WorldWideScience

Sample records for cooling water experiences

  1. Cooling water for SSC experiments: Supplemental Conceptual Design Report (SCDR)

    International Nuclear Information System (INIS)

    Doyle, R.E.

    1989-01-01

    This paper discusses the following topics on cooling water design on the superconducting super collider; low conductivity water; industrial cooling water; chilled water systems; and radioactive water systems

  2. Environmental effects of large discharges of cooling water. Experiences from Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Ehlin, Ulf; Lindahl, Sture; Neuman, Erik; Sandstroem, Olof; Svensson, Jonny

    2009-07-01

    variations caused by changing weather and climate. When cooling water discharges began, the monitoring of effects started, mapping environmental impacts. To ensure that observed environmental changes were caused by cooling water discharges and not by natural variations, parallel measurements were carried out in undisturbed reference areas. The focus of the biological investigations has been directed towards fish using test fishing and daily records of commercial fishing. Age distributions, reproduction, growth, and the prevalence of disease and parasites have been analysed. Fish movements and behaviour related to cooling-water were mapped using mark-recapture experiments. The monitoring of effects included mapping the shape and size of the cooling-water plume and the temperature distribution in the discharge area. For certain biological variables, such as the movement of fish in relation to the cooling water plume, great efforts were made during the first years of power plant operation. In conjunction with the start of the plants, studies were also initiated to estimate the loss of fish on the cooling-water intake screens. Meteorological research projects investigated among other things, the risks for increased fog formation due to the discharge of warm water, while hydrography projects mainly concerned the development of methods for calculating the size and form of the cooling water plumes. Ecological studies were directed to the effects of increasing temperature on the production and degradation of biological material, on the benthic fauna responses, on the risk of fish parasite and disease outbreaks as well as on the combined effects of toxic substances and heat. The possibility of using cooling-water to improve fish recruitment was also studied. In conjunction with the construction of the Forsmark nuclear power plant, an artificial enclosure was made using rock excavated from the cooling water tunnels. Cooling water is led through this basin before discharge into the

  3. A water-cooling solution for PC-racks of the LHC experiments

    CERN Document Server

    Vannerem, P

    2004-01-01

    With ever increasing power consumption and heat dissipation of todays CPUs, cooling of rack-mounted PCs is an issue for the future online farms of the LHC experiments. In order to investigate the viability of a water-cooling solution, a prototype PC-farm rack has been equipped with a commercially available retrofitted heat exchanger. The project has been carried out as a collaboration of the four LHC experiments and the PH-ESS group . This note reports on the results of a series of cooling and power measurements of the prototype rack with configurations of 30 to 48 PCs. The cooling performance of the rack-cooler is found to be adequate; it extracts the heat dissipated by the CPUs efficiently into the cooling water. Hence, the closed PC rack transfers almost no heat into the room. The measurements and the failure tests show that the rack-cooler concept is a viable solution for the future PC farms of the LHC experiments.

  4. Zirconium carbide coating for corium experiments related to water-cooled and sodium-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Plevacova, K. [CEA, DEN, STRI, LMA, Cadarache, 3108 St. Paul lez Durance (France); Journeau, C., E-mail: christophe.journeau@cea.fr [CEA, DEN, STRI, LMA, Cadarache, 3108 St. Paul lez Durance (France); Piluso, P. [CEA, DEN, STRI, LMA, Cadarache, 3108 St. Paul lez Durance (France); Zhdanov, V.; Baklanov, V. [IAE, National Nuclear Centre, Material Structure Investigation Dept., Krasnoarmeiskaya, 10, Kurchatov City (Kazakhstan); Poirier, J. [CEMHTI, 1D, av. de la Recherche Scientifique, 45071 Orleans Cedex 2 (France)

    2011-07-01

    Since the TMI and Chernobyl accidents the risk of nuclear severe accident is intensively studied for existing and future reactors. In case of a core melt-down accident in a nuclear reactor, a complex melt, called corium, forms. To be able to perform experiments with prototypic corium materials at high temperature, a coating which resists to different corium melts related to Generation I and II Water Reactors and Generation IV sodium fast reactor was researched in our experimental platforms both in IAE NNC in Kazakhstan and in CEA in France. Zirconium carbide was selected as protective coating for graphite crucibles used in our induction furnaces: VCG-135 and VITI. The method of coating application, called reactive wetting, was developed. Zirconium carbide revealed to resist well to the (U{sub x}, Zr{sub y})O{sub 2-z} water reactor corium. It has also the advantage not to bring new elements to this chemical system. The coating was then tested with sodium fast reactor corium melts containing steel or absorbers. Undesirable interactions were observed between the coating and these materials, leading to the carburization of the corium ingots. Concerning the resistance of the coating to oxide melts without ZrO{sub 2}, the zirconium carbide coating keeps its role of protective barrier with UO{sub 2}-Al{sub 2}O{sub 3} below 2000 deg. C but does not resist to a UO{sub 2}-Eu{sub 2}O{sub 3} mixture.

  5. Steam generator tube failures: experience with water-cooled nuclear power reactors during 1976

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1978-02-01

    A survey was conducted of experience with steam generator tubes at nuclear power stations during 1976. Failures were reported at 25 out of 68 water-cooled reactors. The causes of these failures and the repair and inspection procedures designed to cope with them are summarized. Examination of the data indicates that corrosion was the major cause of steam generator tube failures. Improvements are needed in steam generator design, condenser integrity and secondary water chemistry control. (author)

  6. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  7. Steam-generator tube performance: world experience with water-cooled nuclear power reactors during 1978

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1980-01-01

    The performance of steam-generator tubes in water-cooled nuclear power reactors during 1978 is reviewed. Tube failures occurred at 31 of the 86 reactors surveyed. The causes of these failures and the procedures designed to deal with them are described. The number of tubes plugged has decreased dramatically in 1978 compared to the previous year. This is attributed to the diligent application of techniques developed through in-plant experience and research and development programs over the past several years

  8. Four decades of working experience of Cirus primary cooling water heat exchangers

    International Nuclear Information System (INIS)

    Dubey, P.K.; Ullas, O.P.; Rao, D.V.H.; Zope, A.K.; Kharpate, A.V.

    2006-01-01

    CIRUS is a 40 MW (Th.) research reactor, commissioned in the year 1960. The reactor has natural uranium fuel rods, heavy water as moderator, demineralised water (DM water) as primary coolant, and seawater as secondary coolant. There are six Heat Exchangers in the primary cooling water (PCW) system. Five of them are required for the normal operation of the reactor and one is kept stand by. DM water flows on the shell side of the heat exchanger in two passes. Seawater is used as coolant on the tube side of the heat exchangers in four passes. Cirus has been in operation for around 41 years excluding refurbishment period. During these four decades of reactor operation, PCW heat exchangers have experienced many failures and undergone many modifications in the circuit for ensuring better performance. This paper tries to capture the essence of working experiences with PCW heat exchangers, various problems faced, remedial measures taken during those four decades of reactor operation. (author)

  9. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  10. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  11. Steam generator tube performance: experience with water-cooled nuclear power reactors during 1978

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1980-02-01

    The performance of steam generator tubes in water-cooled nuclear power reactors has been reviewed for 1978. Tube failures occurred at 31 of the 86 reactors surveyed. Causes of these failures and procedures designed to deal with them are described. A dramatic decrease in the number of tubes plugged was evident in 1978 compared to the previous year. This is attributed to diligent application of techniques developed from in-plant experience and research and development programs over the past several years. (auth)

  12. An operational experience with cooling tower water system in chilling plant

    International Nuclear Information System (INIS)

    Rajan, Manju B.; Roy, Ankan; Ravi, K.V.

    2015-01-01

    Cooling towers are popular in industries as a very effective evaporative cooling technology for air conditioning. Supply of chilled water to air conditioning equipments of various plant buildings and cooling tower water to important equipments for heat removal is the purpose of chilling plant at PRPD. The cooling medium used is raw water available at site. Water chemistry is maintained by make-up and blowdown. In this paper, various observations made during plant operation and equipment maintenance are discussed. The issues observed was scaling and algal growth affecting the heat transfer and availability of the equipment. Corrosion related issues were observed to be less significant. Scaling indices were calculated to predict the behavior. (author)

  13. Conditioning of cooling water in power stations. Feedback from twenty years of experience with acid feeding

    Energy Technology Data Exchange (ETDEWEB)

    Goffin, C.; Duvivier, L.; Girasa, E. [LABORELEC, Chemistry of Water (Belgium); Brognez, J. [ELECTRABEL, TIHANGE Nuclear Power Station (Belgium)

    2002-07-01

    In the late 1970's and early 1980's, with the development of the nuclear programme in many European countries, the recirculation of cooling water in power stations became an issue which required urgent attention. The concentration of several plants of 1000 MW or more on sites along inland waterways actually made simple once-through cooling impossible, owing to the risk of an unacceptable rise in the river's water temperature. The chemical composition of natural freshwater in western European waterways is such that when it becomes slightly concentrated, scale is rapidly formed. The relatively low solubility of calcium carbonate and the degassing of the carbon dioxide during close contact between the water and air in the heat exchangers of the cooling tower explain this precipitation tendency. Fairly soon, experts in the electricity power generation companies highlighted the need for on-site, pilot loop simulations, in order to foresee the physico-chemical phenomena that could arise in industrial installations. The number of financially justifiable processing possibilities could be briefly summarised by the following three solutions: to adapt the concentration factor in order to be under the calcium carbonate solubility limit and thereby avoid the need for any water conditioning; to accept concentration factors of between 1.4 and 1.9 and control the calcium carbonate precipitation through controlled acid injection in the circulation water; to raise the concentration factor over 5 and soften the makeup water through the addition of lime and flocculant. The last of these solutions was rarely ever used in Belgium and France. It was however widely used in Germany. Its application requires a greater investment and leads to higher operating costs than acid injection. Furthermore, it leads to the problem of daily drying and disposal of several dozen tonnes of sludge, which have to be recycled or dumped. In an increasingly stringent environmental context, this

  14. Conditioning of cooling water in power stations. Feedback from twenty years of experience with acid feeding

    International Nuclear Information System (INIS)

    Goffin, C.; Duvivier, L.; Girasa, E.; Brognez, J.

    2002-01-01

    In the late 1970's and early 1980's, with the development of the nuclear programme in many European countries, the recirculation of cooling water in power stations became an issue which required urgent attention. The concentration of several plants of 1000 MW or more on sites along inland waterways actually made simple once-through cooling impossible, owing to the risk of an unacceptable rise in the river's water temperature. The chemical composition of natural freshwater in western European waterways is such that when it becomes slightly concentrated, scale is rapidly formed. The relatively low solubility of calcium carbonate and the degassing of the carbon dioxide during close contact between the water and air in the heat exchangers of the cooling tower explain this precipitation tendency. Fairly soon, experts in the electricity power generation companies highlighted the need for on-site, pilot loop simulations, in order to foresee the physico-chemical phenomena that could arise in industrial installations. The number of financially justifiable processing possibilities could be briefly summarised by the following three solutions: to adapt the concentration factor in order to be under the calcium carbonate solubility limit and thereby avoid the need for any water conditioning; to accept concentration factors of between 1.4 and 1.9 and control the calcium carbonate precipitation through controlled acid injection in the circulation water; to raise the concentration factor over 5 and soften the makeup water through the addition of lime and flocculant. The last of these solutions was rarely ever used in Belgium and France. It was however widely used in Germany. Its application requires a greater investment and leads to higher operating costs than acid injection. Furthermore, it leads to the problem of daily drying and disposal of several dozen tonnes of sludge, which have to be recycled or dumped. In an increasingly stringent environmental context, this solution is no

  15. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  16. Steam-generator tube failures: world experience in water-cooled nuclear power reactors in 1974

    International Nuclear Information System (INIS)

    Hare, M.G.

    1976-01-01

    Steam-generator tube failures were reported at 25 of 59 water-cooled nuclear power reactors surveyed in 1974, compared to 11 of 49 in 1973. A summary is presented of these failures, most of which, where the cause is known, were the result of corrosion. Water chemistry control, inspection and repair procedures, and failure rates are discussed

  17. Indian experience with radionuclide transport, deposition and decontamination in water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Narasimhan, S.V.; Das, P.C.; Lawrence, D.A.; Mathur, P.K.; Venkateswarlu, K.S.

    1983-01-01

    The present generation of water-cooled nuclear reactors uses construction materials chosen with utmost care so that minimum corrosion occurs during the life of the reactor. As interaction between the primary coolant and the construction materials is unavoidable, the coolant is chemically treated to achieve maximum compatibility. First measurements of the chemical and radiochemical composition of the crud present on the in-core and out-of-core primary heat transport system surfaces of a pressurized heavy-water-moderated and cooled reactor (PHWR) are given; then experience in India in the development of a low temperature, one-stage decontaminating formulation for chemical decontamination of the radioactive deposits formed on stainless steel surfaces under BWR conditions is discussed. The effect of the magnitude of the transients in parameters such as reactor power, system temperature, dissolved oxygen content in the coolant, etc. on the nature and migration behaviour of primary heat transport system crud in a PHWR is described. Contributions to radioactive sources and insoluble crud from different primary heat transport system materials are identified and correlated with reactor operations in a PHWR. Man-rem problems faced by nuclear reactors, especially during off-line maintenance, stress the need for reducing the deposited radioactive sources from system surfaces which would otherwise be accessible. Laboratory and on-site experimentation was carried out to effect chemical decontamination on the radioactive deposits formed on the stainless steel surfaces under BWR conditions. Both the reducing and oxidizing formulations were subsequently used in a small-scale, in-plant trial in the clean-up system of a BWR. More than 85% of the deposited 60 Co activity was found to have been removed by the oxidizing formulation. Efforts to develop a decontaminating mixture containing a reducing agent with the help of a circulating loop are in progress in the laboratory. (author)

  18. Construction and commissioning experience of evolutionary water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2004-04-01

    Electricity market liberalization is an established fact in several countries and there is a trend to adopt it in other countries. The essential aim of market liberalization is to improve the overall economic efficiency. In order that nuclear power remains a viable option for electricity generation, its costs should be competitive with alternative sources while, at the same time, it should have a safe and reliable operation record. The capital cost of nuclear power plants (NPPs) generally accounts for 43-70% of the total nuclear electricity generation costs, compared to 26-48% for coal plants and 13-32% for gas plants. Most of these expenditures are incurred during the construction phase of a NPP. The achievement of shorter construction periods using improved technology and construction methods has a significant benefit on the costs incurred prior to any production of electricity. This document is intended to make the recent worldwide experience on construction and commissioning of evolutionary water cooled NPPs available to Member States and especially to those with nuclear power plants under construction/planning, and to those seriously considering nuclear power projects in the future. The final aim is to assist utilities and other organizations in Member States to improve the construction of nuclear power plants and achieve shortened schedules and reduced costs without compromising quality and safety. This document aims to provide an overview of the most advanced technologies, methods and processes used in construction and commissioning of recent nuclear projects. To better achieve this objective the presentation is selectively focused more on the new developments rather than providing a full review of all issues related to construction and commissioning. The experience described in this TECDOC applies to managers, engineers, supervisors, technicians and workers in various organizations dealing with the site construction and commissioning of nuclear power plants

  19. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor

    2014-01-01

    . To prevent wet discomfort, the T-shirt was made of a polyester material having a water-repellent silicon coating on the inner surface. The chest, front upper arms, and nape of the neck were adopted as the cooling areas of the human body. We conducted human subject experiments in an office with air......We developed cooling clothing that utilizes water evaporation to cool the human body and has a mechanism to control the cooling intensity. Clean water was supplied to the outer surface of the T-shirt of the cooling clothing, and a small fan was used to enhance evaporation on this outer surface...... temperature ranging from 27.4 to 30.7 °C to establish a suitable water supply control method. A water supply control method that prevents water accumulation in the T-shirt and water dribbling was validated; this method is established based on the concept of the water evaporation capacity under the applied...

  20. Steam generator tube failures: world experience in water-cooled nuclear power reactors in 1975

    International Nuclear Information System (INIS)

    Hare, M.G.

    1976-11-01

    Steam generator tube failures were reported in 22 out of 62 water-cooled nuclear power plants surveyed in 1975. This was less than in 1974, and the number of the tubes affected was noticeably less. This report summarizes these failures, most of which were due to corrosion. Secondary-water chemistry control, procedures for inspection and repair, tube materials, and failure rates are discussed. (author)

  1. Steam generator tube performance: experience with water-cooled nuclear power reactors during 1983 and 1984

    International Nuclear Information System (INIS)

    Tatone, O.S.; Meindl, P.; Taylor, G.F.

    1986-06-01

    A review of the performance of steam generator tubes in water-cooled nuclear power reactors showed that tubes were plugged at 47 (35.6%) of the reactors in 1983 and at 63 (42.6%) of the reactors during 1984. In 1983 and 1984 3291 and 3335 tubes, respectively, were removed from service, about the same as in 1982. The leading causes assigned to tube failure were stress corrosion cracking from the primary side and stress corrosion cracking or intergranular attack from the secondary side. In addition 5668 tubes were repaired for further service by installation of internal sleeves. Most of these were believed to have deteriorated by one of the above mechanisms or by pitting. There is a continuing trend towards high-integrity condenser tube materials at sites cooled by brackish or sea water. 31 refs

  2. Steam generator tube performance: experience with water-cooled nuclear power reactors during 1977

    International Nuclear Information System (INIS)

    Pathania, R.S.; Tatone, O.S.

    1979-02-01

    The performance of steam generator tubes in water-cooled nuclear power reactors has been reviewed for 1977. Failures were reported in 34 of the 79 reactors surveyed. Causes of these failures and inspection and repair procedures designed to deal with them are presented. Although corrosion remained the leading cause of tube failures, specific mechanisms have been identified and methods of dealing with them developed. These methods are being applied and should lead to a reduction of corrosion failures in future. (author)

  3. Experience of Electricite de France in the use of sea water for cooling thermal power stations

    International Nuclear Information System (INIS)

    Boyer, R.M.E.; Malherbe, C.

    1979-01-01

    The sea is a practically unlimited reserve of water for cooling conventional or nuclear thermal power stations. On the other hand, its use gives rise to numerous problems relating to the design and operation of the equipment. The main problems encountered at EDF are associated with filter screens (clogging, corrosion), the distribution ducts (encrusted organisms), the water boxes, the tube plates, and above all, the condenser tubes (corrosion, corrosion-erosion). The site-construction of several PWR nuclear sets has caused EDF to dispense with the use of cuprous alloys for the tubes of condensers using sea water; these are now of thin-walled seam-welded titanium. In order to reduce further the risks of leakage, these tubes are expanded into double tube plates between which fresh water is trapped under pressure. (author)

  4. Steam generator tube performance. Experience with water-cooled nuclear power reactors during 1985

    International Nuclear Information System (INIS)

    Tatone, O.S.; Tapping, R.L.

    1988-12-01

    The performance of steam generator tubes at water-cooled reactors during 1985 has been reviewed. Seventy-three of 168 reactors in the survey experienced tube degradation sufficient for the tubes to be plugged. The number of tubes plugged was 6837 or 0.28% of those in service. The leading cause of tube failure was stress corrosion cracking from the primary side. Stress corrosion cracking or intergranular attack from the secondary side and pitting were also major causes of tube failure. Unlike most previous years, fretting was a substantial problem at some reactors. Overall, corrosion continued to account for more than 80% of the defects. 20 refs

  5. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a cooling water intake collector for a nuclear reactor. It includes multiple sub-collectors extending out in a generally parallel manner to each other, each one having a first end and a second one separated along their length, and multiple water outlets for connecting each one to a corresponding pressure tube of the reactor. A first end tube and a second one connect the sub-collector tubes together to their first and second ends respectively. It also includes multiple collector tubes extending transversely by crossing over the sub-collector tubes and separated from each other in the direction of these tubes. Each collector tubes has a water intake for connecting to a water pump and multiple connecting tubes separated over its length and connecting each one to the corresponding sub-collector [fr

  6. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  7. Steam generator tube performance: world experience with water-cooled nuclear power reactors during 1979

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1981-01-01

    The performance of steam generator tubes in water-cooled nuclear power reactors is reviewed for 1979. Tube failures occurred at 38 of the 93 reactors surveyed. The causes of these failures and the procedures designed to deal with them are described. The defect rate, although higher than that in 1978, was still lower than the rates of the two previous years. Methods being employed to detect defects include the increased use of multifrequency eddy-current testing and a trend to full-length inspection of all tubes. To reduce the incidence of tube failure by corrosion, plant operators are turning to full-flow condensate demineralization and more leak-resistant condenser tubes. 10 tables

  8. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  9. Operating experience of natural circulation core cooling in boiling water reactors

    International Nuclear Information System (INIS)

    Kullberg, C.; Jones, K.; Heath, C.

    1993-01-01

    General Electric (GE) has proposed an advanced boiling water reactor, the Simplified Boiling Water Reactor (SBWR), which will utilize passive, gravity-driven safety systems for emergency core coolant injection. The SBWR design includes no recirculation loops or recirculation pumps. Therefore the SBWR will operate in a natural circulation (NC) mode at full power conditions. This design poses some concerns relative to stability during startup, shutdown, and at power conditions. As a consequence, the NRC has directed personnel at several national labs to help investigate SBWR stability issues. This paper will focus on some of the preliminary findings made at the INEL. Because of the broad range of stability issues this paper will mainly focus on potential geysering instabilities during startup. The two NC designs examined in detail are the US Humboldt Bay Unit 3 BWR-1 plant and Dodewaard plant in the Netherlands. The objective of this paper will be to review operating experience of these two plants and evaluate their relevance to planned SBWR operational procedures. For completeness, experimental work with early natural circulation GE test facilities will also be briefly discussed

  10. CO$_2$ cooling experience (LHCb)

    CERN Document Server

    Van Lysebetten, Ann; Verlaat, Bart

    2007-01-01

    The thermal control system of the LHCb VErtex LOcator (VELO) is a two-phase C0$_2$ cooling system based on the 2-Phase Accumulator Controlled Loop (2PACL) method. Liquid carbon dioxide is mechanically pumped in a closed loop, chilled by a water-cooled freon chiller and evaporated in the VELO detector. The main goal of the system is the permanent cooling of the VELO silicon sensors and of the heat producing front-end electronics inside a vacuum environment. This paper describes the design and the performance of the system. First results obtained during commissioning are also presented.

  11. Experiment Investigation on Electrical and Thermal Performances of a Semitransparent Photovoltaic/Thermal System with Water Cooling

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2014-01-01

    Full Text Available Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy analysis were all adopted to illustrate the performance of SPV/T system. The results showed that the PV efficiency and the thermal efficiency were about 11.5% and 39.5%, respectively, on the typical sunny day. Furthermore, the PV and thermal efficiencies fit curves were made to demonstrate the SPV/T performance more comprehensively. The performance analysis indicated that the SPV/T system has a good application prospect for building.

  12. Reduction of Langelier index of cooling water by electrolytic ...

    African Journals Online (AJOL)

    LSI) of the cooling water from a cooling tower of a textile industry was investigated. Sacrificial anodes were employed which prevent obnoxious chlorine generation. A series of batch experiments using stainless steel electrodes were conducted ...

  13. Experiences with electrochemical analysis of copper at the PPB-level in saline cooling water and in the water/steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, K [I/S Nordjyllandsvaerket, Vodskov (Denmark)

    1996-12-01

    Determination of trace amounts of copper in saline cooling water and in process water by differential pulse anodic stripping voltammetry combined with an UV-photolysis pretreatment is described. Copper concentrations well below 1 {mu}g/L may be analysed with a precision in the order of 10% and a high degree of accuracy. The basic principles of the method are described together with three applications covering analysis of cooling and process water samples. The analysis method has been applied to document the adherence of environmental limits for the copper uptake of cooling water passing brass condensers, to monitor the formation of protective layers of iron oxides on the cooling water side of brass condensers, and to study the transport of copper in water/steam cycles with heat exchangers and condensers of brass materials. (au)

  14. Experiment of IEA-R1 reactor core cooling by air convection after pool water loss accident

    International Nuclear Information System (INIS)

    Torres, Walmir Maximo; Baptista Filho, Benedito Dias

    2000-01-01

    This paper presents a study of a Emergency Core Cooling to be applied to the IEA-R1 reactor. This system must have the characteristics of passive action, with water spraying over the core, and feeding by gravity from elevated reservoirs. In the evaluation, this system must demonstrate that when the reservoirs are emptied, the core cooling must assure to be fulfilled by air natural convection. This work presents the results of temperature distribution in a test section with plates electrically heated simulation the heat generation conditions on the most heated reactor element

  15. Materials for advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-09-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The International Working Group on Advanced Technologies for Water Cooled Reactors recommended to organize a Technical Committee Meeting for the purpose of providing an international forum for technical specialists to review and discuss aspects regarding development trends in material application for advanced water cooled reactors. The experience gained from the operation of current water cooled reactors, and results from related research and development programmes, should be the basis for future improvements of material properties and applications. This meeting enabled specialists to exchange knowledge about structural materials application in the nuclear island for the next generation of nuclear power plants. Refs, figs, tabs

  16. Experiences with the ASDEX neutralizer plates and construction of water-cooled plates for long-pulse heating

    International Nuclear Information System (INIS)

    Rapp, H.; Niedermeyer, H.; Kornherr, M.

    1987-01-01

    After dismantling of the titanium neutralizer plates inspection yielded satisfactory status of flat areas whereas edges and curved shapes were heavily melted. At the inner plates of the lower divertor strongly focused melting and cutting was found which is caused by fast electrons. These electrons are continuously produced. The production mechanism is not yet clear but runaway processes can be excluded. With long-pulse additional heating of 6 MW/10s as planned for ASDEX in 1987, the total energy delivered to the plasma will increase by a factor of 30. Therefore new water-cooled neutralizer plates have been constructed which consist of a copper-steel compound. The construction principle and the topology of the cooling circuits is presented

  17. Water cooling of RF structures

    International Nuclear Information System (INIS)

    Battersby, G.; Zach, M.

    1994-06-01

    We present computer codes for heat transfer in water cooled rf cavities. RF parameters obtained by SUPERFISH or analytically are operated on by a set of codes using PLOTDATA, a command-driven program developed and distributed by TRIUMF [1]. Emphasis is on practical solutions with designer's interactive input during the computations. Results presented in summary printouts and graphs include the temperature, flow, and pressure data. (authors). 4 refs., 4 figs

  18. The Forsmark biotest basin. An instrument for environmental research. Experiences of large cooling water discharges in Sweden (1969-1993) and research perspectives for the future

    International Nuclear Information System (INIS)

    Snoeijs, P.

    1994-01-01

    This report presents the Biotest basin at Forsmark (Sweden) as an instrument for experimental environmental research, and indicates possibilities for its future use. the basin consists of a 1 km 2 artificial enclosure in the Baltic Sea that receives cooling water discharge from the Forsmark nuclear power plant. Cooling water discharge was initiated in 1980, and since then the basin has been serving as the main Swedish instrument for field studies on the effects of enhanced temperature and low-dose radioactivity on aquatic ecosystems. Environmental effects of large cooling water discharges from power plants to the sea have been studied at other sites in Sweden too, and for the sake of completeness of background information this report provides a survey and an extensive bibliography of all previous research on cooling water discharges in Sweden during the last 25 years. The aim of scientific research in the Biotest basin is to provide an independent academically-based assessment of the effects of the discharges of heat to the aquatic environment and of the pathways of pollutants through the ecosystems. Until now the research has mainly been describing the ecological effects of the cooling water flow through the basin under normal operation of the power plant. In the future it will be possible to manipulate the basin for large field experiments. An important perspective for the future is that of climatic change; the Forsmark Biotest basin provides excellent conditions for field studies on possible biological effects. This includes e.g. temperature effects on basic biological processes (growth, metabolism, reproduction etc.), population genetics, and combination effects of heat and toxic substances. 60 refs, 3 figs, 6 tabs

  19. 18 CFR 420.44 - Cooling water.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...

  20. Desalting a process cooling water using nanofiltration

    NARCIS (Netherlands)

    Radier, R.G.J.; van Oers, C.W.; Steenbergen, A.; Wessling, Matthias

    2001-01-01

    The cooling water system of a chemical plant of Akzo Nobel is a partly open system. The site is located at the North Sea. The air in contact with the cooling water contains seawater droplets dissolving and increasing the chloride concentration. The cooling water contains chromate to protect the

  1. Thermal analysis experiment for elucidating sodium-water chemical reaction mechanism in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki

    2012-01-01

    For the purpose of elucidating the mechanism of the sodium-water surface reaction in a steam generator of sodium-cooled fast reactors, kinetic study of the sodium (Na)-sodium hydroxide (NaOH) reaction has been carried out by using Differential Thermal Analysis (DTA) technique. The parameters, including melting points of Na and NaOH, phase transition temperature of NaOH, Na-NaOH reaction temperature, and decomposition temperature of sodium hydride (NaH) have been identified from DTA curves. Based on the measured reaction temperature, rate constant of sodium monoxide (Na 2 O) generation was obtained. Thermal analysis results indicated that Na 2 O generation at the secondary overall reaction should be considered during the sodium-water reaction. (author)

  2. Experience in the development of metal uranium-base nuclear fuel for heavy-water gas-cooled reactors

    International Nuclear Information System (INIS)

    Ashikhmin, V.P.; Vorob'ev, M.A.; Gusarov, M.S.; Davidenko, A.S.; Zelenskij, V.F.; Ivanov, V.E.; Krasnorutskij, V.S.; Petel'guzov, I.A.; Stukalov, A.I.

    1978-01-01

    Investigations were carried out to solve the problem of making the development of radiation-resistant uranium fuel for power reactors including the heavy-water gas-cooled KS-150 reactor. Factors are considered that limit the lifetime of uranium fuel elements, and the ways of suppressing them are discussed. Possible reasons of the insufficient radiation resistance of uranium rod fuel element and the progress attained are analyzed. Some general problems on the fuel manufacture processes are discussed. The main results are presented on the operation of the developed fuel in research reactor loops and the commercial heavy-water KS-150 reactor. The results confirm an exceptionally high radiation resistance of fuel to burn-ups of 1.5-2%. The successful solution of a large number of problems associated with the development of metal uranium fuel provides for new possibilities of using metal uranium in power reactors

  3. Facility for electron cooling experiments

    International Nuclear Information System (INIS)

    Budker, G.I.; Dikanskij, N.S.; Kudelajnen, V.I.

    1982-01-01

    The NAP-M proton storage ring intended for electron cooling experiments is described. The NAP-M magnetic system comprises four bending magnets and eight correction elements. located at the ends of rectilinear gaps. An electron beam facility is located in one of the rectilinear gaps. An 1.5 MeV electrostatic accelerator is used as a proton injector. The NAP-M accelerating system includes a driving generator, a power amplifier and a resonator. The proton beam lifetime (at the RF-system switched-off) up to 7 s has been obtained at the NAP-N at the injection energy, and up to 600 s at 65 MeV and the proton current of 120 μA

  4. Biofouling Control in Cooling Water

    Directory of Open Access Journals (Sweden)

    T. Reg Bott

    2009-01-01

    Full Text Available An important aspect of environmental engineering is the control of greenhouse gas emissions. Fossil fuel-fired power stations, for instance, represent a substantial contribution to this problem. Unless suitable steps are taken the accumulation of microbial deposits (biofouling on the cooling water side of the steam condensers can reduce their efficiency and in consequence, the overall efficiency of power production, with an attendant increase in fuel consumption and hence CO2 production. Biofouling control, therefore, is extremely important and can be exercised by chemical or physical techniques or a combination of both. The paper gives some examples of the effectiveness of different approaches to biofouling control.

  5. Closed cooling water chemistry guidelines revision

    International Nuclear Information System (INIS)

    McElrath, Joel; Breckenridge, Richard

    2014-01-01

    This second revision of the Closed Cooling Water Chemistry Guideline addresses the use of chemicals and monitoring methods to mitigate corrosion, fouling, and microbiological growth in the closed cooling-water (CCW) systems of nuclear and fossil-fueled power plants. This revision has been endorsed by the utility chemistry community and represents another step in developing a more proactive chemistry program to limit or control closed cooling system degradation with increased consideration of corporate resources and plant-specific design and operating concerns. These guidelines were developed using laboratory data, operating experience, and input from organizations and utilities within and outside of the United States of America. It is the intent of the Revision Committee that these guidelines are applicable to all nuclear and fossil-fueled generating stations around the world. A committee of industry experts—including utility specialists, Institute of Nuclear Power Operations representatives, water-treatment service-company representatives, consultants, a primary contractor, and EPRI staff—collaborated in reviewing available data on closed cooling-water system corrosion and microbiological issues. Recognizing that each plant owner has a unique set of design, operating, and corporate concerns, the Guidelines Committee developed a methodology for plant-specific optimization. The guideline provides the technical basis for a reasonable but conservative set of chemical treatment and monitoring programs. The use of operating ranges for the various treatment chemicals discussed in this guideline will allow a power plant to limit corrosion, fouling, and microbiological growth in CCW systems to acceptable levels. The guideline now includes closed cooling chemistry regimes proven successful in use in the international community. The guideline provides chemistry constraints for the use of phosphates control, as well as pure water with pH control. (author)

  6. Passive containment cooling water distribution device

    Science.gov (United States)

    Conway, Lawrence E.; Fanto, Susan V.

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

  7. Process for cooling waste water

    Energy Technology Data Exchange (ETDEWEB)

    Rohner, P

    1976-12-16

    The process for avoiding thermal pollution of waters described rests on the principle of the heat conduction tube, by which heat is conducted from the liquid space into the atmosphere at a lower temperature above it. Such a tube, here called a cooling tube, consists in its simplest form of a heat conducting corrugated tube, made, for example, of copper or a copper alloy or of precious metals, which is sealed to be airtight at both ends, and after evacuation, is partially filled with a medium of low boiling point. The longer leg of the tube, which is bent at right angles, lies close below the surface of the water to be cooled and parallel to it; the shorter leg projects vertically into the atmosphere. The liquid inside the cooling tube fills the horizontal part of the tube to about halfway. A certain part of the liquid is always evaporated in this part. The vapor rising in the vertical part of the tube condenses on the internal wall cooled by the air outside, and gives off its heat to the atmosphere. The condensed medium flows back down the vertical internal wall into the initial position in a continuous cycle. A further development contains a smooth plastic inner tube in an outer corrugated tube, which is shorter than the outer tube; it ends at a distance from the caps sealing the outer tube at both ends. In this design the angle between the vertical and horizontal leg is less than 90/sup 0/. The shorter leg projects vertically from the water surface, below which the longer leg rises slightly from the knee of tube. The quantity of the liquid is gauged as a type of siphon, so that the space between the outer and inner tube at the knee of the tube remains closed by the liquid medium. The medium evaporated from the surface in the long leg of the tube therefore flows over the inner tube, which starts above the level of the medium. Thus evaporation and condensation paths are separated.

  8. European supercritical water cooled reactor

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.; Marsault, P.; Bittermann, D.; Maraczy, C.; Laurien, E.; Lycklama a Nijeholt, J.A.; Anglart, H.; Andreani, M.; Ruzickova, M.; Toivonen, A.

    2011-01-01

    Highlights: → The HPLWR reactor design is an example of a supercritical water cooled reactor. → Cladding material tests have started but materials are not yet satisfactory. → Numerical heat transfer predictions are promising but need further validation. → The research project is most suited for nuclear education and training. - Abstract: The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 o C average core outlet temperature. It is designed and analyzed by a European consortium of 10 partners and 3 active supporters from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small fuel assemblies in boxes with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. Besides the scientific and technical progress, the HPLWR project turned out to be most successful in training the young generation of nuclear engineers

  9. The cooling water from Ringhals

    International Nuclear Information System (INIS)

    1980-10-01

    The Ringhals Nuclear Power Plant is situated on the Swedish west coast about 70 km south of Gothenburg. At present two units operate at a total maximum power level of 1580 MWE and their once-through cooling system requires 80 m 3 /sec sea water. The temperature of the cooling water increases approximately 10 deg C. This study assesses the spreading of the discharged cooling water in the ambient sea and is based on field data sampled since the end of 1974. About 50 thermal mappings were made in the area by boat or in some cases by aeroplane. Several continously recording current and temperature instruments were used. Water samples analysed for salinity, oxygen and turbidity were collected most of the time. Through the thermal mappings four main directions of the thermal plume were distinguished: northward along the coast (class 1A), northward further out (class 1B), westward and reversing plumes (class 2) and southward (class 3). The changing of the plume hour by hour between these main directions was measured by the recording temperature instruments. Data from almost one year gave the following statistics: 40 percent class 1A + 1B, 15 percent class 2, 25 percent class 3 and 20 percent undefined directions. Furthermore, available data showed that the direction of the ambient current mostly gave the plume direction. The wind, on the other hand, was more uncertain as an indicator of the plume direction. Owing to the varying ambient currents the plume changed its direction more than once a day. Measurable excess temperatures were found within a few kilometers wide zone from Stavder in the north to Norra Horta in the south. The largest measured area with excess temperatures of more than 1 deg C was 6 km 2 . Usually, however, the plume covered about 2.5 km 2 at full production at the power plant. As for the downward spreading, the bottom of the plume normally registrated down to 3-7 m, but occasionally it reached the 10 - 12 m level. The tendency of deep penetration

  10. Demineralised water cooling in the LHC accelerator

    CERN Document Server

    Peón-Hernández, G

    2002-01-01

    In spite of the LHC accelerator being a cryogenic machine, it remains nevertheless a not negligible heat load to be removed by conventional water-cooling. About 24MW will be taken away by demineralised water cooled directly by primary water from the LHC cooling towers placed at the even points. This paper describes the demineralised water network in the LHC tunnel including pipe diameters, lengths, water speed, estimated friction factor, head losses and available supply and return pressures for each point. It lists all water cooled equipment, highlights the water cooled cables as the most demanding equipment followed by the radio frequency racks and cavities, and by the power converters. Their main cooling requirements and their positions in the tunnel are also presented.

  11. Water cooled static pressure probe

    Science.gov (United States)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  12. Johnson screen for cooling water intakes

    International Nuclear Information System (INIS)

    Cook, L.E.

    1978-01-01

    Johnson surface-water screens provide an alternative to vertical traveling screens for power plant cooling water intakes. In this paper, flow field modeling is discussed, and a series of case studies is presented. The hydraulic information obtained is discussed as it applies to the exclusion of biota and debris from cooling water intake systems

  13. Dry cooling tower operating experience in the LOFT reactor

    International Nuclear Information System (INIS)

    Hunter, J.A.

    1980-01-01

    A dry cooling tower has been uniquely utilized to dissipate heat generated in a small experimental pressurized water nuclear reactor. Operational experience revealed that dry cooling towers can be intermittently operated with minimal wind susceptibility and water hammer occurrences by cooling potential steam sources after a reactor scram, by isolating idle tubes from the external atmosphere, and by operating at relatively high pressures. Operating experience has also revealed that tube freezing can be minimized by incorporating the proper heating and heat loss prevention features

  14. Emergency cooling of presurized water reactor

    International Nuclear Information System (INIS)

    Sykora, D.

    1981-01-01

    The method described of emergency core cooling in the pressurized water reactor is characterized by the fact that water is transported to the disturbed primary circuit or direct to the reactor by the action of the energy and mass of the steam and/or liquid phase of the secondary circuit coolant, which during emergency core cooling becomes an emergency cooling medium. (B.S.)

  15. Outline of design, manufacturing and installation experience of pressure vessel structure for the prototype heavy water moderated boiling light water cooled reactor 'FUGEN'

    International Nuclear Information System (INIS)

    Shibato, Eizo; Oguchi, Isao; Kishi, Toshikazu; Kitagawa, Yuji

    1977-01-01

    After component installation completed in June 1977 and various functional tests to be conducted later, the prototype heavy water moderated, boiling light water cooled reactor ''FUGEN'' is scheduled to reach first criticality in March 1978. Since the pressure vessel of ''FUGEN'' is completely different from that of a light water reactor in structure and materials, through research and development work was carried out prior to fabrication and construction. Based on these studies, installation of the actual pressure vessel was completed. Functional tests are now under way. This article describes examples in which our research and development results are reflected on design, manufacture, and installation of the pressure vessel. Also it introduces noteworthy achievements relevant to production techniques in manufacture and installation. (auth.)

  16. HANARO cooling features: design and experience

    International Nuclear Information System (INIS)

    Park, Cheol; Chae, Hee-Taek; Han, Gee-Yang; Jun, Byung-Jin; Ahn, Guk-Hoon

    1999-01-01

    In order to achieve the safe core cooling during normal operation and upset conditions, HANARO adopted an upward forced convection cooling system with dual containment arrangements instead of the forced downward flow system popularly used in the majority of forced convection cooling research reactors. This kind of upward flow system was selected by comparing the relative merits of upward and downward flow systems from various points of view such as safety, performance, maintenance. However, several operational matters which were not regarded as serious at design come out during operation. In this paper are presented the design and operational experiences on the unique cooling features of HANARO. (author)

  17. Mycobacteria in Finnish cooling tower waters.

    Science.gov (United States)

    Torvinen, Eila; Suomalainen, Sini; Paulin, Lars; Kusnetsov, Jaana

    2014-04-01

    Evaporative cooling towers are water systems used in, e.g., industry and telecommunication to remove excess heat by evaporation of water. Temperatures of cooling waters are usually optimal for mesophilic microbial growth and cooling towers may liberate massive amounts of bacterial aerosols. Outbreaks of legionellosis associated with cooling towers have been known since the 1980's, but occurrences of other potentially pathogenic bacteria in cooling waters are mostly unknown. We examined the occurrence of mycobacteria, which are common bacteria in different water systems and may cause pulmonary and other soft tissue infections, in cooling waters containing different numbers of legionellae. Mycobacteria were isolated from all twelve cooling systems and from 92% of the 24 samples studied. Their numbers in the positive samples varied from 10 to 7.3 × 10(4) cfu/L. The isolated species included M. chelonae/abscessus, M. fortuitum, M. mucogenicum, M. peregrinum, M. intracellulare, M. lentiflavum, M. avium/nebraskense/scrofulaceum and many non-pathogenic species. The numbers of mycobacteria correlated negatively with the numbers of legionellae and the concentration of copper. The results show that cooling towers are suitable environments for potentially pathogenic mycobacteria. Further transmission of mycobacteria from the towers to the environment needs examination. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  18. Thermal calculations for water cooled research reactors

    International Nuclear Information System (INIS)

    Fabrega, S.

    1979-01-01

    The formulae and the more important numerical data necessary for thermic calculations on the core of a research reactor, cooled with low pressure water, are presented. Most of the problems met by the designer and the operator are dealt with (calculations margins, cooling after shut-down). Particular cases are considered (gas release, rough walls, asymmetric cooling slabs etc.), which are not generally envisaged in works on general thermics

  19. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [Fermilab

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  20. Cooling tower water ozonation at Southern University

    International Nuclear Information System (INIS)

    Chen, C.C.; Knecht, A.T.; Trahan, D.B.; Yaghi, H.M.; Jackson, G.H.; Coppenger, G.D.

    1990-01-01

    Cooling-tower water is a critical utility for many industries. In the past, inexpensive water coupled with moderate regulation of discharge water led to the neglect of the cooling tower as an energy resource. Now, with the increased cost of chemical treatment and tough EPA rules and regulations, this situation is rapidly changing. The operator of the DOE Y-12 Plant in Oak Ridge as well as many other industries are forced to develop an alternate method of water treatment. The cooling tower is one of the major elements in large energy systems. The savings accrued from a well engineered cooling tower can be a significant part of the overall energy conservation plan. During a short-term ozonation study between 1987-1988, the Y-12 Plant has been successful in eliminating the need for cooling tower treatment chemicals. However, the long-term impact was not available. Since April 1988, the ozone cooling water treatment study at the Y-12 Plant has been moved to the site at Southern University in Baton Rouge, Louisiana. The purpose of this continued study is to determine whether the use of ozonation on cooling towers is practical from an economic, technical and environmental standpoint. This paper discusses system design, operating parameter and performance testing of the ozonation system at Southern University

  1. Water experiments on thermal striping in reactor vessel of advanced sodium-cooled fast reactor. Influence of flow collector of backup CR guide tube

    International Nuclear Information System (INIS)

    Kobayashi, Jun; Ezure, Toshiki; Tanaka, Masaaki; Kamide, Hideki

    2016-01-01

    Design study of an advanced large-scale sodium-cooled fast reactor (SFR) has been conducted in JAEA. In the region between the bottom of the Upper Internal Structure (UIS) and the core outlet, the hot sodium from the fuel subassembly mixes with the cold sodium from the neighbor control rod (CR) channel. Therefore, temperature fluctuation due to mixing fluids at different temperatures may cause high cycle thermal fatigue at the bottom of the UIS. In the advanced design, installation of a flow guide structure named Flow-Collector (FC) to the backup control rod (BCR) guide tube is considered to enhance reliable operation of self-actuated shutdown system (SASS) and to ensure reactor shutdown operation. Previously, water experiments without the FC model had been examined in JAEA to investigate effective countermeasures to the significant temperature fluctuation generation at the bottom of the UIS. Since the FC may affect the thermal mixing behavior at the bottom of the UIS, influence of the FC on characteristics of the temperature fluctuation around the BCR channels was investigated using a water experimental facility with structure model of the FC. Through the experiment, small influence of the FC on the temperature fluctuation distribution at the bottom of the UIS was indicated. (author)

  2. The Muon Ionization Cooling Experiment User Software

    Science.gov (United States)

    Dobbs, A.; Rajaram, D.; MICE Collaboration

    2017-10-01

    The Muon Ionization Cooling Experiment (MICE) is a proof-of-principle experiment designed to demonstrate muon ionization cooling for the first time. MICE is currently on Step IV of its data taking programme, where transverse emittance reduction will be demonstrated. The MICE Analysis User Software (MAUS) is the reconstruction, simulation and analysis framework for the MICE experiment. MAUS is used for both offline data analysis and fast online data reconstruction and visualization to serve MICE data taking. This paper provides an introduction to MAUS, describing the central Python and C++ based framework, the data structure and and the code management and testing procedures.

  3. Cooling water requirements and nuclear power plants

    International Nuclear Information System (INIS)

    Rao, T.S.

    2010-01-01

    Indian nuclear power programme is poised to scuttle the energy crisis of our time by proposing joint ventures for large power plants. Large fossil/nuclear power plants (NPPs) rely upon water for cooling and are therefore located near coastal areas. The amount of water a power station uses and consumes depends on the cooling technology used. Depending on the cooling technology utilized, per megawatt existing NPPs use and consume more water (by a factor of 1.25) than power stations using other fuel sources. In this context the distinction between 'use' and 'consume' of water is important. All power stations do consume some of the water they use; this is generally lost as evaporation. Cooling systems are basically of two types; Closed cycle and Once-through, of the two systems, the closed cycle uses about 2-3% of the water volumes used by the once-through system. Generally, water used for power plant cooling is chemically altered for purposes of extending the useful life of equipment and to ensure efficient operation. The used chemicals effluent will be added to the cooling water discharge. Thus water quality impacts on power plants vary significantly, from one electricity generating technology to another. In light of massive expansion of nuclear power programme there is a need to develop new ecofriendly cooling water technologies. Seawater cooling towers (SCT) could be a viable option for power plants. SCTs can be utilized with the proper selection of materials, coatings and can achieve long service life. Among the concerns raised about the development of a nuclear power industry, the amount of water consumed by nuclear power plants compared with other power stations is of relevance in light of the warming surface seawater temperatures. A 1000 MW power plant uses per day ∼800 ML/MW in once through cooling system; while SCT use 27 ML/MW. With the advent of new marine materials and concrete compositions SCT can be constructed for efficient operation. However, the

  4. Air and water cooled modulator

    Science.gov (United States)

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  5. Study on in-vessel thermohydraulics phenomena of sodium-cooled fast reactors. 4. Numerical analysis of 1/10 scaled water experiment with the AQUA code

    International Nuclear Information System (INIS)

    Muramatu, Toshiharu; Yamaguchi, Akira

    2004-01-01

    A large-scale sodium-cooled fast breeder reactor in the feasibility studies on commercialized fast reactors has a feature of consideration of thorough simplified and compacted systems and components design to realize drastic economical improvements. Therefore, special attentions should be paid to thermohydraulic designs for gas entrainment behavior from free surface, flow-induced vibration of in-vessel components, thermal stratification in the plenum, thermal shock for various structures due to high-speed coolant flows, nonsymmetrical coolant flows, etc. in the reactor vessel. A numerical analysis was carried out with a multi-dimensional code AQUA to confirm an applicability to the evaluations for the in-vessel thermohydraulic phenomena using a 1/10 scaled water experiment simulating the large-scale fast breeder reactor in the feasibility studies. From the analysis, the following results were obtained. (1) In-vessel thermohydraulics characterized by a radiated flow pattern to the reactor vessel wall and a strong upward flow through a slit of the upper core structures were evaluated. These characteristics agreed approximately with the water experiment. (2) The upward velocity values at the slit agreed well with the experimental data under a condition of γ z = 0.3 and ξ z = 0.5, though overall evaluations of the in-vessel thermohydraulics were failed to predict quantitatively. (3) The AQUA code is applicable to the in-vessel thermohydraulics evaluations in the feasibility studies, though it is necessary to make further modifications of the calculational models for accurate evaluations. On the one hand, it was confirmed that calculated results for the 1/10 water experimental model and the 1/1 actual-scaled model agreed quantitatively for the in-vessel thermohydraulics characteristics indicated above. (author)

  6. Creating prototypes for cooling urban water bodies

    NARCIS (Netherlands)

    Cortesoao, Joao; Klok, E.J.; Lenzholzer, Sanda; Jacobs, C.M.J.; Kluck, J.

    2017-01-01

    Abstract When addressing urban heat problems, climate- conscious urban design has been assuming that urban water bodies such as canals, ditches or ponds cool down their surroundings. Recent research shows that this is not necessarily the case and that urban water bodies may actually have a warming e

  7. French gas cooled reactor experience with moisture ingress

    International Nuclear Information System (INIS)

    Bastien, D.; Brie, M.

    1995-01-01

    During the history of operation of six gas cooled reactors in France, some experience has been gained with accidental water ingress into the primary system. This occurred as a result of leaks in steam generators. This paper describes the cause of the leaks, and the resulting consequences. (author). 2 refs, 8 figs

  8. Legionella confirmation in cooling tower water

    Science.gov (United States)

    Farhat, Maha; Shaheed, Raja A.; Al-Ali, Haidar H.; Al-Ghamdi, Abdullah S.; Al-Hamaqi, Ghadeer M.; Maan, Hawraa S.; Al-Mahfoodh, Zainab A.; Al-Seba, Hussain Z.

    2018-01-01

    Objectives: To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires’ disease. Methods: Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. Results: All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Conclusion: Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods. PMID:29436561

  9. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  10. Design of a water based cooling system to take out electronics heat load of MUCH detector in CBM experiment

    International Nuclear Information System (INIS)

    Jain, Vikas; Saini, J.; Chattopadhyay, S.; Dubey, A.K.

    2015-01-01

    A GEM based detector system is being developed at VECC, Kolkata for use as muon tracker in the Compressed Baryonic Matter (CBM) experiment at the upcoming FAIR facility in Germany. The Muon Chambers (MUCH) consists of alternating layers of six absorbers and detector stations. Out of the six stations, VECC has taken responsibility to build the detectors and related readout electronics for the first two stations where each station consists of three detector layers. MUCH will be use a custom built self-triggering ASIC, which will provide both timing and energy information for each incoming signal in its channel. MUCH uses the sensitive electronics where the desired operating temperature range is 25-30 °C. Temperature going above these limits will drift the biasing scheme and further increase may lead to damage of Front End Electronics (FEE) board itself

  11. Thermohydraulic relationships for advanced water cooled reactors

    International Nuclear Information System (INIS)

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  12. Thermohydraulic relationships for advanced water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  13. Water-cooled beam line components at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1981-01-01

    The beam line components that comprise the main experimental beam at the Clinton P. Anderson Meson Physics Facility (LAMPF) have been operating since February 1976. This paper will define the functions of the primary water-cooled elements, their design evolution, and our operating experience to the present time

  14. Cooling tower water conditioning study. [using ozone

    Science.gov (United States)

    Humphrey, M. F.; French, K. R.

    1979-01-01

    Successful elimination of cooling tower treatment chemicals was demonstrated. Three towers functioned for long periods of time with ozone as the only treatment for the water. The water in the systems was reused as much as 30 times (cycles of concentration) without deleterious effects to the heat exchangers. Actual system blow-down was eliminated and the only makeup water added was that required to replace the evaporation and mist entrainment losses. Minimum water savings alone are approximately 75.1 1/kg/year. Cost estimates indicate that a savings of 55 percent was obtained on the systems using ozone. A major problem experienced in the use of ozone for cooling tower applications was the difficulty of accurate concentration measurements. The ability to control the operational characteristics relies on easily and accurately determined concentration levels. Present methods of detection are subject to inaccuracies because of interfering materials and the rapid destruction of the ozone.

  15. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  16. Electron cooling experiments at the ESR

    International Nuclear Information System (INIS)

    Steck, M.; Beller, P.; Beckert, K.; Franzke, B.; Nolden, F.

    2004-01-01

    The properties of electron cooled beams of highly charged ions have been studied at the ESR. New experiments using a beam scraper to determine the transverse beam size provide the beam parameters in the intrabeam scattering dominated intensity regime, but also at very low intensity when the ion beam enters into an ultra-cold state. Extremely low values of longitudinal and transverse beam temperature on the order of meV were achieved for less than 1000 stored ions. An experiment with bunched ultra-cold beam showed a limit of the line density which agrees with the one observed for coasting beams. Cooling of decelerated ions at a minimum energy of 3 MeV/u has been demonstrated recently

  17. Analysis of SONACO axial cooling experiments

    International Nuclear Information System (INIS)

    Sigg, B.; Dury, T.V.; Hudina, M.

