Comparison of the CATHENA model of Gentilly-2 end shield cooling system predictions to station data
Energy Technology Data Exchange (ETDEWEB)
Zagre, G.; Sabourin, G. [Candu Energy Inc., Montreal, Quebec (Canada); Chapados, S. [Hydro-Quebec, Montreal, Quebec (Canada)
2012-07-01
As part of the Gentilly-2 Refurbishment Project, Hydro-Quebec has elected to perform the End Shield Cooling Safety Analysis. A CATHENA model of Gentilly-2 End Shield Cooling System was developed for this purpose. This model includes new elements compared to other CANDU6 End Shield Cooling models such as a detailed heat exchanger and control logic model. In order to test the model robustness and accuracy, the model predictions were compared with plant measurements.This paper summarizes this comparison between the model predictions and the station measurements. It is shown that the CATHENA model is flexible and accurate enough to predict station measurements for critical parameters, and the detailed heat exchanger model allows reproducing station transients. (author)
International Nuclear Information System (INIS)
Moon, Jin Woo; Yoon, Younju; Jeon, Young-Hoon; Kim, Sooyoung
2017-01-01
Highlights: • Initial ANN model was developed for predicting the time to the setback temperature. • Initial model was optimized for producing accurate output. • Optimized model proved its prediction accuracy. • ANN-based algorithms were developed and tested their performance. • ANN-based algorithms presented superior thermal comfort or energy efficiency. - Abstract: In this study, a temperature control algorithm was developed to apply a setback temperature predictively for the cooling system of a residential building during occupied periods by residents. An artificial neural network (ANN) model was developed to determine the required time for increasing the current indoor temperature to the setback temperature. This study involved three phases: development of the initial ANN-based prediction model, optimization and testing of the initial model, and development and testing of three control algorithms. The development and performance testing of the model and algorithm were conducted using TRNSYS and MATLAB. Through the development and optimization process, the final ANN model employed indoor temperature and the temperature difference between the current and target setback temperature as two input neurons. The optimal number of hidden layers, number of neurons, learning rate, and moment were determined to be 4, 9, 0.6, and 0.9, respectively. The tangent–sigmoid and pure-linear transfer function was used in the hidden and output neurons, respectively. The ANN model used 100 training data sets with sliding-window method for data management. Levenberg-Marquart training method was employed for model training. The optimized model had a prediction accuracy of 0.9097 root mean square errors when compared with the simulated results. Employing the ANN model, ANN-based algorithms maintained indoor temperatures better within target ranges. Compared to the conventional algorithm, the ANN-based algorithms reduced the duration of time, in which the indoor temperature
Directory of Open Access Journals (Sweden)
Ruixian Fang
2016-09-01
Full Text Available This work uses the adjoint sensitivity model of the counter-flow cooling tower derived in the accompanying PART I to obtain the expressions and relative numerical rankings of the sensitivities, to all model parameters, of the following model responses: (i outlet air temperature; (ii outlet water temperature; (iii outlet water mass flow rate; and (iv air outlet relative humidity. These sensitivities are subsequently used within the “predictive modeling for coupled multi-physics systems” (PM_CMPS methodology to obtain explicit formulas for the predicted optimal nominal values for the model responses and parameters, along with reduced predicted standard deviations for the predicted model parameters and responses. These explicit formulas embody the assimilation of experimental data and the “calibration” of the model’s parameters. The results presented in this work demonstrate that the PM_CMPS methodology reduces the predicted standard deviations to values that are smaller than either the computed or the experimentally measured ones, even for responses (e.g., the outlet water flow rate for which no measurements are available. These improvements stem from the global characteristics of the PM_CMPS methodology, which combines all of the available information simultaneously in phase-space, as opposed to combining it sequentially, as in current data assimilation procedures.
International Nuclear Information System (INIS)
Lietzke, M.H.; Haag, W.R.
1979-01-01
A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water
International Nuclear Information System (INIS)
Lietzke, M.H.
1977-01-01
The results of applying a kinetic model to the chlorination data supplied by Commonwealth Edison on the once-through cooling system at the Quad Cities Nuclear Station provide a validation of the model. The two examples given demonstrate that the model may be applied to either once-through cooling systems or to cooling systems involving cooling towers
International Nuclear Information System (INIS)
Hong, Lingxiang; Wang, Bo; Feng, Shuai; Yang, Zhiliang; Yu, Yaowei; Peng, Wangjun; Zhang, Jieyu
2017-01-01
Highlights: • A 3-dimentioanl mathematical models for complex wire loops was set up in Stelmor. • The air flow field in the cooling process was simulated. • The convective heat transfer coefficient was simulated coupled with air flow field. • The temperature distribution with distances was predicted. - Abstract: Controlling the forced air cooling conditions in the Stelmor conveyor line is important for improving the microstructure and mechanical properties of steel wire rods. A three-dimensional mathematical model incorporating the turbulent flow of the cooling air and heat transfer of the wire rods was developed to predict the cooling process in the Stelmor air-cooling line of wire rolling mills. The distribution of cooling air from the plenum chamber and the forced convective heat transfer coefficient for the wire loops were simulated at the different locations over the conveyor. The temperature profiles and cooling curves of the wire loops in Stelmor conveyor lines were also calculated by considering the convective heat transfer, radiative heat transfer as well as the latent heat during transformation. The calculated temperature results using this model agreed well with the available measured results in the industrial tests. Thus, it was demonstrated that this model can be useful for studying the air-cooling process and predicting the temperature profile and microstructure evolution of the wire rods.
International Nuclear Information System (INIS)
Lietzke, M.H.
1977-01-01
A kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems has been developed. The model incorporates the most important chemical reactions that are known to occur when chlorine is added to natural fresh waters. The simultaneous differential equations, which describe the rates of these chemical reactions, are solved numerically to give the composition of the water as a function of time. A listing of the computer program is included, along with a description of the input variables. A worked-out example illustrates the application of the program to an actual cooling system. An appendix contains a compilation of the known equilibrium and kinetic data for many of the chemical reactions that might be encountered in chlorinating natural fresh waters
A predictive model for knock onset in spark-ignition engines with cooled EGR
International Nuclear Information System (INIS)
Chen, Longhua; Li, Tie; Yin, Tao; Zheng, Bin
2014-01-01
Highlights: • Ratio of specific heats should be used as variable in development of knock model. • Increases in EGR or excess air ratio lead to increases in the ratio of specific heats. • The widely-used Douaud–Eyzat correlation fails to predict the knock onset when increasing EGR. • The newly developed model including p, T, EGR and λ as variables predicts the knock onset accurately. • Effect of temperature at intake valve closure on the predicted knock onset is relatively small. - Abstract: A predictive knock model is crucial for one dimensional (1-D) engine cycle simulation that has been proven to be a powerful tool in both optimization of the conceptual design and reduction of calibration efforts in development of spark-ignition (SI) engines. With application of advanced technologies such as exhaust gas recirculation (EGR) in modern SI engines, update of knock model is needed to give an acceptable prediction of knock onset. In this study, bench tests of a turbocharged gasoline SI engine with cooled EGR system operated under knocking conditions were conducted, the cylinder pressure traces were analyzed by the band-pass filtering technique, and the crank angle of knock onset was determined by the signal energy ratio (SER) and image processing method. A knock model considering multi-variable effects including pressure, temperature, EGR ratio and excess air ratio (λ) is formulated and calibrated with the experimental data using the multi-island genetic algorithm (GA). The calculation method of the end gas temperature, the impacts of the ratio of specific heats as well as the temperature at the intake valve closure on the end gas temperature are discussed. The performance of the new model is compared with the widely-used phenomenological knock models such as Douaud–Eyzat model and Hoepke model. While the widely-used knock models fail to give acceptable predictions when increasing EGR with fuel enrichment operations, the new model predicts the knock
International Nuclear Information System (INIS)
Silvia Dulanska; Lubomir Matel; Milan Meloun
2010-01-01
The decommissioning of the nuclear power plant (NPP) A1 Jaslovske Bohunice (Slovakia) is a complicated set of problems that is highly demanding both technically and financially. The basic goal of the decommissioning process is the total elimination of radioactive materials from the nuclear power plant area, and radwaste treatment to a form suitable for its safe disposal. The initial conditions of decommissioning also include elimination of the operational events, preparation and transport of the fuel from the plant territory, radiochemical and physical-chemical characterization of the radioactive wastes. One of the problems was and still is the processing of the liquid radioactive wastes. Such media is also the cooling water of the long-term storage of spent fuel. A suitable scaling model for predicting the activity of hard-to-detect radionuclides 239,240 Pu, 90 Sr and summary beta in cooling water using a regression triplet technique has been built using the regression triplet analysis and regression diagnostics. (author)
Computer aided simulation for developing a simple model to predict cooling of packaged foods
DEFF Research Database (Denmark)
Christensen, Martin Gram; Feyissa, Aberham Hailu; Adler-Nissen, Jens
A new equation to predict equilibrium temperatures for cooling operations of packaged foods has been deducted from the traditional 1st order solution to Fourier’s heat transfer equations. The equation is analytical in form and only requires measurable parameters, in form of area vs. volume ratio (A...
International Nuclear Information System (INIS)
Haag, W.R.; Lietzke, M.H.
1981-08-01
A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking
Energy Technology Data Exchange (ETDEWEB)
Haag, W.R.; Lietzke, M.H.
1981-08-01
A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking.
AUTHOR|(SzGeCERN)673023; Blanco Viñuela, Enrique
In each of eight arcs of the 27 km circumference Large Hadron Collider (LHC), 2.5 km long strings of super-conducting magnets are cooled with superfluid Helium II at 1.9 K. The temperature stabilisation is a challenging control problem due to complex non-linear dynamics of the magnets temperature and presence of multiple operational constraints. Strong nonlinearities and variable dead-times of the dynamics originate at strongly heat-flux dependent effective heat conductivity of superfluid that varies three orders of magnitude over the range of possible operational conditions. In order to improve the temperature stabilisation, a proof of concept on-line economic output-feedback Non-linear Model Predictive Controller (NMPC) is presented in this thesis. The controller is based on a novel complex first-principles distributed parameters numerical model of the temperature dynamics over a 214 m long sub-sector of the LHC that is characterized by very low computational cost of simulation needed in real-time optimizat...
International Nuclear Information System (INIS)
Lietzke, M.H.
1977-01-01
The purpose of this report is to present a validation of a previously described kinetic model which was developed to predict the composition of chlorinated fresh water discharged from power plant cooling systems. The model was programmed in two versions: as a stand-alone program and as a part of a unified transport model developed from consistent mathematical models to simulate the dispersion of heated water and radioisotopic and chemical effluents from power plant discharges. The results of testing the model using analytical data taken during operation of the once-through cooling system of the Quad Cities Nuclear Station are described. Calculations are also presented on the Three Mile Island Nuclear Station which uses cooling towers
Christiansson, Anders
2017-08-01
This Research Communication explores the usefulness of predictive modelling to explain bacterial behaviour during cooling. A simple dynamic lag phase model was developed and validated. The model takes into account the effect of the cooling profile on the lag phase and growth in bulk tank milk. The time before the start of cooling was the most critical and should not exceed 1 h. The cooling rate between 30 and approximately 10 °C was the second most critical period. Cooling from 30 to 10 °C within 2 h ensured minimal growth of psychrotrophic bacteria in the milk. The cooling rate between 10 and 4 °C (the slowest phase of cooling) was of surprisingly little importance. Given a normal cooling profile to 10 °C, several hours of prolonged cooling time made practically no difference in psychrotrophic counts. This behaviour can be explained by the time/temperature dependence of the work needed by the bacteria to complete the lag phase at low temperature. For milk quality advisors, it is important to know that slow cooling below 10 °C does not result in high total counts of bacteria. In practice, slow cooling is occasionally found at farms with robotic milking. However, when comparing psychrotrophic growth in bulk milk tanks designed for robotic milking or conventional milking, the model predicted less growth for robotic milking for identical cooling profiles. It is proposed that due to the different rates of milk entering the tank, fewer bacteria will exit the lag phase during robotic milking and they will be more diluted than in conventional milking systems. At present, there is no international standard that specifies the cooling profile in robotic systems. The information on the insignificant effect of the cooling rate below 10 °C may be useful in the development of a standard.
Clostridium perfringens Type A is a significant public health threat and may germinate, outgrow, and multiply during cooling of cooked meats. This study evaluates a new C. perfringens growth model in IPMP Dynamic Prediction using the same criteria and cooling data in Mohr and others (2015), but inc...
International Nuclear Information System (INIS)
Nishimura, M.; Maekawa, I.
2004-01-01
A numerical study is performed on the natural draft reactor cavity cooling system (RCCS). In the cooling system, buoyancy driven heated upward flow could be in the mixed convection regime that is accompanied by heat transfer impairment. Also, the heating wall condition is asymmetric with regard to the channel cross section. These flow regime and thermal boundary conditions may invalidate the use of design correlation. To precisely simulate the flow and thermal fields within the RCCS, the second moment closure turbulence model is applied. Two types of the RCCS channel geometry are selected to make a comparison: an annular duct with fins on the outer surface of the inner circular wall, and a multi-rectangular duct. The prediction shows that the local heat transfer coefficient on the RCCS with finned annular duct is less than 1/6 of that estimated with Dittus-Boelter correlation. Much portion of the natural draft airflow does not contribute cooling at all because mainstream escapes from the narrow gaps between the fins. This result and thus the finned annulus design are unacceptable from the viewpoint for structural integrity of the RCCS wall boundary. The performance of the multi-rectangular duct design is acceptable that the RCCS maximum temperature is less than 400 degree centigrade even when the flow rate is halved from the designed condition. (author)
Effect of T56 preswirl cooling modelling on disc assembly temperature prediction
CSIR Research Space (South Africa)
Roos, TH
2007-09-01
Full Text Available the authorised service life of various components of the engine (rotor disc 1 in Series II and the 1-2 spacer in Series III). This led to a requirement by the South African Air Force (SAAF) that the CSIR perform life assessment studies on these components.... A necessary input to life assessment studies is a disc cavity heat transfer analysis, including disc coolant flowfield analysis and disc cavity component temperature distribution calculation. These were then to be used in a detailed FEM model...
International Nuclear Information System (INIS)
Duc-Toan, Nguyen; Tien-Long, Banh; Young-Suk, Kim; Dong-Won, Jung
2011-01-01
In this study, a modified Johnson-Cook (J-C) model and an innovated method to determine (J-C) material parameters are proposed to predict more correctly stress-strain curve for tensile tests in elevated temperatures. A MATLAB tool is used to determine material parameters by fitting a curve to follow Ludwick's hardening law at various elevated temperatures. Those hardening law parameters are then utilized to determine modified (J-C) model material parameters. The modified (J-C) model shows the better prediction compared to the conventional one. As the first verification, an FEM tensile test simulation based on the isotropic hardening model for boron sheet steel at elevated temperatures was carried out via a user-material subroutine, using an explicit finite element code, and compared with the measurements. The temperature decrease of all elements due to the air cooling process was then calculated when considering the modified (J-C) model and coded to VUMAT subroutine for tensile test simulation of cooling process. The modified (J-C) model showed the good agreement between the simulation results and the corresponding experiments. The second investigation was applied for V-bending spring-back prediction of magnesium alloy sheets at elevated temperatures. Here, the combination of proposed J-C model with modified hardening law considering the unusual plastic behaviour for magnesium alloy sheet was adopted for FEM simulation of V-bending spring-back prediction and shown the good comparability with corresponding experiments.
