gene, encoding demilune cell and parotid protein, labels intercalated duct cells, a putative site of salivary gland stem cells, and serous demilune cells of the sublingual gland. Duct cell-specific Cre expression was attempted by targeting the inducible Cre to the Tcfcp2l1 gene locus. Using the R26Tomato Red reporter mouse, we demonstrate that these strains direct inducible, cell-specific expression. Genetic tracing of acinar cells using PipGCE supports the recent finding that differentiated acinar cells clonally expand. Moreover, tracing of intercalated duct cells expressing DcppGCE confirms evidence of duct cell proliferation, but further analysis is required to establish that renewal of secretory acinar cells is dependent on stem cells within these ducts.

  15. Antigen specificity of invariant natural killer T-cells

    Directory of Open Access Journals (Sweden)

    Alysia M. Birkholz

    2015-12-01

    Full Text Available Natural killer T-cells, with an invariant T-cell antigen receptor α-chain (iNKT cells, are unique and conserved subset of lymphocytes capable of altering the immune system through their rapid and potent cytokine responses. They are reactive to lipid antigens presented by the CD1d molecule, an antigen-presenting molecule that is not highly polymorphic. iNKT cell responses frequently involve mixtures of cytokines that work against each other, and therefore attempts are underway to develop synthetic antigens that elicit only strong interferon-gamma (IFNγ or only strong interleukin-4 responses but not both. Strong IFNγ responses may correlate with tighter binding to CD1d and prolonged stimulation of iNKT cells, and this may be useful for vaccine adjuvants and for stimulating anti-tumor responses. iNKT cells are self-reactive although the structure of the endogenous antigen is controversial. By contrast, bacterial and fungal lipids that engage the T-cell receptor and activate IFNγ from iNKT cells have been identified from both pathogenic and commensal organisms and the responses are in some cases highly protective from pathogens in mice. It is possible that the expanding knowledge of iNKT cell antigens and iNKT cell activation will provide the basis for therapies for patients suffering from infectious and immune diseases and cancer.

  16. Antigen specificity of invariant natural killer T-cells.

    Science.gov (United States)

    Birkholz, Alysia M; Kronenberg, Mitchell

    2015-12-01

    Natural killer T-cells, with an invariant T-cell antigen receptor α-chain (iNKT cells), are unique and conserved subset of lymphocytes capable of altering the immune system through their rapid and potent cytokine responses. They are reactive to lipid antigens presented by the CD1d molecule, an antigen-presenting molecule that is not highly polymorphic. iNKT cell responses frequently involve mixtures of cytokines that work against each other, and therefore attempts are underway to develop synthetic antigens that elicit only strong interferon-gamma (IFNγ) or only strong interleukin-4 responses but not both. Strong IFNγ responses may correlate with tighter binding to CD1d and prolonged stimulation of iNKT cells, and this may be useful for vaccine adjuvants and for stimulating anti-tumor responses. iNKT cells are self-reactive although the structure of the endogenous antigen is controversial. By contrast, bacterial and fungal lipids that engage the T-cell receptor and activate IFNγ from iNKT cells have been identified from both pathogenic and commensal organisms and the responses are in some cases highly protective from pathogens in mice. It is possible that the expanding knowledge of iNKT cell antigens and iNKT cell activation will provide the basis for therapies for patients suffering from infectious and immune diseases and cancer.

  17. Coordinated Regulations of mRNA Synthesis and Decay during Cold Acclimation in Arabidopsis Cells.

    KAUST Repository

    Arae, Toshihiro

    2017-04-18

    Plants possess a cold acclimation system to acquire freezing tolerance through pre-exposure to non-freezing low temperatures. The transcriptional cascade of C-repeat binding factors (CBFs)/dehydration response element-binding factors (DREBs) is considered a major transcriptional regulatory pathway during cold acclimation. However, little is known regarding the functional significance of mRNA stability regulation in the response of gene expression to cold stress. The actual level of individual mRNAs is determined by a balance between mRNA synthesis and degradation. Therefore, it is important to assess the regulatory steps to increase our understanding of gene regulation. Here, we analyzed temporal changes in mRNA amounts and half-lives in response to cold stress in Arabidopsis cell cultures based on genome-wide analysis. In this mRNA decay array method, mRNA half-life measurements and microarray analyses were combined. In addition, temporal changes in the integrated value of transcription rates were estimated from the above two parameters using a mathematical approach. Our results showed that several cold-responsive genes, including Cold-regulated 15a, were relatively destabilized, whereas the mRNA amounts were increased during cold treatment by accelerating the transcription rate to overcome the destabilization. Considering the kinetics of mRNA synthesis and degradation, this apparently contradictory result supports that mRNA destabilization is advantageous for the swift increase in CBF-responsive genes in response to cold stress.

  18. Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles.

    Science.gov (United States)

    Greulich, C; Diendorf, J; Gessmann, J; Simon, T; Habijan, T; Eggeler, G; Schildhauer, T A; Epple, M; Köller, M

    2011-09-01

    Silver nanoparticles (Ag-NP) are increasingly used in biomedical applications because of their remarkable antimicrobial activity. In biomedicine, Ag-NP are coated onto or embedded in wound dressings, surgical instruments and bone substitute biomaterials, such as silver-containing calcium phosphate cements. Free Ag-NP and silver ions are released from these coatings or after the degradation of a biomaterial, and may come into close contact with blood cells. Despite the widespread use of Ag-NP as an antimicrobial agent, there is a serious lack of information on the biological effects of Ag-NP on human blood cells. In this study, the uptake of Ag-NP by peripheral monocytes and lymphocytes (T-cells) was analyzed, and the influence of nanosilver on cell biological functions (proliferation, the expression of adhesion molecules, cytokine release and the generation of reactive oxygen species) was studied. After cell culture in the presence of monodispersed Ag-NP (5-30μgml(-1) silver concentration), agglomerates of nanoparticles were detected within monocytes (CD14+) but not in T-cells (CD3+) by light microscopy, flow cytometry and combined focused ion beam/scanning electron microscopy. The uptake rate of nanoparticles was concentration dependent, and the silver agglomerates were typically found in the cytoplasm. Furthermore, a concentration-dependent activation (e.g. an increased expression of adhesion molecule CD54) of monocytes at Ag-NP concentrations of 10-15μgml(-1) was observed, and cytotoxicity of Ag-NP-treated monocytes was observed at Ag-NP levels of 25μgml(-1) and higher. However, no modulation of T-cell proliferation was observed in the presence of Ag-NP. Taken together, our results provide the first evidence for a cell-type-specific uptake of Ag-NP by peripheral blood mononuclear cells (PBMC) and the resultant cellular responses after exposure.

  19. Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection.

    Science.gov (United States)

    Boyle, Joseph J; Johns, Michael; Kampfer, Theresa; Nguyen, Aivi T; Game, Laurence; Schaer, Dominik J; Mason, Justin C; Haskard, Dorian O

    2012-01-06

    Intraplaque hemorrhage (IPH) drives atherosclerosis through the dual metabolic stresses of cholesterol-enriched erythrocyte membranes and pro-oxidant heme/iron. When clearing tissue hemorrhage, macrophages are typically seen storing either iron or lipid. We have recently defined hemorrhage-associated macrophages (HA-mac) as a plaque macrophage population that responds adaptively to IPH. This study aimed to define the key transcription factor(s) involved in HO-1 induction by heme. To address this question, we used microarray analysis and transfection with siRNA and plasmids. To maintain physiological relevance, we focused on human blood-derived monocytes. We found that heme stimulates monocytes through induction of activating transcription factor 1 (ATF-1). ATF-1 coinduces heme oxygenase-1 (HO-1) and Liver X receptor beta (LXR-β). Heme-induced HO-1 and LXR-β were suppressed by knockdown of ATF-1, and HO-1 and LXR-β were induced by ATF-1 transfection. ATF-1 required phosphorylation for full functional activity. Expression of LXR-β in turn led to induction of other genes central to cholesterol efflux, such as LXR-α and ABCA1. This heme-directed state was distinct from known macrophage states (M1, M2, Mox) and, following the same format, we have designated them Mhem. These results show that ATF-1 mediates HO-1 induction by heme and drives macrophage adaptation to intraplaque hemorrhage. Our definition of an ATF-1-mediated pathway for linked protection from foam cell formation and oxidant stress may have therapeutic potential.

  20. Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants.

    OpenAIRE

    1980-01-01

    Purified sialyltransferases (CMP-N-acetyl-neuraminate:D-galactosyl-glycoprotein N-acetylneuraminyl-transferase, EC 2.4.99.1) in conjunction with neuraminidase (acylneuraminyl hydrolase, EC 3.2.1.18) were used to produce cell surface sialyloligosaccharides of defined sequence to investigate their role in paramyxovirus infection of host cells. Infection of Madin-Darby bovine kidney cells by Sendai virus was monitored by hemagglutination titer of the virus produced and by changes in morphologica...

  1. Cell type-specific properties and environment shape tissue specificity of cancer genes.

    Science.gov (United States)

    Schaefer, Martin H; Serrano, Luis

    2016-02-09

    One of the biggest mysteries in cancer research remains why mutations in certain genes cause cancer only at specific sites in the human body. The poor correlation between the expression level of a cancer gene and the tissues in which it causes malignant transformations raises the question of which factors determine the tissue-specific effects of a mutation. Here, we explore why some cancer genes are associated only with few different cancer types (i.e., are specific), while others are found mutated in a large number of different types of cancer (i.e., are general). We do so by contrasting cellular functions of specific-cancer genes with those of general ones to identify properties that determine where in the body a gene mutation is causing malignant transformations. We identified different groups of cancer genes that did not behave as expected (i.e., DNA repair genes being tissue specific, immune response genes showing a bimodal specificity function or strong association of generally expressed genes to particular cancers). Analysis of these three groups demonstrates the importance of environmental impact for understanding why certain cancer genes are only involved in the development of some cancer types but are rarely found mutated in other types of cancer.

  2. The C. elegans nuclear receptor gene fax-1 and homeobox gene unc-42 coordinate interneuron identity by regulating the expression of glutamate receptor subunits and other neuron-specific genes.

    Science.gov (United States)

    Wightman, Bruce; Ebert, Bryan; Carmean, Nicole; Weber, Katherine; Clever, Sheila

    2005-11-01

    The fax-1 gene of the nematode C. elegans encodes a conserved nuclear receptor that is the ortholog of the human PNR gene and functions in the specification of neuron identities. Mutations in fax-1 result in locomotion defects. FAX-1 protein accumulates in the nuclei of 18 neurons, among them the AVA, AVB, and AVE interneuron pairs that coordinate body movements. The identities of AVA and AVE interneurons are defective in fax-1 mutants; neither neuron expresses the NMDA receptor subunits nmr-1 and nmr-2. Other ionotropic glutamate receptor subunits are expressed normally in the AVA and AVE neurons. The unc-42 homeobox gene also regulates AVA and AVE identity; however, unc-42 mutants display the complementary phenotype: NMDA receptor subunit expression is normal, but some non-NMDA glutamate receptor subunits are not expressed. These observations support a combinatorial role for fax-1 and unc-42 in specifying AVA and AVE identity. However, in four other neuron types, fax-1 is regulated by unc-42, and both transcriptional regulators function in the regulation of the opt-3 gene in the AVE neurons and the flp-1 and ncs-1 genes in the AVK neurons. Therefore, while fax-1 and unc-42 act in complementary parallel pathways in some cells, they function in overlapping or linear pathways in other cellular contexts, suggesting that combinatorial relationships among transcriptional regulators are complex and cannot be generalized from one neuron type to another.

  3. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells.

    NARCIS (Netherlands)

    Engering, A.J.; Geijtenbeek, T.B.; Vliet, S.J. van; Wijers-Rouw, M.J.P.; Liempt, E. van; Demaurex, N.; Lanzavecchia, A.; Fransen, J.A.M.; Figdor, C.G.; Piguet, V.; Kooyk, Y. van

    2002-01-01

    Dendritic cells (DCs) capture Ags or viruses in peripheral tissue to transport them to lymphoid organs to induce cellular T cell responses. Recently, a DC-specific C-type lectin was identified, DC-specific ICAM-grabbing non-integrin (DC-SIGN), that functions as cell adhesion receptor mediating both

  4. Hepatitis C Virus-Specific T Cell Receptor mRNA-Engineered Human T Cells: Impact of Antigen Specificity on Functional Properties.

    Science.gov (United States)

    Balasiddaiah, Anangi; Davanian, Haleh; Aleman, Soo; Pasetto, Anna; Frelin, Lars; Sällberg, Matti; Lohmann, Volker; Koh, Sarene; Bertoletti, Antonio; Chen, Margaret

    2017-05-01

    Therapy with genetically modified autologous T cells has shown great promise in cancer therapy. For an efficient control of hepatitis C virus (HCV) infection, cytotoxic T cells (CTL) are pivotal, but persistence of activated T cells may lead to liver toxicity. Here, anti-HCV T cell receptors (TCRs) recognizing the HCV nonstructural (NS) NS3 or NS5 viral peptide target were examined by mRNA transfection of human peripheral blood lymphocytes (PBLs) derived from healthy donors as well as chronically infected HCV patients. Immunological analysis shows that while the CTLs expressing the NS5-specific TCR reduced HCV RNA replication by a noncytotoxic mechanism, the NS3-specific TCR-redirected CTLs were polyfunctional and inhibited HCV RNA replication through antigen-specific cytotoxicity. Transcriptome signatures from these two types of CTL responses revealed uniquely expressed gene clusters upon encountering hepatoma target cells presenting endogenously expressed HCV proteins. The NS3 TCR induced a rapid expression of apoptotic signaling pathways and formation of embryonic gene clusters, whereas the NS5A TCR activation induced extended proliferative and metabolic pathways as the HCV target cells survived. Our results provide detailed insights into basic HCV T cell immunology and have clinical relevance for redirecting T cells to target virally infected hepatoma cells.IMPORTANCE Due to the protective ability of HCV-specific T cells and the hepatotoxic potential that they possess, there is a great need for the understanding of the functional aspects of HCV-specific T cells. To circumvent the low level of precursor frequency in patients, we engineered primary CD8(+) T cells by mRNA TCR vectors to confer HCV specificity to new T cells. HCV TCRs that differ in antigen specificity and polyfunctionality were examined. mRNA TCR engineering of peripheral blood lymphocytes from healthy donors or chronically infected HCV patients resulted in strikingly high levels of HCV TCR

  5. Mesenchymal Stromal Cells and Tissue-Specific Progenitor Cells: Their Role in Tissue Homeostasis

    Directory of Open Access Journals (Sweden)

    Aleksandra Klimczak

    2016-01-01

    Full Text Available Multipotent mesenchymal stromal/stem cells (MSCs reside in many human organs and comprise heterogeneous population of cells with self-renewal ability. These cells can be isolated from different tissues, and their morphology, immunophenotype, and differentiation potential are dependent on their tissue of origin. Each organ contains specific population of stromal cells which maintain regeneration process of the tissue where they reside, but some of them have much more wide plasticity and differentiate into multiple cells lineage. MSCs isolated from adult human tissues are ideal candidates for tissue regeneration and tissue engineering. However, MSCs do not only contribute to structurally tissue repair but also MSC possess strong immunomodulatory and anti-inflammatory properties and may influence in tissue repair by modulation of local environment. This paper is presenting an overview of the current knowledge of biology of tissue-resident mesenchymal stromal and progenitor cells (originated from bone marrow, liver, skeletal muscle, skin, heart, and lung associated with tissue regeneration and tissue homeostasis.

  6. Allergen-specific Th2 cells as targets for immune intervention in allergic disease

    Directory of Open Access Journals (Sweden)

    Jan E. de Vries

    1996-01-01

    Finally, it is shown that IL-4-driven allergen-specific Th2 cell differentiation can be redirected into a Th0 and Thl cell differentiation pathway by stimulating these IL-4-driven allergen-specific Th cell populations in the presence of IL-12, or by co-stimulating these cells via a novel T cell receptor, designated signalling lymphocyte activation molecule (SLAM. The clinical implications of these approaches are discussed.