    1994-01-01

    The SONACO test rig contained a sodium-cooled, electrically heated 37-pin bundle. On this rig, a series of forced, mixed and natural convection experiments have been performed with the aim of contributing to the understanding of thermal-hydraulic phenomena and providing data for code validation for a subassembly at decay heat power level with low flow or stagnant coolant. The test section and especially the heater pins were equipped with an extensive number of chromel-alumel thermocouples. In addition, special permanent-magnet probes were used for measuring local velocities. In this paper we give a survey of results from axial cooling experiments, where heat was removed by natural convection to a cooling coil situated in the coolant channel (plenum) above the bundle. The experimental conditions led to turbulent convection with a slowly varying, large scale flow pattern. It is shown that a power tilt in the bundle reduces these fluctuations but does not eliminate them. For the uniformly heated bundle, aglebraic expressions for the average turbulent heat flux as well as for temperature and velocity fluctuations are derived from a second-moments model and compared with experimental data. Furthermore, heat transfer in the plenum and the consequences of the SONACO experiments for the coolability of reactor fuel elements under loss-of-flow conditions are discussed. ((orig.))

  18. Analysis of self-wastage phenomena of micro leak caused by sodium-water reaction in sodium-cooled fast breeder reactor through simulant experiment

    International Nuclear Information System (INIS)

    Jang, Sunghyon; Takata, Takashi; Yamaguchi, Akira

    2014-01-01

    Self-wastage phenomena are an enlargement of a leak on the heat transfer tube caused by a corrosive sodium-water reaction (SWR) in a steam generator (SG) of sodium-cooled fast breeder reactor (SFR). If the steam generator operates for sometimes under this condition, the self-wastage phenomena start from the sodium side and advance through the tube thickness. The leak rate stays almost constant level until the wastage reaches the sodium side, however, when the thin diaphragm of the tube wall is removed, the leak rate sharply increase, and it may bring a secondary failure of the surrounding heat transfer tubes. The design and safety concern is a possibility of the secondary failure of nearby SG tubes that could cause undesirable development of the accidents. One needs to evaluate the increased resultant leak rate due to the self-wastage phenomenon. Therefore, a quantification of the diameter of enlarged leak is needed to estimate the resultant leak rate. For this purpose, a simulant self-wastage experiment was proposed to investigate the self-enlargement of the leak so that evaluate the mechanism of the Self-wastage. In the experiment, high concentrated hydrochloric acid (HCl) is injected to the reaction tank that is filled sodium hydroxide (NaOH) solution through a nozzle made by paraffin wax. The self-enlargement of the leak was evaluated by considering the melted nozzle due to the reaction heat released from the Neutralization reaction. Also, a numerical investigation has been carried out to evaluate the enlarged nozzle and validate the results of experimental methodology. Based on the experimental and computational results, it is found that despite initial leak rate, there is an upper limit in the enlarged nozzle. These results show a similar tendency with the experimental result of SWAT-4 experiment carried out by Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan. Furthermore, the increased resultant leak rate is evaluated using the enlarged

  19. Deep lake water cooling a renewable technology

    Energy Technology Data Exchange (ETDEWEB)

    Eliadis, C.

    2003-06-01

    In the face of increasing electrical demand for air conditioning, the damage to the ozone layer by CFCs used in conventional chillers, and efforts to reduce the greenhouse gases emitted into the atmosphere by coal-fired power generating stations more and more attention is focused on developing alternative strategies for sustainable energy. This article describes one such strategy, namely deep lake water cooling, of which the Enwave project recently completed on the north shore of Lake Ontario is a prime example. The Enwave Deep Lake Water Cooling (DLWC) project is a joint undertaking by Enwave and the City of Toronto. The $180 million project is unique in design and concept, using the coldness of the lake water from the depths of Lake Ontario (not the water itself) to provide environmentally friendly air conditioning to office towers. Concurrently, the system also provides improved quality raw cold water to the city's potable water supply. The plant has a rated capacity of 52,200 tons of refrigeration. The DLWC project is estimated to save 75-90 per cent of the electricity that would have been generated by a coal-fired power station. Enwave, established over 20 years ago, is North America's largest district energy system, delivering steam, hot water and chilled water to buildings from a central plant via an underground piping distribution network. 2 figs.

  20. Increasing photovoltaic panel power through water cooling technique

    Directory of Open Access Journals (Sweden)

    Calebe Abrenhosa Matias

    2017-02-01

    Full Text Available This paper presents the development of a cooling apparatus using water in a commercial photovoltaic panel in order to analyze the increased efficiency through decreased operating temperature. The system enables the application of reuse water flow, at ambient temperature, on the front surface of PV panel and is composed of an inclined plane support, a perforated aluminum profile and a water gutter. A luminaire was specially developed to simulate the solar radiation over the module under test in a closed room, free from the influence of external climatic conditions, to carry out the repetition of the experiment in controlled situations. The panel was submitted to different rates of water flow. The best water flow rate was of 0.6 L/min and net energy of 77.41Wh. Gain of 22.69% compared to the panel without the cooling system.

  1. Cooling of pressurized water nuclear reactor vessels

    International Nuclear Information System (INIS)

    Curet, H.D.

    1978-01-01

    The improvement of pressurized water nuclear reactor vessels comprising flow dividers providing separate and distinct passages for the flow of core coolant water from each coolant water inlet, the flow dividers being vertically disposed in the annular flow areas provided by the walls of the vessel, the thermal shield (if present), and the core barrel is described. In the event of rupture of one of the coolant water inlet lines, water, especially emergency core coolant water, in the intact lines is thus prevented from by-passing the core by circumferential flow around the outermost surface of the core barrel and is instead directed so as to flow vertically downward through the annulus area between the vessel wall and the core barrel in a more normal manner to increase the probability of cooling of the core by the available cooling water in the lower plenum, thus preventing or delaying thermal damage to the core, and providing time for other appropriate remedial or damage preventing action by the operator

  2. Four foot septifoil cooling experiment unrestricted inlet/outlet case

    International Nuclear Information System (INIS)

    Foti, D.J.; Randolph, H.W.; Geiger, G.T.; Verebelyi, D.T.; Wooten, L.A.

    1992-02-01

    The ability to predict the behavior of reactor components to varying coolant flow scenarios constitutes a necessary skill for assessing reactor safety. One tool for performing these calculations is the Transient Reactor Analysis Code (TRAC). In order to benchmark the code, the Safety Analysis Group of SRL requested the Equipment Engineering Section (EES) of SRL to conduct a series of experiments to provide measurements of cooling parameters in a well defined physical system utilizing SRS reactor components. The configuration selected consisted of a short length of septifoil with both top and bottom fittings containing five simulated control rods in an open-quotes unseatedclose quotes configuration. Varying power levels were to be supplied to the rods with 3.5 kilowatts per foot the value targeted for modelling during the computer runs. The septifoil segment was to be operated with no forced flow in order to evaluate thermal-hydraulic cooling. Parameters to be measured for comparison with code predictions were basic cooling phenomena, incidence of film boiling, water flow rate, pressure rise, and ratio of heat transfer through the wall of the assembly vs. heat transfer to axial water flow through the assembly. This report documents testing done with unimpeded flow into and out of the septifoil in order to assess basic cooling phenomena, incidence of film boiling and pressure rise. Previous tests have evaluated water flow rate and the ratio of axial to azimuthal heat transfer

  3. Gravity driven emergency core cooling experiments with the PACTEL facility

    International Nuclear Information System (INIS)

    Munther, R.; Kalli, H.; Kouhia, J.

    1996-01-01

    PACTEL (Parallel Channel Test Loop) is an experimental out-of-pile facility designed to simulated the major components and system behaviour of a commercial Pressurized Water Reactor (PWR) during different postulated LOCAs and transients. The reference reactor to the PACTEL facility is Loviisa type WWER-440. The recently made modifications enable experiments to be conducted also on the passive core cooling. In these experiments the passive core cooling system consisted of one core makeup tank (CMT) and pressure balancing lines from the pressurizer and from a cold leg connected to the top of the CMT in order to maintain the tank in pressure equilibrium with the primary system during ECC injection. The line from the pressurizer to the core makeup tank was normally open. The ECC flow was provided from the CMT located at a higher elevation than the main part of the primary system. A total number of nine experiments have been performed by now. 4 refs, 7 figs, 3 tabs

  4. Gravity driven emergency core cooling experiments with the PACTEL facility

    Energy Technology Data Exchange (ETDEWEB)

    Munther, R; Kalli, H [University of Technology, Lappeenranta (Finland); Kouhia, J [Technical Research Centre of Finland, Lappeenranta (Finland)

    1996-12-01

    PACTEL (Parallel Channel Test Loop) is an experimental out-of-pile facility designed to simulated the major components and system behaviour of a commercial Pressurized Water Reactor (PWR) during different postulated LOCAs and transients. The reference reactor to the PACTEL facility is Loviisa type WWER-440. The recently made modifications enable experiments to be conducted also on the passive core cooling. In these experiments the passive core cooling system consisted of one core makeup tank (CMT) and pressure balancing lines from the pressurizer and from a cold leg connected to the top of the CMT in order to maintain the tank in pressure equilibrium with the primary system during ECC injection. The line from the pressurizer to the core makeup tank was normally open. The ECC flow was provided from the CMT located at a higher elevation than the main part of the primary system. A total number of nine experiments have been performed by now. 4 refs, 7 figs, 3 tabs.

  5. Cooling tower plume - model and experiment

    Science.gov (United States)

    Cizek, Jan; Gemperle, Jiri; Strob, Miroslav; Nozicka, Jiri

    The paper discusses the description of the simple model of the, so-called, steam plume, which in many cases forms during the operation of the evaporative cooling systems of the power plants, or large technological units. The model is based on semi-empirical equations that describe the behaviour of a mixture of two gases in case of the free jet stream. In the conclusion of the paper, a simple experiment is presented through which the results of the designed model shall be validated in the subsequent period.

  6. Cooling tower plume - model and experiment

    Directory of Open Access Journals (Sweden)

    Cizek Jan

    2017-01-01

    Full Text Available The paper discusses the description of the simple model of the, so-called, steam plume, which in many cases forms during the operation of the evaporative cooling systems of the power plants, or large technological units. The model is based on semi-empirical equations that describe the behaviour of a mixture of two gases in case of the free jet stream. In the conclusion of the paper, a simple experiment is presented through which the results of the designed model shall be validated in the subsequent period.

  7. On synthesis and optimization of cooling water systems with multiple cooling towers

    CSIR Research Space (South Africa)

    Gololo, KV

    2011-01-01

    Full Text Available -1 On Synthesis and Optimization of Cooling Water Systems with Multiple Cooling Towers Khunedi Vincent Gololo?? and Thokozani Majozi*? ? Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa ? Modelling...

  8. Environmental and legal aspects of cooling water chemistry

    International Nuclear Information System (INIS)

    Hoffmann, H.J.

    1988-01-01

    The discharge and management of cooling water and waste water are subject to a number of ecological and legal requirements. For example, waste heat and cooling water constituents may affect surface bodies of water, or waste water discharge may have adverse effects on surface water and ground water. Waste water and cooling water discharge are subject to the Water Management Act (WHG) and the Waste Water Act, with about 50 administrative regulations. The requirements on water chemistry and analysis are gone into. (orig./HP) [de

  9. COGNITIVE AND PHYSIOLOGICAL INITIAL RESPONSES DURING COOL WATER IMMERSION

    Directory of Open Access Journals (Sweden)

    Alex Buoite Stella

    2014-12-01

    Full Text Available The initial responses during water immersion are the first mechanisms reacting to a strong stimulation of superficial nervous cold receptors. Cold shock induces tachycardia, hypertension, tachypnea, hyperventilation, and reduced end-tidal carbon dioxide fraction. These initial responses are observed immediately after the immersion, they last for about 3 min and have been also reported in water temperatures up to 25 °C. the aim of the present study was to observe cognitive and physiological functions during immersion in water at cool temperature. Oxygen consumption, ventilation, respiratory frequency, heart rate and expired fraction of oxygen were measured during the experiment. A code substitution test was used to evaluate executive functions and, specifically, working memory. This cognitive test was repeated consecutively 6 times, for a total duration of 5 minutes. Healthy volunteers (n = 9 performed the test twice in a random order, once in a dry thermoneutral environment and once while immersed head-out in 18 °C water. The results indicated that all the physiological parameters were increased during cool water immersion when compared with the dry thermoneutral condition (p < 0.05. Cognitive performance was reduced during the cool water immersion when compared to the control condition only during the first 2 min (p < 0.05. Our results suggest that planning the best rescue strategy could be partially impaired not only because of panic, but also because of the cold shock.

  10. Prehospital cooling of severe burns: Experience of the Emergency ...

    African Journals Online (AJOL)

    Only cooling performed by the patient, their family, bystanders or prehospital staff was recorded. Cooling performed by the Edendale Hospital ED staff was not included. Duration of cooling with water was documented as per the report given by the patient. Variables assessed included age, gender, time of burn, day of week,.

  11. Cooling-water amounts, temperature, and the environment

    International Nuclear Information System (INIS)

    Koops, F.B.J.; Donze, M.; Hadderingh, R.H.

    1979-01-01

    The release of heat from power plants into a water can take place with relative small quantities of cooling water, highly warmed up accordingly, or with large quantities of cooling water slightly warmed up. The utilization of cooling water is bound to certain guidelines established by the authorities. With the intention to protect the environment, the admissable temperatures and warming-up have been strictly limited by the authorities. In the Netherlands, we have presently temporary cooling water guidelines which allow a max. temperature of the cooling water in the cooling cycle of 30 0 C and a maximum admissible temperature rise in the condenser between 7 0 C during summer and 15 0 C during winter. It has also been determined in these requirements how much cooling water at least has to be used to discharge a specified quantity of heat. Plankton, spawn and young fish are dragged with the cooling water. Harm to these organisms can be caused mechanically by pumps, sieves and the condenser or they can be harmed by the temperature rise in the condenser. Investigations showed that mechanical harm to spawn and young fish in the cooling water flow should not be ignored, and that detectable harm to plankton organisms takes place only at water temperatures above 32 0 C. The cooling water consumption can therefore be optimised as follows: The solution of a greater temperature increase and a slightly higher value for the temperature maximum can reduce the cooling water quantity. This reduction of the cooling water quantity reduces the destruction of the fish quantity, which gets into the cooling water system, especially during the summer. If the temperature rise and the temperature itself are not selected too high, the destruction of fish may be reduced without causing serious damage to the plankton. (orig.) [de

  12. The insitu lining of cooling water piping

    International Nuclear Information System (INIS)

    Vaughan, W.K.; Oxner, K.B.

    1994-01-01

    The internal corrosion of cooling water piping as well as other industrial piping is becoming an increasing problem to system reliability. There are various alternatives being offered as solutions to the problem including water treatment, coatings, and piping replacement. The in-place lining of these pipes is becoming increasingly popular as a cost-effective method to control corrosion. A cured-in-place plastic composite system can be installed with minimal dismantling or excavation. This paper will examine case histories of the installations of this lining system in power plants at three (3) locations in the United States and one in France. It will also summarize testing that has been performed on the lining system and tests that are currently being performed

  13. Cooling water facilities at a nuclear station

    International Nuclear Information System (INIS)

    Hurst, W.L.; Ghadiali, B.M.; Kanovich, J.S.

    1983-01-01

    The use of ponds for holding a reserve of cooling water obtained as sewage effluent and also for collection of waste water for disposal by evaporation, was made at a nuclear power plant site in southern Arizona. The power output of the plant will be 3,900 MW. Two single cell ponds are 80 acres (30 ha) and 250 acres (100 ha) in size. Excavated materials from the 80-acre (30ha) pond were used for structural backfill as planned, and the 250-acre (100ha) pond was designed for limited dike height with balanced cut and fill and some excess materials used as side berms for additional safety. Both ponds are being lined with a unique combination of linings to provide environmental safeguards and at the same time cost-effectiveness is compared to alternative schemes

  14. Corrosion induced clogging and plugging in water-cooled generator cooling circuit

    International Nuclear Information System (INIS)

    Park, B.G.; Hwang, I.S.; Rhee, I.H.; Kim, K.T.; Chung, H.S.

    2002-01-01

    Water-cooled electrical generators have been experienced corrosion-related problems that are restriction of flow through water strainers caused by collection of excessive amounts of copper corrosion products (''clogging''), and restriction of flow through the copper strands in the stator bars caused by growth or deposition of corrosion products on the walls of the hollow strands (''plugging''). These phenomena result in unscheduled shutdowns that would be a major concern because of the associated loss in generating capacity. Water-cooled generators are operated in one of two modes. They are cooled either with aerated water (dissolved oxygen >2 ppm) or with deaerated water (dissolved oxygen <50 ppb). Both modes maintain corrosion rates at satisfactorily low levels as long as the correct oxygen concentrations are maintained. However, it is generally believed that very much higher copper corrosion rates result at the intermediate oxygen concentrations of 100-1000 ppb. Clogging and plugging are thought to be associated with these intermediate concentrations, and many operators have suggested that the period of change from high-to-low or from low-to-high oxygen concentration is particularly damaging. In order to understand the detailed mechanism(s) of the copper oxide formation, release and deposition and to identify susceptible conditions in the domain of operating variables, a large-scale experiments are conducted using six hollow strands of full length connected with physico-chemically scaled generator cooling water circuit. To ensure a close simulation of thermal-hydraulic conditions in a generator stator, strands of the loop will be ohmically heated using AC power supply. Experiments is conducted to cover oxygen excursions in both high dissolved oxygen and low dissolved oxygen conditions that correspond to two representative operating condition at fields. A thermal upset condition is also simulated to examine the impact of thermal stress. During experiments

  15. Safety Research Experiment Facility Project. Conceptual design report. Volume VII. Reactor cooling

    International Nuclear Information System (INIS)

    1975-12-01

    The Reactor Cooling System (RCS) will provide the required cooling during test operations of the Safety Research Experiment Facility (SAREF) reactor. The RCS transfers the reactor energy generated in the core to a closed-loop water storage system located completely inside the reactor containment building. After the reactor core has cooled to a safe level, the stored heat is rejected through intermediate heat exchangers to a common forced-draft evaporative cooling tower. The RCS is comprised of three independent cooling loops of which any two can remove sufficient heat from the core to prevent structural damage to the system components

  16. Electrochemistry of Water-Cooled Nuclear Reactors

    International Nuclear Information System (INIS)

    Dgiby Macdonald; Mirna Urquidi-Macdonald; John Mahaffy; Amit Jain Han Sang Kim; Vishisht Gupta; Jonathan Pitt

    2006-01-01

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or ''radiation fields'' around the primary loop and the vessel, as a function of the operating parameters and the water chemistry

  17. Economic competitiveness requirements for evolutionary water cooled reactors

    International Nuclear Information System (INIS)

    Hudson, C.R.; Bertel, E.; Paik, K.H.; Roh, J.H.; Tort, V.

    1999-01-01

    This paper analyses the necessary economic conditions for evolutionary water cooled reactors to be competitive. Utilising recent national cost data for fossil-fired base load plants expected to be commissioned by 2005 -2010, target costs for nuclear power plants are discussed. Factors that could contribute to the achievement of those targets by evolutionary water cooled reactors are addressed. The feed-back from experience acquired in implementing nuclear programmes is illustrated by some examples from France and the Republic of Korea. The paper discusses the impacts on nuclear power competitiveness of globalisation and deregulation of the electricity market and privatisation of the electricity sector. In addition, issues related to external cost internalisation are considered. (author)

  18. Balancing passive and active systems for evolutionary water cooled reactors

    International Nuclear Information System (INIS)

    Fil, N.S.; Allen, P.J.; Kirmse, R.E.; Kurihara, M.; Oh, S.J.; Sinha, R.K.

    1999-01-01

    Advanced concepts of the water-cooled reactors are intended to improve safety, economics and public perception of nuclear power. The potential inclusion of new passive means in addition or instead of traditional active systems is being considered by nuclear plant designers to reach these goals. With respect to plant safety, application of the passive means is mainly intended to simplify the safety systems and to improve their reliability, to mitigate the effect of human errors and equipment malfunction. However, some clear drawbacks and the limited experience and testing of passive systems may raise additional questions that have to be addressed in the design process for each advanced reactor. Therefore the plant designer should find a reasonable balance of active and passive means to effectively use their advantages and compensate their drawbacks. Some considerations that have to be taken into account when balancing active/passive means in advanced water-cooled reactors are discussed in this paper. (author)

  19. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  20. Fast reactor cooled by supercritical light water

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwatari, Yuki; Mukouhara, Tami; Koshizuka, Seiichi; Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Lab., Tokai, Ibaraki (Japan)

    2001-09-01

    This report introduces the result of a feasibility study of a fast reactor cooled by supercritical light water (SCFR) with once-through cooling system. It is characterized by (1) no need of steam separator, recirculation system, or steam generator, (2) 1/7 of core flow rate compared with BWR or PWR, (3) high temperature and high pressure permits small turbine and high efficiency exceeding 44%, (4) structure and operation of major components are already experienced by LWRs or thermal power plants. Modification such as reducing blanket fuels and increasing seed fuels are made to achieve highly economic utilization of Pu and high power (2 GWe). The following restrictions were satisfied. (1) Maximum linear heat rate 39 kW/m, (2) Maximum surface temperature of Inconel cladding 620degC, (3) Negative void reactivity coefficient, (4) Fast neutron irradiation rate at the inner surface of pressure vessel less than 2.0x10{sup 19} n/cm{sup 2}. Thus the high power density of 167 MW/m{sup 3} including blanket is thought to contributes economy. The high conversion is attained to be 0.99 Pu fission residual rate by the outer radius of fuel rod of 0.88 mm. The breeding of 1.034 by Pu fission residual rate can be achieved by using briquette (tube-in-shell) type fuel structure. (K. Tsuchihashi)

  1. Recirculating cooling water solute depletion models

    International Nuclear Information System (INIS)

    Price, W.T.

    1990-01-01

    Chromates have been used for years to inhibit copper corrosion in the plant Recirculating Cooling Water (RCW) system. However, chromates have become an environmental problem in recent years both in the chromate removal plant (X-616) operation and from cooling tower drift. In response to this concern, PORTS is replacing chromates with Betz Dianodic II, a combination of phosphates, BZT, and a dispersant. This changeover started with the X-326 system in 1989. In order to control chemical concentrations in X-326 and in systems linked to it, we needed to be able to predict solute concentrations in advance of the changeover. Failure to predict and control these concentrations can result in wasted chemicals, equipment fouling, or increased corrosion. Consequently, Systems Analysis developed two solute concentration models. The first simulation represents the X-326 RCW system by itself; and models the depletion of a solute once the feed has stopped. The second simulation represents the X-326, X-330, and the X-333 systems linked together by blowdown. This second simulation represents the concentration of a solute in all three systems simultaneously. 4 figs

  2. Influence of detergents on water drift in cooling towers

    Science.gov (United States)

    Vitkovicova, Rut

    An influence of detergents on the water drift from the cooling tower was experimentally investigated. For this experimental measurements was used a model cooling tower, especially an experimental aerodynamic line, which is specially designed for the measurement and monitoring of processes taking place around the eliminators of the liquid phase. The effect of different concentrations of detergent in the cooling water on the drift of water droplets from a commonly used type eliminator was observed with visualization methods.

  3. Influence of detergents on water drift in cooling towers

    Directory of Open Access Journals (Sweden)

    Vitkovicova Rut

    2017-01-01

    Full Text Available An influence of detergents on the water drift from the cooling tower was experimentally investigated. For this experimental measurements was used a model cooling tower, especially an experimental aerodynamic line, which is specially designed for the measurement and monitoring of processes taking place around the eliminators of the liquid phase. The effect of different concentrations of detergent in the cooling water on the drift of water droplets from a commonly used type eliminator was observed with visualization methods.

  4. Technological readiness of evolutionary water cooled reactors

    International Nuclear Information System (INIS)

    Juhn, P.E.

    1999-01-01

    Nuclear energy has evolved to a mature industry that supplies over 16% of the world's electricity, and it represents an important option for meeting the global energy demands of the coming century in an environmentally acceptable manner. New, evolutionary water cooled reactor designs that build on successful performance of predecessors have been developed; these designs have generally been guided by wishes to reduce cost, to improve availability and reliability, and to meet increasingly stringent safety objectives. These three aspects are important factors in what has been called technological readiness for an expanded deployment of nuclear power; a major increase in utilization of nuclear power will only occur if it is economically competitive, and meets safety expectations. To this end, the industry will also have to maintain or improve the public perception of nuclear power as a benign, economical and reliable energy source. (author)

  5. Deposit control in process cooling water systems

    International Nuclear Information System (INIS)

    Venkataramani, B.

    1981-01-01

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  6. Heavy water moderated gas-cooled reactors

    International Nuclear Information System (INIS)

    Bailly du Bois, B.; Bernard, J.L.; Naudet, R.; Roche, R.

    1964-01-01

    France has based its main effort for the production of nuclear energy on natural Uranium Graphite-moderated gas-cooled reactors, and has a long term programme for fast reactors, but this country is also engaged in the development of heavy water moderated gas-cooled reactors which appear to present the best middle term prospects. The economy of these reactors, as in the case of Graphite, arises from the use of natural or very slightly enriched Uranium; heavy water can take the best advantages of this fuel cycle and moreover offers considerable development potential because of better reactor performances. A prototype plant EL 4 (70 MW) is under construction and is described in detail in another paper. The present one deals with the programme devoted to the development of this reactor type in France. Reasons for selecting this reactor type are given in the first part: advantages and difficulties are underlined. After reviewing the main technological problems and the Research and Development carried out, results already obtained and points still to be confirmed are reported. The construction of EL 4 is an important step of this programme: it will be a significant demonstration of reactor performances and will afford many experimentation opportunities. Now the design of large power reactors is to be considered. Extension and improvements of the mechanical structures used for EL 4 are under study, as well as alternative concepts. The paper gives some data for a large reactor in the present state of technology, as a result from optimization studies. Technical improvements, especially in the field of materials could lead to even more interesting performances. Some prospects are mentioned for the long run. Investment costs and fuel cycles are discussed in the last part. (authors) [fr

  7. Water pollution of ammonia cooling installations; Verontreiniging met water van ammoniak-koelinstallaties

    Energy Technology Data Exchange (ETDEWEB)

    Skaerbaek Nielsen, P. [Danfoss Industrial Refrigeration, Hasselager (Denmark)

    2001-09-01

    Danfoss Industrial Refrigeration claims to have the knowledge to help businesses and industry in saving energy and to decrease maintenance cost of cooling systems. Part of its knowledge and experiences in this field is laid down in a technical document 'Effects of Water Contamination in Ammonia Refrigeration Systems'. A summary of the document is presented in this article. 2 refs.

  8. DUSEL Facility Cooling Water Scaling Issues

    Energy Technology Data Exchange (ETDEWEB)

    Daily, W D

    2011-04-05

    Precipitation (crystal growth) in supersaturated solutions is governed by both kenetic and thermodynamic processes. This is an important and evolving field of research, especially for the petroleum industry. There are several types of precipitates including sulfate compounds (ie. barium sulfate) and calcium compounds (ie. calcium carbonate). The chemical makeup of the mine water has relatively large concentrations of sulfate as compared to calcium, so we may expect that sulfate type reactions. The kinetics of calcium sulfate dihydrate (CaSO4 {center_dot} 2H20, gypsum) scale formation on heat exchanger surfaces from aqueous solutions has been studied by a highly reproducible technique. It has been found that gypsum scale formation takes place directly on the surface of the heat exchanger without any bulk or spontaneous precipitation in the reaction cell. The kinetic data also indicate that the rate of scale formation is a function of surface area and the metallurgy of the heat exchanger. As we don't have detailed information about the heat exchanger, we can only infer that this will be an issue for us. Supersaturations of various compounds are affected differently by temperature, pressure and pH. Pressure has only a slight affect on the solubility, whereas temperature is a much more sensitive parameter (Figure 1). The affect of temperature is reversed for calcium carbonate and barium sulfate solubilities. As temperature increases, barium sulfate solubility concentrations increase and scaling decreases. For calcium carbonate, the scaling tendencies increase with increasing temperature. This is all relative, as the temperatures and pressures of the referenced experiments range from 122 to 356 F. Their pressures range from 200 to 4000 psi. Because the cooling water system isn't likely to see pressures above 200 psi, it's unclear if this pressure/scaling relationship will be significant or even apparent. The most common scale minerals found in the

  9. The potential for the recovery and reuse of cooling water in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    You, Shu-Hai; Tseng, Dyi-Hwa; Guo, Gia-Luen; Yang, Jyh-Jian [Graduate Institute of Environmental Engineering, National Central University, Chungli (Taiwan, Province of China)

    1999-04-01

    The cooling water is the major part of industrial water use in Taiwan, either from the view of demand priority or supply volume. In order to save water, the loading of supply system can be reduced if the cooling water can be recovered and reused. For this reason, exploration of the recent operation status of the cooling water system has become essential in Taiwan. This study was initially focused on the current applications and reuse trends of cooling water in oil refineries, chemical industry, steel mills, food industry, electronics works, textile plants and power stations. According to the statistical analysis, the portable water and groundwater are the primary sources of makeup water for cooling systems. The multiple-chemicals method and makeup treatment are increasingly accepted for the reclamation of cooling water. On the other hand, sidestream treatment and blowdown reuse are not popular in Taiwan. The recovery rate of blowdown is only 26.8%. The fact of higher cost is the major reason to depress the willingness of recovery. Some representative plants had been selected for case study. However, most cooling water systems are only operated by operator`s experience according to field investigation. In each case, the water quality indexes were used to evaluate the operational condition of cooling water systems. There was no case plant found to be operated at appropriate cycles of concentration. This paper also presented the bottlenecks of conservation technologies of cooling water in Taiwan. These bottlenecks include increasing the cycles of concentration, the reuse of wastewater, and the blowdown treatment for reuse. This paper also demonstrates that the recovery and reuse of cooling water has great potential and is feasible for the available technologies in present Taiwan, but the industries are still unwilling to upgrade because of initial cost. Finally, some approaches associated with technology, economics, environment and policy are proposed to be a

  10. Sea water take-up facility for cooling reactor auxiliary

    International Nuclear Information System (INIS)

    Numata, Noriko; Mizutani, Akira; Hirako, Shizuka; Uchiyama, Yuichi; Oda, Atsushi.

    1997-01-01

    The present invention provides an improvement of a cooling sea water take-up facility for cooling auxiliary equipments of nuclear power plant. Namely, an existent sea water take-up facility for cooling reactor auxiliary equipments has at least two circulation water systems and three independent sea water systems for cooling reactor auxiliary equipments. In this case, a communication water channel is disposed, which connects the three independent sea water systems for cooling reactor auxiliary equipments mutually by an opening/closing operation of a flow channel partitioning device. With such a constitution, even when any combination of two systems among the three circulation water systems is in inspection at the same time, one system for cooling the reactor auxiliary equipments can be kept operated, and one system is kept in a stand-by state by the communication water channel upon periodical inspection of water take-up facility for cooling the auxiliary equipments. As a result, the sea water take-up facility for cooling auxiliary equipments of the present invention have operation efficiency higher than that of a conventional case while keeping the function and safety at the same level as in the conventional case. (I.S.)

  11. Experiments with a laser cooled cloud of atoms

    International Nuclear Information System (INIS)

    Natarajan, Vasant; Banerjee, Ayan; Rapol, Umakant

    1999-01-01

    We discuss two experiments that can be performed using a cloud of laser-cooled and trapped atoms, namely Bose-Einstein condensation (BEC) and search for a permanent Electric Dipole Moment (EDM). BEC can be observed in Rb atoms in a magnetic trap by using forced evaporative cooling to continuously lower the temperature below the condensation limit. The cloud is cooled by preferentially ejecting the hottest atoms from a magnetic trap. The magnetic trap is loaded with laser-cooled atoms from a magneto-optic trap. The EDM experiment can be performed with a laser-cooled cloud of Yb atoms. The atoms are spin polarized and the precession of the spin is measured in the presence of a strong electric field applied perpendicular to the spin direction. The use of laser-cooled atoms should greatly enhance the sensitivity of the experiment. (author)

  12. WGOTHIC analysis of AP1000 passive containment cooling water

    International Nuclear Information System (INIS)

    Ye Cheng; Wang Yong; Zheng Mingguang; Wang Guodong; Zhang Di; Ni Chenxiao; Wang Minglu

    2013-01-01

    The WGOTHIC code was used to analyze the influence of the containment cooling water inventory to containment safety for different cases. The results show that if passive containment cooling system fails, the pressure in containment is beyond design limit after 1000 s; if cooling water can't be supplied after 72 h, the pressure in containment is beyond design limit after 0.9 d; if cooling water can't be supplied after 19.6 d, the pressure in containment is beyond design limit but less than the breakdown pressure; if cooling water is supplied for 30 d, the air cooling can remove the decay heat without any aid. It is a reference for making emergency plan and improving containment design. (authors)

  13. Storage of HLW in engineered structures: air-cooled and water-cooled concepts

    International Nuclear Information System (INIS)

    Ahner, S.; Dekais, J.J.; Puttke, B.; Staner, P.

    1981-01-01

    A comparative study on an air-cooled and a water-cooled intermediate storage of vitrified, highly radioactive waste (HLW) in overground installations has been performed by Nukem and Belgonucleaire respectively. In the air-cooled storage concept the decay heat from the storage area will be removed using natural convection. In the water-cooled storage concept the decay heat is carried off by a primary and secondary forced-cooling system with redundant and diverse devices. The safety study carried out by Nukem used a fault tree method. It shows that the reliability of the designed water-cooled system is very high and comparable to the inherent, safe, air-cooled system. The impact for both concepts on the environment is determined by the release route, but even during accident conditions the release is far below permissible limits. The economic analysis carried out by Belgonucleaire shows that the construction costs for both systems do not differ very much, but the operation and maintenance costs for the water-cooled facility are higher than for the air cooled facility. The result of the safety and economic analysis and the discussions with the members of the working group have shown some possible significant modifications for both systems, which are included in this report. The whole study has been carried out using certain national criteria which, in certain Member States at least, would lead to a higher standard of safety than can be justified on any social, political or economic grounds

  14. Water vapour rises from the cooling towers for the ATLAS detector at Point 1

    CERN Multimedia

    Brice, Maximilien

    2015-01-01

    Electronics on the ATLAS detector produce heat when the experiment is running. An elaborate cooling system keeps the detector from overheating. On the surface, the warm water vapour that rises from the detector 100metres underground is clearly visible from the ATLAS cooling towers on the CERN Meyrin site in Switzerland.

  15. Flowing Air-Water Cooled Slab Nd: Glass Laser

    Science.gov (United States)

    Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.

    1989-03-01

    A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.

  16. Reducing water consumption of an industrial plant cooling unit using hybrid cooling tower

    International Nuclear Information System (INIS)

    Rezaei, Ebrahim; Shafiei, Sirous; Abdollahnezhad, Aydin

    2010-01-01

    Water consumption is an important problem in dry zones and poor water supply areas. For these areas use of a combination of wet and dry cooling towers (hybrid cooling) has been suggested in order to reduce water consumption. In this work, wet and dry sections of a hybrid cooling tower for the estimation of water loss was modeled. A computer code was also written to simulate such hybrid cooling tower. To test the result of this simulation, a pilot hybrid tower containing a wet tower and 12 compact air cooled heat exchangers was designed and constructed. Pilot data were compared with simulation data and a correction factor was added to the simulation. Ensuring that the simulation represents the actual data, it was applied to a real industrial case and the effect of using a dry tower on water loss reduction of this plant cooling unit was investigated. Finally feasibility study was carried out to choose the best operating conditions for the hybrid cooling tower configuration proposed for this cooling unit.

  17. Development Project of Supercritical-water Cooled Power Reactor

    International Nuclear Information System (INIS)

    Kataoka, K.; Shiga, S.; Moriya, K.; Oka, Y.; Yoshida, S.; Takahashi, H.

    2002-01-01

    A Supercritical-water Cooled Power Reactor (SCPR) development project (Feb. 2001- Mar. 2005) is being performed by a joint team consisting of Japanese universities and nuclear venders with a national fund. The main objective of this project is to provide technical information essential to demonstration of SCPR technologies through concentrating three sub-themes: 'plant conceptual design', 'thermohydraulics', and 'material and water chemistry'. The target of the 'plant conceptual design sub-theme' is simplify the whole plant systems compared with the conventional LWRs while achieving high thermal efficiency of more than 40 % without sacrificing the level of safety. Under the 'thermohydraulics sub-theme', heat transfer characteristics of supercritical-water as a coolant of the SCPR are examined experimentally and analytically focusing on 'heat transfer deterioration'. The experiments are being performed using fron-22 for water at a fossil boiler test facility. The experimental results are being incorporated in LWR analytical tools together with an extended steam/R22 table. Under the 'material and water chemistry sub-theme', material candidates for fuel claddings and internals of the SCPR are being screened mainly through mechanical tests, corrosion tests, and simulated irradiation tests under the SCPR condition considering water chemistry. In particular, stress corrosion cracking sensitivity is being investigated as well as uniform corrosion and swelling characteristics. Influences of water chemistry on the corrosion product characteristics are also being examined to find preferable water condition as well as to develop rational water chemistry controlling methods. (authors)

  18. Use of fluorocarbons in the cooling of LHC experiments

    CERN Document Server

    Pimenta dos Santos, M

    2003-01-01

    Perfluorochemicals sold by 3M under the trade name 3M Fluorinert Electronic Liquids have been used for many years as heat transfer media in a variety of industries. The suitability of these liquids for the cooling of LHC experiment originates from their high dielectric strength as well as from their chemical stability under ionizing radiation. The Fluorinerts are clear, colorless, non-flammable with low toxicity and low corrosiveness. Additionally, they offer low global waming potential – GWP – and zero ozone-depletion potential – ODP. Some examples of fluorinert application in the cooling of LHC experiments will be presented : (a) the ATLAS Inner detector C3F8 evaporative cooling system (b) the ATLAS TRF C6F14 monophase cooling system and (c) the ALICE SPD “active heat pipe” C4F10 evaporative cooling system. A brief comparison of evaporative and monophase cooling systems will be outlined.

  19. Studies on corrosion inhibitors for the cooling water system at the Heavy Water Project, Kota

    International Nuclear Information System (INIS)

    Pillai, B.P.; Mehta, C.T.; Abubacker, K.M.

    1986-01-01

    The Heavy Water Project at Kota uses the water from the Rana Pratap Sagar Lake as coolant in the open recirculation system. In order to find suitable corrosion inhibitors for the above system, a series of laboratory experiments on corrosion inhibitors were carried out using the constructional materials of the cooling water system and a number of proprietary formulations and the results are tabulated. From the data thus generated through various laboratory experiments, the most useful ones have been recommended for application in practice. (author)

  20. A model for radionuclide transport in the Cooling Water System

    International Nuclear Information System (INIS)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  1. Method of injecting cooling water in emergency core cooling system (ECCS) of PWR type reactor

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Adachi, Michihiro; Tasaka, Kanji; Suzuki, Mitsuhiro.

    1979-01-01

    Purpose: To provide a cooling water injection method in an ECCS, which can perform effective cooling of the reactor core. Method: In a method of injecting cooling water in an ECCS as a countermeasure against a rupture accident of a pwr type reactor, cooling water in the first pressure storage injection system is injected into the upper plenum of the reactor pressure vessel at a set pressure of from 50 to 90 atg. and a set temperature of from 80 to 200 0 C, cooling water in the second pressure storage injection system is injected into the lower plenum of the reactor pressure vessel at a pressure of from 25 to 60 atg. which is lower than the set pressure and a temperature less than 60 0 C, and further in combination with these procedures, cooling water of less than 60 0 C is injected into a high-temperature side piping, in the high-pressure injection system of upstroke of 100 atg. by means of a pump and the low-pressure injection system of upstroke of 20 atg. also by means of a pump, thereby cooling the reactor core. (Aizawa, K.)

  2. Design measures in evolutionary water cooled reactors to optimize for economic viability

    International Nuclear Information System (INIS)

    Oh, S.J.; Yu, S.K.W.; Appell, B.

    1999-01-01

    Since the mid 1980s, there have been various efforts to develop evolutionary water cooled reactors based on the current operating plant experience. To sustain and improve the economic viability, particular attention has been paid to the following aspects in developing evolutionary water cooled reactors: design simplification and increased operating margins, standardization in design as well as construction and operation, integration of operating plant insights, and consideration of safety, operability and constructability during the design stage. This paper reviews each item and discusses several examples from some of the evolutionary water cooled reactors being developed. (author)

  3. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    1990-01-01

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  4. Evaluation of heat exchange performance for the auxiliary component cooling water system cooling tower in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Kameyama, Yasuhiko; Shimizu, Atsushi; Inoi, Hiroyuki; Yamazaki, Kazunori; Shimizu, Yasunori; Aragaki, Etsushi; Ota, Yukimaru; Fujimoto, Nozomu

    2006-09-01

    The auxiliary component cooling water system (ACCWS) is one of the cooling system in High Temperature Engineering Test Reactor (HTTR). The ACCWS has main two features, many facilities cooling, and heat sink of the vessel cooling system which is one of the engineering safety features. Therefore, the ACCWS is required to satisfy the design criteria of heat removal performance. In this report, heat exchange performance data of the rise-to-power-up test and the in-service operation for the ACCWS cooling tower was evaluated. Moreover, the evaluated values were compared with the design values, and it is confirmed that ACCWS cooling tower has the required heat exchange performance in the design. (author)

  5. Deuterium- and 18O-content in the cooling water of power station cooling towers

    International Nuclear Information System (INIS)

    Heimbach, H.; Dongmann, G.

    1976-09-01

    The 0-18/0-16 and D/H isotope ratios of water from two different cooling towers were determined by mass spectrometry. The observed isotope fractionation corresponds to that known from natural evaporation or transpiration processes: cooling tower I: delta(D) = 46.8 per thousand, delta( 18 O) = 7.6 per thousand cooling tower II: delta(D) = 33.9 per thousand delta( 18 O) = 5.7 per thousand Evaluation of simple compartment models of a cooling tower and a distillation device suggests that there exists some isotope discrimination within the open trickling unit of a cooling tower analogous to that in a rectification column. In a real cooling tower, however, this effect is compensated largely by the recycling of the cooling water, resulting only in a small enrichment of the heavy isotopes. This can be understood as the result of three partial effects: 1) a fractionation in the vapor pressure equilibrium, 2) a kinetic effect due to diffusion of the water vapor into a turbulent atmosphere, and 3) an exchange effect which is proportional to relative humidity. This low enrichment of the heavy isotope excludes the technical use of cooling towers as isotope separation devices. (orig.) [de

  6. Pavement-Watering for Cooling the Built Environment: A Review

    OpenAIRE

    Hendel , Martin

    2016-01-01

    Pavement-watering is being considered by decision-makers in many cities as a means of cooling the built environment and of adapting to rising extreme heat events due to climate change. In this article we review the existing literature on the topic of pavement-watering. We first focus on the methodological choices made in the literature, including study approach and scale, watering methods used as well as how results are analyzed. We then discuss the cooling effects reported, separating micro-...

  7. Water Flow Experiments

    Indian Academy of Sciences (India)

    year undergraduate student at Ashoka University,. Sonipat, Haryana. This article studies how the height of water varies with time when water ... Experiment using a one-bottle system with a small bore tube at- tached to .... restricting free flow.

  8. Cooling tower water circuits with raceways

    International Nuclear Information System (INIS)

    Nicollet, G.

    1981-02-01

    Two physical models built at the National Hydraulics Laboratory in Chatou have led to the determination of the design of the works. This new design economizes 4 to 5 MW on pumping power for each cooling tower [fr

  9. Converging coolness and investigating its relation to user experience

    DEFF Research Database (Denmark)

    Raptis, Dimitrios; Bruun, Anders; Kjeldskov, Jesper

    2017-01-01

    Recently a number of studies appeared that operationalised coolness and explored its relation to digital products. Literature suggests that perceived coolness is another factor of user experience, and this adds to an existing explosion of dimensions related to aesthetics, hedonic quality, pragmatic...... quality, attractiveness, etc. A critical challenge highlighted in prior research is to study the relationships among those factors and so far, no studies have empirically examined the relationship between coolness and other established user experience factors. In this paper, we address this challenge...... cool and UX factors converge into 5 for the case of mobile devices. Our findings are important for researchers, as we demonstrate through a validated model that coolness is part of UX research, as well as for practitioners, by developing a questionnaire that can reliably measure both perceived inner...

  10. Cooling water conditioning and quality control for tokamaks

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1995-01-01

    Designers and operators of Tokamaks and all associated water cooled, peripheral equipment, are faced with the task of providing and maintaining closed-loop, low conductivity, low impurity, cooling water systems. The primary reason for supplying low conductivity water to the DIII-D vacuum vessel coils, power supplies and auxiliary heating components is to assure, along with the use of a non-conducting break in the supply piping, sufficient electrical resistance and thus an acceptable current-leakage path to ground at operating voltage potentials. As important, good quality cooling water significantly reduces the likelihood of scaling and fouling of flow passages and heat transfer surfaces. Dissolved oxygen gas removal is also required in one major DIII-D cooling water system to minimize corrosion in the ion sources of the neutral beam injectors. Currently, the combined pumping capacity of the high quality cooling water systems at DIII-D is ∼5,000 gpm. Another area that receives close attention at DIII-D is the chemical treatment of the water used in the cooling towers. This paper discusses the DIII-D water quality requirements, the means used to obtain the necessary quality and the instrumentation used for control and monitoring. Costs to mechanically and chemically condition and maintain water quality are discussed as well as the various aspects of complying with government standards and regulations

  11. Membrane distillation of industrial cooling tower blowdown water

    Directory of Open Access Journals (Sweden)

    N.E. Koeman-Stein

    2016-06-01

    Full Text Available The potential of membrane distillation for desalination of cooling tower blowdown water (CTBD is investigated. Technical feasibility is tested on laboratory and pilot scale using real cooling tower blowdown water from Dow Benelux in Terneuzen (Netherlands. Two types of membranes, polytetrafluorethylene and polyethylene showed good performance regarding distillate quality and fouling behavior. Concentrating CTBD by a factor 4.5 while maintaining a flux of around 2 l/m2*h was possible with a water recovery of 78% available for reuse. Higher concentration factors lead to severe decrease in flux which was caused by scaling. Membrane distillation could use the thermal energy that would otherwise be discharged of in a cooling tower and function as a heat exchanger. This reduces the need for cooling capacity and could lead to a total reduction of 37% water intake for make-up water, as well as reduced energy and chemicals demands and greenhouse gas emissions.

  12. Longitudinal electron cooling experiments at HIRFL-CSRe

    International Nuclear Information System (INIS)

    Mao, L.J.; Zhao, H.; Yang, X.D.; Li, J.; Yang, J.C.; Yuan, Y.J.; Parkhomchuk, V.V.; Reva, V.B.; Ma, X.M.; Yan, T.L.; Tang, M.T.; Xia, J.W.

    2016-01-01

    At the heavy ion storage ring HIRFL-CSRe an electron cooler is operated to improve the beam conditions for experiments. The properties of cooled beams have been studied. The longitudinal beam dynamics during the cooling process was measured by a resonant Schottky detector. The dependencies of the parameters electron beam density and profile on cooling times were investigated. The friction force was measured directly with the aid of the high voltage system of the cooler and with the application of the beam bunching system as well. An experiment with bunched cold beam showed a dependence of the bunch length on the beam density.

  13. Longitudinal electron cooling experiments at HIRFL-CSRe

    Energy Technology Data Exchange (ETDEWEB)

    Mao, L.J., E-mail: maolijun@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, H. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, X.D.; Li, J.; Yang, J.C.; Yuan, Y.J. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Parkhomchuk, V.V.; Reva, V.B. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Ma, X.M.; Yan, T.L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Tang, M.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-02-01

    At the heavy ion storage ring HIRFL-CSRe an electron cooler is operated to improve the beam conditions for experiments. The properties of cooled beams have been studied. The longitudinal beam dynamics during the cooling process was measured by a resonant Schottky detector. The dependencies of the parameters electron beam density and profile on cooling times were investigated. The friction force was measured directly with the aid of the high voltage system of the cooler and with the application of the beam bunching system as well. An experiment with bunched cold beam showed a dependence of the bunch length on the beam density.

  14. Water-cooled grid ''wires'' for direct converters

    International Nuclear Information System (INIS)

    Schwer, C.J.

    1976-01-01

    A study was conducted to determine the feasibility of internal convective cooling of grid ''wires'' for direct converters. Detailed computer calculations reveal that the use of small diameter water cooled tubes as grid ''wires'' is feasible for a considerable range of lengths and thermal fluxes

  15. Material Issues of Blanket Systems for Fusion Reactors - Compatibility with Cooling Water -

    Science.gov (United States)

    Miwa, Yukio; Tsukada, Takashi; Jitsukawa, Shiro

    Environmental assisted cracking (EAC) is one of the material issues for the reactor core components of light water power reactors(LWRs). Much experience and knowledge have been obtained about the EAC in the LWR field. They will be useful to prevent the EAC of water-cooled blanket systems of fusion reactors. For the austenitic stainless steels and the reduced-activation ferritic/martensitic steels, they clarifies that the EAC in a water-cooled blanket does not seem to be acritical issue. However, some uncertainties about influences on water temperatures, water chemistries and stress conditions may affect on the EAC. Considerations and further investigations elucidating the uncertainties are discussed.

  16. ANL stochastic-cooling experiments using the FNAL 200-MeV cooling ring

    International Nuclear Information System (INIS)

    Hogrefe, R.L.; Kellogg, K.D.; Konecny, R.S.; Kramer, S.L.; Simpson, J.D.; Suddeth, D.E.; Hardek, T.W.

    1981-01-01

    Studies of stochastic momentum cooling are being conducted on the FNAL 200-MeV Storage Ring. The specific goal of the activity is to establish confidence in the theory and simulation methods used to describe the cooling process, and to develop techniques and devices suitable for use in the antiproton-accumulation scheme now planned for construction at FNAL. A summary of the activity, including hardware design, results of experiments, comparison with theory, and implications for the antiproton accumulator are presented

  17. Polymeric Materials For Scale Inhibition In Cooling Water Systems

    Directory of Open Access Journals (Sweden)

    Najwa S.Majeed

    2013-04-01

    Full Text Available Calcium carbonate deposition is generally predominant in cooling water-circulating system. For the control of calcium carbonate scale formation two types of polymeric scale inhibitors were used Polyamino polyether methylene phosphonate  (PAPEMPand polyacrylaminde(PAA.Model of cooling tower system have been built up in laboratory scale. Experiments were carried out using different inhibitor concentrations(0.5,1,1.5,2,3ppm ,at water temperature of  40oC and flow rate of 150 l/hr. It was found that Polyamino polyether methylene phosphonate    more effective than polyacryle amide'  as scale inhibitor in all used concentrations and the best inhibition efficiency (95% was at (2.5ppm of Polyamino polyether methylene phosphonate  and (85% with poly acryle amide at concentrations of (3 ppm. The performance of the polymeric scale inhibitors was compared with a method used to control heavy calcium carbonate scale forming by the deposition of sufficiently thin protective calcium carbonate scale using sulfuric acid and depending on Ryznar stability index controlling method. 

  18. Device for recirculation cooling of cooling water by natural or forced chaft

    Energy Technology Data Exchange (ETDEWEB)

    Ruehl, H; Honekamp, H; Katzmann, A

    1975-10-23

    The invention is concerned with a device for recirculation cooling of cooling water by natural or forced draft. Through a cascading system mounted on supporting columns at a vertical distance to ground level, cooling air is flowing in cross- or counterflow to the cooling water freely falling from the cascading system. The cooling water collecting zone below the cascading system has an absorption floor arranged nearly horizontal and/or inclined, with a cam-type profile on its upperside, which is bounded on its circumference by at least one cooling water release channel provided below its level and/or which is divided in the sense of a surface subdivision. By these means, a reduction of the amount of material required for the supporting columns and an increase of the stability of the columns is to be achieved. Furthermore, the deposition of mud is to be avoided as for as possible, and noise generation during operation is to be reduced considerably. For this purpose, the absorption floor may be made of material sound insulating and/or may be coated with such a material.

  19. Supplementary report: cooling water systems for Darlington G.S

    International Nuclear Information System (INIS)

    1975-08-01

    This report summarizes Ontario Hydro's existing aquatic environmental programs, presents results of these investigations, and outlines plans and activities for expanded aquatic environment studies including the evaluation of alternative cooling systems. This report outlines specific considerations regarding possible alternative cooling arrangements for the Darlington station. It concludes with a recommendation that a study be initiated to examine the potential benefits of using the heated discharge water in a warm water recreational centre. (author)

  20. Upgrade of the cooling water temperature measures system for HLS

    International Nuclear Information System (INIS)

    Guo Weiqun; Liu Gongfa; Bao Xun; Jiang Siyuan; Li Weimin; He Duohui

    2007-01-01

    The cooling water temperature measures system for HLS (Hefei Light Source) adopts EPICS to the developing platform and takes the intelligence temperature cruise instrument for the front control instrument. Data of temperatures are required by IOCs through Serial Port Communication, archived and searched by Channel Archiver. The system can monitor the real-time temperatures of many channels cooling water and has the function of history data storage, and data network search. (authors)

  1. Cooling of gas turbines IX : cooling effects from use of ceramic coatings on water-cooled turbine blades

    Science.gov (United States)

    Brown, W Byron; Livingood, John N B

    1948-01-01

    The hottest part of a turbine blade is likely to be the trailing portion. When the blades are cooled and when water is used as the coolant, the cooling passages are placed as close as possible to the trailing edge in order to cool this portion. In some cases, however, the trailing portion of the blade is so narrow, for aerodynamic reasons, that water passages cannot be located very near the trailing edge. Because ceramic coatings offer the possibility of protection for the trailing part of such narrow blades, a theoretical study has been made of the cooling effect of a ceramic coating on: (1) the blade-metal temperature when the gas temperature is unchanged, and (2) the gas temperature when the metal temperature is unchanged. Comparison is also made between the changes in the blade or gas temperatures produced by ceramic coatings and the changes produced by moving the cooling passages nearer the trailing edge. This comparison was made to provide a standard for evaluating the gains obtainable with ceramic coatings as compared to those obtainable by constructing the turbine blade in such a manner that water passages could be located very near the trailing edge.

  2. Cooling performance of helium-gas/water coolers in HENDEL

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Takada, Shoji; Hayashi, Haruyoshi; Kobayashi, Toshiaki; Ohta, Yukimaru; Shimomura, Hiroaki; Miyamoto, Yoshiaki

    1994-01-01

    The helium engineering demonstration loop (HENDEL) has four helium-gas/water coolers where the cooling water flows in the tubes and helium gas on the shell side. Their cooling performance was studied using the operational data from 1982 to 1991. The heat transfer of helium gas on the shell was obtained for segmental and step-up baffle type coolers. Also, the change with operation time was investigated. The cooling performance was lowered by the graphite powder released from the graphite components for several thousand hours and thereafter recovered because the graphite powder from the components was reduced and the powder in the cooler shell was blown off during the operation. (orig.)