PREDICTED PERCENTAGE DISSATISFIED (PPD) MODEL ...
African Journals Online (AJOL)
HOD
their low power requirements, are relatively cheap and are environment friendly. ... PREDICTED PERCENTAGE DISSATISFIED MODEL EVALUATION OF EVAPORATIVE COOLING ... The performance of direct evaporative coolers is a.
Modeling growth of Clostridium perfringens in pea soup during cooling
Jong, de A.E.I.; Beumer, R.R.; Zwietering, M.H.
2005-01-01
Clostridium perfringens is a pathogen that mainly causes food poisoning outbreaks when large quantities of food are prepared. Therefore, a model was developed to predict the effect of different cooling procedures on the growth of this pathogen during cooling of food: Dutch pea soup. First, a growth
Rostampour Samarin, V.; Bloemendal, J.M.; Keviczky, T.
2017-01-01
This paper presents a complete model of a building heating and cooling equipment and a ground source heat pump (GSHP) coupled with an aquifer thermal energy storage (ATES) system. This model contains detailed
mathematical representations of building thermal dynamics, ATES system dynamics, heat
Modelization of cooling system components
Energy Technology Data Exchange (ETDEWEB)
Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)
2010-07-01
In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration
Modeling of Direct Contact Wet Cooling Tower in ETRR-2
International Nuclear Information System (INIS)
El Khatib, H.H.; Ismail, A.L.; ElRefaie, M.E.
2008-01-01
The Egyptian Testing and Research Reactor no.2 (ETRR-2) was commissioned at 1997 with maximum power 22 MW for research purposes; an induced draft wet cooling tower (counter flow type) was putted in operation in 2003 instead of the first one. Investigations are achieved to evaluate cooling tower performance to guarantee that the cooling tower capable to dissipate heat generated in reactor core. Merkel and Poppe analysis was applied to simulate this cooling tower packing. Merkel analysis was applied to predict water outlet temperature from cooling tower and also to show the effect of ambient conditions on this temperature. Poppe analysis was applied to predict Merkel number which evaluate cooling tower. The Runge-Kutta numerical method was applied to solve the differential equations in this model and an engineering equation solver (EES) is the language used to model the cooling tower. This research illustrates that the cooling tower achieves good performance in various sever ambient condition at maximum operating condition of reactor power. The results show that at severe summer condition of wet bulb temperature equals 24 degree c and tower inlet temperature equals 37 degree c, the outlet water temperature equals 30.4 degree c from cooling tower, while the Merkel number is be found 1.253
Recirculating cooling water solute depletion models
International Nuclear Information System (INIS)
Price, W.T.
1990-01-01
Chromates have been used for years to inhibit copper corrosion in the plant Recirculating Cooling Water (RCW) system. However, chromates have become an environmental problem in recent years both in the chromate removal plant (X-616) operation and from cooling tower drift. In response to this concern, PORTS is replacing chromates with Betz Dianodic II, a combination of phosphates, BZT, and a dispersant. This changeover started with the X-326 system in 1989. In order to control chemical concentrations in X-326 and in systems linked to it, we needed to be able to predict solute concentrations in advance of the changeover. Failure to predict and control these concentrations can result in wasted chemicals, equipment fouling, or increased corrosion. Consequently, Systems Analysis developed two solute concentration models. The first simulation represents the X-326 RCW system by itself; and models the depletion of a solute once the feed has stopped. The second simulation represents the X-326, X-330, and the X-333 systems linked together by blowdown. This second simulation represents the concentration of a solute in all three systems simultaneously. 4 figs
A simplified model of a mechanical cooling tower with both a fill pack and a coil
Van Riet, Freek; Steenackers, Gunther; Verhaert, Ivan
2017-11-01
Cooling accounts for a large amount of the global primary energy consumption in buildings and industrial processes. A substantial part of this cooling demand is produced by mechanical cooling towers. Simulations benefit the sizing and integration of cooling towers in overall cooling networks. However, for these simulations fast-to-calculate and easy-to-parametrize models are required. In this paper, a new model is developed for a mechanical draught cooling tower with both a cooling coil and a fill pack. The model needs manufacturers' performance data at only three operational states (at varying air and water flow rates) to be parametrized. The model predicts the cooled, outgoing water temperature. These predictions were compared with experimental data for a wide range of operational states. The model was able to predict the temperature with a maximum absolute error of 0.59°C. The relative error of cooling capacity was mostly between ±5%.
International Nuclear Information System (INIS)
Kwok, Simon S.K.; Lee, Eric W.M.
2011-01-01
Research highlights: → The building occupancy affecting the cooling load prediction is studied. → PENN model is adopted in this study for predicting the building cooling load. → Statistical approach is adopted to result a less prejudice prediction performance. → Results show that occupancy data can significantly improve the prediction. -- Abstract: Building cooling load prediction is one of the key factors in the success of energy-saving measures. Many computational models available in the industry today have been developed from either forward or inverse modeling approaches. However, most of these models require extensive computer resources and involve lengthy computation. This paper discusses the use of data-driven intelligent approaches, a probabilistic entropy-based neural (PENN) model to predict the cooling load of a building. Although it is common knowledge that the presence and activity of building occupants have a significant impact on the required cooling load of buildings, practices currently adopted in modeling the presence and activity of people in buildings do not reflect the complexity of the impact occupants have on building cooling load. In contrast to previous artificial neural network (ANN) models, most of which employ a fixed schedule or historic load data to represent building occupancy in simulating building cooling load, this paper introduces two input parameters, dynamic occupancy area and rate and uses it to mimic building cooling load. The training samples used include weather data obtained from the Hong Kong Observatory and building-related data acquired from an existing grade A mega office buildings in Hong Kong with tenants including many multi-national financial companies that require 24-h air conditioning seven days a week. The dynamic changes that occur in the occupancy of these buildings therefore make it very difficult to forecast building cooling load by means of a fixed time schedule. The performance of simulation results
Energy Technology Data Exchange (ETDEWEB)
Kwok, Simon S.K. [Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Lee, Eric W.M., E-mail: ericlee@cityu.edu.h [Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)
2011-07-15
Research highlights: {yields} The building occupancy affecting the cooling load prediction is studied. {yields} PENN model is adopted in this study for predicting the building cooling load. {yields} Statistical approach is adopted to result a less prejudice prediction performance. {yields} Results show that occupancy data can significantly improve the prediction. -- Abstract: Building cooling load prediction is one of the key factors in the success of energy-saving measures. Many computational models available in the industry today have been developed from either forward or inverse modeling approaches. However, most of these models require extensive computer resources and involve lengthy computation. This paper discusses the use of data-driven intelligent approaches, a probabilistic entropy-based neural (PENN) model to predict the cooling load of a building. Although it is common knowledge that the presence and activity of building occupants have a significant impact on the required cooling load of buildings, practices currently adopted in modeling the presence and activity of people in buildings do not reflect the complexity of the impact occupants have on building cooling load. In contrast to previous artificial neural network (ANN) models, most of which employ a fixed schedule or historic load data to represent building occupancy in simulating building cooling load, this paper introduces two input parameters, dynamic occupancy area and rate and uses it to mimic building cooling load. The training samples used include weather data obtained from the Hong Kong Observatory and building-related data acquired from an existing grade A mega office buildings in Hong Kong with tenants including many multi-national financial companies that require 24-h air conditioning seven days a week. The dynamic changes that occur in the occupancy of these buildings therefore make it very difficult to forecast building cooling load by means of a fixed time schedule. The performance of
Methodology for predicting cooling water effects on fish
International Nuclear Information System (INIS)
Cakiroglu, C.; Yurteri, C.
1998-01-01
The mathematical model presented here predicts the long-term effects of once-through cooling water systems on local fish populations. The fish life cycle model simulates different life stages of fish by using appropriate expressions representing growth and mortality rates. The heart of the developed modeling approach is the prediction of plant-caused reduction in total fish population by estimating recruitment to adult population with and without entrainment of ichthyoplankton and impingement of small fish. The model was applied to a local fish species, gilthead (Aparus aurata), for the case of a proposed power plant in the Aegean region of Turkey. The simulations indicate that entrainment and impingement may lead to a population reduction of about 2% to 8% in the long run. In many cases, an impact of this size can be considered rather unimportant. In the case of sensitive and ecologically values species facing extinction, however, necessary precautions should be taken to minimize or totally avoid such an impact
Prediction of local effects of proposed cooling ponds
International Nuclear Information System (INIS)
Hicks, B.B.
1978-01-01
A Fog Excess Water (FEW) Index has been shown to provide a good measure of the likelihood for steam fog to occur at specific cooling pond installations. The FEW Index is derived from the assumption that the surface boundary layer over a cooling pond will be strongly convective, and that highly efficient vertical transport mechanisms will result in a thorough mixing of air saturated at surface temperature with ambient air aloft. Available data support this assumption. An extension of this approach can be used to derive a simple indicator for use in predicting the formation of rime ice in the immediate downwind environs of a cooling pond. In this case, it is supposed that rime ice will be deposited whenever steam fog and sub-freezing surface temperatures are predicted. This provides a convenient method for interpreting pre-existing meteorological information in order to assess possible icing effects while in the early design stages of the planning process. However, it remains necessary to derive accurate predictions of the cooling pond water surface temperature. Once a suitable and proven procedure for this purpose has been demonstrated, it is then a simple matter to employ the FEW Index in evaluations of the relative merits of alternative cooling pond designs, with the purpose of minimizing overall environmental impact
Simulation-based prediction of hot-rolled coil forced cooling
Energy Technology Data Exchange (ETDEWEB)
Saboonchi, Ahmad [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84154 (Iran); Hassanpour, Saeid [Rayan Tahlil Sepahan Co., Isfahan Science and Technology Town, Isfahan 84155 (Iran)
2008-09-15
Hot-rolled coils take a long time to cool under normal storehouse conditions due to their high mass. Hotter seasons will lead to even longer storage times and, thus, to shortage of space. Forced cooling methods such as water-immersion and water-spray can be employed to reduce hot-rolled coil cooling time. In this paper, a mathematical model of the thermal behavior of coils is developed to predict and to evaluate the results expected from employing these methods before any real changes can be made on the ground. The results obtained from the model were compared with those from various experiments to verify the model's accuracy. The cooling time was then computed based on changes effected in the boundary conditions appropriate to each of the forced cooling methods employed. Moreover, the savings in storage times were compared to identify the best cooling method. Predictions showed that water immersion at the beginning of cooling cycle was more effective and that the cycle should not exceed 1 h for cost efficiency considerations. When using nozzles to spray it was found that spraying water on end surfaces of coils would be the optimum option resulting in savings in time, water and energy, and with restricted temperature gradient. (author)
Thermal Predictions of the Cooling of Waste Glass Canisters
Energy Technology Data Exchange (ETDEWEB)
Donna Post Guillen
2014-11-01
Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to the surrounding air are reported.
Determining passive cooling limits in CPV using an analytical thermal model
Gualdi, Federico; Arenas, Osvaldo; Vossier, Alexis; Dollet, Alain; Aimez, Vincent; Arès, Richard
2013-09-01
We propose an original thermal analytical model aiming to predict the practical limits of passive cooling systems for high concentration photovoltaic modules. The analytical model is described and validated by comparison with a commercial 3D finite element model. The limiting performances of flat plate cooling systems in natural convection are then derived and discussed.
Modelling aerosol behavior in reactor cooling systems
International Nuclear Information System (INIS)
McDonald, B.H.
1990-01-01
This paper presents an overview of some of the areas of concern in using computer codes to model fission-product aerosol behavior in the reactor cooling system (RCS) of a water-cooled nuclear reactor during a loss-of-coolant accident. The basic physical processes that require modelling include: fission product release and aerosol formation in the reactor core, aerosol transport and deposition in the reactor core and throughout the rest of the RCS, and the interaction between aerosol transport processes and the thermalhydraulics. In addition to these basic physical processes, chemical reactions can have a large influence on the nature of the aerosol and its behavior in the RCS. The focus is on the physics and the implications of numerical methods used in the computer codes to model aerosol behavior in the RCS
International Nuclear Information System (INIS)
Staehle, R.W.
2010-01-01
This paper describes the modeling and experimental studies of stress corrosion cracking with full disciplinary set at the atomic level. Its objective is to develop an intellectual structure for quantitative prediction of stress corrosion cracking in water cooled reactors.
Scale Modelling of Nocturnal Cooling in Urban Parks
Spronken-Smith, R. A.; Oke, T. R.
Scale modelling is used to determine the relative contribution of heat transfer processes to the nocturnal cooling of urban parks and the characteristic temporal and spatial variation of surface temperature. Validation is achieved using a hardware model-to-numerical model-to-field observation chain of comparisons. For the calm case, modelling shows that urban-park differences of sky view factor (s) and thermal admittance () are the relevant properties governing the park cool island (PCI) effect. Reduction in sky view factor by buildings and trees decreases the drain of longwave radiation from the surface to the sky. Thus park areas near the perimeter where there may be a line of buildings or trees, or even sites within a park containing tree clumps or individual trees, generally cool less than open areas. The edge effect applies within distances of about 2.2 to 3.5 times the height of the border obstruction, i.e., to have any part of the park cooling at the maximum rate a square park must be at least twice these dimensions in width. Although the central areas of parks larger than this will experience greater cooling they will accumulate a larger volume of cold air that may make it possible for them to initiate a thermal circulation and extend the influence of the park into the surrounding city. Given real world values of s and it seems likely that radiation and conduction play almost equal roles in nocturnal PCI development. Evaporation is not a significant cooling mechanism in the nocturnal calm case but by day it is probably critical in establishing a PCI by sunset. It is likely that conditions that favour PCI by day (tree shade, soil wetness) retard PCI growth at night. The present work, which only deals with PCI growth, cannot predict which type of park will be coolest at night. Complete specification of nocturnal PCI magnitude requires knowledge of the PCI at sunset, and this depends on daytime energetics.
Cooling tower plume - model and experiment
Cizek, Jan; Gemperle, Jiri; Strob, Miroslav; Nozicka, Jiri
The paper discusses the description of the simple model of the, so-called, steam plume, which in many cases forms during the operation of the evaporative cooling systems of the power plants, or large technological units. The model is based on semi-empirical equations that describe the behaviour of a mixture of two gases in case of the free jet stream. In the conclusion of the paper, a simple experiment is presented through which the results of the designed model shall be validated in the subsequent period.
Cooling tower plume - model and experiment
Directory of Open Access Journals (Sweden)
Cizek Jan
2017-01-01
Full Text Available The paper discusses the description of the simple model of the, so-called, steam plume, which in many cases forms during the operation of the evaporative cooling systems of the power plants, or large technological units. The model is based on semi-empirical equations that describe the behaviour of a mixture of two gases in case of the free jet stream. In the conclusion of the paper, a simple experiment is presented through which the results of the designed model shall be validated in the subsequent period.