  7. Expression profile of germ stem cell-specific genes in human spermatogonial stem cells after co culture with sertoli cells

    Directory of Open Access Journals (Sweden)

    Maria Zahiri

    2014-05-01

    Full Text Available Background: Human spermatogonial stem cells (SSCs, are the foundation of spermatogenesis. Because of low number and lack of significant marker in human SSCs, studying their characteristics, could provide better understanding about the biology of male fertility. This study was designed to examine the effects of in vitro co-culture with sertoli cells on SSC colonization and germ cells specific gene expression of human spermatogonial stem cells. Material and Methods: Testicular cells were isolated from testis biopsies by using two step enzymatic digestion and differential plating. two culture system were designed: co-culture with patient Sertoli cells and culture of SSC without co-culture(as control group. The number and diameter of colonies were evaluated during 3 weeks of culture. The expression of alpha 6 integrin, beta1 integrin and PLZF, as germ stem cell specific markers, was assessed using quantitative RT-PCR. Statistical analysis was performed using one way ANOVA in SPSS vesion 16 software with 95% Confidence interval . Result: Our results were showed that the number and diameter of colonies increased significantly in co-culture with sertoli cells (P<0.05. The expression profile of genes in 2nd and 3rd weeks of culture revealed that there is significant higher expression of germ stem cell markers in our co-culture group versus control group. Conclusion: Based on the optimal effects of sertoli cells on spermatogonial stem cells, co culture of the human SSCs with the feeder layer sertoli may be used as a suitable method for the enrichment of human spermatogonial stem cells.

  8. Improving Cytomegalovirus-Specific T Cell Reconstitution after Haploidentical Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Xiao-Hua Luo

    2014-01-01

    Full Text Available Cytomegalovirus (CMV infection and delayed immune reconstitution (IR remain serious obstacles for successful haploidentical stem cell transplantation (haplo-SCT. CMV-specific IR varied according to whether patients received manipulated/unmanipulated grafts or myeloablative/reduced intensity conditioning. CMV infection commonly occurs following impaired IR of T cell and its subsets. Here, we discuss the factors that influence IR based on currently available evidence. Adoptive transfer of donor T cells to improve CMV-specific IR is discussed. One should choose grafts from CMV-positive donors for transplant into CMV-positive recipients (D+/R+ because this will result in better IR than would grafts from CMV-negative donors (D−/R+. Stem cell source and donor age are other important factors. Posttransplant complications, including graft-versus-host disease and CMV infection, as well as their associated treatments, should also be considered. The effects of varying degrees of HLA disparity and conditioning regimens are more controversial. As many of these factors and strategies are considered in the setting of haplo-SCT, it is anticipated that haplo-SCT will continue to advance, further expanding our understanding of IR and CMV infection.

  9. Improving Cytomegalovirus-Specific T Cell Reconstitution after Haploidentical Stem Cell Transplantation

    Science.gov (United States)

    Chang, Ying-Jun; Huang, Xiao-Jun

    2014-01-01

    Cytomegalovirus (CMV) infection and delayed immune reconstitution (IR) remain serious obstacles for successful haploidentical stem cell transplantation (haplo-SCT). CMV-specific IR varied according to whether patients received manipulated/unmanipulated grafts or myeloablative/reduced intensity conditioning. CMV infection commonly occurs following impaired IR of T cell and its subsets. Here, we discuss the factors that influence IR based on currently available evidence. Adoptive transfer of donor T cells to improve CMV-specific IR is discussed. One should choose grafts from CMV-positive donors for transplant into CMV-positive recipients (D+/R+) because this will result in better IR than would grafts from CMV-negative donors (D−/R+). Stem cell source and donor age are other important factors. Posttransplant complications, including graft-versus-host disease and CMV infection, as well as their associated treatments, should also be considered. The effects of varying degrees of HLA disparity and conditioning regimens are more controversial. As many of these factors and strategies are considered in the setting of haplo-SCT, it is anticipated that haplo-SCT will continue to advance, further expanding our understanding of IR and CMV infection. PMID:24864269

  10. Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants.

    Science.gov (United States)

    Markwell, M A; Paulson, J C

    1980-10-01

    Purified sialyltransferases (CMP-N-acetyl-neuraminate:D-galactosyl-glycoprotein N-acetylneuraminyl-transferase, EC 2.4.99.1) in conjunction with neuraminidase (acylneuraminyl hydrolase, EC 3.2.1.18) were used to produce cell surface sialyloligosaccharides of defined sequence to investigate their role in paramyxovirus infection of host cells. Infection of Madin-Darby bovine kidney cells by Sendai virus was monitored by hemagglutination titer of the virus produced and by changes in morphological characteristics. By either criterion, treatment of the cells with Vibrio cholerae neuraminidase to remove cell surface sialic acids rendered them resistant to infection by Sendai virus. Endogenous replacement of receptors by the cell occurred slowly but supported maximal levels of infection within 6 hr. In contrast, sialylation during a 20-min incubation with CMP-sialic acid and beta-galactoside alpha 2,3-sialytransferase restored full susceptibility to infection. This enzyme elaborates the NeuAc alpha 2,3Gal beta 1,3GalNAc (NeuAc, N-acetylneuraminic acid) sequence on glycoproteins and glycolipids. No restoration of infectivity was observed when neuraminidase-treated cells were sialylated by using beta-galactoside alpha 2,6-sialytransferase, which elaborates the NeuAc-alpha 2,6Gal beta 1,4GlcNAc sequence. These results suggest that sialyloligosaccharide receptor determinants of defined sequence are required for Sendai virus infection of host cells.

  11. Dissection and manipulation of antigen-specific T cell responses

    NARCIS (Netherlands)

    Schepers, Koen

    2006-01-01

    T cells recognize pathogen-derived antigens and are crucial for fighting pathogens such as viruses and bacteria. In addition, T cells are able to recognize and attack certain types of tumors, in particular virally induced tumors. In this thesis we aimed 1) to obtain more insight into

  12. Specificity of islet cell autoantibodies and coexistence with other organ specific autoantibodies in type 1 diabetes mellitus.

    Science.gov (United States)

    Tsirogianni, Alexandra; Pipi, Elena; Soufleros, Konstantinos

    2009-07-01

    Type 1 diabetes mellitus (T1DM) has been shown to be a disease characterized by immune-mediated destruction of the insulin-producing islet beta-cells (beta-cells) in the pancreas. Intensive studies, in both patients and animal models are trying to elucidate the specific antigenic targets that are responsible for islet cell autoimmunity. So far, the most important molecules that have been recognized are the native insulin, the 65-kDa form of glutamic acid decarboxylase (GAD(65)) and the insulinoma-antigen 2 (IA-2). Identification of those specific autoantibodies that are involved in the primary immunological events of the autoimmune disease process will allow the development of novel diagnostic procedures for early detection and initiation of potential therapy prior to irreversible loss of beta-cells. Within the framework of polyglandular disorders, T1DM may coexist with other organ specific autoimmune diseases such as autoimmune thyroid disease (ATD), autoimmune gastritis (AG), celiac disease (CD) and Addison's disease (AD), which are associated with the production of organ-specific autoantibodies. So, as a subset of patients with those autoantibodies will develop clinical disease, screening T1DM patients could prognosticate morbidity relative to unrecognised clinical entities. The close follow-up of patients with organ-specific autoantibodies could lead to seasonable identification of those requiring therapy.

  13. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases

    OpenAIRE

    Barnes, Ryan; Eckert, Kristin

    2017-01-01

    Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome ...

  14. Repressed synthesis of ribosomal proteins generates protein-specific cell cycle and morphological phenotypes.

    Science.gov (United States)

    Thapa, Mamata; Bommakanti, Ananth; Shamsuzzaman, Md; Gregory, Brian; Samsel, Leigh; Zengel, Janice M; Lindahl, Lasse

    2013-12-01

    The biogenesis of ribosomes is coordinated with cell growth and proliferation. Distortion of the coordinated synthesis of ribosomal components affects not only ribosome formation, but also cell fate. However, the connection between ribosome biogenesis and cell fate is not well understood. To establish a model system for inquiries into these processes, we systematically analyzed cell cycle progression, cell morphology, and bud site selection after repression of 54 individual ribosomal protein (r-protein) genes in Saccharomyces cerevisiae. We found that repression of nine 60S r-protein genes results in arrest in the G2/M phase, whereas repression of nine other 60S and 22 40S r-protein genes causes arrest in the G1 phase. Furthermore, bud morphology changes after repression of some r-protein genes. For example, very elongated buds form after repression of seven 60S r-protein genes. These genes overlap with, but are not identical to, those causing the G2/M cell cycle phenotype. Finally, repression of most r-protein genes results in changed sites of bud formation. Strikingly, the r-proteins whose repression generates similar effects on cell cycle progression cluster in the ribosome physical structure, suggesting that different topological areas of the precursor and/or mature ribosome are mechanistically connected to separate aspects of the cell cycle.

  15. Acute myeloid dendritic cell leukaemia with specific cutaneous involvement: a diagnostic challenge.

    Science.gov (United States)

    Ferran, M; Gallardo, F; Ferrer, A M; Salar, A; Pérez-Vila, E; Juanpere, N; Salgado, R; Espinet, B; Orfao, A; Florensa, L; Pujol, R M

    2008-05-01

    Myeloid or type 1 dendritic cell leukaemia is an exceedingly rare haematopoietic neoplasm characterized by a specific immunophenotypic profile close to plasmacytoid dendritic cell and acute myelogenous leukaemia. A 77-year-old man presenting specific cutaneous infiltration by myeloid dendritic cell leukaemia is reported. The clinical features as well as the cutaneous histopathological and immunohistochemical features led to the initial diagnosis of CD4+/CD56+ haematodermic neoplasm. However, extensive immunophenotypic studies performed from peripheral blood blasts disclosed that leukaemic cells expressed myeloid dendritic cell markers, confirming the diagnosis. The diagnostic difficulties of specific cutaneous involvement by myeloid dendritic cell leukaemia on the basis of routine histopathological and immunohistochemical features are highlighted.

  16. Sonic hedgehog signaling coordinates the proliferation and differentiation of neural stem/progenitor cells by regulating cell cycle kinetics during development of the neocortex.

    Science.gov (United States)

    Komada, Munekazu

    2012-06-01

    Sonic hedgehog (Shh) acts as a morphogen in normal development of various vertebrate tissues and organs. Shh signaling is essential for patterning and cell-fate specification, particularly in the central nervous system. Shh signaling plays different roles depending on its concentration, area, and timing of exposure. During the development of the neocortex, a low level of Shh is expressed in the neural stem/progenitor cells as well as in mature neurons in the dorsal telencephalon. Shh signaling in neocortex development has been shown to regulate cell cycle kinetics of radial glial cells and intermediate progenitor cells, thereby maintaining the proliferation, survival and differentiation of neurons in the neocortex. During the development of the telencephalon, endogenous Shh signaling is involved in the transition of slow-cycling neural stem cells to fast-cycling neural progenitor cells. It seems that high-level Shh signaling in the ventral telencephalon is essential for ventral specification, while low-level Shh signaling in the dorsal telencephalon plays important roles in the fine-tuning of cell cycle kinetics. The Shh levels and multiple functions of Shh signaling are important for proper corticogenesis in the developing brain. The present paper discusses the roles of Shh signaling in the proliferation and differentiation of neural stem/progenitor cells.

  17. Cells determine cell density using a small protein bound to a unique tissue-specific phospholipid

    Directory of Open Access Journals (Sweden)

    Christopher J. Petzold

    2013-10-01

    Full Text Available Cell density is the critical parameter controlling tendon morphogenesis. Knowing its neighbors allows a cell to regulate correctly its proliferation and collagen production. A missing link to understanding this process is a molecular description of the sensing mechanism. Previously, this mechanism was shown in cell culture to rely on a diffusible factor (SNZR [sensor] with an affinity for the cell layer. This led to purifying conditioned medium over 4 columns and analyzing the final column fractions for band intensity on SDS gels versus biological activity – a 16 kD band strongly correlated between assays. N-terminal sequencing – EPLAVVDL – identified a large gene (424 AA, extremely conserved between chicken and human. In this paper we probe whether this is the correct gene. Can the predicted large protein be cleaved to a smaller protein? EPLAVVDL occurs towards the C-terminus and cleavage would create a small 94 AA protein. This protein would run at ∼10 kD, so what modifications or cofactor binding accounts for its running at 16 kD on SDS gels? This protein has no prominent hydrophobic regions, so can it be secreted? To validate its role, the chicken cDNA for this gene was tagged with myc and his and transfected into a human osteosarcoma cell line (U2OS. U2OS cells expressed the gene but not passively: differentiating into structures resembling spongy bone and expressing alkaline phosphatase, an early bone marker. Intracellularly, two bands were observed by Western blotting: the full length protein and a smaller form (26 kD. Outside the cell, a small band (28 kD was detected, although it was 40% larger than expected, as well as multiple larger bands. These larger forms could be converted to the predicted smaller protein (94 AA + tags by changing salt concentrations and ultrafiltering – releasing a cofactor to the filtrate while leaving a protein factor in the retentate. Using specific degradative enzymes and mass spectrometry, the

  18. New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells.

    Science.gov (United States)

    Garate, Zita; Davis, Brian R; Quintana-Bustamante, Oscar; Segovia, Jose C

    2013-06-01

    Advances in cell and gene therapy are opening up new avenues for regenerative medicine. Because of their acquired pluripotency, human induced pluripotent stem cells (hiPSCs) are a promising source of autologous cells for regenerative medicine. They show unlimited self-renewal while retaining the ability, in principle, to differentiate into any cell type of the human body. Since Yamanaka and colleagues first reported the generation of hiPSCs in 2007, significant efforts have been made to understand the reprogramming process and to generate hiPSCs with potential for clinical use. On the other hand, the development of gene-editing platforms to increase homologous recombination efficiency, namely DNA nucleases (zinc finger nucleases, TAL effector nucleases, and meganucleases), is making the application of locus-specific gene therapy in human cells an achievable goal. The generation of patient-specific hiPSC, together with gene correction by homologous recombination, will potentially allow for their clinical application in the near future. In fact, reports have shown targeted gene correction through DNA-Nucleases in patient-specific hiPSCs. Various technologies have been described to reprogram patient cells and to correct these patient hiPSCs. However, no approach has been clearly more efficient and safer than the others. In addition, there are still significant challenges for the clinical application of these technologies, such as inefficient differentiation protocols, genetic instability resulting from the reprogramming process and hiPSC culture itself, the efficacy and specificity of the engineered DNA nucleases, and the overall homologous recombination efficiency. To summarize advances in the generation of gene corrected patient-specific hiPSCs, this review focuses on the available technological platforms, including their strengths and limitations regarding future therapeutic use of gene-corrected hiPSCs.

  19. High Specific Energy Lithium Cells for Space Exploration

    Directory of Open Access Journals (Sweden)

    Farmakis F.

    2017-01-01

    The developed and tested prototype cells exhibited energy density of around 208 Wh/Kg at room temperature under C/10 charge-discharge rate within voltage range of 2.8 V and 4.1 V. Moreover, the prototype cells could retain and deliver more than 75% of their capacity at room temperature upon cycling at −40 °C, demonstrating an energy density of 140 Wh/kg.

  20. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells

    Science.gov (United States)

    Hepworth, Matthew R.; Fung, Thomas C.; Masur, Samuel H.; Kelsen, Judith R.; McConnell, Fiona M.; Dubrot, Juan; Withers, David R.; Hugues, Stephanie; Farrar, Michael A.; Reith, Walter; Eberl, Gerard; Baldassano, Robert N.; Laufer, Terri M.; Elson, Charles O.; Sonnenberg, Gregory F.

    2015-01-01

    Inflammatory CD4+ T cell responses to self or commensal bacteria underlie the pathogenesis of autoimmunity and inflammatory bowel disease (IBD), respectively. While selection of self-specific T cells in the thymus limits responses to tissue antigens, the mechanisms that control selection of commensal bacteria-specific T cells remain poorly understood. Here we demonstrate that group 3 innate lymphoid cell (ILC3)-intrinsic expression of major histocompatibility complex class II (MHCII) is regulated similarly to thymic epithelial cells, and that MHCII+ ILC3s directly induce cell death of activated commensal bacteria-specific T cells. Further, MHCII on human colonic ILC3s was reduced in pediatric IBD patients. Collectively, these results define a selection pathway for commensal bacteria-specific CD4+ T cells in the intestine, and suggest that this process is dysregulated in human IBD. PMID:25908663

  1. A single cell functions as a tissue-specific stem cell and the in vitro niche-forming cell.

    Science.gov (United States)

    Ghosh, Moumita; Helm, Karen M; Smith, Russell W; Giordanengo, Matthew S; Li, Bilan; Shen, Hongmei; Reynolds, Susan D

    2011-09-01

    Tissue-specific stem cell (TSC) behavior is determined by the stem cell niche. However, delineation of the TSC-niche interaction requires purification of both entities. We reasoned that the niche could be defined by the location of the TSC. We demonstrate that a single CD49f(bright)/Sca1(+)/ALDH(+) basal cell generates rare label-retaining cells and abundant label-diluting cells. Label-retaining and label-diluting cells were located in the rimmed domain of a unique clone type, the rimmed clone. The TSC property of self-renewal was tested by serial passage at clonal density and analysis of clone-forming cell frequency. A single clone could be passaged up to five times and formed only rimmed clones. Thus, rimmed clone formation was a cell-intrinsic property. Differentiation potential was evaluated in air-liquid interface cultures. Homogenous cultures of rimmed clones were highly mitotic but were refractory to standard differentiation signals. However, rimmed clones that were cocultured with unfractionated tracheal cells generated each of the cell types found in the tracheal epithelium. Thus, the default niche is promitotic: Multipotential differentiation requires adaptation of the niche. Because lung TSCs are typically evaluated after injury, the behavior of CD49f(bright)/Sca1(+)/ALDH(+) cells was tested in normal and naphthalene-treated mice. These cells were mitotically active in the normal and repaired epithelium, their proliferation rate increased in response to injury, and they retained label for 34 days. We conclude that the CD49f(bright)/Sca1(+)/ALDH(+) tracheal basal cell is a TSC, that it generates its own niche in vitro, and that it participates in tracheal epithelial homeostasis and repair.