  3. Comparison of solar panel cooling system by using dc brushless fan and dc water

    International Nuclear Information System (INIS)

    Irwan, Y M; Leow, W Z; Irwanto, M; M, Fareq; Hassan, S I S; Amelia, A R; Safwati, I

    2015-01-01

    The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer. (paper)

  4. Water cooling system for sintering furnaces of nuclear fuel pellets

    International Nuclear Information System (INIS)

    1996-01-01

    This work has as a main objective to develop a continuous cooling water system, which is necessary for the cooling of the sintering furnaces. This system is used to protect them as well as for reducing the water consumption, ejecting the heat generated into this furnaces and scattering it into the atmosphere in a fast and continuous way. The problem was defined and the reference parameters established, making the adequate research. The materials were selected as well as the length of the pipeline which will carry the secondary refrigerant fluid (water). Three possible solutions were tried,and evaluated, and from these, the thermal and economically most efficient option was selected. The layout of the solution was established and the theoretical construction of a cooling system for liquids using dichlorofluoromethane (R-22), as a refrigerant and a air cooled condenser, was accomplished. (Author)

  5. Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower

    Science.gov (United States)

    Wang, Miao; Wang, Jin; Wang, Jiajin; Shi, Cheng

    2018-02-01

    A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.

  6. Cooling water conditioning and quality control for tokamaks

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1995-10-01

    Designers and operators of Tokamaks and all associated water cooled, peripheral equipment, are faced with the task of providing and maintaining closed-loop, low conductivity, low impurity, cooling water systems. Most of these systems must provide large volumes of high quality cooling water at reasonable cost and comply with local and state government orders and EPA mandated national pretreatment standards and regulations. This paper discusses the DIII-D water quality requirements, the means used to obtain the necessary quality and the instrumentation used for control and monitoring. Costs to mechanically and chemically condition and maintain water quality are discussed as well as the various aspects of complying with government standards and regulations

  7. Status of the International Muon Ionization Cooling Experiment (MICE)

    International Nuclear Information System (INIS)

    Zisman, Michael S.; Zisman, Michael S.

    2007-01-01

    An international experiment to demonstrate muon ionization cooling is scheduled for beam at Rutherford Appleton Laboratory (RAL) in 2007. The experiment comprises one cell of the Study II cooling channel [1], along with upstream and downstream detectors to identify individual muons and measure their initial and final 6D phase-space parameters to a precision of 0.1 percent. Magnetic design of the beam line and cooling channel are complete and portions are under construction. The experiment will be described, including cooling channel hardware designs, fabrication status, and running plans. Phase 1 of the experiment will prepare the beam line and provide detector systems, including time-of-flight, Cherenkov, scintillating-fiber trackers and their spectrometer solenoids, and an electromagnetic calorimeter. The Phase 2 system will add the cooling channel components, including liquid-hydrogen absorbers embedded in superconducting Focus Coil solenoids, 201-MHz normal conducting RF cavities, and their surrounding Coupling Coil solenoids. The MICE Collaboration goal is to complete the experiment by 2010; progress toward this is discussed

  8. STATUS OF THE INTERNATIONAL MUON IONIZATION COOLING EXPERIMENT(MICE)

    International Nuclear Information System (INIS)

    Zisman, Michael S.

    2007-01-01

    An international experiment to demonstrate muon ionization cooling is scheduled for beam at Rutherford Appleton Laboratory (RAL) in 2007. The experiment comprises one cell of the Study II cooling channel [1], along with upstream and downstream detectors to identify individual muons and measure their initial and final 6D phase-space parameters to a precision of 0.1%. Magnetic design of the beam line and cooling channel are complete and portions are under construction. The experiment will be described, including cooling channel hardware designs, fabrication status, and running plans. Phase 1 of the experiment will prepare the beam line and provide detector systems, including time-of-flight, Cherenkov, scintillating-fiber trackers and their spectrometer solenoids, and an electromagnetic calorimeter. The Phase 2 system will add the cooling channel components, including liquid-hydrogen absorbers embedded in superconducting Focus Coil solenoids, 201-MHz normal-conducting RF cavities, and their surrounding Coupling Coil solenoids. The MICE Collaboration goal is to complete the experiment by 2010; progress toward this is discussed

  9. Development of the interactive model between Component Cooling Water System and Containment Cooling System using GOTHIC

    International Nuclear Information System (INIS)

    Byun, Choong Sup; Song, Dong Soo; Jun, Hwang Yong

    2006-01-01

    In a design point of view, component cooling water (CCW) system is not full-interactively designed with its heat loads. Heat loads are calculated from the CCW design flow and temperature condition which is determined with conservatism. Then the CCW heat exchanger is sized by using total maximized heat loads from above calculation. This approach does not give the optimized performance results and the exact trends of CCW system and the loads during transient. Therefore a combined model for performance analysis of containment and the component cooling water(CCW) system is developed by using GOTHIC software code. The model is verified by using the design parameters of component cooling water heat exchanger and the heat loads during the recirculation mode of loss of coolant accident scenario. This model may be used for calculating the realistic containment response and CCW performance, and increasing the ultimate heat sink temperature limits

  10. An improved water cooled nuclear reactor and pressuriser assembly

    International Nuclear Information System (INIS)

    Gardner, F.J.; Strong, R.

    1991-01-01

    A water cooled nuclear reactor is described which comprises a reactor core, a primary water coolant circuit and a pressuriser arranged as an integral unit in a pressure vessel. The pressure vessel is divided into an upper and a lower chamber by a casing. The reactor core and primary water coolant circuit are arranged in the lower chamber and the pressuriser is arranged in the upper chamber. A plurality of spray pipes interconnect a steam space of the pressuriser with the downcomer of the primary water coolant circuit below a heat exchanger. A plurality of surge ports interconnect a water space of the pressuriser with the primary water coolant circuit. The surge ports have hydraulic diodes so that there is a low flow resistance for water from the water space of the pressuriser to the primary water coolant circuit and high flow resistance in the opposite direction. The spray pipes provide a desuperheating spray of cooled water into the pressuriser during positive volume surges of the primary water coolant. The pressuriser arrangement may also be applied to integral water cooled reactors with separate pressurisers and to dispersed pressurised water reactors. The surge ports also allow water to flow by gravity to the core in an emergency. (author)

  11. Effect of closed loop cooling water transit time on containment cooling

    International Nuclear Information System (INIS)

    Smith, R.P.; Vossahlik, J.E.; Goodwin, E.F.

    1996-01-01

    Long term containment cooling analyses in nuclear plant systems are usually conducted assuming a quasi steady-state process, that is, a steady state evaluation of the cooling system is completed for each calculational step. In reality, fluid transport in the system, and heat addition to system components may affect the heat removal rate of the system. Transient effects occurring during system startup may affect the maximum temperatures experienced in the system. It is important to ensure that such transient effects do not affect operation of the system (e.g., cause a high temperature trip). To evaluate the effect of fluid transit delays, a closed loop cooling water system model has been developed that incorporates the fluid transport times when determining the closed loop cooling system performance. This paper describes the closed loop cooling system model as implemented in the CONTEMPT-LT/028 code. The evaluation of the transient temperature response of the closed loop cooling system using the model is described. The paper also describes the effect of fluid transit time on the overall containment cooling performance

  12. Auxiliary equipment for cooling water in a reactor

    International Nuclear Information System (INIS)

    Konno, Yasuhiro; Sakairi, Toshiaki.

    1975-01-01

    Object: To effectively make use of pressure energy of reactor water, which has heretofore been discarded, to enable supply of emergency power supply of high reliability and to prevent spreading of environmental contamination. Structure: Sea water pumped by a sea water supply pump is fed to a heat exchanger. Reactor water carried through piping on the side to be cooled is removed in heat by the heat exchanger to be cooled and returned, and then again returned to the reactor. On the other hand, sea water heated by the heat exchanger is fed to a water wheel to drive the water wheel, after which it is discharged into a discharging path. A generator may be directly connected to the water wheel to use the electricity generated by the generator as the emergency power source. (Kamimura, M.)

  13. Process integration: Cooling water systems design

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-10-01

    Full Text Available stream_source_info Gololo2_2010.pdf.txt stream_content_type text/plain stream_size 17891 Content-Encoding UTF-8 stream_name Gololo2_2010.pdf.txt Content-Type text/plain; charset=UTF-8 The 13th Asia Pacific Confederation... results in a nonlinear program (NLP) formulation and the second case yields mixed integer nonlinear program (MINLP). In both cases the cooling towers operating capacity were debottlenecked without compromising the heat duties. The 13th Asia...

  14. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  15. A Detector Scenario for a Muon Cooling Demonstration Experiment

    Science.gov (United States)

    McDonald, Kirk T.; Lu, Changguo; Prebys, Eric J.

    1998-04-01

    As a verification of the concept of ionization cooling of a muon beam, the Muon Collider Collaboration is planning an experiment to cool the 6-dimensional normalized emittance by a factor of two. We have designed a princeton.edu/mumu/mumu-97-8.ps>detector system to measure the 6-dimensional emittance before and after the cooling apparatus. To avoid the cost associated with preparation of a muon beam bunched at 800 MHz, the nominal frequency of the RF in the muon cooler, we propose to use an unbunched muon beam. Muons will be measured in the detector individually, and a subset chosen corresponding to an ideal input bunch. The muons are remeasured after the cooling apparatus and the output bunch emittance calculated to show the expected reduction in phase-space volume. The technique of tracing individual muons will reproduce all effects encountered by a bunch except for space-charge.

  16. LOFA analyses for the water and helium cooled SEAFP reactors

    International Nuclear Information System (INIS)

    Sponton, L.; Sjoeberg, A.; Nordlinder, S.

    2001-01-01

    This study was performed in the frame of the European long-term fusion safety programme 1999 (SEAFP99). Loss of flow accidents (LOFA) have been studied for two cases, first for a helium cooled reactor with advanced dual-coolant (DUAL) blanket at 100% nominal power. The second case applies to a water-cooled reactor at 20% nominal power. Both transients were simulated with the code MELCOR 1.8.4. The results for the helium cooled reactor show that with a natural circulation flow of helium after the pump stops, the first wall temperature will stay below the temperature for excepted failure of the construction material. For the water cooled reactor, the results show that the pressurizer set point for its liquid volumetric inventory is reached before the plasma facing components attain a critical temperature. The pressurizer set point will induce a plasma shutdown

  17. Organohalogens in chlorinated cooling waters discharged from nuclear power stations

    International Nuclear Information System (INIS)

    Bean, R.M.; Mann, D.C.; Neitzel, D.A.

    1983-01-01

    For the power plant discharges studied to date, measured concentrations of trihalomethanes are lower than might be expected, particularly in cooling tower water, which can lose THMs to the atmosphere. In the cooling towers, where chlorine was added in higher concentrations and for longer residence times, halogenated phenols can contribute significantly to the total organic halogen content of the discharge. The way in which cooling towers are operated may also influence the production of halogenated phenols because they concentrate the incoming water by a factor of 4 or 5. In addition, the phenols, which act as a substrate for the halogenating agent, are also probably concentrated by the cooling tower operation and may be prevented from being biodegraded by addition of the same biocide that produces the halogenated phenols. 8 references, 4 tables

  18. Cooling Water System Monitoring by Means of Mossbauer Spectroscopy

    International Nuclear Information System (INIS)

    Novakova, A.A.; Pargamotnikas, S.A.; Taseva, V.; Dobbrevsky, I.; Nenov, V.; Bonev, B.

    1998-01-01

    Mossbauer spectroscopy have been applied to the analysis of corrosion sediments formed on mild steel coupons, which were placed in the different points of the Bourgas Petrochemical Plant Recilculating Cooling Water System. It was shown that the created corrosion products can successfully reflect the ambient water medium pollution to which the coupons were exposed

  19. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  20. Cooling water in the study of nuclear power plants sites

    International Nuclear Information System (INIS)

    Martinez, J.J.C.

    1990-01-01

    The location of an electric power plant has its limitations as regards the availability of apt sites. The radiosanitary risk, seismic risk and the overload capacity of the ground can be generically enumerated, being the cooling water availability for an electric power plant a basic requirement. Diverse cooling systems may be employed but the aim must always be that thermal contamination in the immediate environment be the least possible. (Author) [es

  1. Two-dimensional modeling of water spray cooling in superheated steam

    Directory of Open Access Journals (Sweden)

    Ebrahimian Vahid

    2008-01-01

    Full Text Available Spray cooling of the superheated steam occurs with the interaction of many complex physical processes, such as initial droplet formation, collision, coalescence, secondary break up, evaporation, turbulence generation, and modulation, as well as turbulent mixing, heat, mass and momentum transfer in a highly non-uniform two-phase environment. While it is extremely difficult to systematically study particular effects in this complex interaction in a well defined physical experiment, the interaction is well suited for numerical studies based on advanced detailed models of all the processes involved. This paper presents results of such a numerical experiment. Cooling of the superheated steam can be applied in order to decrease the temperature of superheated steam in power plants. By spraying the cooling water into the superheated steam, the temperature of the superheated steam can be controlled. In this work, water spray cooling was modeled to investigate the influences of the droplet size, injected velocity, the pressure and velocity of the superheated steam on the evaporation of the cooling water. The results show that by increasing the diameter of the droplets, the pressure and velocity of the superheated steam, the amount of evaporation of cooling water increases. .

  2. 40 CFR 63.1086 - How must I monitor for leaks to cooling water?

    Science.gov (United States)

    2010-07-01

    ... monitor for leaks to cooling water? You must monitor for leaks to cooling water by monitoring each heat... system so that the cooling water flow rate is 51,031 liters per minute or less so that a leak of 3.06 kg... detected a leak. (b) Individual heat exchangers. Monitor the cooling water at the entrance and exit of each...

  3. INVESTIGATION OF THE PERFORMANCE OF AN ATMOSPHERIC COOLING TOWER USING FRESH AND SALTED WATER

    Directory of Open Access Journals (Sweden)

    A Haddad

    2012-01-01

    Full Text Available Cooling towers are extensively used to evacuate large quantities of heat at modest temperatures through a change of phase of the flowing cooling fluid. Based on this classical principle, the present study investigates the influence of salty water on the heat exchange produced. For that purpose, experiments are carried out using fresh and salty water. Furthermore, a comparison with the results produced through an approach involving the solution of energy equation involving the flow of air on an evaporating film of fluid. The detailed results show a preponderance of fresh water over the salty.

  4. Device for preventing cooling water from flowing out of reactor

    International Nuclear Information System (INIS)

    Chinen, Masanori; Kotani, Koichi; Murase, Michio.

    1976-01-01

    Object: To provide emergency cooling system, which can prevent cooling water bearing radioactivity from flowing to the outside of the reactor at the time of breakage of feedwater pipe, thus eliminating the possibility of exposure of the fuel rod to provide high reliability and also reducing the possibility of causing radioactive pollution. Structure: The device for preventing cooling water from flowing out from the reactor features a jet nozzle inserted in a feedwater pipe adjacent to the inlet or outlet thereof immediately before the reactor container. The nozzle outlet is provided in the vicinity of the reactor wall and in a direction opposite to the direction of out-flow, and water supplied from a high pressure pump is jetted from it. (Nakamura, S.)

  5. Water cooled type nuclear power plant

    International Nuclear Information System (INIS)

    Arai, Shigeki.

    1981-01-01

    Purpose: To construct high efficiency a PWR type nuclear power plant with a simple structure by preparing high temperature and pressure water by a PWR type nuclear reactor and a pressurizer, converting the high temperature and high pressure water into steam with a pressure reducing valve and introducing the steam into a turbine, thereby generating electricity. Constitution: A pressurizer is connected downstream of a PWR type nuclear reactor, thereby maintaining the reactor at high pressure. A pressure-reducing valve is provided downstream of the pressurizer, the high temperature and pressure water is reduced in pressure, thereby producing steam. The steam is fed to a turbine, and electric power is generated by a generator connected to the turbine. The steam exhausted from the turbine is condensed by a condenser into water, and the water is returned through a feedwater heater to the reactor. Since the high temperature and pressure water in thus reduced in pressure thereby evaporating it, the steam can be more efficiently produced than by a steam generator. (Sekiya, K.)

  6. Forward osmosis applied to evaporative cooling make-up water

    Energy Technology Data Exchange (ETDEWEB)

    Nicoll, Peter; Thompson, Neil; Gray, Victoria [Modern Water plc, Guildford (United Kingdom)

    2012-11-15

    Modern Water is in the process of developing a number of forward osmosis based technologies, ranging from desalination to power generation. This paper outlines the progress made to date on the development and commercial deployment of a forward osmosis based process for the production of evaporative cooling tower make-up water from impaired water sources, including seawater. Evaporative cooling requires significant amounts of good quality water to replace the water lost by evaporation, drift and blowdown. This water can be provided by conventional desalination processes or by the use of tertiary treated sewage effluent. The conventional processes are well documented and understood in terms of operation and power consumption. A new process has been successfully developed and demonstrated that provides make-up water directly, using a core platform 'forward osmosis' technology. This new technology shows significant promise in allowing various raw water sources, such as seawater, to be used directly in the forward osmosis step, thus releasing the use of scarce and valuable high grade water for other more important uses. The paper presents theoretical and operational results for the process, where it is shown that the process can produce make-up water at a fraction of the operational expenditure when compared to conventional processes, in particular regarding power consumption, which in some cases may be as low as 15 % compared to competing processes. Chemical additives to the cooling water (osmotic agent) are retained within the process, thus reducing their overall consumption. Furthermore the chemistry of the cooling water does not support the growth of Legionella pneumophila. Corrosion results are also reported. (orig.)

  7. Superconducting solenoids for an international muon cooling experiment

    International Nuclear Information System (INIS)

    Green, M.A.; Rey, J.M.

    2002-01-01

    The international muon ionization cooling experiment MICE will consist of two focusing cooling cells and a pair of uniform field solenoids used for particle identification and emittance measurements. The 2.75-meter long cooling cells have a pair of field flip coils and a coupling coil. The 0.52-meter diameter field flip coils surround an absorber that removes transverse and longitudinal momentum from the muons to be cooled. The beam in the absorber is at a minimum beta point so that scattering of the muons is minimized. The 1.7-meter diameter coupling coils are outside of conventional 201.25 MHz RF cavities that accelerate the muons putting longitudinal momentum into the muons without putting back the transverse momentum into the beam. A third set of flip coils helps the muon beam transition from and to the experimental solenoids. The 0.6-meter diameter experimental solenoids have a uniform field region (good to about 1 part in 1000) that is 1.3-meters long. The MICE experiment magnets must operate as a single unit so that the field profile will produce the maximum muon cooling

  8. Instrumentation for NBI SST-1 cooling water system

    International Nuclear Information System (INIS)

    Qureshi, Karishma; Patel, Paresh; Jana, M.R.

    2015-01-01

    Neutral Beam Injector (NBI) System is one of the heating systems for Steady state Superconducting Tokamak (SST-1). It is capable of generating a neutral hydrogen beam of power 0.5 MW at 30 kV. NBI system consists of following sub-systems: Ion source, Neutralizer, Deflection Magnet and Magnet Liner (ML), Ion Dump (ID), V-Target (VT), Pre Duct Scraper (PDS), Beam Transmission Duct (BTD) and Shine Through (ST). For better heat removal management purpose all the above sub-systems shall be equipped with Heat Transfer Elements (THE). During beam operation these sub-systems gets heated due to the received heat load which requires to be removed by efficient supplying water. The cooling water system along with the other systems (External Vacuum System, Gas Feed System, Cryogenics System, etc.) will be controlled by NBI Programmable Logic Control (PLC). In this paper instrumentation and its related design for cooling water system is discussed. The work involves flow control valves, transmitters (pressure, temperature and water flow), pH and conductivity meter signals and its interface with the NBI PLC. All the analog input, analog output, digital input and digital output signals from the cooling water system will be isolated and then fed to the NBI PLC. Graphical Users Interface (GUI) needed in the Wonderware SCADA for the cooling water system shall also be discussed. (author)

  9. Bio-fouling and its control in the cooling water system of PFBR

    International Nuclear Information System (INIS)

    Satpathy, K.K.; Kannan, S.E.

    2004-06-01

    This report gives an overview of the bio-fouling problems that could be visualized in the different sections of the cooling system of PFBR, which is based on the experience observed at MAPS as well as from the experience of some of the work carried out at Kalpakkam. International as well as the MAPS practices of bio-fouling control are discussed. Based on these, an appropriate method for bio-fouling control is suggested. In addition, a few time bound, field, as well as laboratory experiments are proposed to be carried out, for deciding precise and accurate method of bio-fouling control for PFBR cooling water system. (author)

  10. Review on Water Distribution of Cooling Tower in Power Station

    Science.gov (United States)

    Huichao, Zhang; Lei, Fang; Hao, Guang; Ying, Niu

    2018-04-01

    As the energy sources situation is becoming more and more severe, the importance of energy conservation and emissions reduction gets clearer. Since the optimization of water distribution system of cooling tower in power station can save a great amount of energy, the research of water distribution system gets more attention nowadays. This paper summarizes the development process of counter-flow type natural draft wet cooling tower and the water distribution system, and introduces the related domestic and international research situation. Combining the current situation, we come to the conclusion about the advantages and disadvantages of the several major water distribution modes, and analyze the problems of the existing water distribution ways in engineering application, furthermore, we put forward the direction of water distribution mode development on the basis knowledge of water distribution of cooling tower. Due to the water system can hardly be optimized again when it’s built, choosing an appropriate water distribution mode according to actual condition seems to be more significant.

  11. Uranium utilization of light water cooled reactors and fast breeders

    International Nuclear Information System (INIS)

    Stojadinovic, Timm

    1991-08-01

    The better uranium utilization of fast breeder reactors as compared with water cooled reactors is one argument in favour of the breeder introduction. This report tries to quantify this difference. It gives a generally valid formalism for the uranium utilization as a function of the fuel burnup, the conversion rate, fuel cycle losses and the fuel enrichment. On the basis of realistic assumptions, the ratio between the utilizations of breeder reactors to that of light water cooled reactors (LWR) amounts to 180 for the open LWR cycle and 100 in case of plutonium recycling in LWRs

  12. Potentials of heat recovery from 850C LEP cooling water

    International Nuclear Information System (INIS)

    Koelling, M.

    1982-06-01

    Most of the cooling water from LEP has a too low temperature (30 to 40 0 C) to be considered for economical recovery of energy. However, it is hoped that the heat from the klystrons be removed at a temperature of 85 0 C and that this part of the LEP cooling water might be used for saving primary energy. In this study different possibilities have been investigated to make use of the waste heat for heating purposes during winter time, for saving energy in the refrigeration process in summer and for power generation. Cost estimates for these installations are also given and show their economic drawbacks. (orig.)

  13. Advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2008-07-01

    By August 2007, there were 438 nuclear power plants (NPPs) in operation worldwide, with a total capacity of 371.7 GW(e). Further, 31 units, totaling 24.1 GW(e), were under construction. During 2006 nuclear power produced 2659.7 billion kWh of electricity, which was 15.2% of the world's total. The vast majority of these plants use water-cooled reactors. Based on information provided by its Member States, the IAEA projects that nuclear power will grow significantly, producing between 2760 and 2810 billion kWh annually by 2010, between 3120 and 3840 billion kWh annually by 2020, and between 3325 and 5040 billion kWh annually by 2030. There are several reasons for these rising expectations for nuclear power: - Nuclear power's lengthening experience and good performance: The industry now has more than 12 000 reactor years of experience, and the global average nuclear plant availability during 2006 reached 83%; - Growing energy needs: All forecasts project increases in world energy demand, especially as population and economic productivity grow. The strategies are country dependent, but usually involve a mix of energy sources; - Interest in advanced applications of nuclear energy, such as seawater desalination, steam for heavy oil recovery and heat and electricity for hydrogen production; - Environmental concerns and constraints: The Kyoto Protocol has been in force since February 2005, and for many countries (most OECD countries, the Russian Federation, the Baltics and some countries of the Former Soviet Union and Eastern Europe) greenhouse gas emission limits are imposed; - Security of energy supply is a national priority in essentially every country; and - Nuclear power is economically competitive and provides stability of electricity price. In the near term most new nuclear plants will be evolutionary water cooled reactors (Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs), often pursuing economies of scale. In the longer term, innovative designs that

  14. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    selection of chemistry controls is vital for NPPs with liquid metal cooled reactors. This paper highlights principles and approaches to chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors. The recommendations on how to arrange chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors are based taking into account: - the experience with operation of fossil power industry; - secondary side water chemistry of lead-bismuth eutectics cooled nuclear reactors at submarines; - steam/water cycles of NPPs with sodium cooled fast breeders BN-350 and BN-600; - secondary water chemistry at conventional NPPs with WER, RBMK and some other reactors. (authors)

  15. Corrosion control for open cooling water system

    International Nuclear Information System (INIS)

    Karweer, S.B.; Ramchandran, R.

    2000-01-01

    Frequent stoppage of water circulation due to shut down of the Detritiation Plant in Heavy Water Division, Trombay resulted in considerable algae growth. As polyphosphate is a nutrient to algae growth, studies were directed in the evaluation of a nonpolyphosphate formulation for controlling corrosion and scale formation of carbon-steel, copper and aluminium. A blend of HEDP, polyacrylate, zinc, and benzotriazole was used and the optimum condition was determined. In presence of 25 ppm kw-1002 [proprietary formulation, containing HEDP and polyacrylate], 10 ppm kw-201 [active ingredient benzotriazole] and 2 ppm zinc (as zinc sulphate), the corrosion rate of carbon-steel in Mumbai Municipal Corporation (MMC) water at pH 7.5 ± 0.1 for a period of 31 days was 10.4 x 10 -3 μm/h. When MMC water concentrated to half its original volume was used, the corrosion rate was still 9.74 x 10 -3 μm/h close to the original value without concentration. Hence, this formulation was used for controlling scale and corrosion. The results were satisfactory. (author)

  16. Water supply method to the fuel cell cooling water system; Nenryo denchi reikyakusuikei eno kyusui hoho

    Energy Technology Data Exchange (ETDEWEB)

    Urata, T. [Tokyo (Japan); Nishida, S. [Tokyo (Japan)

    1996-12-17

    The conventional fuel cell has long cooling water piping ranging from the fuel cell exit to the steam separator; in addition, the supply water is cooler than the cooling water. When the amount of supply water increases, the temperature of the cooling water is lowered, and the pressure fluctuation in the steam separator becomes larger. This invention relates to the water supply method of opening the supply water valve and supplying water from the supply water system to the cooling water system in accordance with the signal of the level sensor of the steam separator, wherein opening and closing of the supply valve are repeated during water supply. According to the method the pressure drop in every water supply becomes negligibly small; therefore, the pressure fluctuation of the cooling water system can be made small. The interval of the supply water valve from opening to closing is preferably from 3 seconds to 2 minutes. The method is effective when equipment for recovering heat from the cooling water is installed in the downstream pipeline of the fuel cell. 2 figs.

  17. Mathematical model and calculation of water-cooling efficiency in a film-filled cooling tower

    Science.gov (United States)

    Laptev, A. G.; Lapteva, E. A.

    2016-10-01

    Different approaches to simulation of momentum, mass, and energy transfer in packed beds are considered. The mathematical model of heat and mass transfer in a wetted packed bed for turbulent gas flow and laminar wave counter flow of the fluid film in sprinkler units of a water-cooling tower is presented. The packed bed is represented as the set of equivalent channels with correction to twisting. The idea put forward by P. Kapitsa on representation of waves on the interphase film surface as elements of the surface roughness in interaction with the gas flow is used. The temperature and moisture content profiles are found from the solution of differential equations of heat and mass transfer written for the equivalent channel with the volume heat and mass source. The equations for calculation of the average coefficients of heat emission and mass exchange in regular and irregular beds with different contact elements, as well as the expression for calculation of the average turbulent exchange coefficient are presented. The given formulas determine these coefficients for the known hydraulic resistance of the packed bed element. The results of solution of the system of equations are presented, and the water temperature profiles are shown for different sprinkler units in industrial water-cooling towers. The comparison with experimental data on thermal efficiency of the cooling tower is made; this allows one to determine the temperature of the cooled water at the output. The technical solutions on increasing the cooling tower performance by equalization of the air velocity profile at the input and creation of an additional phase contact region using irregular elements "Inzhekhim" are considered.

  18. Water-cooled, fire boom blanket, test and evaluation for system prototype development

    International Nuclear Information System (INIS)

    Stahovec, J. G.; Urban, R. W.

    1999-01-01

    Initial development of actively cooled fire booms indicated that water-cooled barriers could withstand direct oil fire for several hours with little damage if cooling water were continuously supplied. Despite these early promising developments, it was realized that to build reliable full-scale system for Navy host salvage booms would require several development tests and lengthy evaluations. In this experiment several types of water-cooled fire blankets were tested at the Oil and Hazardous Materials Simulated Test Tank (OHMSETT). After the burn test the blankets were inspected for damage and additional tests were conducted to determine handling characteristics for deployment, recovery, cleaning and maintenance. Test results showed that water-cooled fire boom blankets can be used on conventional offshore oil containment booms to extend their use for controlling large floating-oil marine fires. Results also demonstrated the importance of using thermoset rubber coated fabrics in the host boom to maintain sufficient reserve seam strength at elevated temperatures. The suitability of passively cooled covers should be investigated to protect equipment and boom from indirect fire exposure. 1 ref., 2 tabs., 8 figs

  19. Evaluation of water cooled supersonic temperature and pressure probes for application to 2000 F flows

    Science.gov (United States)

    Lagen, Nicholas T.; Seiner, John M.

    1990-01-01

    The development of water cooled supersonic probes used to study high temperature jet plumes is addressed. These probes are: total pressure, static pressure, and total temperature. The motivation for these experiments is the determination of high temperature supersonic jet mean flow properties. A 3.54 inch exit diameter water cooled nozzle was used in the tests. It is designed for exit Mach 2 at 2000 F exit total temperature. Tests were conducted using water cooled probes capable of operating in Mach 2 flow, up to 2000 F total temperature. Of the two designs tested, an annular cooling method was chosen as superior. Data at the jet exit planes, and along the jet centerline, were obtained for total temperatures of 900 F, 1500 F, and 2000 F, for each of the probes. The data obtained from the total and static pressure probes are consistent with prior low temperature results. However, the data obtained from the total temperature probe was affected by the water coolant. The total temperature probe was tested up to 2000 F with, and without, the cooling system turned on to better understand the heat transfer process at the thermocouple bead. The rate of heat transfer across the thermocouple bead was greater when the coolant was turned on than when the coolant was turned off. This accounted for the lower temperature measurement by the cooled probe. The velocity and Mach number at the exit plane and centerline locations were determined from the Rayleigh-Pitot tube formula.

  20. Asbestos in cooling-tower waters. Final report

    International Nuclear Information System (INIS)

    Lewis, B.A.G.

    1979-03-01

    Water discharges from cooling towers constructed with asbestos fill were found to contain chrysotile--asbestos fibers at concentrations as high as 10 8 fibers/liter. The major source of these fibers, appears to be the components of the towers rather than the air drawn through the towers or the makeup water taken into the towers. Suggested mechanisms for the release of chrysotile fibers from cooling-tower fill include freeze-thaw cycles and dissolution of the cement due to acidic components of the circulating water. Ash- or other material-settling ponds were found to reduce asbestos-fiber concentrations in cooling-tower effluent. The literature reviewed did not support the case for a causal relationship between adverse human health effects and drinking water containing on the order of 10 6 chrysotile--asbestos fibers/liter; for this and other reasons, it is not presently suggested that the use of asbestos fill be discontinued. However, caution and surveillance are dictated by the uncertainties in the epidemiological studies, the absence of evidence for a safe threshold concentration in water, and the conclusive evidence for adverse effects from occupational exposure. It is recommended that monitoring programs be carried out at sites where asbestos fill is used; data from such programs can be used to determine whether any mitigative measures should be taken. On the basis of estimates made in this study, monitoring for asbestos in drift from cooling towers does not appear to be warranted

  1. Cool-Water Carbonates, SEPM Special Publication No. 56

    Science.gov (United States)

    Hallock, Pamela

    Doesn't field work on modern carbonates mean scuba diving on spectacular coral reefs in gin-clear water teeming with brightly colored fish? Not if you are one of the researchers that Jonathan Clarke of the Western Mining Corporation Ltd., in Preston, Victoria, Australia, assembled at a workshop in Geelong, Victoria, in January 1995. Their field work involves research cruises in high-latitude oceans, where mal de mer and chilling winds are constant companions. Many braved 10-m seas in modest-sized research vessels to sample shelves stripped of fine sediments by storm waves whose effects can reach to depths exceeding 200 m. Noel James of Queen's University in Kingston, Ontario, carefully lays the groundwork for the book in a paper titled, “The Cool-Water Carbonate Depositional Realm,” which will assuredly become a standard reading assignment in advanced undergraduate-and graduate-level courses in carbonate sedimentology. James skillfully shows how cool-water carbonates are part of the greater carbonate depositional spectrum. By expanding recognition of the possible range of carbonate environments, sedimentologists expand their ability to understand and interpret ancient carbonates, particularly Paleozoic limestones that often show striking similarities to modern cool-water sediments. James' paper is followed by nine papers on modern cool-water carbonates, seven on Tertiary environments, and seven examples from Mesozoic and Paleozoic limestones

  2. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  3. Effect of Thermoelectric Cooling (TEC module and the water flow heatsink on Photovoltaic (PV panel performance

    Directory of Open Access Journals (Sweden)

    Amelia A.R.

    2017-01-01

    Full Text Available Photovoltaic (PV panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.

  4. Effect of Thermoelectric Cooling (TEC) module and the water flow heatsink on Photovoltaic (PV) panel performance

    Science.gov (United States)

    Amelia, A. R.; Jusoh, MA; Shamira Idris, Ida

    2017-11-01

    Photovoltaic (PV) panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC) and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.

  5. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    King, V.

    2000-01-01

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  6. Computational Simulation of a Water-Cooled Heat Pump

    Science.gov (United States)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  7. 244-AR vault cooling water stream-specific report

    International Nuclear Information System (INIS)

    1990-08-01

    The proposed wastestream designation for the 244-AR Vault cooling water wastestream is that this stream is not a dangerous waste, pursuant to the Washington (State) Administration Code (WAC) 173-303, Dangerous Waste Regulations. A combination of process knowledge and sampling data was used to make this determination. 21 refs., 6 figs., 7 tabs

  8. Complex cooling water systems optimization with pressure drop consideration

    CSIR Research Space (South Africa)

    Gololo, KV

    2012-12-01

    Full Text Available Pressure drop consideration has shown to be an essential requirement for the synthesis of a cooling water network where reuse/recycle philosophy is employed. This is due to an increased network pressure drop associated with additional reuse...

  9. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    Science.gov (United States)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  10. Identification of gap cooling phenomena from LAVA-4 experiment using MELCOR

    International Nuclear Information System (INIS)

    Park, Jong-Hwa; Kim, Dong-Ha; Kim, See-Darl; Kim, Sang-Baik; Kim, Hee-Dong

    2000-01-01

    During the severe accident, whether the hot debris in. lower head will be cool-down or not is the important issue concerning the plant safety. KAERI has launched the 'LAVA' experimental program to examine the existence of initial gap and its effect on the cooling of hot debris. The objective of this study is to identify the gap cooling phenomena from the analysis of simulation results on LAVA-4 experiment using MELCOR1.8.4 code. Three parameters on the debris coolability in MELCOR are the quenching heat transfer coefficient for the interaction between molten Al 2 O 3 and water, the heat transfer coefficient from debris to wall and the diameter of the particulate debris for calculating the available heat transfer area with water. The sensitivity study was performed with these three parameters. However it was believed that there must be a gap between debris and inside wall during the transient. MELCOR1.8.4 does not consider these gap-cooling phenomena. Therefore a conceptual gap-cooling model has been developed and implemented into the lower plenum model in MELCOR to take into account the gap effect in the lower plenum. When the 'gap model' is implemented, the peak temperature of the vessel wall was reduced and its cooling rate was increased. (author)

  11. Rod Bundle Heat Transfer: Steady-State Steam Cooling Experiments

    International Nuclear Information System (INIS)

    Spring, J.P.; McLaughlin, D.M.

    2006-01-01

    Through the joint efforts of the Pennsylvania State University and the United States Nuclear Regulatory Commission, an experimental rod bundle heat transfer (RBHT) facility was designed and built. The rod bundle consists of a 7 x 7 square pitch array with spacer grids and geometry similar to that found in a modern pressurized water reactor. From this facility, a series of steady-state steam cooling experiments were performed. The bundle inlet Reynolds number was varied from 1 400 to 30 000 over a pressure range from 1.36 to 4 bars (20 to 60 psia). The bundle inlet steam temperature was controlled to be at saturation for the specified pressure and the fluid exit temperature exceeded 550 deg. C in the highest power tests. One important quantity of interest is the local convective heat transfer coefficient defined in terms of the local bulk mean temperature of the flow, local wall temperature, and heat flux. Steam temperatures were measured at the center of selected subchannels along the length of the bundle by traversing miniaturized thermocouples. Using an analogy between momentum and energy transport, a method was developed for relating the local subchannel centerline temperature measurement to the local bulk mean temperature. Wall temperatures were measured using internal thermocouples strategically placed along the length of each rod and the local wall heat flux was obtained from an inverse conduction program. The local heat transfer coefficient was calculated from the data at each rod thermocouple location. The local heat transfer coefficients calculated for locations where the flow was fully developed were compared against several published correlations. The Weisman and El-Genk correlations were found to agree best with the RBHT steam cooling data, especially over the range of turbulent Reynolds numbers. The effect of spacer grids on the heat transfer enhancement was also determined from instrumentation placed downstream of the spacer grid locations. The local

  12. Factors Stimulating Propagation of Legionellae in Cooling Tower Water

    OpenAIRE

    Yamamoto, Hiroyuki; Sugiura, Minoru; Kusunoki, Shinji; Ezaki, Takayuki; Ikedo, Masanari; Yabuuchi, Eiko

    1992-01-01

    Our survey of cooling tower water demonstrated that the highest density of legionellae, ≥104 CFU/100 ml, appeared in water containing protozoa, ≥102 MPN/100 ml, and heterotrophic bacteria, ≥106 CFU/100 ml, at water temperatures between 25 and 35°C. Viable counts of legionellae were detected even in the winter samples, and propagation, up to 105 CFU/100 ml, occurs in summer. The counts of legionellae correlated positively with increases in water temperature, pH, and protozoan counts, but not w...

  13. New Estimation of the Dosage of Scale Inhibitor in the Cooling Water System

    Directory of Open Access Journals (Sweden)

    Jiang Jiaomei

    2011-01-01

    Full Text Available In the cooling water system, excessive use of organic phosphate scale inhibitors is harmful to environment. Reducing the dosage of the organic phosphate scale inhibitor is important. A self-made jacketed crystallizer was used in this experiment. The critical pH values have been determined in cooling water systems with series of Ca2+ concentrations by adding different concentration of the scale inhibitor ATMP (Amino Trimethylene Phosphonic Acid according to the calcium carbonate Metastable zone theory. A model equation at 45 °C and pH=9 was proposed to estimate the lowest dose of the scale inhibitor ATMP. The measured pH value was approximate to the expected pH value in two cooling water systems through verification test.

  14. Natural Circulation Phenomena and Modelling for Advanced Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-03-01

    The role of natural circulation in advanced water cooled reactor design has been extended with the adoption of passive safety systems. Some designs utilize natural circulation to remove core heat during normal operation. Most passive safety systems used in evolutionary and innovative water cooled reactor designs are driven by natural circulation. The use of passive systems based on natural circulation can eliminate the costs associated with the installation, maintenance and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. Several IAEA Member States with advanced reactor development programmes are actively conducting investigations of natural circulation to support the development of advanced water cooled reactor designs with passive safety systems. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, in 2004 the IAEA initiated a coordinated research project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation. Three reports were published within the framework of this CRP. The first report (IAEA-TECDOC-1474) contains the material developed for the first IAEA training course on natural circulation in water cooled nuclear power plants. The second report (IAEA-TECDOC-1624) describes passive safety systems in a wide range of advanced water cooled nuclear power plant designs, with the goal of gaining insights into system design, operation and reliability. This third, and last, report summarizes the research studies completed by participating institutes during the CRP period.

  15. Investigation on flow stability of supercritical water cooled systems

    International Nuclear Information System (INIS)

    Cheng, X.; Kuang, B.

    2006-01-01

    Research activities are ongoing worldwide to develop nuclear power plants with supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, the strong variation of the thermal-physical properties of water in the vicinity of the pseudo-critical line results in challenging tasks in various fields, e.g. thermal-hydraulic design of a SCWR. One of the challenging tasks is to understand and to predict the dynamic behavior of supercritical water cooled systems. Although many thermal-hydraulic research activities were carried out worldwide in the past as well as in the near present, studies on dynamic behavior and flow stability of SC water cooled systems are scare. Due to the strong density variation, flow stability is expected to be one of the key items which need to be taken into account in the design of a SCWR. In the present work, the dynamic behavior and flow stability of SC water cooled systems are investigated using both numerical and theoretical approaches. For this purpose a new computer code SASC was developed, which can be applied to analysis the dynamic behavior of systems cooled by supercritical fluids. In addition, based on the assumptions of a simplified system, a theoretical model was derived for the prediction of the onset of flow instability. A comparison was made between the results obtained using the theoretical model and those from the SASC code. A good agreement was achieved. This gives the first evidence of the reliability of both the SASC code and the theoretical model

  16. Method for Measuring Cooling Efficiency of Water Droplets Impinging onto Hot Metal Discs

    Directory of Open Access Journals (Sweden)

    Joachim Søreng Bjørge

    2018-06-01

    Full Text Available The present work outlines a method for measuring the cooling efficiency of droplets impinging onto hot metal discs in the temperature range of 85 °C to 400 °C, i.e., covering the boiling regimes experienced when applying water to heated objects in fires. Stainless steel and aluminum test discs (with 50-mm diameter, 10-mm thickness, and a surface roughness of Ra 0.4 or Ra 3 were suspended horizontally by four thermocouples that were used to record disc temperatures. The discs were heated by a laboratory burner prior to the experiments, and left to cool with and without applying 2.4-mm diameter water droplets to the discs while the disc temperatures were recorded. The droplets were generated by the acceleration of gravity from a hypodermic injection needle, and hit the disc center at a speed of 2.2 m/s and a rate of 0.02 g/s, i.e., about three droplets per second. Based on the recorded rate of the temperature change, as well as disc mass and disc heat capacity, the absolute droplet cooling effect and the relative cooling efficiency relative to complete droplet evaporation were obtained. There were significant differences in the cooling efficiency as a function of temperature for the two metals investigated, but there was no statistically significant difference with respect to whether the surface roughness was Ra 0.4 or Ra 3. Aluminum showed a higher cooling efficiency in the temperature range of 110 °C to 140 °C, and a lower cooling efficiency in the temperature range of 180 °C to 300 °C compared to stainless steel. Both metals gave a maximum cooling efficiency in the range of 75% to 85%. A minimum of 5% cooling efficiency was experienced for the aluminum disc at 235 °C, i.e., the observed Leidenfrost point. However, stainless steel did not give a clear minimum in cooling efficiency, which was about 12–14% for disc temperatures above 300 °C. This simple and straightforward technique is well suited for assessing the cooling efficiency of

  17. Python bindings for C++ using PyROOT/cppyy: the experience from PyCool in COOL

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The COOL software is used by the ATLAS and LHCb experiments to handle the time variation and versioning of their conditions data, using a variety of different relational database technologies. While the COOL core libraries are written in C++ and are integrated in the experiment C++ frameworks, a package offering Python bindings of the COOL C++ APIs, PyCool, is also provided and has been an essential component of the ATLAS conditions data management toolkit for over 10 years. Almost since the beginning, the implementation of PyCool has been based on ROOT to generate Python bindings for C++, initially using Reflex and PyROOT in ROOT5 and more recently using clang and cppyy in ROOT6. This presentation will describe the PyCool experience with using ROOT to generate Python bindings for C++, throughout the many evolutions of the underlying technology.

  18. A Modified Cooling Method and Its Application in "Drosophila" Experiments

    Science.gov (United States)

    Qu, Wen-hui; Zhu, Tong-bo; Yang, Da-Xiang

    2015-01-01

    Chilling is a cost-effective and safe method of immobilising flies in "Drosophila" experiments. However, should condensation form on the plate, it would be fatal to the flies. Here we describe a modified cooling method using reusable commercial ice pack(s) (ca. 400 ml, 2-3 cm tall) rather than crushed ice. The ice pack is covered with a…

  19. Calculating the evaporated water flow in a wet cooling tower

    International Nuclear Information System (INIS)

    Grange, J.L.

    1994-04-01

    On a cooling tower, it is necessary to determine the evaporated water flow in order to estimate the water consumption with a good accuracy according to the atmospheric conditions, and in order to know the characteristics of the plume. The evaporated flow is small compared to the circulating flow. A direct measurement is very inaccurate and cannot be used. Only calculation can give a satisfactory valuation. The two usable theories are the Merkel's one in which there are some simplifying assumptions, and the Poppe's one which is more exact. Both theories are used in the numerical code TEFERI which has been developed and is run by Electricite de France. The results obtained by each method are compared and validated by measurements made in the hot air of a cooling tower. The consequences of each hypothesis of Merkel's theory are discussed. This theory does not give the liquid water content in the plume and it under-estimates the evaporated flow all the lower the ambient temperature is. On the other hand, the Poppe's method agrees very closely with the measurements as well for the evaporated flow than for the liquid water concentration. This method is used to establish the specific consumption curves of the great nuclear plants cooling towers as well as to calculate the emission of liquid water drops in the plumes. (author). 11 refs., 9 figs

  20. Water-cooled radiofrequency neuroablation for sacroiliac joint dysfunctional pain.

    Science.gov (United States)

    Biswas, Binay Kumar; Dey, Samarjit; Biswas, Saumya; Mohan, Varinder Kumar

    2016-01-01

    Sacroiliac (SI) joint dysfunction is a common source of chronic low-back pain. Recent evidences from different parts of the world suggest that cooled radiofrequency (RF) neuroablation of sacral nerves supplying SI joints has superior pain alleviating properties than available existing treatment options for SI joint dysfunctional pain. A 35-year-old male had intractable bilateral SI joint pain (numeric rating scale [NRS] - 9/10) with poor treatment response to intra-articular steroid therapy. Bilateral water cooled = RF was applied for neuroablation of nerves supplying both SI joints. Postprocedure pain intensity was 5/10 and after 7 days it was 2/10. On 18 th -month follow-up, he is pain free except for mild pain (NRS 2/10) on occasional extreme twisting of the back. This case attempts to highlight that sacral neuroablation based on cooled RF technique can be a long lasting remedial option for chronic SI joint pain unresponsive to conventional treatment.

  1. Procedure for operating a heavy water cooled power reactor

    International Nuclear Information System (INIS)

    Rau, P.; Kumpf, H.

    1981-01-01

    Nuclear reactors cooled by heavy water usually have equipment for fuel element exchange during operation, with the primary circuit remaining contained. This fuel element exchange equipment is expensive and complicated in many respects. According to the invention, the heavy water is therefore replaced by light water after a certain time of operation in such way that light water is led in and heavy water is led off. After the replacement, at least a quarter of the fuel elements of the reactor core is exchanged with the reactor pressure vessel being open. Then the light water serving as a shielding is replaced by heavy water, with the reactor pressure vessel being closed. The invention is of interest particularly for high-conversion reactors. (orig.) [de

  2. Status of the international Muon ionization cooling experiment

    International Nuclear Information System (INIS)

    Palladino, V.; Bonesini, M.

    2009-01-01

    Muon ionization cooling provides the only practical solution to prepare high brilliance beams necessary for a neutrino factory or muon colliders. The muon ionization cooling experiment (MICE) is under development at the Rutherford Appleton Laboratory (UK). It comprises a dedicated beam line to generate a range of input emittance and momentum, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. A first measurement of emittance is performed in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in liquid hydrogen and RF acceleration. A second spectrometer identical to the first one and a particle identification system provide a measurement of the outgoing emittance. By July 2009 it is expected that the beam and first set of detectors will have been commissioned and a first measurement of input beam emittance may be reported. Along with the steps in the measurement of emittance reduction (cooling) that will follow later and in 2010. (authors)

  3. Materials challenges for the supercritical water-cooled reactor (SCWR)

    International Nuclear Information System (INIS)

    Baindur, S.

    2008-01-01

    This paper discusses the materials requirements of the Supercritical Water-cooled Reactor (SCWR) which arise from its severe expected operating conditions: (i) Outlet Temperature (to 650 C); (ii) Pressure of 25 MPa for the coolant containment, (iii) Thermochemical stress in the presence of supercritical water, and (iv) Radiative damage (up to 150 dpa for the fast spectrum variant). These operating conditions are reviewed; the phenomenology of materials in the supercritical water environment that create the materials challenges is discussed; knowledge gaps are identified, and efforts to understand material behaviour under the operating conditions expected in the SCWR are described. (author)

  4. A simpler, safer, higher performance cooling system arrangement for water cooled divertors

    International Nuclear Information System (INIS)

    Carelli, M.D.; Kothmann, R.E.; Green, L.; Zhan, N.J.; Stefani, F.; Roidt, R.M.

    1994-01-01

    A cooling system arrangement is presented which is specifically designed for high heat flux water cooled divertors. The motivation behind the proposed open-quotes unichannelclose quotes configuration is to provide maximum safety; this design eliminates flow instabilities liable to occur in parallel channel designs, it eliminates total blockage, it promotes cross flow to counteract the effects of partial blockage and/or local hot spots, and it is much more tolerant to the effects of debonding between the beryllium armor and the copper substrate. Added degrees of freedom allow optimization of the design, including the possibility of operating at very high heat transfer coefficients associated with nucleate boiling, while at the same time providing ample margin against departure from nucleate boiling. Projected pressure drop, pumping power, and maximum operating temperatures are lower than for conventional parallel channel designs

  5. The effects of high-Ca hardness water treatment for secondary cooling water in HANARO

    International Nuclear Information System (INIS)

    Kang, T. J.; Park, Y. C.; Hwang, S. R.; Lim, I. C.; Choi, H. Y.

    2003-01-01

    Water-quality control of the second cooling system in HANARO has been altered from low Ca-hardness treatment to high Ca-hardness treatment since March, 2001. High Ca-hardness water treatment in HANARO is to maintain the calcium hardness around 12 by minimizing the blowdown of secondary cooling water. This paper describes the effect of cost reduction after change of water-quility treatment method. The result shows that the cost of the water could be reduced by 25% using the pond water in KAERI. The amount and cost for the chemical agent could be reduced by 40% and 10% respectively

  6. Energy management techniques: SRP cooling water distribution system

    International Nuclear Information System (INIS)

    Edenfield, A.B.

    1979-10-01

    Cooling water for the nuclear reactors at the Savannah River Plant is supplied by a pumping and distribution system that includes about 50 miles of underground pipeline. The energy management program at SRP has thus far achieved a savings of about 5% (186 x 10 9 Btu) of the energy consumed by the electrically powered cooling water pumps; additional savings of about 14% (535 x 10 9 Btu) can be achieved by capital expenditures totaling about $3.7 million. The present cost of electricity for operation of this system is about $25 million per year. A computer model of the system was adapted and field test data were used to normalize the program to accurately represent pipeline physical characteristics. Alternate pumping schemes are analyzed to determine projected energy costs and impact on system safety and reliability

  7. Passive safety features in current and future water cooled reactors

    International Nuclear Information System (INIS)

    1990-11-01

    Better understanding of the passive safety systems and components in current and future water-cooled reactors may enhance the safety of present reactors, to the extend passive features are backfitted. This better understanding should also improve the safety of future reactors, which can incorporate more of these features. Passive safety systems and components may help to prevent accidents, core damage, or release radionuclides to the environment. The Technical Committee Meeting which was hosted by the USSR State Committee for Utilization of Nuclear Energy was attended by about 80 experts from 16 IAEA Member States and the NEA-OECD. A total of 21 papers were presented during the meeting. The objective of the meeting was to review and discuss passive safety systems and features of current and future water cooled reactor designs and to exchange information in this area of activity. A separate abstract was prepared for each of the 21 papers published in this proceedings. Refs, figs and tabs

  8. The Water Quality Control of the Secondary Cooling Water under a Normal Operation of 30 MWth in HANARO

    International Nuclear Information System (INIS)

    Park, Young Chul; Lee, Young Sub; Lim, Rag Yong

    2008-01-01

    HANARO, a multi-purpose research reactor, a 30 MWth open-tank-in-pool type, has been under a full power operation since 2005. The heat generated by the core of HANARO is transferred to the primary cooling water. And the cooling water transfers the heat to the secondary cooling water through the primary cooling heat exchanger. The heat absorbed by the secondary cooling water is removed through a cooling tower. The quality of the secondary cooling water is deteriorated by a temperature variation of the cooling water and a foreign material flowing over the cooling water through the cooling tower fan for a cooling. From these, a corrosion reduces the life time of a system, a scale degrades the heat transfer effect and a sludge and slime induces a local corrosion. For reducing these impacts, the quality of the secondary cooling water is treated by a high ca-hardness water quality program by maintaining a super saturated condition of ions, 12 of a ca-hardness concentration. After an overhaul maintenance of a secondary cooling tower composed of a secondary cooling system in 2007, a secondary cooling water stored in the cooling tower basin was replaced with a fresh city water. In this year, a water quality deterioration test has been performed under a full power operation and a mode of a twenty three day operation and twelve day maintenance for setting a beginning control limit of the secondary cooling water. This paper describes the water quality deterioration test for the secondary cooling system under a full power operation of 30 MWth including a test method, a test requirement and a test result

  9. Effects of Water Radiolysis in Water Cooled Reactors, NERI Proposal No.99-0010

    International Nuclear Information System (INIS)

    Pimblott, S.M.