Kim, Ki Joon; Shin, Dong-Hee; Park, Eunil
2015-09-01
This study proposes an acceptance model for curved-screen smartphones, and explores how the sense of coolness induced by attractiveness, originality, subcultural appeal, and the utility of the curved screen promotes smartphone adoption. The results of structural equation modeling analyses (N = 246) show that these components of coolness (except utility) increase the acceptance of the technology by enhancing the smartphones' affectively driven qualities rather than their utilitarian ones. The proposed coolness model is then compared with the original technology acceptance model to validate that the coolness factors are indeed equally effective determinants of usage intention, as are the extensively studied usability factors such as perceived ease of use and usefulness.
Bhattarai, Santosh; Zhou, Yihong; Zhao, Chunju; Zhou, Huawei
2018-02-01
Thermal cracking on concrete dams depends upon the rate at which the concrete is cooled (temperature drop rate per day) within an initial cooling period during the construction phase. Thus, in order to control the thermal cracking of such structure, temperature development due to heat of hydration of cement should be dropped at suitable rate. In this study, an attempt have been made to formulate the relation between cooling rate of mass concrete with passage of time (age of concrete) and water cooling parameters: flow rate and inlet temperature of cooling water. Data measured at summer season (April-August from 2009 to 2012) from recently constructed high concrete dam were used to derive a prediction model with the help of Genetic Programming (GP) software “Eureqa”. Coefficient of Determination (R) and Mean Square Error (MSE) were used to evaluate the performance of the model. The value of R and MSE is 0.8855 and 0.002961 respectively. Sensitivity analysis was performed to evaluate the relative impact on the target parameter due to input parameters. Further, testing the proposed model with an independent dataset those not included during analysis, results obtained from the proposed GP model are close enough to the real field data.
Model-based energy monitoring and diagnosis of telecommunication cooling systems
International Nuclear Information System (INIS)
Sorrentino, Marco; Acconcia, Matteo; Panagrosso, Davide; Trifirò, Alena
2016-01-01
A methodology is proposed for on-line monitoring of cooling load supplied by Telecommunication (TLC) cooling systems. Sensible cooling load is estimated via a proportional integral controller-based input estimator, whereas a lumped parameters model was developed aiming at estimating air handling units (AHUs) latent heat load removal. The joint deployment of above estimators enables accurate prediction of total cooling load, as well as of related AHUs and free-coolers energy performance. The procedure was then proven effective when extended to cooling systems having a centralized chiller, through model-based estimation of a key performance metric, such as the energy efficiency ratio. The results and experimental validation presented throughout the paper confirm the suitability of the proposed procedure as a reliable and effective energy monitoring and diagnostic tool for TLC applications. Moreover, the proposed modeling approach, beyond its direct contribution towards smart use and conservation of energy, can be fruitfully deployed as a virtual sensor of removed heat load into a variety of residential and industrial applications. - Highlights: • Accurate cooling load prediction in telecommunication rooms. • Development of an input-estimator for sensible cooling load simulation. • Model-based estimation of latent cooling load. • Model-based prediction of centralized chiller energy performance in central offices. • Diagnosis-oriented application of proposed cooling load estimator.
International Nuclear Information System (INIS)
Medved, Sašo; Babnik, Miha; Vidrih, Boris; Arkar, Ciril
2014-01-01
Predicted climate changes and the increased intensity of urban heat islands, as well as population aging, will increase the energy demand for the cooling of buildings in the future. However, the energy demand for cooling can be efficiently reduced by low-exergy free-cooling systems, which use natural processes, like evaporative cooling or the environmental cold of ambient air during night-time ventilation for the cooling of buildings. Unlike mechanical cooling systems, the energy for the operation of free-cooling system is needed only for the transport of the cold from the environment into the building. Because the natural cold potential is time dependent, the efficiency of free-cooling systems could be improved by introducing a weather forecast into the algorithm for the controlling. In the article, a numerical algorithm for the optimization of the operation of free-cooling systems with night-time ventilation is presented and validated on a test cell with different thermal storage capacities and during different ambient conditions. As a case study, the advantage of weather-predicted controlling is presented for a summer week for typical office room. The results show the necessity of the weather-predicted controlling of free-cooling ventilation systems for achieving the highest overall energy efficiency of such systems in comparison to mechanical cooling, better indoor comfort conditions and a decrease in the primary energy needed for cooling of the buildings. - Highlights: • Energy demand for cooling will increase due to climate changes and urban heat island • Free cooling could significantly reduce energy demand for cooling of the buildings. • Free cooling is more effective if weather prediction is included in operation control. • Weather predicted free cooling operation algorithm was validated on test cell. • Advantages of free-cooling on mechanical cooling is shown with different indicators
International Nuclear Information System (INIS)
Kakhki, M Eshraghi; Kermanpur, A; Golozar, M A
2009-01-01
In this work, a numerical model was developed to simulate the continuous cooling of a low alloy steel. In order to simulate the kinetics of diffusional phase transformations, the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation and additivity rule were employed, while a new model was applied for martensitic transformation. In addition, a novel approach was applied for computing the actual phase fractions in the multiphase steel. Effects of latent heat release during phase transformations, temperature and phase fractions on the variation of thermo-physical properties were considered. The developed numerical model was applied to simulate the cooling process during the Jominy end quench test as well as the quenching of a steel gear in water and oil. In this respect, precise models were used to simulate the complex boundary conditions in the Jominy test and a stainless steel probe was used for determining the heat transfer coefficients of quenching media by an inverse method. The present model was validated against cooling curve measurements, metallographic analysis and hardness tests. Good agreement was found between the experimental and simulation results. This model is able to simulate the continuous cooling and kinetics of phase transformation and to predict the final distribution of microstructures and hardness in low alloy steels
Prediction of the Long Term Cooling Performance for the 3-Pin Fuel Test Loop
Energy Technology Data Exchange (ETDEWEB)
Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, H. R
2005-12-15
In the long term cooling phase that the emergency cooling water injection ends, the performance of the residual heat removal for the 3-pin fuel test loop has been predicted by a simplified heat transfer model. In the long term cooling phase the residual heat is 1323W for PWR fuel test mode and 1449W for CANDU fuel test mode. The each residual heat is assumed as 2% of the fission power of the test fuel used in the anticipated operational occurrence and design basis accident analyses. The each fission power used for the analyses is 105% of the rated fission power in the normal operation. In the long term cooling phase the residual heat is removed to the HANARO pool through the double pressure vessels of the in-pile test section. Saturate pooling boiling is assumed on the test fuel and condensation heat transfer is expected on the inner wall of the fuel carrier and the flow divider. Natural convection heat transfer on a heated vertical wall is also assumed on the outer wall of the outer pressure vessel. The conduction heat transfer is only considered in the gap between the double pressure vessels charged with neon gas and in the downcomer filled with coolant. The heat transfer rate between the coolant temperature of 152 .deg. C in the in-pile test section and the water temperature of 45 .deg. C in the HANARO pool is predicted as about 1666W. The 152 .deg. C is the saturate temperature of the coolant pressure predicted from the MARS code. The cooling capacity of 1666W is greater than the residual heats of 1323W and 1449W. Consequently the long term cooling performance of the 3-pin fuel test loop is sufficient for the anticipated operational occurrences and design basis accidents.
Directory of Open Access Journals (Sweden)
Santosh Bhattarai
2017-07-01
Full Text Available Minimizing the thermal cracks in mass concrete at an early age can be achieved by removing the hydration heat as quickly as possible within initial cooling period before the next lift is placed. Recognizing the time needed to remove hydration heat within initial cooling period helps to take an effective and efficient decision on temperature control plan in advance. Thermal properties of concrete, water cooling parameters and construction parameter are the most influencing factors involved in the process and the relationship between these parameters are non-linear in a pattern, complicated and not understood well. Some attempts had been made to understand and formulate the relationship taking account of thermal properties of concrete and cooling water parameters. Thus, in this study, an effort have been made to formulate the relationship for the same taking account of thermal properties of concrete, water cooling parameters and construction parameter, with the help of two soft computing techniques namely: Genetic programming (GP software “Eureqa” and Artificial Neural Network (ANN. Relationships were developed from the data available from recently constructed high concrete double curvature arch dam. The value of R for the relationship between the predicted and real cooling time from GP and ANN model is 0.8822 and 0.9146 respectively. Relative impact on target parameter due to input parameters was evaluated through sensitivity analysis and the results reveal that, construction parameter influence the target parameter significantly. Furthermore, during the testing phase of proposed models with an independent set of data, the absolute and relative errors were significantly low, which indicates the prediction power of the employed soft computing techniques deemed satisfactory as compared to the measured data.
International Nuclear Information System (INIS)
Ma, Peizheng; Wang, Lin-Shu; Guo, Nianhua
2014-01-01
Highlights: • Investigated cooling of thermally homeostatic buildings in 7 U.S. cities by modeling. • Natural energy is harnessed by cooling tower to extract heat for building cooling. • Systematically studied possibility and conditions of using cooling tower in buildings. • Diurnal ambient temperature amplitude is taken into account in cooling tower cooling. • Homeostatic building cooling is possible in locations with large ambient T amplitude. - Abstract: A case is made that while it is important to mitigate dissipative losses associated with heat dissipation and mechanical/electrical resistance for engineering efficiency gain, the “architect” of energy efficiency is the conception of best heat extraction frameworks—which determine the realm of possible efficiency. This precept is applied to building energy efficiency here. Following a proposed process assumption-based design method, which was used for determining the required thermal qualities of building thermal autonomy, this paper continues this line of investigation and applies heat extraction approach investigating the extent of building partial homeostasis and the possibility of full homeostasis by using cooling tower in one summer in seven selected U.S. cities. Cooling tower heat extraction is applied parametrically to hydronically activated radiant-surfaces model-buildings. Instead of sizing equipment as a function of design peak hourly temperature as it is done in heat balance design-approach of selecting HVAC equipment, it is shown that the conditions of using cooling tower depend on both “design-peak” daily-mean temperature and the distribution of diurnal range in hourly temperature (i.e., diurnal temperature amplitude). Our study indicates that homeostatic building with natural cooling (by cooling tower alone) is possible only in locations of special meso-scale climatic condition such as Sacramento, CA. In other locations the use of cooling tower alone can only achieve homeostasis
A simplified model of dynamic interior cooling load evaluation for office buildings
International Nuclear Information System (INIS)
Ding, Yan; Zhang, Qiang; Wang, Zhaoxia; Liu, Min; He, Qing
2016-01-01
Highlights: • The core interior disturbance was determined by principle component analysis. • Influences of occupants on cooling load should be described using time series. • A simplified model was built to evaluate dynamic interior building cooling load. - Abstract: Predicted cooling load is a valuable tool for assessing the operation of air-conditioning systems. Compared with exterior cooling load, interior cooling load is more unpredictable. According to principle components analysis, occupancy was proved to be a typical factor influencing interior cooling loads in buildings. By exploring the regularity of interior disturbances in an office building, a simplified evaluation model for interior cooling load was established in this paper. The stochastic occupancy rate was represented by a Markov transition model. Equipment power, lighting power and fresh air were all related to occupancy rate based on time sequence. The superposition of different types of interior cooling loads was also considered in the evaluation model. The error between the evaluation results and measurement results was found to be lower than 10%. In reference to the cooling loads calculated by the traditional design method and area-based method in case study office rooms, the evaluated cooling loads were suitable for operation regulation.
Modelling of thermohydraulic emergency core cooling phenomena
International Nuclear Information System (INIS)
Yadigaroglu, G.; Andreani, M.; Lewis, M.J.
1990-10-01
The codes used in the early seventies for safety analysis and licensing were based either on the homogeneous model of two-phase flow or on the so-called separate-flow models, which are mixture models accounting, however, for the difference in average velocity between the two phases. In both cases the behavior of the mixture is prescribed a priori as a function of local parameters such as the mass flux and the quality. The modern best-estimate codes used for analyzing LWR LOCA's and transients are often based on a two-fluid or 6-equation formulation of the conservation equations. In this case the conservation equations are written separately for each phase; the mixture is allowed to evolve on its own, governed by the interfacial exchanges of mass, momentum and energy between the phases. It is generally agreed that such relatively sophisticated 6-equation formulations of two-phase flow are necessary for the correct modelling of a number of phenomena and situations arising in LWR accidental situations. They are in particular indispensible for the analysis of stratified or countercurrent flows and of situations in which large departures from thermal and velocity equilibrium exist. This report will be devoted to a discussion of the need for, the capacity and the limitations of the two-phase flow models (with emphasis on the 6-equation formulations) in modelling these two-phase flow and heat transfer phenomena and/or different core cooling situations. 18 figs., 1 tab., 72 refs
A review of thermoelectric cooling: Materials, modeling and applications
International Nuclear Information System (INIS)
Zhao, Dongliang; Tan, Gang
2014-01-01
This study reviews the recent advances of thermoelectric materials, modeling approaches, and applications. Thermoelectric cooling systems have advantages over conventional cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no working fluid, being powered by direct current, and easily switching between cooling and heating modes. In this study, historical development of thermoelectric cooling has been briefly introduced first. Next, the development of thermoelectric materials has been given and the achievements in past decade have been summarized. To improve thermoelectric cooling system's performance, the modeling techniques have been described for both the thermoelement modeling and thermoelectric cooler (TEC) modeling including standard simplified energy equilibrium model, one-dimensional and three-dimensional models, and numerical compact model. Finally, the thermoelectric cooling applications have been reviewed in aspects of domestic refrigeration, electronic cooling, scientific application, and automobile air conditioning and seat temperature control, with summaries for the commercially available thermoelectric modules and thermoelectric refrigerators. It is expected that this study will be beneficial to thermoelectric cooling system design, simulation, and analysis. - Highlights: •Thermoelectric cooling has great prospects with thermoelectric material's advances. •Modeling techniques for both thermoelement and TEC have been reviewed. •Principle thermoelectric cooling applications have been reviewed and summarized
Modeling Atmospheric Activity of Cool Stars
Schrijver, C. J.
2003-10-01
This review discusses a set of simple models for cool-star activity with which we compute (1) photospheric field patterns on stars of different activity levels, (2) the associated outer-atmospheric field configurations, and (3) the soft X-ray emission that is expected to result from the ensemble of loop atmospheres in the coronae of these stars. The model is based on empirically-determined properties of solar activity. It allows us to extrapolate to stars of significantly higher and lower activity than seen on the present-day Sun through its cycle. With it, we can, for example, gain insight into stellar field patterns (including a possible formation mechanism for polar starspots), as well as in the properties of coronal heating (helpful in the identification of the quiescent coronal heating mechanism). Lacking comprehensive theoretical understanding, the model's reliance on empirical solar data means that the multitude of processes involved are approximated to be independent of rotation rate, activity level, and fundamental stellar parameters, or -- where unavoidably necessary -- assumed to simply scale with activity. An evaluation of the most important processes involved guides a discussion of the limits of the model, of the limitations in our knowledge, and of future needs. "I propose to adopt such rules as will ensure the testability of scientific statements; which is to say, their falsifiability." Karl Popper (1902-1994)
Predictive modeling of complications.
Osorio, Joseph A; Scheer, Justin K; Ames, Christopher P
2016-09-01
Predictive analytic algorithms are designed to identify patterns in the data that allow for accurate predictions without the need for a hypothesis. Therefore, predictive modeling can provide detailed and patient-specific information that can be readily applied when discussing the risks of surgery with a patient. There are few studies using predictive modeling techniques in the adult spine surgery literature. These types of studies represent the beginning of the use of predictive analytics in spine surgery outcomes. We will discuss the advancements in the field of spine surgery with respect to predictive analytics, the controversies surrounding the technique, and the future directions.