  2. CD8+ T cells specific for the islet autoantigen IGRP are restricted in their T cell receptor chain usage

    Science.gov (United States)

    Fuchs, Yannick F.; Eugster, Anne; Dietz, Sevina; Sebelefsky, Christian; Kühn, Denise; Wilhelm, Carmen; Lindner, Annett; Gavrisan, Anita; Knoop, Jan; Dahl, Andreas; Ziegler, Anette-G.; Bonifacio, Ezio

    2017-01-01

    CD8+ T cells directed against beta cell autoantigens are considered relevant for the pathogenesis of type 1 diabetes. Using single cell T cell receptor sequencing of CD8+ T cells specific for the IGRP265-273 epitope, we examined whether there was expansion of clonotypes and sharing of T cell receptor chains in autoreactive CD8+ T cell repertoires. HLA-A*0201 positive type 1 diabetes patients (n = 19) and controls (n = 18) were analysed. TCR α- and β-chain sequences of 418 patient-derived IGRP265-273-multimer+ CD8+ T cells representing 48 clonotypes were obtained. Expanded populations of IGRP265-273-specific CD8+ T cells with dominant clonotypes that had TCR α-chains shared across patients were observed. The SGGSNYKLTF motif corresponding to TRAJ53 was contained in 384 (91.9%) cells, and in 20 (41.7%) patient-derived clonotypes. TRAJ53 together with TRAV29/DV5 was found in 15 (31.3%) clonotypes. Using next generation TCR α-chain sequencing, we found enrichment of one of these TCR α-chains in the memory CD8+ T cells of patients as compared to healthy controls. CD8+ T cell clones bearing the enriched motifs mediated antigen-specific target cell lysis. We provide the first evidence for restriction of T cell receptor motifs in the alpha chain of human CD8+ T cells with specificity to a beta cell antigen. PMID:28300170

  3. TNF-α induces apoptosis of Molt-4 cells and cell cycle specificity of Bcl-2 phosphyrylation

    Institute of Scientific and Technical Information of China (English)

    Changyong Yang; Huijie Zhao; Jianping Gong

    2010-01-01

    Objective:The aim of the study was to observe the expression of Bcl-2 and its phosphorylation in Molt-4 cells induced by tumor necrosis factor-α(TNF-α),and to investigate the possible mechanism of cell cycle specificity of apoptosis.Methods:Exponentially growing Molt-4 cells were treated with TNF-α.Apoptosis was detected by DNA fragmentation assay.API method was applied to illustrate the cell cycle specificity of apoptotic cells.Cells of sub-phases were sorted by FACSvantage flow cytometer and then submitted to immunoblot.Results:Molt-4 cells which were treated with TNF-α went to apoptosis and showed a DNA ladder pattern.Most apoptosis happened in G1-phase of cell cycle.Bcl-2 expression increased for the Molt-4 cells treated with TNF-α.The phosphorylation state of Bcl-2 was only presented in G1-phase cells,in accordance with the specified time and cell cycle phase of apoptosis.Conclusion:The phosphorylation of Bcl-2 in the Molt-4 cells treated with TNF-α happened with the same cell cycle specificity as cell apoptosis.The cell cycle specificity of Bcl-2 phosphorylation was one of the mechanisms of receptor-mediated apoptosis.The cell cycle machine can trigger the apoptosis program.

  4. Gender Specific Mutation Incidence and Survival Associations in Clear Cell Renal Cell Carcinoma (CCRCC.

    Directory of Open Access Journals (Sweden)

    Christopher J Ricketts

    Full Text Available Renal cell carcinoma (RCC is diagnosed in >200,000 individuals worldwide each year, accounting for ~2% of all cancers, but the spread of this disease amongst genders is distinctly uneven. In the U.S. the male:female incidence ratio is approximately 2:1. A potential hypothesis is mutation spectra may differ between tumors dependent upon the gender of the patient, such as mutations of X chromosome encoded genes being more prevalent in male-derived tumors. Combined analysis of three recent large-scale clear cell renal cell carcinoma (CCRCC mutation sequencing projects identified a significantly increased mutation frequency of PBRM1 and the X chromosome encoded KDM5C in tumors from male patients and BAP1 in tumors from female patients. Mutation of BAP1 had previously been significantly associated with poorer overall survival; however, when stratified by gender, mutation of BAP1 only significantly affected overall survival in female patients. Mutation of chromatin remodeling genes alters gene regulation, but the overall effect of these alterations may also be modified by the presence of other gender specific factors. Thus, the combination of gender and mutation of a specific gene, such as BAP1, may have implications not only for prognosis but also for understanding the role of chromatin remodeling gene mutations in kidney cancer progression.

  5. Cell-specific Regulation of APOBEC3F by Interferons

    Institute of Scientific and Technical Information of China (English)

    Songcheng YING; Xuzhao ZHANG; Phuong Thi Nguyen SARKIS; Rongzhen XU; Xiaofang YU

    2007-01-01

    Human cytidine deaminase APOBEC3F (A3F) has broad anti-viral activity against hepatitis B virus and retroviruses including human immunodeficiency virus type 1. However, its regulation in viral natural target cells such CD4+ T lymphocytes, macrophages, and primary liver cells has not been well studied. Here we showed that A3F was up-regulated by interferon (IFN)-α in primary hepatocytes and multiple liver cell lines as well as macrophages. Although the IFN-α signaling pathway was active in T lymphoid cells and induction of other IFN stimulated genes such as PKR was detected, A3F and APOBEC3G (A3G) were not induced by IFN-o in these cells. Thus, additional factors other than known IFN-stimulated genes also regulated IFN-α-induced A3F expression distinctly. A3F and A3G expression levels in primary hepatocytes, especially after IFN-α stimulation, were comparable to those in CD4+ T lymphocytes in some individuals. Significant variations of A3F and A3G expression in primary hepatocytes from various subjects were observed. Individual variations in A3F and/or A3G regulation and expression might influence the clinical outcomes of hepatitis B infection.

  6. Cell type-specific neuroprotective activity of untranslocated prion protein.

    Directory of Open Access Journals (Sweden)

    Elena Restelli

    Full Text Available BACKGROUND: A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP. However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions. PRINCIPAL FINDINGS: Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells. SIGNIFICANCE: These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.

  7. Induction of type I IFN is required for overcoming tumor-specific T-cell tolerance after stem cell transplantation.

    Science.gov (United States)

    Horkheimer, Ian; Quigley, Michael; Zhu, Jiangao; Huang, Xiaopei; Chao, Nelson J; Yang, Yiping

    2009-05-21

    Tumor-specific T-cell tolerance represents one major mechanism of tumor-induced immune evasion. Myeloablative chemotherapy with stem cell transplantation may offer the best chance of achieving a state of minimal residual disease and, thus, minimize tumor-induced immune evasion. However, studies have shown that tumor-specific T-cell tolerance persists after transplantation. Here, we showed that CD4(+)CD25(+) regulatory T (T(Reg)) cells play a critical role in tumor-specific CD8(+) T-cell tolerance after transplantation. Removal of T(Reg) cells from the donor lymphocyte graft did not overcome this tolerance because of rapid conversion of donor CD4(+)CD25(-) T cells into CD4(+)CD25(+)Foxp3(+) T(Reg) cells in recipients after transplantation, and depletion of T(Reg) cells in recipients was necessary for the reversal of tumor-specific tolerance. These results suggest that strategies capable of overcoming T-cell tolerance in recipients are required to promote antitumor immunity after transplantation. Toward this goal, we showed that dendritic cell (DC) vaccines coadministered with the TLR9 ligand, CpG could effectively overcome tumor-specific tolerance, leading to significant prolongation of tumor-free survival after transplantation. We further showed that CpG-induced type I interferon was critical for the reversal of tumor-specific tolerance in vivo. Collectively, these results may suggest effective immunotherapeutic strategies for treating cancer after stem cell transplantation.

  8. Quantitative imaging of epithelial cell scattering identifies specific inhibitors of cell motility and cell-cell dissociation

    NARCIS (Netherlands)

    Loerke, D.; le Duc, Q.; Blonk, I.; Kerstens, A.; Spanjaard, E.; Machacek, M.; Danuser, G.; de Rooij, J.

    2012-01-01

    The scattering of cultured epithelial cells in response to hepatocyte growth factor (HGF) is a model system that recapitulates key features of metastatic cell behavior in vitro, including disruption of cell-cell adhesions and induction of cell migration. We have developed image analysis tools that

  9. Expression of maturation-specific nuclear antigens in differentiating human myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S.; Epstein, A.L.; Clevenger, C.V.; Huberman, E.

    1985-02-01

    The expression of three myeloid-specific nuclear antigens was studied by indirect immunofluorescence with murine monoclonal antibodies in human myeloid (HL-60, ML-2, KG-1, and B-II) leukemia cells treated with chemical inducers of cell differentiation. Treatment of the promyelocytic HL-60 cells with dimethyl sulfoxide or 1,25-dihydroxyvitamin DT induced the cells to acquire a phenotype that resembled that of granulocytes and monocytesmacrophages, respectively. These phenotypes were characterized by changes in cell growth, cell morphology, expression of specific cell surface antigens, and activities of lysozyme and nonspecific esterase enzymes. Induction of these differentiation markers in the HL-60 cells was associated with induction of the myeloid-specific nuclear antigens. The ML-2 cells, which are arrested at the myeloblast-promyelocyte stage, were also susceptible to the induction of cell differentiation and to changes in the expression of the nuclear antigens, but the degree of susceptibility was less than in the HL-60 cells. The less-differentiated KG-1 and B-II myeloid cells were either not responsive or responded only in a limited degree to the induction of cell differentiation or to changes in the expression of the nuclear antigens. The authors suggest that the reactivity of cells with monoclonal antibodies to specific nuclear antigens can be used as a maturational marker in cell differentiation studies. Furthermore, nuclear antigens expressed early in cellular differentiation may provide information about changes in regulatory elements in normal and malignant cells. 40 references, 2 figures, 1 table.

  10. Chalcone dimethylallyltransferase from Morus nigra cell cultures. Substrate specificity studies.

    Science.gov (United States)

    Vitali, Alberto; Giardina, Bruno; Delle Monache, Giuliano; Rocca, Filippo; Silvestrini, Andrea; Tafi, Andrea; Botta, Bruno

    2004-01-16

    A new prenyltransferase (PT) enzyme derived from the microsomal fractions of cell cultures of Morus nigra was shown to be able to prenylate exclusively chalcones with a 2',4'-dihydroxy substitution and the isoflavone genistein. Computational studies were performed to shed some light on the relationship between the structure of the substrate and the enzymatic activity. PT requires divalent cations, particularly Mg(2+), to be effective. The apparent K(m) values for gamma,gamma-dimethylallyldiphosphate and 2',4'-dihydroxychalcone were 63 and 142 microM, respectively. The maximum activity of the enzyme was expressed during the first 10 days of cell growth.

  11. Stimulation of HIV-specific T cell clonotypes using allogeneic HLA.

    Science.gov (United States)

    Almeida, Coral-Ann; van Miert, Paula; O'Driscoll, Kane; Zoet, Yvonne M; Chopra, Abha; Watson, Mark; de Santis, Dianne; Witt, Campbell; John, Mina; Claas, Frans H J; D'Orsogna, Lloyd J

    2017-03-28

    We hypothesized that HIV-specific CD8 T cell clonotypes can be stimulated by allogeneic HLA molecules. Multiple HIV-specific CD8 T cell clones were derived from 12 individuals with chronic HIV infection, specific for 13 different HIV Gag antigens and restricted to 7 different HLA molecules. The generated T cell clones were assayed for alloreactivity against a panel of single HLA class I expressing cell lines (SALs). HIV-specific T cells recognising at least one allogeneic HLA molecule could be identified from 7 of 12 patients tested. Allorecognition was associated with IFNγ cytokine production, CD137 upregulation and cytotoxicity, suggesting high avidity allo-stimulation. Allo-HLA recognition by HIV-specific T cells was specific to the HIV target peptide/HLA restriction and TCR TRBV usage of the T cells. HIV-specific T cells do crossreact against allogeneic HLA molecules in an epitope and TRBV specific manner. Therefore allo-HLA stimulation could be exploited to induce or augment HIV-specific T cell responses.

  12. Molecular control of cell specification and cell differentiation during procambial development.

    Science.gov (United States)

    Furuta, Kaori Miyashima; Hellmann, Eva; Helariutta, Ykä

    2014-01-01

    Land plants develop vascular tissues that enable the long-distance transport of water and nutrients in xylem and phloem, provide mechanical support for their vertical growth, and produce cells in radial growth. Vascular tissues are produced in many parts of the plant and during different developmental stages. Early vascular development is focused in procambial meristems, and in some species it continues during the secondary phase of plant development in cambial meristems. In this review, we highlight recent progress in understanding procambial development. This involves the analysis of stem cell-like properties of procambial tissues, specification of xylem and phloem, and differentiation of the conductive tissues. Several major plant hormones, small-RNA species, and transcriptional networks play a role in vascular development. We describe current approaches to integrating these networks as well as their potential role in explaining the diversity and evolution of plant vascular systems.

  13. Wagging the dogma; tissue-specific cell cycle control in the mouse embryo.

    Science.gov (United States)

    Pagano, Michele; Jackson, Peter K

    2004-09-03

    The family of cyclin-dependent kinases (Cdks) lies at the core of the machinery that drives the cell division cycle. Studies in cultured mammalian cells have provided insight into the cellular functions of many Cdks. Recent Cdk and cyclin knockouts in the mouse show that the functions of G1 cell cycle regulatory genes are often essential only in specific cell types, pointing to our limited understanding of tissue-specific expression, redundancy, and compensating mechanisms in the Cdk network.

  14. Monitoring of Pathogen-Specific T-Cell Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Fuji, Shigeo; Kapp, Markus; Einsele, Hermann

    2013-01-01

    The clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT) has been significantly improved during the last decades with regard to the reduction in organ failure, infection, and severe acute graft-versus-host disease. However, severe complications due to infectious diseases are still one of the major causes of morbidity and mortality after allogeneic HSCT, in particular in patients receiving haploidentical HSCT or cord blood transplant due to a slow and often incomplete immune reconstitution. In order to improve the immune control of pathogens without an increased risk of alloreactivity, adoptive immunotherapy using highly enriched pathogen-specific T cells offers a promising approach. In order to identify patients who are at high risk for infectious diseases, several monitoring assays have been developed with potential for the guidance of immunosuppressive drugs and adoptive immunotherapy in clinical practice. In this article, we aim to give a comprehensive overview regarding current developments of T-cell monitoring techniques focusing on T cells against viruses and fungi. In particular, we will focus on rather simple, fast, non-labor-intensive, cellular assays which could be integrated in routine clinical screening approaches. PMID:24062744

  15. B-cell prolymphocytic leukemia: a specific subgroup of mantle cell lymphoma.

    Science.gov (United States)

    van der Velden, Vincent H J; Hoogeveen, Patricia G; de Ridder, Dick; Schindler-van der Struijk, Magdalena; van Zelm, Menno C; Sanders, Mathijs; Karsch, Dennis; Beverloo, H Berna; Lam, King; Orfao, Alberto; Lugtenburg, Pieternella J; Böttcher, Sebastian; van Dongen, Jacques J M; Langerak, Anton W; Kappers-Klunne, Mies; van Lom, Kirsten

    2014-07-17

    B-cell prolymphocytic leukemia (B-PLL) is a rare mature B-cell malignancy that may be hard to distinguish from mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL). B-PLL cases with a t(11;14) were redefined as MCL in the World Health Organization 2008 classification. We evaluated 13 B-PLL patients [7 being t(11;14)-positive (B-PLL+) and 6 negative (B-PLL-)] and compared them with MCL and CLL patients. EuroFlow-based immunophenotyping showed significant overlap between B-PLL+ and B-PLL-, as well as between B-PLL and MCL, whereas CLL clustered separately. Immunogenotyping showed specific IGHV gene usage partly resembling MCL. Gene expression profiling showed no separation between B-PLL+ and B-PLL- but identified 3 subgroups. One B-PLL subgroup clustered close to CLL and another subgroup clustered with leukemic MCL; both were associated with prolonged survival. A third subgroup clustered close to nodal MCL and was associated with short survival. Gene expression profiles of both B-PLL+ and B-PLL- showed best resemblance with normal immunoglobulin M-only B-cells. Our data confirm that B-PLL+ is highly comparable to MCL, indicate that B-PLL- also may be considered as a specific subgroup of MCL, and suggest that B-PLL is part of a spectrum, ranging from CLL-like B-PLL, to leukemic MCL-like B-PLL, to nodal MCL-like B-PLL.