    2000-01-01

    OAK B188 Effects of Water Radiolysis in Water Cooled Reactors, NERI Proposal No.99-0010. The aim of this project is to develop an experiment-and-theory based model for the radiolysis of nonstandard aqueous systems like those that will be encountered in the Advance Light Water reactor. Three aspects of the radiation chemistry of aqueous systems at elevated temperatures are considered in the project: the radiation-induced reaction within the primary track and with additives, the homogeneous production of H 2 O 2 at high radiation doses, and the heterogeneous reaction of the radiation-induced species escaping the track. The goals outlined for Phase 1 of the program were: the compilation of information on the radiation chemistry of water at elevated temperatures, the simulation of existing experimental data on the escape yields of e aq - , OH, H 2 and H 2 O 2 in γ radiolysis at elevated temperatures, the measurement of low LET and high LET production of H 2 O 2 at room temperature, the compilation of information on the radiation chemistry of water-(metal) oxide interfaces, and the synthesis and characterization the heterogeneous water-oxide systems of interest

  10. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    environments and the other simulated an air-conditioned indoor environment. The flash water evaporation cooling device was installed in the chamber that simulated indoor environment. The air from the chamber simulating outdoor environment was introduced into the cooling device and cooled by the flash water......, is effective for ventilation and air-conditioning in warm/hot and dry climate zones. The technology can provide fresh outdoor air with a temperature of 4 to 7 °C lower than room air temperature.......This paper presents a simple cooling technology using flash water evaporation. The technology combines a water atomizer with a plate heat exchanger used for heat recovery of a ventilation system. It is mainly used to cool the ventilation airflow from outdoors and is particularly suitable to be used...

  11. The role of the IAEA in advanced technologies for water-cooled reactors

    International Nuclear Information System (INIS)

    Cleveland, J.

    1996-01-01

    The role of the IAEA in advanced technologies for water-cooled reactors is described, including the following issues: international collaboration ways through international working group activities; IAEA coordinated research programmes; cooperative research in advanced water-cooled reactor technology

  12. Effect of cooling water on stability of NLC linac components

    Energy Technology Data Exchange (ETDEWEB)

    F. Le Pimpec et al.

    2003-02-11

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  13. Effect of Cooling Water on Stability of NLC Linac Components

    Energy Technology Data Exchange (ETDEWEB)

    Le Pimpec, Frederic

    2002-11-01

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  14. Method of operating a water-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Lysell, G.

    1975-01-01

    When operating a water-cooled nuclear reactor, in which the fuel rods consist of zirconium alloy tubes containing an oxidic nuclear fuel, stress corrosion in the tubes can be reduced or avoided if the power of the reactor is temporarily increased so much that the thermal expansion of the nuclear fuel produces a flow of the material in the tube. After that temporary power increase the power output is reduced to the normal power

  15. Advanced technologies for water cooled reactors 1990. Pt. 1

    International Nuclear Information System (INIS)

    1991-05-01

    The meeting was attended by 20 participants from 12 countries who reviewed and discussed the status and progress of national programmes on advanced water-cooled reactors and recommended to the Scientific Secretary a comprehensive programme for 1991/1992 which would support technology development programmes in IWGATWR Member States. This summary report outlines the activities of IWGATWR since its Second Meeting in June 1988 and main results of the Third Meeting

  16. Advanced technologies for water cooled reactors 1990. Pt. 2

    International Nuclear Information System (INIS)

    1991-05-01

    The main purpose of the meeting was to review and discuss the status of national programmes, the progress achieved since the last meeting held in June 1988 in the field of advanced technologies and design trends for existing and future water cooled reactors. 24 specialists from 14 countries and the IAEA took part in the meeting and 12 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  17. The determinants of thermal comfort in cool water.

    Science.gov (United States)

    Guéritée, J; House, J R; Redortier, B; Tipton, M J

    2015-10-01

    Water-based activities may result in the loss of thermal comfort (TC). We hypothesized that in cooling water, the hands and feet would be responsible. Supine immersions were conducted in up to five clothing conditions (exposing various regions), as well as investigations to determine if a "reference" skin temperature (Tsk) distribution in thermoneutral air would help interpret our findings. After 10 min in 34.5 °C water, the temperature was decreased to 19.5 °C over 20 min; eight resting or exercising volunteers reported when they no longer felt comfortable and which region was responsible. TC, rectal temperature, and Tsk were measured. Rather than the extremities, the lower back and chest caused the loss of overall TC. At this point, mean (SD) chest Tsk was 3.3 (1.7) °C lower than the reference temperature (P = 0.005), and 3.8 (1.5) °C lower for the back (P = 0.002). Finger Tsk was 3.1 (2.7) °C higher than the reference temperature (P = 0.037). In cool and cooling water, hands and feet, already adapted to colder air temperatures, will not cause discomfort. Contrarily, more discomfort may arise from the chest and lower back, as these regions cool by more than normal. Thus, Tsk distribution in thermoneutral air may help understand variations in TC responses across the body. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Steam generators in indirect-cycle water-cooled reactors

    International Nuclear Information System (INIS)

    Fajeau, M.

    1976-01-01

    In the indirect cycle water-cooled nuclear reactors, the steam generators are placed between the primary circuit and the turbine. They act both as an energy transmitter and as a leaktigh barrier against fission or corrosion products. Their study is thus very important from a performance and reliability point of view. Two main types are presented here: the U-tube and the once-through steam generators [fr

  19. Estimation of the amount of surface contamination of a water cooled nuclear reactor by cooling water analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, G. [KFKI Atomic Energy Research Institute, P.O. Box 49, Budapest H-1525 (Hungary)]. E-mail: nagyg@sunserv.kfki.hu; Somogyi, A. [KFKI Atomic Energy Research Institute, P.O. Box 49, Budapest H-1525 (Hungary); Patek, G. [Paks Nuclear Power Plant, P.O. Box 71, Paks H-7031 (Hungary); Pinter, T. [Paks Nuclear Power Plant, P.O. Box 71, Paks H-7031 (Hungary); Schiller, R. [KFKI Atomic Energy Research Institute, P.O. Box 49, Budapest H-1525 (Hungary)

    2007-06-15

    Calculations, based upon on-the-spot measurements, were performed to estimate the contamination of NPP primary circuit and spent fuel storage pool solid surfaces via the composition of the cooling water in connection with a non-nuclear incident in the Paks NPP. Thirty partially burnt-up fuel element bundles were damaged during a cleaning process, an incident which resulted in the presence of fission products in the cooling water of the cleaning tank (CT) situated in a separate pool (P1). Since this medium was in contact for an extended period of time with undamaged fuel elements to be used later and also with other structural materials of the spent fuel storage pool (SP), it was imperative to assess the surface contamination of these latter ones with a particular view to the amount of fission material. In want of direct methods, one was restricted to indirect information which rested mainly on the chemical and radiochemical data of the cooling water. It was found that (i) the most important contaminants were uranium, plutonium, cesium and cerium; (ii) after the isolation of P1 and SP and an extended period of filtering the only important contaminants were uranium and plutonium; (iii) the surface contamination of the primary circuit (PC) was much lower than that of either SP or P1; (iv) some 99% of the contamination was removed from the water by the end of the filtering process.

  20. RCCS Experiments and Validation for High Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Chang Oh; Cliff Davis; Goon C. Park

    2007-01-01

    A reactor cavity cooling system (RCCS), an air-cooled helical coil RCCS unit immersed in the water pool, was proposed to overcome the disadvantages of the weak cooling ability of air-cooled RCCS and the complex structure of water-cooled RCCS for the high temperature gas-cooled reactor (HTGR). An experimental apparatus was constructed to investigate the various heat transfer phenomena in the water pool type RCCS, such as the natural convection of air inside the cavity, radiation in the cavity, the natural convection of water in the water pool and the forced convection of air in the cooling pipe. The RCCS experimental results were compared with published correlations. The CFX code was validated using data from the air-cooled portion of the RCCS. The RELAP5 code was validated using measured temperatures from the reactor vessel and cavity walls

  1. Management of water leaks on Tore Supra actively cooled fusion device

    International Nuclear Information System (INIS)

    Hatchressian, J.C.; Gargiulo, L.; Samaille, F.; Soler, B.

    2005-01-01

    Up to now, Tore Supra is the only fusion device fully equipped with actively cooled Plasma Facing Components (PFCs). In case of abnormal events during a plasma discharge, the PFCs could be submitted to a transient high power density (run away electrons) or to a continuous phenomena as local thermal flux induced by trapped suprathermal electrons or ions). It could lead to a degradation of the PFC integrity and in the worst case to a water leak occurrence. Such water leak has important consequence on the tokamak operation that concerns PFCs themselves, monitoring equipment located in the vacuum vessel or connected to the ports as RF antennas, diagnostics or pumping systems. Following successive water leak events (the most important water leak, that occurred in September 2002, is described in the paper), a large feedback experience has been gained on Tore supra since more than 15 years that could be useful to actively cooled next devices as W7X and ITER. (authors)

  2. Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion.

    Science.gov (United States)

    Scott, Chris G; Ducharme, Michel B; Haman, François; Kenny, Glen P

    2004-11-01

    We examined the effect of prior heating, by exercise and warm-water immersion, on core cooling rates in individuals rendered mildly hypothermic by immersion in cold water. There were seven male subjects who were randomly assigned to one of three groups: 1) seated rest for 15 min (control); 2) cycling ergometry for 15 min at 70% Vo2 peak (active warming); or 3) immersion in a circulated bath at 40 degrees C to an esophageal temperature (Tes) similar to that at the end of exercise (passive warming). Subjects were then immersed in 7 degrees C water to a Tes of 34.5 degrees C. Initial Tes cooling rates (initial approximately 6 min cooling) differed significantly among the treatment conditions (0.074 +/- 0.045, 0.129 +/- 0.076, and 0.348 +/- 0.117 degrees C x min(-1) for control, active, and passive warming conditions, respectively); however, secondary cooling rates (rates following initial approximately 6 min cooling to the end of immersion) were not different between treatments (average of 0.102 +/- 0.085 degrees C x min(-1)). Overall Tes cooling rates during the full immersion period differed significantly and were 0.067 +/- 0.047, 0.085 +/- 0.045, and 0.209 +/- 0.131 degrees C x min(-1) for control, active, and passive warming, respectively. These results suggest that prior warming by both active and, to a greater extent, passive warming, may predispose a person to greater heat loss and to experience a larger decline in core temperature when subsequently exposed to cold water. Thus, functional time and possibly survival time could be reduced when cold water immersion is preceded by whole-body passive warming, and to a lesser degree by active warming.

  3. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Science.gov (United States)

    2010-07-01

    ... contact cooling and heating water subcategory. 463.10 Section 463.10 Protection of Environment... SOURCE CATEGORY Contact Cooling and Heating Water Subcategory § 463.10 Applicability; description of the contact cooling and heating water subcategory. This subpart applies to discharges of pollutants from...

  4. Some aspects of cooling water discharges and environmental enhancement

    International Nuclear Information System (INIS)

    Grimaas, U.

    1976-01-01

    As a consequence of the effects of cooling water discharge on the environment, the siting of nuclear power plants is approached with cautiousness. The pros and cons are discussed of siting near bodies of good quality water or in more densely populated or industrial areas. Properties and effects of thermal discharges are elaborated. The effects of heat on the activity of individual organisms, on the accumulation of organic material, on the mineralization rate of organic matter and on the transport of oxygen all have influences on recipient water bodies. Examples of siting Swedish thermal power stations are described and these indicate some negative effects. However, the results do not repudiate the possibility of good effects from the design of new cooling water intake and discharge systems that would speed up the mineralization of organic matters by addition of heat and oxygen. It is concluded that, when choosing between possible sites, areas should be selected where the available energy of the discharge can be used to improve water quality. (author)

  5. Coagulation chemistries for silica removal from cooling tower water.

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

    2010-02-01

    The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.

  6. Whole body cooling by immersion in water at moderate temperatures.

    Science.gov (United States)

    Marino, F; Booth, J

    1998-06-01

    This study investigated the potential use of whole body cooling by water immersion for lowering body temperatures prior to endurance exercise. Rectal temperature (Tre), mean skin temperature (Tsk), oxygen consumption (VO2), and ventilation (VE) were measured in 7 male and 3 female subjects who were immersed in a water bath for up to 60 min. Initial water temperature was 28.8+/-1.5 degrees C and decreased to 23.8+/-1.1 degrees C by the end of immersion. Pre-immersion Tre of 37.34+/-0.36 degrees C was not altered by 60 min water immersion but decreased to 36.64+/-0.34 degrees C at 3 min post immersion (p immersion. Reductions in Tre and Tsk resulted in reduced body heat content (Hc) of approximately 545 kJ (p immersion. VO2 and VE increased from pre-immersion values of 0.34+/-0.08 L x min(-1) and 6.2+/-1.4 L x min(-1) to 0.54+/-0.09 L x min(-) and 11.5+/-5.4 L x min(-1) at the end of immersion, respectively. Heart rate remained unchanged throughout immersion. These results indicate that whole body immersion in moderately cold water temperatures is an effective cooling maneuver for lowering body temperatures and body Hc in the absence of severe physiological responses generally associated with sudden cold stress.

  7. Cooling tower drift: experiment design for comprehensive case study

    International Nuclear Information System (INIS)

    Laulainen, N.S.

    1978-01-01

    A drift experiment program to develop a data base which can be used for validation of drift deposition models has been formulated. The first field effort is designed for a suitable mechanical-draft cooling tower to be selected after site visits have been conducted. The discussion here demonstrates the importance of characterizing the droplet size spectrum emitted from the tower and to accurately account for droplet evaporation, because the downwind droplet deposition patterns and near-surface airborne concentrations are extremely sensitive to these parameters

  8. Heat dissipation research on the water-cooling channel of HL-2M in-vessel coils

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J., E-mail: jiangjiaming@swip.ac.cn; Liu, Y.; Chen, Q.; Ji, X.Q.

    2017-04-15

    Highlights: • The joule heat of in-vessel coils is very difficult to dissipate inside HL-2M vacuum vessel. • Heat dissipation model of the coil includes the joule heat model, the heat conduction model and the heat transfer model. • The CFD analysis has been done for the coil-water cooling, with comparison with the date of theoretical analysis and experiment. • The result shows water-cooling channel is good for the joule heat transfer and taken away. - Abstract: HL-2M in-vessel coils are positioned in high vacuum circumstance, and they will generate joule heat when they carry 15 kA electrical current, but joule heat is very difficult to dissipate in vacuum, so a hollow cable with 8 mm inner diameter is design as water-cooling channel for heat convection. By using the methods of the theoretical derivation, together with CFD numeric simulation method and the experiment of the heat transfer, the water channel of HL-2M in-vessel coils has been studied, and the temperature of HL-2M in-vessel coils under different cooling water flow rates is obtained and acceptable. Simultaneously, the external cooling water supply system parameters for the water-cooling channel of the coils are estimated. Three methods’ results are in good agreement; the theoretical model is verified and could be popularized for predicting the temperature rise of HL-2M in-vessel coils.

  9. A water-cooled 13-kG magnet system

    International Nuclear Information System (INIS)

    Rossi, J.O.; Goncalves, J.A.N.; Barroso, J.J.; Patire Junior, H.; Spassovsky, I.P.; Castro, P.J.

    1993-01-01

    The construction, performance, and reliability of a high field magnet system are reported. The magnet is designed to generate a flat top 13 kG magnetic induction required for the operation of a 35 GHz, 100 k W gyrotron under development at INPE. The system comprises three solenoids, located in the gun, cavity, and collector regions, consisting of split pair magnets with the field direction vertical. The magnets are wound from insulated copper tube whose rectangular cross section has 5.0 mm-diameter hole leading the cooling water. On account of the high power (∼ 100 k W) supplied to the cavity coils, it turned out necessary to employ a cooling system which includes hydraulic pump a heat exchanger. The collector and gun magnets operate at lower DC current (∼ 150 A), and, in this case, flowing water provided by wall pipes is far enough to cool down the coils. In addition, a 250 k V A high power AC/DC Nutek converser is used to supply power to the cavity magnet. For the collector and gun magnets, 30 V/600 A DC power supplies are used. (author)

  10. Implementation of new core cooling monitoring system for light water reactors - BCCM (Becker Core Cooling Monitor)

    International Nuclear Information System (INIS)

    Coville, Patrick; Eliasson, Bengt; Stromqvist, Erik; Ward, Olav; Fox, Georges; Ashjian, D. T.

    1998-01-01

    Core cooling monitors are key instruments to protect reactors from large accidents due to loss of coolant. Sensors presented here are based on resistance thermometry. Temperature dependent resistance is powered by relatively high and constant current. Value of this resistance depends on thermal exchange with coolant and when water is no more surrounding the sensors a large increase of temperature is immediately generated. The same instrument can be operated with low current and will measure the local temperature up to 1260 o C in case of loss of coolant accident. Sensors are manufactured with very few components and materials already qualified for long term exposure to boiling or pressurized water reactors environment. Prototypes have been evaluated in a test loop up to 160 bars and in the Barsebaeck-1 reactor. Industrial sensors are now in operation in reactor Oskarshamn 2. (author)

  11. Thermophysical properties of materials for water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The IAEA Co-ordinated Research Programme (CRP) to establish a thermophysical properties data base for light and heavy water reactor materials was organized within the framework of the IAEA`s International Working Group on Advanced Technologies for Water Cooled Reactors. The work within the CRP started in 1990. The objective of the CRP was to collect and systemaize a thermophysical properties data base for light and heavy water reactor materials under normal operating, transient and accident conditions. The important thermophysical properties include thermal conductivity, thermal diffusivity, specific heat capacity, enthalpy, thermal expansion and others. These properties as well as the oxidation of zirconium-based alloys, the thermophysical characteristics of high temperature concrete-core melt interaction and the mechanical properties of construction materials are presented in this report. It is hoped that this report will serve as a useful source of thermophysical properties data for water cooled reactor analyses. The properties data are maintained on the THERSYST system at the University of Stuttgart, Germany and are internationally available. Refs, figs, tabs.

  12. Thermophysical properties of materials for water cooled reactors

    International Nuclear Information System (INIS)

    1997-06-01

    The IAEA Co-ordinated Research Programme (CRP) to establish a thermophysical properties data base for light and heavy water reactor materials was organized within the framework of the IAEA's International Working Group on Advanced Technologies for Water Cooled Reactors. The work within the CRP started in 1990. The objective of the CRP was to collect and systemaize a thermophysical properties data base for light and heavy water reactor materials under normal operating, transient and accident conditions. The important thermophysical properties include thermal conductivity, thermal diffusivity, specific heat capacity, enthalpy, thermal expansion and others. These properties as well as the oxidation of zirconium-based alloys, the thermophysical characteristics of high temperature concrete-core melt interaction and the mechanical properties of construction materials are presented in this report. It is hoped that this report will serve as a useful source of thermophysical properties data for water cooled reactor analyses. The properties data are maintained on the THERSYST system at the University of Stuttgart, Germany and are internationally available. Refs, figs, tabs

  13. Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume

    Science.gov (United States)

    Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen

    2017-10-01

    For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.

  14. Investigation in justification of innovation supercritical water-cooled reactor - WWER-SCP

    International Nuclear Information System (INIS)

    Kirillov, P.L.; Baranaev, Yu.D.; Bogoslovskaya, G.P.; Glebov, A.P.; Grabezhnaya, V.A.; Kartashov, K.V.; Klushin, A.V.; Popov, V.V.

    2014-01-01

    State-of-the-art, gathered experience and development prospects of water-cooled reactors of next generation are considered. It is pointed out that development of SCWR is more attractive from the viewpoint of the basis principle of infrastructure - NPP adaptation without excessive investments. The results of experimental and calculational study of reactor installations on supercritical parameters (SCP) of water and freon are given. Consideration is given to the data on heat transfer at SCP of coolant, optimization of thermodynamic cycle, codes for thermohydraulic calculations, processes of heat and mass transfer at SCP, mass transfer and corrosion in SCP water, fuel elements and martials [ru

  15. Prospects for development of an innovative water-cooled nuclear reactor for supercritical parameters of coolant

    Science.gov (United States)

    Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.

    2014-08-01

    The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.

  16. Low-pressure water-cooled inductively coupled plasma torch

    Science.gov (United States)

    Seliskar, Carl J.; Warner, David K.

    1988-12-27

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.

  17. The use of ozone as microbiocide in cooling water treatment - experiences with an ''All-Organic'' program; Ozon als Mikrobizid bei der Kuehlwasserbehandlung - Praxiserfahrungen mit einem ''All-Organic'' Programm

    Energy Technology Data Exchange (ETDEWEB)

    Noks, E.; Olkis, A. [Deutsche Nalco Chemie GmbH, Frankfurt am Main (Germany); Kleinstueck, R. [Bayer AG, Leverkusen (Germany); Johnson, D.A. [Nalco Chemical Co., Naperville (United States)

    1999-10-01

    Since 1995, at the plant EZH Rotterdam, the practice of using ozone as microbiocide in the cooling circuit that uses a poor quality makeup water has proven to be successful. The strict limits for aqueous and emission protection from the plant can be maintained. Careful monitoring of the system is a key to the success of the cooling water treatment. The determining factor in judging the microbiological activity and effectiveness of the ozone addition was the regular determination of ATP values and total bacterial count in the system. Limiting ozone concentrations to the amount needed by the system helps to keep the degradation rate of the organic inhibitors under control and, by minimizing the treatment level, the treatment functions in an environmentally friendly and effective manner. Recovery rates of approximately 80% were measured for the phosphonate PBTC, the stabilizers and dispersants. The corrosion rates for steel and copper are low considering the makeup water quality. The combination of inhibitors controlled the tendency for deposits to form. Previous research in the laboratory and industry have shown that the basic components of the cooling water formulations, phosphonates, react very differently when placed in contact with ozone. In order of decreasing ozone stability they are: PBTC>HEDP>ATMP. A six-month trial was performed in a cooling circuit at Bayer AG in Dormagen using a PBTC-containing, stabilized phosphate treatment program. In spite of the high half-life of the cooling water in the system, it was found that the PBTC was stable with a recovery rate of 50-80%. (orig.) [German] Der seit 1995 praktizerte Einsatz von Ozon als Mikrobizid im Kuehlkreislauf des Kraftwerks EZH Rotterdam mit relativ stark vorbelastetem Zusatzwasser ist eine erfolgreiche Problemloesung. Die strengen Auflagen zum Gewaesser- und Immissionsschutz koennen vom Kraftwerk eingehalten werden. Sorgfaeltige Ueberwachung des Systems ist ein Kernstueck des Erfolgs der

  18. Chemistry control challenges in a supercritical water-cooled reactor

    International Nuclear Information System (INIS)

    Guzonas, David; Tremaine, Peter; Jay-Gerin, Jean-Paul

    2009-01-01

    The long-term viability of a supercritical water-cooled reactor (SCWR) will depend on the ability of designers to predict and control water chemistry to minimize corrosion and the transport of corrosion products and radionuclides. Meeting this goal requires an enhanced understanding of water chemistry as the temperature and pressure are raised beyond the critical point. A key aspect of SCWR water chemistry control will be mitigation of the effects of water radiolysis; preliminary studies suggest markedly different behavior than that predicted from simple extrapolations from conventional water-cooled reactor behavior. The commonly used strategy of adding excess hydrogen at concentrations sufficient to suppress the net radiolytic production of primary oxidizing species may not be effective in an SCWR. The behavior of low concentrations of impurities such as transition metal corrosion products, chemistry control agents, anions introduced via make-up water or from ion-exchange resins, and radionuclides (e.g., 60 Co) needs to be understood. The formation of neutral complexes increases with temperature, and can become important under near-critical and supercritical conditions; the most important region is from 300-450 C, where the properties of water change dramatically, and solvent compressibility effects exert a huge influence on solvation. The potential for increased transport and deposition of corrosion products (active and inactive), leading to (a) increased deposition on fuel cladding surfaces, and (b) increased out-of-core radiation fields and worker dose, must be assessed. There are also significant challenges associated with chemistry sampling and monitoring in an SCWR. The typical methods used in current reactor designs (grab samples, on-line monitors at the end of a cooled, depressurized sample line) will be inadequate, and in-situ measurements of key parameters will be required. This paper describes current Canadian activities in SCWR chemistry and chemistry

  19. Desiccant Dewpoint Cooling System Independent of External Water Sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Markussen, Wiebke B.

    2015-01-01

    the air that regenerates the desiccant dehumidifier, and using it for running the evaporative coolers in the system. A closed regeneration circuit is used for maximizing the amount of condensed water. This solution is applied to a system with a desiccant wheel dehumidifier and a dew point cooler, termed...... desiccant dew-point cooling system, for demonstrating its function and applicability. Simulations are carried out for varying outdoor conditions under constant supply conditions. The results show that the system is independent of external water supply for the majority of simulated conditions. In comparison...... to the desiccant dew-point system without water recovery, the required regeneration temperature increases and the system thermal efficiency decreases....

  20. Water-cooled radiofrequency neuroablation for sacroiliac joint dysfunctional pain

    Directory of Open Access Journals (Sweden)

    Binay Kumar Biswas

    2016-01-01

    Full Text Available Sacroiliac (SI joint dysfunction is a common source of chronic low-back pain. Recent evidences from different parts of the world suggest that cooled radiofrequency (RF neuroablation of sacral nerves supplying SI joints has superior pain alleviating properties than available existing treatment options for SI joint dysfunctional pain. A 35-year-old male had intractable bilateral SI joint pain (numeric rating scale [NRS] - 9/10 with poor treatment response to intra-articular steroid therapy. Bilateral water cooled = RF was applied for neuroablation of nerves supplying both SI joints. Postprocedure pain intensity was 5/10 and after 7 days it was 2/10. On 18th-month follow-up, he is pain free except for mild pain (NRS 2/10 on occasional extreme twisting of the back. This case attempts to highlight that sacral neuroablation based on cooled RF technique can be a long lasting remedial option for chronic SI joint pain unresponsive to conventional treatment.

  1. Cardiovascular response to apneic immersion in cool and warm water

    Science.gov (United States)

    Folinsbee, L.

    1974-01-01

    The influence of prior exposure to cool water and the influence of lung volume on the responses to breath holding were examined. The bradycardia and vasoconstriction that occur during breath-hold diving in man are apparently the resultant of stimuli from apnea, relative expansion of the thorax, lung volume, esophageal pressure, face immersion, and thermal receptor stimulation. It is concluded that the bradycardia and vasoconstriction associated with breath holding during body immersion are not attenuated by a preexisting bradycardia and vasoconstriction due to cold.

  2. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    International Nuclear Information System (INIS)

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-01

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented

  3. Corrosion resistance of structural material AlMg-2 in water following heat treatment and cooling

    International Nuclear Information System (INIS)

    Maman Kartaman A; Djoko Kisworo; Dedi Hariyadi; Sigit

    2005-01-01

    Corrosion tests of structural material AlMg-2 in water were carried out using autoclave in order to study the effects of heat treatment on the corrosion resistance of the material. Prior to the tests, the samples were heat-treated at temperatures of 90, 200, 300 and 500 °C and cooled in air, sand and water. The corrosion tests were conducted in water at temperature of 150 °C for 250 hours. The results showed that AlMg-2 samples were corroded although the increase of mass gain was relatively small. Heat treatment from 90 to 500 °C in sand cooling media resulted in an increase of mass gain despite that at 300 °C the increase was less than those at 200 °C and 500 °C. For water cooling media in the temperature range of 90 to 200 °C, the mass gain increased from 0.1854 g/cm 2 to 2.1204 g/cm 2 although after 200 °C it decreased to 1.8207 g/cm 2 and 1.6779 g/cm 2 respectively. For air cooling media, the mass gain was relatively constant. Based on the experiment results, it can be concluded that heat treatment and cooling did not significantly influence the corrosion resistance of material AlMg-2. The passive film Al 2 O 3 on the surface was able to protect the inner surface from further corrosion. Water media with pH range from 4 – 9 did not cause damage to passive layer formed. (author)

  4. Cooling water treatment for heavy water project (Paper No. 6.9)

    International Nuclear Information System (INIS)

    Valsangkar, H.N.

    1992-01-01

    With minor exceptions, water is the preferred industrial medium for the removal of unwanted heat from process systems. The application of various chemical treatments is required to protect the system from water related and process related problems of corrosion, scale and deposition and biofouling. The paper discusses the cooling water problems for heavy water industries along with the impact caused by associated fertilizer units. (author). 6 figs

  5. In service experience feed back of the tore supra actively cooled inner first wall

    International Nuclear Information System (INIS)

    Schlosser, J.; Chappuis, P.; Chatelier, M.; Cordier, J.J.; Deschamps, P.; Garampon, L.; Guilhem, D.; Lipa, M.; Mitteau, R.

    1994-01-01

    Over 12000 plasma shots (some of them up to 8 MW of additional power and same as long as 60 s) have been achieved in TORE SUPRA (TS) with a significant number of them limited by thr inner first wall. This actively water cooled wall is covered with brazed graphite tiles. High power - high energy experiments have shown that a reliability of the graphite tile/heat sink joint and an accurate alignment of the wall are needed. This paper summarizes the experience gained with this component and developments in progress in order to improve the performance of such a inner first wall. (authors). 9 refs., 13 figs., 2 tabs

  6. In service experience feed back of the tore supra actively cooled inner first wall

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, J; Chappuis, P; Chatelier, M; Cordier, J J; Deschamps, P; Garampon, L; Guilhem, D; Lipa, M; Mitteau, R

    1994-12-31

    Over 12000 plasma shots (some of them up to 8 MW of additional power and same as long as 60 s) have been achieved in TORE SUPRA (TS) with a significant number of them limited by thr inner first wall. This actively water cooled wall is covered with brazed graphite tiles. High power - high energy experiments have shown that a reliability of the graphite tile/heat sink joint and an accurate alignment of the wall are needed. This paper summarizes the experience gained with this component and developments in progress in order to improve the performance of such a inner first wall. (authors). 9 refs., 13 figs., 2 tabs.

  7. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    Science.gov (United States)

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  8. Environmental compatible cooling water treatment chemicals; Umweltvertraegliche Chemikalien in der Kuehlwasserkonditionierung

    Energy Technology Data Exchange (ETDEWEB)

    Gartiser, S; Urich, E

    2002-02-01

    In Germany about 32 billion m{sup 3}/a cooling water are discharged from industrial plants and power industry. These are conditioned partly with biocides, scaling and corrosion inhibitors. Within the research project the significance of cooling water chemicals was evaluated, identifying the chemicals from product information, calculating their loads from consumption data of more than 180 cooling plants and investigating the basic data needed for an environmental hazard assessment. Additionally the effects of cooling water samples and products were determined in biological test systems. Batch tests were performed under defined conditions in order to measure the inactivation of cooling water biocides. (orig.)

  9. The cryogenic helium cooling system for the Tokamak physics experiment

    International Nuclear Information System (INIS)

    Felker, B.; Slack, D.S.; Wendland, C.R.

    1995-01-01

    The Tokamak Physics Experiment (TPX) will use supercritical helium to cool all the magnets and supply helium to the Vacuum cryopumping subsystem. The heat loads will come from the standard steady state conduction and thermal radiation sources and from the pulsed loads of the nuclear and eddy currents caused by the Central Solenoid Coils and the plasma positioning coils. The operations of the TPX will begin with pulses of up to 1000 seconds in duration every 75 minutes. The helium system utilizes a pulse load leveling scheme to buffer out the effects of the pulse load and maintain a constant cryogenic plant operation. The pulse load leveling scheme utilizes the thermal mass of liquid and gaseous helium stored in a remote dewar to absorb the pulses of the tokamak loads. The mass of the stored helium will buffer out the temperature pulses allowing 5 K helium to be delivered to the magnets throughout the length of the pulse. The temperature of the dewar will remain below 5 K with all the energy of the pulse absorbed. This paper will present the details of the heat load sources, of the pulse load leveling scheme operations, a partial helium schematic, dewar temperature as a function of time, the heat load sources as a function of time and the helium temperature as a function of length along the various components that will be cooled

  10. IAEA activities in technology development for advanced water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Juhn, Poong Eil; Kupitz, Juergen; Cleveland, John; Lyon, Robert; Park, Je Won

    2003-01-01

    As part of its Nuclear Power Programme, the IAEA conducts activities that support international information exchange, co-operative research and technology assessments and advancements with the goal of improving the reliability, safety and economics of advanced water-cooled nuclear power plants. These activities are conducted based on the advice, and with the support, of the IAEA Department of Nuclear Energy's Technical Working Groups on Advanced Technologies for Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs). Assessments of projected electricity generation costs for new nuclear plants have shown that design organizations are challenged to develop advanced designs with lower capital costs and short construction times, and sizes, including not only large evolutionary plants but also small and medium size plants, appropriate to grid capacity and owner financial investment capability. To achieve competitive costs, both proven means and new approaches should be implemented. The IAEA conducts activities in technology development that support achievement of improved economics of water-cooled nuclear power plants (NPPs). These include fostering information sharing and cooperative research in thermo-hydraulics code validation; examination of natural circulation phenomena, modelling and the reliability of passive systems that utilize natural circulation; establishment of a thermo-physical properties data base; improved inspection and diagnostic techniques for pressure tubes of HWRs; and collection and balanced reporting from recent construction and commissioning experiences with evolutionary water-cooled NPPs. The IAEA also periodically publishes Status Reports on global development of advanced designs. (author)

  11. Water chemistry experiences with VVERs at Kudankulam

    International Nuclear Information System (INIS)

    Rout, D.; Upadhyaya, T.C.; Ravindranath; Selvinayagam, P.; Sundar, R.S.

    2015-01-01

    Kudankulam Nuclear Power Project - 1 and 2 (Kudankulam NPP - 1 and 2) are pressurised water cooled VVERs of 1000 MWe each. Kudankulam NPP Unit - 1 is presently on its first cycle of operation and Kudankulam NPP Unit - 2 is on the advanced stage of commissioning with the successful completion of hot run related Functional tests. Water Chemistry aspects during various phases of commissioning of Kudankulam NPP Unit - 1 such as Hot Run, Boric acid flushing, initial fuel Loading (IFL), First approach to Criticality (FAC) are discussed. The main objectives of the use of controlled primary water chemistry programme during the hot functional tests are reviewed. The importance of the relevant water chemistry parameters were ensured to have the quality of the passive layer formed on the primary coolant system surfaces. The operational experiences during the 1 st cycle of operation of primary water chemistry, radioactivity transport and build-up are presented. The operational experience of some VVER units in the field of the primary water chemistry, radioactivity transport and build-up are presented as a comparison to VVER at Kudankulam NPP. The effects of the initial passivated layer formed on metal surfaces during hot run, activated corrosion products levels in the primary coolant under controlled water chemistry regime and the contamination/radiation situation are discussed. This report also includes the water chemistry related issues of secondary water systems. (author)

  12. Cooling System for the Merit High-Power Target Experiment

    CERN Document Server

    Haug, F; Silva, P; Pezzeti, M; Pavlov, O; Pirotte, O; Metselaar, J; Efthymiopoulos, I; Fabich, A; Lettry, J; Kirk, H G; McDonald, K T; Titus, P; Bennett, J R J

    2010-01-01

    MERIT is a proof-of-principle experiment of a target station suitable as source for future muon colliders or neutrino factories. When installed at the CERN (European Organization for Nuclear Research) PS (Proton Synchrotron)complex fast-extracted high-intensity proton beams intercepted a free mercury jet inside a normal-conducting, pulsed 15-T capture solenoid magnet cooled with liquid nitrogen. Up to 25 MJ of Joule heat was dissipated in the magnet during a pulse. The fully automated, remotely controlled cryogenic system of novel design permitted the transfer of nitrogen by the sole means of differential pressures inside the vessels. This fast cycling system permitted several hundred tests in less than three weeks during the 2007 data taking campaign.

  13. Water cooled metal optics for the Advanced Light Source

    International Nuclear Information System (INIS)

    McKinney, W.R.; Irick, S.C.; Lunt, D.L.J.

    1991-01-01

    The program for providing water cooled metal optics for the Advanced Light Source at Berkeley is reviewed with respect to fabrication and metrology of the surfaces. Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from prototype mirrors and grating blanks will be presented, which show exceptionally low microroughness and mid-period error. We will briefly describe out improved version of the Long Trace Profiler, and its importance to out metrology program. We have completely redesigned the mechanical, optical and computational parts of the profiler system with the cooperation of Peter Takacs of Brookhaven, Continental Optical, and Baker Manufacturing. Most important is that one of our profilers is in use at the vendor to allow testing during fabrication. Metrology from the first water cooled mirror for an ALS beamline is presented as an example. The preplating processing and grinding and polishing were done by Tucson Optical. We will show significantly better surface microroughness on electroless nickel, over large areas, than has been reported previously

  14. Seismic Design of ITER Component Cooling Water System-1 Piping

    Science.gov (United States)

    Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.

    2017-04-01

    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.

  15. Analysis of photovoltaic with water pump cooling by using ANSYS

    Science.gov (United States)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Shobry, M. Z.; Majid, M. S. A.

    2017-10-01

    Almost all regions in the world are facing with problem of increasing electricity cost from time to time. Besides, with the mankind’s anxiety about global warming, it has infused an ideology to rapidly move towards renewable energy sources since it is believed to be more reliable and safer. One example of the best alternatives to replace the fossil fuels sourced is solar energy. Photovoltaic (PV) panel is used to convert the sunlight into electricity. Unfortunately, the performance of PV panel can be affected by its operating temperature. With the increment of ambient temperature, the PV panel operating temperature also increase and will affect the performance of PV panel (in terms of power generated). With this concern, a water cooling system was installed on top of PV panel to help reduce the PV panel’s temperature. Five different water mass flow rate is tested due to investigate their impact towards the thermal performance and heat transfer rate.

  16. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  17. Modelling the radiolysis of RSG-GAS primary cooling water

    Science.gov (United States)

    Butarbutar, S. L.; Kusumastuti, R.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    Water chemistry control for light water coolant reactor required a reliable understanding of radiolysis effect in mitigating corrosion and degradation of reactor structure material. It is known that oxidator products can promote the corrosion, cracking and hydrogen pickup both in the core and in the associated piping components of the reactor. The objective of this work is to provide the radiolysis model of RSG GAS cooling water and further more to predict the oxidator concentration which can lead to corrosion of reactor material. Direct observations or measurements of the chemistry in and around the high-flux core region of a nuclear reactor are difficult due to the extreme conditions of high temperature, pressure, and mixed radiation fields. For this reason, chemical models and computer simulations of the radiolysis of water under these conditions are an important route of investigation. FACSIMILE were used to calculate the concentration of O2 formed at relatively long-time by the pure water γ and neutron irradiation (pH=7) at temperature between 25 and 50 °C. This simulation method is based on a complex chemical reaction kinetic. In this present work, 300 MeV-proton were used to mimic γ-rays radiolysis and 2 MeV fast neutrons. Concentration of O2 were calculated at 10-6 - 106 s time scale.

  18. Safety Technology Research Program in the field of pressurized water reactors. 1. Technical report on advancement project RS 36/2. Emergency cooling program service life experiments: reflooding experiments involving the primary loop systems

    International Nuclear Information System (INIS)

    Schweickert, H.; Kremin, H.; Mandl, R.; Riedle, V.; Ruthrof, K.; Sarkar, J.; Schmidt, H.

    The reflooding of the hot reactor core is to be examined for a pressurized water reactor (PWR), using a model of the entire primary loop system. The scale of the model is to be 1:340 in cross-section, with the heights represented full-scale. In addition to the goals of the project, a description of the test facility, including data collection and control equipment is presented. The instrumentation, the planned test program and the test procedure are briefly set forth

  19. Power distribution monitoring system in the boiling water cooled reactor core

    International Nuclear Information System (INIS)

    Leshchenko, Yu.I.; Sadulin, V.P.; Semidotskij, I.I.

    1987-01-01

    Consideration is being given to the system of physical power distribution monitoring, used during several years in the VK-50 tank type boiling water cooled reactor. Experiments were conducted to measure the ratios of detector prompt and activation currents, coefficients of detector relative sensitivity with respect to neutrons and effective cross sections of 103 Rh interaction with thermal and epithermal neutrons. Mobile self-powered detectors (SPD) with rhodium emitters are used as the power distribution detectors in the considered system. All detectors move simultaneously with constant rate in channels, located in fuel assembly central tubes, when conducting the measurements. It is concluded on the basis of analyzing the obtained data, that investigated system with calibrated SPD enables to monitor the absolute power distribution in fuel assemblies under conditions of boiling water cooled reactor and is independent of thermal engineering measurements conducted by in core instruments

  20. Evolutionary water cooled reactors: Strategic issues, technologies and economic viability. Proceedings of a symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    Symposium on evolutionary water cooled reactors: Strategic issues, technologies and economic viability was intended for managers in utilities, reactor design organizations and hardware manufacturing companies and for government decision makers who need to understand technological advances and the potential of evolutionary water cooled reactors to contribute to near and medium term energy demands. The topics addressed include: strategic issues (global energy outlook, the role of nuclear power in sustainable energy strategies, power generation costs, financing of nuclear plant projects, socio-political factors and nuclear safety requirements); technological advances (instrumentation and control, means od improving prevention and mitigation of severe accidents, development of passive safety systems); keys to economic viability (simplification, standardization, advances in construction and project management, feedback of experience from utilities into new designs, and effective management of plant operation)

  1. Development status and application prospect of supercritical-pressure light water cooled reactor

    International Nuclear Information System (INIS)

    Li Manchang; Wang Mingli

    2006-01-01

    The Supercritical-pressure Light Water Cooled Reactor (SCWR) is selected by the Generation IV International Forum (GIF) as one of the six Generation IV nuclear systems that will be developed in the future, and it is an innovative design based on the existing technologies used in LWR and supercritical coal-fired plants. Technically, SCWR may be based on the design, construction and operation experiences in existing PWR and supercritical coal-fired plants, which means that there is no insolvable technology difficulties. Since PWR technology will be adopted in the near term and medium term projects in China, and considering the sustainable development of the technology, it is an inevitable choice to research and develop the nuclear system of supercritical light water cooled reactor. (authors)

  2. Water conservation benefits of urban heat mitigation: can cooling strategies reduce water consumption in California?

    Science.gov (United States)

    Vahmani, P.; Jones, A. D.

    2017-12-01

    Urban areas are at the forefront of climate mitigation and adaptation efforts given their high concentration of people, industry, and infrastructure. Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we show that broad implementation of cool roofs, an urban heat mitigation strategy, not only results in significant cooling of air temperature, but also meaningfully decreases outdoor water consumption by reducing evaporative and irrigation water demands. Based on a suite of satellite-supported, multiyear regional climate simulations, we find that cool roof adoption has the potential to reduce outdoor water consumption across the major metropolitan areas in California by up to 9%. Irrigation water savings per capita, induced by cool roofs, range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings in Los Angeles county alone is about 83 million gallons per day. While this effect is robust across the 15 years examined (2001-2015), including both drought and non-drought years, we find that cool roofs are most effective during the hottest days of the year, indicating that they could play an even greater role in reducing outdoor water use in a hotter future climate. We further show that this synergistic relationship between heat mitigation and water conservation is asymmetrical - policies that encourage direct reductions in irrigation water use can lead to substantial regional warming, potentially conflicting with heat mitigation efforts designed to counter the effects of the projected warming climate.

  3. Design change of tower cooling water system for proton accelerator research center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Song, I. T.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Han, Y. G.

    2012-01-01

    The Tower Cooling Water System (TC) is designed to reject the heat load generated by operating the accelerators and the utility facilities through the component cooling water (CCW) heat exchangers. The circulating water discharged from the circulating water pumps passes through the CCW heat exchangers, the Chiller condenser and the air compressor, and the heated circulating water is return to the cooling tower for the heat removal. In this study, The design of Tower Cooling Water System is changed as follows : At First, The quantity of cells is changed into six in order to operate the cooling tower accurately correspond with condition of each equipment of head loads. The fans of cooling tower are controlled by the signal of TEW installed in the latter parts of it. The type of circulation water pump is modified to centrifugal pump and debris filter system is deleted

  4. Design change of tower cooling water system for proton accelerator research center

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, G. P.; Kim, J. Y.; Song, I. T.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Han, Y. G. [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The Tower Cooling Water System (TC) is designed to reject the heat load generated by operating the accelerators and the utility facilities through the component cooling water (CCW) heat exchangers. The circulating water discharged from the circulating water pumps passes through the CCW heat exchangers, the Chiller condenser and the air compressor, and the heated circulating water is return to the cooling tower for the heat removal. In this study, The design of Tower Cooling Water System is changed as follows : At First, The quantity of cells is changed into six in order to operate the cooling tower accurately correspond with condition of each equipment of head loads. The fans of cooling tower are controlled by the signal of TEW installed in the latter parts of it. The type of circulation water pump is modified to centrifugal pump and debris filter system is deleted.

  5. The research of materials and water chemistry for supercritical water-cooled reactors in Research Centre Rez

    International Nuclear Information System (INIS)

    Zychova, Marketa; Fukac, Rostislav; Vsolak, Rudolf; Vojacek, Ales; Ruzickova, Mariana; Vonkova, Katerina

    2012-09-01

    Research Centre Rez (CVR) is R and D company based in the Czech Republic. It was established as the subsidiary of the Nuclear Research Institute Rez plc. One of the main activities of CVR is the research of materials and chemistry for the generation IV reactor systems - especially the supercritical water-cooled one. For these experiments is CVR equipped by a supercritical water loop (SCWL) and a supercritical water autoclave (SCWA) serving for research of material and Supercritical Water-cooled Reactor (SCWR) environment compatibility experiments. SCWL is a research facility designed to material, water chemistry, radiolysis and other testing in SCWR environment, SCWA serves for complementary and supporting experiments. SCWL consists of auxiliary circuits (ensuring the required parameters as temperature, pressure and chemical conditions in the irradiation channel, purification and measurements) and irradiation channel (where specimens are exposed to the SCWR environment). The design of the loop is based on many years of experience with loop design for various types of corrosion/water chemistry experiments. Designed conditions in the test area of SCWL are 600 deg. C and 25 MPa. SCWL was designed in 2008 within the High Performance Light Water Reactor Phase 2 project and built during 2008 and 2009. The trial operations were performed in 2010 and 2011 and were divided into three phases - the first phase to verify the functionality of auxiliary circuits of the loop, the second phase to verify the complete facility (auxiliary circuits and functional irradiation channel internals) and the third phase to verify the feasibility of corrosion tests with the complete equipment and specimens. All three trial operations were very successful - designed conditions and parameters were reached. (authors)

  6. Performance of water distribution systems in a pilot cooling tower

    International Nuclear Information System (INIS)

    Tognotti, L.; Giacomelli, A.; Zanelli, S.; Bellagamba, B.; Lotti, G.; Mattachini, F.

    1990-01-01

    An experimental study has been carried out on the water distribution system of a Pilot cooling tower of 160 m 3 /hr The performances of different industrial water distributors have been evaluated by changing the operative conditions of the pilot tower. In particular, the efficiency and the uniformity of the water distribution have been investigated and compared with the results obtained in a small-scale loop, in which the single nozzles were tested. Measurements in both systems, pilot tower and small scale loop, included the geometric characteristics of the jet umbrella by ensemble photography, the wetted zone by measuring the specific flowrate, the drop-size distribution and liquid concentration by high-speed photography. The results show that correlations exist between the nozzle behaviour in single and pilot tower configuration. The uniformity of water distribution in the pilot tower is strongly related to the nozzle installation pattern and to the operative conditions. Coalescence plays an important role on the drop size distribution in the pilot-tower. Comments upon the influence of these parameters on tower behaviour are also included

  7. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    Science.gov (United States)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  8. Candidate Materials Evaluation for Supercritical Water-Cooled Reactor

    International Nuclear Information System (INIS)

    Allen, T.R.; Was, G.S.

    2008-01-01

    Final technical report on the corrosion, stress corrosion cracking, and radiation response of candidate materials for the supercritical water-cooled reactor concept. The objective of the proposed research was to investigate degradation of materials in the supercritical water environment (SCW). First, representative alloys from the important classes of candidate materials were studied for their corrosion and stress-corrosion cracking (SCC) resistance in supercritical water. These included ferritic/martensitic (F/M) steels, austenitic stainless steels, and Ni-base alloys. Corrosion and SCC tests were conducted at various temperatures and exposure times, as well as in various water chemistries. Second, emerging plasma surface modification and grain boundary engineering technologies were applied to modify the near surface chemistry, microstructure, and stress-state of the alloys prior to corrosion testing. Third, the effect of irradiation on corrosion and SCC of alloys in the as-received and modified/engineered conditions were examined by irradiating samples using high-energy protons and then exposing them to SCW

  9. Cooling performance of R510A in domestic water purifiers

    International Nuclear Information System (INIS)

    Park, Ki Jung; Lee, Yo Han; Jung, Dong Soo

    2010-01-01

    Cooling performance of R510A is examined both numerically and experimentally in an effort to replace HFC134a in the refrigeration system of domestic water purifiers. Although the use of HFC134a is currently dominant, it is being phased out in Europe and most developed countries due to its high potential contribution to global warming. To solve this problem, cycle simulation and experimental measurements are conducted with a new refrigerant mixture of 88%RE170/12%R600a using actual domestic water purifiers. This mixture has been recently numbered and listed as R510A by ASHRAE. Test results show that, due to the small internal volume of the refrigeration system of the domestic water purifiers, system performance with R510A is greatly influenced by the amount of charge. With the optimum charge amount of 20 to 21 g, approximately 50% that of HFC134a, the energy consumption of R510A is 22.3% lower than that of HFC134a. The compressor discharge temperature of R510A is 3.7 .deg. C lower than that of HFC134a at the optimum charge. Overall, R510A, a new, long term, and environmentally safe refrigerant, is a good alternative for HFC134a. Furthermore, it requires only minor changes in the refrigeration system of the domestic water purifiers

  10. IAEA'S study on advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    Cleveland, J.; McDonald, A.; Rao, A.; )

    2008-01-01

    About one-fifth of the world's energy consumption is used for electricity generation, with nuclear power contributing approximately 15.2% of this electricity. However; most of the world's energy consumption is for heat and transportation. Nuclear energy has considerable potential to penetrate these energy sectors now served by fossil fuels that are characterized by price volatility and finite supply. Advanced applications of nuclear energy include seawater desalination, district heating, and heat for industrial processes. Nuclear energy also has potential to provide a near-term, greenhouse gas free, source of energy for transportation. These applications rely on a source of heat and electricity. Nuclear energy from water-cooled reactors, of course, is not unique in this sense. Indeed, higher temperature heat can be produced by burning natural gas and coal, or through the use of other nuclear technologies such as gas-cooled or liquid-metal-cooled reactors. Water-cooled reactors, however; are being deployed today while other reactor types have had considerably less operational and regulatory experience and will take still some time to be widely accepted in the market. Both seawater desalination and district heating with nuclear energy are well proven, and new seawater desalination projects using water-cooled reactors will soon be commissioned. Provision of process heat with nuclear energy can result in less dependence on fossil fuels and contribute to reductions of greenhouse gases. Importantly, because nuclear power produces base-load electricity at stable and predictable prices, it provides a greenhouse gas free source of electricity for transportation systems (trains and subways), and for electric and plug-in hybrid vehicles, and in the longer term nuclear energy could produce hydrogen for fuel cell vehicles, as well as for other components of a hydrogen economy. These advanced applications can play an important role in enhancing public acceptance of nuclear

  11. The influence and analysis of natural crosswind on cooling characteristics of the high level water collecting natural draft wet cooling tower

    Science.gov (United States)

    Ma, Libin; Ren, Jianxing

    2018-01-01

    Large capacity and super large capacity thermal power is becoming the main force of energy and power industry in our country. The performance of cooling tower is related to the water temperature of circulating water, which has an important influence on the efficiency of power plant. The natural draft counter flow wet cooling tower is the most widely used cooling tower type at present, and the high cooling tower is a new cooling tower based on the natural ventilation counter flow wet cooling tower. In this paper, for high cooling tower, the application background of high cooling tower is briefly explained, and then the structure principle of conventional cooling tower and high cooling tower are introduced, and the difference between them is simply compared. Then, the influence of crosswind on cooling performance of high cooling tower under different wind speeds is introduced in detail. Through analysis and research, wind speed, wind cooling had little impact on the performance of high cooling tower; wind velocity, wind will destroy the tower inside and outside air flow, reducing the cooling performance of high cooling tower; Wind speed, high cooling performance of cooling tower has increased, but still lower than the wind speed.

  12. Tests of cooling water pumps at Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Travnicek, J.

    1986-01-01

    Tests were performed to examine the operating conditions of the 1600 BQDV cooling pumps of the main coolant circuit of unit 1 of the Dukovany nuclear power plant. For the pumps, the performance was tested in the permissible operating range, points were measured below this range and the guaranteed operating point was verified. Pump efficiency was calculated from the measured values. The discussion of the measurement of parameters has not yet been finished because the obtained values of the amount delivered and thus of the pump efficiency were not up to expectation in all detail. It was also found that for obtaining the guaranteed flow the pump impeller had to be opened to 5deg -5.5deg instead of the declared 3deg. Also tested were pump transients, including the start of the pump, its stop, the operation and failure of one of the two pumps. In these tests, pressures were also measured at the inlet and the outlet of the inner part of the TG 11 turbine condenser. It was shown that the time course and the pressure course of the processes were acceptable. In addition to these tests, pressure losses in the condenser and the cooling water flow through the feed pump electromotor cooler wre tested for the case of a failure of one of the two pumps. (E.S.)

  13. Saving of drinking water in cooling system at Aq aba Thermal Power Station

    International Nuclear Information System (INIS)

    Al-Nsour, A.F.

    2001-01-01

    This paper discussing a new modification, design and implementation to the existing cooling water system of boiler drum continuous blow down water at Aq aba Thermal Power Stations to eliminate drinking water consumption as a coolant medium

  14. Energy and water management in evaporative cooling systems in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, Abdel-wahab S. (Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Hassa (Saudi Arabia))

    1994-11-01

    A mathematical model was developed to estimate water evaporation rate, airflow rate and cooling effect in an evaporative cooling system for farm structures. The model was only applied to evaporative cooling systems for greenhouses. The effect of ambient air temperature, solar radiation and system efficiency on water evaporation rate, airflow rate and the resulting cooling effect were studied. Generally, water flow rate and air flow rate are adjusted based on daily maximum temperature. However, a substantial saving in energy and water consumption in the cooling system would be achieved by regulating water flow rate and air flow rate to follow the diurnal variation on temperature. Improving the cooling efficiency and covering the roof of the greenhouse with an external shading would save an appreciable amount of energy and water consumption. The model could also be applied to other farm structures such as animal shelters

  15. Fuel assembly cooling experience at the FFTF/IEM cell

    International Nuclear Information System (INIS)

    McGuinness, P.W.