International Nuclear Information System (INIS)
Li Qiong; Meng Qinglin; Cai Jiejin; Yoshino, Hiroshi; Mochida, Akashi
2009-01-01
This study presents four modeling techniques for the prediction of hourly cooling load in the building. In addition to the traditional back propagation neural network (BPNN), the radial basis function neural network (RBFNN), general regression neural network (GRNN) and support vector machine (SVM) are considered. All the prediction models have been applied to an office building in Guangzhou, China. Evaluation of the prediction accuracy of the four models is based on the root mean square error (RMSE) and mean relative error (MRE). The simulation results demonstrate that the four discussed models can be effective for building cooling load prediction. The SVM and GRNN methods can achieve better accuracy and generalization than the BPNN and RBFNN methods
Archaeological predictive model set.
2015-03-01
This report is the documentation for Task 7 of the Statewide Archaeological Predictive Model Set. The goal of this project is to : develop a set of statewide predictive models to assist the planning of transportation projects. PennDOT is developing t...
An analytical model on thermal performance evaluation of counter flow wet cooling tower
Directory of Open Access Journals (Sweden)
Wang Qian
2017-01-01
Full Text Available This paper proposes an analytical model for simultaneous heat and mass transfer processes in a counter flow wet cooling tower, with the assumption that the enthalpy of the saturated air is a linear function of the water surface temperature. The performance of the proposed analytical model is validated in some typical cases. The validation reveals that, when cooling range is in a certain interval, the proposed model is not only comparable with the accurate model, but also can reduce computational complexity. In addition, with the proposed analytical model, the thermal performance of the counter flow wet cooling towers in power plants is calculated. The results show that the proposed analytical model can be applied to evaluate and predict the thermal performance of counter flow wet cooling towers.
Levy, R.; Mcginness, H.
1976-01-01
Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.
Numerical modeling of a nuclear production reactor cooling lake
International Nuclear Information System (INIS)
Hamm, L.L.; Pepper, D.W.
1987-01-01
A finite element model has been developed which predicts flow and temperature distributions within a nuclear reactor cooling lake at the Savannah River Plant near Aiken, South Carolina. Numerical results agree with values obtained from a 3-D EPA numerical lake model and actual measurements obtained from the lake. Because the effluent water from the reactor heat exchangers discharges directly into the lake, downstream temperatures at mid-lake could exceed the South Carolina DHEC guidelines for thermal exchanges during the summer months. Therefore, reactor power was reduced to maintain temperature compliance at mid-lake. Thermal mitigation measures were studied that included placing a 6.1 m deep fabric curtain across mid-lake and moving the reactor outfall upstream. These measurements were calculated to permit about an 8% improvement in reactor power during summer operation
International Nuclear Information System (INIS)
Solmaz, Ozgur; Ozgoren, Muammer; Aksoy, Muharrem Hilmi
2014-01-01
Highlights: • An ANN model was developed to predict hourly cooling load of a vehicle. • Hourly meteorological data of 5 different provinces was used. • The agreement of the cooling load values between the calculations and predictions was fairly promising. • The ANN model could be successfully used to design automotive air conditioning systems. - Abstract: In this study, Artificial Neural Networks (ANNs) method for prediction hourly cooling load of a vehicle was implemented. The cooling load of the vehicle was calculated along the cooling season (1 May–30 September) for Antalya, Konya, Mersin, Mugla and Sanliurfa provinces in Turkey. For ANN model, seven neurons determinated as input signals of latitude, longitude, altitude, day of the year, hour of the day, hourly mean ambient air temperature and hourly solar radiation were used for the input layer of the network. One neuron producing an output signal of the hourly cooling load was utilized in the output layer. All data were divided into two categories for training and testing of the ANN. The 80% of the data was reserved to training and the remaining was used for testing of the model. Neuron numbers in the hidden layer from 7 to 40 were tested step by step to find the best matching ANN structure. The obtained results for different numbers of neurons were compared in terms of root mean squared error (RMSE), coefficient of determination (R 2 ) and mean absolute error (MAE). The best matching results for the training and testing were obtained as 8 neurons for the minimum testing RMSE value for the prediction of cooling load by the ANN model on the 23rd day of each month along the cooling season. For the model with 8 neurons RMSE, R 2 and MAE (Training/Testing) were found to be 0.0128/0.0259, 0.9959/0.9818 and 78.81/174.71 W/m 2 , respectively. It is shown that the cooling load of a vehicle can be successfully predicted by means of the ANNs from geographical characteristics and meteorological data
ELECTRONIC CIRCUIT BOARDS NON-UNIFORM COOLING SYSTEM MODEL
Directory of Open Access Journals (Sweden)
D. V. Yevdulov
2016-01-01
Full Text Available Abstract. The paper considers a mathematical model of non-uniform cooling of electronic circuit boards. The block diagram of the system implementing this approach, the method of calculation of the electronic board temperature field, as well as the principle of its thermal performance optimizing are presented. In the considered scheme the main heat elimination from electronic board is produced by the radiator system, and additional cooling of the most temperature-sensitive components is produced by thermoelectric batteries. Are given the two-dimensional temperature fields of the electronic board during its uniform and non-uniform cooling, is carried out their comparison. As follows from the calculations results, when using a uniform overall cooling of electronic unit there is a waste of energy for the cooling 0f electronic board parts which temperature is within acceptable temperature range without the cooling system. This approach leads to the increase in the cooling capacity of used thermoelectric batteries in comparison with the desired values. This largely reduces the efficiency of heat elimination system. The use for electronic boards cooling of non-uniform local heat elimination removes this disadvantage. The obtained dependences show that in this case, the energy required to create a given temperature is smaller than when using a common uniform cooling. In this approach the temperature field of the electronic board is more uniform and the cooling is more efficient.
A model for radionuclide transport in the Cooling Water System
International Nuclear Information System (INIS)
Kahook, S.D.
1992-08-01
A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA
DEFF Research Database (Denmark)
Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.
2013-01-01
This paper focuses on the numerical modeling and analysis of a Desiccant Cooling (DEC) system with regenerative indirect evaporative cooling, termed Desiccant Dewpoint Cooling (DDC) system. The DDC system includes a Desiccant Wheel (DW), Dew Point Coolers (DPCs), a heat recovery unit and a heat...... in different climates: temperate in Copenhagen and Mediterranean in Venice. Cheap and clean heat sources (e.g. solar energy) strongly increase the attractiveness of the DDC system. For the Mediterranean climate the DDC system represents a convenient alternative to chiller-based systems in terms of energy costs...... and CO2 emissions. The electricity consumption for auxiliaries in the DDC system is higher than in the chiller-based systems. The number of commercial-size DPC units required to cover the cooling load during the whole period is high: 8 in Copenhagen and 12 in Venice....
Modeling of Nonlinear Marine Cooling Systems with Closed Circuit Flow
DEFF Research Database (Denmark)
Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon
2011-01-01
We consider the problem of constructing a mathematical model for a specific type of marine cooling system. The system in question is used for cooling the main engine and main engine auxiliary components, such as diesel generators, turbo chargers and main engine air coolers for certain classes...
Numerical-Model Investigation of the Hydrothermal Regime of a Straight-Through Shallow Cooling Pond
Energy Technology Data Exchange (ETDEWEB)
Sokolov, A. S. [JSC ' VNIIG im. B. E. Vedeneeva' (Russian Federation)
2013-11-15
A mathematic model based on solution of hydrodynamics and heat-transfer equations by the finite-element method is constructed to predict the hydrothermal regime of a straight-through shallow cooling pond, which provides cooling circulating water to a repository of spent nuclear fuel. Numerical experiments made it possible to evaluate the influence exerted by wind conditions and flow rate of water in the river on the temperature of the circulating water.
Elastocaloric cooling device: Materials and modeling
DEFF Research Database (Denmark)
Tusek, Jaka; Engelbrecht, Kurt; Pryds, Nini
2015-01-01
In the last decade we have witnessed the development of alternative solid-state cooling technologies based on so-called ferroic (caloric) effects. A large effort nowadays is devoted to investigating solid-state refrigeration using the magnetocaloric effect (change of temperature upon application ...
Inverse and Predictive Modeling
Energy Technology Data Exchange (ETDEWEB)
Syracuse, Ellen Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-27
The LANL Seismo-Acoustic team has a strong capability in developing data-driven models that accurately predict a variety of observations. These models range from the simple – one-dimensional models that are constrained by a single dataset and can be used for quick and efficient predictions – to the complex – multidimensional models that are constrained by several types of data and result in more accurate predictions. Team members typically build models of geophysical characteristics of Earth and source distributions at scales of 1 to 1000s of km, the techniques used are applicable for other types of physical characteristics at an even greater range of scales. The following cases provide a snapshot of some of the modeling work done by the Seismo- Acoustic team at LANL.
International Nuclear Information System (INIS)
Byun, Choong Sup; Song, Dong Soo; Jun, Hwang Yong
2006-01-01
In a design point of view, component cooling water (CCW) system is not full-interactively designed with its heat loads. Heat loads are calculated from the CCW design flow and temperature condition which is determined with conservatism. Then the CCW heat exchanger is sized by using total maximized heat loads from above calculation. This approach does not give the optimized performance results and the exact trends of CCW system and the loads during transient. Therefore a combined model for performance analysis of containment and the component cooling water(CCW) system is developed by using GOTHIC software code. The model is verified by using the design parameters of component cooling water heat exchanger and the heat loads during the recirculation mode of loss of coolant accident scenario. This model may be used for calculating the realistic containment response and CCW performance, and increasing the ultimate heat sink temperature limits
Wu, Jiasheng; Cao, Lin; Zhang, Guoqiang
2018-02-01
Cooling tower of air conditioning has been widely used as cooling equipment, and there will be broad application prospect if it can be reversibly used as heat source under heat pump heating operation condition. In view of the complex non-linear relationship of each parameter in the process of heat and mass transfer inside tower, In this paper, the BP neural network model based on genetic algorithm optimization (GABP neural network model) is established for the reverse use of cross flow cooling tower. The model adopts the structure of 6 inputs, 13 hidden nodes and 8 outputs. With this model, the outlet air dry bulb temperature, wet bulb temperature, water temperature, heat, sensible heat ratio and heat absorbing efficiency, Lewis number, a total of 8 the proportion of main performance parameters were predicted. Furthermore, the established network model is used to predict the water temperature and heat absorption of the tower at different inlet temperatures. The mean relative error MRE between BP predicted value and experimental value are 4.47%, 3.63%, 2.38%, 3.71%, 6.35%,3.14%, 13.95% and 6.80% respectively; the mean relative error MRE between GABP predicted value and experimental value are 2.66%, 3.04%, 2.27%, 3.02%, 6.89%, 3.17%, 11.50% and 6.57% respectively. The results show that the prediction results of GABP network model are better than that of BP network model; the simulation results are basically consistent with the actual situation. The GABP network model can well predict the heat and mass transfer performance of the cross flow cooling tower.
International Nuclear Information System (INIS)
Chehade, Ali; Louahlia-Gualous, Hasna; Le Masson, Stéphane; Lépinasse, Eric
2015-01-01
This paper presents an analytical model for a thermosyphon loop developed for cooling air inside a telecommunication cabinet. The proposed model is based on the combination of thermal and hydraulic management of two-phase flow in the loop. Experimental tests on a closed thermosyphon loop are conducted with different working fluids that could be used for electronic cooling. Correlations for condensation and evaporation heat transfer in the thermosyphon loop are proposed. They are used in the model to calculate condenser and evaporator thermal resistances in order to predict the cabinet operating temperature, the loop's mass flow rate and pressure drops. Furthermore, various figures of merit proposed in the previous works are evaluated in order to be used for selection of the best loop's working fluid. The comparative studies show that the present model well predicts the experimental data. The mean deviation between the predictions of the theoretical model with the measurements for operating temperature is about 6%. Besides, the model is used to define an optimal liquid and vapor lines diameters and the effect of the ambient temperature on the fluid's mass flow rate and pressure drop. - Highlights: • Modeling of thermosyphon loop for cooling telecommunication cabinet. • The cooling system operates with zero electrical consumption. • The new correlations are proposed for condensation and evaporation heat transfer. • FOM equation is defined for selecting the best working fluid. • The proposed model well predicts the experimental data and operating temperature
Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System
Directory of Open Access Journals (Sweden)
Lei He
2016-01-01
Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.
Modeling and Exergy Analysis of District Cooling
DEFF Research Database (Denmark)
Nguyen, Chan
in the gas cooler, pinch temperature in the evaporator and effectiveness of the IHX. These results are complemented by the exergy analysis, where the exergy destruction ratio of the CO2 system’s component is found. Heat recovery from vapour compression heat pumps has been investigated. The heat is to be used...... consists of a combined heat and power (CHP) plant with a separate refrigeration plant, where its condenser heat is rejected to the environment. The recovery system consists of the same CHP plant but with a heat pump, where the condensation heat is recovered. Five different refrigerants (R717, R600a, R290...... and surrounding temperature has been carried out. It has been demonstrated that the two methods yield significantly different results. Energy costing prices the unit cost of heating and cooling equally independent of the quality of the heat transfer, and it tends to overprice the cost of cooling in an irrational...
MATHEMATICAL MODELING OF HEATING AND COOLING OF SAUSAGES
Directory of Open Access Journals (Sweden)
A. V. Zhuchkov
2013-01-01
Full Text Available In the article the mathematical modeling of the processes of heating and cooling of sausage products in order to define reference characteristics of the processes was carried out. Basic regularities of the processes are graphically shown.
Modelling of flow and heat transfer in PV cooling channels
Energy Technology Data Exchange (ETDEWEB)
Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering
2005-07-01
Under sunny conditions, the temperature of photovoltaic (PV) modules can be 20 to 30 degrees C above the ambient air temperature. This affects the performance of PV modules, particularly in regions with hot climates. For silicon solar cells, the maximum power decreases between 0.4 and 0.5 per cent for every degree C of temperature increase above a reference value. In an effort to address this issue, this experimental and numerical study examined an active PV panel evaporative cooling scheme that is typically used in hot arid climates. The cooling system circulated cool air behind the PV modules, extracting heat and lowering solar cell temperature. A fluid dynamic and thermal model of the combined system was developed using the EES program in order to study the configuration of the cooling channel and the characteristics of the cooling flow. Heat transfer and flow characteristics in the cooling channel were then calculated along with pressure drop and fan power associated with the air-circulation. The net power output was also calculated. The objective was to design a cost efficient cooling system and to optimize its flow and pressure drop in order to maximize power output. The study demonstrated how the performance of the PV panel is influenced by the geometry of the cooling channel, the inlet air temperature and the air flow rate. 2 refs.