  16. Selection of restriction specificities of virus-specific cytotoxic T cells in the thymus: no evidence for a crucial role of antigen-presenting cells

    Energy Technology Data Exchange (ETDEWEB)

    Zinkernagel, R.M.

    1982-12-01

    The proposal was tested that (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras expressed predominantly P1-restricted T cells because donor derived stem cells were exposed to recipient derived antigen-presenting cells in the thymus. Because P1 recipient-derived antigen-presenting cells are replaced only slowly after 6-8 wk by (P1 X P2) donor-derived antigen-presenting cells in the thymus and because replenished pools of mature T cells may by then prevent substantial numbers of P2-restricted T cells to be generated, a large portion of thymus cells and mature T cells were eliminated using the following treatments of 12-20-wk-old (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras: (a) cortisone plus antilymphocyte serum, (b) Cytoxan, (c) three doses of sublethal irradiation (300 rad) 2d apart, and (d) lethal irradiation (850 rad) and reconstitution with T cell-depleted (P1 X P2) F1 stem cells. 12-20 wk after this second treatment, (P1 X P2) leads to P1 chimeras were infected with vaccinia-virus. Virus-specific cytotoxic T cell reactivity was expressed by chimeric T cells of (P1 X P(2) F1 origin and was restricted predominantly to P1. Virus-specific cytotoxic T cells, therefore, do not seem to be selected to measurable extent by the immigrating donor-derived antigen-presenting cells in the thymus; their selection depends apparently from the recipient-derived radioresistant thymus cells.

  17. Targeting inflammation with autoantigen-specific T cells

    NARCIS (Netherlands)

    Guichelaar, T.

    2008-01-01

    Chronic autoimmune diseases are driven by cells that respond to tissue components of the body. Inflammation in diseases like rheumatoid arthritis, diabetes or multiple sclerosis, can be suppressed by drug therapy. However, the broad range of immunosuppressive action of these drugs often does not res

  18. Prostate Cell Specific Regulation of Androgen Receptor Phosphorylation in Vivo

    Science.gov (United States)

    2009-11-01

    immunoprecipitation; CRE, cAMP-responsive element; CREB, CRE-binding pro- tein; DMSO, dimethylsulfoxide ; EGF, epidermal growth fac- tor; EGFR, EGF...inhibitor, or dimethylsulfoxide (DMSO) ve- hicle control for 4 h and examined ART-27 mRNA levels. TSA increases ART-27 mRNA levels in 293 cells but does not

  19. Targeting inflammation with autoantigen-specific T cells

    NARCIS (Netherlands)

    Guichelaar, T.

    2008-01-01

    Chronic autoimmune diseases are driven by cells that respond to tissue components of the body. Inflammation in diseases like rheumatoid arthritis, diabetes or multiple sclerosis, can be suppressed by drug therapy. However, the broad range of immunosuppressive action of these drugs often does not

  20. Cell-specific expression of TLR9 isoforms in inflammation.

    Science.gov (United States)

    McKelvey, Kelly J; Highton, John; Hessian, Paul A

    2011-02-01

    Toll-like receptors (TLRs) are key pattern recognition receptors during an immune response. With five isoforms of human TLR9 described, we hypothesised that differential expression of TLR9 isoforms in different cell types would result in variable contributions to the overall input from TLR9 during inflammation. We assessed the molecular expression of the TLR9 isoforms, TLR9-A, -C and -D. In normal peripheral blood mononuclear cells, B-lymphocytes express ∼100-fold more TLR9-A transcript than monocytes or T-lymphocytes, which predominantly express the TLR9-C transcript. Switches in isoform predominance accompany B-lymphocyte development. TLR9 protein expression in rheumatoid inflammatory lesions reflected the TLR9 isoform expression by immune cells. Herein we suggest that B-lymphocytes and plasmacytoid dendritic cells contribute the ∼3-fold higher TLR9-A transcript levels observed in inflamed synovium when compared to subcutaneous rheumatoid nodules. In contrast, macrophages and T-lymphocytes contribute the ∼4-fold higher TLR9-C transcript levels seen in nodules, compared to synovia. From protein sequence, predictions of subcellular localisation suggest TLR9-B may locate to the mitochondria, whereas TLR9-D adopts an opposing orientation in the endoplasmic reticulum. Consistent with this, structure models raise the possibility of alternative ligands for the TLR9-B and TLR9-D variants. Our results highlight differences in the expression of human TLR9 isoforms in normal and inflamed tissues, with differing contributions to inflammation.

  1. Control of sporulation-specific cell division in Streptomyces coelicolor

    NARCIS (Netherlands)

    Noens, Elke

    2007-01-01

    During developmental cell division in sporulation-committed aerial hyphae of streptomycetes, up to a hundred septa are simultaneously produced, in close harmony with synchromous chromosome condensation and segregation. Several unique protein families are involved in the control of this process, incl

  2. Specificity, pathogenicity, and clinical value of antiendothelial cell antibodies

    NARCIS (Netherlands)

    Belizna, C; Tervaert, JWC

    1997-01-01

    Objective: To characterize the putative target antigens for antiendothelial cell antibodies (AECA), the possible pathophysiological role of AECA, and the clinical value of these antibodies as markers of disease activity, Methods: A structured literature search was done using Medline in combination w

  3. Influenza virus and endothelial cells: A species specific relationship

    NARCIS (Netherlands)

    K.R. Short (Kirsty); E.J.B. Veldhuis Kroeze (Edwin); L.A. Reperant (Leslie); M. Richard (Mathilde); T. Kuiken (Thijs)

    2014-01-01

    textabstractInfluenza A virus (IAV) infection is an important cause of respiratory disease in humans. The original reservoirs of IAV are wild waterfowl and shorebirds, where virus infection causes limited, if any, disease. Both in humans and in wild waterbirds, epithelial cells are the main target

  4. The role of auxin in cell specification during arabidopsis embryogenesis

    NARCIS (Netherlands)

    Lokerse, A.S.

    2011-01-01

    Auxin is a structurally simple molecule, yet it elicits many different responses in plants. In Chapter 1 we have reviewed how specificity in the output of auxin signaling could be generated by distinct regulation and the unique properties of the members of the Aux/IAA and ARF transcription factor fa

  5. IDENTIFICATION OF SPECIFIC PEPTIDE LIGANDS FOR B-LYMPHOMA CELL AND ITS EFFECT ON TYROSINE PHOSPHORYLATION AND CELL APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    宋良文; 马宪梅; 崔雪梅; 李扬; 王晓民

    2004-01-01

    Objective To search novel method for diagnosis and therapy of B-lymphoma, specific small molecular peptide ligands against binding site of tumor cells were screened and its effects on signal transduction and cell apoptosis were tested. Methods Specific peptide ligands were screened by binding with site of human B lymphoma cell (OC1LY8) using peptide-bead libraries. The identified peptides were characterized with responsible cells by rebinding test. The role of tyrosine phosphorylation of peptide ligand was tested by Western blot;and its apoptosispromoting role was observed by confocal fluorescent microscope. Results Specific peptide ligand was able to bind specifically to site on cell surface and enter into cytoplasm. Tetrameric peptide ligand was able to strongly trigger signal transduction resulting in tyrosine phosphorylation and cellular apoptosis in OC1LY8 cell line.Conclusion Screened peptide ligand can effectively bind with OC1LY8 cell, stimulate cellular tyrosine phosphorylation and induce cellular apoptosis.

  6. Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs.

    Science.gov (United States)

    Wile, Brian M; Ban, Kiwon; Yoon, Young-Sup; Bao, Gang

    2014-10-01

    Molecular beacons (MBs) are dual-labeled oligonucleotides that fluoresce only in the presence of complementary mRNA. The use of MBs to target specific mRNAs allows sorting of specific cells from a mixed cell population. In contrast to existing approaches that are limited by available surface markers or selectable metabolic characteristics, the MB-based method enables the isolation of a wide variety of cells. For example, the ability to purify specific cell types derived from pluripotent stem cells (PSCs) is important for basic research and therapeutics. In addition to providing a general protocol for MB design, validation and nucleofection into cells, we describe how to isolate a specific cell population from differentiating PSCs. By using this protocol, we have successfully isolated cardiomyocytes differentiated from mouse or human PSCs (hPSCs) with ∼ 97% purity, as confirmed by electrophysiology and immunocytochemistry. After designing MBs, their ordering and validation requires 2 weeks, and the isolation process requires 3 h.

  7. Cα-H···O=C hydrogen bonds contribute to the specificity of RGD cell-adhesion interactions

    Directory of Open Access Journals (Sweden)

    Humphries Martin J

    2005-02-01

    Full Text Available Abstract Background The Arg-Gly-Asp (RGD cell adhesion sequence occurs in several extracellular matrix molecules known to interact with integrin cell-surface receptors. Recently published crystal structures of the extracellular regions of two integrins in complex with peptides containing or mimicking the RGD sequence have identified the Arg and Asp residues as key specificity determinants for integrin recognition, through hydrogen bonding and metal coordination interactions. The central Gly residue also appears to be in close contact with the integrin surface in these structures. Results When hydrogen atoms are modelled on the central Gly residue with standard stereochemistry, the interaction between this residue and a carbonyl group in the integrin surface shows all the hallmarks of Cα-H···O=C hydrogen bonding, as seen in the collagen triple helix and in many crystal structures of small organic molecules. Moreover, molecular dynamic simulations of the docking of RGD-containing fragments on integrin surfaces support the occurrence of these interactions. There appears to be an array of four weak and conventional hydrogen bonds lining up the RGD residues with main chain carbonyl groups in the integrin surface. Conclusions The occurrence of weak Cα-H···O=C hydrogen bonds in the RGD-integrin interaction highlights the importance of the conserved Gly residue in the RGD motif and its contribution to integrin-ligand binding specificity. Our analysis shows how weak hydrogen bonds may also play important biological roles by contributing to the specificity of macromolecular recognition.

  8. Differentiation of bone marrow-derived stage-specific embryonic antigen 1 positive pluripotent stem cells into male germ cells.

    Science.gov (United States)

    Shirazi, Reza; Zarnani, Amir Hassan; Soleimani, Masoud; Nayernia, Karim; Ragerdi Kashani, Iraj

    2017-04-01

    Studies published in recent years have changed the outlook on sterility and germ cell development by producing gametes from stem cells. In present study, a novel approach on differentiation of bone marrow-derived stage-specific embryonic antigen 1 positive (SSEA-1(+) ) pluripotent stem cells into male germ cells has been addressed. SSEA-1(+) stem cells were separated from murine bone marrow using magnetic-activated cell sorting (MACS) system and propagated on a feeder layer cells. To evaluate the pluripotency characteristic of the purified cells, they were differentiated toward cells of three germ layers. Later the SSEA-1(+) stem cells were induced to differentiate along male germ cell lineage with retinoic acid. Flowcytometric analysis of SSEA-1(+) stem cells revealed purity of about 62% which increased to 91% after cultivation over feeder cells. Expression of specific transcripts of Oct4, SSEA-1, Nanog, Dppa3, fragilis, Rex-1, SOX-2, and alkaline-phosphatase and immunofluorescence evaluation of Oct4 and SSEA-1 expression showed the differentiation of purified stem cells toward the cells of three germ layers. Differentiation potential of purified cells was positively evidenced by expression markers specific for primordial germ cells, spermatogonial stem cells and spermatogonia including Mvh, fragilis, Dppa3, Stra8, DAZL, Piwil2, β1, and α6-integrins as well as meiotic-specific marker SYCP3. Our results showed that SSEA-1(+) pluripotent stem cells are able to differentiate into male germ cells. The results of the present study are encouraging enough to merit further investigation, provide a new hope for those suffering from infertility and introduce a novel platform for research on germ cell development. © 2016 Wiley Periodicals, Inc.

  9. A chemical genetics approach for specific differentiation of stem cells to somatic cells: a new promising therapeutical approach.

    Science.gov (United States)

    Sachinidis, Agapios; Sotiriadou, Isaia; Seelig, Bianca; Berkessel, Albrecht; Hescheler, Jürgen

    2008-01-01

    Cell replacement therapy of severe degenerative diseases such as diabetes, myocardial infarction and Parkinson's disease through transplantation of somatic cells generated from embryonic stem (ES) cells is currently receiving considerable attention for the therapeutic applications. ES cells harvested from the inner cell mass (ICM) of the early embryo, can proliferate indefinitely in vitro while retaining the ability to differentiate into all somatic cells thereby providing an unlimited renewable source of somatic cells. In this context, identifying soluble factors, in particular chemically synthesized small molecules, and signal cascades involved in specific differentiation processes toward a defined tissue specific cell type are crucial for optimizing the generation of somatic cells in vitro for therapeutic approaches. However, experimental models are required allowing rapid and "easy-to-handle" parallel screening of chemical libraries to achieve this goal. Recently, the forward chemical genetic screening strategy has been postulated to screen small molecules in cellular systems for a specific desired phenotypic effect. The current review is focused on the progress of ES cell research in the context of the chemical genetics to identify small molecules promoting specific differentiation of ES cells to desired cell phenotype. Chemical genetics in the context of the cell ES-based cell replacement therapy remains a challenge for the near future for several scientific fields including chemistry, molecular biology, medicinal physics and robotic technologies.

  10. Coordination Processes in International Organisations

    DEFF Research Database (Denmark)

    Nedergaard, Peter

    2008-01-01

    The EU is not a member of the International Labour Organisation (ILO), but relatively elaborate EU coordination takes place anyway. This paper addresses two research questions: 1) How is it possible to evaluate the coordination of the EU in its specific observable configuration in the ILO?, and 2......) To what outcome does this coordination lead and why? Based on an analysis of EU coordination before and during the International Labour Conference in 2005, and on a comparison with coordination processes of the IMEC group, it is found that the Commission and the Presidency act as twin-agents vis...... by the principals. On the other hand, both before and during the Conference, the Member States accept the so-called discursive coordination of the Commission, which seems to be of great (but often neglected) importance. Owing to the organisational set-up in which coordination takes place, the EU is able...

  11. Selective culling of high avidity antigen-specific CD4+ T cells after virulent Salmonella infection.

    Science.gov (United States)

    Ertelt, James M; Johanns, Tanner M; Mysz, Margaret A; Nanton, Minelva R; Rowe, Jared H; Aguilera, Marijo N; Way, Sing Sing

    2011-12-01

    Typhoid fever is a persistent infection caused by host-adapted Salmonella strains adept at circumventing immune-mediated host defences. Given the importance of T cells in protection, the culling of activated CD4+ T cells after primary infection has been proposed as a potential immune evasion strategy used by this pathogen. We demonstrate that the purging of activated antigen-specific CD4+ T cells after virulent Salmonella infection requires SPI-2 encoded virulence determinants, and is not restricted only to cells with specificity to Salmonella-expressed antigens, but extends to CD4+ T cells primed to expand by co-infection with recombinant Listeria monocytogenes. Unexpectedly, however, the loss of activated CD4+ T cells during Salmonella infection demonstrated using a monoclonal population of adoptively transferred CD4+ T cells was not reproduced among the endogenous repertoire of antigen-specific CD4+ T cells identified with MHC class II tetramer. Analysis of T-cell receptor variable segment usage revealed the selective loss and reciprocal enrichment of defined CD4+ T-cell subsets after Salmonella co-infection that is associated with the purging of antigen-specific cells with the highest intensity of tetramer staining. Hence, virulent Salmonella triggers the selective culling of high avidity activated CD4+ T-cell subsets, which re-shapes the repertoire of antigen-specific T cells that persist later after infection.