    1985-01-01

    In the Fast Flux Test Facility (FFTF), sodium wetted irradiated fuel assemblies are discharged to the Interim Examination and Maintenance (IEM) Cell for disassembly and post-irradiation examination in an inert argon atmosphere. While in the IEM Cell, fuel assemblies are cooled by the IEM Cell Subassembly Cooling System. This paper describes the cooling system design, performance, and lessons learned, including a discussion of two overtemperature incidents. 2 refs., 6 figs

  16. European supercritical water cooled reactor (HPLWR Phase 2 project)

    International Nuclear Information System (INIS)

    Schulenberg, Thomas; Starflinger, Joerg; Marsault, Philippe; Bittermann, Dietmar; Maraczy, Czaba; Laurien, Eckart; Lycklama, Jan Aiso; Anglart, Henryk; Andreani, Michele; Ruzickova, Mariana; Heikinheimo, Liisa

    2010-01-01

    The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 deg C maximum core outlet temperature. It is designed and analyzed by a European consortium of 13 partners from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small, housed fuel assemblies with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The innovative core design with upward and downward flow through its assemblies has been studied with neutronic, thermal-hydraulic and stress analyses and has been reviewed carefully in a mid-term assessment. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. An overview of results achieved up to now, given in this paper, is illustrating the latest scientific and technological advances. (author)

  17. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Wang Yiping; Cui Yong; Zhu Li; Han Lijun

    2008-01-01

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m 2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m 2 . As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m 2 and 36 W/m 2 , respectively

  18. Radionuclides behaviour in the silts-water system of a cooling pond

    International Nuclear Information System (INIS)

    Ol'khovik, Yu.A.; Kostyuchenko, N.G.; Koromyslichenko, T.I.

    1989-01-01

    As a result of the Chernobyl' accident a considerable amount of radioisotopes (1-5x10 5 Ci) concentrated in a cooling pond. A year later the accident a level of water contamination decreased by 2 orders, whereas the radionuclide distribution changed perceptibly. Processes of water self-decontamination in the cooling pond were considered. A forecast of water radiactivity level in the cooling pond in the summer of 1988 was made. 3 refs.; 1 refs.; 2 tabs

  19. Entrainment of ichthyoplankton and larval fishes during cooling water withdrawal

    International Nuclear Information System (INIS)

    McFarlane, R.W.

    1978-01-01

    Plantonic fish eggs and larvae are entrained into the Savannah River Plant (SRP) pumping system as Savannah River water is withdrawn for cooling purposes. The American shad contributed 96% of the planktonic fish eggs collected in the Savannah River. Eggs were rare in plankton samples from the intake canals and were assumed to have settled to the bottom as current velocity was reduced in the canal entrance. An estimated 72 million fish eggs were transported past the intake canals. Assuming ''worst case conditions,'' 6.8 million eggs (9.5%) could have been lost due to entrainment. Blueback herring comprised nearly one-half of the 216 million fish larvae susceptible to impact. Spotted sucker and black crappie were also common among the 22 species of fish larvae collected. An estimated 19.6 million (9.1%) fish larvae could have been entrained under ''worst case conditions''

  20. Detecting and mitigating aging in component cooling water systems

    International Nuclear Information System (INIS)

    Lofaro, R.J.

    1991-01-01

    The time-dependent effects of aging on component cooling water (CCW) systems in nuclear power plants has been studied and documented as part of a research program sponsored by the US Nuclear Regulatory Commission. It was found that age related degradation leads to failures in the CCW system which can result in an increase in system unavailability, if not properly detected and mitigated. To identify effective methods of managing this degradation, information on inspection, monitoring, and maintenance practices currently available was obtained from various operating plants and reviewed. The findings were correlated with the most common aging mechanisms and failure modes and a compilation of aging detection and mitigation practices was formulated. This paper discusses the results of this work

  1. Detecting and mitigating aging in component cooling water systems

    International Nuclear Information System (INIS)

    Lofaro, R.J.; Aggarwal, S.

    1992-01-01

    The time-dependent effects of aging on component cooling water (CCW) systems in nuclear power plants has been studied and documented as part of a research program sponsored by the US Nuclear Regulatory Commission. It was found that age related degradation leads to failures in the CCW system which can result in an increase in system unavailability, if not properly detected and mitigated. To identify effective methods of managing this degradation, information on inspection, monitoring, and maintenance practices currently available was obtained from various operating plants and reviewed. The findings were correlated with the most common aging mechanisms and failure modes, and a compilation of aging detection and mitigation practices was formulated. This paper discusses the results of this work

  2. Thermal-hydraulic limitations on water-cooled limiters

    International Nuclear Information System (INIS)

    Cha, Y.S.; Misra, B.

    1984-08-01

    An assessment of the cooling requirements for fusion reactor components, such as the first wall and limiter/divertor, was carried out using pressurized water as the coolant. In order to establish the coolant operating conditions, a survey of the literature on departure from nucleate boiling, critical heat flux, asymmetrical heating and heat transfer augmentation techniques was carried out. The experimental data and the empirical correlations indicate that thermal protection for the fusion reactor components based on current design concepts can be provided with an adequate margin of safety without resorting to either high coolant velocities, excessive coolant pressures, or heat transfer augmentation techniques. If, however, the future designs require heat transfer enhancement techniques, experimental verification would be necessary since no data on heat transfer augmentation techniques exist for complex geometries, especially under asymmetrically heated conditions. Since the data presented herein concern primarily thermal protection, the final design should consider other factors such as thermal stresses, temperature limits, and fatigue

  3. 78 FR 64027 - Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors

    Science.gov (United States)

    2013-10-25

    ... comments were received. A companion guide, DG-1277, ``Initial Test Program of Emergency Core Cooling... NUCLEAR REGULATORY COMMISSION [NRC-2011-0129] Preoperational Testing of Emergency Core Cooling... (RG), 1.79, ``Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors...

  4. Thermal performance experiments on ultimate heat sinks, spray ponds, and cooling ponds

    International Nuclear Information System (INIS)

    Hadlock, R.K.

    1976-12-01

    A program of measurement on a Battelle-Northwest (BNW) spray pond has been completed to prove an integrated instrumentation system for application in future field experiments. The measurement programs in the field will produce data of relevance to the design and understanding of performance for ultimate heat sinks as components of emergency core cooling systems. In the absence of active emergency cooling systems, the data will be obtained on analog systems--prime candidates among these are the naturally-occurring hot ponds at Yellowstone National Park and man-made hot cooling ponds at Savannah River National Laboratory as well as spray ponds at various industrial facilities. The proof experiment has provided data that not only illustrate the effectiveness of the instrumentation system but also display interesting site-specific heat transfer processes. The data to be obtained in the field will also be site specific but must be of generic applicability in modeling for design and performance purposes. The integrated instrumentation system will evolve, through modest modifications and substantial supplementation, to provide the requisite data for the more demanding situation of work in and about hot water

  5. Corrosion control when using passively treated abandoned mine drainage as alternative makeup water for cooling systems.

    Science.gov (United States)

    Hsieh, Ming-Kai; Chien, Shih-Hsiang; Li, Heng; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D

    2011-09-01

    Passively treated abandoned mine drainage (AMD) is a promising alternative to fresh water as power plant cooling water system makeup water in mining regions where such water is abundant. Passive treatment and reuse of AMD can avoid the contamination of surface water caused by discharge of abandoned mine water, which typically is acidic and contains high concentrations of metals, especially iron. The purpose of this study was to evaluate the feasibility of reusing passively treated AMD in cooling systems with respect to corrosion control through laboratory experiments and pilot-scale field testing. The results showed that, with the addition of the inhibitor mixture orthophosphate and tolyltriazole, mild steel and copper corrosion rates were reduced to acceptable levels (< 0.127 mm/y and < 0.0076 mm/y, respectively). Aluminum had pitting corrosion problems in every condition tested, while cupronickel showed that, even in the absence of any inhibitor and in the presence of the biocide monochloramine, its corrosion rate was still very low (0.018 mm/y).

  6. Systems design of direct-cycle supercritical-water-cooled fast reactors

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Koshizuka, Seiichi; Jevremovic, Tatjana; Okano, Yashushi

    1995-01-01

    The system design of a direct-cycle supercritical-water-cooled fast reactor is presented. The supercritical water does not exhibit a change of phase. the recirculation system, steam separator, and dryer of a boiling water reactor (BWR) are unnecessary. Roughly speaking, the reactor pressure vessel and control rods are similar to those of a pressurized water reactor, the containment and emergency core cooling system are similar to a BWR, and the balance of plant is similar to a supercritical-pressure fossil-fired power plant (FPP). the electric power of the fast converter is 1,508 MW(electric). The number of coolant loops is only two because of the high coolant enthalpy. Containment volume is much reduced. The thermal efficiency is improved 24% over a BWR. The coolant void reactivity is negative by placing thin zirconium-hydride layers between seeds and blankets. The power costs would be much reduced compared with those of a light water reactor (LWR) and a liquid-metal fast breeder reactor. The concept is based on the huge amount of experience with the water coolant technology of LWRs and FPPs. The oxidation of stainless steel cladding is avoided by adopting a much lower coolant temperature than that of the FPP

  7. Cavity Cooling of Nanoparticles: Towards Matter-Wave experiments

    Science.gov (United States)

    Millen, James; Kuhn, Stefan; Arndt, Markus

    2016-05-01

    Levitated systems are a fascinating addition to the world of optically-controlled mechanical resonators. It is predicted that nanoparticles can be cooled to their c.o.m. ground state via the interaction with an optical cavity. By freeing the oscillator from clamping forces dissipation and decoherence is greatly reduced, leading to the potential to produce long-lived, macroscopically spread, mechanical quantum states, allowing tests of collapse models and any mass limit of quantum physics. Reaching the low pressures required to cavity-cool to the ground state has proved challenging. Our approach is to cavity cool a beam of nanoparticles in high vacuum. We can cool the c.o.m. motion of nanospheres a few hundred nanometers in size. Looking forward, we will utilize novel microcavities to enhance optomechanical cooling, preparing particles in a coherent beam ideally suited to ultra-high mass interferometry at 107 a.m.u.

  8. Mathematical Methodology for New Modeling of Water Hammer in Emergency Core Cooling System

    International Nuclear Information System (INIS)

    Lee, Seungchan; Yoon, Dukjoo; Ha, Sangjun

    2013-01-01

    In engineering insight, the water hammer study has carried out through the experimental work and the fluid mechanics. In this study, a new access methodology is introduced by Newton mechanics and a mathematical method. Also, NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the effect of water-hammer for the protection of pipes of the Emergency Core Cooling System, which is related to the Residual Heat Removal System and the Containment Spray System. This paper includes modeling, the processes of derivation of the mathematical equations and the comparison with other experimental work. To analyze the effect of water-hammer, this mathematical methodology is carried out. This study is in good agreement with other experiment results as above. This method is very efficient to explain the water-hammer phenomena

  9. Mathematical Methodology for New Modeling of Water Hammer in Emergency Core Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungchan; Yoon, Dukjoo; Ha, Sangjun [Korea Hydro Nuclear Power Co. Ltd, Daejeon (Korea, Republic of)

    2013-05-15

    In engineering insight, the water hammer study has carried out through the experimental work and the fluid mechanics. In this study, a new access methodology is introduced by Newton mechanics and a mathematical method. Also, NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the effect of water-hammer for the protection of pipes of the Emergency Core Cooling System, which is related to the Residual Heat Removal System and the Containment Spray System. This paper includes modeling, the processes of derivation of the mathematical equations and the comparison with other experimental work. To analyze the effect of water-hammer, this mathematical methodology is carried out. This study is in good agreement with other experiment results as above. This method is very efficient to explain the water-hammer phenomena.

  10. Analysis on small long life reactor using thorium fuel for water cooled and metal cooled reactor types

    International Nuclear Information System (INIS)

    Permana, Sidik

    2009-01-01

    Long-life reactor operation can be adopted for some special purposes which have been proposed by IAEA as the small and medium reactor (SMR) program. Thermal reactor and fast reactor types can be used for SMR and in addition to that program the utilization of thorium fuel as one of the candidate as a 'partner' fuel with uranium fuel which can be considered for optimizing the nuclear fuel utilization as well as recycling spent fuel. Fissile U-233 as the main fissile material for thorium fuel shows higher eta-value for wider energy range compared with other fissile materials of U-235 and Pu-239. However, it less than Pu-239 for fast energy region, but it still shows high eta-value. This eta-value gives the reactor has higher capability for obtaining breeding condition or high conversion capability. In the present study, the comparative analysis on small long life reactor fueled by thorium for different reactor types (water cooled and metal cooled reactor types). Light water and heavy water have been used as representative of water-cooled reactor types, and for liquid metal-cooled reactor types, sodium-cooled and lead-bismuth-cooled have been adopted. Core blanket arrangement as general design configuration, has been adopted which consist of inner blanket region fueled by thorium oxide, and two core regions (inner and out regions) fueled by fissile U-233 and thorium oxide with different percentages of fissile content. SRAC-CITATION and JENDL-33 have been used as core optimization analysis and nuclear data library for this analysis. Reactor operation time can reaches more than 10 years operation without refueling and shuffling for different reactor types and several power outputs. As can be expected, liquid metal cooled reactor types can be used more effective for obtaining long life reactor with higher burnup, higher power density, higher breeding capability and lower excess reactivity compared with water-cooled reactors. Water cooled obtains long life core operation

  11. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    International Nuclear Information System (INIS)

    Bussmann, Michael

    2008-01-01

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C 3+ ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged 24 Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  12. Water spray cooling during handling of feedlot cattle

    Science.gov (United States)

    Brown-Brandl, Tami M.; Eigenberg, Roger A.; Nienaber, John A.

    2010-11-01

    Activities involved in receiving or working (e.g., sorting, dehorning, castration, weighing, implanting, etc.) of feedlot cattle cause an increase in body temperature. During hot weather the increased body temperature may disrupt normal behaviors including eating, which can be especially detrimental to the well-being and performance of the animals. Sprinkle cooling of animals has been successfully employed within the pen; however, added moisture to the pens' surface increases odor generation from the pen. A study was conducted to investigate the effectiveness of a single instance of wetting an animal within the working facility instead of in the pen, which could potentially provide extra evaporative cooling to offset the added heat produced by activity. Sixty-four cross-bred heifers were assigned to one of eight pens on the basis of weight. On four separate occasions during hot conditions (average temperature 28.2 ± 1.9°C, 29.1 ± 2.0°C, 28.9 ± 3.0°C, and 26.8 ± 1.6°C; with the temperature ranging from 22.6 to 32.5°C during the trials), the heifers were moved from their pens to and from the working facility (a building with a scale and squeeze chute located 160-200 m away). While in the squeeze chute, four of the pens of heifers were sprinkle cooled and the remaining four pens were worked as normal. The heifers that were treated had a body temperature that peaked sooner (31.9 ± 0.63 min compared to 37.6 ± 0.62) with a lower peak body temperature (39.55 ± 0.03°C compared to 39.74 ± 0.03°C), and recovered sooner (70.5 ± 2.4 min compared to 83.2 ± 2.4 min). The treated animals also had a lower panting score, a visual assessment of level of cattle heat stress (1.1 ± 0.2 compared to 1.16 ± 0.2). The behavior measurements that were taken did not indicate a change in behavior. It was concluded that while a single instance of wetting an animal within the working facility did not completely offset the increase in body temperature, it was beneficial to the

  13. Design and analysis of the DII-D radiative divertor water-cooled structures

    International Nuclear Information System (INIS)

    Hollerbach, M.A.; Smith, J.P.; Baxi, C.B.; Bozek; Chin, E.; Phelps, R.D.; Redler, K.M.; Reis, E.E.

    1995-10-01

    The Radiative Divertor is a major modification to the divertor of DIII-D and is being designed and fabricated for installation in late 1996. The Radiative Divertor Program (RDP) will enhance the dissipative processes in the edge and divertor plasmas to reduce the heat flux and plasma erosion at the divertor target. This approach will have major implications for the heat removal methods used in future devices. The divertor is of slot-type configuration designed to minimize the flow of sputtered and injected impurities back to the core plasma. The new divertor will be composed of toroidally continuous, Inconel 625 water-cooled rings of sandwich construction with an internal water channel, incorporating seam welding to provide the water-to-vacuum seal as well as structural integrity. The divertor structure is designed to withstand electromagnetic loads as a result of halo currents and induced toroidal currents. It also accommodates the thermal differences experienced during the 400 degrees C bake used on DIII-D. A low Z plasma-facing surface is provided by mechanically attached graphite tiles. Water flow through the rings will inertially cool these tiles which will be subjected to 38 MW, 10 second pulses. Current schedules call for detailed design in 1996 with installation completed in March 1997. A full size prototype, one-quarter of one ring, is being built to validate manufacturing techniques, machining, roll-forming, and seam welding. The experience and knowledge gained through the fabrication of the prototype is discussed. The design of the electrically isolated (5 kV) vacuum-to-air water feedthroughs supplying the water-cooled rings is also discussed

  14. Design and analysis of the DIII-D radiative divertor water-cooled structures

    International Nuclear Information System (INIS)

    Hollerbach, M.A.; Smith, J.P.; Baxi, C.B.; Bozek, A.S.; Chin, E.; Phelps, R.D.; Redler, K.M.; Reis, E.E.

    1995-01-01

    The Radiative Divertor is a major modification to the divertor of DIII-D and is being designed and fabricated for installation in late 1996. The Radiative Divertor Program (RDP) will enhance the dissipative processes in the edge and divertor plasmas to reduce the heat flux and plasma erosion at the divertor target. This approach will have major implications for the heat removal methods used in future devices. The divertor is of slot-type configuration designed to minimize the flow of sputtered and injected impurities back to the core plasma. The new divertor will be composed of toroidally continuous, Inconel 625 water-cooled rings of sandwich construction with an internal water channel, incorporating seam welding to provide the water-to-vacuum seal as well as structural integrity. The divertor structure is designed to withstand electro-magnetic loads as a result of halo currents and induced toroidal currents. It also accommodates the thermal differences experienced during the 400 C bake used on DIII-D. A low Z plasma-facing surface is provided by mechanically attached graphite tiles. Water flow through the rings will inertially cool these tiles which will be subjected to 38 MW, 10 second pulses. Current schedules call for detailed design in 1996 with installation completed in March 1997. A full size prototype, one-quarter of one ring, is being built to validate manufacturing techniques, machining, roll-forming, and seam welding. The experience and knowledge gained through the fabrication of the prototype is discussed. The design of the electrically isolated (5 kV) vacuum-to-air water feedthroughs supplying the water-cooled rings is also discussed

  15. Method of operating water cooled reactor with blanket

    International Nuclear Information System (INIS)

    Suzuki, Katsuo.

    1988-01-01

    Purpose: To increase the production amount of fissionable plutonium by increasing the burnup degree of blanket fuels in a water cooled reactor with blanket. Method: Incore insertion assemblies comprising water elimination rods, fertile material rods or burnable poison rods are inserted to those fuel assemblies at the central portion of the reactor core that are situated at the positions not inserted with control rods in the earlier half of the operation cycle, while the incore reactor insertion assemblies are withdrawn at the latter half of the operation cycle of a nuclear reactor. As a result, it is possible to increase the power share of the blanket fuels and increase the fuel burnup degree to thereby increase the production amount of fissionable plutonium. Furthermore, at the initial stage of the cycle, the excess reactivity of the reactor can be suppressed to decrease the reactivity control share on the control rod. At the final stage of the cycle, the excess reactivity of the reactor core can be increased to improve the cycle life. (Kamimura, M.)

  16. Survey of natural-circulation cooling in U.S. pressurized water reactors

    International Nuclear Information System (INIS)

    Boyack, B.E.

    1985-01-01

    Literature describing natural circulation analyses, experiments, and plant operation have been obtained from the Nuclear Regulatory Commission, reactor vendors, utility-sponsored research groups, utilities, national laboratories, and foreign sources. These have been reviewed and significant results and conclusions identified. Three modes of natural-circulation cooling are covered: single phase, two-phase, and reflux condensation. Single-phase natural circulation is amply verified by plant operational data, test data from scaled experimental facilities, and analysis with assessed computer codes. Ample evidence also exists that two-phase natural circulation can successfully cool pressurized water reactors. This mode occurs during certain events such as small-break loss-of-coolant accidents. The data base for reflux condensation is primarily from tests in scaled experimental facilities. There are no plant operational data and only limited assessment of thermal-hydraulic systems codes has been performed. Further work is needed before this mode of natural circulation can be confidently used

  17. Chooz A: a model for the dismantling of water-cooled reactors

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    The specificity of Chooz-A, the first French pressurized water reactor (PWR), is that the reactor and its major components (pumps, exchangers and cooling circuits) are installed in 2 caves dug out in a hill slope. Chooz-A was operating from 1967 to 1991, in 1993 the fuel was removed and in 2007 EDF received the authorization to dismantle the reactor. In 2012, EDF completed the dismantling of the cave containing the elements of the cooling circuit, a cornerstone was the removing of the four 14 m high steam generators. The dismantling of the pressure vessel began in march 2017, it is the same tools and the same processes that were used for the dismantling of the pressure vessel of the Zorita plant (Spain) in 2016. The end of the Chooz-A dismantling is expected in 2022. The feedback experience will help to standardize practices for the French fleet of PWRs. (A.C.)

  18. Distinct difference of flaA genotypes of Legionella pneumophila between isolates from bath water and cooling tower water.

    Science.gov (United States)

    Amemura-Maekawa, Junko; Kura, Fumiaki; Chang, Bin; Suzuki-Hashimoto, Atsuko; Ichinose, Masayuki; Endo, Takuro; Watanabe, Haruo

    2008-09-01

    To investigate the genetic difference of Legionella pneumophila in human-made environments, we collected isolates of L. pneumophila from bath water (n = 167) and cooling tower water (n = 128) primarily in the Kanto region in 2001 and 2005. The environmental isolates were serogrouped and sequenced for a target region of flaA. A total of 14 types of flaA genotypes were found: 10 from cooling tower water and nine from bath water. The flaA genotypes of isolates from cooling tower water were quite different from those of bath water.

  19. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    Science.gov (United States)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  20. Status of advanced technology and design for water cooled reactors: Heavy water reactors

    International Nuclear Information System (INIS)

    1989-07-01

    In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of the IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors, has been undertaken to document the major current activities and trends of technological improvement and development for future water reactors. Part I of the report dealing with Light Water Reactors (LWRs) was published in 1988 (IAEA-TECDOC-479). Part II of the report covers Heavy Water Reactors (HWRs) and has now been prepared. This report is based largely upon submissions from Member States. It has been supplemented by material from the presentations at the IAEA Technical Committee and Workshop on Progress in Heavy Water Reactor Design and Technology held in Montreal, Canada, December 6-9, 1988. It is hoped that this part of the report, containing the status of advanced heavy water reactor technology up to 1988 and ongoing development programmes will aid in disseminating information to Member States and in stimulating international cooperation. Refs, figs and tabs

  1. Evaluation of a Design Concept for the Combined Air-water Passive Cooling PAFS+

    International Nuclear Information System (INIS)

    Bae, Sung Won; Kwon, Taesoon

    2014-01-01

    The APR+ system provides the Passive Auxiliary Feed-water System (PAFS) for the passive cooling capability. However, the current design requirement for working time for the PAFS is about 8 hours only. Thus, current working time of PAFS can not meet the required 72 hours cooling capability for the long term SBO situation. To meet the 72 hours cooling, the pool capacity should be almost 3∼4 times larger than that of current water cooling tank. In order to continue the PAFS operation for 72 hours, a new passive air-water combined cooling system is proposed. This paper provides the feasibility study on the combined passive air-water cooling system. Figure 1 and 2 show the conceptual difference of the PAFS and combined passive air-water cooling system, respectively. Simple performance evaluation of the passive air cooling heat exchanger has been conducted by the MARS calculation. For the postulated FLB scenario, 4800 heat exchanger tubes and 5 m/s air velocity are not sufficient to sustain the PCCT pool level for 72 hour cooling. Further works on the system design and performance enhancing plan are required to fulfill the 72 hours long term passive cooling

  2. Study of Cooling Characteristic of The Containment APWR Model Using Laminar Subcooled Water Film

    International Nuclear Information System (INIS)

    Diah Hidayanti; Aryadi Suwono; Nathanael P Tandian; Ari Darmawan Pasek; Efrizon Umar

    2009-01-01

    One of mechanism utilized by the next-generation pressurized water reactor for cooling its containment passively is gravitationally falling water spray cooling. This paper focuses on the characteristic study using Fluent 5/6 program for the case of the containment outer wall cooling by laminar sub-cooled water film. The cooling system characteristics which will be discussed consist of water film thickness and temperature on all parts of the containment wall as well as the effect of water spray volume flow rate on the water film thickness and convection heat transfer capability from the containment wall to the film bulk. In addition, some kinds of non dimensional numbers involved in the film heat transfer correlation will be presented in this paper. (author)

  3. Ecological impact of chloro-organics produced by chlorination of cooling tower waters

    International Nuclear Information System (INIS)

    Jolley, R.L.; Cumming, R.B.; Pitt, W.W.; Taylor, F.G.; Thompson, J.E.; Hartmann, S.J.

    1977-01-01

    Experimental results of the initial assessment of chlorine-containing compounds in the blowdown from cooling towers and the possible mutagenic activity of these compounds are reported. High-resolution liquid chromatographic separations were made on concentrates of the blowdown from the cooling tower at the High Flux Isotope Reactor (HFIR) and from the recirculating water system for the cooling towers at the Oak Ridge Gaseous Diffusion Plant (ORGDP), Oak Ridge, Tennessee. The chromatograms of chlorinated cooling waters contained numerous uv-absorbing and cerate-oxidizable constituents that are now being processed through a multicomponent identification procedure. Concentrates of the chlorinated waters are also being examined for mutagenic activity

  4. Operational experience of stainless steels in seawater-cooled systems

    International Nuclear Information System (INIS)

    Henriksson, S.

    1981-06-01

    A study has been made of chiefly Swedish and Finnish operational experience of stainless steel in seawater and brackish water. A report is given on 23 typical cases, behind which in actual fact a considerably larger number of individual practical cases are concealed. The answer to the primary question why a standard steel of type SS 2343 (AISI 316) sometimes, contrary to expectation, remains unattacked by local corrosion is that there is usually spontaneous cathodic protection by other less noble components of carbon steel, cast iron or some copper alloy in direct contact with the stainless steel. The study confirms in other respects the adverse effect of residual oxides after welding and the beneficial of low temperature, high continuous waterflow and periodic cleaning, and of rinsing with fresh water during out-of service periods. It also verifies the additional advantages of the new high-alloy special steels which have begun to be marketed in recent years for seawater applications. (author)

  5. A feasibility experiment for assessing the efficacy of ex-vessel cooling through the external gap structure

    International Nuclear Information System (INIS)

    Kang, K. H.; Kim, J. H.; Park, L. J.; Kim, S. B.; Hwang, I. S.

    1999-01-01

    This paper presents the results of a feasibility experiment for assessing the efficacy of ex-vessel cooling through the external gap structure during a severe accident. In this study, a 1/8 linear scale mockup of a lower plenum was used with Al2O3/Fe thermite melt as a corium simulant. The results show that in dry case test conducted without cooling the outside of the vessel, after about thirty second from the thermite ignition the vessel was heated to cause a complete melt penetration at about 30 degree upper position from the bottom. Whereas in wet case test conducted cooling the outside of the vessel with 0.85 kg/s of water flow rate using 2.5 cm of uniform gap structure, the vessel effectively cooled down with 23.7 K/s of cooling rate by nucleate boiling at the surface of the vessel. The results of two-dimensional analyses using FLUENT code show a similar trend of vessel thermal behavior presented in the tests. Synthesized the results of the tests and analyses work, a natural convection of the melt pool could cause the formation of hot spot at the upper portion of the vessel, but the vessel could effectively cool down by heat removal with ex-vessel cooling

  6. An efficient continuous flow helium cooling unit for Moessbauer experiments

    International Nuclear Information System (INIS)

    Herbert, I.R.; Campbell, S.J.

    1976-01-01

    A Moessbauer continuous flow cooling unit for use with liquid helium over the temperature range 4.2 to 300K is described. The cooling unit can be used for either absorber or source studies in the horizontal plane and it is positioned directly on top of a helium storage vessel. The helium transfer line forms an integral part of the cooling unit and feeds directly into the storage vessel so that helium losses are kept to the minimum. The helium consumption is 0.12 l h -1 at 4.2 K decreasing to 0.055 l h -1 at 40 K. The unit is top loading and the exchange gas cooled samples can be changed easily and quickly. (author)

  7. Performance of materials in the component cooling water systems of pressurized water reactors

    International Nuclear Information System (INIS)

    Lee, B.S.

    1993-01-01

    The component cooling water (CCW) system provides cooling water to several important loads throughout the plant under all operating conditions. An aging assessment CCW systems in pressurized water reactors (PWRs) was conducted as part of Nuclear Plant Aging Research Program (NPAR) instituted by the US Nuclear Regulatory Commission. This paper presents some of the results on the performances of materials in respect of their application in CCW Systems. All the CCW system failures reported to the Nuclear Plant Reliability Data System (NPRDS) from January 1988 to June 1990 were reviewed; it is concluded that three of the main contributors to CCW system failures are valves, pumps, and heat exchangers. This study identified the modes and causes of failure for these components; most of the causes for the aging-related failures could be related to the performance of materials. Also, in this paper the materials used for these components are reviewed, and there aging mechanisms under CCW system conditions are discussed

  8. Mitigation of hydrogen hazards in water cooled power reactors

    International Nuclear Information System (INIS)

    2001-02-01

    Past considerations of hydrogen generated in containment buildings have tended to focus attention on design basis accidents (DBAs) where the extent of the in-core metal-water reaction is limited at low values by the operation of the emergency core cooling systems (ECCS). The radiolysis of water in the core and in the containment sump, together with the possible corrosion of metals and paints in the containment, are all relatively slow processes. Therefore, in DBAs the time scale involved for the generation of hydrogen allows sufficient time for initiation of measures to control the amount of hydrogen in the containment atmosphere and to prevent any burning. Provisions have been made in most plants to keep the local hydrogen concentration below its flammability limit (4% of volume) by means of mixing devices and thermal recombiners. Severe accidents, involving large scale core degradation and possibly even core concrete interactions, raise the possibility of hydrogen release rates greatly exceeding the capacity of conventional DBA hydrogen control measures. The accident at Three Mile Island illustrated the potential of unmitigated hydrogen accumulation to escalate the potential consequences of a severe accident. In a severe accident scenario, local high hydrogen concentrations can be reached in a short time, leading to flammable gas mixtures in containment. Another possibility is that local high steam concentrations will initially create an inert atmosphere and prevent burning for a limited time. While such temporary inerting provides additional time for mixing (dilution) of the hydrogen with containment air, depending on the quantity of hydrogen released, it prevents early intervention by deliberate ignition and sets up conditions for more severe combustion hazards after steam condensation eventually occurs, e.g., by spray initiation or the long term cooling down of the containment atmosphere. As the foregoing example indicates, analysis of the hydrogen threat in

  9. High heat flux tests at divertor relevant conditions on water-cooled swirl tube targets

    International Nuclear Information System (INIS)

    Schlosser, J.; Boscary, J.

    1994-01-01

    High heat flux experiments were performed to provide a technology for heat flux removal under NET/ITER relevant conditions. The water-cooled rectangular test sections were made of hardened copper with a stainless steel twisted tape installed inside a circular channel and one-side heated. The tests aimed to investigate the heat transfer and the critical heat flux in the subcooled boiling regime. A CHF data base of 63 values was established. Test results have shown the thermalhydraulic ability of swirl tubes to sustain an incident heat flux up to a 30 MW.m -2 range. (author) 10 refs.; 7 figs

  10. Absorption cooling sources atmospheric emissions decrease by implementation of simple algorithm for limiting temperature of cooling water

    Science.gov (United States)

    Wojdyga, Krzysztof; Malicki, Marcin

    2017-11-01

    Constant strive to improve the energy efficiency forces carrying out activities aimed at reduction of energy consumption hence decreasing amount of contamination emissions to atmosphere. Cooling demand, both for air-conditioning and process cooling, plays an increasingly important role in the balance of Polish electricity generation and distribution system in summer. During recent years' demand for electricity during summer months has been steadily and significantly increasing leading to deficits of energy availability during particularly hot periods. This causes growing importance and interest in trigeneration power generation sources and heat recovery systems producing chilled water. Key component of such system is thermally driven chiller, mostly absorption, based on lithium-bromide and water mixture. Absorption cooling systems also exist in Poland as stand-alone systems, supplied with heating from various sources, generated solely for them or recovered as waste or useless energy. The publication presents a simple algorithm, designed to reduce the amount of heat for the supply of absorption chillers producing chilled water for the purposes of air conditioning by reducing the temperature of the cooling water, and its impact on decreasing emissions of harmful substances into the atmosphere. Scale of environmental advantages has been rated for specific sources what enabled evaluation and estimation of simple algorithm implementation to sources existing nationally.

  11. Numerical analysis of experiments modeling LWR sump cooling by natural convection

    International Nuclear Information System (INIS)

    2002-01-01

    An optional sump cooling concept for the European pressurized water reactor EPR was investigated at the Research Center Karlsruhe. This concept foresees to utilize single phase natural convection in water to remove the decay heat from the core melt. The natural convection was investigated by the SUCOS-2D and -3D scaled experiments. A numerical investigation and interpretation of these experiments was performed by means of the computer code FLUTAN. In this paper, the numerical investigation of SUCOS-3D is summarized. Following the results of the former 2d experiments and the numerical analysis of both experiments, an unexpected temperature distribution is found in this 3d experiment. Basing on the experimental data it had to be postulated that one of the horizontal coolers was slightly tilled against the main flow direction. Additional numerical investigations show that a slope of only one percent would explain the experimental flow field. Conclusions are also drawn on the limits of scalability and transferability of the experimental results to a reactor sump. A detailed transformation will only be possible by applying well validated CFD-codes and experienced code users. As the flow in the reactor sump will be turbulent and this flow is strongly three-dimensional and time-dependent, only the method of Large Eddy Simulation is considered of being an adequate tool for reliable trans formation of the gained experience to analyses for the reactor sump at 1:1 scales. (author)

  12. Structure and thermal analysis of the water cooling mask at NSRL front end

    International Nuclear Information System (INIS)

    Zhao Feiyun; Xu Chaoyin; Wang Qiuping; Wang Naxiu

    2003-01-01

    A water cooling mask is an important part of the front end, usually used for absorbing high power density synchrotron radiation to protect the apparatus from being destroyed by heat load. This paper presents the structure of the water cooling mask and the thermal analysis results of the mask block at NSRL using Program ANSYS5.5

  13. 77 FR 73056 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2012-12-07

    ... Plants AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for comment... (DG), DG-1259, ``Initial Test Programs for Water-Cooled Nuclear Power Plants.'' This guide describes... (ITPs) for light water cooled nuclear power plants. DATES: Submit comments by January 31, 2013. Comments...

  14. Biological effects from discharge of cooling water from thermal power plants

    International Nuclear Information System (INIS)

    1976-12-01

    Results are reported for a Danish project on biological effects from discharge of cooling water from thermal power plants. The purpose of the project was to provide an up-to-date knowledge of biological effects of cooling water discharge and of organization and evaluation of recipient investigations in planned and established areas. (BP)

  15. State waste discharge permit application for cooling water and condensate discharges

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, R.D.

    1996-08-12

    The following presents the Categorical State Waste Discharge Permit (SWDP) Application for the Cooling Water and Condensate Discharges on the Hanford Site. This application is intended to cover existing cooling water and condensate discharges as well as similar future discharges meeting the criteria set forth in this document.

  16. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  17. Melt cooling by bottom flooding: The experiment CometPC-H3. Ex-vessel core melt stabilization research

    International Nuclear Information System (INIS)

    Alsmeyer, H.; Cron, T.; Merkel, G.; Schmidt-Stiefel, S.; Tromm, W.; Wenz, T.

    2003-03-01

    The CometPC-H3 experiment was performed to investigate melt cooling by water addition to the bottom of the melt. The experiment was performed with a melt mass of 800 kg, 50% metal and 50% oxide, and 300 kW typical decay heat were simulated in the melt. As this was the first experiment after repair of the induction coil, attention was given to avoid overload of the induction coil and to keep the inductor voltage below critical values. Therefore, the height of the sacrificial concrete layer was reduced to 5 cm only, and the height of the porous concrete layers was also minimized to have a small distance and good coupling between heated melt and induction coil. After quite homogeneous erosion of the upper sacrificial concrete layer, passive bottom flooding started from the porous concrete after 220 s with 1.3 liter water/s. The melt was safely stopped, arrested and cooled. The porous, water filled concrete was only slightly attacked by the hot melt in the upper 25 mm of one sector of the coolant device. The peak cooling rate in the early contact phase of coolant water and melt was 4 MW/m 2 , and exceeded the decay heat by one order of magnitude. The cooling rate remarkably dropped, when the melt was covered by the penetrating water and a surface crust was formed. Volcanic eruptions from the melt during the solidification process were observed from 360 - 510 s and created a volcanic dome some 25 cm high, but had only minor effect on the generation of a porous structure, as the expelled melt solidified mostly with low porosity. Unfortunately, decay heat simulation in the melt was interrupted at 720 s by an incorrect safety signal, which excluded further investigation of the long term cooling processes. At that time, the melt was massively flooded by a layer of water, about 80 cm thick, and coolant water inflow was still 1 l/s. The melt had reached a stable situation: Downward erosion was stopped by the cooling process from the water filled, porous concrete layer. Top

  18. Elements of Design Consideration of Once-Through Cycle, Supercritical-Pressure Light Water Cooled Reactor

    International Nuclear Information System (INIS)

    Yoshiaki Oka; Sei-ichi Koshizuka; Yuki Ishiwatari; Akifumi Yamaji

    2002-01-01

    The paper describes elements of design consideration of supercritical-pressure, light water cooled reactors as well as the status and prospects of the research and development. It summarizes the results of the conceptual design study at the University of Tokyo from 1989. The research and development started in Japan, Europe and USA. The major advantages of the reactors are 1. Compact reactor and turbines due to high specific enthalpy of supercritical water 2.Simple plant system because of the once-through coolant cycle 3.Use of the experience of LWR and fossil-fired power plants. The temperatures of the major components such as reactor pressure vessel, coolant pipes, pumps and turbines are within the experience, in spite of the high outlet coolant temperature. 4.Similarity to LWR safety design and criteria, but no burnout phenomenon 5.Potential cost reduction due to smaller material expenditure and short construction period 6.The smallest reactor not in power rating, but in plant sizes. 7.High-thermal efficiency and low coolant flow rate because of high enthalpy rise. 8.Water cooled reactors potentially free from SCC (stress corrosion cracking) problems. 9.Compatibility of tight-fuel-lattice fast reactor core due to small coolant flow rate, potentially easy shift to fast breeder reactor without changing coolant technology. 10.Potential of producing energy products such as hydrogen and high quality hydro carbons. (authors)

  19. Multi-model assessment of global hydropower and cooling water discharge potential under climate change

    NARCIS (Netherlands)

    van Vliet, M. T H; van Beek, L. P H|info:eu-repo/dai/nl/14749799X; Eisner, S.; Flörke, M.; Wada, Y.|info:eu-repo/dai/nl/341387819; Bierkens, M. F P|info:eu-repo/dai/nl/125022794

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding

  20. Optimization of the breeder zone cooling tubes of the DEMO Water-Cooled Lithium Lead breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P.; Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Del Nevo, A. [ENEA Brasimone, Camugnano, BO (Italy); Forte, R. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy)

    2016-11-01

    Highlights: • Determination of an optimal configuration for the breeder zone cooling tubes. • Attention has been focused on the toroidal–radial breeder zone cooling tubes lay out. • A theoretical-computational approach based on the Finite Element Method (FEM) has been followed, adopting a qualified commercial FEM code. • Five different configurations have been investigated to optimize the breeder zone cooling tubes arrangement fulfilling all the rules prescribed by safety codes. - Abstract: The determination of an optimal configuration for the breeder zone (BZ) cooling tubes is one of the most important issues in the DEMO Water-Cooled Lithium Lead (WCLL) breeding blanket R&D activities, since BZ cooling tubes spatial distribution should ensure an efficient heat power removal from the breeder, avoiding hotspots occurrence in the thermal field. Within the framework of R&D activities supported by the HORIZON 2020 EUROfusion Consortium action on the DEMO WCLL breeding blanket design, a campaign of parametric analyses has been launched at the Department of Energy, Information Engineering and Mathematical Models of the University of Palermo (DEIM), in close cooperation with ENEA-Brasimone, in order to assess the potential influence of BZ cooling tubes number on the thermal performances of the DEMO WCLL outboard breeding blanket equatorial module under the nominal steady state operative conditions envisaged for it, optimizing their geometric configuration and taking also into account that a large number of cooling pipes can deteriorate the tritium breeding performances of the module. In particular, attention has been focused on the toroidal-radial option for the BZ tube bundles lay-out and a parametric study has been carried out taking into account different tube bundles arrangement within the module. The study has been carried out following a numerical approach, based on the finite element method (FEM), and adopting a qualified commercial FEM code. Results

  1. Design and technology development of solid breeder blanket cooled by supercritical water in Japan

    Science.gov (United States)

    Enoeda, M.; Kosaku, Y.; Hatano, T.; Kuroda, T.; Miki, N.; Honma, T.; Akiba, M.; Konishi, S.; Nakamura, H.; Kawamura, Y.; Sato, S.; Furuya, K.; Asaoka, Y.; Okano, K.

    2003-12-01

    This paper presents results of conceptual design activities and associated R&D of a solid breeder blanket system for demonstration of power generation fusion reactors (DEMO blanket) cooled by supercritical water. The Fusion Council of Japan developed the long-term research and development programme of the blanket in 1999. To make the fusion DEMO reactor more attractive, a higher thermal efficiency of more than 40% was strongly recommended. To meet this requirement, the design of the DEMO fusion reactor was carried out. In conjunction with the reactor design, a new concept of a solid breeder blanket cooled by supercritical water was proposed and design and technology development of a solid breeder blanket cooled by supercritical water was performed. By thermo-mechanical analyses of the first wall, the tresca stress was evaluated to be 428 MPa, which clears the 3Sm value of F82H. By thermal and nuclear analyses of the breeder layers, it was shown that a net TBR of more than 1.05 can be achieved. By thermal analysis of the supercritical water power plant, it was shown that a thermal efficiency of more than 41% is achievable. The design work included design of the coolant flow pattern for blanket modules, module structure design, thermo-mechanical analysis and neutronics analysis of the blanket module, and analyses of the tritium inventory and permeation. Preliminary integration of the design of a solid breeder blanket cooled by supercritical water was achieved in this study. In parallel with the design activities, engineering R&D was conducted covering all necessary issues, such as development of structural materials, tritium breeding materials, and neutron multiplier materials; neutronics experiments and analyses; and development of the blanket module fabrication technology. Upon developing the fabrication technology for the first wall and box structure, a hot isostatic pressing bonded F82H first wall mock-up with embedded rectangular cooling channels was

  2. Once-through cycle, supercritical-pressure light water cooled reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Y.; Koshizuka, S. [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2001-07-01

    Concept of once-through cycle, supercritical-pressure light water cooled reactors was developed. The research covered major aspects of conceptual design such as cores of thermal and fast reactors, plant system and heat balance, safety system and criteria, accident and transient analysis, LOCA, PSA, plant control and start-up. The advantages of the reactor lie in the compactness of the plant from high specific enthalpy of supercritical water, the simplicity of the once-through cycle and the experiences of major component technologies which are based on supercritical fossil-fired power plants and LWRs. The operating temperatures of the major components are within the experience in spite of high coolant outlet temperature. The once-through cycle is compatible with the tight fuel lattice fast reactor because of high head pumps and small coolant flow rate. (author)

  3. Once-through cycle, supercritical-pressure light water cooled reactor concept

    International Nuclear Information System (INIS)

    Oka, Y.; Koshizuka, S.

    2001-01-01

    Concept of once-through cycle, supercritical-pressure light water cooled reactors was developed. The research covered major aspects of conceptual design such as cores of thermal and fast reactors, plant system and heat balance, safety system and criteria, accident and transient analysis, LOCA, PSA, plant control and start-up. The advantages of the reactor lie in the compactness of the plant from high specific enthalpy of supercritical water, the simplicity of the once-through cycle and the experiences of major component technologies which are based on supercritical fossil-fired power plants and LWRs. The operating temperatures of the major components are within the experience in spite of high coolant outlet temperature. The once-through cycle is compatible with the tight fuel lattice fast reactor because of high head pumps and small coolant flow rate. (author)

  4. Secondary Cooling Water Quality Management for Multi Purpose Reactor 30 MW GA Siwabessy Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Sunaryo, Geni Rina, E-mail: genirina@batan.go.i [Center for Reactor Technology and Nuclear Safety (PTRKN-BATAN), Bldg. 80, Puspiptek Area, Serpong, Tangerang 15310 (Indonesia)

    2011-07-01

    Indonesia Multi Purpose Research Reactor (MPR) G.A. Siwabessy 30 MW will be 25 years old in 2011. Series of Non Destructive Test (NDT) were done to understand the current condition such as Eddy Current test for Heat Exchangers, water immersed camera for understanding the tank liner condition, ultrasonic for secondary piping etc. Some deteorization was observed because of ageing and some changing was done. One of them is changing some part of secondary pipe lines because of leaking, with the local ones. For having another 25 years operation life, a proper water quality for secondary cooling water is needed towards corrosion prevention. The main objectives of this experiment is to understand the current water quality of secondary cooling water of RSG-GAS from the aspect of corrosion induced by chemicals and bacteria, and establish procedure for managing the secondary cooling water quality. Methodologies applied are surveillance corrosion by immersing coupon into water observed and followed by visual analyses, corrosion rate determination by electrochemical method with various chemical conditions and total bacteria determination by using test kit. The results show visually that the crevice, galvanic and homogeny corrosion with the current water quality easily be observed for carbon steel represented secondary pipelines at the condition of none oxy bio agent addition. This corrosion is being suppressed by adding the oxy bio agent. The orientation of coupon, vertically and horizontally, gives slightly different effect. The closely corrosion rate was obtained by separately experiment, electrochemical, at the concentration of inhibitor 100ppm is 0.13 {+-} 0.02, which is lower than in the raw water of 0.20 {+-} 0.01 mpy. The total bacteria detected is around 10{sup 7} cfu/ml at none reactor operation and without any anti bacteria added. The oxi bio agent chemical addition suppresses the numbers becomes 10{sup 3} cfu/ml. The SRB bacteria is detected as >10{sup 6} cfu/ml at

  5. Design measures to facilitate implementation of safeguards at future water cooled nuclear power plants

    International Nuclear Information System (INIS)

    1999-01-01

    The report is intended to present guidelines to the State authorities, designers and prospective purchasers of future water cooled power reactors which, if taken into account, will minimize the impact of IAEA safeguards on plant operation and ensure efficient and effective acquisition of safeguards data to the mutual benefit of the Member State, the plant operator and the IAEA. These guidelines incorporate the IAEA's experience in establishing and carrying out safeguards at currently operating nuclear power plants, the ongoing development of safeguards techniques and feedback of experience from plant operators and designers on the impact of IAEA safeguards on plant operation. The following main subjects are included: The IAEA's safeguards function for current and future nuclear power plants; summary of the political and legal foundations of the IAEA's safeguards system; the technical objective of safeguards and the supply and use of required design information; safeguards approaches for nuclear power plants; design implications of experience in safeguarding nuclear power plants and guidelines for future water cooled reactors to facilitate the implementation of safeguards

  6. Liquid metal cooled reactors: Experience in design and operation

    International Nuclear Information System (INIS)

    2007-12-01

    on key fast reactor technology aspects in an integrative sense useful to engineers, scientists, managers, university students and professors. This publication has been prepared to contribute toward the IAEA activity to preserve the knowledge gained in the liquid metal cooled fast reactor (LMFR) technology development. This technology development and experience include aspects addressing not only experimental and demonstration reactors, but also all activities from reactor construction to decommissioning. This publication provides a survey of worldwide experience gained over the past five decades in LMFR development, design, operation and decommissioning, which has been accumulated through the IAEA programmes carried out within the framework of the TWG-FR and the Agency's INIS and NKMS

  7. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    2016-01-01

    in warm/hot and dry environment where dehumidification of outdoor air is not needed. A laboratory experiment was designed and conducted to evaluate the cooling effectiveness of this technology. The experiment was conducted in a twin-climate chamber. One chamber simulated warm/hot and dry outdoor...... evaporation. Two outdoor summer climates were simulated in the study, i.e. the design summer climate of Las Vegas and the extreme summer climate of Copenhagen represented hot/dry and warm/dry climates. The results showed that the flash evaporative cooling technology, a simple and green cooling technology......, is effective for ventilation and air-conditioning in warm/hot and dry climate zones. The technology can provide fresh outdoor air with a temperature of 4 to 7 °C lower than room air temperature....

  8. The constructional design of cooling water discharge structures on German rivers

    International Nuclear Information System (INIS)

    Geldner, P.; Zimmermann, C.

    1975-11-01

    The present compilation of structures for discharging cooling water from power stations into rivers is an attempt to make evident developments in the constructional design of such structures and to give reasons for special structure shapes. A complete collection of all structures built in Germany, however, is difficult to realize because of the large number of power stations. For conventionally heated power stations therefore only a selection was made, while nuclear power stations in operation or under construction could almost completely be taken into account. For want of sufficient quantities of water for river water cooling, projected power stations are now almost exclusively designed for closed-circuit cooling so that the required discharge structures for elutrition water from the cooling towers as well as for the emergency and secondary cooling circuits have to be designed only for small amounts of water. (orig./HP) [de

  9. Experimental simulation of the water cooling of corium spread over the floor of a BWR containment

    Energy Technology Data Exchange (ETDEWEB)

    Morage, F.; Lahey, R.T. Jr.; Podowski, M.Z. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    This paper is concerned with an experimental investigation of the cooling effect of water collected on the surface of corium released onto the floor of a BWR drywell. In the present experiments, the actual reactor materials were replaced by simulant materials. Specifically, the results are shown for Freon-11 film boiling over liquid Wood`s metal spread above a solid porous surface through which argon gas was injected. An analysis of the obtained experimental data revealed that the actual film boiling heat transfer between a molten pool of corium and the water above the pool should be more efficient than predicted by using standard correlations for boiling over solid surfaces. This effect will be further augmented by the gas released due to the ablation of concrete floor beneath the corium and percolating towards its upper surface and into through the water layer above.

  10. Water spray cooling technique applied on a photovoltaic panel: The performance response

    International Nuclear Information System (INIS)

    Nižetić, S.; Čoko, D.; Yadav, A.; Grubišić-Čabo, F.

    2016-01-01

    Highlights: • An experimental study was conducted on a monocrystalline photovoltaic panel (PV). • A water spray cooling technique was implemented to determine PV panel response. • The experimental results showed favorable cooling effect on the panel performance. • A feasibility aspect of the water spray cooling technique was also proven. - Abstract: This paper presents an alternative cooling technique for photovoltaic (PV) panels that includes a water spray application over panel surfaces. An alternative cooling technique in the sense that both sides of the PV panel were cooled simultaneously, to investigate the total water spray cooling effect on the PV panel performance in circumstances of peak solar irradiation levels. A specific experimental setup was elaborated in detail and the developed cooling system for the PV panel was tested in a geographical location with a typical Mediterranean climate. The experimental result shows that it is possible to achieve a maximal total increase of 16.3% (effective 7.7%) in electric power output and a total increase of 14.1% (effective 5.9%) in PV panel electrical efficiency by using the proposed cooling technique in circumstances of peak solar irradiation. Furthermore, it was also possible to decrease panel temperature from an average 54 °C (non-cooled PV panel) to 24 °C in the case of simultaneous front and backside PV panel cooling. Economic feasibility was also determined for of the proposed water spray cooling technique, where the main advantage of the analyzed cooling technique is regarding the PV panel’s surface and its self-cleaning effect, which additionally acts as a booster to the average delivered electricity.

  11. XHM-1 alloy as a promising structural material for water-cooled fusion reactor components

    International Nuclear Information System (INIS)

    Solonin, M.I.; Alekseev, A.B.; Kazennov, Yu.I.; Khramtsov, V.F.; Kondrat'ev, V.P.; Krasina, T.A.; Rechitsky, V.N.; Stepankov, V.N.; Votinov, S.N.

    1996-01-01

    Experience gained in utilizing austenitic stainless steel components in water-cooled power reactors indicates that the main cause of their failure is the steel's propensity for corrosion cracking. In search of a material immune to this type of corrosion, different types of austenitic steels and chromium-nickel alloys were investigated and tested at VNIINM. This paper presents the results of studying physical and mechanical properties, irradiation and corrosion resistance in a water coolant at <350 C of the alloy XHM-1 as compared with austenitic stainless steels 00Cr16Ni15Mo3Nb, 00Cr20Ni25Nb and alloy 00Cr20Ni40Mo5Nb. Analysis of the results shows that, as distinct from the stainless steels studied, the XHM-1 alloy is completely immune to corrosion cracking (CC). Not a single induced damage was encountered within 50 to 350 C in water containing different amounts of chlorides and oxygen under tensile stresses up to the yield strength of the material. One more distinctive feature of the alloy compared to steels is that no change in the strength or total elongation is encountered in the alloy specimens irradiated to 32 dpa at 350 C. The XHM-1 alloy has adequate fabricability and high weldability characteristics. As far as its properties are concerned, the XHM-1 alloy is very promising as a material for water-cooled fusion reactor components. (orig.)

  12. Reactor core of light water-cooled reactor

    International Nuclear Information System (INIS)

    Miwa, Jun-ichi; Aoyama, Motoo; Mochida, Takaaki.