Statistical multi-model approach for performance assessment of cooling tower
International Nuclear Information System (INIS)
Pan, Tian-Hong; Shieh, Shyan-Shu; Jang, Shi-Shang; Tseng, Wen-Hung; Wu, Chan-Wei; Ou, Jenq-Jang
2011-01-01
This paper presents a data-driven model-based assessment strategy to investigate the performance of a cooling tower. In order to achieve this objective, the operations of a cooling tower are first characterized using a data-driven method, multiple models, which presents a set of local models in the format of linear equations. Satisfactory fuzzy c-mean clustering algorithm is used to classify operating data into several groups to build local models. The developed models are then applied to predict the performance of the system based on design input parameters provided by the manufacturer. The tower characteristics are also investigated using the proposed models via the effects of the water/air flow ratio. The predicted results tend to agree well with the calculated tower characteristics using actual measured operating data from an industrial plant. By comparison with the design characteristic curve provided by the manufacturer, the effectiveness of cooling tower can be obtained in the end. A case study conducted in a commercial plant demonstrates the validity of proposed approach. It should be noted that this is the first attempt to assess the cooling efficiency which is deviated from the original design value using operating data for an industrial scale process. Moreover, the evaluated process need not interrupt the normal operation of the cooling tower. This should be of particular interest in industrial applications.
Prediction of mechanical properties of Al alloys with change of cooling rate
Directory of Open Access Journals (Sweden)
Quan-Zhi Dong
2012-11-01
Full Text Available The solidification process significantly affects the mechanical properties and there are lots of factors that affect the solidification process. Much progress has been made in the research on the effect of solidification on mechanical properties. Among them, the PF (Phase Field model and CA (Cellular Automata model are widely used as simulation methods which can predict nucleation and its growth, and the size and morphology of the grains during solidification. Although they can give accurate calculation results, it needs too much computational memory and calculation time. So it is difficult to apply the simulation to the real production process. In this study, a more practical simulation approach which can predict the mechanical properties of real aluminum alloys is proposed, by identifying through experiment the relationship between cooling rate and SDAS (Secondary Dendrite Arm Spacing and mechanical properties. The experimentally measured values and the values predicted by simulation have relatively small differences and the mechanical properties of a variety of Al alloys are expected to be predicted before casting through use of the simulation.
Design and performance prediction of an adsorption heat pump with multi-cooling tubes
Energy Technology Data Exchange (ETDEWEB)
Wang, D.C.; Zhang, J.P. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China)
2009-05-15
Widespread application of adsorption heat pumps has been delayed not only by poor heat and mass transfer performance but also by low operating reliability because high vacuum must be maintained in the adsorption cooling system, especially in a water system. An adsorption cooling tube is a tube in which an adsorber, a condenser and an evaporator are all completely housed to construct a small scale adsorption cooling unit. In this work, an adsorption cooling tube and an adsorption heat pump with multi-cooling tubes are designed. A theoretical model is built to simulate the performance of the designed chiller. According to the results, the coefficient of performance and specific cooling power reach about 0.5 and 85 W/kg adsorbent, respectively, at the hot water temperature of 85 C. These results indicate that the designed heat pump in this work would provide a better choice if the operating reliability became crucial for an adsorption heat pump. (author)
Design and performance prediction of an adsorption heat pump with multi-cooling tubes
International Nuclear Information System (INIS)
Wang, D.C.; Zhang, J.P.
2009-01-01
Widespread application of adsorption heat pumps has been delayed not only by poor heat and mass transfer performance but also by low operating reliability because high vacuum must be maintained in the adsorption cooling system, especially in a water system. An adsorption cooling tube is a tube in which an adsorber, a condenser and an evaporator are all completely housed to construct a small scale adsorption cooling unit. In this work, an adsorption cooling tube and an adsorption heat pump with multi-cooling tubes are designed. A theoretical model is built to simulate the performance of the designed chiller. According to the results, the coefficient of performance and specific cooling power reach about 0.5 and 85 W/kg adsorbent, respectively, at the hot water temperature of 85 deg. C. These results indicate that the designed heat pump in this work would provide a better choice if the operating reliability became crucial for an adsorption heat pump.
International Nuclear Information System (INIS)
El-Morshedy, Salah El-Din
2010-01-01
Research reactors of power greater than 20 MW are usually designed to be cooled with upward coolant flow direction inside the reactor core. This is mainly to prevent flow inversion problems following a pump coast down. However, in some designs and under certain operating conditions, flow inversion phenomenon is predicted. In the present work, the best-estimate Material Testing Reactors Thermal-Hydraulic Analysis program (MTRTHA) is used to simulate a typical MTR reactor behavior with upward cooling under a hypothetical case of loss of off-site power. The flow inversion phenomenon is predicted under certain decay heat and/or pool temperature values below the design values. The reactor simulation under loss of off-site power is performed for two cases namely; two-flap valves open and one flap-valve fails to open. The model results for the flow inversion phenomenon prediction is analyzed and a solution of the problem is suggested. (orig.)
A temperature rise equation for predicting environmental impact and performance of cooling ponds
Energy Technology Data Exchange (ETDEWEB)
Serag-Eldin, M.A. [American Univ. in Cairo, Cairo (Egypt). Dept. of Mechanical Engineering
2009-07-01
Cooling ponds are used to cool the condenser water used in large central air-conditioning systems. However, larger cooling loads can often increase pond surface evaporation rates. A temperature-rise energy equation was developed to predict temperature rises in cooling ponds subjected to heating loads. The equation was designed to reduce the need for detailed meteorological data as well as to determine the required surface area and depth of the pond for any given design criteria. Energy equations in the presence and absence of cooling loads were subtracted from each other to determine increases in pond temperature resulting from the cooling load. The energy equations include solar radiation, radiation exchange with sky and surroundings, heat convection from the surface, evaporative cooling, heat conducted to the walls, and rate of change of water temperature. Results of the study suggested that the environmental impact and performance of the cooling pond is a function of temperature only. It was concluded that with the aid of the calculated flow field and temperature distribution, the method can be used to position sprays in order to produce near-uniform pond temperatures. 10 refs., 12 figs.
A photoionization model for the optical line emission from cooling flows
Donahue, Megan; Voit, G. M.
1991-01-01
The detailed predictions of a photoionization model previously outlined in Voit and Donahue (1990) to explain the optical line emission associated with cooling flows in X-ray emitting clusters of galaxies are presented. In this model, EUV/soft X-ray radiation from condensing gas photoionizes clouds that have already cooled. The energetics and specific consequences of such a model, as compared to other models put forth in the literature is discussed. Also discussed are the consequences of magnetic fields and cloud-cloud shielding. The results illustrate how varying the individual column densities of the ionized clouds can reproduce the range of line ratios observed and strongly suggest that the emission-line nebulae are self-irradiated condensing regions at the centers of cooling flows.
Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam
Energy Technology Data Exchange (ETDEWEB)
Haaf, G. ten; Wouters, S. H. W.; Vredenbregt, E. J. D.; Mutsaers, P. H. A. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Geer, S. B. van der [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)
2014-12-28
Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here, we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of, amongst others, the flux density of the atomic beam, the temperature of this beam, and the total current. At low currents (I < 10 pA), the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents, this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents, the result agrees well with the analytical model, while at higher currents, the spot sizes found are even lower due to effects that are not taken into account in the analytical model.
Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.
Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue
2014-12-15
We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.
Modeling conductive cooling for thermally stressed dairy cows.
Gebremedhin, Kifle G; Wu, Binxin; Perano, K
2016-02-01
Conductive cooling, which is based on direct contact between a cow lying down and a cooled surface (water mattress, or any other heat exchanger embedded under the bedding), allows heat transfer from the cow to the cooled surface, and thus alleviate heat stress of the cow. Conductive cooling is a novel technology that has the potential to reduce the consumption of energy and water in cooling dairy cows compared to some current practices. A three-dimensional conduction model that simulates cooling thermally-stressed dairy cows was developed. The model used a computational fluid dynamics (CFD) method to characterize the air-flow field surrounding the animal model. The flow field was obtained by solving the continuity and the momentum equations. The heat exchange between the animal and the cooled water mattress as well as between the animal and ambient air was determined by solving the energy equation. The relative humidity was characterized using the species transport equation. The conduction 3-D model was validated against experimental temperature data and the agreement was very good (average error is 4.4% and the range is 1.9-8.3%) for a mesh size of 1117202. Sensitivity analyses were conducted between heat losses (sensible and latent) with respect to air temperature, relative humidity, air velocity, and level of wetness of skin surface to determine which of the parameters affect heat flux more than others. Heat flux was more sensitive to air temperature and level of wetness of the skin surface and less sensitive to relative humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modelling the radiolysis of RSG-GAS primary cooling water
Butarbutar, S. L.; Kusumastuti, R.; Subekti, M.; Sunaryo, G. R.
2018-02-01
Water chemistry control for light water coolant reactor required a reliable understanding of radiolysis effect in mitigating corrosion and degradation of reactor structure material. It is known that oxidator products can promote the corrosion, cracking and hydrogen pickup both in the core and in the associated piping components of the reactor. The objective of this work is to provide the radiolysis model of RSG GAS cooling water and further more to predict the oxidator concentration which can lead to corrosion of reactor material. Direct observations or measurements of the chemistry in and around the high-flux core region of a nuclear reactor are difficult due to the extreme conditions of high temperature, pressure, and mixed radiation fields. For this reason, chemical models and computer simulations of the radiolysis of water under these conditions are an important route of investigation. FACSIMILE were used to calculate the concentration of O2 formed at relatively long-time by the pure water γ and neutron irradiation (pH=7) at temperature between 25 and 50 °C. This simulation method is based on a complex chemical reaction kinetic. In this present work, 300 MeV-proton were used to mimic γ-rays radiolysis and 2 MeV fast neutrons. Concentration of O2 were calculated at 10-6 - 106 s time scale.
Cultural Resource Predictive Modeling
2017-10-01
CR cultural resource CRM cultural resource management CRPM Cultural Resource Predictive Modeling DoD Department of Defense ESTCP Environmental...resource management ( CRM ) legal obligations under NEPA and the NHPA, military installations need to demonstrate that CRM decisions are based on objective...maxim “one size does not fit all,” and demonstrate that DoD installations have many different CRM needs that can and should be met through a variety
Mathematical Model for Direct Evaporative Space Cooling Systems ...
African Journals Online (AJOL)
This paper deals with the development of a simple mathematical model for experimental validation of the performance of a small evaporative cooling system in a tropical climate. It also presents the coefficient of convective heat transfer of wide range of temperatures based on existing model. Extensive experiments have ...
modelling room cooling capacity with fuzzy logic procedure
African Journals Online (AJOL)
The primary aim of this study is to develop a model for estimation of the cooling requirement of residential rooms. Fuzzy logic was employed to model four input variables (window area (m2), roof area (m2), external wall area (m2) and internal load (Watt). The algorithm of the inference engine applied sets of 81 linguistic ...
Mathematical model and calculation of water-cooling efficiency in a film-filled cooling tower
Laptev, A. G.; Lapteva, E. A.
2016-10-01
Different approaches to simulation of momentum, mass, and energy transfer in packed beds are considered. The mathematical model of heat and mass transfer in a wetted packed bed for turbulent gas flow and laminar wave counter flow of the fluid film in sprinkler units of a water-cooling tower is presented. The packed bed is represented as the set of equivalent channels with correction to twisting. The idea put forward by P. Kapitsa on representation of waves on the interphase film surface as elements of the surface roughness in interaction with the gas flow is used. The temperature and moisture content profiles are found from the solution of differential equations of heat and mass transfer written for the equivalent channel with the volume heat and mass source. The equations for calculation of the average coefficients of heat emission and mass exchange in regular and irregular beds with different contact elements, as well as the expression for calculation of the average turbulent exchange coefficient are presented. The given formulas determine these coefficients for the known hydraulic resistance of the packed bed element. The results of solution of the system of equations are presented, and the water temperature profiles are shown for different sprinkler units in industrial water-cooling towers. The comparison with experimental data on thermal efficiency of the cooling tower is made; this allows one to determine the temperature of the cooled water at the output. The technical solutions on increasing the cooling tower performance by equalization of the air velocity profile at the input and creation of an additional phase contact region using irregular elements "Inzhekhim" are considered.
Candidate Prediction Models and Methods
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik
2005-01-01
This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...... the possibilities w.r.t. different numerical weather predictions actually available to the project....
Dynamic thermo-hydraulic model of district cooling networks
International Nuclear Information System (INIS)
Oppelt, Thomas; Urbaneck, Thorsten; Gross, Ulrich; Platzer, Bernd
2016-01-01
Highlights: • A dynamic thermo-hydraulic model for district cooling networks is presented. • The thermal modelling is based on water segment tracking (Lagrangian approach). • Thus, numerical errors and balance inaccuracies are avoided. • Verification and validation studies proved the reliability of the model. - Abstract: In the present paper, the dynamic thermo-hydraulic model ISENA is presented which can be applied for answering different questions occurring in design and operation of district cooling networks—e.g. related to economic and energy efficiency. The network model consists of a quasistatic hydraulic model and a transient thermal model based on tracking water segments through the whole network (Lagrangian method). Applying this approach, numerical errors and balance inaccuracies can be avoided which leads to a higher quality of results compared to other network models. Verification and validation calculations are presented in order to show that ISENA provides reliable results and is suitable for practical application.
Predictive Surface Complexation Modeling
Energy Technology Data Exchange (ETDEWEB)
Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences
2016-11-29
Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO_{2} and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.
Study on performance prediction and energy saving of indirect evaporative cooling system
Energy Technology Data Exchange (ETDEWEB)
Yoo, Seong Yeon; Kim, Tae Ho; Kim, Myung Ho [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of)
2015-09-15
The purpose of this study is to predict the performance of an indirect evaporative cooling system, and to evaluate its energy saving effect when applied to the exhaust heat recovery system of an air-handling unit. We derive the performance correlation of the indirect evaporative cooling system using a plastic heat exchanger based on experimental data obtained in various conditions. We predict the variations in the performance of the system for various return and outdoor air conditioning systems using the obtained correlation. We also analyze the energy saving of the system realized by the exhaust heat recovery using the typical meteorological data for several cities in Korea. The average utilization rate of the sensible cooling system for the exhaust heat recovery is 44.3% during summer, while that of the evaporative cooling system is 96.7%. The energy saving of the evaporative cooling system is much higher compared to the sensible cooling system, and was about 3.89 times the value obtained in Seoul.
Operational cooling tower model (CTTOOL V1.0)
Energy Technology Data Exchange (ETDEWEB)
Aleman, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); LocalDomainServers, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garrett, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2015-01-01
Mechanical draft cooling towers (MDCT’s) are widely used to remove waste heat from industrial processes, including suspected proliferators of weapons of mass destruction (WMD). The temperature of the air being exhausted from the MDCT is proportional to the amount of thermal energy being removed from the process cooling water, although ambient weather conditions and cooling water flow rate must be known or estimated to calculate the rate of thermal energy dissipation (Q). It is theoretically possible to derive MDCT air exhaust temperatures from thermal images taken from a remote sensor. A numerical model of a MDCT is required to translate the air exhaust temperature to a Q. This report describes the MDCT model developed by the Problem Centered Integrated Analysis (PCIA) program that was designed to perform those computational tasks. The PCIA program is a collaborative effort between the Savannah River National Laboratory (SRNL), the Northrop-Grumman Corporation (NG) and the Aerospace Corporation (AERO).
International Nuclear Information System (INIS)
Yoon, Ho Jun; Suh, Kune Y.