  12. Continuous parallel coordinates.

    Science.gov (United States)

    Heinrich, Julian; Weiskopf, Daniel

    2009-01-01

    Typical scientific data is represented on a grid with appropriate interpolation or approximation schemes,defined on a continuous domain. The visualization of such data in parallel coordinates may reveal patterns latently contained in the data and thus can improve the understanding of multidimensional relations. In this paper, we adopt the concept of continuous scatterplots for the visualization of spatially continuous input data to derive a density model for parallel coordinates. Based on the point-line duality between scatterplots and parallel coordinates, we propose a mathematical model that maps density from a continuous scatterplot to parallel coordinates and present different algorithms for both numerical and analytical computation of the resulting density field. In addition, we show how the 2-D model can be used to successively construct continuous parallel coordinates with an arbitrary number of dimensions. Since continuous parallel coordinates interpolate data values within grid cells, a scalable and dense visualization is achieved, which will be demonstrated for typical multi-variate scientific data.

  13. Tumor Antigen Specific Activation of Primary Human T-Cells Expressing a Virally Encoded Chimeric T-Cell Receptor Specific for p185HER2

    Institute of Scientific and Technical Information of China (English)

    杨建民; MichaelSFRIEDMAN; ChristopherMREYNOLDS; MarianneTHUBEN; LeeWILKE; JenniferFULLER; 李桥; ZeligESHHAR; JamesJMULE; KevimTMCDONAGH

    2004-01-01

    We have developed and tested chimeric T-cell receptors (TCR) specific for p185HER2. In these experiments,retroviral vectors expressing the N297 or N29ξ receptors were constructed in pRET6. Amphotropic viral producer cells were established in the GALV-based PG13 packaging cell line. Ficoll purified human peripheral blood lymphocytes (PBL) were vitally transduced using an optimized protocol incorporating activation with immobilized anti-CD3/anti-CD28 monoclonal antibodies, followed by viral infection in the presence of fibronectin fragment CH296. Transduced cells were co-cultured with human tumor cell lines that overexpress (SK-OV-3) or underexpress (MCF7) p185HER2 to assay for antigen specific immune responses. Both CD4+ and CD8+ T-cells transduced with the N297 or N29ξ chTCR demonstrated HER2-specific antigen responses, as determined by release of Th1 like cytokines, and cellular cytotoxicity assays. Our results support the feasibility of adoptive immunothempy with genetically modified T-cells expressing a chTCR specific for p185HER2.

  14. CXCL10 and trafficking of virus-specific T cells during coronavirus-induced demyelination.

    Science.gov (United States)

    Stiles, Linda N; Liu, Michael T; Kane, Joy A C; Lane, Thomas E

    2009-09-01

    Chronic expression of CXC chemokine ligand 10 (CXCL10) in the central nervous system (CNS) following infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV) is associated with an immune-mediated demyelinating disease. Treatment of mice with anti-CXCL10 neutralizing antibody results in limited CD4+ T cell infiltration into the CNS accompanied by a reduction in white matter damage. The current study determines the antigen-specificity of the T lymphocytes present during chronic disease and evaluates how blocking CXCL10 signaling affects retention of virus-specific T cells within the CNS. CXCL10 neutralization selectively reduced accumulation and/or retention of virus-specific CD4+ T cells, yet exhibited limited effect on virus-specific CD8+ T cells. The response of CXCL10 neutralization on virus-specific T cell subsets is not due to differential expression of the CXCL10 receptor CXCR3 on T cells as there was no appreciable difference in receptor expression on virus-specific T cells during either acute or chronic disease. These findings emphasize the importance of virus-specific CD4+ T cells in amplifying demyelination in JHMV-infected mice. In addition, differential signals are required for trafficking and retention of virus-specific CD4+ and CD8+ T cells during chronic demyelination in JHMV-infected mice.

  15. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous....... This review describes and discusses the current status of the application of gene therapy in relation to SCLC Udgivelsesdato: 2009/4...... DNA into malignant cells causing them to die. Since SCLC is a highly disseminated malignancy, the gene therapeutic agent must be administered systemically, obligating a high level of targeting of tumor tissue and the use of delivery vehicles designed for systemic circulation of the therapeutic DNA...

  16. Isoform-specific targeting of ROCK proteins in immune cells

    OpenAIRE

    Zanin-Zhorov, Alexandra; Flynn, Ryan; Waksal, Samuel D.; Blazar, Bruce R.

    2016-01-01

    ABSTRACT Rho-associated kinase 1 (ROCK1) and ROCK2 are activated by Rho GTPase and control cytoskeleton rearrangement through modulating the phosphorylation of their down-stream effector molecules. Although these 2 isoforms share more than 90% homology within their kinase domain the question of whether ROCK proteins function identically in different cell types is not clear. By using both pharmacological inhibition and genetic knockdown approaches recent studies suggest that the ROCK2 isoform ...

  17. Detection of tissue-specific effects by methotrexate on differentiating mouse embryonic stem cells.

    Science.gov (United States)

    Pellizzer, Cristian; Bello, Ezia; Adler, Sarah; Hartung, Thomas; Bremer, Susanne

    2004-10-01

    Pluripotent embryonic stem (ES) cells offer a unique possibility to monitor the differentiation of several cell types in vitro. This study attempts to identify marker genes during in vitro cell differentiation of murine ES cells and allow a prediction of chemical effects on cell differentiation of specific target tissues. The study focused on the expression pattern of key genes involved in cardiomyocyte and osteoblast differentiation: Oct-4, Brachyury, Nkx2.5, alpha myosin heavy chain, Cbfa1, and Osteocalcin. Methotrexate was selected due to its well-characterized teratogenic effects. Several in vivo studies have demonstrated the specific interactions of methotrexate with bone formation whereas the cardiovascular system is not specifically affected after exposure to low concentration. The capability of murine ES cells to differentiate in vitro into cardiomyocytes as well as into osteoblasts have been used to demonstrate the target cell specificity in vitro, at non-cytotoxic concentration. Exposure of differentiating ES cells did not result in any gene profile modification of the selected cardiomyocyte specific genes, whereas the expression of osteoblast specific key genes, Cbfa1 and Osteocalcin, decreased. At the latter stages of skeletal differentiation we observed a 30% decrease in gene expression for Cbfa1 and a 60% decrease for Osteocalcin, with reference to the control. Early marker genes for undifferentiated cells and mesodermal cells were not modified after methotrexate treatment. These results show the possibility to integrate specific in vitro tests for teratogenicity in a test strategy for developmental toxicity. 2004 Wiley-Liss, Inc.

  18. Receptors for T cell-replacing factor/interleukin 5. Specificity, quantitation, and its implication

    OpenAIRE

    1988-01-01

    T cell-replacing factor (TRF)/IL-5 is a glycosylated polypeptide that acts as a key factor for B cell growth and differentiation. Since IL-5 action is probably mediated by specific cell surface receptor(s), we have characterized the binding of IL-5 to cells using biosynthetically [35S]methionine-labeled IL-5 and 125I-IL-5 that had been prepared using Bolton-Hunter reagent. The radiolabeled IL-5 binds specifically to BCL1- B20 (in vitro line) (a murine chronic B cell leukemic cell line previou...

  19. Reprogramming A375 cells to induced-resembled neuronal cells by structured overexpression of specific transcription genes

    OpenAIRE

    ZHANG, HENGZHU; Wei, Min; Jiang, Yangyang; Wang, Xiaodong; SHE, LEI; Yan, Zhengcun; Dong, Lun; Pang, Lujun; Wang, Xingdong

    2016-01-01

    Induced-resembled neuronal cells (irNCs) are generated by reprogramming human melanoma cells through the introduction of key transcription factors, providing novel concepts in the treatment of malignant tumor cells and making it possible to supply neural cells for laboratory use. In the present study, irNCs were derived from A375 cells by inducing the 'forced' overexpression of specific genes, including achaete-scute homolog 1 (Ascl1), neuronal differentiation factor 1 (Neurod1), myelin trans...

  20. Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells.

    Science.gov (United States)

    Pinz, K; Liu, H; Golightly, M; Jares, A; Lan, F; Zieve, G W; Hagag, N; Schuster, M; Firor, A E; Jiang, X; Ma, Y

    2016-03-01

    Peripheral T-cell lymphomas (PTCLs) are aggressive lymphomas with no effective upfront standard treatment and ineffective options in relapsed disease, resulting in poorer clinical outcomes as compared with B-cell lymphomas. The adoptive transfer of T cells engineered to express chimeric antigen receptors (CARs) is a promising new approach for treatment of hematological malignancies. However, preclinical reports of targeting T-cell lymphoma with CARs are almost non-existent. Here we have designed a CAR, CD4CAR, which redirects the antigen specificity of CD8+ cytotoxic T cells to CD4-expressing cells. CD4CAR T cells derived from human peripheral blood mononuclear cells and cord blood effectively redirected T-cell specificity against CD4+ cells in vitro. CD4CAR T cells efficiently eliminated a CD4+ leukemic cell line and primary CD4+ PTCL patient samples in co-culture assays. Notably, CD4CAR T cells maintained a central memory stem cell-like phenotype (CD8+CD45RO+CD62L+) under standard culture conditions. Furthermore, in aggressive orthotropic T-cell lymphoma models, CD4CAR T cells efficiently suppressed the growth of lymphoma cells while also significantly prolonging mouse survival. Combined, these studies demonstrate that CD4CAR-expressing CD8+ T cells are efficacious in ablating malignant CD4+ populations, with potential use as a bridge to transplant or stand-alone therapy for the treatment of PTCLs.

  1. The coordinated p53 and estrogen receptor cis-regulation at an FLT1 promoter SNP is specific to genotoxic stress and estrogenic compound.

    Directory of Open Access Journals (Sweden)

    Yari Ciribilli

    Full Text Available BACKGROUND: Recently, we established that a C>T single nucleotide polymorphism (SNP in the promoter of the VEGF receptor FLT1 gene generates a (1/2 site p53 response element (RE-T that results in p53 responsiveness of the promoter. The transcriptional control required an estrogen receptor (ER (1/2 site response element (ERE1 225 nt upstream to the RE-T. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the identification of a second ER (1/2 site (ERE2 located 145 bp downstream of the RE-T and establish that both EREs can impact p53-mediated transactivation of FLT1-T in a manner that is cell type and ER level dependent. Gene reporter assays and ChIP experiments conducted in the breast cancer-derived MCF7 cells revealed that the ERE2 site was sufficient for p53-mediated ERalpha recruitment and transactivation of the FLT1-T promoter/reporter construct. Surprisingly, unlike the case for other p53 target promoters, p53-mediated transactivation of FLT1-T constructs or expression of the endogenous FLT1 gene, as well as binding of p53 and ER at the promoter constructs, was inducible by doxorubicin but not by 5-fluorouracil. Furthermore, ER activity at FLT1-T was differentially affected by ER ligands, compared to a control TFF1/pS2 ER target promoter. The p53-related transcription factors (TFs p73 and p63 had no effect on FLT1 transactivation. CONCLUSIONS/SIGNIFICANCE: We establish a new dimension to the p53 master regulatory network where p53-mediated transcription from a (1/2 site RE can be determined by ER binding at one or more cis-acting EREs in manner that is dependent on level of ER protein, the type of ER ligand and the specific p53-inducing agent.

  2. The coordinated p53 and estrogen receptor cis-regulation at an FLT1 promoter SNP is specific to genotoxic stress and estrogenic compound.

    Science.gov (United States)

    Ciribilli, Yari; Andreotti, Virginia; Menendez, Daniel; Langen, Jan-Stephan; Schoenfelder, Gilbert; Resnick, Michael A; Inga, Alberto

    2010-04-21

    Recently, we established that a C>T single nucleotide polymorphism (SNP) in the promoter of the VEGF receptor FLT1 gene generates a (1/2) site p53 response element (RE-T) that results in p53 responsiveness of the promoter. The transcriptional control required an estrogen receptor (ER) (1/2) site response element (ERE1) 225 nt upstream to the RE-T. Here we report the identification of a second ER (1/2) site (ERE2) located 145 bp downstream of the RE-T and establish that both EREs can impact p53-mediated transactivation of FLT1-T in a manner that is cell type and ER level dependent. Gene reporter assays and ChIP experiments conducted in the breast cancer-derived MCF7 cells revealed that the ERE2 site was sufficient for p53-mediated ERalpha recruitment and transactivation of the FLT1-T promoter/reporter construct. Surprisingly, unlike the case for other p53 target promoters, p53-mediated transactivation of FLT1-T constructs or expression of the endogenous FLT1 gene, as well as binding of p53 and ER at the promoter constructs, was inducible by doxorubicin but not by 5-fluorouracil. Furthermore, ER activity at FLT1-T was differentially affected by ER ligands, compared to a control TFF1/pS2 ER target promoter. The p53-related transcription factors (TFs) p73 and p63 had no effect on FLT1 transactivation. We establish a new dimension to the p53 master regulatory network where p53-mediated transcription from a (1/2) site RE can be determined by ER binding at one or more cis-acting EREs in manner that is dependent on level of ER protein, the type of ER ligand and the specific p53-inducing agent.

  3. Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion.

    Directory of Open Access Journals (Sweden)

    Markus Munder

    Full Text Available Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8(+ T cell activation in a tumor peptide as well as a viral peptide antigen specific system: (i CD8(+ T cells with specificity against the MART-1aa26-35*A27L tumor antigen expanded with in vitro generated dendritic cells, and (ii clonal CMV pp65aa495-503 specific T cells and T cells retrovirally transduced with a CMV pp65aa495-503 specific T cell receptor were analyzed. Our data demonstrate that human CD8(+ T cell antigen specific cytotoxicity and perforin secretion are completely preserved in the absence of arginine, while antigen specific proliferation as well as IFN-γ and granzyme B secretion are severely compromised. These novel results highlight the complexity of antigen specific T cell activation and demonstrate that human T cells can preserve important activation-induced effector functions in the context of arginine deficiency.

  4. Rockin' Readers Coordinator Handbook.

    Science.gov (United States)

    Alachua County Schools, Gainesville, FL.

    This coordinator's handbook describes the "Rockin' Readers" program, in which senior-citizen volunteers are matched with specifically targeted at-risk children (usually of kindergarten age or slightly older) in Alachua County, Florida, who tested below their peer group in language development and reading readiness skills. The handbook…

  5. General approach for in vivo recovery of cell type-specific effector gene sets.

    Science.gov (United States)

    Barsi, Julius C; Tu, Qiang; Davidson, Eric H

    2014-05-01

    Differentially expressed, cell type-specific effector gene sets hold the key to multiple important problems in biology, from theoretical aspects of developmental gene regulatory networks (GRNs) to various practical applications. Although individual cell types of interest have been recovered by various methods and analyzed, systematic recovery of multiple cell type-specific gene sets from whole developing organisms has remained problematic. Here we describe a general methodology using the sea urchin embryo, a material of choice because of the large-scale GRNs already solved for this model system. This method utilizes the regulatory states expressed by given cells of the embryo to define cell type and includes a fluorescence activated cell sorting (FACS) procedure that results in no perturbation of transcript representation. We have extensively validated the method by spatial and qualitative analyses of the transcriptome expressed in isolated embryonic skeletogenic cells and as a consequence, generated a prototypical cell type-specific transcriptome database.

  6. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens.

    Science.gov (United States)

    Yang, Yi; Torchinsky, Miriam B; Gobert, Michael; Xiong, Huizhong; Xu, Mo; Linehan, Jonathan L; Alonzo, Francis; Ng, Charles; Chen, Alessandra; Lin, Xiyao; Sczesnak, Andrew; Liao, Jia-Jun; Torres, Victor J; Jenkins, Marc K; Lafaille, Juan J; Littman, Dan R

    2014-06-05

    T-helper-17 (TH17) cells have critical roles in mucosal defence and in autoimmune disease pathogenesis. They are most abundant in the small intestine lamina propria, where their presence requires colonization of mice with microbiota. Segmented filamentous bacteria (SFB) are sufficient to induce TH17 cells and to promote TH17-dependent autoimmune disease in animal models. However, the specificity of TH17 cells, the mechanism of their induction by distinct bacteria, and the means by which they foster tissue-specific inflammation remain unknown. Here we show that the T-cell antigen receptor (TCR) repertoire of intestinal TH17 cells in SFB-colonized mice has minimal overlap with that of other intestinal CD4(+) T cells and that most TH17 cells, but not other T cells, recognize antigens encoded by SFB. T cells with antigen receptors specific for SFB-encoded peptides differentiated into RORγt-expressing TH17 cells, even if SFB-colonized mice also harboured a strong TH1 cell inducer, Listeria monocytogenes, in their intestine. The match of T-cell effector function with antigen specificity is thus determined by the type of bacteria that produce the antigen. These findings have significant implications for understanding how commensal microbiota contribute to organ-specific autoimmunity and for developing novel mucosal vaccines.