    1996-01-01

    In a reactor core of a light water cooled reactor, the center of the fuel rods or moderating rods situated at the outermost circumference among control rods or moderating rods are connected to divide a lattice region into an inner fuel region and an outer moderator region. In this case, the area ratio of the moderating region to the fuel region is determined to greater than 0.81 for every cross section of the fuel region. The moderating region at the outer side is increased relative to the fuel rod region at the inner side while keeping the lattice pitch of the fuel assembly constant, thereby suppressing the increase of an absolute value of a void reactivity coefficient which tends to be caused when using MOX fuels as a fuel material, by utilizing neutron moderation due to a large quantity of coolants at the outer side of the fuel region. The void reactivity coefficient can be made substantially equal with that of uranium fuel assembly without greatly reducing a plutonium loading amount or without greatly increasing linear power density. (N.H.)

  13. Hydrogen in water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    1992-01-01

    The Commission of the European Community (CEC) and the International Atomic Energy Agency (IAEA) decided in 1989 to update the state of the art concerning hydrogen in water cooled nuclear power reactors by commissioning a report which would review, all the available information to-date and make recommendations for the future. This joint report was prepared by committees formed by the IAEA and by the CEC. The aim of this report is to review the current understanding on the areas in which the research on hydrogen in LWR is conventionally presented, taking into account the results of the latest reported research developments. The main reactions through which hydrogen is produced are assessed together with their timings. An estimation of the amount of hydrogen produced by each reaction is given, in order to reckon their relative contribution to the hazard. An overview is then given of the state of knowledge of the most important phenomena taking place during its transport from the place of production and the phenomena which control the hydrogen combustion and the consequences of combustion under various conditions. Specific research work is recommended in each sector of the presented phenomena. The last topics reviewed in this report are the hydrogen detection and the prevent/mitigation of pressure and temperature loads on containment structures and structures and safety related equipment caused by hydrogen combustion

  14. Stability analysis of a heated channel cooled by supercritical water

    International Nuclear Information System (INIS)

    Magni, M. C.; Delmastro, D. F; Marcel, C. P

    2009-01-01

    A simple model to study thermal-hydraulic stability of a heated cannel under supercritical conditions is presented. Single cannel stability analysis for the SCWR (Supercritical Water Cooled Reactor) design was performed. The drastic change of fluid density in the reactor core of a SCWR may induce DWO (Density Wave Oscillations) similar to those observed in BWRs. Due to the similarities between subcritical and supercritical systems we may treat the supercritical fluid as a pseudo two-phase system. Thus, we may extend the modeling approach often used for boiling flow stability analysis to supercritical pressure operation conditions. The model developed in this work take into account three regions: a heavy fluid region, similar to an incompressible liquid; a zone where a heavy fluid and a light fluid coexist, similar to two-phase mixture; and a light fluid region which behaves like superheated steam. It was used the homogeneous equilibrium model (HEM) for the pseudo boiling zone, and the ideal gas model for the pseudo superheated steam zone. System stability maps were obtained using linear stability analysis in the frequency domain. Two possible instability mechanisms are observed: DWO and excursive Ledinegg instabilities. Also, a sensitivity analysis showed that frictions in pseudo superheated steam zone, together with acceleration effect, are the most destabilizing effects. On the other hand, frictions in pseudo liquid zone are the most important stabilizing effect. [es

  15. Thermohydraulics of emergency core cooling in light water reactors

    International Nuclear Information System (INIS)

    1989-10-01

    This report, by a group of experts of the OECD-NEA Committee on the Safety of Nuclear Installations, reviews the current state-of-knowledge in the field of emergency core cooling (ECC) for design-basis, loss-of-coolant accidents (LOCA) and core uncover transients in pressurized- and boiling-water reactors. An overview of the LOCA scenarios and ECC phenomenology is provided for each type of reactor, together with a brief description of their ECC systems. Separate-effects and integral-test facilities, which contribute to understanding and assessing the phenomenology, are reviewed together with similarity and scaling compromises. All relevant LOCA phenomena are then brought together in the form of tables. Each phenomenon is weighted in terms of its importance to the course of a LOCA, and appraised for the adequacy of its data base and analytical modelling. This qualitative procedure focusses attention on the modelling requirements of dominant LOCA phenomena and the current capabilities of the two-fluid models in two-phase flows. This leads into the key issue with ECC: quantitative code assessment and the application of system codes to predict with a well defined uncertainty the behaviour of a nuclear power plant. This issue, the methodologies being developed for code assessment and the question of how good is good enough are discussed in detail. Some general conclusions and recommendations for future research activities are provided

  16. Methodology for predicting cooling water effects on fish

    International Nuclear Information System (INIS)

    Cakiroglu, C.; Yurteri, C.

    1998-01-01

    The mathematical model presented here predicts the long-term effects of once-through cooling water systems on local fish populations. The fish life cycle model simulates different life stages of fish by using appropriate expressions representing growth and mortality rates. The heart of the developed modeling approach is the prediction of plant-caused reduction in total fish population by estimating recruitment to adult population with and without entrainment of ichthyoplankton and impingement of small fish. The model was applied to a local fish species, gilthead (Aparus aurata), for the case of a proposed power plant in the Aegean region of Turkey. The simulations indicate that entrainment and impingement may lead to a population reduction of about 2% to 8% in the long run. In many cases, an impact of this size can be considered rather unimportant. In the case of sensitive and ecologically values species facing extinction, however, necessary precautions should be taken to minimize or totally avoid such an impact

  17. Water conservation and improved production efficiency using closed-loop evaporative cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Marchetta, C. [Niagara Blower Co., Buffalo, NY (United States)

    2009-07-01

    This paper described wet surface air coolers (WSAC) that can be used in refineries and hydrocarbon processing plants to address water use issues. These closed-loop evaporative cooling systems are a cost-effective technology for both heat transfer and water conservation. WSACs can help deliver required cooling water temperatures and improve plant performance while using water streams currently considered to be unusable with conventional towers and heat exchangers. WSACs are versatile and can provide solutions to water use, water quality, and outlet temperature. The benefits of the WSAC include capital cost savings, reduced system pressures, lower carbon footprint, and the ability to use poor quality water as makeup. Water makeup can be blowdown from other equipment, plant effluent, reclaimed water, produced water, flue gas desulphurization (FGD) wastewater, and even seawater. Units can be manufactured with a wide variety of materials depending on water quality, water treatment, and cycles of concentration. This paper also provided comparisons to other alternative technologies, capital and operating cost savings, and site specific case studies. Two other system designs can accommodate closed-loop heat transfer applications, notably an open tower with a heat exchanger and a dry, air-cooled system. A WSAC system is an efficient and effective heat rejection technology for several reasons. The WSAC cooler or condenser utilizes latent cooling, which is far more efficient than sensible cooling. This means that a WSAC system can cool the same heat load with a smaller footprint than all-dry systems. 6 figs.

  18. Model validation using CFD-grade experimental database for NGNP Reactor Cavity Cooling Systems with water and air

    Energy Technology Data Exchange (ETDEWEB)

    Manera, Annalisa [Univ. of Michigan, Ann Arbor, MI (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Petrov, Victor [Univ. of Michigan, Ann Arbor, MI (United States); Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Tompkins, Casey [Univ. of Wisconsin, Madison, WI (United States); Nunez, Daniel [Univ. of Michigan, Ann Arbor, MI (United States)

    2018-02-13

    This project has been focused on the experimental and numerical investigations of the water-cooled and air-cooled Reactor Cavity Cooling System (RCCS) designs. At this aim, we have leveraged an existing experimental facility at the University of Wisconsin-Madison (UW), and we have designed and built a separate effect test facility at the University of Michigan. The experimental facility at UW has underwent several upgrades, including the installation of advanced instrumentation (i.e. wire-mesh sensors) built at the University of Michigan. These provides highresolution time-resolved measurements of the void-fraction distribution in the risers of the water-cooled RCCS facility. A phenomenological model has been developed to assess the water cooled RCCS system stability and determine the root cause behind the oscillatory behavior that occurs under normal two-phase operation. Testing under various perturbations to the water-cooled RCCS facility have resulted in changes in the stability of the integral system. In particular, the effects on stability of inlet orifices, water tank volume have and system pressure been investigated. MELCOR was used as a predictive tool when performing inlet orificing tests and was able to capture the Density Wave Oscillations (DWOs) that occurred upon reaching saturation in the risers. The experimental and numerical results have then been used to provide RCCS design recommendations. The experimental facility built at the University of Michigan was aimed at the investigation of mixing in the upper plenum of the air-cooled RCCS design. The facility has been equipped with state-of-theart high-resolution instrumentation to achieve so-called CFD grade experiments, that can be used for the validation of Computational Fluid Dynanmics (CFD) models, both RANS (Reynold-Averaged) and LES (Large Eddy Simulations). The effect of risers penetration in the upper plenum has been investigated as well.

  19. Development of methods for the decrease in instability of recycling water of conjugated closed-circuit cooling system of HPP

    Science.gov (United States)

    Chichirov, A. A.; Chichirova, N. D.; Vlasov, S. M.; Lyapin, A. I.; Misbakhov, R. Sh.; Silov, I. Yu.; Murtazin, A. I.

    2016-10-01

    On Russian HPPs, conjugated closed-circuit cooling systems, where purge water is used as initial for water-treatment facilities, are widespread. For this reason, it is impossible to use general methods for the stabilization treatment of recycling water in order to prevent scale formation in the units of a system, namely, turbine condensers and cooling towers. In this paper, the methods for the decrease in the instability of recycling water using the methods of chemical engineering, such as stabilization and synchronization of flows and organization of recycles, are suggested. The results of an industrial experiment on the implementation of stabilization treatment of recycling water by the organization of recycle are given. The experiment was carried out on Kazan CHPP-3. The flow scheme involved the recycle of chemically purified water (CPW) for the heat network make-up to the closed-circuit cooling system. The experiment was carried out at three stages with the gradual change of the consumption of the recycle, namely, 0, 50, and 100 t/h. According to the results of experiments, the reliable decrease in the rate of the sedimentation was recorded on the units of the system, namely, turbine condenser and chimney-type cooling tower. This is caused by two reasons. Firstly, this is periodic excessive concentration of recycling water due to the nonstationary character of inlet and outlet flows. Secondly, this is seasonal (particularly, in the summer period) exceeding of the evaporation coefficient. As a result of stabilization and synchronization of flows and organization of recycles, the quality of clarified and chemically purified water for the heat network make-up increases and the corrosion of iron- and copper-containing structural materials decreases. A natural decrease in temperature drop on the operating turbine condensers is mentioned.

  20. Development in cooling water intake and outfall systems for atomic or steam power stations

    International Nuclear Information System (INIS)

    Wada, Akira

    1987-01-01

    The condenser cooling water channel, in its functional aspects, is an important structure for securing a stable supply of cooling water. In its design it is necessary to give a thorough-going study to a reduction of ranges affected by discharged warm water and minimizing the effect of discharged water on navigating ships, and in its functional aspects as a structure for power generation, avoiding the recirculation of discharged warm water as well as to maintaining the operation of power stations in case of abnormalities (concentration of dirts owing to typhoons and floods, outbreak of a large amount of jellyfishes, etc.), and all these aspects must be reflected in the design of cooling water channel systems. In this paper, the present situation relating to the design of cooling water intake and outfall systems in Japan is discussed. (author). 10 figs

  1. Cooling tower make-up water processing for nuclear power plants: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    Andres, O; Flunkert, F; Hampel, G; Schiffers, A [Rheinisch-Westfaelisches Elektrizitaetswerk A.G., Essen (Germany, F.R.)

    1977-01-01

    In water-cooled nuclear power plants, 1 to 2% of the total investment costs go to cooling tower make-up water processing. The crude water taken from rivers or stationary waters for cooling must be sufficiently purified regarding its content of solids, carbonate hardness and corrosive components so as to guarantee an operation free of disturbances. At the same time, the processing methods must be selected for operational-economic reasons in such a manner that waste water and waste problems are kept small regarding environmental protection. The various parameters described have a decisive influence on the processing methods of the crude water, individual processes (filtration, sedimentation, decarbonization) are described, circuit possibilities for cooling water systems are compared and the various processes are analyzed and compared with regard to profitableness and environmental compatability.

  2. Shock and vibration protection of submerged jet impingement cooling systems: Theory and experiment

    International Nuclear Information System (INIS)

    Haji Hosseinloo, Ashkan; Tan, Siow Pin; Yap, Fook Fah; Toh, Kok Chuan

    2014-01-01

    In the recent years, advances in high power density electronics and computing systems have pushed towards more advanced thermal management technologies and higher-capacity cooling systems. Among different types of cooling systems, jet impingement technology has gained attention and been widely used in different industries for its adaptability, cooling uniformity, large heat capacity, and ease of its localization. However, these cooling systems may not function properly in dynamically harsh environment inherent in many applications such as land, sea and air transportation. In this research article, a novel double-chamber jet impingement cooling system is fabricated and its performance is studied in harsh environment. Using the authors' previous studies, isolators with optimum properties are selected to ruggedize the chassis containing the cooling chamber against shock and random vibration. Experiments are conducted on both hard-mounted and isolated chassis and the cooling performance of the system is assessed using the inlet, and impingement surface temperatures of the cooling chamber. The experimental results show the isolation system prevents any failure that otherwise would occur, and also does not compromise the thermal performance of the system. - Highlights: • A novel double-chamber jet impingement cooling system was designed and fabricated. • Comprehensive set of random vibration and shock tests are conducted. • The isolation system proved to protect the cooling system properly against mechanical failure. • Cooling system performance was not significantly affected by the input random vibration and shock

  3. Operation and Licensing of Mixed Cores in Water Cooled Reactors

    International Nuclear Information System (INIS)

    2013-11-01

    Nuclear fuel is a highly complex material that is subject to continuous development and is produced by a range of manufacturers. During operation of a nuclear power plant, the nuclear fuel is subject to extreme conditions of temperature, corroding environment and irradiation, and many different designs of fuel have been manufactured with differing fuel materials, cladding materials and assembly structure to ensure these conditions. The core of an operating power plant can contain hundreds of fuel assemblies, and where there is more than a single design of a fuel assembly in the core, whether through a change of fuel vendor, introduction of an improved design or for some other reason, the core is described as a mixed core. The task of ensuring that the different assembly types do not interact in a harmful manner, causing, for example, differing flow resistance resulting in under cooling, is an important part of ensuring nuclear safety. This report has compiled the latest information on the operational experience of mixed cores and the tools and techniques that are used to analyse the core operation and demonstrate that there are no safety related problems with its operation. This publication is a result of a technical meeting in 2011 and a series of consultants meetings

  4. Calculation of thermal deformations in water-cooled monochromator crystals

    International Nuclear Information System (INIS)

    Nakamura, Ario; Hashimoto, Shinya; Motohashi, Haruhiko

    1994-11-01

    Through calculation of temperature distribution and thermal deformation of monochromators, optical degradation by the heat loads in SPring-8 have been discussed. Cooling experiments were made on three models of copper structures with the JAERI Electron Beam Irradiation Stand (JEBIS) and the results were used to estimate heat transfer coefficients in the models. The heat transfer coefficients have been adopted to simulate heating processes on silicon models of the same structures as the copper models, for which radiations from the SPring-8 bending magnet and the JAERI prototype undulator (WPH-33J) were considered. It has been concluded that, in the case of bending magnet (with power density of 0.27[MW/m 2 ] on monochromator surface), the temperature at the surface center reaches about 30[degC] from the initial temperature of 27[degC] in all the models. In the case of WPH-33J (with power density of 8.2[MW/m 2 ]), the temperature reaches about 200 to 280[degC] depending on the models. The radiation from WPH-33J yields slope errors bigger than the Darwin's width(23[μrad]). (author)

  5. The EC conceptual design proposal of a water-cooled convertible blanket for ITER

    International Nuclear Information System (INIS)

    Giancarli, L.; Proust, E.; Baraer, L.; Bielak, B.; Raepsaet, X.; Salavy, J.F.; Sedano, L.; Szczepanski, J.; Quintric-Bossy, J.; Severi, Y.

    1993-01-01

    For several years the EC laboratories have developed breeding blankets for DEMO. From this experience, it has been derived a proposal of tritium breeding blanket for the Extended Performance Phase (EPP) of ITER. The general basic ideas are the following: (i) the switch from the shielding blanket used during the BPP to the breeding blanket for the EPP should not require segments replacement ('convertible' blanket): (ii) its use should not have significant impact on the Basic Performance Phase (BPP); (iii) design and used materials should assure good safety standards and acceptable public perception; (iv) the blanket coolant should be compatible with the coolant required in the high heat-flux components (e.g. divertor, etc.; (v) the required R and D should fit with the ITER time schedule; (vi) the blanket should be able to withstand large power excursions and to accept long downtimes. The proposed design consists of a water-cooled liquid metal blanket, using the eutectic Pb-17Li during the EPP and a non-breeding Pb-alloy (Pb-18Mg or Pb-50Bi) during the BPP. Each segment is basically formed by a box containing the alloy, cooled by an array of poloidal hairpin-type cooling tubes and reinforced by toroidal and radial stiffeners. The coolant tubes are double-walled tubes allowing leak detections. The selected First Wall (FW) is a toroidally-drilled steel plate with brazed water-cooling U-tube. The structural material is austenitic stainless steel (316L(N)) which limits the maximum acceptable neutron fluence to about 1 MWa/m 2 . The advantages of using other structural materials requiring longer leadtimes, such as ferritic/martensitic steels, are also briefly discussed

  6. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S

    2007-04-15

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method.

  7. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S.

    2007-04-01

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method

  8. District cool water distribution; Reseau urbain et distribution d`eau glacee

    Energy Technology Data Exchange (ETDEWEB)

    Schabaillie, D. [Ste Climespace (France)

    1997-12-31

    The city of Paris has developed several district cool water distribution networks (Climespace) for air conditioning purposes, one in the Halles district (central Paris) linked with the Louvre museum, one in the Opera district (with large department stores) and one in the east of paris (Bercy). Each of these networks has a cool water production plant, the one at the Halles producing also hot water and safety electric power. The characteristics of the equipment (heat pumps, refrigerating machinery, storage...) are described. The pipes are laid in the city sewage network, and the cool carrier is water. The various networks are centrally supervised at the Halles center

  9. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Gary Vine

    2010-12-01

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes “Best Technology Available” for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant’s steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  10. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    International Nuclear Information System (INIS)

    Vine, Gary

    2010-01-01

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes 'Best Technology Available' for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant's steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R and D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  11. Solar sorptive cooling. Technologies, user requirements, practical experience, future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Treffinger, P. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Hardthausen (Germany); Hertlein, H.P. [eds.] [Forschungsverbund Sonnenenergie, Koeln (Germany)

    1998-09-01

    Sorptive cooling techniques permit the use of low-temperature solar heat, i.e. a renewable energy of low cost and world-wide availability. The Forschungsverbund Sonnenenergie intends to develop solar sorptive cooling technologies to the prototype stage and, in cooperation with the solar industry and its end users, to promote practical application in air conditioning of buildings and cold storage of food. The workshop presents an outline of the state of development of solar sorptive cooling from the view of users and developers. Exemplary solar cooling systems are described, and the potential of open and closed sorptive processes is assessed. Future central activities will be defined in an intensive discussion between planners, producers, users and developers. [German] Der Einsatz von Sorptionstechniken zur Kaelteerzeugung erlaubt es, als treibende Solarenergie Niedertemperatur-Solarwaerme einzusetzen, also eine regenerative Energie mit sehr geringen Kosten und weltweiter Verfuegbarkeit. Der Forschungsverbund Sonnenenergie hat sich als Aufgabe gestellt, die Techniken der solaren Sorptionskuehlung bis zum Prototyp zu entwickeln und mit Industrie und Nutzern die praktische Anwendung voranzubringen. Die Anwendungsfelder sind die Klimatisierung von Gebaeuden und die Kaltlagerung von Lebensmitteln. Der Workshop gibt einen Ueberblick zum Entwicklungsstand der solaren Sorptionskuehlung aus der Sicht der Anwender und Entwickler. Bereits ausgefuehrte Beispiele zur solaren Kuehlung werden vorgestellt und das Potential geschlossener und offener Sorptionsverfahren angegeben. In intensiver Diskussion zwischen Planern, Herstellern, Nutzern und Entwicklern sollen kuenftige Arbeitsschwerpunkte herausgearbeitet werden. (orig.)

  12. Simulation of Two-Phase Natural Circulation Loop for Core Cather Cooling Using Air Water

    International Nuclear Information System (INIS)

    Revankar, S. T.; Huang, S. F.; Song, K. W.; Rhee, B. W.; Park, R. J.; Song, J. H.

    2012-01-01

    A closed loop natural circulation system employs thermally induced density gradients in single phase or two-phase liquid form to induce circulation of the working fluid thereby obviating the need for any mechanical moving parts such as pumps and pump controls. This increases the reliability and safety of the cooling system and reduces installation, operation and maintenance costs. That is the reason natural circulation cooling has been considered in advanced reactor core cooling and in engineered safety systems. Natural circulation cooling has been proposed to remove reactor decay heat by external vessel cooling for in-vessel core retention during sever accident scenario. Recently in APR1400 reactor core catcher design natural circulation cooling is proposed to stabilize and cool the corium ejected from the reactor vessel following core melt and breach of reactor vessel. The natural circulation flow is similar to external vessel cooling where water flows through an inclined narrow gap below hot surface and is heated to produce boiling. The two-phase natural circulation enables cooling of the corium pool collected on core catcher. Due to importance of this problem this paper focuses simulation of the two-phase natural circulation through inclined gap using air-water system. Scaling criteria for air-water loop are derived that enable simulation of the flow regimes and natural circulation flow rates in such systems using air-water system

  13. Calculation of mass flow and steam quality distribution on fuel elements of light-water cooled boiling water nuclear reactors

    International Nuclear Information System (INIS)

    Hermanns, H.J.

    1977-04-01

    By the example of light-water cooled nuclear reactors, the state of the calculation methods at disposal for calculating mass flow and steam quality distribution (sub-channel analysis) is indicated. Particular regard was paid to the transport phenomena occurring in reactor fuel elements in the range of two phase flow. Experimentally determined values were compared with recalculations of these experiments with the sub-channel code COBRA; from the results of these comparing calculations, conclusions could be drawn on the suitability of this code for defined applications. Limits of reliability could be determined to some extent. Based on the experience gained and the study of individual physical model concepts, recognized as being important, a sub-channel model was drawn up and the corresponding numerical computer code (SIEWAS) worked out. Experiments made at GE could be reproduced with the code SIEWAS with sufficient accuracy. (orig.) [de

  14. IMPROVEMENT OF SYSTEMS OF TECHNICAL WATER SUPPLY WITH COOLING TOWERS FOR HEAT POWER PLANTS TECHNICAL AND ECONOMIC INDICATORS PERFECTION. Part 2

    Directory of Open Access Journals (Sweden)

    Yu. A. Zenovich-Leshkevich-Olpinskiy

    2016-01-01

    Full Text Available The method of calculation of economic efficiency that can be universal and is suitable for feasibility study of modernization of irrigation and water distribution system of cooling towers has been developed. The method takes into account the effect of lower pressure exhaust steam in the condenser by lowering the temperature of the cooling water outlet of a cooling tower that aims at improvement of technical and economic indicators of heat power plants. The practical results of the modernization of irrigation and water distribution system of a cooling tower are presented. As a result, the application of new irrigation and water distribution systems of cooling towers will make it possible to increase the cooling efficiency by more than 4 оС and, therefore, to obtain the fuel savings by improving the vacuum in the turbine condensers. In addition, the available capacity of CHP in the summer period is increased. The results of the work, the experience of modernization of irrigation and water distribution systems of the Gomel CHP-2 cooling towers system, as well as the and methods of calculating of its efficiency can be disseminated for upgrading similar facilities at the power plants of the Belarusian energy system. Some measures are prosed to improve recycling systems, cooling towers and their structures; such measures might significantly improve the reliability and efficiency of technical water supply systems of heat power plants.

  15. A water-cooled target of a 14 MeV neutron source

    International Nuclear Information System (INIS)

    Ogawa, Masuro; Seki, Masahiro; Kawamura, Hiroshi; Sanokawa, Konomo

    1979-09-01

    For the cooling system of a stationary target for the fusion neutronics source (FNS), designed to meet the structural, thermal and hydraulic requirements, thermohydraulic experiments were made. In the heat transfer experiment, in place of an accelerator, electric-heater assemblies were used. The relation of head loss and heat transfer was obtained as a function of Reynolds number. The head loss was not large for flow rates up to 1.3 l/s. Neither vibration of the apparatus nor cavitation of water was observed even at the maximum flow rate. The heat load of 1 kW for the beam diameter of 15mm, i.e. the requirement of FNS, could be removed by 0.2 l/s water flow, with the target-surface maximum temperature kept below 200 0 C. Extrapolation of the experimental results showed that with the target system, the maximum heat load is 2.3 kW for the beam of diameter 15 mm. The value is sufficiently large compared with the heat load of FNS; with finned cooling surfaces, the heat loads up to 3.7 kW may be removed. (author)

  16. On the suitability of Peltier cooled Si-PIN detectors in transmission experiments

    International Nuclear Information System (INIS)

    Murty, V.R.K.; Devan, K.R.S.

    2001-01-01

    The performance of a Peltier cooled Si-PIN detector is compared with that for a Freolectric cooled Si(Li) detector, references being made to transmission experiments that evaluate total cross sections at low photon energies. The results of these measurements are discussed. (author)

  17. IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)

    International Nuclear Information System (INIS)

    Yamada, K.; Aksan, S. N.

    2012-01-01

    The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present, 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)

  18. Chromate ion-exchange study for cooling water

    International Nuclear Information System (INIS)

    Sengupta, A.K.

    1985-01-01

    In spite of high chromate selectivity, the ion-exchange process for Cr(IV) recovery from cooling tower blowdown is yet to be commercially popular. Possible degradation of the ion-exchange resin by the oxidative action of Cr(IV) during ion exchange has been considered as the prime obstacle. Resins have been manufactured with fairly acceptable properties to withstand both physical attrition and chemical oxidation. Demonstrated during the course of this research is early, gradual Cr(VI) breakthrough during fixed-bed column runs at acidic pH in the presence of competing sulfate and chloride anions. The advantage of high chromate selectivity is essentially lost due to the early Cr(VI) breakthrough because the column runs are always terminated after a pre-determined level of Cr(VI) has appeared in the treated water. Experimental results provide sufficient evidence that this is not due to poor column kinetics or electrolyte penetration. The chromate ion-exchange mechanism has been investigated in order to explain the foregoing anomalies for the chromate-exchange process. The knowledge of chromate ion-exchange mechanism has been used to overcome the shortcoming of gradual Cr(VI) breakthrough. This study shows that: (a) a continuous counter-current ion-exchange system theoretically offers much higher Cr(VI) removal capacity compared to conventional single-unit fixed-bed system for any pre-determined level of Cr(VI) breakthrough; (b) by modifying the resin composition, the gradual Cr(VI) breakthrough can be greatly eliminated

  19. Modeling of a solar photovoltaic water pumping system under the influence of panel cooling

    Directory of Open Access Journals (Sweden)

    Chinathambi Gopal

    2017-01-01

    Full Text Available In this paper, the performance of a solar photovoltaic water pumping system was improved by maintaining the cell temperature in the range between 30°C and 40°C. Experiments have been conducted on a laboratory experimental set-up installed with 6.4 m2 solar panel (by providing air cooling either on the top surface or over the beneath surface of the panel to operate a centrifugal pump with a rated capacity of 0.5 HP. The performance characteristics of the photovoltaic panel (such as, cell temperature, photovoltaic panel output, and photovoltaic efficiency, pump performance characteristics (such as pump efficiency and discharge, and system performance characteristics are observed with reference to solar irradiation, ambient temperature and wind velocity. A thermal model has been developed to predict the variations of photovoltaic cell temperature based on the measured glass and tedlar temperatures. The influences of cell temperature and solar irradiation on the performance of the system are described. The results concluded that cooling of photovoltaic panel on beneath surface has maintained the cell temperature in the range between 30°C and 40°C and improved the overall efficiency by about 1.8% when compared to the system without panel cooling.

  20. Novel Application of Density Estimation Techniques in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz Angelina [IIT, Chicago; Snopok, Pavel [IIT, Chicago; Neuffer, David [Fermilab; Rogers, Chris [Rutherford

    2017-10-12

    The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate muon beam ionization cooling for the first time and constitutes a key part of the R&D towards a future neutrino factory or muon collider. Beam cooling reduces the size of the phase space volume occupied by the beam. Non-parametric density estimation techniques allow very precise calculation of the muon beam phase-space density and its increase as a result of cooling. These density estimation techniques are investigated in this paper and applied in order to estimate the reduction in muon beam size in MICE under various conditions.

  1. Numerical study of coupled heat and mass transfer in geothermal water cooling tower

    International Nuclear Information System (INIS)

    Bourouni, K.; Bassem, M.M.; Chaibi, M.T.

    2008-01-01

    Cross flow mechanical cooling towers, widely spreads all over the south region of Tunisia are used for cooling geothermal water for agriculture and domestic ends. These towers are sized empirically and present several problems in regard to operation and electrical energy consumption. This work aims to study the thermal behaviour of this type of cooling towers through a developed mathematical model considering the variation of the water mass flow rate inside the tower. The analysis of the water and air temperatures distribution along the cooling tower had underlined the negative convection phenomenon at a certain height of the tower. This analysis has shown also that the difference in water temperature between the inlet and the outlet of the tower is much higher than the one of air due to the dominance of the evaporative potential compared to the convective one. In addition, the variations of the air humidity along the cooling tower and the quantity of evaporated water have been investigated. The loss of water by evaporation is found to be 5.1% of the total quantity of water feeding the cooling tower. Interesting future prospects are expected for validation of the developed model to optimize the operating of the cooling tower

  2. Application of Response Surface Methodology (RSM for Optimization of Operating Parameters and Performance Evaluation of Cooling Tower Cold Water Temperature

    Directory of Open Access Journals (Sweden)

    Ramkumar RAMAKRISHNAN

    2012-01-01

    Full Text Available The performance of a cooling tower was analyzed with various operating parameters tofind the minimum cold water temperature. In this study, optimization of operating parameters wasinvestigated. An experimental design was carried out based on central composite design (CCD withresponse surface methodology (RSM. This paper presents optimum operating parameters and theminimum cold water temperature using the RSM method. The RSM was used to evaluate the effectsof operating variables and their interaction towards the attainment of their optimum conditions.Based on the analysis, air flow, hot water temperature and packing height were high significanteffect on cold water temperature. The optimum operating parameters were predicted using the RSMmethod and confirmed through experiment.

  3. Accident analysis of heavy water cooled thorium breeder reactor

    International Nuclear Information System (INIS)

    Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki

    2015-01-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The

  4. Accident analysis of heavy water cooled thorium breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yulianti, Yanti [Department of Physics, University of Lampung Jl. Sumantri Brojonegoro No.1 Bandar Lampung, Indonesia Email: y-yanti@unila.ac.id (Indonesia); Su’ud, Zaki [Department of Physics, Bandung Institute of Technology Jl. Ganesha 10 Bandung, Indonesia Email: szaki@fi.itb.ac.id (Indonesia); Takaki, Naoyuki [Department of Nuclear Safety Engineering Cooperative Major in Nuclear Energy (Graduate School) 1-28-1 Tamazutsumi,Setagayaku, Tokyo158-8557, Japan Email: ntakaki@tcu.ac.jp (Japan)

    2015-04-16

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The

  5. Corrosion inhibition measures in primary cooling water system during refurbishment of Cirus, re-commissioning and subsequent operation

    International Nuclear Information System (INIS)

    Rai, K.K.; Ramesh, N.; Sharma, R.C.

    2008-01-01

    Cirus is a 40 MWth, heavy water moderated, demineralized light water cooled, natural uranium fuelled research reactor. Reactor was commissioned in year 1960 and operated satisfactorily till 1990. After that availability factor started decreasing mainly due to equipment outage exhibiting signs of ageing. Based upon systematic ageing studies and assessment of condition of systems, structures and components, a refurbishment plan including safety upgrades was drawn up. Reactor was shut down in October 1997 for execution of jobs. After completion of refurbishment jobs reactor was started back in October 2002 and power operation was achieved in 2003. Primary cooling water (PCW) system consists of re-circulating pumps, heat exchangers, expansion tank, piping, valves, emergency storage reservoir (Ball Tank) and other components. Normally the fission heat from fuel is removed by re-circulating coolant in closed loop and transferred to seawater via heat exchangers. In case of outage of pumps, shut down cooling is provided by flow of water from Ball Tank under gravity to the underground dump tanks. The dissolved oxygen is maintained below 2 ppm and pH is maintained neutral to minimize corrosion of fuel cladding (Aluminum). This paper highlights the experience gained during segmentation of primary cooling water pipelines for pressure testing, measures taken to corrosion inhibition of primary cooling water lines to permit execution of refurbishment jobs, inspections and actions taken to repair/replace the corroded PCW pipe line segments, observations regarding corrosion related failures, re-commissioning of the system after refurbishment, assessment for safe reactor operation and experience during power operation. (author)

  6. Minimization of radioactive material deposition in water-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Ruiz, C.P.; Blaies, D.M.

    1988-01-01

    This patent describes the method for inhibiting the deposition of radioactive cobalt in a water-bearing vessel of a water-cooled nuclear reactor which comprises adding zinc ion to water entering the water-bearing vessel. The improvement contains a substantially lower proportion of the /sup 64/Zn isotope than naturally occurring zinc

  7. Evaluation of water cooled supersonic temperature and pressure probes for application to 1366 K flows

    Science.gov (United States)

    Lagen, Nicholas; Seiner, John M.

    1990-01-01

    Water cooled supersonic probes are developed to investigate total pressure, static pressure, and total temperature in high-temperature jet plumes and thereby determine the mean flow properties. Two probe concepts, designed for operation at up to 1366 K in a Mach 2 flow, are tested on a water cooled nozzle. The two probe designs - the unsymmetric four-tube cooling configuration and the symmetric annular cooling design - take measurements at 755, 1089, and 1366 K of the three parameters. The cooled total and static pressure readings are found to agree with previous test results with uncooled configurations. The total-temperature probe, however, is affected by the introduction of water coolant, and effect which is explained by the increased heat transfer across the thermocouple-bead surface. Further investigation of the effect of coolant on the temperature probe is proposed to mitigate the effect and calculate more accurate temperatures in jet plumes.

  8. Thermohydraulic relationships for advanced water cooled reactors and the role of the IAEA

    International Nuclear Information System (INIS)

    Badulescu, A.; Groeneveld, D.C.

    2000-01-01

    Under the auspices of the International Atomic Energy Agency (IAEA) a Coordinated Research Program (CRP) on Thermohydraulic Relationships for Advanced Water-Cooled Reactors was carried out from 1995-1998. It was included into the IAEA's Programme following endorsement in 1995 by the International Working Group on Advanced Technologies for Water Cooled Reactors. The overall goal was to promote International Information exchange and cooperation in establishing a consistent set of thermohydraulic relationships that are appropriate for use in analyzing the performance and safety of advanced water-cooled reactors. (authors)

  9. Performance Optimization of the Water Cooling System for Resonance Frequency Control of the PEFP DTL

    International Nuclear Information System (INIS)

    Kim, K. Y.; Kim, H. K.; Kim, H. S.; Yoon, J. C.; Sohn, Y. K.; Kweon, S. J.; Park, J.; Kim, K. S.

    2010-03-01

    The objective of in this research project is prototype cooling water skid of separated closed loop in order to supply and withdraw low conductivity deionized water in drift tube of drift tube linac as core components of proton accelerates. This report is dealt with design specification of J-PARC 400 MeV Linac cooling water system, PEFP DTL cooling system, specification of RCCS21-24, RCCS101 with pump, loss coefficient for DTL2 modeling, pressure drop with flow rate of heat exchanger.

  10. Evaluation of sea water chlorine demand in condenser cooling water at TAPS 1 and 2

    International Nuclear Information System (INIS)

    Papachan, Deepa; Gupta, P.K.; Patil, D.P.; Save, C.B.; Anilkumar, K.R.

    2008-01-01

    To prevent microbiological growth in the condenser tubes, condenser cooling water chlorination is very important. For effective chlorination, chlorine dose rate and frequency of dosing has to be determined on the basis of sea water chlorine demand. TAPS 1 and 2 is located near Arabian sea and draws water from this sea for its condenser cooling. The present practice of chlorine dosing at TAPS 1 and 2, based on the analysis carried out by GE in 1969, is 2500 kg/day/CWpump and 90 kg/day/SSWpump for a contact period of 25 minutes. Normal frequency of dosing is once per 8 hour and booster dose is once in a week at the same rate for 1 hour. The criteria of effective chlorination is to get residual chlorine of 2-3 ppm at the condenser water box outlet during chlorination at water box inlet/CW pump suction header in the recommended dose rate. The other option of chlorination was continuous dosing to get 0.5 ppm residual chlorine. This option has its own limitations as it is more expensive and also that micro organisms get immune to chlorine eventually due to continuous dosing. Nevertheless higher chlorine dosing is detrimental to AI-brass condenser tubes. Therefore the second option was not adopted at TAPS 1 and 2. Tarapur Atomic Power Station-1 is in the process of replacement of condenser tubes due to frequent condenser tube failures in the recent years. It was essential to analyse the present sea water chlorine demand and re-determine the chlorine dose rate because of development of industries under Maharashtra Industrial Development Corporation (MIDC) and simultaneous population growth around this area over a period of three decades. This paper discusses the experimental observations regarding significant change in sea water chlorine demand over this period and the effect of seasonal changes on sea water chlorine demand. (author)

  11. Estimation of the residual bromine concentration after disinfection of cooling water by statistical evaluation.

    Science.gov (United States)

    Megalopoulos, Fivos A; Ochsenkuehn-Petropoulou, Maria T

    2015-01-01

    A statistical model based on multiple linear regression is developed, to estimate the bromine residual that can be expected after the bromination of cooling water. Make-up water sampled from a power plant in the Greek territory was used for the creation of the various cooling water matrices under investigation. The amount of bromine fed to the circuit, as well as other important operational parameters such as concentration at the cooling tower, temperature, organic load and contact time are taken as the independent variables. It is found that the highest contribution to the model's predictive ability comes from cooling water's organic load concentration, followed by the amount of bromine fed to the circuit, the water's mean temperature, the duration of the bromination period and finally its conductivity. Comparison of the model results with the experimental data confirms its ability to predict residual bromine given specific bromination conditions.

  12. Effect of water treatment on the comparative costs of evaporative and dry cooled power plants

    International Nuclear Information System (INIS)

    Gold, H.; Goldstein, D.J.; Yung, D.

    1976-07-01

    The report presents the results of a study on the relative cost of energy from a nominal 1000 Mwe nuclear steam electric generating plant using either dry or evaporative cooling at four sites in the United States: Rochester, New York; Sheridan, Wyoming; Gallup, New Mexico and Dallas, Texas. Previous studies have shown that because of lower efficiencies the total annual evaluated costs for dry cooling systems exceeds the total annual evaluated costs of evaporative cooling systems, not including the cost of water. The cost of water comprises the cost of supplying the makeup water, the cost of treatment of the makeup and/or the circulating water in the tower, and the cost of treatment and disposal of the blowdown in an environmentally acceptable manner. The purpose of the study is to show the effect of water costs on the comparative costs of dry and evaporative cooled towers

  13. Heat transfer enhancement in a natural draft dry cooling tower under crosswind operation with heterogeneous water distribution

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Mohsen; Amooie, Hossein [Bu-Ali Sina Univ., Hamedan (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2016-04-15

    Crosswind significantly decreases cooling efficiency of a natural draft dry cooling tower. The possibility of improving cooling efficiency with heterogeneous water distribution within the cooling tower radiators under crosswind condition is analysed. A CFD approach was used to model the flow field and heat transfer phenomena within the cooling tower and airflow surrounding the cooling tower. A mathematical model was developed from various CFD results. Having used a trained Genetic Algorithm with the result of mathematical model, the best water distribution was found among the others. Remodeling the best water distribution with the CFD approach showed that the highest enhancement of the heat transfer compared to the usual uniform water distribution.

  14. Heat transfer enhancement in a natural draft dry cooling tower under crosswind operation with heterogeneous water distribution

    International Nuclear Information System (INIS)

    Goodarzi, Mohsen; Amooie, Hossein

    2016-01-01

    Crosswind significantly decreases cooling efficiency of a natural draft dry cooling tower. The possibility of improving cooling efficiency with heterogeneous water distribution within the cooling tower radiators under crosswind condition is analysed. A CFD approach was used to model the flow field and heat transfer phenomena within the cooling tower and airflow surrounding the cooling tower. A mathematical model was developed from various CFD results. Having used a trained Genetic Algorithm with the result of mathematical model, the best water distribution was found among the others. Remodeling the best water distribution with the CFD approach showed that the highest enhancement of the heat transfer compared to the usual uniform water distribution.

  15. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  16. Water mist effect on cooling range and efficiency of casting die

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2008-12-01

    Full Text Available This project is showing investigation results of cooling process of casting die in the temperature range 570÷100 °C with 0.40 MPa compressed air and water mist streamed under pressure 0.25÷0.45 MPa in air jet 0.25÷0.50 MPa using open cooling system.The character and the speed of changes of temperature, forming of the temperture’s gradient along parallel layer to cooled surface of die is shawing with thermal and derivative curves. The effect of kind of cooling factor on the temperature and time and distance from cooling nozzle is presented in the paper. A designed device for generating the water mist cooling the die and the view of sprying water stream is shown here. It’s proved that using of the water mist together with the change of heat transfer interface increases intensity of cooling in the zone and makes less the range cooling zone and reduces the porosity of cast microstructure.

  17. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors

    Science.gov (United States)

    2012-06-15

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling... for public comment draft regulatory guide (DG), DG-1277, ``Initial Test Program of Emergency Core..., entitled, ``Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors,'' is...

  18. Optimization Tool for Direct Water Cooling System of High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Blaabjerg, Frede

    2016-01-01

    important issue for thermal design engineers. This paper aims to present a user friendly optimization tool for direct water cooling system of a high power module which enables the cooling system designer to identify the optimized solution depending on customer load profiles and available pump power. CFD...

  19. Cooling water intake and discharge facilities for Ikata Nuclear Power Station

    International Nuclear Information System (INIS)

    Ishihara, Hisashi; Iwabe, Masakazu

    1977-01-01

    Igata Nuclear Power Station is located at the root of Sadamisaki peninsula in the western part of Ehime Prefecture, Japan, and faces the Iyonada sea area in Seto Inland Sea. The most part of the shoreline forms the cliffs, and the bottom of the sea is rather steep, reaching 60 m depth at 300 m offshore. Considering warm water discharge measures in addition to the natural conditions of tide and current, temperature of sea water, water quality and wave data, it was decided that the deep layer intake system using bottom laid intake pipes and the submerged discharge system with caisson penetrable dike would be adopted for cooling water. The latter was first employed in Japan, and the submerged discharge system with caisson penetrable dike had been developed. The intake was designed to take sea water of about 38 m 3 per sec for each condenser unit at the depth of approximately 17 m with 4.8 m diameter and 116 m length pipes and its calculation details and construction are described. The discharge system was designed to provide a horseshoe-shaped discharge pond with inner diameter of approximately 50 m, surrounded by 17 concrete caissons, and to spout warm water discharge from eight openings of 1.58 m diameter, at the location of approximately 300 m eastward of the intake. Its hydraulic studies and model experiments and its construction are reported. (Wakatsuki, Y.)

  20. Simultaneous heat and mass transfer to air from a compact heat exchanger with water spray precooling and surface deluge cooling

    International Nuclear Information System (INIS)

    Zhang, Feini; Bock, Jessica; Jacobi, Anthony M.; Wu, Hailing

    2014-01-01

    Various methods are available to enhance heat exchanger performance with evaporative cooling. In this study, evaporative mist precooling, deluge cooling, and combined cooling schemes are examined experimentally and compared to model predictions. A flexible model of a compact, finned-tube heat exchanger with a wetted surface is developed by applying the governing conservation and rate equations and invoking the heat and mass transfer analogy. The model is applicable for dry, partially wet, or fully wet surface conditions and capable of predicting local heat/mass transfer, wetness condition, and pressure drop of the heat exchanger. Experimental data are obtained from wind tunnel experiments using a louver-fin flat-tube heat exchanger with single-phase tube-side flow. Total capacity, pressure drop, and water drainage behavior under various water usage rates and air face velocities are analyzed and compared to data for dry-surface conditions. A heat exchanger partitioning method for evaporative cooling is introduced to study partially wet surface conditions, as part of a consistent and general method for interpreting wet-surface performance data. The heat exchanger is partitioned into dry and wet portions by introducing a wet surface factor. For the wet part, the enthalpy potential method is used to determine the air-side sensible heat transfer coefficient. Thermal and hydraulic performance is compared to empirical correlations. Total capacity predictions from the model agree with the experimental results with an average deviation of 12.6%. The model is also exercised for four water augmentation schemes; results support operating under a combined mist precooling and deluge cooling scheme. -- Highlights: • A new spray-cooled heat exchanger model is presented and is validated with data. • Heat duty is shown to be asymptotic with spray flow rate. • Meaningful heat transfer coefficients for partially wet conditions are obtained. • Colburn j wet is lower than j dry

  1. Cooling hyperthermic firefighters by immersing forearms and hands in 10 degrees C and 20 degrees C water.

    Science.gov (United States)

    Giesbrecht, Gordon G; Jamieson, Christopher; Cahill, Farrell

    2007-06-01

    Firefighters experience significant heat stress while working with heavy gear in a hot, humid environment. This study compared the cooling effectiveness of immersing the forearms and hands in 10 and 20 degrees C water. Six men (33 +/- 10 yr; 180 +/- 4 cm; 78 +/- 9 kg; 19 +/- 5% body fat) wore firefighter 'turn-out gear' (heavy clothing and breathing apparatus weighing 27 kg) in a protocol including three 20-min exercise bouts (step test, 78 W, 40 degrees C air, 40% RH) each followed by a 20-min rest/cooling (21 degrees C air); i.e., 60 min of exercise, 60 min of cooling. Turn-out gear was removed during rest/cooling periods and subjects either rested (Control), immersed their hands in 10 or 20 degrees C water (H-10, H-20), or immersed their hands and forearms in 10 or 20 degrees C water (HF-10, HF-20). In 20 degrees C water, hand immersion did not reduce core temperature compared with Control; however, including forearm immersion decreased core temperature below Control values after both the second and final exercise periods (p hand immersion produced a lower core temperature (0.8 degrees C above baseline) than all other conditions (1.1 to 1.4 degrees C above baseline) after the final exercise period (p Hand and forearm immersion in cool water is simple, reduces heat strain, and may increase work performance in a hot, humid environment. With 20 degrees C water, forearms should be immersed with the hands to be effective. At lower water temperatures, forearm and/or hand immersion will be effective, although forearm immersion will decrease core temperature further.

  2. Natural circulation in water cooled nuclear power plants: Phenomena, models, and methodology for system reliability assessments

    International Nuclear Information System (INIS)

    2005-11-01

    In recent years it has been recognized that the application of passive safety systems (i.e. those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. Further, the IAEA Conference on The Safety of Nuclear Power: Strategy for the Future which was convened in 1991 noted that for new plants 'the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate'. Considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to assure that the systems perform their intended functions. To support the development of advanced water cooled reactor designs with passive systems, investigations of natural circulation are an ongoing activity in several IAEA Member States. Some new designs also utilize natural circulation as a means to remove core power during normal operation. In response to the motivating factors discussed above, and to foster international collaboration on the enabling technology of passive systems that utilize natural circulation, an IAEA Coordinated Research Project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation was started in early 2004. Building on the shared expertise within the CRP, this publication presents extensive information on natural circulation phenomena, models, predictive tools and experiments that currently support design and analyses of natural circulation systems and highlights areas where additional research is needed. Therefore, this publication serves both to provide a description of the present state of knowledge on natural circulation in water cooled nuclear power plants and to guide the planning and conduct of the CRP in

  3. Development of the Technologies for Stabilization Treatment of the Water of the Recycling Cooling Systems at Thermal Power Plants

    Science.gov (United States)

    Vlasov, S. M.; Chichirova, N. D.; Chichirov, A. A.; Vlasova, A. Yu.; Filimonova, A. A.; Prosvirnina, D. V.

    2018-02-01

    A turbine-condensate cooling system is one of the less stable and most hard-to-control systems of maintaining optimal water chemistry. A laboratory recycling cooling water test facility, UVO-0.3, was developed for physical simulation of innovative zero-discharge water chemistry conditions and improvement of technological flowcharts of stabilization treatment of the initial and circulating water of the recycling cooling systems at thermal power plants. Experiments were conducted in the UVO-0.3 facility to investigate the processes that occur in the recycling water supply system and master new technologies of stabilization of the initial and circulating water. It is shown that, when using untreated initial water, scaling cannot be prevented even under low concentration levels. The main reason for the activation of scale depositing is the desorption of carbon dioxide that results in alkalization of the circulating water and, as a consequence, a displacement of the chemical reaction equilibrium towards the formation of slightly soluble hardness ions. Some techniques, viz., liming and alkalization of the initial water and the by-pass treatment of the circulating water, are considered. New engineering solutions have been developed for reducing the amount of scale-forming substances in the initial and circulating water. The best results were obtained by pretreating the initial water with alkalizing agents and simultaneously bypassing and treating part of the circulating water. The obtained experimental data underlie the process flowcharts of stabilization treatment of the initial and circulating TPP water that ensure scale-free and noncorrosive operation and meet the corresponding environmental requirements. Under the bypassing, the specific rates of the agents and the residual hardness are reduced compared with the conventional pretreatment.

  4. Operations improvement of the recycling water-cooling systems of sugar mills

    Directory of Open Access Journals (Sweden)

    Shcherbakov Vladimir Ivanovich

    Full Text Available Water management in sugar factories doesn’t have analogues in its complexity among food industry enterprises. Water intensity of sugar production is very high. Circulation water, condensed water, pulp press water and others are used in technological processes. Water plays the main role in physical, chemical, thermotechnical processes of beet processing and sugar production. As a consequence of accession of Russia to the WTO the technical requirements for production processes are changing. The enforcements of ecological services to balance scheme of water consumption and water disposal increased. The reduction of fresh water expenditure is one of the main tasks in economy of sugar industry. The substantial role in fresh water expenditure is played by efficiency of cooling and aeration processes of conditionally clean waters of the 1st category. The article contains an observation of the technologies of the available solutions and recommendations for improving and upgrading the existing recycling water-cooling systems of sugar mills. The authors present the block diagram of the water sector of a sugar mill and a method of calculating the optimal constructive and technological parameters of cooling devices. Water cooling towers enhanced design and upgrades are offered.

  5. Assessments of Water Ingress Accidents in a Modular High-Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Dong Yujie; Scherer, Winfried

    2005-01-01

    Severe water ingress accidents in the 200-MW HTR-module were assessed to determine the safety margins of modular pebble-bed high-temperature gas-cooled reactors (HTR-module). The 200-MW HTR-module was designed by Siemens under the criteria that no active safety protection systems were necessary because of its inherent safe nature. For simulating the behavior of the HTR-module during severe water ingress accidents, a water, steam, and helium multiphase cavity model was developed and implemented in the dynamic simulator for nuclear power plants (DSNP) simulation system. Comparisons of the DSNP simulations incorporating these models with experiments and with calculations using the time-dependent neutronics and temperature dynamics code were made to validate the simulation. The analysis of the primary circuit showed that the maximum water concentration increase in the reactor core was 3 s). The water vaporization in the steam generator and characteristics of water transport from the steam generator to the reactor core would reduce the rate of water ingress into the reactor core. The analysis of a full cavitation of the feedwater pump showed that if the secondary circuit could be depressurized, the feedwater pump would be stopped by the full cavitation. This limits the water transported from the deaerator to the steam generator. A comprehensive simulation of the HTR-module power plant showed that the water inventory in the primary circuit was limited to ∼3000 kg. The nuclear reactivity increase caused by the water ingress would lead to a fast power excursion, which would be inherently counterbalanced by negative feedback effects. The integrity of the fuel elements, because the safety-relevant temperature limit of 1600 deg. C is not reached in any case, is not challenged

  6. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    International Nuclear Information System (INIS)

    Piet, Steven J.; Bays, Samuel E.; Pope, Michael A.; Youinou, Gilles J.

    2010-01-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  7. Modification and application of water film model in COCOSYS for PWR's passive containment cooling

    International Nuclear Information System (INIS)

    Huang, Xi; Cheng, Xu

    2014-01-01

    Highlights: • Water film model in COCOSYS has been modified by considering film breakup. • Shear stress on film surface created by countercurrent flow has been considered. • Formation and development of rivulets have been taken into account. • Modified model has been applied for passive containment cooling system. • The modified water film model has optimized the simulation results. - Abstract: In this paper the physical model describing water film behaviors in German containment code system COCOSYS has been modified by taking into consideration the film breakup and subsequent phenomena as well as the effect of film interfacial shear stress created by countercurrent air flow. The modified model has extended its capability to predict particular water film behaviors including breakup at a critical film thickness based on minimum total energy criterion, the formation of rivulets according to total energy equilibrium as well as subsequent performance of rivulets according to several assumptions and observations from experiments. Furthermore, the modification considers also the change of velocity distribution on the cross section of film/rivulets due to shear stress. Based on the geometry of AP1000 and Generic Containment, simulations predicting containment pressure variation during accidents with operation of passive containment cooling system have been carried out. With the new model, considerably larger peak pressures are observed by comparing with those predicted with original water film model within a certain range of water film flow rate. Sensitivity analyses also point out that contact angle between water rivulets and steel substrate plays a significant role in the film cooling

  8. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Apfelbaum, Steven L. [Applied Ecological Services Inc., Brodhead, WI (United States); Duvall, Kenneth W. [Sterling Energy Services, LLC, Atlanta, GA (United States); Nelson, Theresa M. [Applied Ecological Services Inc., Brodhead, WI (United States); Mensing, Douglas M. [Applied Ecological Services Inc., Brodhead, WI (United States); Bengtson, Harlan H. [Sterling Energy Services, LLC, Atlanta, GA (United States); Eppich, John [Waterflow Consultants, Champaign, IL (United States); Penhallegon, Clayton [Sterling Energy Services, LLC, Atlanta, GA (United States); Thompson, Ry L. [Applied Ecological Services Inc., Brodhead, WI (United States)

    2013-12-01

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive

  9. Draining and drying process development of the Tokamak Cooling Water System of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seokho, E-mail: kims@ornl.gov [US ITER, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Van Hove, Walter; Ferrada, Juan [US ITER, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Di Maio, Pietro Alessandro [University of Palermo, Viale delle Scienze, Palermo 90128 (Italy); Felde, David [Reactor and Nuclear Systems Division, ORNL, Oak Ridge, TN (United States); Raphael, Mitteau; Dell’Orco, Giovanni [ITER Organization, 13067 St Paul Lez Durance (France); Berry, Jan [US ITER, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2016-11-01

    Highlights: • A thermal-hydraulic model using RELAP was developed for the ITER FW/BLK modules to determine design parameters for the nitrogen blowout flow rate and pressure. • The analysis indicates that as low as 2 MPa of pressure difference over the blanket modules will sufficiently evacuate the water in blankets. • A limited validation study indicates that the analysis yields less conservative results to compare against data collected from experiments. Therefore, the designed blow out flow of the drying system was selected with a large margin above the measured values to ensure the blow out operation. - Abstract: The ITER Organization (IO) developed a thermal-hydraulic (TH) model of the complex first wall and blanket (FW/BLK) cooling channels to determine gas flow rate and pressure required to effectively blow out the water in the FW/BLK. In addition, US ITER conducted experiments for selected geometries of FW/BLK flow channels to predict the blowout parameters. The analysis indicates that as low as 2 MPa of pressure difference over the blanket modules will ensure substantial evacuation of the water in blankets with just a few percent remaining in the blanket flow channels. A limited validation study indicates that the analysis yields less conservative results to compare against data collected from experiments. Therefore, the designed blow out flow of the drying system was selected with a large margin above the measured values to ensure the blow out operation.