1998-01-01
In the TMI-2 accident, approximately nineteen (19) tons of molten core material drained into the lower plenum. One of the major findings from the TMI-2 Vessel Investigation Project was that one part of the reactor lower head wall estimated to have attained a temperature of 1100 .deg. C for about 30 minutes has seemingly experienced a comparatively rapid cooldown with no major threat to the vessel integrity. In this regard, recent empirical and analytical studies have shifted interests to such in-vessel retention designs or strategies as reactor cavity flooding, in-vessel flooding and engineered gap cooling of the vessel. Accurate thermohydrodynamic and creep deformation modeling and rupture prediction are the key to the success in developing practically useful in-vessel accident management strategies. As an advanced in-vessel design concept, the COrium Attak Syndrome Immunization Structures (COASIS) are being developed as prospective in-vessel retention devices for a next-generation LWR in concert with existing ex-vessel management measures. Both the engineered gap structures in -vessel (COASISI) and ex-vessel (COASISO) were demonstrated to maintain effective heat transfer geometry during molten core debris attack when applied to the TMI-2 and the Korean Standard Nuclear Power Plant (KSNPP) reactors. The likelihood of lower head creep rupture during a severe accident is found to be significantly suppressed by the COASIS options. In studying the in-vessel severe accident phenomena, one of the main goals is to verify the cooling mechanism in the reactor vessel lower plenum and thereby to prevent the vessel failure from thermal attack by the molten debris. This paper presents the first-principle calculation results for the thermal margin for the case of external cooling of the reactor vessel lower head. Adopting the method presented by F.B. Cheung, et al., we calculated the departure from nucleate boiling ratio (DNBR) for the three cases of pool boiling, flow boiling
Dynamic electro-thermal modeling of all-vanadium redox flow battery with forced cooling strategies
International Nuclear Information System (INIS)
Wei, Zhongbao; Zhao, Jiyun; Xiong, Binyu
2014-01-01
Highlights: • A dynamic electro-thermal model is proposed for VRB with forced cooling. • The Foster network is adopted to model the battery cooling process. • Both the electrolyte temperature and terminal voltage can be accurately predicted. • The flow rate of electrolyte and coolant significantly impact battery performance. - Abstract: The present study focuses on the dynamic electro-thermal modeling for the all-vanadium redox flow battery (VRB) with forced cooling strategies. The Foster network is adopted to dynamically model the heat dissipation of VRB with heat exchangers. The parameters of Foster network are extracted by fitting the step response of it to the results of linearized CFD model. Then a complete electro-thermal model is proposed by coupling the heat generation model, Foster network and electrical model. Results show that the established model has nearly the same accuracy with the nonlinear CFD model in electrolyte temperature prediction but drastically improves the computational efficiency. The modeled terminal voltage is also benchmarked with the experimental data under different current densities. The electrolyte temperature is found to be significantly influenced by the flow rate of coolant. As compared, although the electrolyte flow rate has unremarkable impact on electrolyte temperature, its effect on system pressure drop and battery efficiency is significant. Increasing the electrolyte flow rate improves the coulombic efficiency, voltage efficiency and energy efficiency simultaneously but at the expense of higher pump power demanded. An optimal flow rate exists for each operating condition to maximize the system efficiency
Improving prediction accuracy of cooling load using EMD, PSR and RBFNN
Shen, Limin; Wen, Yuanmei; Li, Xiaohong
2017-08-01
To increase the accuracy for the prediction of cooling load demand, this work presents an EMD (empirical mode decomposition)-PSR (phase space reconstruction) based RBFNN (radial basis function neural networks) method. Firstly, analyzed the chaotic nature of the real cooling load demand, transformed the non-stationary cooling load historical data into several stationary intrinsic mode functions (IMFs) by using EMD. Secondly, compared the RBFNN prediction accuracies of each IMFs and proposed an IMF combining scheme that is combine the lower-frequency components (called IMF4-IMF6 combined) while keep the higher frequency component (IMF1, IMF2, IMF3) and the residual unchanged. Thirdly, reconstruct phase space for each combined components separately, process the highest frequency component (IMF1) by differential method and predict with RBFNN in the reconstructed phase spaces. Real cooling load data of a centralized ice storage cooling systems in Guangzhou are used for simulation. The results show that the proposed hybrid method outperforms the traditional methods.
Computational modelling of the HyperVapotron cooling technique
Energy Technology Data Exchange (ETDEWEB)
Milnes, Joseph, E-mail: Joe.Milnes@ccfe.ac.uk [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Burns, Alan [School of Process Material and Environmental Engineering, CFD Centre, University of Leeds, Leeds, LS2 9JT (United Kingdom); ANSYS UK, Milton Park, Oxfordshire (United Kingdom); Drikakis, Dimitris [Department of Engineering Physics, Cranfield University, Cranfield, MK43 0AL (United Kingdom)
2012-09-15
Highlights: Black-Right-Pointing-Pointer The heat transfer mechanisms within a HyperVapotron are examined. Black-Right-Pointing-Pointer A multiphase, CFD model is developed. Black-Right-Pointing-Pointer Modelling choices for turbulence and wall boiling are evaluated. Black-Right-Pointing-Pointer Considerable improvements in accuracy are found compared to standard boiling models. Black-Right-Pointing-Pointer The model should enable significant virtual prototyping to be performed. - Abstract: Efficient heat transfer technologies are essential for magnetically confined fusion reactors; this applies to both the current generation of experimental reactors as well as future power plants. A number of High Heat Flux devices have therefore been developed specifically for this application. One of the most promising candidates is the HyperVapotron, a water cooled device which relies on internal fins and boiling heat transfer to maximise the heat transfer capability. Over the past 30 years, numerous variations of the HyperVapotron have been built and tested at fusion research centres around the globe resulting in devices that can now sustain heat fluxes in the region of 20-30 MW/m{sup 2} in steady state. Until recently, there had been few attempts to model or understand the internal heat transfer mechanisms responsible for this exceptional performance with the result that design improvements have been traditionally sought experimentally which is both inefficient and costly. This paper presents the successful attempt to develop an engineering model of the HyperVapotron device using customisation of commercial Computational Fluid Dynamics software. To establish the most appropriate modelling choices, in-depth studies were performed examining the turbulence models (within the Reynolds Averaged Navier Stokes framework), near wall methods, grid resolution and boiling submodels. Comparing the CFD solutions with HyperVapotron experimental data suggests that a RANS-based, multiphase
Prediction of Film Cooling Effectiveness on a Gas Turbine Blade Leading Edge Using ANN and CFD
Dávalos, J. O.; García, J. C.; Urquiza, G.; Huicochea, A.; De Santiago, O.
2018-05-01
In this work, the area-averaged film cooling effectiveness (AAFCE) on a gas turbine blade leading edge was predicted by employing an artificial neural network (ANN) using as input variables: hole diameter, injection angle, blowing ratio, hole and columns pitch. The database used to train the network was built using computational fluid dynamics (CFD) based on a two level full factorial design of experiments. The CFD numerical model was validated with an experimental rig, where a first stage blade of a gas turbine was represented by a cylindrical specimen. The ANN architecture was composed of three layers with four neurons in hidden layer and Levenberg-Marquardt was selected as ANN optimization algorithm. The AAFCE was successfully predicted by the ANN with a regression coefficient R2<0.99 and a root mean square error RMSE=0.0038. The ANN weight coefficients were used to estimate the relative importance of the input parameters. Blowing ratio was the most influential parameter with relative importance of 40.36 % followed by hole diameter. Additionally, by using the ANN model, the relationship between input parameters was analyzed.
Energy Technology Data Exchange (ETDEWEB)
Hanna, S R
1976-01-01
A one-dimensional numerical cloud growth model and several empirical models for plume rise and cloud growth are compared with twenty-seven sets of observations of cooling tower plumes from the 2900 MW John E. Amos power plant in West Virginia. The three natural draft cooling towers are 200 m apart. In a cross wind, the plumes begin to merge at a distance of about 500 m downwind. In calm conditions, with reduced entrainment, the plumes often do not merge until heights of 1000 m. The average plume rise, 750 m, is predicted well by the models, but day-to-day variations are simulated with a correlation coefficient of about 0.5. Model predictions of visible plume length agree, on the average, with observations for visible plumes of short to moderate length (less than about 1 km). The prediction of longer plumes is hampered by our lack of knowledge of plume spreading after the plumes level off. Cloud water concentrations predicted by the numerical model agree with those measured in natural cumulus clouds (about 0.1 to 1 g kg/sup -1/).
Péron, Mael; Jacquemin, Frédéric; Casari, Pascal; Orange, Gilles; Bailleul, Jean-Luc; Boyard, Nicolas
2017-10-01
The prediction of process induced stresses during the cooling of thermoplastic composites still represents a challenge for the scientific community. However, a precise determination of these stresses is necessary in order to optimize the process conditions and thus lower the stresses effects on the final part health. A model is presented here, that permits the estimation of residual stresses during cooling. It relies on the nonlinear laminate theory, which has been adapted to arbitrary layup sequences. The developed model takes into account the heat transfers through the thickness of the laminate, together with the crystallization kinetics. The development of the composite mechanical properties during cooling is addressed by an incremental linear elastic constitutive law, which also considers thermal and crystallization strains. In order to feed the aforementioned model, a glass fiber and PA6.6 matrix unidirectional (UD) composite has been characterized. This work finally focuses on the identification of the material and process related parameters that lower the residual stresses level, including the ply sequence, the fiber volume fraction and the cooling rate.
Directory of Open Access Journals (Sweden)
Xiuyuan Du
Full Text Available This paper reports on studies of the effect of temperature step-change (between a cool and a neutral environment on human thermal sensation and skin temperature. Experiments with three temperature conditions were carried out in a climate chamber during the period in winter. Twelve subjects participated in the experiments simulating moving inside and outside of rooms or cabins with air conditioning. Skin temperatures and thermal sensation were recorded. Results showed overshoot and asymmetry of TSV due to the step-change. Skin temperature changed immediately when subjects entered a new environment. When moving into a neutral environment from cool, dynamic thermal sensation was in the thermal comfort zone and overshoot was not obvious. Air-conditioning in a transitional area should be considered to limit temperature difference to not more than 5°C to decrease the unacceptability of temperature step-change. The linear relationship between thermal sensation and skin temperature or gradient of skin temperature does not apply in a step-change environment. There is a significant linear correlation between TSV and Qloss in the transient environment. Heat loss from the human skin surface can be used to predict dynamic thermal sensation instead of the heat transfer of the whole human body.
Du, Xiuyuan; Li, Baizhan; Liu, Hong; Yang, Dong; Yu, Wei; Liao, Jianke; Huang, Zhichao; Xia, Kechao
2014-01-01
This paper reports on studies of the effect of temperature step-change (between a cool and a neutral environment) on human thermal sensation and skin temperature. Experiments with three temperature conditions were carried out in a climate chamber during the period in winter. Twelve subjects participated in the experiments simulating moving inside and outside of rooms or cabins with air conditioning. Skin temperatures and thermal sensation were recorded. Results showed overshoot and asymmetry of TSV due to the step-change. Skin temperature changed immediately when subjects entered a new environment. When moving into a neutral environment from cool, dynamic thermal sensation was in the thermal comfort zone and overshoot was not obvious. Air-conditioning in a transitional area should be considered to limit temperature difference to not more than 5°C to decrease the unacceptability of temperature step-change. The linear relationship between thermal sensation and skin temperature or gradient of skin temperature does not apply in a step-change environment. There is a significant linear correlation between TSV and Qloss in the transient environment. Heat loss from the human skin surface can be used to predict dynamic thermal sensation instead of the heat transfer of the whole human body. PMID:25136808
Modeling of heat transfer in wall-cooled tubular reactors
Koning, G.W.; Westerterp, K.R.
1999-01-01
In a pilot scale wall-cooled tubular reactor, temperature profiles have been measured with and without reaction. As a model reaction oxidation of carbon monoxide in air over a copper chromite catalyst has been used. The kinetics of this reaction have been determined separately in two kinetic
A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems
International Nuclear Information System (INIS)
Jin, Guang-Yu; Cai, Wen-Jian; Lu Lu; Lee, Eng Lock; Chiang, Andrew
2007-01-01
This paper proposes a new, simple, yet accurate mechanical cooling tower model for the purpose of energy conservation and management. On the basis of Merkel's theory and effectiveness-NTU method, the model is developed by energy balance and heat, mass transfer analysis. Commissioning information is then used to identified, only three model parameters by Levenberg-Marquardt method. Compared with the existing models, the proposed model has simple characteristic parameters to be determined and without requiring iterative computation when the operating point changes. The model is validated by real operating data from the cooling towers of a heating, ventilating and air conditioning (HVAC) system of a commercial hotel. The testing results show that the performance of the cooling tower varies from time to time due to different operating conditions and the proposed model is able to reflect these changes by tuning its parameters. With this feature, the proposed model can be simply used and accurately predict the performance of the real-time operating cooling tower
International Nuclear Information System (INIS)
Wang, Tao; Tseng, K.J.; Zhao, Jiyun
2015-01-01
Thermal modeling is the key issue in thermal management of lithium-ion battery system, and cooling strategies need to be carefully investigated to guarantee the temperature of batteries in operation within a narrow optimal range as well as provide cost effective and energy saving solutions for cooling system. This article reviews and summarizes the past cooling methods especially forced air cooling and introduces an empirical heat source model which can be widely applied in the battery module/pack thermal modeling. In the development of empirical heat source model, three-dimensional computational fluid dynamics (CFD) method is employed, and thermal insulation experiments are conducted to provide the key parameters. A transient thermal model of 5 × 5 battery module with forced air cooling is then developed based on the empirical heat source model. Thermal behaviors of battery module under different air cooling conditions, discharge rates and ambient temperatures are characterized and summarized. Varies cooling strategies are simulated and compared in order to obtain an optimal cooling method. Besides, the battery fault conditions are predicted from transient simulation scenarios. The temperature distributions and variations during discharge process are quantitatively described, and it is found that the upper limit of ambient temperature for forced air cooling is 35 °C, and when ambient temperature is lower than 20 °C, forced air-cooling is not necessary. - Highlights: • An empirical heat source model is developed for battery thermal modeling. • Different air-cooling strategies on module thermal characteristics are investigated. • Impact of different discharge rates on module thermal responses are investigated. • Impact of ambient temperatures on module thermal behaviors are investigated. • Locations of maximum temperatures under different operation conditions are studied.
Linear Dynamics Model for Steam Cooled Fast Power Reactors
Energy Technology Data Exchange (ETDEWEB)
Vollmer, H
1968-04-15
A linear analytical dynamic model is developed for steam cooled fast power reactors. All main components of such a plant are investigated on a general though relatively simple basis. The model is distributed in those parts concerning the core but lumped as to the external plant components. Coolant is considered as compressible and treated by the actual steam law. Combined use of analogue and digital computer seems most attractive.
SALLY, Dynamic Behaviour of Reactor Cooling Channel by Point Model
International Nuclear Information System (INIS)
Reiche, Chr.; Ziegenbein, D.
1981-01-01
1 - Nature of the physical problem solved: The dynamical behaviour of a cooling channel is calculated. Starting from an equilibrium state a perturbation is introduced into the system. That may be an outer reactivity perturbation or a change in the coolant velocity or in the coolant temperature. The neutron kinetics is treated in the framework of the one-point model. The cooling channel consists of a cladded and cooled fuel rod. The temperature distribution is taken into account as an array above a mesh of radial zones and axial layers. Heat transfer is considered in radial direction only, the thermodynamical coupling of the different layers is obtained by the coolant flow. The thermal material parameters are considered to be temperature independent. Reactivity feedback is introduced by means of reactivity coefficients for fuel, canning, and coolant. Doppler broadening is included. The first cooling cycle can be taken into account by a simple model. 2 - Method of solution: The integration of the point kinetics equations is done numerically by the P11 scheme. The system of temperature equations with constant heat resistance coefficients is solved by the method of factorization. 3 - Restrictions on the complexity of the problem: Given limits are: 10 radial fuel zones, 25 axial layers, 6 groups of delayed neutrons
International Nuclear Information System (INIS)
Washburn, B.W.