  7. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis.

    Science.gov (United States)

    Tejos, Ricardo I; Mercado, Ana V; Meisel, Lee A

    2010-01-01

    The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.

  8. Cardiomyocyte expression and cell-specific processing of procholecystokinin

    DEFF Research Database (Denmark)

    Gøtze, Jens P.; Johnsen, Anders H.; Kistorp, Caroline

    2015-01-01

    has only been suggested using transcriptional measures or methods, with the post-translational phase of gene expression unaddressed. In this study, we examined the cardiac expression of the CCK gene in adult mammals and its expression at the protein level. Using quantitative PCR, a library of sequence......Heart muscle cells produce peptide hormones such as natriuretic peptides. Developing hearts also express the gene for the classic intestinal hormone cholecystokinin (CCK) in amounts similar to those in the intestine and brain. However, cardiac expression of peptides other than natriuretic peptides...

  9. Intrinsic sex-specific differences in microvascular endothelial cell phosphodiesterases

    Science.gov (United States)

    Bingaman, Susan; Huxley, Virginia H.

    2010-01-01

    The importance of gonadal hormones in the regulation of vascular function has been documented. An alternate and essential contribution of the sex chromosomes to sex differences in vascular function is poorly understood. We reported previously sex differences in microvessel permeability (Ps) responses to adenosine that were mediated by the cAMP signaling pathway (Wang J, PhD thesis, 2005; Wang J and Huxley V, Proceedings of the VIII World Congress of Microcirculation, 2007; Wang J and Huxley VH, Am J Physiol Heart Circ Physiol 291: H3094–H3105, 2006). The two cyclic nucleotides, cAMP and cGMP, central to the regulation of vascular barrier integrity, are hydrolyzed by phosphodiesterases (PDE). We hypothesized that microvascular endothelial cells (EC) would retain intrinsic and inheritable sexually dimorphic genes with respect to the PDEs modulating EC barrier function. Primary cultured microvascular EC from skeletal muscles isolated from male and female rats, respectively, were used. SRY (a sex-determining region Y gene) mRNA expression was observed exclusively in male, not female, cells. The predominant isoform among PDE1–5, present in both XY and XX EC, was PDE4. Expression mRNA levels of PDE1A (male > female) and PDE3B (male < female) were sex dependent; PDE2A, PDE4D, and PDE5A were sex independent. Barrier function, Ps, was determined from measures of albumin flux across confluent primary cultured microvessel XY and XX EC monolayers. Consistent with intact in situ microvessels, basal monolayer Ps did not differ between XY (1.7 ± 0.2 × 10−6 cm/s; n = 8) and XX (1.8 ± 0.1 × 10−6 cm/s; n = 10) EC. Cilostazol, a PDE3 inhibitor, reduced (11%, P < 0.05) Ps in XX, not XY, cells. These findings demonstrate the presence and maintenance of intrinsic sex-related differences in gene expression and cellular phenotype by microvascular EC in a gonadal-hormone-free environment. Furthermore, intrinsic cell-sex likely contributes significantly to sexual dimorphism in

  10. 89 Is Basophil Specific Response to Hymenoptera Venom Related to T Regulatory Cells?

    OpenAIRE

    Kucera, Petr; Hulikova, Katarina; Cvackova, Milada; Planska, Daniela; Riegerova, Kamila

    2012-01-01

    Background The exact mechanism of systemic hypersensitivity to venom is not exactly understood. It is suggested T cells with regulatory potential can downregulate other T cell subsets and effector cells, ex. mast cell or basophils. We focused on relationship of specific basophil reactivity in relationship to proportion of regulatory T cells. Methods Forty-five patients with history of systemic symptoms of allergy to Hymenoptera venom were included. Basophil reactivity before the treatment and...

  11. Mathematical modeling of the specific T cell response to a viral infection

    OpenAIRE

    Bidot, Caroline

    2006-01-01

    T cell is one of the most important cells in specific immunity. In order to devise a tool for understanding and predicting some mechanisms of the immune system, a model for T cell response is proposed. The T lymphocyte activation by the recognition of a peptide carried by an antigen presenting cell is an essential step of this immune response. T cell activation was modelled by a system of ordinary differential equations of chemical kinetics type, representing the temporal evolution of the con...

  12. Rapid generation of NY-ESO-1-specific CD4+ THELPER1 cells for adoptive T-cell therapy

    Science.gov (United States)

    Kayser, Simone; Boβ, Cristina; Feucht, Judith; Witte, Kai-Erik; Scheu, Alexander; Bülow, Hans-Jörg; Joachim, Stefanie; Stevanović, Stefan; Schumm, Michael; Rittig, Susanne M; Lang, Peter; Röcken, Martin; Handgretinger, Rupert; Feuchtinger, Tobias

    2015-01-01

    Tumor-associated antigens such as NY-ESO-1 are expressed in a variety of solid tumors but absent in mature healthy tissues with the exception of germline cells. The immune system anti-cancer attack is mediated by cell lysis or induction of growth arrest through paralysis of tumor cells, the latter of which can be achieved by tumor-specific CD4+, IFNγ-producing THelper type 1 (TH1) cells. Translation of these immune-mediated mechanisms into clinical application has been limited by availability of immune effectors, as well as the need for complex in vitro protocols and regulatory hurdles. Here, we report a procedure to generate cancer-testis antigen NY-ESO-1-targeting CD4+ TH1 cells in vitro for cancer immunotherapy in the clinic. After in vitro sensitization by stimulating T cells with protein-spanning, overlapping peptide pools of NY-ESO-1 in combination with IL-7 and low dose IL-2, antigen-specific T cells were isolated using IFNγ capture technique and subsequently expanded with IL-2, IL-7 and IL-15. Large numbers of NY-ESO-1-specific CD4+ T cells with a TH1 cytokine profile and lower numbers of cytokine-secreting CD8+ T cells could be generated from healthy donors with a high specificity and expansion potential. Manufactured CD4+ T cells showed strong specific TH1-responses with IFNγ+, TNFα+, IL-2+ and induced cell cycle arrest and apoptosis in tumor cells. The protocol is GMP-grade and approved by the regulatory authorities. The tumor-antigen specific CD4+ TH1 lymphocytes can be adoptively transferred as a T-cell therapy to boost anticancer immunity and this novel cancer treatment approach is applicable to both T cells from healthy allogeneic donors as well as to autologous T cells derived from cancer patients. PMID:26155389

  13. Rapid generation of NY-ESO-1-specific CD4(+) THELPER1 cells for adoptive T-cell therapy.

    Science.gov (United States)

    Kayser, Simone; Boβ, Cristina; Feucht, Judith; Witte, Kai-Erik; Scheu, Alexander; Bülow, Hans-Jörg; Joachim, Stefanie; Stevanović, Stefan; Schumm, Michael; Rittig, Susanne M; Lang, Peter; Röcken, Martin; Handgretinger, Rupert; Feuchtinger, Tobias

    2015-05-01

    Tumor-associated antigens such as NY-ESO-1 are expressed in a variety of solid tumors but absent in mature healthy tissues with the exception of germline cells. The immune system anti-cancer attack is mediated by cell lysis or induction of growth arrest through paralysis of tumor cells, the latter of which can be achieved by tumor-specific CD4(+), IFNγ-producing THelper type 1 (TH1) cells. Translation of these immune-mediated mechanisms into clinical application has been limited by availability of immune effectors, as well as the need for complex in vitro protocols and regulatory hurdles. Here, we report a procedure to generate cancer-testis antigen NY-ESO-1-targeting CD4(+) TH1 cells in vitro for cancer immunotherapy in the clinic. After in vitro sensitization by stimulating T cells with protein-spanning, overlapping peptide pools of NY-ESO-1 in combination with IL-7 and low dose IL-2, antigen-specific T cells were isolated using IFNγ capture technique and subsequently expanded with IL-2, IL-7 and IL-15. Large numbers of NY-ESO-1-specific CD4(+) T cells with a TH1 cytokine profile and lower numbers of cytokine-secreting CD8(+) T cells could be generated from healthy donors with a high specificity and expansion potential. Manufactured CD4(+) T cells showed strong specific TH1-responses with IFNγ(+), TNFα(+), IL-2(+) and induced cell cycle arrest and apoptosis in tumor cells. The protocol is GMP-grade and approved by the regulatory authorities. The tumor-antigen specific CD4(+) TH1 lymphocytes can be adoptively transferred as a T-cell therapy to boost anticancer immunity and this novel cancer treatment approach is applicable to both T cells from healthy allogeneic donors as well as to autologous T cells derived from cancer patients.

  14. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    Overview From a technical perspective, CMS has been in “beam operation” state since 6th November. The detector is fully closed with all components operational and the magnetic field is normally at the nominal 3.8T. The UXC cavern is normally closed with the radiation veto set. Access to UXC is now only possible during downtimes of LHC. Such accesses must be carefully planned, documented and carried out in agreement with CMS Technical Coordination, Experimental Area Management, LHC programme coordination and the CCC. Material flow in and out of UXC is now strictly controlled. Access to USC remains possible at any time, although, for safety reasons, it is necessary to register with the shift crew in the control room before going down.It is obligatory for all material leaving UXC to pass through the underground buffer zone for RP scanning, database entry and appropriate labeling for traceability. Technical coordination (notably Stephane Bally and Christoph Schaefer), the shift crew and run ...

  15. Contribution of Herpesvirus Specific CD8 T Cells to Anti-Viral T Cell Response in Humans

    OpenAIRE

    Elena Sandalova; Diletta Laccabue; Carolina Boni; Tan, Anthony T; Katja Fink; Eng Eong Ooi; Robert Chua; Bahar Shafaeddin Schreve; Carlo Ferrari; Antonio Bertoletti

    2010-01-01

    Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 1...

  16. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.

    Directory of Open Access Journals (Sweden)

    Elena Sandalova

    Full Text Available Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR, proliferation (Ki-67/Bcl-2(low and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV. CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.

  17. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.

    Science.gov (United States)

    Sandalova, Elena; Laccabue, Diletta; Boni, Carolina; Tan, Anthony T; Fink, Katja; Ooi, Eng Eong; Chua, Robert; Shafaeddin Schreve, Bahar; Ferrari, Carlo; Bertoletti, Antonio

    2010-08-19

    Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza) pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR), proliferation (Ki-67/Bcl-2(low)) and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV). CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza) were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.

  18. Presentation of antigen by B cells subsets. Pt. 2. The role of CD5 B cells in the presentation of antigen to antigen-specific T cells

    Energy Technology Data Exchange (ETDEWEB)

    Zimecki, Michal [Polish Academy of Sciences, Wroclaw (Poland). Institute of Immunology and Experimental Therapy; Kapp, Judith A. [Emory Univ., Atlanta, GA (United States). School of Medicine

    1994-12-31

    We demonstrate that peritoneal B cells have a much higher ability to present antigen to antigen-specific T cell lines splenic B cells. Presentation of antigen by B cells is abrogated or drastically reduced after removal of Lyb-5{sup +} cells from the population of splenic or peritoneal B cells. Peritoneal B cells, precultured for 7 days prior to the antigen presentation assay, retain their antigen presenting cell (APC) function. Enrichment for CD5{sup +} cells in the peritoneal B cell population results in a more effective antigen presentation. Lastly, stimulation of B cells via CD5 antigen, by treatment of cells with anti-CD5 antibodies or cross-linking of CD5 receptors, enhances APC function of these cells. The results indicate, both indirectly and directly, that CD5{sup +} B cells play a predominant role in the presentation of conventional antigens to antigen-specific T cells. (author). 30 refs, 6 tabs.

  19. Induction of Specific CD8+ T Cells against Intracellular Bacteria by CD8+ T-Cell-Oriented Immunization Approaches

    Directory of Open Access Journals (Sweden)

    Toshi Nagata

    2010-01-01

    Full Text Available For protection against intracellular bacteria such as Mycobacterium tuberculosis and Listeria monocytogenes, the cellular arm of adaptive immunity is necessary. A variety of immunization methods have been evaluated and are reported to induce specific CD8+ T cells against intracellular bacterial infection. Modified BCG vaccines have been examined to enhance CD8+ T-cell responses. Naked DNA vaccination is a promising strategy to induce CD8+ T cells. In addition to this strategy, live attenuated intracellular bacteria such as Shigella, Salmonella, and Listeria have been utilized as carriers of DNA vaccines in animal models. Vaccination with dendritic cells pulsed with antigenic peptides or the cells introduced antigen genes by virus vectors such as retroviruses is also a powerful strategy. Furthermore, vaccination with recombinant lentivirus has been attempted to induce specific CD8+ T cells. Combinations of these strategies (prime-boost immunization have been studied for the efficient induction of intracellular bacteria-specific CD8+ T cells.

  20. Generation of Patient-Specific induced Pluripotent Stem Cell from Peripheral Blood Mononuclear Cells by Sendai Reprogramming Vectors.

    Science.gov (United States)

    Quintana-Bustamante, Oscar; Segovia, Jose C

    2016-01-01

    Induced pluripotent stem cells (iPSC) technology has changed preclinical research since their generation was described by Shinya Yamanaka in 2006. iPSCs are derived from somatic cells after being reprogrammed back to an embryonic state by specific combination of reprogramming factors. These reprogrammed cells resemble all the characteristic of embryonic stem cells (ESC). The reprogramming technology is even more valuable to research diseases biology and treatment by opening gene and cell therapies in own patient's iPSC. Patient-specific iPSC can be generated from a large variety of patient cells by any of the myriad of reprogramming platforms described. Here, we describe the generation of patient-specific iPSC from patient peripheral blood mononuclear cells by Sendai Reprogramming vectors.

  1. Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells

    Science.gov (United States)

    Yang, Lili; Baltimore, David

    2005-03-01

    A method to genetically program mouse hematopoietic stem cells to develop into functional CD8 or CD4 T cells of defined specificity in vivo is described. For this purpose, a bicistronic retroviral vector was engineered that efficiently delivers genes for both and chains of T cell receptor (TCR) to hematopoietic stem cells. When modified cell populations were used to reconstruct the hematopoietic lineages of recipient mice, significant percentages of antigen-specific CD8 or CD4 T cells were observed. These cells expressed normal surface markers and responded to peptide antigen stimulation by proliferation and cytokine production. Moreover, they could mature into memory cells after peptide stimulation. Using TCRs specific for a model tumor antigen, we found that the recipient mice were able to partially resist a challenge with tumor cells carrying the antigen. By combining cells modified with CD8- and CD4-specific TCRs, and boosting with dendritic cells pulsed with cognate peptides, complete suppression of tumor could be achieved and even tumors that had become established would regress and be eliminated after dendritic cell/peptide immunization. This methodology of "instructive immunotherapy" could be developed for controlling the growth of human tumors and attacking established pathogens.

  2. Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells.

    Science.gov (United States)

    Tadeu, Ana Mafalda Baptista; Lin, Samantha; Hou, Lin; Chung, Lisa; Zhong, Mei; Zhao, Hongyu; Horsley, Valerie

    2015-01-01

    In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions.

  3. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    Science.gov (United States)

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue.

  4. Divergence of zebrafish and mouse lymphatic cell fate specification pathways

    DEFF Research Database (Denmark)

    van Impel, Andreas; Zhao, Zhonghua; Hermkens, Dorien M A;

    2014-01-01

    . Murine Prox1-null embryos lack lymphatic structures, and sustained expression of Prox1 is indispensable for the maintenance of lymphatic cell fate even at adult stages, highlighting the unique importance of this gene for the lymphatic lineage. Whether this pre-eminent role of Prox1 within the lymphatic...... vasculature is conserved in other vertebrate classes has remained unresolved, mainly owing to the lack of availability of loss-of-function mutants. Here, we re-examine the role of Prox1a in zebrafish lymphangiogenesis. First, using a transgenic reporter line, we show that prox1a is initially expressed...... that the functionally related transcription factors Coup-TFII and Sox18 are also dispensable for lymphangiogenesis. Together, these findings suggest that lymphatic commitment in zebrafish and mice is controlled in fundamentally different ways....

  5. Perinatal exposure to low-dose methylmercury induces dysfunction of motor coordination with decreases in synaptophysin expression in the cerebellar granule cells of rats.