  10. Fluid Induced Vibration Analysis of a Cooling Water Pipeline for the HANARO CNS

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Lee, Young Sub; Kim, Ik Soo; Kim, Young Ki

    2007-01-01

    CNS is the initial of Cold Neutron Source and the CNS facility system consists of hydrogen, a vacuum, a gas blanketing, a helium refrigeration and a cooling water supply system. Out of these subsystems, the helium refrigeration system has the function of removal of heat from a thermal neutron under reactor operation. Therefore, HRS (helium refrigeration system) must be under normal operation for the production of cold neutron. HRS is mainly made up of a helium compressor and a coldbox. This equipment is in need of cooling water to get rid of heat generation under stable operation and a cooling water system is essential to maintain the normal operation of a helium compressor and a coldbox. The main problem for the cooling water system is the vibration issue in the middle of operation due to a water flow in a pipeline. In order to suppress the vibration problem for a pipeline, the characteristics of a pipeline and fluid flow must be analyzed in detail. In this paper, fluid induced vibration of a cooling water pipe is analyzed numerically and the stability of the cooling water pipeline is investigated by using pipe dynamic theory

  11. Custom design of a hanging cooling water power generating system applied to a sensitive cooling water discharge weir in a seaside power plant: A challenging energy scheme

    International Nuclear Information System (INIS)

    Tian, Chuan Min; Jaffar, Mohd Narzam; Ramji, Harunal Rejan; Abdullah, Mohammad Omar

    2015-01-01

    In this study, an innovative design of hydro-electricity system was applied to an unconventional site in an attempt to generate electricity from the exhaust cooling water of a coal-fired power plant. Inspired by the idea of micro hydro, present study can be considered new in three aspects: design, resource and site. This system was hung at a cooling water discharge weir, where all sorts of civil work were prohibited and sea water was used as the cooling water. It was designed and fabricated in the university's mechanical workshop and transported to the site for installation. The system was then put into proof run for a three-month period and achieved some success. Due to safety reasons, on-site testing was prohibited by the power plant authority. Hence, most data was acquired from the proof run. The driving system efficiency was tested in the range of 25% and 45% experimentally while modeling results came close to experimental results. Payback period for the system is estimated to be about 4.23 years. Result obtained validates the feasibility of the overall design under the sensitive site application. - Highlights: • Challenging energy scheme via a hanging cooling water power generating system. • Driving system efficiency was tested in the range of 25% and 45%. • Payback period for the system is estimated to be about 4.2 years

  12. Experience in handling core subassemblies in sodium cooled reactor KNK and test rigs

    International Nuclear Information System (INIS)

    Althaus; Jansing; Kesseler; Kirchner; Menck

    1974-01-01

    Compared with a water cooled reactor plant a sodium cooled reactor plant presents a number of problems which result from the specific nature of sodium. These problems that must be faced during all handling operations are mainly: 1. The rapid reaction of sodium in air requires handling to be done only under cover gas. 2. The temperature of all sodium-wetted components is to be kept above the melting point of sodium. 3. Poor draining of removed reactor components due to the high surface tension of sodium and the associated danger of dripping radioactive sodium may produce radiation or contamination problems. 4. Sodium is not transparent. The sum of these and further influences dictate that the general handling usually is carried out without visual means, though a method is under development in the USA to use ultrasonic for under sodium 'viewing'. These limitations to sodium component handling are applicable to all sodium reactor plants, several of which are discussed in this report. After the description of the handling systems of the KNK plant now operating at Karlsruhe, the experience with the SNR test rig and finally the handling systems for SNR 300 and SNR 2 are discussed

  13. Experimental investigation of filled bed effect on the thermal performance of a wet cooling tower by using ZnO/water nanofluid

    International Nuclear Information System (INIS)

    Imani-Mofrad, Peyman; Saeed, Zeinali Heris; Shanbedi, Mehdi

    2016-01-01

    Highlights: • Effect of filled bed on performance of cooling tower with ZnO nanofluid evaluated. • Applying metal reticular bed is the best choice when ZnO/water nanofluid is used. • Metal reticular bed showed lowest fouling and agglomeration of nanoparticles. • Nanofluid improved cooling range, characteristic & effectiveness of cooling tower. - Abstract: This study deals with an experimental investigation on the effect of different types of filled beds on the thermal performance of a wet cooling tower by using zinc oxide (ZnO)/water nanofluid. Different concentrations of ZnO/water nanofluid were prepared through two-step procedure by using pure water with electrical conductivity of 2 μS/cm. First, by using ZnO/water nanofluid (0.08 wt%), effect of six different filled beds were investigated on the thermal performance of the cooling tower. Moreover, after each experiment the applied filled bed was reviewed in order to observe any aggregation or settlement of nanoparticles on the surfaces of the bed. It was found that applying metal reticular bed (Bed 1) is the best choice when ZnO/water nanofluid is used. In the other word Bed 1 results better thermal characteristics for cooling tower and less settlement of nanofluids. Then different concentrations of ZnO/water nanofluid in the range of 0.02–0.1 wt% is employed in the cooling tower by utilizing Bed 1. The results showed that by using nanofluids, cooling range, tower characteristic (TC) and effectiveness of cooling tower are enriched compared to water. For example, TC enhanced by 21.5% and 22.5% for ZnO/water nanofluid with concentration of 0.02 wt% and 0.05 wt%, respectively.

  14. Applicability of a desiccant dew-point cooling system independent of external water sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2015-01-01

    The applicability of a technical solution for making desiccant cooling systems independent of external water sources is investigated. Water is produced by condensing the desorbed water vapour in a closed regeneration circuit. Desorbed water recovery is applied to a desiccant dew-point cooling...... system, which includes a desiccant wheel and a dew point cooler. The system is simulated during the summer period in the Mediterranean climate of Rome and it results completely independent of external water sources. The seasonal thermal COP drops 8% in comparison to the open regeneration circuit solution...

  15. Changes in water chemistry and primary productivity of a reactor cooling reservoir (Par Pond)

    International Nuclear Information System (INIS)

    Tilly, L.J.

    1975-01-01

    Water chemistry and primary productivity of a reactor cooling reservoir have been studied for 8 years. Initially the primary productivity increased sixfold, and the dissolved solids doubled. The dissolved-solids increase appears to have been caused by additions of makeup water from the Savannah River and by evaporative concentration during the cooling process. As the dissolved-solids concentrations and the conductivity of makeup water leveled off, the primary productivity stabilized. Major cation and anion concentrations generally followed total dissolved solids through the increase and plateau; however, silica concentrations declined steadily during the initial period of increased plankton productivity. Standing crops of net seston and centrifuge seston did not increase during this initial period. The collective data show the effects of thermal input to a cooling reservoir, illustrate the need for limnological studies before reactor siting, and suggest the possibility of using makeup-water additions to power reactor cooling basins as a reservoir management tool

  16. Performance test of filtering system for controlling the turbidity of secondary cooling water in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Jo, Y. K.; Loo, J. S.; Lim, N. Y.

    2001-01-01

    There is about 80 m 3 /h loss of the secondary cooling water by evaporation, windage and blowdown during the operation of HANARO, 30 MW research reactor. When the secondary cooling water is treated by high Ca-hardness treatment program for minimizing the blowdown loss, only the trubidity exceeds the limit. By adding filtering system it was confirned, through the relation of turbidity and filtering rate of secondary cooling water, that the turbidity is reduced below the limit (5 deg.) by 2 % of filtering rate without blowdown. And it was verified, through the field performace test of filtering system under normal operation condition, that the circulation pumps get proper capacity and that filter units reduce the turbidity below the limit. Therefore, the secondary cooling water can be treated by the high Ca-hardness program and filter system without blowdown

  17. Control of modiolid mussels in cooling water systems by continuous chlorination.

    NARCIS (Netherlands)

    Rajagopal, S.; Venugopalan, V.P.; Velde, G. van der; Jenner, H.A.

    2006-01-01

    Abstract. Modiolid mussels such as Modiolus philippinarum and Modiolus metcalfei constitute a numerically significant group in fouling communities, especially in tropical and subtropical industrial cooling water systems. Nevertheless, there are hardly any published reports on the tolerance of these

  18. MIF-SCD computer code for thermal hydraulic calculation of supercritical water cooled reactor core

    International Nuclear Information System (INIS)

    Galina P Bogoslovskaia; Alexander A Karpenko; Pavel L Kirillov; Alexander P Sorokin

    2005-01-01

    Full text of publication follows: Supercritical pressure power plants constitute the basis of heat power engineering in many countries to day. Starting from a long-standing experience of their operation, it is proposed to develop a new type of fast breeder reactor cooled by supercritical water, which enables the economical indices of NPP to be substantially improved. In the Thermophysical Department of SSC RF-IPPE, an attempt is made to provide thermal-hydraulic validation of the reactor under discussion. The paper presents the results of analysis of the thermal-hydraulic characteristics of fuel subassemblies cooled by supercritical water based on subchannel analysis. Modification of subchannel code MIF - MIF-SCD Code - developed in the SSC RF IPPE is designed as block code and permits one to calculate the coolant temperature and velocity distributions in fuel subassembly channels, the temperature of fuel pin claddings and fuel subassembly wrapper under conditions of irregular geometry and non-uniform axial and radial power generation. The thermal hydraulics under supercritical pressure of water exhibits such peculiarities as abrupt variation of the thermal physical properties in the range of pseudo-critical temperature, the absence of such phenomenon as the critical heat flux which can lead to fuel element burnout in WWERs. As compared with subchannel code for light water, in order to take account of the variation of the coolant properties versus temperature in more detail, a block for evaluating the thermal physical properties of supercritical water versus the local coolant temperature in the fuel subassembly channels was added. The peculiarities of the geometry and power generation in the fuel subassembly of the supercritical reactor are considered as well in special blocks. The results of calculations have shown that considerable preheating of supercritical coolant (several hundreds degrees) can occur in the fuel subassembly. The test calculations according to

  19. Influence of the cooling circulation water on the efficiency of a thermonuclear plant

    International Nuclear Information System (INIS)

    Ganan, J.; Rahman Al-Kassir, A.; Gonzalez, J.F.; Macias, A.; Diaz, M.A.

    2005-01-01

    In the present study, the feasibility of intercalating two cooling towers in the present circulation water system used at Almaraz Nuclear Power Plant, located at Campo Aranuelo district (SW Spain), has been technically evaluated in order to increase the efficiency of the thermodynamic cycle used at present. Thus, the working cycle has been analyzed, the power produced by the turbines being calculated as a function of the cooling circulation water temperature. Next, two natural convection counterflow cooling towers have been calculated in order to be installed in parallel with the present cooling system (Lake Arrocampo). The power obtained in the turbines provided with the new system has been estimated. Finally, a system combining both the cooling towers and the Lake Arrocampo has been proposed, the increment in power using one system or the other according to the weather conditions being calculated

  20. DESIGN OF WATER-COOLED PACKAGED AIR-CONDITIONING SYSTEMS BASED ON RELIABILITY ASSESSMENT

    OpenAIRE

    関口, 圭輔; 中尾, 正喜; 藁谷, 至誠; 植草, 常雄; 羽山, 広文

    2007-01-01

    Water-cooled packaged air-conditioning systems are reevaluated in terms of alleviating the heat island phenomenon in cities and effectively utilizing building rooftops. Up to now, such reliability assessment has been insufficient, and this has limited the use of this kind of air-conditioning system in the information and communications sectors that demand a high reliability. This work has led to the development of a model for evaluating the reliability of water-cooled package air-conditioning...

  1. Achieving reduced fouling of cooling water exchangers with stainless steel tubes

    International Nuclear Information System (INIS)

    Iftikhar, A.; Mir, N.

    2010-01-01

    Good performance of cooling water heat exchangers plays a vital role in the over all energy efficiency of a chemical plant. Heavy fouling on carbon steel tubes of the cooling water exchangers was causing poor performance and frequent cleaning requirement. The carbon steel tubes were replaced with stainless steel tubes. Improved performance was achieved and cleaning frequency reduced. The paper covers the details of study and methodology applied for the above changes along with summary of results. (author)

  2. A licence to discharge cooling waters in tidal rivers, examplified by the 'Nuclear Power Station Unterweser'

    International Nuclear Information System (INIS)

    Kunz, H.

    1976-01-01

    Illustrated by the example of the lower Weser, aspects for automatic control, supervision measurements, and measurements for the securing of evidence, all in connection with cooling water discharges, are presented. The particularities of tidal rivers and the conditions for measuring systems resulting therefrom are explained. The cooling water discharge of the Kernkraftwerk Unterweser has been assigned an extensive measurement system for the automatic compilation of hydrologic data. The measurement systems design, the measurement stations, and the central station are described. (orig.) [de

  3. Stability monitoring of a natural-circulation-cooled boiling water reactor

    International Nuclear Information System (INIS)

    Hagen, T.H.J.J. van der.

    1989-01-01

    Methods for monitoring the stability of a boiling water reactor (BWR) are discussed. Surveillance of BWR stability is of importance as problems were encountered in several large reactors. Moreover, surveying stability allows plant owners to operate at high power with acceptable stability margins. The results of experiments performed on the Dodewaard BWR (the Netherlands) are reported. This type reactor is cooled by natural circulation, a cooling principle that is also being considered for new reactor designs. The stability of this reactor was studied both with deterministic methods and by noise analysis. Three types of stability are distinguished and were investigated separately: reactor-kinetic stability, thermal-hydraulic stability and total-plant stability. It is shown that the Dodewaard reactor has very large stability margins. A simple yet reliable stability criterion is introduced. It can be derived on-line from thhe noise signal of ex-vessel neutron detectors during normal operation. The sensitivity of neutron detectors to in-core flux perturbations - reflected in the field-of-view of the detector - was calculated in order to insure proper stability surveillance. A novel technique is presented which enables the determination of variations of the in-core coolant velocity by noise correlation. The velocity measured was interpreted on the basis of experiments performed on the air/water flow in a model of a BWR coolant channel. It appeared from this analysis that the velocity measured was much higher than the volume-averaged water and air velocities and the volumetric flux. The applicability of the above-mentioned technique to monitoring of local channel-flow stability was tested. It was observed that stability effects on the coolant velocity are masked by other effects originating from the local flow pattern. Experimental and theoretical studies show a shorter effective fuel time constant in a BWR than was assumed. (author). 118 refs.; 73 figs.; 21 tabs

  4. Numerical simulation of severe water ingress accidents in a modular high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Scherer, W.

    1996-01-01

    This report analyzes reverse water ingress accidents in the SIEMENS 200 MW Modular Pebble-Bed High Temperature Gas Cooled Reactor (HTR-MODULE) under the assumption of no active safety protection systems in order to find the safety margins of the current HTR-MODULE design and to realize a catastrophe-free nuclear technology. A water, steam and helium multi-phase cavity model is developed and implemented in the DSNP simulation system. The DSNP system is then used to simulate the primary and secondary circuit of a HTR-MODULE power plant. Comparisons of the model with experiments and with TINTE calculations serve as validation of the simulation. The analysis of the primary circuit tries to answer the question how fast the water enters the reactor core. It was found that the maximum H 2 O concentration increase in the reactor core is smaller than 0.3 kg/(m 3 s). The liquid water vaporization in the steam generator and H 2 O transport from the steam generator to the reactor core reduce the ingress velocity of the H 2 O into the reactor core. In order to answer the question how much water enters the primary circuit, the full cavitation of the feed water pumps is analyzed. It is found that if the secondary circuit is depressurized enough, the feed water pumps will be inherently stopped by the full cavitation. This limits the water to be pumped from the deaerator to the steam generator. A comprehensive simulation of the MODUL-HTR power plant then shows that the H 2 O inventory in the primary circuit can be limited to about 3000 kg. The nuclear reactivity increase caused by the water ingress leads to a fast power excursion, which, however, is inherently counterbalanced by negative feedback effects. Concerning the integrity of the fuel elements, the safety relevant temperature limit of 1600 C was not reached in any case. (orig.) [de

  5. Updated heat transfer correlations for supercritical water-cooled reactor applications

    International Nuclear Information System (INIS)

    Mokry, S.J.; Pioro, I.L.; Farah, A.; King, K.

    2011-01-01

    In support of the development of SuperCritical Water-cooled Reactors (SCWRs), research is currently being conducted for heat-transfer at supercritical conditions. Currently, there are no experimental datasets for heat transfer from power reactor fuel bundles to the fuel coolant (Water) available in open literature. Therefore, for preliminary calculations, heat-transfer correlations obtained with bare tube data can be used as a conservative approach. A large set of experimental data, for supercritical water was analyzed and an updated heat-transfer correlation for forced-convective heat-transfer, in the normal heat transfer regime, was developed. This experimental dataset was obtained within conditions similar to those for proposed SCWR concepts. Thus, this new correlation can be used for preliminary heat-transfer calculations in SCWR fuel channels. It has demonstrated a good fit for the analyzed dataset. Experiments with SuperCritical Water (SCW) are very expensive. Therefore, a number of experiments are performed in modeling fluids, such as carbon dioxide and refrigerants. However, there is no common opinion if SC modeling fluids' correlations can be applied to SCW and vice versa. Therefore, a correlation for supercritical carbon dioxide heat transfer was developed as a less expensive alternative to using supercritical water. The conducted analysis also meets the objective of improving our fundamental knowledge of the transport processes and handling of supercritical fluids. These correlations can be used for supercritical water heat exchangers linked to indirect-cycle concepts and the cogeneration of hydrogen, for future comparisons with other independent datasets, with bundle data, for the verification of computer codes for SCWR core thermalhydraulics and for the verification of scaling parameters between water and modeling fluids. (author)

  6. Closed-cycle process of coke-cooling water in delayed coking unit

    International Nuclear Information System (INIS)

    Zhou, P.; Bai, Z.S.; Yang, Q.; Ma, J.; Wang, H.L.

    2008-01-01

    Synthesized processes are commonly used to treat coke-cooling wastewater. These include cold coke-cut water, diluting coke-cooling water, adding chemical deodorization into oily water, high-speed centrifugal separation, de-oiling and deodorization by coke adsorption, and open nature cooling. However, because of water and volatile evaporation loss, it is not suitable to process high-sulphur heavy oil using open treatments. This paper proposed a closed-cycling process in order to solve the wastewater treatment problem. The process is based on the characteristics of coke-cooling water, such as rapid parametric variation, oil-water-coke emulsification and steam-water mixing. The paper discussed the material characteristics and general idea of the study. The process of closed-cycle separation and utilization process of coke-cooling water was presented along with a process flow diagram. Several applications were presented, including a picture of hydrocyclones for pollution separation and a picture of equipments of pollution separation and components regeneration. The results showed good effect had been achieved since the coke-cooling water system was put into production in 2004. The recycling ratios for the components of the coke-cooling water were 100 per cent, and air quality in the operating area reached the requirements of the national operating site circumstance and the health standards. Calibration results of the demonstration unit were presented. It was concluded that since the devices went into operation, the function of production has been normal and stable. The operation was simple, flexible, adjustable and reliable, with significant economic efficiency and environmental benefits. 10 refs., 2 tabs., 3 figs

  7. Pilot scale evaluation of mine water (MW) as a cooling medium

    African Journals Online (AJOL)

    driniev

    Water and Environmental Technology, Sasol Technology R&D, PO Box 1, SASOL One, Sasolburg 1947, South Africa. Abstract. Sasol One abstracts large volumes of water from various sources, such as the Zuikerbosch & Vaal River for various applications including make-up to the cooling water systems. In an attempt to ...

  8. Engineering and economic evaluation of wet/dry cooling towers for water conservation

    International Nuclear Information System (INIS)

    Hu, M.C.

    1976-11-01

    The results are presented of a design and cost study for wet/dry tower systems used in conjunction with 1000 MWe nuclear power plants to reject waste heat while conserving water. Design and cost information for wet/dry tower systems are presented, and these cooling system alternatives are compared with wet and dry tower systems to determine whether the wet/dry tower concept is an economically viable alternative. The wet/dry cooling tower concept investigated is one which combines physically separated wet towers and dry towers into an operational unit. In designing the wet/dry tower, a dry cooling tower is sized to carry the plant heat load at low ambient temperatures, and a separate wet tower is added to augment the heat rejection of the dry tower at higher ambient temperatures. These wet/dry towers are designed to operate with a conventional low back pressure turbine commercially available today. The component wet and dry towers are state-of-the-art designs. From this study it was concluded that: wet/dry cooling systems can be designed to provide a significant economic advantage over dry cooling yet closely matching the dry tower's ability to conserve water, a wet/dry system which saves as much as 99 percent of the make-up water required by a wet tower can maintain that economic advantage, and therefore, for power plant sites where water is in short supply, wet/dry cooling is the economic choice over dry cooling

  9. Vaporization Rate Analysis of Primary Cooling Water from Reactor PUSPATI TRIGA (RTP) Tank

    International Nuclear Information System (INIS)

    Tonny Anak Lanyau; Mohd Fazli Zakaria; Yahya Ismail

    2011-01-01

    Primary cooling system consists of pumps, heat exchangers, probes, a nitrogen-16 diffuser and associated valves is connected to the reactor TRIGA PUSPATI (RTP) tank by aluminium pipes. Both the primary cooling system and the reactor tank is filled with demineralized light water (H 2 O), which serves as a coolant, moderator as well as shielding. During reactor operation, vaporization in the reactor tank will reduce the primary water and contribute to the formation of vapor in the reactor hall. The vaporization may influence the function of the water subsequently may affect the safety of the reactor operation. It is essential to know the vaporization rate of the primary water to ensure its functionality. This paper will present the vaporization rate of the primary cooling water from the reactor tank and the influence of temperature of the water in the reactor tank to the vaporization rate. (author)

  10. Kinetic model for predicting the concentrations of active halogen species in chlorinated saline cooling waters

    International Nuclear Information System (INIS)

    Lietzke, M.H.; Haag, W.R.

    1979-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water

  11. Research and development of the supercritical-pressure light water cooled reactor

    International Nuclear Information System (INIS)

    Oka, Yoshiaki

    2003-01-01

    The concept of high temperature reactor cooled by light water (SCR) has been developed at the University of Tokyo since 1989. Major elements of reactor conceptual design and safety were studied. It includes fuel rod design, core design of thermal and fast reactors, plant heat balance, safety design, accident and transient analysis, LOCA, PSA, plant control, start-up and stability. The big advantage of the SCR concept is that the temperatures of major components such as reactor pressure vessel, control rod drive mechanisms, containments, coolant pumps, main steam piping and turbines are within the temperatures of the components of LWR and supercritical FPP in spite of the high outlet coolant temperature. The experience of these components of LWR and supercritical fossil Fired Power Plants (FPP) will be fully utilized for SCR. Although the concept was developed at the University of Tokyo mostly with our own funds and resources, four funding was/is provided for the research in Japan so far. Those are TEPCO studies with Japanese vendors in 1994 and 1995. JSPS (Monbusho) funding of pulse radiolysis of supercritical water to the University of Tokyo, Japanese-NERI program of METI to Toshiba team on thermal hydraulics, corrosion and plant system and Japanese-NERI program of MEXT on water chemistry to the University of Tokyo. The concept was taken as the reference of HPLWR study in Europe with funding of EU in 2000 and 2001. The concept was evaluated in the Generation 4 reactor program in USA. It was selected as only one water-cooled Generation 4 reactor. This paper describes the overview of the conceptual design at the University of Tokyo and R and D in the world

  12. An experimental study on the cathode humidification and evaporative cooling of polymer electrolyte membrane fuel cells using direct water injection method at high current densities

    International Nuclear Information System (INIS)

    Hwang, Seong Hoon; Kim, Min Soo

    2016-01-01

    Highlights: • Proposal of a cathode humidification and evaporative cooling system for PEM fuel cells. • An external-mixing air-assist atomizer is used to produce a very fine water spray. • The system is effective in both cathode humidification and stack cooling. • Increased water flow rate improves stack performance and evaporative cooling capacity. • At a given water flow rate, lower stack temperatures cause greater humidification effect. - Abstract: Humidification and cooling are critical issues in enhancing the efficiency and durability of polymer electrolyte membrane fuel cells (PEMFCs). However, existing humidifiers and cooling systems have the disadvantage that they must be quite large to achieve adequate PEMFC performance. In this study, to eliminate the need for a bulky humidifier and to lighten the cooling load of PEMFCs, a cathode humidification and evaporative cooling system using an external-mixing air-assist atomizer was developed and its performance was investigated. The atomization performance of the nozzle was analyzed experimentally under various operating conditions with minimal changes in the system design. Experiments with a five-cell PEMFC stack with an active area of 250 cm"2 were carried out to analyze the effects of various parameters (such as the operating temperature, current density, and water injection flow rate) on the evaporation of injected water for humidification and cooling performances. The experimental results demonstrate that the direct water injection method proposed in this study is quite effective in cathode humidification and stack cooling in PEM fuel cells at high current densities. The stack performance was improved by humidification effect and the coolant temperature at the stack outlet decreased by evaporative cooling effect.

  13. Conceptual design of solid breeder blanket system cooled by supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio; Akiba, Masato [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment] [and others

    2001-12-01

    This report is a summary of the design works, which was discussed in the design workshop held in 2000 for the demonstration (DEMO) blanket aimed to strengthen the commercial competitiveness and technical feasibility simultaneously. The discussion of the Fusion Council in 1999 updated the assessment of the mission of DEMO blanket. Updated mission of the DEMO blanket is to be the prototype of the commercially competitive power plant. The DEMO blanket must supply the feasibility and experience of the total design of the power plant and the materials. From such standing point, the conceptual design study was performed to determine the updated strategy and goal of the R and D of the DEMO blanket which applies the supercritical water cooling proposed in A-SSTR, taking into account the recent progress of the plasma research and reactor engineering technology. The DEMO blanket applies the solid breeder materials and supercritical water cooling. The product tritium is purged out by helium gas stream in the breeder region. In the breeder region, the pebble bed concept was applied to withstand instable cracking of the breeder and multiplier materials in high neutron irradiation and high temperature operation. Inlet temperature of the coolant is planned to be 280degC and final outlet temperature is 510degC to obtain high energy conversion efficiency up to 43%. Reduced activation ferritic steel, F82H and ODS ferritic steel were selected as the structural material. Lithium ceramics, Li{sub 2}TiO{sub 3} or Li{sub 2}O were selected as the breeder materials. Beryllium or its inter-metallic compound Be12Ti was selected as the neutron multiplier materials. Basic module structure was selected as the box type structure which enables the remote handling replacement of the module from in-vessel access. Dimension of the box is limited to 2 m x 2 m, or smaller, due to the dimension of the replacement port. In the supercritical water cooling, the high coolant temperature is the merit for

  14. Conceptual design of solid breeder blanket system cooled by supercritical water

    International Nuclear Information System (INIS)

    Enoeda, Mikio; Akiba, Masato; Ohara, Yoshihiro

    2001-12-01

    This report is a summary of the design works, which was discussed in the design workshop held in 2000 for the demonstration (DEMO) blanket aimed to strengthen the commercial competitiveness and technical feasibility simultaneously. The discussion of the Fusion Council in 1999 updated the assessment of the mission of DEMO blanket. Updated mission of the DEMO blanket is to be the prototype of the commercially competitive power plant. The DEMO blanket must supply the feasibility and experience of the total design of the power plant and the materials. From such standing point, the conceptual design study was performed to determine the updated strategy and goal of the R and D of the DEMO blanket which applies the supercritical water cooling proposed in A-SSTR, taking into account the recent progress of the plasma research and reactor engineering technology. The DEMO blanket applies the solid breeder materials and supercritical water cooling. The product tritium is purged out by helium gas stream in the breeder region. In the breeder region, the pebble bed concept was applied to withstand instable cracking of the breeder and multiplier materials in high neutron irradiation and high temperature operation. Inlet temperature of the coolant is planned to be 280degC and final outlet temperature is 510degC to obtain high energy conversion efficiency up to 43%. Reduced activation ferritic steel, F82H and ODS ferritic steel were selected as the structural material. Lithium ceramics, Li 2 TiO 3 or Li 2 O were selected as the breeder materials. Beryllium or its inter-metallic compound Be12Ti was selected as the neutron multiplier materials. Basic module structure was selected as the box type structure which enables the remote handling replacement of the module from in-vessel access. Dimension of the box is limited to 2 m x 2 m, or smaller, due to the dimension of the replacement port. In the supercritical water cooling, the high coolant temperature is the merit for the energy

  15. Electron cooling and recombination experiments with an adiabatically expanded electron beam

    International Nuclear Information System (INIS)

    Pastuszka, S.; Heidelberg Univ.; Schramm, U.; Heidelberg Univ.; Grieser, M.; Heidelberg Univ.; Broude, C.; Heidelberg Univ.; Grimm, R.; Heidelberg Univ.; Habs, D.; Heidelberg Univ.; Kenntner, J.; Heidelberg Univ.; Miesner, H.J.; Heidelberg Univ.; Schuessler, T.; Heidelberg Univ.; Schwalm, D.; Heidelberg Univ.; Wolf, A.; Heidelberg Univ.

    1996-01-01

    Magnetically guided electron beams with transverse temperatures reduced with respect to the cathode temperature by a factor of more than 7 were realized in the electron cooling device of the heavy-ion storage ring TSR and the effect of the reduced transverse temperature in recombination and electron cooling experiments was studied. Measured dielectronic recombination resonances at low relative energy and spectra of laser-stimulated recombination indicate that transverse electron temperatures of about 17 meV have been obtained at cathode temperatures of about 110 meV. The temperature dependence of the spontaneous electron-ion recombination rate during electron cooling was investigated and found to follow the inverse square-root law expected from the theory of radiative recombination, although the measured absolute rates are higher than predicted. A new method based on analyzing the intensity of the fluorescence light emitted during simultaneous laser and electron cooling is used to measure the longitudinal electron cooling force in a range of relative velocities extending over two orders of magnitude (10 5 -10 7 cm/s). The results confirm the occurrence of 'magnetized electron cooling' also at the reduced transverse temperature and show that, compared to earlier measurements at the high transverse temperature, the cooling force increases by about a factor of 2; a considerably larger increase by a factor of ∼5 would be expected if 'magnetized electron cooling' would not exist. (orig.)

  16. Methods for combating microorganisms in cooling water systems - a literature study and a market inventory

    International Nuclear Information System (INIS)

    Thierry, D.

    1989-01-01

    One of the greatest current problems in both closed and open cooling water systems is that of micro- and macro-organisms. In view of the environmental effects associated with the discharge of chemicals, the range of biocides and alternative methods for combating micro-organisms has increased during recent years. This report presents a brief description of the organisms which contribute to corrosion problems and the mechanisms associated with microbial corrosion. Thereafter descriptions are given of 15 different biocides which are used in both open and closed cooling systems. In each case, details are given of their chemical compositions and mode of action and of their effects on metals and on the environment. Finally, alternative methods of combating micro-organisms in cooling water systems are briefly described. The report also includes a survey of the biocides for cooling water systems which are available on the Swedish market. (author)

  17. Thermal and electrical energy yield analysis of a directly water cooled photovoltaic module

    Directory of Open Access Journals (Sweden)

    Mtunzi Busiso

    2016-01-01

    Full Text Available Electrical energy of photovoltaic modules drops by 0.5% for each degree increase in temperature. Direct water cooling of photovoltaic modules was found to give improved electrical and thermal yield. A prototype was put in place to analyse the field data for a period of a year. The results showed an initial high performance ratio and electrical power output. The monthly energy saving efficiency of the directly water cooled module was found to be approximately 61%. The solar utilisation of the naturally cooled photovoltaic module was found to be 8.79% and for the directly water cooled module its solar utilisation was 47.93%. Implementation of such systems on households may reduce the load from the utility company, bring about huge savings on electricity bills and help in reducing carbon emissions.

  18. Microbial speciation and biofouling potential of cooling water used by Ontario Hydro

    International Nuclear Information System (INIS)

    Sharpe, V.J.

    1985-02-01

    The cooling water composition and microbial components of biofilms attached to stainless steel wafers submerged in three lake water types were evaluated to determine whether their biofouling potential differed in a predictable manner. The composition of the lake waters was different which affected biofilm composition, where the predominance of specific microbial groups varied between test systems and with time. Some prediction of biofouling potential was possible, and it was concluded that the cooling water in the vicinity of Bruce NGS had the lowest biofouling potential whereas greater biofouling could be expected in the Pickering and Nanticoke stations

  19. 137Cs and 90Sr in the water of the ChNPP cooling pond

    Directory of Open Access Journals (Sweden)

    V. V. Kanivets

    2014-12-01

    Full Text Available Results of long-term observations on 137Cs and 90Sr concentration in water mass of the ChNPP Cooling Pond are presented. Drastic transformation of the intrinsic trend in changes with time of averaged radionuclides con-tent in water is clearly demonstrated alongside with the spatial heterogeneity of radioactive contamination of water body. The cycling character of seasonal changes of 137Cs activity concentration in water is being linked to hydrochemical, temperature and oxygen regimes of the Cooling Pond.

  20. Experiencies of corrosion and corrosion protection in seawater-cooling systems in the Nordic countries

    International Nuclear Information System (INIS)

    Henriksson, S.

    1984-10-01

    This report summarizes the experience of the corrosion resistance of pumps, heat exchangers, valves, and pipings in different seawater-cooling system. For pumps and heat exchangers the experience has been so extensive that a clear picture of todays status can be given. Owing to more scanty data concerning valves and pipes the survey of the corrosion in these components is less well substantiated. The most common pumps in the cooling systems of power stations are vertically extended shaft pumps. To counteract corrosion on column and casing with organic surface coating and on stainless steel shafts and impellers under shutdown conditions, these should be provided with internal and external cathodic protection. The experience of tin and aluminium bronzes in impellers and shafts in such pumps has been so poor - erosion and cavitaion damage - that a change has usually been made to preferentially ferritic-austenitic Mo-alloyd stainless steels. The combination of stainless steel/Ni-Resist 2 D has been found unsatisfactory owing to the occurrence of galvanic corrosion on the latter material. For heat exchangers, titanium has proved to be far and away the best choice. In the optimal blanket solution for a titanium heat exchangers the tubes are seal-welded to tube sheets of explosion-bonded titanium clad steel. For retubing of old condensers a similar procedure with tubes of high-alloy stainless steel in tube sheets of stainless clad steel is of economic interest. The effect of chlorination of the cooling water, however, remains to be clarified before such a procedure can be unreservedly recommended. Pipings of rubber-lined carbon steel or with thick coatings of solvent-free opoxy resin have shown very good corrosion resistance. Tar-epoxy-resin-coated pipes, however, should usually be provided with internal cathodic protection. Cement-lined carbon steel pipes are used with varying results in the offshore industry. Recently, however, pipes of the high slloy stainless steel

  1. Preliminary study of the relationship between surface and bulk water temperatures at the Dresden cooling pond

    International Nuclear Information System (INIS)

    Wesely, M.L.; Hicks, B.B.; Hess, G.D.

    1975-01-01

    Successful application of bulk aerodynamic formulae to determine the vertical sensible and latent heat fluxes above a cooling lake requires accurate estimates of water surface temperature. Because of the heat loss at the surface and partial insulation by the poorly-mixed outer skin of water in contact with the air-water interface, the surface temperature is usually 0.1 to 2.0 C less than the temperature at a depth greater than 1 cm. For engineering applications requiring estimates of the total heat dissipation capacity of a particular cooling lake, the bulk temperature of the entire mixed layer of subsurface water is more important than the surface temperature. Therefore, in order to simulate the thermal performance of a cooling pond, both the surface temperature and the bulk temperature should be estimated. In the case of cooling ponds, the total heat transfer through the uppermost layer is extremely large and the water beneath the surface is strongly mixed by circulation currents within the pond. The purpose of this report is to describe the magnitude of the temperature difference across the surface skin at the Dresden nuclear power plant cooling pond and to relate this difference to variables used in modeling the thermal performance of cooling ponds

  2. MHD/gas turbine systems designed for low cooling water requirements

    International Nuclear Information System (INIS)

    Annen, K.D.; Eustis, R.H.

    1983-01-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consist of a coal-fired MHD plant with an air turbine bottoming plant and require no cooling water. In addition to the base case systems, systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems require a small amount of cooling water. The results show that the MHD/gas turbine systems have very good thermal and economic performances. The base case I MHD/gas turbine system (782 MW /SUB e/ ) requires no cooling water, has a heat rate which is 13% higher, and a cost of electricity which is only 7% higher than a comparable MHD/steam system (878 MW /SUB e/ ) having a cooling tower heat load of 720 MW. The case I vapor cycle bottomed systems have thermal and economic performances which approach and even exceed those of the MHD/steam system, while having substantially lower cooling water requirements. Performances of a second-generation MHD/gas turbine system and an oxygen-enriched, early commercial system are also evaluated. An analysis of nitric oxide emissions shows compliance with emission standards

  3. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, Michael

    2008-03-17

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C{sup 3+} ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged {sup 24}Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  4. The impact of water use fees on dispatching and water requirements for water-cooled power plants in Texas.

    Science.gov (United States)

    Sanders, Kelly T; Blackhurst, Michael F; King, Carey W; Webber, Michael E

    2014-06-17

    We utilize a unit commitment and dispatch model to estimate how water use fees on power generators would affect dispatching and water requirements by the power sector in the Electric Reliability Council of Texas' (ERCOT) electric grid. Fees ranging from 10 to 1000 USD per acre-foot were separately applied to water withdrawals and consumption. Fees were chosen to be comparable in cost to a range of water supply projects proposed in the Texas Water Development Board's State Water Plan to meet demand through 2050. We found that these fees can reduce water withdrawals and consumption for cooling thermoelectric power plants in ERCOT by as much as 75% and 23%, respectively. To achieve these water savings, wholesale electricity generation costs might increase as much as 120% based on 2011 fuel costs and generation characteristics. We estimate that water saved through these fees is not as cost-effective as conventional long-term water supply projects. However, the electric grid offers short-term flexibility that conventional water supply projects do not. Furthermore, this manuscript discusses conditions under which the grid could be effective at "supplying" water, particularly during emergency drought conditions, by changing its operational conditions.

  5. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...

  6. Improving of the photovoltaic / thermal system performance using water cooling technique

    International Nuclear Information System (INIS)

    Hussien, Hashim A; Numan, Ali H; Abdulmunem, Abdulmunem R

    2015-01-01

    This work is devoted to improving the electrical efficiency by reducing the rate of thermal energy of a photovoltaic/thermal system (PV/T).This is achieved by design cooling technique which consists of a heat exchanger and water circulating pipes placed at PV module rear surface to solve the problem of the high heat stored inside the PV cells during the operation. An experimental rig is designed to investigate and evaluate PV module performance with the proposed cooling technique. This cooling technique is the first work in Iraq to dissipate the heat from PV module. The experimental results indicated that due to the heat loss by convection between water and the PV panel's upper surface, an increase of output power is achieved. It was found that without active cooling, the temperature of the PV module was high and solar cells could only achieve a conversion efficiency of about 8%. However, when the PV module was operated under active water cooling condition, the temperature was dropped from 76.8°C without cooling to 70.1°C with active cooling. This temperature dropping led to increase in the electrical efficiency of solar panel to 9.8% at optimum mass flow rate (0.2L/s) and thermal efficiency to (12.3%). (paper)

  7. Supercritical Water Mixture (SCWM) Experiment

    Science.gov (United States)

    Hicks, Michael C.; Hegde, Uday G.

    2012-01-01

    The subject presentation, entitled, Supercritical Water Mixture (SCWM) Experiment, was presented at the International Space Station (ISS) Increment 33/34 Science Symposium. This presentation provides an overview of an international collaboration between NASA and CNES to study the behavior of a dilute aqueous solution of Na2SO4 (5% w) at near-critical conditions. The Supercritical Water Mixture (SCWM) investigation, serves as important precursor work for subsequent Supercritical Water Oxidation (SCWO) experiments. The SCWM investigation will be performed in DECLICs High Temperature Insert (HTI) for the purpose of studying critical fluid phenomena at high temperatures and pressures. The HTI includes a completely sealed and integrated test cell (i.e., Sample Cell Unit SCU) that will contain approximately 0.3 ml of the aqueous test solution. During the sequence of tests, scheduled to be performed in FY13, temperatures and pressures will be elevated to critical conditions (i.e., Tc = 374C and Pc = 22 MPa) in order to observe salt precipitation, precipitate agglomeration and precipitate transport in the presence of a temperature gradient without the influences of gravitational forces. This presentation provides an overview of the motivation for this work, a description of the DECLIC HTI hardware, the proposed test sequences, and a brief discussion of the scientific research objectives.

  8. Study on extreme high temperature of cooling water in Chinese coastal nuclear power plant

    International Nuclear Information System (INIS)

    Yu Fan; Jiang Ziying

    2012-01-01

    In order to protect aquatic life from the harmful effects of thermal discharge, the appropriate water temperature limits or the scope of the mixing zone is a key issue in the regulatory control of the environmental impact of thermal discharge. Based on the sea surface temperature in the Chinese coastal waters, the extreme value of the seawater temperature change was analyzed by using the Gumbel model. The limit of the design temperature rise of cooling water in the outfall is 9 ℃, and the limit of the temperature rise of cooling water in the edge of the mixing zone is 4 ℃. The extreme high temperature of the cooling water in Chinese coastal nuclear power plant is 37 ℃ in the Bohai Sea, Yellow Sea, and is 40 ℃ in East China Sea, South China Sea. (authors)

  9. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes

    International Nuclear Information System (INIS)

    Yang Jian; Hu Yu; Zuo Zheng; Jin Feng; Li Qingbin

    2012-01-01

    Removal of hydration heat from mass concrete during construction is important for the quality and safety of concrete structures. In this study, a three-dimensional finite element program for thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes was developed based on the equivalent equation of heat conduction including the effect of cooling water pipes and hydration heat of concrete. The cooling function of the double-layer staggered heterogeneous cooling pipes in a concrete slab was derived from the principle of equivalent cooling. To improve the applicability and precision of the equivalent heat conduction equation under small flow, the cooling function was revised according to its monotonicity and empirical formulas of single-phase forced-convection heat transfer in tube flow. Considering heat hydration of concrete at later age, a double exponential function was proposed to fit the adiabatic temperature rise curve of concrete. Subsequently, the temperature variation of concrete was obtained, and the outlet temperature of cooling water was estimated through the energy conservation principle. Comparing calculated results with actual measured data from a monolith of an arch dam in China, the numerical model was proven to be effective in sufficiently simulating accurate temperature variations of mass concrete. - Highlights: ► Three-dimensional program is developed to model temperature history of mass concrete. ► Massive concrete is embedded with double-layer heterogeneous cooling pipes. ► Double exponential function is proposed to fit the adiabatic temperature rise curve. ► Outlet temperature of cooling water is estimated. ► A comparison is made between the calculated and measured data.

  10. Supercritical-pressure, once-through cycle light water cooled reactor concept

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Koshizuka, Seiichi

    2001-01-01

    The purpose of the study is to develop new reactor concepts for the innovation of light water reactors (LWR) and fast reactors. Concept of the once-through coolant cycle, supercritical-pressure light water cooled reactor was developed. Major aspects of reactor design and safety were analysed by the computer codes which were developed by ourselves. It includes core design of thermal and fast reactors, plant system, safety criteria, accident and transient analysis, LOCA, PSA, plant control, start up and stability. High enthalpy rise as supercritical boiler was achieved by evaluating the cladding temperature directly during transients. Fundamental safety principle of the reactor is monitoring coolant flow rate instead of water level of LWR. The reactor system is compact and simple because of high specific enthalpy of supercritical water and the once-through cycle. The major components are similar to those of LWR and supercritical thermal plant. Their temperature are within the experiences in spite of the high outlet coolant temperature. The reactor is compatible with tight fuel lattice fast reactor because of the high head pumps and low coolant flow rate. The power rating of the fast reactor is higher than the that of thermal reactor because of the high power density. (author)

  11. Vertical sampling flights in support of the 1981 ASCOT cooling tower experiments: field effort and data

    Energy Technology Data Exchange (ETDEWEB)

    Gay, G.T.

    1982-03-01

    During the month of August 1981, three nights of experimental sampling of tracers released into the cooling tower plume of a geothermal power plant were conducted. In these experiments a tethered balloon was used to lift a payload so as to obtain vertical profiles of the cooling tower plume and the entrained tracers. A description of the equipment used, the field effort and the data acquired are presented here.

  12. RF Accelerating Structure for the Muon Cooling Experiment

    International Nuclear Information System (INIS)

    Corlett, J.; Green, M.; Li, D.; Holtkamp, N.; Moretti, A.; Kirk, H. G.; Palmer, R. B.; Zhao, Y.; Summers, D.

    1999-01-01

    The ionization cooling of muons requires longitudinal acceleration of the muons after scattering in a hydrogen target. In order to maximize the accelerating voltage, they propose using linear accelerating structures with cells bounded by thin beryllium metal foils. this produces an on-axis field equivalent to the maximum surface field, whereas with beam-pipes the accelerating field is approximately half that of the peak surface field in the cavity. The muons interact only weakly with the thin foils. A π/2 interleaved cavity structure has been chosen, with alternate cells coupled together externally, and the two groups of cells fed in quadrature. At present they are considering an operating temperature of 77K to gain a factor of at least two in Q-value over room temperature. They will describe the design of the π/2 interleaved cavity structure, design of an alternative π-mode open structure, preliminary experimental results from a low-power test cavity, and plans for high-power testing

  13. Cooling of Gas Turbines. 6; Computed Temperature Distribution Through Cross Section of Water-Cooled Turbine Blade

    Science.gov (United States)

    Livingood, John N. B.; Sams, Eldon W.

    1947-01-01

    A theoretical analysis of the cross-sectional temperature distribution of a water-cooled turbine blade was made using the relaxation method to solve the differential equation derived from the analysis. The analysis was applied to specific turbine blade and the studies icluded investigations of the accuracy of simple methods to determine the temperature distribution along the mean line of the rear part of the blade, of the possible effect of varying the perimetric distribution of the hot gas-to -metal heat transfer coefficient, and of the effect of changing the thermal conductivity of the blade metal for a constant cross sectional area blade with two quarter inch diameter coolant passages.

  14. Studies of the water adsorption on Lampung’s natural zeolite of Indonesia for cooling application

    Science.gov (United States)

    Wulandari, D. A.; Nasruddin; Lemington

    2018-03-01

    Part of minerals that originally formed from volcanic rock and ash layers reacting further with alkaline groundwater is called natural zeolite, where its sources are not always available in all countries. Indonesia is located in the ring of fire which have a huge sources of zeolite, one of the area is Lampung, South Sumatra. Natural zeolite has been considered as one of potential heat adsorbent medium which can contribute to the energy consumption and reduce air pollution in the using of cooling application. The characteristic of this Lampung natural zeolite such as adsorption kinetics, adsorption water uptake, and adsorption capacity were test with ASAP 2020 system. Sorption kinetics by this experiment of zeolite samples were carried out in a constant temperature and humidity chamber. The chamber can supply constant air condition with deviations of ±0.5 °C for temperature and ±3% for relative humidity. The data based on rate of adsorption and the defined working condition was set as 20°C and 70% RH. Pore volume is a significant parameter for determining the limitation of water uptake, which can describe the saturated condition of zeolite. Sorption isotherm models used to describe sorption phenomena are commonly deduced from the Polanyi potential theory were investigated. The water adsorption quantity increased with the increase of relative pressure. To sum up, this pure zeolite has a less heat and mass transfer performance so its need to be activated before using in cooling application to get their great potential and by being coated in a desiccant heat exchanger systems.

  15. Startup of Pumping Units in Process Water Supplies with Cooling Towers at Thermal and Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, V. V., E-mail: vberlin@rinet.ru; Murav’ev, O. A., E-mail: muraviov1954@mail.ru; Golubev, A. V., E-mail: electronik@inbox.ru [National Research University “Moscow State University of Civil Engineering,” (Russian Federation)

    2017-03-15

    Aspects of the startup of pumping units in the cooling and process water supply systems for thermal and nuclear power plants with cooling towers, the startup stages, and the limits imposed on the extreme parameters during transients are discussed.

  16. Enhanced Natural Convection in a Metal Layer Cooled by Boiling Water

    International Nuclear Information System (INIS)

    Cho, Jae-Seon; Suh, Kune Y.; Chung, Chang-Hyun; Park, Rae-Joon; Kim, Sang-Baik

    2004-01-01

    An experimental study is performed to investigate the natural convection heat transfer characteristics and the solidification of the molten metal pool concurrently with forced convective boiling of the overlying coolant to simulate a severe accident in a nuclear power plant. The relationship between the Nusselt number (Nu) and the Rayleigh number (Ra) in the molten metal pool region is determined and compared with the correlations in the literature and experimental data with subcooled water. Given the same Ra condition, the present experimental results for Nu of the liquid metal pool with coolant boiling are found to be higher than those predicted by the existing correlations or measured from the experiment with subcooled boiling. To quantify the observed effect of the external cooling on the natural convection heat transfer rate from the molten pool, it is proposed to include an additional dimensionless group characterizing the temperature gradients in the molten pool and in the external coolant region. Starting from the Globe and Dropkin correlation, engineering correlations are developed for the enhancement of heat transfer in the molten metal pool when cooled by an overlying coolant. The new correlations for predicting natural convection heat transfer are applicable to low-Prandtl-number (Pr) materials that are heated from below and solidified by the external coolant above. Results from this study may be used to modify the current model in severe accident analysis codes

  17. Technology to Facilitate the Use of Impaired Waters in Cooling Towers

    Energy Technology Data Exchange (ETDEWEB)

    Colborn, Robert [General Electric Company, NIskayuna, NY (United States)

    2012-04-30

    The project goal was to develop an effective silica removal technology and couple that with existing electro-dialysis reversal (EDR) technology to achieve a cost effective treatment for impaired waters to allow for their use in the cooling towers of coal fired power plants. A quantitative target of the program was a 50% reduction in the fresh water withdrawal at a levelized cost of water of $3.90/Kgal. Over the course of the program, a new molybdenum-modified alumina was developed that significantly outperforms existing alumina materials in silica removal both kinetically and thermodynamically. The Langmuir capacity is 0.11g silica/g adsorbent. Moreover, a low cost recycle/regeneration process was discovered to allow for multiple recycles with minimal loss in activity. On the lab scale, five runs were carried out with no drop in performance between the second and fifth run in ability to absorb the silica from water. The Mo-modified alumina was successfully prepared on a multiple kilogram scale and a bench scale model column was used to remove 100 ppm of silica from 400 liters of simulated impaired water. Significant water savings would result from such a process and the regeneration process could be further optimized to reduce water requirements. Current barriers to implementation are the base cost of the adsorbent material and the fine powder form that would lead to back pressure on a large column. If mesoporous materials become more commonly used in other areas and the price drops from volume and process improvements, then our material would also lower in price because the amount of molybdenum needed is low and no additional processing is required. There may well be engineering solutions to the fine powder issue; in a simple concept experiment, we were able to pelletize our material with Boehmite, but lost performance due to a dramatic decrease in surface area.

  18. Cooled microwave ablation of thyroid nodules: Initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Korkusuz, Yücel [Department of Nuclear Medicine, University Hospital Frankfurt (Germany); Mader, Oscar Maximilian, E-mail: info@dzta.de [Department of Nuclear Medicine, University Hospital Frankfurt (Germany); Kromen, Wolfgang [Department of Neuro Radiology University Hospital (Germany); Happel, Christian [Department of Nuclear Medicine, University Hospital Frankfurt (Germany); German Centre for Thermoablation of Thyroid Nodules, University Hospital, Frankfurt (Germany); Ahmad, Shadi [Department of General and Visceral Surgery, Agaplesion Elisabethenstift, Darmstadt (Germany); Gröner, Daniel; Koca, Mithat; Mader, Alexander [Department of Nuclear Medicine, University Hospital Frankfurt (Germany); Grünwald, Frank; Korkusuz, Hüdayi [Department of Nuclear Medicine, University Hospital Frankfurt (Germany); German Centre for Thermoablation of Thyroid Nodules, University Hospital, Frankfurt (Germany)

    2016-11-15

    Highlights: • cMWA is a safe and effective treatment for thyroid nodules. • Ultrasound imaging allows guidance during microwave ablation. • Pain level during cMWA treatment is reduced in comparison to RFA. - Abstract: Objective: To evaluate if internally cooled microwave ablation (cMWA) is a safe and effective method for treatment of benign and malign thyroid nodules. Methods: 9 patients with 11 symptomatic cold benign thyroid nodules and 1 recurrent thyroid carcinoma ranging in volume from 9.1 to 197 ml (mean size 52 ±  57 ml) were treated with cMWA. The mean age of the patients was 59 years. Pain during the treatment was measured on a 10-point scale. Side effects revealed by ultrasound or patients’ complaints were documented. Periablative efficacy was measured 24 h after cMWA as change (Δ) in serum thyreoglobulin (Tg). Nodule elasticity was measured on a 4-point scale, blood circulation and echogenicity on a 3-point scale. Results: All patients tolerated cMWA well. Median pain intensity averaged 2.1 ± 0.8 (range: 1–3). Postablative hematoma was observed in all cases. In no cases ablation led to hoarseness, superficial burns, nodule ruptures, vagal reactions or dysphagia. cMWA lead to a significant decrease of blood circulation, nodule echogenicity and a significant increase of elasticity (Δ  =  1.1  ±  0.33; 0.8  ±  0.4 and 1.1  ±  0.6 points)(p < 0.05). An average increase of 4495 ng/ml Tg was measured (p < 0.05). Conclusions: cMWA is an effective and secure method for treatment of thyroid nodules.