1977-03-01
Factors affecting the performance and reliability of thermocouples for temperature measurements in High-Temperature Gas-Cooled Reactors are investigated. A model of an inhomogeneous thermocouple, associated experimental technique, and a method of predicting measurement errors are described. Error drifts for Type K materials are predicted and compared with published stability measurements. 60 references
Model predictions and control of conditions in a CA-reefer container
Sman, van der R.G.M.; Verdijck, G.J.C.
2003-01-01
In this paper a concept for energy saving for refrigerated container transport is presented. The concept is based on model-predictive control of the set points of the cooling unit. These models predict energy consumption of the cooling unit, climatic conditions inside the cargo space, and the change
Choi, Yong Seok; Kang, Dal Mo
2014-12-01
Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.
Modeling and Optimization of a CoolingTower-Assisted Heat Pump System
Directory of Open Access Journals (Sweden)
Xiaoqing Wei
2017-05-01
Full Text Available To minimize the total energy consumption of a cooling tower-assisted heat pump (CTAHP system in cooling mode, a model-based control strategy with hybrid optimization algorithm for the system is presented in this paper. An existing experimental device, which mainly contains a closed wet cooling tower with counter flow construction, a condenser water loop and a water-to-water heat pump unit, is selected as the study object. Theoretical and empirical models of the related components and their interactions are developed. The four variables, viz. desired cooling load, ambient wet-bulb temperature, temperature and flow rate of chilled water at the inlet of evaporator, are set to independent variables. The system power consumption can be minimized by optimizing input powers of cooling tower fan, spray water pump, condenser water pump and compressor. The optimal input power of spray water pump is determined experimentally. Implemented on MATLAB, a hybrid optimization algorithm, which combines the Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS algorithm with the greedy diffusion search (GDS algorithm, is incorporated to solve the minimization problem of energy consumption and predict the system’s optimal set-points under quasi-steady-state conditions. The integrated simulation tool is validated against experimental data. The results obtained demonstrate the proposed operation strategy is reliable, and can save energy by 20.8% as compared to an uncontrolled system under certain testing conditions.
A model for radiative cooling of a semitransparent molten glass jet
International Nuclear Information System (INIS)
Song, M.; Ball, K.S.; Bergman, T.L.
1998-01-01
Transfer of molten glass from location to location typically involves a pouring process, during which a stream of glass is driven by gravity and cooled by combined convective and radiative heat transfer. This study of the thermal and fluid mechanics aspects of glass pouring is motivated by the glass casting of vitrified, surplus weapons-grade plutonium. Here, a mathematical model for the radiative cooling of a semitransparent molten glass jet with temperature-dependent viscosity has been developed and is implemented numerically. The axial velocity and jet diameter variations along the length of the jet, the axial bulk mean temperature distributions, and the centerline-to-surface glass temperature distributions are determined for different processing conditions. Comparisons are also made between the semitransparent predictions, which are based on a spectral discrete ordinates model, and predictions for an opaque medium
International Nuclear Information System (INIS)
Agostinetti, P.; Palma, M. Dalla; Fantini, F.; Fellin, F.; Pasqualotto, R.
2011-01-01
The analytical interpretative models for calorimetric measurements currently available in the literature can consider close systems in steady-state and transient conditions, or open systems but only in steady-state conditions. The PCCE code (Predictive Code for Calorimetric Estimations), here presented, introduces some novelties. In fact, it can simulate with an analytical approach both the heated component and the cooling circuit, evaluating the heat fluxes due to conductive and convective processes both in steady-state and transient conditions. The main goal of this code is to model heating and cooling processes in actively cooled components of fusion experiments affected by high pulsed power loads, that are not easily analyzed with purely numerical approaches (like Finite Element Method or Computational Fluid Dynamics). A dedicated mathematical formulation, based on concentrated parameters, has been developed and is here described in detail. After a comparison and benchmark with the ANSYS commercial code, the PCCE code is applied to predict the calorimetric parameters in simple scenarios of the SPIDER experiment.
Models of steady state cooling flows in elliptical galaxies
International Nuclear Information System (INIS)
Vedder, P.W.; Trester, J.J.; Canizares, C.R.
1988-01-01
A comprehensive set of steady state models for spherically symmetric cooling flows in early-type galaxies is presented. It is found that a reduction of the supernova (SN) rate in ellipticals produces a decrease in the X-ray luminosity of galactic cooling flows and a steepening of the surface brightness profile. The mean X-ray temperature of the cooling flow is not affected noticeably by a change in the SN rate. The external pressure around a galaxy does not markedly change the luminosity of the gas within the galaxy but does change the mean temperature of the gas. The presence of a dark matter halo in a galaxy only changes the mean X-ray temperature slightly. The addition of a distribution of mass sinks which remove material from the general accretion flow reduces L(X) very slightly, flattens the surface brightness profile, and reduces the central surface brightness level to values close to those actually observed. A reduction in the stellar mass-loss rate only slightly reduces the X-ray luminosity of the cooling flow and flattens the surface brightness by a small amount. 37 references
Validation of heat transfer models for gap cooling
International Nuclear Information System (INIS)
Okano, Yukimitsu; Nagae, Takashi; Murase, Michio
2004-01-01
For severe accident assessment of a light water reactor, models of heat transfer in a narrow annular gap between overheated core debris and a reactor pressure vessel are important for evaluating vessel integrity and accident management. The authors developed and improved the models of heat transfer. However, validation was not sufficient for applicability of the gap heat flux correlation to the debris cooling in the vessel lower head and applicability of the local boiling heat flux correlations to the high-pressure conditions. Therefore, in this paper, we evaluated the validity of the heat transfer models and correlations by analyses for ALPHA and LAVA experiments where molten aluminum oxide (Al 2 O 3 ) at about 2700 K was poured into the high pressure water pool in a small-scale simulated vessel lower head. In the heating process of the vessel wall, the calculated heating rate and peak temperature agreed well with the measured values, and the validity of the heat transfer models and gap heat flux correlation was confirmed. In the cooling process of the vessel wall, the calculated cooling rate was compared with the measured value, and the validity of the nucleate boiling heat flux correlation was confirmed. The peak temperatures of the vessel wall in ALPHA and LAVA experiments were lower than the temperature at the minimum heat flux point between film boiling and transition boiling, so the minimum heat flux correlation could not be validated. (author)
International Nuclear Information System (INIS)
An Chen; Su Jian
2011-01-01
Improved lumped parameter models were developed for the transient heat conduction in multi-layer composite slabs subjected to combined convective and radiative cooling. The improved lumped models were obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of three-layer composite slabs was analyzed to illustrate the applicability of the proposed lumped models, with respect to different values of the Biot numbers, the radiation-conduction parameter, the dimensionless thermal contact resistances, the dimensionless thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the higher order lumped model (H 1,1 /H 0,0 approximation) yielded significant improvement of average temperature prediction over the classical lumped model. In addition, the higher order (H 1,1 /H 0,0 ) model was applied to analyze the transient heat conduction problem of steel-concrete-steel sandwich plates. - Highlights: → Improved lumped models for convective-radiative cooling of multi-layer slabs were developed. → Two-point Hermite approximations for integrals were employed. → Significant improvement over classical lumped model was achieved. → The model can be applied to high Biot number and high radiation-conduction parameter. → Transient heat conduction in steel-concrete-steel sandwich pipes was analyzed as an example.
Towards new generation spectroscopic models of cool stars
Bergemann, Maria
2018-06-01
Abstract: Spectroscopy is a unique tool to determine the physical parameters of stars. Knowledge of stellar chemical abundances, masses, and ages is the key to understanding the evolution of their host populations. I will focus on the current outstanding problems in spectroscopy of cool stars, which are the most useful objects in studies of our local Galactic neighborhood but also very distant systems, like faint dwarf Spheroidal galaxies. Among the most debated issues is to what extent can we trust the techniques, which rely on the classical assumptions of local thermodynamic equilibrium and hydrostatic balance. I will summarise the ongoing efforts to improve the models of cool stars, with the emphasis on NLTE and 3D modelling. I will then discuss how these exciting observations impact our knowledge of abundances in the Milky Way and in dSph systems, and present outlook for the future studies.
International Nuclear Information System (INIS)
Hassan, Yassin; Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.
2014-01-01
The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.
Energy Technology Data Exchange (ETDEWEB)
Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.
2014-07-14
The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.
Confidence scores for prediction models
DEFF Research Database (Denmark)
Gerds, Thomas Alexander; van de Wiel, MA
2011-01-01
In medical statistics, many alternative strategies are available for building a prediction model based on training data. Prediction models are routinely compared by means of their prediction performance in independent validation data. If only one data set is available for training and validation,...
Comparison of Software Models for Energy Savings from Cool Roofs
Energy Technology Data Exchange (ETDEWEB)
New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Yu (Joe) [White Box Technologies; Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)
2014-01-01
A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.
Natural Circulation Phenomena and Modelling for Advanced Water Cooled Reactors
International Nuclear Information System (INIS)
2012-03-01
The role of natural circulation in advanced water cooled reactor design has been extended with the adoption of passive safety systems. Some designs utilize natural circulation to remove core heat during normal operation. Most passive safety systems used in evolutionary and innovative water cooled reactor designs are driven by natural circulation. The use of passive systems based on natural circulation can eliminate the costs associated with the installation, maintenance and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. Several IAEA Member States with advanced reactor development programmes are actively conducting investigations of natural circulation to support the development of advanced water cooled reactor designs with passive safety systems. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, in 2004 the IAEA initiated a coordinated research project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation. Three reports were published within the framework of this CRP. The first report (IAEA-TECDOC-1474) contains the material developed for the first IAEA training course on natural circulation in water cooled nuclear power plants. The second report (IAEA-TECDOC-1624) describes passive safety systems in a wide range of advanced water cooled nuclear power plant designs, with the goal of gaining insights into system design, operation and reliability. This third, and last, report summarizes the research studies completed by participating institutes during the CRP period.
Validation of CFD modeling for VGM loss-of-forced-cooling accidents
International Nuclear Information System (INIS)
Wysocki, Aaron; Ahmed, Bobby; Charmeau, Anne; Anghaie, Samim
2009-01-01
Heat transfer and fluid flow in the VGM reactor cavity cooling system (RCCS) was modeled using Computational Fluid Dynamics (CFD). The VGM is a Russian modular-type high temperature helium-cooled reactor. In the reactor cavity, heat is removed from the pressure vessel wall through natural convection and radiative heat transfer to water-cooled vertical pipes lining the outer cavity concrete. The RCCS heat removal capability under normal operation and accident scenarios needs to be assessed. The purpose of the present study is to validate the use of CFD to model heat transfer in the VGM RCCS. Calculations were based on a benchmark problem which defines a two-dimensional temperature distribution on the pressure vessel outer wall for both Depressurized and Pressurized Loss-of-Forced Cooling events. A two-dimensional axisymmetric model was developed to determine the best numerical modeling approach. A grid sensitivity study for the air region showed that a 20 mm mesh size with a boundary layer giving a maximum y+ of 2.0 was optimal. Sensitivity analyses determined that the discrete ordinates radiative model, the k-omega turbulence model, and the ideal gas law gave the best combination for capturing radiation and natural circulation in the air cavity. A maximum RCCS pipe wall temperature of 62degC located 6 m from the top of the cavity was predicted. The model showed good agreement with previous results for both Pressurized and Depressurized Loss-of-Forced-Cooling accidents based on RCCS coolant outlet temperature, relative contributions of radiative and convective heat transfer, and RCCS heat load profiles. (author)
Model predictive control for a thermostatic controlled system
DEFF Research Database (Denmark)
Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob
2013-01-01
This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff temperat......This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff...
Verification of Thermal Models of Internally Cooled Gas Turbine Blades
Directory of Open Access Journals (Sweden)
Igor Shevchenko
2018-01-01
Full Text Available Numerical simulation of temperature field of cooled turbine blades is a required element of gas turbine engine design process. The verification is usually performed on the basis of results of test of full-size blade prototype on a gas-dynamic test bench. A method of calorimetric measurement in a molten metal thermostat for verification of a thermal model of cooled blade is proposed in this paper. The method allows obtaining local values of heat flux in each point of blade surface within a single experiment. The error of determination of local heat transfer coefficients using this method does not exceed 8% for blades with radial channels. An important feature of the method is that the heat load remains unchanged during the experiment and the blade outer surface temperature equals zinc melting point. The verification of thermal-hydraulic model of high-pressure turbine blade with cooling allowing asymmetrical heat removal from pressure and suction sides was carried out using the developed method. An analysis of heat transfer coefficients confirmed the high level of heat transfer in the leading edge, whose value is comparable with jet impingement heat transfer. The maximum of the heat transfer coefficients is shifted from the critical point of the leading edge to the pressure side.