    Science.gov (United States)

    Fujimura, Masatake; Cheng, Jinping; Zhao, Wenchang

    2012-06-29

    Methylmercury (MeHg) is an environmental pollutant that is toxic to the developing central nervous system (CNS) in children, even at low exposure levels. Perinatal exposure to MeHg is known to induce neurological symptoms with neuropathological changes in the CNS. However, the relationship between the neurological symptoms and neuropathological changes induced in offspring as a result of exposure to low-dose MeHg is not well defined. In the present study, neurobehavioral analyses revealed that exposure to a low level of MeHg (5 ppm in drinking water) during developmental caused a significant deficit in the motor coordination of rats in the rotating rod test. In contrast, general neuropathological findings, including neuronal cell death and the subsequent nerve inflammation, were not observed in the region of the cerebellum responsible for regulating motor coordination. Surprisingly, the expression of synaptophysin (SPP), a marker protein for synaptic formation, significantly decreased in cerebellar granule cells. These results showed that perinatal exposure to low-dose MeHg causes neurobehavioral impairment without general neuropathological changes in rats. We demonstrated for the first time that exposure to low-dose MeHg during development induces the dysfunction of motor coordination due to changes of synaptic homeostasis in cerebellar granule cells.

  6. C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis

    OpenAIRE

    Inoue, Takao; Sternberg, Paul W.

    2010-01-01

    The control of cell division is critical to organogenesis, but how this control is achieved is not fully understood. We found that mutations in bed-3, encoding a BED Zn-finger domain transcription factor, confer a phenotype where a specific set of cell divisions during vulval organogenesis is lost. Unlike general cell cycle regulators in Caenorhabditis elegans, the function of bed-3 is restricted to specific lineages. Transcriptional reporters suggest that bed-3 is expressed in a limited numb...

  7. [Presence of autocomplementary RNA with viral specificity in cells infected with herpes virus].

    Science.gov (United States)

    Béchet, J M; Montagnier, L; Latarjet, R

    1975-01-13

    RNA from cells infected with Herpes simplex virus contain a higher percentage of double-stranded RNA than non-infected cells. This percentage increases three-fold upon self-annealing. The complementary RNA sequences were shown to be virus-specific by the following criteria: (1) high melting temperature than double-stranded RNA from non infected cells; (2) higher density in caesium sulphate; (3) specific hybridization with viral DNA.

  8. Directional Cell Migration and Chemotaxis in Wound Healing Response to PDGF-AA are Coordinated by the Primary Cilium in Fibroblasts

    Science.gov (United States)

    Schneider, Linda; Cammer, Michael; Lehman, Jonathan; Nielsen, Sonja K.; Guerra, Charles F.; Veland, Iben R.; Stock, Christian; Hoffmann, Else K.; Yoder, Bradley K.; Schwab, Albrecht; Satir, Peter; Christensen, Søren T.

    2010-01-01

    Cell motility and migration play pivotal roles in numerous physiological and pathophysiological processes including development and tissue repair. Cell migration is regulated through external stimuli such as platelet-derived growth factor-AA (PDGF-AA), a key regulator in directional cell migration during embryonic development and a chemoattractant during postnatal migratory responses including wound healing. We previously showed that PDGFRα signaling is coordinated by the primary cilium in quiescent cells. However, little is known about the function of the primary cilium in cell migration. Here we used micropipette analysis to show that a normal chemosensory response to PDGF-AA in fibroblasts requires the primary cilium. In vitro and in vivo wound healing assays revealed that in ORPK mouse (IFT88Tg737Rpw) fibroblasts, where ciliary assembly is defective, chemotaxis towards PDGF-AA is absent, leading to unregulated high speed and uncontrolled directional cell displacement during wound closure, with subsequent defects in wound healing. These data suggest that in coordination with cytoskeletal reorganization, the fibroblast primary cilium functions via ciliary PDGFRα signaling to monitor directional movement during wound healing. PMID:20110689

  9. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy.

    Science.gov (United States)

    Zhou, Jiehua; Rossi, John J

    2014-06-17

    One hundred years ago, Dr. Paul Ehrlich popularized the "magic bullet" concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, "targeted therapy" that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges.

  10. The individuality of (virus-specific) CD8⁺ T cells

    NARCIS (Netherlands)

    van Aalderen, M.C.

    2016-01-01

    CD8⁺ T cells are specialized in detecting intracellular pathology. As such, acute phase and memory CD8⁺ T cell responses form an essential line of defense against viral infections. Much of the current knowledge on virus-specific CD8⁺ T cell responses derives from mouse models. However, since mice do

  11. Contribution of regulatory T cells to alleviation of experimental allergic asthma after specific immunotherapy

    NARCIS (Netherlands)

    Maazi, H.; Shirinbak, S.; Willart, M.; Hammad, H. M.; Cabanski, M.; Boon, L.; Ganesh, V.; Baru, A. M.; Hansen, G.; Lambrecht, B. N.; Sparwasser, T.; Nawijn, M. C.; van Oosterhout, A. J. M.

    2012-01-01

    Background Allergen-specific immunotherapy (SIT) has been used since 1911, yet its mechanism of action remains to be elucidated. There is evidence indicating that CD4+FOXP3+ regulatory T cells (Treg cells) are induced during SIT in allergic patients. However, the contribution of these cells to SIT h

  12. Programmed death-1 expression on HIV-1-specific CD8+ T cells is shaped by epitope specificity, T-cell receptor clonotype usage and antigen load

    DEFF Research Database (Denmark)

    Kløverpris, Henrik N; McGregor, Reuben; McLaren, James E

    2014-01-01

    OBJECTIVES: Although CD8+ T cells play a critical role in the control of HIV-1 infection,their antiviral efficacy can be limited by antigenic variation and immune exhaustion.The latter phenomenon is characterized by the upregulation of multiple inhibitory receptors, such as programmed death-1 (PD-1......), CD244 and lymphocyte activation gene-3 (LAG-3), which modulate the functional capabilities of CD8+ T cells. DESIGN AND METHODS: Here, we used an array of different human leukocyte antigen(HLA)-B*15:03 and HLA-B*42:01 tetramers to characterize inhibitory receptor expression as a function...... by effector memory CD8+ T cells. CONCLUSION: Collectively, these data suggest that PD-1 expression on HIV-1-specific CD8+ T cells tracks antigen load at the level of epitope specificity and TCR clonotype usage. These findings are important because they provide evidence that PD-1 expression levels...

  13. Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy.

    Science.gov (United States)

    Marga, Francoise; Grandbois, Michel; Cosgrove, Daniel J; Baskin, Tobias I

    2005-07-01

    Enlargement of the cell wall requires separation of cellulose microfibrils, mediated by proteins such as expansin; according to the multi-net growth hypothesis, enlargement passively reorients microfibrils. However, at the molecular scale, little is known about the specific movement of microfibrils. To find out, we examined directly changes in microfibril orientation when walls were extended slowly in vitro under constant load (creep). Frozen-thawed cucumber hypocotyl segments were strained by 20-30% by incubation in pH 4.5 buffer or by incubation of heat-inactivated segments in alpha-expansin or a fungal endoglucanase (Cel12A). Subsequently, the innermost layer of the cell wall was imaged, with neither extraction nor homogenization, by field-emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). AFM images revealed that sample preparation for FESEM did not appreciably alter cell wall ultrastructure. In both FESEM and AFM, images from extended and non-extended samples appeared indistinguishable. To quantify orientational order, we used a novel algorithm to characterize the fast Fourier transform of the image as a function of spatial frequency. For both FESEM and AFM images, the transforms of non-extended samples were indistinguishable from those of samples extended by alpha-expansin or Cel12A, as were AFM images of samples extended by acidic buffer. We conclude that cell walls in vitro can extend slowly by a creep mechanism without passive reorientation of innermost microfibrils, implying that wall loosening agents act selectively on the cross-linking polymers between parallel microfibrils, rather than more generally on the wall matrix.

  14. Influenza virus-specific TCR-transduced T cells as a model for adoptive immunotherapy.

    Science.gov (United States)

    Berdien, Belinda; Reinhard, Henrike; Meyer, Sabrina; Spöck, Stefanie; Kröger, Nicolaus; Atanackovic, Djordje; Fehse, Boris

    2013-06-01

    Adoptive transfer of T lymphocytes equipped with tumor-antigen specific T-cell receptors (TCRs) represents a promising strategy in cancer immunotherapy, but the approach remains technically demanding. Using influenza virus (Flu)-specific T-cell responses as a model system we compared different methods for the generation of T-cell clones and isolation of antigen-specific TCRs. Altogether, we generated 12 CD8(+) T-cell clones reacting to the Flu matrix protein (Flu-M) and 6 CD4(+) T-cell clones reacting to the Flu nucleoprotein (Flu-NP) from 4 healthy donors. IFN-γ-secretion-based enrichment of antigen-specific cells, optionally combined with tetramer staining, was the most efficient way for generating T-cell clones. In contrast, the commonly used limiting dilution approach was least efficient. TCR genes were isolated from T-cell clones and cloned into both a previously used gammaretroviral LTR-vector, MP91 and the novel lentiviral self-inactivating vector LeGO-MP that contains MP91-derived promotor and regulatory elements. To directly compare their functional efficiencies, we in parallel transduced T-cell lines and primary T cells with the two vectors encoding identical TCRs. Transduction efficiencies were approximately twice higher with the gammaretroviral vector. Secretion of high amounts of IFN-γ, IL-2 and TNF-α by transduced cells after exposure to the respective influenza target epitope proved efficient specificity transfer of the isolated TCRs to primary T-cells for both vectors, at the same time indicating superior functionality of MP91-transduced cells. In conclusion, we have developed optimized strategies to obtain and transfer antigen-specific TCRs as well as designed a novel lentiviral vector for TCR-gene transfer. Our data may help to improve adoptive T-cell therapies.

  15. Differentiation of Induced Pluripotent Stem Cells to Lentoid Bodies Expressing a Lens Cell-Specific Fluorescent Reporter.

    Directory of Open Access Journals (Sweden)

    Taruna Anand

    Full Text Available Curative approaches for eye cataracts and other eye abnormalities, such as myopia and hyperopia currently suffer from a lack of appropriate models. Here, we present a new approach for in vitro growth of lentoid bodies from induced pluripotent stem (iPS cells as a tool for ophthalmological research. We generated a transgenic mouse line with lens-specific expression of a fluorescent reporter driven by the alphaA crystallin promoter. Fetal fibroblasts were isolated from transgenic fetuses, reprogrammed to iPS cells, and differentiated to lentoid bodies exploiting the specific fluorescence of the lens cell-specific reporter. The employment of cell type-specific reporters for establishing and optimizing differentiation in vitro seems to be an efficient and generally applicable approach for developing differentiation protocols for desired cell populations.

  16. Chemically crosslinked nanogels of PEGylated poly ethyleneimine (L-histidine substituted) synthesized via metal ion coordinated self-assembly for delivery of methotrexate: Cytocompatibility, cellular delivery and antitumor activity in resistant cells

    Energy Technology Data Exchange (ETDEWEB)

    Abolmaali, Samira Sadat, E-mail: s.abolmaali@gmail.com [Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz 71345 (Iran, Islamic Republic of); Tamaddon, Ali Mohammad, E-mail: amtamadon@gmail.com [Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345 (Iran, Islamic Republic of); Mohammadi, Samaneh, E-mail: samaneh.mohammadi1986@gmail.com [Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345 (Iran, Islamic Republic of); Amoozgar, Zohreh, E-mail: zohreh_amoozgar@dfci.harvard.edu [Department of Cancer Immunology and Aids, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115 (United States); Dinarvand, Rasoul, E-mail: dinarvand@tums.ac.ir [Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174 (Iran, Islamic Republic of)

    2016-05-01

    Self-assembled nanogels were engineered by forming Zn{sup 2+}-coordinated micellar templates of PEGylated poly ethyleneimine (PEG-g-PEI), chemical crosslinking and subsequent removal of the metal ion. Creation of stable micellar templates is a crucial step for preparing the nanogels. To this aim, imidazole moieties were introduced to the polymer by Fmoc-L-histidine using carbodiimide chemistry. It was hypothesized the nanogels loaded with methotrexate (MTX), a chemotherapeutic agent, circumvent impaired carrier activity in HepG2 cells (MTX-resistant hepatocellular carcinoma). So, the nanogels were post-loaded with MTX and characterized by {sup 1}H-NMR, FTIR, dynamic light scattering-zeta potential, atomic force microscopy, and drug release experiments. Cellular uptake and the antitumor activity of MTX-loaded nanogels were investigated by flow cytometry and MTT assay. Discrete, spherical and uniform nanogels, with sizes about 77–83 nm and a relatively high drug loading (54 ± 4% w/w), showed a low polydispersity and neutral surface charges. The MTX-loaded nanogels, unlike empty nanogels, lowered viability of HepG2 cells; the nanogels demonstrated cell-cycle arrest and apoptosis comparably higher than MTX as free drug that was shown to be through i) cellular uptake of the nanogels by clathrin-mediated transport and ii) endosomolytic activity of the nanogels in HepG2 cells. These findings indicate the potential antitumor application of this preparation, which has to be investigated in-vivo. - Highlights: • Nanogel synthesis through chemical crosslinking of the transition metal ion coordinated polymer self-assembly • An enhanced cytocompatibility if compared to unmodified polymer • A noticeable endocytic cellular internalization and endosomolytic activity • A specific antitumor cytotoxicity, cell cycle arrest and apoptosis in resistant tumor cells.

  17. Long range epigenetic silencing is a trans-species mechanism that results in cancer specific deregulation by overriding the chromatin domains of normal cells.

    Science.gov (United States)

    Forn, Marta; Muñoz, Mar; Tauriello, Daniele V F; Merlos-Suárez, Anna; Rodilla, Verónica; Bigas, Anna; Batlle, Eduard; Jordà, Mireia; Peinado, Miguel A

    2013-12-01

    DNA methylation and chromatin remodeling are frequently implicated in the silencing of genes involved in carcinogenesis. Long Range Epigenetic Silencing (LRES) is a mechanism of gene inactivation that affects multiple contiguous CpG islands and has been described in different human cancer types. However, it is unknown whether there is a coordinated regulation of the genes embedded in these regions in normal cells and in early stages of tumor progression. To better characterize the molecular events associated with the regulation and remodeling of these regions we analyzed two regions undergoing LRES in human colon cancer in the mouse model. We demonstrate that LRES also occurs in murine cancer in vivo and mimics the molecular features of the human phenomenon, namely, downregulation of gene expression, acquisition of inactive histone marks, and DNA hypermethylation of specific CpG islands. The genes embedded in these regions showed a dynamic and autonomous regulation during mouse intestinal cell differentiation, indicating that, in the framework considered here, the coordinated regulation in LRES is restricted to cancer. Unexpectedly, benign adenomas in Apc(Min/+) mice showed overexpression of most of the genes affected by LRES in cancer, which suggests that the repressive remodeling of the region is a late event. Chromatin immunoprecipitation analysis of the transcriptional insulator CTCF in mouse colon cancer cells revealed disrupted chromatin domain boundaries as compared with normal cells. Malignant regression of cancer cells by in vitro differentiation resulted in partial reversion of LRES and gain of CTCF binding. We conclude that genes in LRES regions are plastically regulated in cell differentiation and hyperproliferation, but are constrained to a coordinated repression by abolishing boundaries and the autonomous regulation of chromatin domains in cancer cells.