  19. Biofouling on Coated Carbon Steel in Cooling Water Cycles Using Brackish Seawater

    Directory of Open Access Journals (Sweden)

    Pauliina Rajala

    2016-11-01

    Full Text Available Water cooling utilizing natural waters is typically used for cooling large industrial facilities such as power plants. The cooling water cycles are susceptible to biofouling and scaling, which may reduce heat transfer capacity and enhance corrosion. The performance of two fouling-release coatings combined with hypochlorite treatment were studied in a power plant utilizing brackish sea water from the Baltic Sea for cooling. The effect of hypochlorite as an antifouling biocide on material performance and species composition of microfouling formed on coated surfaces was studied during the summer and autumn. Microfouling on surfaces of the studied fouling-release coatings was intensive in the cooling water cycle during the warm summer months. As in most cases in a natural water environment the fouling consisted of both inorganic fouling and biofouling. Chlorination decreased the bacterial number on the surfaces by 10–1000 fold, but the efficacy depended on the coating. In addition to decreasing the bacterial number, the chlorination also changed the microbial species composition, forming the biofilm on the surfaces of two fouling-release coatings. TeknoTar coating was proven to be more efficient in combination with the hypochlorite treatment against microfouling under these experimental conditions.

  20. Simultaneous effects of water spray and crosswind on performance of natural draft dry cooling tower

    Directory of Open Access Journals (Sweden)

    Ahmadikia Hossein

    2013-01-01

    Full Text Available To investigate the effect of water spray and crosswind on the effectiveness of the natural draft dry cooling tower (NDDCT, a three-dimensional model has been developed. Efficiency of NDDCT is improved by water spray system at the cooling tower entrance for high ambient temperature condition with and without crosswind. The natural and forced heat convection flow inside and around the NDDCT is simulated numerically by solving the full Navier-Stokes equations in both air and water droplet phases. Comparison of the numerical results with one-dimensional analytical model and the experimental data illustrates a well-predicted heat transfer rate in the cooling tower. Applying water spray system on the cooling tower radiators enhances the cooling tower efficiency at both no wind and windy conditions. For all values of water spraying rate, NDDCTs operate most effectively at the crosswind velocity of 3m/s and as the wind speed continues to rise to more than 3 m/s up to 12 m/s, the tower efficiency will decrease by approximately 18%, based on no-wind condition. The heat transfer rate of radiator at wind velocity 10 m/s is 11.5% lower than that of the no wind condition. This value is 7.5% for water spray rate of 50kg/s.

  1. Optimum Design and Operation of an HVAC Cooling Tower for Energy and Water Conservation

    Directory of Open Access Journals (Sweden)

    Clemente García Cutillas

    2017-03-01

    Full Text Available The energy consumption increase in the last few years has contributed to developing energy efficiency policies in many countries, the main goal of which is decreasing CO 2 emissions. One of the reasons for this increment has been caused by the use of air conditioning systems due to new comfort standards. In that regard, cooling towers and evaporative condensers are presented as efficient devices that operate with low-level water temperature. Moreover, the energy consumption and the cost of the equipment are lower than other systems like air condensers at the same operation conditions. This work models an air conditioning system in TRNSYS software, the main elements if which are a cooling tower, a water-water chiller and a reference building. The cooling tower model is validated using experimental data in a pilot plant. The main objective is to implement an optimizing control strategy in order to reduce both energy and water consumption. Furthermore a comparison between three typical methods of capacity control is carried out. Additionally, different cooling tower configurations are assessed, involving six drift eliminators and two water distribution systems. Results show the influence of optimizing the control strategy and cooling tower configuration, with a maximum energy savings of 10.8% per story and a reduction of 4.8% in water consumption.

  2. French study and research program on water cooled reactor safety

    International Nuclear Information System (INIS)

    Zammite, R.

    1985-05-01

    Electricite de France and the CEA (Commissariat a l'Energie Atomique), joined to obtain, in several fields, the knowledge and qualified calculation tools, they need to develop new means to face the potential consequences of accidents. The bringing on of an important number of PWR units in France in the eightys involves a focusing on these studies. The main fields concerned are the following ones: core cooling accidents and severe accident prevention; fuel behavior in case of accident; containment behavior in accidental situation; emission, transfer and release of fission products in case of accident; probabilistic risk analysis, human factor and earthquakes [fr

  3. The Modification of Sodium Polyacrylate Water Solution Cooling Properties by AL2O3

    Directory of Open Access Journals (Sweden)

    Wojciech Gęstwa

    2010-01-01

    Based on cooling curves, it can be concluded that for the water solution of sodium polyacrylate with AL2O3 nanoparticles in comparison to water and 10% polymer water solution lower cooling speed is obtained. The cooling medium containing nanoparticles provides lower cooling speed in the smallest surface austenite occurance (500–600 C in the charts of the CTP for most nonalloy structural steels and low-alloy steels. However lower cooling temperature at the beginning of martensitic transformation causes the formation of smaller internal stresses, leading to smaller dimensional changes and hardening deformation. For the quenching media the wetting angle was appointed by the drop-shape method. These studies showed the best wettability of polymer water solution (sodium polyacrylate with the addition of AL2O3 nanoparticles, whose wetting angle was about 65 degrees. Obtaining the smallest wetting angle for the medium containing nanoparticles suggests that the heat transfer to the cooling medium is larger. This allows slower cooling at the same time ensuring its homogeneity. The obtained values of wetting angle confirm the conclusions drawn on the basis of cooling curves and allowus to conclude that in the case of the heat transfer rate it will have a lower value than for water and 10% polymer water solution. In the research on hardened carburized steel samples C10 and 16MnCr5 surface hardness, impact strength and changes in the size of cracks in Navy C-ring sample are examined. On this basis of the obtained results it can be concluded that polymer water solution with nanoparticles allows to obtain a better impact strength at comparable hardness on the surface. Research on the dimensional changes on the basis of the sample of Navy C-ring also shows small dimensional changes for samples carburized and hardened in 10% polymer water solution with the addition of nanoparticles AL2O3. Smaller dimensional changes were obtained for samples of steel 16MnCr5 thanfar C10. The

  4. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    Energy Technology Data Exchange (ETDEWEB)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water

  5. The effect of internal mould water spray cooling on rotationally moulded polyethylene parts

    Science.gov (United States)

    McCourt, Mark P.; Kearns, Mark P.; Martin, Peter J.

    2018-05-01

    The conventional method of cooling during the rotational moulding process is through the use of forced air. During the cooling phase of a typical rotomoulding cycle, large volumes of high velocity room temperature air are forced across the outside of the rotating rotomoulding tool to encourage cooling of the metal mould and molten polymer. Since no cooling is applied to the inside of the mould, the inner surface of the polymer (polyethylene) cools more slowly and will have a tendency to be more crystalline and the polyethylene will have a higher density in this region. The side that cools more quickly (in contact with the inside mould wall) will be less crystalline, and will therefore have a lower density. The major consequence of this difference in crystallinity will be a buildup of internal stresses producing warpage and excessive shrinkage of the part with subsequent increased levels of scrap. Therefore excessive cooling on the outside of the mould should be avoided. One consequence of this effect is that the cooling time for a standard rotationally moulded part can be quite long and this has an effect on the overall economics of the process in terms of part manufacture. A number of devices are currently on the market to enhance the cooling of rotational moulding by introducing a water spray to the inside of the rotomoulding during cooling. This paper reports on one such device 'Rotocooler' which during a series of initial industrial trials has been shown to reduce the cycletime by approximately 12 to 16%, with minimal effect on the mechanical properties, leading to a part which has less warpage and shrinkage than a conventionally cooled part.

  6. Releases from the cooling water system in the Waste Tank Farm

    International Nuclear Information System (INIS)

    Perkins, W.C.; Lux, C.R.

    1991-01-01

    On September 12, 1991, a cooling-water header broke in the H-Area Waste Tank farm, at the Savannah River Site, releasing contaminated water down a storm sewer that drains to the creek. A copy of the Occurrence Report is attached. As part of the follow-up on this incident, the NPSR Section was asked by Waste Management Technology to perform a probabilistic analysis of the following cases: (1) A large break in the header combined with a large break in a cooling coil inside a waste tank. (2) A large break in the header combined with a leak in a cooling coil inside a waste tank. (3) A large break in the header combined with a very small leak in a cooling coil inside a waste tank. This report documents the results of the analysis of these cases

  7. Method and plant to remote tritium from the cooling water of a nuclear reactor

    International Nuclear Information System (INIS)

    O'Brien, C.J.

    1976-01-01

    A method is proposed for the extraction of tritium from the cooling water of a nuclear reactor, based on the principle of concentrating the tritium by a multi-stage transfer process. The cooling water is brought into contact in each stage with basic, labile, hydrogen-containing material with high pH value, whereby the tritium is transfered into an intermediate solid product and can be separated off. The technical details of the plant are described. Cellulose materials, such as cotton and wood as well as protein-containing material, such as muscle tissue are mentioned as examples of materials with a high affinity to tritium, greater than the affinity of water to tritium. They extract tritium from the cooling water. (HK) [de

  8. Design and Test of Wendelstein 7-X Water-Cooled Divertor Scraper

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, Garching, Germany; Greuner, Henri [Max Planck Institute for Plasma Physics, Garching, Germany; Ehrke, Gunnar [Max Planck Institute of Plasma Physics, Greifswald, Germany; Boeswirth, Bernd [Max Planck Institute for Plasma Physics, Garching, Germany; Wang, Zhongwei [Max Planck Institute for Plasma Physics, Garching, Germany; Clark, Emily [The University of Tennessee, Knoxville; Lumsdaine, Arnold [ORNL; Tretter, Jorg [Max Planck Institute for Plasma Physics, Garching, Germany; Junghanns, Patrick [Max Planck Institute for Plasma Physics, Garching, Germany; Stadler, Reinhold [Max Planck Institute for Plasma Physics, Garching, Germany; McGinnis, William Dean [ORNL; Lore, Jeremy D. [ORNL; Team, W7-X [Max-Planck-Institut fur Plasmaphysik, Griefswald, Germany

    2018-04-01

    Heat load calculations have indicated the possible overloading of the ends of the water-cooled divertor facing the pumping gap beyond their technological limit. The intention of the scraper is the interception of some of the plasma fluxes both upstream and downstream before they reach the divertor surface. The scraper is divided into six modules of four plasma facing components (PFCs); each module has four PFCs hydraulically connected in series by two water boxes (inlet and outlet). A full-scale prototype of one module has been manufactured. Development activities have been carried out to connect the water boxes to the cooling pipes of the PFCs by tungsten inert gas internal orbital welding. This prototype was successfully tested in the GLADIS facility with 17 MW/m2 for 500 cycles. The results of these activities have confirmed the possible technological basis for a fabrication of the water-cooled scraper.

  9. Corrosion evaluation of cooling-water treatments for gas centrifuge facilities

    International Nuclear Information System (INIS)

    Schmidt, C.R.; Meredith, P.F.

    1980-01-01

    The corrosion resistance of six different types of weighted metal coupons was evaluated at 29 0 C (84 0 F) in flowing water containing nitrite-borate-silicate corrosion inhibitors. The question for evaluation was whether it would be more advantageous: (1) to drain the treated cooling water from the centrifuge machine and to expose them to moisture-laden air over an assumed shop downtime and repair perid of 1 month; or (2) to let the treated cooling water remain stagnant in the machines during this downtime. The moisture-laden-air exposure was more detrimental

  10. Comprehensive cooling water study annual report. Volume II: introduction and site description, Savannah River Plant

    International Nuclear Information System (INIS)

    Gladden, J.B.; Lower, M.W.; Mackey, H.E.; Specht, W.L.; Wilde, E.W.

    1985-07-01

    The Comprehensive Cooling Water Study was initiated in 1983 to evaluate the environmental effecs of the intake and release of cooling water on the structure and function of aquatic ecosystems at the Savannah River Plant. This report presents the results from the first year of the two year study and also summarizes results from previous studies on aquatic ecosystems of the Savannah River Plant. Five major program elements are addressed: water quality, radionuclide and heavy metal transport, wetlands ecology, aquatic ecology, and endangered species. 63 refs., 13 figs., 7 tabs

  11. Concept of safe tank-type water cooled and moderated reactor with HTGR microparticle fuel compacts

    International Nuclear Information System (INIS)

    Gol'tsev, A.O.; Kukharkin, N.E.; Mosevitskij, I.S.; Ponomarev-Stepnoj, N.N.; Popov, S.V.; Udyanskij, Yu.N.; Tsibul'skij, V.F.

    1993-01-01

    Concept of safe tank-type water-cooled and moderated reactor on the basis of HTGR fuel microparticles which enable to avoid environment contamination with radioactive products under severe accidents, is proposed. Results of neutron-physical and thermal-physical studies of water cooled and moderated reactor with HTGR microparticle compacts are presented. Characteristics of two reactors with thermal power of 500 and 1500 MW are indicated within the concept frames. The reactor behaviour under severe accident connected with complete loss of water coolant is considered. It is shown that under such an accident the fission products release from fuel microparticles does not occur

  12. Brackish groundwater as an alternative source of cooling water for nuclear power plants in Israel

    International Nuclear Information System (INIS)

    Arad, A.; Olshina, A.

    1984-01-01

    The western Negev is being considered as a potential site for the location of a nuclear powerplant. Since this part of Israel has no surface water, the only alternatives for cooling water are piped-in water, Mediterranean water and local, brackish groundwater. The Judea Group aquifer was examined for its potential to provide the required amount of cooling water over the lifetime of the plant, without causing a drastic lowering of the regional water table. The salinity of the water tends to increase from east to west. Flow within the aquifer is in the direction of Beer Sheva, where the extraction rate is 32 to 35 million cu m/yr. This has resulted in a salinity creep of 5-10 mg Cl per year in the Beer Sheva area, which poses a danger of deterioration of its water supply in the long term. Given the assumed range of aquifer properties, extraction of brackish water for cooling purposes will not result in large changes in the regional water table. Exploitation of the more saline water to the southwest of Beer Sheva could preserve the quality of Beer Sheva's water supply, at the expense of an increase in the depth from which it must be pumped. 2 references, 7 figures, 2 tables

  13. PH adjustment of power plant cooling water with flue gas/fly ash

    Science.gov (United States)

    Brady, Patrick V.; Krumhansl, James L.

    2015-09-22

    A system including a vessel including a heat source and a flue; a turbine; a condenser; a fluid conduit circuit disposed between the vessel, the turbine and the condenser; and a diverter coupled to the flue to direct a portion of an exhaust from the flue to contact with a cooling medium for the condenser water. A method including diverting a portion of exhaust from a flue of a vessel; modifying the pH of a cooling medium for a condenser with the portion of exhaust; and condensing heated fluid from the vessel with the pH modified cooling medium.

  14. Electrophysiological and behavioural responses of turbot (Scophthalmus maximus) cooled in ices water

    NARCIS (Netherlands)

    Lambooij, E.; Bracke, M.B.M.; Reimert, H.G.M.; Foss, A.; Imsland, A.; Vis, van de J.W.

    2015-01-01

    Behavioural, neural and physiological aspects related to pre-slaughter cooling of turbot habituated to two environmental temperatures (18.7 and 12.0 °C) were investigated. Six fish in both treatments were immersed in ice water for 75 min. For control, four fish were immersed in water under their

  15. Water supply rates for recirculating evaporative cooling systems in poultry housing

    Science.gov (United States)

    Evaporative cooling (EC) is an important tool to reduce heat stress in animal housing systems. Expansion of ventilation capacity in tunnel ventilated poultry facilities has resulted in increased water demand for EC systems. As water resources become more limited and costly, proper planning and des...

  16. Guided design of heating and cooling mains for lower water and energy consumption and increased efficiency

    CSIR Research Space (South Africa)

    Gololo, V

    2011-01-01

    Full Text Available Water cooling and water heating is an important source of energy consumption, accounting for more than 20% of all energy consumption in manufacturing industry. It is clear that the development of heat recycling schemes and better structural design...

  17. Advanced water-cooled reactor technologies. Rationale, state of progress and outlook

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Eighty per cent of the world's power reactors are water cooled and moderated. Many improvements in their design and operation have been implemented since the first such reactor started commercial operation in 1957. This report addresses the safety, environmental and economic rationales for further improvements, as well as their relevance to currently operating water reactors

  18. Multi-model assessment of global hydropower and cooling water discharge potential under climate change

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Beek, van L.P.H.; Eisner, S.; Flörke, M.; Wada, Y.; Bierkens, M.F.P.

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved

  19. Determining the void fraction in draught sections of a boiling water cooled reactor

    International Nuclear Information System (INIS)

    Fedulin, V.N.; Barolomej, G.G.; Solodkij, V.A.; Shmelev, V.E.

    1987-01-01

    Consideration is being given to the problem of improving methods for calculation of the void fraction in large channels of cooling system of the boiling water cooled reactor during two-phase unsteady flow. Investigation of the structure of two-phase flow was conducted in draught section of the VK-50 reactor (diameter D=2 m, height H=3). The method for calculation of the void fraction in channels with H/D ratio close to 1 is suggested

  20. TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Cherry, Nigel J [ORNL; Allen, Richard Lowell [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL; Ronnen, Levinson [Lawrence Berkeley National Laboratory (LBNL); Akbari, Hashem [Lawrence Berkeley National Laboratory (LBNL); Berhahl, Paul [Lawrence Berkeley National Laboratory (LBNL)

    2010-03-01

    Aesthetically pleasing dark roofs can be formulated to reflect like a highly reflective white roof in the near infrared portion of the solar spectrum. New paint pigments increase the near infrared reflectance of exterior finishes by minimizing the absorption of near-infrared radiation (NIR). The boost in the NIR reflectance drops the surface temperatures of roofs and walls, which in turn reduces cooling-energy use and provides savings for the homeowner and relief for the utilities. In moderate and hot climates, a roof surface with high solar reflectance and high thermal emittance was shown by Akbari et al. (2004) and by Parker and Sherwin (1998) to reduce the exterior temperature and produce savings in comfort cooling. The new cool color pigments can potentially reduce emissions of carbon dioxide, which in turn reduces metropolitan heat buildup and urban smog. The pigments can also help conserve water resources otherwise used to clean and process fuel consumed by fossil-fuel driven power plants. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning, retards smog formation, and improves thermal comfort. Parker, Sonne and Sherwin (2002) demonstrated that white barrel and white flat tiles reduced cooling energy consumption by 22% of the base load used by an adjacent and identical home having direct nailed dark shingles. Part of the savings was due to the reflectance of the white tiles; however, another part was due to the mass of the tile and to the venting occurring within the double batten installation. With, Cherry and Haig (2009) have studied the influence of the thermal mass and batten space ventilation and have found that, referenced to an asphalt shingle system, it can be equivalent to an additional 28 points of solar reflectivity. The double batten arrangement has wooden counter battens laid vertically (soffit-to-ridge) against the roof deck, and then the conventional battens are laid horizontally across the

  1. Measured performance of a 3 ton LiBr absorption water chiller and its effect on cooling system operation

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A three ton lithium bromide absorption water chiller was tested for a number of conditions involving hot water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It was concluded that a three-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  2. Measured performance of a 3-ton LiBr absorption water chiller and its effect on cooling system operation

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 3-ton lithium bromide absorption water chiller was tested for a number of conditions involving hot-water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It is concluded that a 3-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  3. Influence of Stern Shaft Inclination on the Cooling Performance of Water-Lubricated Bearing

    Directory of Open Access Journals (Sweden)

    Zou Li

    2016-01-01

    Full Text Available The water film model of the marine water-lubricated stern bearing was established by FLUENT. The influence law of water flow rate on the cooling performance of water-lubricated bearing was studied in consideration of the stern shaft inclination. It will be helpful to improve the performance of marine water-lubricated stern bearing and both security and reliability of propulsion system. The simulation results show that the increase of cooling water flow rate in a certain range can effectively reduce bearing temperature. The bearing temperature rises sharply with thinning of water film thickness which is caused by the increase of inclination angle. Larger inclination angle can deteriorate the operating reliability of bearing.

  4. European research and development programme for water-cooled lithium-lead blankets: present status and future work

    International Nuclear Information System (INIS)

    Giancarli, L.; Leroy, P.; Proust, E.; Raepsaet, X.

    1992-01-01

    The European R and D programme in support of the development of water-cooled Pb-17Li blankets for DEMO aims at improving the data base concerning tritium behaviour and compatibility between blanket materials. The four main areas of the experimental programme are structural material corrosion by Pb-17Li, tritium extraction and permeation control.=, Pb-17Li physico-chemistry, and water/Pb-17Li interaction. This paper describes the most significant results obtained to date in the various experiments performed in Europe and the future programme required to complete the data base by 1994. 28 refs

  5. Study of a fuel assembly for the nuclear reactor of IV generation cooled with supercritical water

    International Nuclear Information System (INIS)

    Barragan M, A.; Martin del Campo M, C.; Francois L, J. L.; Espinosa P, G.

    2011-11-01

    In this work a neutron study is presented about a square assembly design of double line of fuel rods, with moderator box to the center of the arrangement, for a nuclear reactor cooled with supercritical water (SCWR). The SCWR reactor was chosen by the characteristics of its design, mainly because is based in light water reactors (PWR and BWR), and the operational experience that has of them allow to use models and similar programs to simulate the fuel and the nucleus of this type of reactors. To develop the necessary models and to carry out the design and analysis of the SCWR reactor, the neutron codes MCNPX and Helios were used. The reason of using both codes, is because the code MCNPX used thoroughly in the neutron simulation of these reactors, it has been our reference code to analyze the results obtained with the Helios code which results are more efficient because its calculation times are minors. In the nucleus design the same parameters for both codes were considered. The results show that the design with Helios is a viable option to simulate these reactors since their values of the neutrons multiplication factor are very similar to those obtained with MCNPX. On the other hand, it could be corroborated that the CASMO-4 code is inadequate to simulate the fuel to the temperature conditions and water pressure in the SCWR. (Author)

  6. Simulation study of air and water cooled photovoltaic panel using ANSYS

    Science.gov (United States)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Majid, M. S. A.; Aziz, N. A.

    2017-10-01

    Demand for alternative energy is growing due to decrease of fossil fuels sources. One of the promising and popular renewable energy technology is a photovoltaic (PV) technology. During the actual operation of PV cells, only around 15% of solar irradiance is converted to electricity, while the rest is converted into heat. The electrical efficiency decreases with the increment in PV panel’s temperature. This electrical energy is referring to the open-circuit voltage (Voc), short-circuit current (Isc) and output power generate. This paper examines and discusses the PV panel with water and air cooling system. The air cooling system was installed at the back of PV panel while water cooling system at front surface. The analyses of both cooling systems were done by using ANSYS CFX and PSPICE software. The highest temperature of PV panel without cooling system is 66.3 °C. There is a decrement of 19.2% and 53.2% in temperature with the air and water cooling system applied to PV panel.

  7. Investigation of heat transfer for extruded polymers cooled in water

    CSIR Research Space (South Africa)

    Kumar, R

    2015-10-01

    Full Text Available . The temperature of still water after 1, 5 and 10 min were determined experimentally using the digital temperature sensor. The temperature gains for the water after the immersion of the extruded polymers were determined at different time intervals. In the second...

  8. Natural circulation cooling in US pressurized water reactors

    International Nuclear Information System (INIS)

    Berta, V.T.; Wilson, G.E.; Boyack, B.E.

    1989-01-01

    The research into the modes of, and heat removed by, natural circulation in PWR systems is reviewed for the purpose of determining the status of this method for off-nominal recovery procedures. The referenced information comes from all facets of the nuclear industry, both domestic and international. The information focuses on recent research (1986--1988); however, pre-1986 research is summarized and referenced. Particular attention is paid to the role of scaling in the experimental facilities and analytical tools. Three modes of natural-circulation cooling are covered: condensation. The conclusion of the review is that the new research reconfirms the pre-1986 conclusion that natural circulation is a viable means of decay heat removal. In addition, the new research sufficiently completes the acquisition of an appropriate experimental data base and the development of system codes to permit the design of valid plant recovery procedures incorporating all three modes of natural circulation. 48 refs., 1 fig., 3 tabs

  9. The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners

    International Nuclear Information System (INIS)

    Yi Xiaowen; Lee, W.L.

    2009-01-01

    An experimental study on the performance of a domestic water-cooled air-conditioner (WAC) using tube-in-tube helical heat exchanger for preheating of domestic hot water was carried out. The main aims are to identify the comprehensive energy performance (space cooling and hot water preheating) of the WAC and the optimum design of the helical heat exchanger taking into account the variation in tap water flow rate. A split-type WAC was set up for experimental study at different indoor and outdoor conditions. The cooling output, the amount of recovered heat, and the power consumption for different hot water flow rates were measured. The experimental results showed that the cooling coefficient of performance (COP) of the WAC improves with the inclusion of the heat recovery option by a minimum of 12.3%. This can be further improved to 20.6% by an increase in tap water flow rate. Same result was observed for the comprehensive COP of the WAC. The maximum achievable comprehensive COP was 4.92 when the tap water flow rate was set at 7.7 L/min. The overall heat transfer coefficient of the helical heat exchanger under various operating conditions were determined by Wilson plot. A mathematical model relating the over all heat transfer coefficient to the outer pipe diameter was established which provides a convenient way of optimising the design of the helical heat exchanger

  10. Mitigation of inside surface residual stress of type 304 stainless steel pipe welds by inside water cooling method

    International Nuclear Information System (INIS)

    Sasaki, R.

    1980-01-01

    The weld residual stress distributions, macro- and microstructures of heat affected zone and IGSCC susceptibility of Type 304 stainless steel pipe welds by natural and inside water cooling methods have been investigated. The residual stresses of pipe welds by the natural cooling method are high tensile on both the inside and the outside surface. While the residual stresses on the inside surface of pipe welds by the inside water cooling method are compressive in both axial and circumferential directions for each pipe size from 2 to 24 inch diameter. The sensitized zones of welds by the inside water cooling method are closer to the fusion line, much narrower and milder than those by the natural cooling method. According to the constant extension rate test results for specimens taken from the inside surface of pipe welds, the inside water cooled welds are more resistant to IGSCC than naturally cooled ones

  11. The influence of cooling water outlet of the Ringhals power plant on the coastal fish colony

    International Nuclear Information System (INIS)

    Neuman, E.

    1988-03-01

    Fish abundance has been monitored with fyke nets in 1976-1987 at the cooling-water outlet from the Ringhals nuclear power plant at the Swedish west coast and in a reference area. Judging from the dependence of the catches on temperature, Myoxocephalus scorpius, Zoarces viviparus, Gadus morhua and Platichtys flesus can be classified as cold-water species and Symphodus melops, Ctenolabrus rupestris, Carci nus maenas and Anguilla anguilla as warm-water species. As a rule the warm-water species were more and the cold-water fishes less abundant in the outlet area than in the reference area. The catch of the economically important Anguilla was about three times greater in the heated area. A lower abundance than expected of Ctenolabrus and Myoxocephalus at the outlet may be caused by a loss of eggs and larvae in the cooling-water system. (author)

  12. Experimental and numerical analysis of the cooling performance of water spraying systems during a fire.

    Directory of Open Access Journals (Sweden)

    YaoHan Chen

    Full Text Available The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS overestimated the space temperature before water spraying in the case of the same water spray system.

  13. Simulation of the solidification in a channel of a water-cooled glass flow

    Directory of Open Access Journals (Sweden)

    G. E. Ovando Chacon

    2014-12-01

    Full Text Available A computer simulation study of a laminar steady-state glass flow that exits from a channel cooled with water is reported. The simulations are carried out in a two-dimensional, Cartesian channel with a backward-facing step for three different angles of the step and different glass outflow velocities. We studied the interaction of the fluid dynamics, phase change and thermal behavior of the glass flow due to the heat that transfers to the cooling water through the wall of the channel. The temperature, streamline, phase change and pressure fields are obtained and analyzed for the glass flow. Moreover, the temperature increments of the cooling water are characterized. It is shown that, by reducing the glass outflow velocity, the solidification is enhanced; meanwhile, an increase of the step angle also improves the solidification of the glass flow.

  14. Method of avoiding hazards resulting from accidents in water-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Dorner, S.; Schretzmann, K.; Schumacher, G.

    1984-01-01

    In water-cooled reactors, e.g. BWRs and PWRs, elemental hydrogen is released by hydrolysis (in-leakage). In case of an accident in these reactors or at emergency cooling of e.g., a gas-cooled reactor with water additional hydrogen is produced by chemical reactions of the water with the cladding material. In order to prevent hydrogen pressurizing and the formation of a detonating gas mixture, dry powder containers are provided for in the endangered compartments of the reactor. In case of danger powdered CuO, MnO 2 , Fe 2 O 3 , or CdO, the oxygen content of which recombines with the hydrogen, is ejected from them. In addition, an extinguishing substance with an anticatalytic resp. inhibition effect and/or an inert gas of the group N 2 , He, Ar, CO 2 may be admixed to the powder resp. powder mixture. (orig./PW)

  15. Using containment analysis to improve component cooling water heat exchanger limits

    International Nuclear Information System (INIS)

    Da Silva, H.C.; Tajbakhsh, A.

    1995-01-01

    The Comanche Peak Steam Electric Station design requires that exit temperatures from the Component Cooling Water Heat Exchanger remain below 330.37 K during the Emergency Core Cooling System recirculation stage, following a hypothetical Loss of Coolant Accident (LOCA). Due to measurements indicating a higher than expected combination of: (a) high fouling factor in the Component Cooling Water Heat Exchanger with (b) high ultimate heat sink temperatures, that might lead to temperatures in excess of the 330.37 K limit, if a LOCA were to occur, TUElectric adjusted key flow rates in the Component Cooling Water network. This solution could only be implemented with improvements to the containment analysis methodology of record. The new method builds upon the CONTEMPT-LT/028 code by: (a) coupling the long term post-LOCA thermohydraulics with a more detailed analytical model for the complex Component Cooling Water Heat Exchanger network and (b) changing the way mass and energy releases are calculated after core reflood and steam generator energy is dumped to the containment. In addition, a simple code to calculate normal cooldowns was developed to confirm RHR design bases were met with the improved limits

  16. New Mexico cloud super cooled liquid water survey final report 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  17. Chlorination of cooling water: a source of chlorine-containing organic compounds with possible environmental significance

    International Nuclear Information System (INIS)

    Jolley, R.L.; Gehrs, C.W.; Pitt, W.W. Jr.

    1976-01-01

    Chlorination of cooling waters may be a source of environmentally significant pollutants. Many water-soluble chlorine-containing organic compounds of low volatility were found in a sample of cooling water chlorinated to a 2-mg/l chlorine concentration in the laboratory. The compounds were separated and detected using a coupled 36 Cl-tracer--high-resolution liquid chromatographic technique developed at the Oak Ridge National Laboratory for determination of chlorinated organics in process effluents. For a chlorination contact time of 75 min at 25 0 C, the yield of chlorine in the form of chloro-organics amounted to 0.78% of the chlorine dosage. It is estimated that the yield is about 0.5% under typical reaction conditions in the electric power plant cooling system chosen for study. Because chlorine is commonly used to remove slime films from the cooling systems of electric power plants, as a means of maintaining high operational efficiency, it is estimated that several hundred tons of chlorinated organics are produced annually in the nation by this antifoulant process. The chromatographic elution positions of some of the separated constituents correspond to those of compounds separated and partially identified from chlorinated sewage treatment plant effluents. The results of this study indicate the formation of chloro-organics during the chlorination of cooling waters should be thoroughly examined, particularly with respect to their identification and determination of possible toxicological properties

  18. Feasibility analysis of the modified ATHLET code for supercritical water cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Chong, E-mail: ch.zhou@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Institute of Fusion and Reactor Technology, Karlsruhe Institute of Technology, Vincenz-Priessnitz-Str. 3, 76131 Karlsruhe (Germany); Yang Yanhua [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cheng Xu [Institute of Fusion and Reactor Technology, Karlsruhe Institute of Technology, Vincenz-Priessnitz-Str. 3, 76131 Karlsruhe (Germany)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Modification of system code ATHLET for supercritical water application. Black-Right-Pointing-Pointer Development and assessment of a heat transfer package for supercritical water. Black-Right-Pointing-Pointer Validation of the modified code at supercritical pressures with the theoretical point-hydraulics model and the SASC code. Black-Right-Pointing-Pointer Application of the modified code to LOCA analysis of a supercritical water cooled in-pile fuel qualification test loop. - Abstract: Since the existing thermal-hydraulic computer codes for light water reactors are not applicable to supercritical water cooled reactors (SCWRs) owing to the limitation of physical models and numerical treatments, the development of a reliable thermal-hydraulic computer code is very important to design analysis and safety assessment of SCWRs. Based on earlier modification of ATHLET for SCWR, a general interface is implemented to the code, which serves as the platform for information exchange between ATHLET and the external independent physical modules. A heat transfer package containing five correlations for supercritical water is connected to the ATHLET code through the interface. The correlations are assessed with experimental data. To verify the modified ATHLET code, the Edwards-O'Brian blow-down test is simulated. As first validation at supercritical pressures, a simplified supercritical water cooled loop is modeled and its stability behavior is analyzed. Results are compared with that of the theoretical model and SASC code in the reference and show good agreement. To evaluate its feasibility, the modified ATHLET code is applied to a supercritical water cooled in-pile fuel qualification test loop. Loss of coolant accidents (LOCAs) due to break of coolant supply lines are calculated for the loop. Sensitivity analysis of some safety system parameters is performed to get further knowledge about their influence on the function of the

  19. The Effect of Wind Velocity on the Cooling Rate of Water

    OpenAIRE

    Shrey Aryan

    2016-01-01

    The effect of wind velocity on the cooling rate of water was investigated by blowing air horizontally over the surface of water contained in a plastic water-bottle cap. The time taken for the temperature to fall to the average of the surrounding and initial temperatures was recorded at different values of wind velocity. It was observed that on increasing the wind velocity, the time taken to achieve average temperature not only decreased but also remained the same after a certain point.

  20. Vented fuel experiment for gas-cooled fast reactor application

    International Nuclear Information System (INIS)

    Longest, A.W.; Gat, U.; Conlin, J.A.; Campana, R.J.

    1976-01-01

    A pressure-equalized and vented fuel rod is being irradiated in an instrumented capsule designated GB-10 to approximately 100MWd/kg-heavy metal. The fuel is a sol-gel-derived 88 at.% uranium (approximately 9% 235 U) and 12 at.% plutonium oxide, and the cladding is 20% cold-worked 316 stainless steel. The capsule is being irradiated in the Oak Ridge Research Reactor (ORR) and has exceeded a burnup of 70MWd/kg. The fuel has been operated at linear power rates of 39 and 44kW/m, and peak outer cladding temperature of 565 and 630 0 C respectively. A similar fuel rod in a previous capsule (GB-9) was subjected to 48kW/m (685 0 C). Helium gas sweeps through any portion of the three regions of the fuel rod, namely: fuel, blanket, and charcoal trap. The charcoal trap is operated at about 300 0 C. An on-line Ge(Li) detector is used to analyse release rates of several gamma-emitting noble gas isotopes. Analyses are performed primarily on sweep gas flowing through the entire fuel rod, and for sweeps over the top of the charcoal trap. Sweep gas samples are analyzed for stable noble gas isotopes. Results in the form of ratios of release rate over birth rate (R/B) and venting rate over birth rate (V/B) are derived. R/B rates range from 10 -4 % to 30% while V/B ranges from 10 -6 % to 30%. Flow conductance in the capsule was monitored by recording the flow rate and pressure drop across the fuel rod and inlet sweep line. The flow conductance has been falling with increasing burnup, currently restricting the flow to about 20ml (s.t.p.)/min at a pressure difference of about 1.5MPa. Venting rates of the gaseous fission products as a function of gas pressure in the range 6.9 to 1.4MPa have also been measured. Planned future experiments include the monitoring of tritium release, venting and cladding permeation rates, and its molecular form. First measurements have been made. A simulated leak experiment will determine the mixture of fission gases as a function of flow rate and the most

  1. Method of inhibiting concentration of radioactive corrosion products in cooling water or nuclear power plants

    International Nuclear Information System (INIS)

    Takabayashi, Jun-ichi; Hishida, Mamoru; Ishikura, Takeshi.

    1979-01-01

    Purpose: To suppress the increase in the concentration of the radioactive corrosion products in cooling water, which increase is accompanied by the transference of the corrosion products activated and accumulated in the core due to dissolution and exfoliation into the core water, and inhibit the flowing of said products out of the core and the diffusion thereof into the cooling system, thereby to prevent the accumulation of said products in the cooling system and prevent radioactive contaminations. Method: In a nuclear power plant of a BWR type light water reactor, when the temperature of the pile water is t 0 C, hydrogen is injected in cooling water in a period of time from immediately before starting of the drive stopping operation of the nuclear power plant to immediately after the termination of restarting operation, whereby the concentration of hydrogen in the reactor water through said period is maintained at a value more than 2exp (0.013 t) cm 3 N.T.P./kg H 2 O. (Aizawa, K.)

  2. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  3. Water cooling thermal power measurement in a vacuum diffusion pump

    Directory of Open Access Journals (Sweden)

    Luís Henrique Cardozo Amorin

    2012-04-01

    Full Text Available Diffusion vacuum pumps are used both in industry and in laboratory science for high vacuum production. For its operation they must be refrigerated, and it is done by circulating water in open circuit. Considering that, vacuum systems stays operating by hours, the water consumption may be avoided if the diffusion vacuum pumps refrigeration were done in closed circuit. However, it is necessary to know the diffusion vacuum pump thermal power (the heat transferred to circulate water by time units to implement one of these and get in the refrigeration system dimension. In this paper the diffusion vacuum pump thermal power was obtained by measuring water flow and temperature variation and was calculated through the heat quantity variation equation time function. The thermal power value was 935,6 W, that is 397 W smaller and 35 W bigger than, respectively, the maximum and minimum diffusion pump thermal power suggested by its operation manual. This procedure have been shown useful to precisely determine the diffusion pump thermal power or of any other system that needs to be refrigerated in water closed circuit.

  4. Progress in development and design aspects of advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Technical Committee Meeting (TCM) was to provide an international forum for technical specialists to review and discuss technology developments and design work for advanced water cooled reactors, safety approaches and features of current water cooled reactors and to identify, understand and describe advanced features for safety and operational improvements. The TCM was attended by 92 participants representing 18 countries and two international organizations and included 40 presentations by authors of 14 countries and one international organization. A separate abstract was prepared for each of these presentations. Refs, figs, tabs

  5. Effect of TOC [total organic carbon] on a PWR secondary cooling water system

    International Nuclear Information System (INIS)

    Gau, J.Y.; Oung, J.C.; Wang, T.Y.

    1989-01-01

    Increasing the amount of total organic carbon (TOC) during the wet layup of the steam generator was a problem in PWR nuclear power plant in Taiwan. The results of surveys of TOC in PWR secondary cooling water systems had shown that the impurity of hydrazine and the bacteria were the main reasons that increase TOC. These do not have a corrosion effect on Inconel 600 and carbon steel when the secondary cooling water containing the TOC is below 200 ppb. But the anaerobic bacteria from the steam generator in wet layup will increase corrosion rate of carbon steel and crevice corrosion of Inconel 600. (author)

  6. Methods and technologies for cost reduction in the design of water cooled reactor power plants

    International Nuclear Information System (INIS)

    1991-05-01

    The Specialists Meeting was organized in the framework of the IAEA International Working Group on Advanced Technologies for Water-Cooled Reactors. Its purpose was to provide an international forum for review and discussion on recent results in research and development on different methods and technologies of current and advanced water-cooled reactor power plants, which can lead to reduced investment and operation, maintenance and fuel-cycle costs of the plants. 27 specialists representing 10 countries and the IAEA took part in the meeting. 10 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  7. Recolonization of reactor cooling water system by the Asiatic clam Corbicula fluminea

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1978-01-01

    Recolonization rates for the Asiatic clam Corbicula fluminea ranged from 3.0 to 5.6 metric tons per year in cooling water basins for a nuclear production reactor at the Savannah River Plant. However, a 10-month cleaning cycle for each basin (flow area, 6100 m 2 ) keeps the depth of the silt/clam layer low. With this cleaning frequency, Corbicula are not reaching heat exchangers at sufficient size or in sufficient numbers to restrict flow. Data are presented on the size/age distribution for clams recolonizing cooling water basins between cleanings

  8. Emergency core cooling strainers-the Candu experience

    International Nuclear Information System (INIS)

    Eyvindson, A.; Rhodes, D.; Carson, P.; Makdessi, G.

    2004-01-01

    The Canadian nuclear industry, including Atomic Energy of Canada Limited (AECL) and the four nuclear utilities (New Brunswick Power, Hydro-Quebec, Ontario Power Generation and Bruce Power) have been heavily involved in strainer clogging issues since the late 1990's. A substantial knowledge base has been obtained with support from various organisations, including the CANDU Owners Group (COG), AECL and the CANDU utilities. Work has included debris assessments at specific stations, debris characterisation, transport, head loss measurements across strainers, head loss models and investigations into paints and coatings. Much of this work was performed at AECL's Chalk River Laboratories and has been used to customize strainer solutions for several CANDU (PWR-type) stations. This paper summarises the CANDU experience, describing problems encountered and lessons learned from strainer implementation at stations. Between 1999 and 2003, AECL supplied strainers to six different CANDU stations, representing 12 units with a total power output of approximately 8.2 GWe. Each station had unique needs with respect to layout, effective area, allowable head loss and installation schedule. Challenges at various sites included installation in a covered trench with single-point access, allowing for field adjustments to accommodate large variations in floor level and pump suction location, on-power installation, very high levels of particulate relative to fibrous debris, and relatively low allowable head loss. The following are key points to consider during any station assessment or strainer implementation: - a realistic testing model and method is essential for accurate predictions of head loss, and the limits of the model must be understood; - assessment of station debris must be sufficiently conservative to overcome uncertainties in debris generation and transport models; - appropriate and reliable data (e.g. flow rate, layout, size of test model, method of debris generation and

  9. Effects of Water Radiolysis in Water Cooled Reactors - Nuclear Energy Research Initiative (NERI) Program

    Energy Technology Data Exchange (ETDEWEB)

    S. M. Pimblott

    2000-10-01

    OAK B188 Quarterly Progress Report on NERI Proposal No.99-0010 for the Development of an Experiment and Calculation Based Model to Describe the Effects of Radiation on Non-standard Aqueous Systems Like Those Encountered in the Advanced Light Water Reactor

  10. Stochastic study on entrainment of floating particles with intake of cooling water of a power plant

    International Nuclear Information System (INIS)

    Kadoyu, Masatake; Wada, Akira

    1979-01-01

    The mortality of ichthyoplanktons, contained in the sea water passing through the cooling water systems of a power plant, may be associated with rising temperature and mechanical effect. In this study, the range and the rate of entrainment of the organisms like ichthyoplanktons floating in the sea caused by the intake of cooling water were stochastically investigated by simulating the average current as well as the flow caused by the intake of water and by taking into consideration random velocity fluctuation without these flows, using a mathematical model. An intake was set along the straight coastline in semi-infinite sea, and the rate of inflow of particles into the intake was simulated by a mathematical model. In the numerical simulation, the average flow as coastal current component and the flow caused by the intake of water were obtained with the hydrodynamic equations of motion and continuity, and the rate of entrainment of floating particles was examined by giving turbulence to the particles in the sea and by calculating the position of each particle every moment. The results are as follows; 1) The range of entrainment of floating particles by the intake of cooling water and its probability were obtained in consideration of the flow rate of cooling water, coast current velocity and diffusion coefficient as parameters. 2) The extent of inflow of floating particles considerably varied with tidal amplitude, diffusion coefficient and the flow rate of cooling water in the sea where the coastal flow has clear periodicity. 3) The extent of entrainment was considerably influenced by the steady current velocity, the velocity distribution in offshore direction and the intake volume in the sea where periodicity is not observed. (Nakai, Y.)

  11. Research on water hammer forces caused by rapid growth of bubbles at severe accidents of water cooled reactors

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Adachi, Masaki; Aya, Izuo

    2004-01-01

    At severe accidents of Water Cooled Reactors a great deal of gas is expected to be produced in a short time within the water of lower part of nuclear pressure vessel and containment vessel caused by hydrogen production with a metal water reaction and steam explosions with direct contact of melting core and water. Water hammer forces caused by rapid growth of bubbles shall work on the wall of containment vessel and affect its integrity. Coherency of water block movement is not clear, whether simultaneous or in the same direction. Water block behavior and water hammer forces caused by rapid growth of bubbles have been tested using a modified scale model and analyzed to obtain experimental correlated equation to estimate water block's rising distance and velocity from water hammer data. Numerical analysis using RELAP5-3D (Reactor Excursion and Leak Analysis Program) has been conducted to evaluate water hammer forces and makes clear its modifications needed. (T. Tanaka)

  12. Energy Performance of Water-based and Air-based Cooling Systems in Plus-energy Housing

    DEFF Research Database (Denmark)

    Andersen, Mads E.; Schøtt, Jacob; Kazanci, Ongun Berk

    2016-01-01

    -space, and air-to-water heat pump vs. ground heat exchanger as cooling source) on the system energy performance were investigated while achieving the same thermal indoor conditions. The results show that the water-based floor cooling system performed better than the air-based cooling system in terms of energy...... energy use reductions. The coupling of radiant floor with the ground enables to obtain “free” cooling, although the brine pump power should be kept to a minimum to fully take advantage of this solution. By implementing a ground heat exchanger instead of the heat pump and use the crawl-space air as intake...... air an improvement of 37% was achieved. The cooling demand should be minimized in the design phase as a priority and then the resulting cooling load should be addressed with the most energy efficient cooling strategy. The floor cooling coupled with a ground heat exchanger was shown to be an effective...

  13. Potential climate change impacts on water availability and cooling water demand in the Lusatian Lignite Mining Region, Central Europe

    Science.gov (United States)

    Pohle, Ina; Koch, Hagen; Gädeke, Anne; Grünewald, Uwe; Kaltofen, Michael; Redetzky, Michael

    2014-05-01

    In the catchments of the rivers Schwarze Elster, Spree and Lusatian Neisse, hydrologic and socioeconomic systems are coupled via a complex water management system in which water users, reservoirs and water transfers are included. Lignite mining and electricity production are major water users in the region: To allow for open pit lignite mining, ground water is depleted and released into the river system while cooling water is used in the thermal power plants. In order to assess potential climate change impacts on water availability in the catchments as well as on the water demand of the thermal power plants, a climate change impact assessment was performed using the hydrological model SWIM and the long term water management model WBalMo. The potential impacts of climate change were considered by using three regional climate change scenarios of the statistical regional climate model STAR assuming a further temperature increase of 0, 2 or 3 K by the year 2050 in the region respectively. Furthermore, scenarios assuming decreasing mining activities in terms of a decreasing groundwater depression cone, lower mining water discharges, and reduced cooling water demand of the thermal power plants are considered. In the standard version of the WBalMo model cooling water demand is considered as static with regard to climate variables. However, changes in the future cooling water demand over time according to the plans of the local mining and power plant operator are considered. In order to account for climate change impacts on the cooling water demand of the thermal power plants, a dynamical approach for calculating water demand was implemented in WBalMo. As this approach is based on air temperature and air humidity, the projected air temperature and air humidity of the climate scenarios at the locations of the power plants are included in the calculation. Due to increasing temperature and decreasing precipitation declining natural and managed discharges, and hence a lower

  14. COOL, LCG Conditions Database for the LHC Experiments Development and Deployment Status

    CERN Document Server

    Valassi, A; Clemencic, M; Pucciani, G; Schmidt, S A; Wache, M; CERN. Geneva. IT Department, DM

    2009-01-01

    The COOL project provides common software components and tools for the handling of the conditions data of the LHC experiments. It is part of the LCG Persistency Framework (PF), a broader project set up within the context of the LCG Application Area (AA) to devise common persistency solutions for the LHC experiments. COOL software development is the result of the collaboration between the CERN IT Department and ATLAS and LHCb, the two experiments that have chosen it as the basis of their conditions database infrastructure. COOL supports conditions data persistency using several relational technologies (Oracle, MySQL, SQLite and FroNTier), based on the CORAL Common Relational Abstraction Layer. For both experiments, Oracle is the backend used for the deployment of COOL database services at Tier0 and Tier1 sites of the LHC Computing Grid. While the development of new software functionalities is being frozen as LHC operations are ramping up, the main focus for the project in 2008 has shifted to performance optimi...

  15. Loose parts monitoring in light water reactor cooling systems

    International Nuclear Information System (INIS)

    Santos, A.; Alma, B.J.

    1982-01-01

    The work related to loose monitoring system for light water reactor, developed at GRS - Munique, are described. The basic problems due to the exact localization and detection of the loose part as well the research activities and development necessary aiming to obtain the best techniques in this field. (E.G.) [pt

  16. Optimization of regional water - power systems under cooling constraints and climate change

    DEFF Research Database (Denmark)

    Payet-burin, Raphaël; Bertoni, Federica; Davidsen, Claus

    2018-01-01

    Thermo-electric generation represents 70% of Europe's electricity production and 43% of water withdrawals, and is therefore a key element of the water-energy nexus. In 2003, 2006 and 2009, several thermal power plants had to be switched off in Europe because of heat waves, showing the need...... to assess the impact of climate change on cooling constraints of thermal power plants. An integrated water-power model of the Iberian Peninsula was developed in this study. It includes a physical hydrologic representation, spatially and temporally resolved water demands, management of water infrastructure...... and a simple power system model. The system was evaluated under present and future climatic conditions using different climate change scenarios. The cost of cooling constraints is found to increase by 220–640 million €/year, for the period 2046–2065 depending on the climate change scenario. Average available...

  17. Treatment of cooling tower blowdown water containing silica, calcium and magnesium by electrocoagulation.

    Science.gov (United States)

    Liao, Z; Gu, Z; Schulz, M C; Davis, J R; Baygents, J C; Farrell, J

    2009-01-01

    This research investigated the effectiveness of electrocoagulation using iron and aluminium electrodes for treating cooling tower blowdown (CTB) waters containing dissolved silica (Si(OH)(4)), Ca(2 + ) and Mg(2 + ). The removal of each target species was measured as a function of the coagulant dose in simulated CTB waters with initial pH values of 5, 7, and 9. Experiments were also performed to investigate the effect of antiscaling compounds and coagulation aids on hardness ion removal. Both iron and aluminum electrodes were effective at removing dissolved silica. For coagulant doses < or =3 mM, silica removal was a linear function of the coagulant dose, with 0.4 to 0.5 moles of silica removed per mole of iron or aluminium. Iron electrodes were only 30% as effective at removing Ca(2 + ) and Mg(2 + ) as compared to silica. There was no measurable removal of hardness ions by aluminium electrodes in the absence of organic additives. Phosphonate based antiscaling compounds were uniformly effective at increasing the removal of Ca(2 + ) and Mg(2 + ) by both iron and aluminium electrodes. Cationic and amphoteric polymers used as coagulation aids were also effective at increasing hardness ion removal.

  18. CFD investigation of vertical rod bundles of supercritical water-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Shang Zhi

    2009-01-01

    The commercial CFD code STAR-CD v4.02 is used as the numerical simulation tool for the supercritical water-cooled nuclear reactor (SCWR). The numerical simulation is based on the real full 3D rod bundles' geometry of the nuclear reactors. For satisfying the near-wall resolution of y + ≤ 1, the structure mesh with the stretched fine mesh near wall is employed. The validation of the numerical simulation for mesh generation strategy and the turbulence model for the heat transfer of supercritical water is carried out to compare with 3D tube experiments. After the validation, the same mesh generation strategy and the turbulence model are employed to study three types of the geometry frame of the real rod bundles. Through the numerical investigations, it is found that the different arrangement of the rod bundles will induce the different temperature distribution at the rods' walls. The wall temperature distributions are non-uniform along the wall and the values depend on the geometry frame. At the same flow conditions, downward flow gets higher wall temperature than upward flow. The hexagon geometry frame has the smallest wall temperature difference comparing with the others. The heat transfer is controlled by P/D ratio of the bundles.

  19. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system

    International Nuclear Information System (INIS)

    Aman, J.; Ting, D.S.-K.; Henshaw, P.

    2014-01-01

    Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature. -- Highlights: • 10 kW solar thermal driven ammonia–water air cooled absorption chiller is investigated. • Energy and exergy analyses have been done to enhance the thermal performance. • Low driving temperature heat sources have been optimized. • The efficiencies of the major components have been evaluated

  20. A passive emergency heat sink for water-cooled reactors with particular application to CANDU reactors

    International Nuclear Information System (INIS)

    Spinks, N.J.

    1996-01-01

    Water in an overhead pool can serve as a general-purpose passive emergency heat sink for water-cooled reactors. It can be used for containment cooling, for emergency depressurization of the heat transport-system, or to receive any other emergency heat, such as that from the CANDU moderator. The passive emergency water system provides in-containment depressurization of steam generators and no other provision is needed for supply of low-pressure emergency water to the steam generators. For containment cooling, the pool supplies water to the tube side of elevated tube banks inside containment. The elevation with respect to the reactor heat source maximizes heat transport, by natural convection, of hot containment gases. This effective heat transport combines with the large heat-transfer coefficients of tube banks, to reduce containment overpressure during accidents. Cooled air from the tube banks is directed past the break in the heat-transport system, to facilitate removal of hydrogen using passive catalytic recombiners. (author)