  18. GENETICALLY MODIFIED DENDRITIC CELLS INDUCED SPECIFIC CYTOTOXITY AGAINST HUMAN HCC CELLS IN VITRO

    Institute of Scientific and Technical Information of China (English)

    刘彬彬; 叶胜龙; 贺平; 郑宁; 赵燕; 孙瑞霞; 刘银坤; 汤钊猷

    2004-01-01

    Objective: to transduce the tumor associated antigen gene MAGE-1 and/or IL-12 gene into dendritic cells (DC) and to observe the in vitro cytotoxic effect induced by the genetically modified DC against the human hepatocellular carcinoma (HCC) cell line SMMC7721. Methods: the MAGE-1 gene was inserted into the retrovirus vector LXSN to construct the recombinant retrovirus LMSN. The monocyte-derived DCs were transfected at appropriate differentiation stage by LMSN and/or a recombinant adenovirus AdmiL-12, which containing murine IL-12 gene. The control groups included retrovirus LXSN transfected, adenovirus AdBGFP transfected and non-transfected DCs. The MAGE-1 gene expression was identified by western blot and the mIL-12 p70 secretion was detected by ELISA assay. The in vitro cytotoxicities against SMMC7721 induced by genetically modified and control groups of DC were tested by MTT assay. Results: The MAGE-1 expression was detected by a monoclonal antibody in DCs tranfected with LMSN but not in control groups. At 16 h, 24 h and 48 h after transfection with AdmIL-12, the concentration of the mIL-12 p70 in the culture medium was 580pg/106 cells, 960pg/106 cells and 1100pg/106 cells respectively. The mIL-12 p70 secretions were not detected in other groups. The lytic activity (as judged by % lysis) induced by each groups of DC was 94.2(5.2% (LMSN and AdmIL-12 cotransfected group), 78.9(3.6% (LMSN transfected groups), 52.6(9.7% (AdmIL-12 transfected group), 34.7(4.3% (LXSN transfected group), 36.3(3.8% (AdBGFP transfected group) and 3.9(2.0% (non-transfected group) respectively. Except for LXSN transfected and AdBGFP transfected group, the difference of the lytic activities between other groups were statistically significant (P<0.05). Conclusion: The MAGE-1 gene modified DCs can induce relatively specific cytotoxicty against SMMC7721 in vitro and thus suggested that those genetically engineered DCs have the potential to serve as novel vaccine for HCC. Transduction of

  19. Vaccination Expands Antigen-Specific CD4+ Memory T Cells and Mobilizes Bystander Central Memory T Cells

    Science.gov (United States)

    Li Causi, Eleonora; Parikh, Suraj C.; Chudley, Lindsey; Layfield, David M.; Ottensmeier, Christian H.; Stevenson, Freda K.; Di Genova, Gianfranco

    2015-01-01

    CD4+ T helper memory (Thmem) cells influence both natural and vaccine-boosted immunity, but mechanisms for their maintenance remain unclear. Pro-survival signals from the common gamma-chain cytokines, in particular IL-7, appear important. Previously we showed in healthy volunteers that a booster vaccination with tetanus toxoid (TT) expanded peripheral blood TT-specific Thmem cells as expected, but was accompanied by parallel increase of Thmem cells specific for two unrelated and non cross-reactive common recall antigens. Here, in a new cohort of healthy human subjects, we compare blood vaccine-specific and bystander Thmem cells in terms of differentiation stage, function, activation and proliferative status. Both responses peaked 1 week post-vaccination. Vaccine-specific cytokine-producing Thmem cells were predominantly effector memory, whereas bystander cells were mainly of central memory phenotype. Importantly, TT-specific Thmem cells were activated (CD38High HLA-DR+), cycling or recently divided (Ki-67+), and apparently vulnerable to death (IL-7RαLow and Bcl-2 Low). In contrast, bystander Thmem cells were resting (CD38Low HLA-DR- Ki-67-) with high expression of IL-7Rα and Bcl-2. These findings allow a clear distinction between vaccine-specific and bystander Thmem cells, suggesting the latter do not derive from recent proliferation but from cells mobilized from as yet undefined reservoirs. Furthermore, they reveal the interdependent dynamics of specific and bystander T-cell responses which will inform assessments of responses to vaccines. PMID:26332995

  20. Tetramer guided, cell sorter assisted production of clinical grade autologous NY-ESO-1 specific CD8(+) T cells.

    Science.gov (United States)

    Pollack, Seth M; Jones, Robin L; Farrar, Erik A; Lai, Ivy P; Lee, Sylvia M; Cao, Jianhong; Pillarisetty, Venu G; Hoch, Benjamin L; Gullett, Ashley; Bleakley, Marie; Conrad, Ernest U; Eary, Janet F; Shibuya, Kendall C; Warren, Edus H; Carstens, Jason N; Heimfeld, Shelly; Riddell, Stanley R; Yee, Cassian

    2014-01-01

    Adoptive T cell therapy represents an attractive modality for the treatment of patients with cancer. Peripheral blood mononuclear cells have been used as a source of antigen specific T cells but the very low frequency of T cells recognizing commonly expressed antigens such as NY-ESO-1 limit the applicability of this approach to other solid tumors. To overcome this, we tested a strategy combining IL-21 modulation during in vitro stimulation with first-in-class use of tetramer-guided cell sorting to generate NY-ESO-1 specific cytotoxic T lymphocytes (CTL). CTL generation was evaluated in 6 patients with NY-ESO-1 positive sarcomas, under clinical manufacturing conditions and characterized for phenotypic and functional properties. Following in vitro stimulation, T cells stained with NY-ESO-1 tetramer were enriched from frequencies as low as 0.4% to >90% after single pass through a clinical grade sorter. NY-ESO-1 specific T cells were generated from all 6 patients. The final products expanded on average 1200-fold to a total of 36 billion cells, were oligoclonal and contained 67-97% CD8(+), tetramer(+) T cells with a memory phenotype that recognized endogenous NY-ESO-1. This study represents the first series using tetramer-guided cell sorting to generate T cells for adoptive therapy. This approach, when used to target more broadly expressed tumor antigens such as WT-1 and additional Cancer-Testis antigens will enhance the scope and feasibility of adoptive T cell therapy.

  1. Functional differences in the specific B-cell compartment in high or low antibody responder mice.

    Science.gov (United States)

    de Franco, M; Vidard, L; Mouton, D; Decreusefond, C; Gille Perramant, M F; Couderc, J

    1996-08-01

    The role of antigen-presenting cells (APC) in quantitative antibody synthesis regulation was studied in mice genetically selected for high (HI) or low (LI) antibody response. Irradiated spleen cells and enriched specific B cells from HI and LI mice co-isogenic at H-2s locus, were compared for their capacity to present chicken ovalbumin (OVA) to specific T-cell hybridomas. Minor differences were observed between HI and LI mice when three distinct hybridomas were stimulated in the presence of OVA and splenic macrophages APC. These differences were totally abolished when APC were pulsed with OVAxAb complexes. Looking at the B-cell compartment, hybridoma IL-2 responses were similar when TNP primed B cells were pulsed with OVA. However, when OVA was targeted on TNP-specific enriched B cells by pulsing with TNP-OVA, the IL-2 production by the T-cell hybridomas was stronger in the presence of HI B cells than in the presence of LI B cells. These results strongly suggest that an efficient Ag handling/processing by specific B cells is a major component of the high Ab responder status in Biozzi mice.

  2. T helper cell subsets specific for Pseudomonas aeruginosa in healthy individuals and patients with cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Hannah K Bayes

    Full Text Available BACKGROUND: We set out to determine the magnitude of antigen-specific memory T helper cell responses to Pseudomonas aeruginosa in healthy humans and patients with cystic fibrosis. METHODS: Peripheral blood human memory CD4(+ T cells were co-cultured with dendritic cells that had been infected with different strains of Pseudomonas aeruginosa. The T helper response was determined by measuring proliferation, immunoassay of cytokine output, and immunostaining of intracellular cytokines. RESULTS: Healthy individuals and patients with cystic fibrosis had robust antigen-specific memory CD4(+ T cell responses to Pseudomonas aeruginosa that not only contained a Th1 and Th17 component but also Th22 cells. In contrast to previous descriptions of human Th22 cells, these Pseudomonal-specific Th22 cells lacked the skin homing markers CCR4 or CCR10, although were CCR6(+. Healthy individuals and patients with cystic fibrosis had similar levels of Th22 cells, but the patient group had significantly fewer Th17 cells in peripheral blood. CONCLUSIONS: Th22 cells specific to Pseudomonas aeruginosa are induced in both healthy individuals and patients with cystic fibrosis. Along with Th17 cells, they may play an important role in the pulmonary response to this microbe in patients with cystic fibrosis and other conditions.

  3. Molecular characterization of HCMV-specific immune responses: Parallels between CD8(+) T cells, CD4(+) T cells, and NK cells.

    Science.gov (United States)

    Vieira Braga, Felipe A; Hertoghs, Kirsten M L; van Lier, René A W; van Gisbergen, Klaas P J M

    2015-09-01

    CD8(+) T cells are important for immunity against human cytomegalovirus (HCMV). The HCMV-specific CD8(+) T-cell response is characterized by the accumulation of terminally differentiated effector cells that have downregulated the costimulatory molecules CD27 and CD28. These HCMV-specific CD8(+) T cells maintain high levels of cytotoxic molecules such as granzyme B and rapidly produce the inflammatory cytokine IFN-γ upon activation. Remarkably, HCMV-specific CD8(+) T cells are able to persist long term as fully functional effector cells, suggesting a unique differentiation pathway that is distinct from the formation of memory CD8(+) T cells after infection with acute viruses. In this review, we aim to highlight the most recent developments in HCMV-specific CD8(+) T-cell differentiation, maintenance, tissue distribution, metabolism and function. HCMV also induces the differentiation of effector CD4(+) T cells and NK cells, which share characteristics with HCMV-specific CD8(+) T cells. We propose that the overlap in differentiation of NK cells, CD4(+) and CD8(+) T cells after HCMV infection may be regulated by a shared transcriptional machinery. A better understanding of the molecular framework of HCMV-specific CD8(+) T-cell responses may benefit vaccine design, as these cells uniquely combine the capacity to rapidly respond to infection with long-term survival. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division.

    Science.gov (United States)

    Mora-Bermúdez, Felipe; Matsuzaki, Fumio; Huttner, Wieland B

    2014-07-04

    Mitotic spindle orientation is crucial for symmetric vs asymmetric cell division and depends on astral microtubules. Here, we show that distinct subpopulations of astral microtubules exist, which have differential functions in regulating spindle orientation and division symmetry. Specifically, in polarized stem cells of developing mouse neocortex, astral microtubules reaching the apical and basal cell cortex, but not those reaching the central cell cortex, are more abundant in symmetrically than asymmetrically dividing cells and reduce spindle orientation variability. This promotes symmetric divisions by maintaining an apico-basal cleavage plane. The greater abundance of apical/basal astrals depends on a higher concentration, at the basal cell cortex, of LGN, a known spindle-cell cortex linker. Furthermore, newly developed specific microtubule perturbations that selectively decrease apical/basal astrals recapitulate the symmetric-to-asymmetric division switch and suffice to increase neurogenesis in vivo. Thus, our study identifies a novel link between cell polarity, astral microtubules, and spindle orientation in morphogenesis.

  5. A Good Manufacturing Practice procedure to engineer donor virus-specific T cells into potent anti-leukemic effector cells.

    Science.gov (United States)

    van Loenen, Marleen M; de Boer, Renate; van Liempt, Ellis; Meij, Pauline; Jedema, Inge; Falkenburg, J H Frederik; Heemskerk, Mirjam H M

    2014-04-01

    A sequential, two-step procedure in which T-cell-depleted allogeneic stem cell transplantation is followed by treatment with donor lymphocyte infusion at 6 months can significantly reduce the risk and severity of graft-versus-host disease, with postponed induction of the beneficial graft-versus-leukemia effect. However, patients with high-risk leukemia have a substantial risk of relapse early after transplantation, at a time when administration of donor lymphocytes has a high likelihood of resulting in graft-versus-host disease, disturbing a favorable balance between the graft-versus-leukemia effect and graft-versus-host disease. New therapeutic modalities are, therefore, required to allow early administration of T cells capable of exerting a graft-versus-leukemia effect without causing graft-versus-host disease. Here we describe the isolation of virus-specific T cells using Streptamer-based isolation technology and subsequent transfer of the minor histocompatibility antigen HA-1-specific T-cell receptor using retroviral vectors. Isolation of virus-specific T cells and subsequent transduction with HA-1-T-cell receptor resulted in rapid in vitro generation of highly pure, dual-specific T cells with potent anti-leukemic reactivity. Due to the short production procedure of only 10-14 days and the defined specificity of the T cells, administration of virus-specific T cells transduced with the HA-1-T-cell receptor as early as 8 weeks after allogeneic stem cell transplantation is feasible. (This clinical trial is registered at www.clinicaltrialsregister.eu as EudraCT number 2010-024625-20).

  6. Tissue-specific B-cell dysfunction and generalized memory B-cell loss during acute SIV infection.

    Directory of Open Access Journals (Sweden)

    Sandrine Peruchon

    Full Text Available BACKGROUND: Primary HIV-infected patients display severe and irreversible damage to different blood B-cell subsets which is not restored by highly efficient anti-retroviral therapy (HAART. Because longitudinal investigations of primary HIV-infection is limited by the availability of lymphoid organs, we studied the tissue-specific B-cell dysfunctions in acutely simian immunodeficiency virus (SIV mac251-infected Cynomolgus macaques. METHODS AND FINDINGS: Experiments were performed on three groups of macaques infected for 14, 21 or 28 days and on three groups of animals treated with HAART for two-weeks either initiated at 4 h, 7 or 14 days post-infection (p.i.. We have simultaneously compared changes in B-cell phenotypes and functions and tissue organization of B-cell areas in various lymphoid organs. We showed that SIV induced a steady decline in SIgG-expressing memory (SIgD(-CD27(+ B-cells in spleen and lymph nodes during the first 4 weeks of infection, concomitant to selective homing/sequestration of B-cells to the small intestine and spleen. SIV non-specific Ig production was transiently increased before D14p.i., whereas SIV-specific Ig production was only detectable after D14p.i., coinciding with the presence of CD8(+ T-cells and IgG-expressing plasma cells within germinal centres. Transient B-cell apoptosis on D14p.i. and commitment to terminal differentiation contributed to memory B-cell loss. HAART abrogated B-cell apoptosis, homing to the small intestine and SIV-specific Ig production but had minimal effect on early Ig production, increased B-cell proportions in spleen and loss of memory B-cells. Therefore, virus-B-cell interactions and SIV-induced inflammatory cytokines may differently contribute to early B-cell dysfunction and impaired SIV/HIV-specific antibody response. CONCLUSIONS: These data establish tissue-specific impairments in B-cell trafficking and functions and a generalized and steady memory B-cell loss in secondary lymphoid

  7. Lentivirally engineered dendritic cells activate AFP-specific T cells which inhibit hepatocellular carcinoma growth in vitro and in vivo.

    Science.gov (United States)

    Liu, Yang; Butterfield, Lisa H; Fu, Xiaohui; Song, Zhenshun; Zhang, Xiaoping; Lu, Chongde; Ding, Guanghui; Wu, Mengchao

    2011-07-01

    α-fetoprotein (AFP), a tumor-associated antigen for hepatocellular carcinoma (HCC), is an established biomarker for HCC. In this study, we created a lentivirus expressing the AFP antigen and investigated the anti-tumor activity of AFP-specific CD8+ T cells, with and without CD4+ T cells, which were activated by either AFP peptide-pulsed or Lenti-AFP-engineered Dendritic cells (DCs) in vitro and in vivo. AFP-specific T cells could efficiently kill HepG2 HCC cells, and produced IL-2, IFN-γ, TNF-α, perforin and granzyme B, with minimal production of IL-10 (a negative regulator of T cell activation). Both strategies activated AFP-specific T cells, but the lentiviral strategy was superior by several measures. Data also support an impact of CD4+ T cells in supporting anti-tumor activity. In vivo studies in a xenograft HCC tumor model also showed that AFP-specific T cells could markedly suppress HCC tumor formation and morbidity in tumor-bearing nude mice, as well as regulate serum levels of related cytokines and anti-tumor molecules. In parallel with human in vitro T cell cultures, the in vivo model demonstrated superior anti-tumor effects and Th1-skewing with Lenti-AFP-DCs. This study supports the superiority of a full-length antigen lentivirus-based DCs vaccine strategy over peptides, and provides new insight into the design of DCs-based vaccines.

  8. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones

    Science.gov (United States)

    Theaker, Sarah M.; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J.; Cole, David K.; Peakman, Mark; Sewell, Andrew K.; Dolton, Garry

    2016-01-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8+ or CD4+ polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein–Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. PMID:26826277

  9. Integrin-α5 coordinates assembly of posterior cranial placodes in zebrafish and enhances Fgf-dependent regulation of otic/epibranchial cells.

    Directory of Open Access Journals (Sweden)

    Neha Bhat

    Full Text Available Vertebrate sensory organs develop in part from cranial placodes, a series of ectodermal thickenings that coalesce from a common domain of preplacodal ectoderm. Mechanisms coordinating morphogenesis and differentiation of discrete placodes are still poorly understood. We have investigated whether placodal assembly in zebrafish requires Integrin- α5 (itga5, an extracellular matrix receptor initially expressed throughout the preplacodal ectoderm. Morpholino knockdown of itga5 had no detectable effect on anterior placodes (pituitary, nasal and lens, but posterior placodes developed abnormally, resulting in disorganization of trigeminal and epibranchial ganglia and reduction of the otic vesicle. Cell motion analysis in GFP-transgenic embryos showed that cell migration in itga5 morphants was highly erratic and unfocused, impairing convergence and blocking successive recruitment of new cells into these placodes. Further studies revealed genetic interactions between itga5 and Fgf signaling. First, itga5 morphants showed changes in gene expre