International Nuclear Information System (INIS)
Guo, Yin; Nazarian, Ehsan; Ko, Jeonghan; Rajurkar, Kamlakar
2014-01-01
Highlights: • Developed hourly-indexed ARX models for robust cooling-load forecasting. • Proposed a two-stage weighted least-squares regression approach. • Considered the effect of outliers as well as trend of cooling load and weather patterns. • Included higher order terms and day type patterns in the forecasting models. • Demonstrated better accuracy compared with some ARX and ANN models. - Abstract: This paper presents a robust hourly cooling-load forecasting method based on time-indexed autoregressive with exogenous inputs (ARX) models, in which the coefficients are estimated through a two-stage weighted least squares regression. The prediction method includes a combination of two separate time-indexed ARX models to improve prediction accuracy of the cooling load over different forecasting periods. The two-stage weighted least-squares regression approach in this study is robust to outliers and suitable for fast and adaptive coefficient estimation. The proposed method is tested on a large-scale central cooling system in an academic institution. The numerical case studies show the proposed prediction method performs better than some ANN and ARX forecasting models for the given test data set
Cooling load calculation by the radiant time series method - effect of solar radiation models
Energy Technology Data Exchange (ETDEWEB)
Costa, Alexandre M.S. [Universidade Estadual de Maringa (UEM), PR (Brazil)], E-mail: amscosta@uem.br
2010-07-01
In this work was analyzed numerically the effect of three different models for solar radiation on the cooling load calculated by the radiant time series' method. The solar radiation models implemented were clear sky, isotropic sky and anisotropic sky. The radiant time series' method (RTS) was proposed by ASHRAE (2001) for replacing the classical methods of cooling load calculation, such as TETD/TA. The method is based on computing the effect of space thermal energy storage on the instantaneous cooling load. The computing is carried out by splitting the heat gain components in convective and radiant parts. Following the radiant part is transformed using time series, which coefficients are a function of the construction type and heat gain (solar or non-solar). The transformed result is added to the convective part, giving the instantaneous cooling load. The method was applied for investigate the influence for an example room. The location used was - 23 degree S and 51 degree W and the day was 21 of January, a typical summer day in the southern hemisphere. The room was composed of two vertical walls with windows exposed to outdoors with azimuth angles equals to west and east directions. The output of the different models of solar radiation for the two walls in terms of direct and diffuse components as well heat gains were investigated. It was verified that the clear sky exhibited the less conservative (higher values) for the direct component of solar radiation, with the opposite trend for the diffuse component. For the heat gain, the clear sky gives the higher values, three times higher for the peek hours than the other models. Both isotropic and anisotropic models predicted similar magnitude for the heat gain. The same behavior was also verified for the cooling load. The effect of room thermal inertia was decreasing the cooling load during the peak hours. On the other hand the higher thermal inertia values are the greater for the non peak hours. The effect
Gas turbine cooling modeling - Thermodynamic analysis and cycle simulations
Energy Technology Data Exchange (ETDEWEB)
Jordal, Kristin
1999-02-01
Considering that blade and vane cooling are a vital point in the studies of modern gas turbines, there are many ways to include cooling in gas turbine models. Thermodynamic methods for doing this are reviewed in this report, and, based on some of these methods, a number of model requirements are set up and a Cooled Gas Turbine Model (CGTM) for design-point calculations of cooled gas turbines is established. Thereafter, it is shown that it is possible to simulate existing gas turbines with the CGTM. Knowledge of at least one temperature in the hot part of the turbine (TET, TRIT or possibly TIT) is found to be vital for a complete heat balance over the turbine. The losses, which are caused by the mixing of coolant and main flow, are in the CGTM considered through a polytropic efficiency reduction factor S. Through the study of S, it can be demonstrated that there is more to gain from coolant reduction in a small and/or old turbine with poor aerodynamics, than there is to gain in a large, modern turbine, where the losses due to interaction between coolant and main flow are, relatively speaking, small. It is demonstrated, at the design point (TET=1360 deg C, {pi}=20) for the simple-cycle gas turbine, that heat exchanging between coolant and fuel proves to have a large positive impact on cycle efficiency, with an increase of 0.9 percentage points if all of the coolant passes through the heat exchanger. The corresponding improvement for humidified coolant is 0.8 percentage points. A design-point study for the HAT cycle shows that if all of the coolant is extracted after the humidification tower, there is a decrease in coolant requirements of 7.16 percentage points, from 19.58% to 12.52% of the compressed air, and an increase in thermal efficiency of 0.46 percentage points, from 53.46% to 53.92%. Furthermore, it is demonstrated with a TET-parameter variation, that the cooling of a simple-cycle gas turbine with humid air can have a positive effect on thermal efficiency
Building Modelling Methodologies for Virtual District Heating and Cooling Networks
Energy Technology Data Exchange (ETDEWEB)
Saurav, Kumar; Choudhury, Anamitra R.; Chandan, Vikas; Lingman, Peter; Linder, Nicklas
2017-10-26
District heating and cooling systems (DHC) are a proven energy solution that has been deployed for many years in a growing number of urban areas worldwide. They comprise a variety of technologies that seek to develop synergies between the production and supply of heat, cooling, domestic hot water and electricity. Although the benefits of DHC systems are significant and have been widely acclaimed, yet the full potential of modern DHC systems remains largely untapped. There are several opportunities for development of energy efficient DHC systems, which will enable the effective exploitation of alternative renewable resources, waste heat recovery, etc., in order to increase the overall efficiency and facilitate the transition towards the next generation of DHC systems. This motivated the need for modelling these complex systems. Large-scale modelling of DHC-networks is challenging, as it has several components interacting with each other. In this paper we present two building methodologies to model the consumer buildings. These models will be further integrated with network model and the control system layer to create a virtual test bed for the entire DHC system. The model is validated using data collected from a real life DHC system located at Lulea, a city on the coast of northern Sweden. The test bed will be then used for simulating various test cases such as peak energy reduction, overall demand reduction etc.
Motion of flux transfer events: a test of the Cooling model
Directory of Open Access Journals (Sweden)
R. C. Fear
2007-07-01
Full Text Available The simple model of reconnected field line motion developed by Cooling et al. (2001 has been used in several recent case studies to explain the motion of flux transfer events across the magnetopause. We examine 213 FTEs observed by all four Cluster spacecraft under a variety of IMF conditions between November 2002 and June 2003, when the spacecraft tetrahedron separation was ~5000 km. Observed velocities were calculated from multi-spacecraft timing analysis, and compared with the velocities predicted by the Cooling model in order to check the validity of the model. After excluding three categories of FTEs (events with poorly defined velocities, a significant velocity component out of the magnetopause surface, or a scale size of less than 5000 km, we were left with a sample of 118 events. 78% of these events were consistent in both direction of motion and speed with one of the two model de Hoffmann-Teller (dHT velocities calculated from the Cooling model (to within 30° and a factor of two in the speed. We also examined the plasma signatures of several magnetosheath FTEs; the electron signatures confirm the hemisphere of connection indicated by the model in most cases. This indicates that although the model is a simple one, it is a useful tool for identifying the source regions of FTEs.
A new approach to the modeling of ultimate heat sink cooling ponds
International Nuclear Information System (INIS)
Policastro, A.J.; Wastag, M.; Paul, J.; Carhart, R.A.
1996-01-01
Ultimate heat sink (UHS) cooling pond thermal performance is analyzed by a new method in which zero, one, and three-dimensional models are used in combination. A typical UHS pond has an irregular shape covering 20 hectares at an average depth of 4 m with a heavy thermal load of 40 MWt (megawatts thermal) per hectare. The resulting flow field can be one, two or three dimensional. A three-dimensional numerical model (Paul 1983) is modified and used to determine the effective dimensionality of the pond under accident conditions. The model's surface heat transfer formulas and its predictions of thermal hydraulics are verified using laboratory and field data. The Paul model shows that, unlike normal cooling ponds, a typical UHS pond is vertically-mixed with only a longitudinal temperature variation. Buoyancy-driven circulations, strong discharge-to-intake flow, and rapid surface heat removal break down the usual vertical stratification. Predictions of the one-dimensional MITEMP model are shown to agree with Paul model predictions for a typical UHS pond at the Catawba Nuclear Power Plant
A 3.55 keV line from DM →a→γ: predictions for cool-core and non-cool-core clusters
Energy Technology Data Exchange (ETDEWEB)
Conlon, Joseph P.; Powell, Andrew J. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP (United Kingdom)
2015-01-13
We further study a scenario in which a 3.55 keV X-ray line arises from decay of dark matter to an axion-like particle (ALP), that subsequently converts to a photon in astrophysical magnetic fields. We perform numerical simulations of Gaussian random magnetic fields with radial scaling of the magnetic field magnitude with the electron density, for both cool-core 'Perseus' and non-cool-core 'Coma' electron density profiles. Using these, we quantitatively study the resulting signal strength and morphology for cool-core and non-cool-core clusters. Our study includes the effects of fields of view that cover only the central part of the cluster, the effects of offset pointings on the radial decline of signal strength and the effects of dividing clusters into annuli. We find good agreement with current data and make predictions for future analyses and observations.
Babu, K.; Prasanna Kumar, T. S.
2014-08-01
An indigenous, non-linear, and coupled finite element (FE) program has been developed to predict the temperature field and phase evolution during heat treatment of steels. The diffusional transformations during continuous cooling of steels were modeled using Johnson-Mehl-Avrami-Komogorov equation, and the non-diffusion transformation was modeled using Koistinen-Marburger equation. Cylindrical quench probes made of AISI 4140 steel of 20-mm diameter and 50-mm long were heated to 1123 K (850 °C), quenched in water, and cooled in air. The temperature history during continuous cooling was recorded at the selected interior locations of the quench probes. The probes were then sectioned at the mid plane and resultant microstructures were observed. The process of water quenching and air cooling of AISI 4140 steel probes was simulated with the heat flux boundary condition in the FE program. The heat flux for air cooling process was calculated through the inverse heat conduction method using the cooling curve measured during air cooling of a stainless steel 304L probe as an input. The heat flux for the water quenching process was calculated from a surface heat flux model proposed for quenching simulations. The isothermal transformation start and finish times of different phases were taken from the published TTT data and were also calculated using Kirkaldy model and Li model and used in the FE program. The simulated cooling curves and phases using the published TTT data had a good agreement with the experimentally measured values. The computation results revealed that the use of published TTT data was more reliable in predicting the phase transformation during heat treatment of low alloy steels than the use of the Kirkaldy or Li model.
Turbine Internal and Film Cooling Modeling For 3D Navier-Stokes Codes
DeWitt, Kenneth; Garg Vijay; Ameri, Ali
2005-01-01
The aim of this research project is to make use of NASA Glenn on-site computational facilities in order to develop, validate and apply aerodynamic, heat transfer, and turbine cooling models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes such as the Glenn-" code. Specific areas of effort include: Application of the Glenn-HT code to specific configurations made available under Turbine Based Combined Cycle (TBCC), and Ultra Efficient Engine Technology (UEET) projects. Validating the use of a multi-block code for the time accurate computation of the detailed flow and heat transfer of cooled turbine airfoils. The goal of the current research is to improve the predictive ability of the Glenn-HT code. This will enable one to design more efficient turbine components for both aviation and power generation. The models will be tested against specific configurations provided by NASA Glenn.
Fuel particles in the Chernobyl cooling pond: current state and prediction for remediation options
International Nuclear Information System (INIS)
Bulgakov, A.; Konoplev, A.; Smith, J.; Laptev, G.; Voitsekhovich, O.
2009-01-01
During the coming years, a management and remediation strategy for the Chernobyl cooling pond (CP) will be implemented. Remediation options include a controlled reduction in surface water level of the cooling pond and stabilisation of exposed sediments. In terrestrial soils, fuel particles deposited during the Chernobyl accident have now almost completely disintegrated. However, in the CP sediments the majority of 90 Sr activity is still in the form of fuel particles. Due to the low dissolved oxygen concentration and high pH, dissolution of fuel particles in the CP sediments is significantly slower than in soils. After the planned cessation of water pumping from the Pripyat River to the Pond, significant areas of sediments will be drained and exposed to the air. This will significantly enhance the dissolution rate and, correspondingly, the mobility and bioavailability of radionuclides will increase with time. The rate of acidification of exposed bottom sediments was predicted on the basis of acidification of similar soils after liming. Using empirical equations relating the fuel particle dissolution rate to soil and sediment pH allowed prediction of fuel particle dissolution and 90 Sr mobilisation for different remediation scenarios. It is shown that in exposed sediments, fuel particles will be almost completely dissolved in 15-25 years, while in parts of the cooling pond which remain flooded, fuel particle dissolution will take about a century
Model of cooling nuclear fuel rod in the nuclear reactor
International Nuclear Information System (INIS)
Lavicka, David; Polansky, Jiri
2010-01-01
The following topics are described: Some basic requirements for nuclear fuel rods; The VVER 1000 fuel rod; Classification of the two-phase flow in the vertical tube; Type of heat transfer crisis in the vertical tube; Experimental apparatus; Model of the nuclear fuel rod and spacers; Potential of the experimental apparatus (velocity profile measurement via PIV; thermal flow field measurement by the PLIF method; cooling graph in dependence on the fuel rod temperature; comparison of the hydrodynamic properties with respect to the design features of the spacers). (P.A.)
Liu, Feifei; Lan, Fengchong; Chen, Jiqing
2016-07-01
Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a ;segmented; thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed ;segmented; model shows more precise than the ;non-segmented; model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the ;segmented; model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.
Comparative Modelling of the Spectra of Cool Giants
Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.;
2012-01-01
Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.
Bootstrap prediction and Bayesian prediction under misspecified models
Fushiki, Tadayoshi
2005-01-01
We consider a statistical prediction problem under misspecified models. In a sense, Bayesian prediction is an optimal prediction method when an assumed model is true. Bootstrap prediction is obtained by applying Breiman's `bagging' method to a plug-in prediction. Bootstrap prediction can be considered to be an approximation to the Bayesian prediction under the assumption that the model is true. However, in applications, there are frequently deviations from the assumed model. In this paper, bo...
An analytical model for climatic predictions
International Nuclear Information System (INIS)
Njau, E.C.
1990-12-01
A climatic model based upon analytical expressions is presented. This model is capable of making long-range predictions of heat energy variations on regional or global scales. These variations can then be transformed into corresponding variations of some other key climatic parameters since weather and climatic changes are basically driven by differential heating and cooling around the earth. On the basis of the mathematical expressions upon which the model is based, it is shown that the global heat energy structure (and hence the associated climatic system) are characterized by zonally as well as latitudinally propagating fluctuations at frequencies downward of 0.5 day -1 . We have calculated the propagation speeds for those particular frequencies that are well documented in the literature. The calculated speeds are in excellent agreement with the measured speeds. (author). 13 refs
Preliminary tests of a model of cooling-pond thermal performance
International Nuclear Information System (INIS)
Hicks, B.B.; Wesely, M.L.; Wilczek, J.
1975-01-01
Experiments performed during recent years at the cooling pond complex at the Dresden nuclear power station have been designed to improve our understanding of the fundamental properties of thermal exchange at a warm-water surface. To a considerable extent, the field studies have been successful in that they have shown that modern micrometeorological techniques can be successfully applied to the demanding circumstances of an industrial cooling lake at temperature of at least 40 0 C. The intent of these studies has been to create a set of parameterization schemes good enough to allow simulation of the performance of the Dresden cooling lake without adjustment of numerical constants. An obvious extension of these studies, and one of the goals of the cooling-pond research program as presently stated, is to obtain an accurate numerical simulation of thermal performance of ponds with use of the improved formulations that have resulted from the experimental work at the Dresden lake. The computer model is divided into two sections and can be used to test the sensitivity of predicted performance to variations in procedures for determining the thermal transfer from the surface
MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM
Energy Technology Data Exchange (ETDEWEB)
Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew; Kraus, Adam R.; Lv, Qiuping
2017-07-02
The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performance of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The
Marginally fast cooling synchrotron models for prompt GRBs
Beniamini, Paz; Barniol Duran, Rodolfo; Giannios, Dimitrios
2018-05-01
Previous studies have considered synchrotron as the emission mechanism for prompt gamma-ray bursts (GRBs). These works have shown that the electrons must cool on a time-scale comparable to the dynamic time at the source in order to satisfy spectral constraints while maintaining high radiative efficiency. We focus on conditions where synchrotron cooling is balanced by a continuous source of heating, and in which these constraints are naturally satisfied. Assuming that a majority of the electrons in the emitting region are contributing to the observed peak, we find that the energy per electron has to be E ≳ 20 GeV and that the Lorentz factor of the emitting material has to be very large 103 ≲ Γem ≲ 104, well in excess of the bulk Lorentz factor of the jet inferred from GRB afterglows. A number of independent constraints then indicate that the emitters must be moving relativistically, with Γ΄ ≈ 10, relative to the bulk frame of the jet and that the jet must be highly magnetized upstream of the emission region, σup ≳ 30. The emission radius is also strongly constrained in this model to R ≳ 1016 cm. These values are consistent with magnetic jet models where the dissipation is driven by magnetic reconnection that takes place far away from the base of the jet.
Loss of spent fuel pool cooling PRA: Model and results
International Nuclear Information System (INIS)
Siu, N.; Khericha, S.; Conroy, S.; Beck, S.; Blackman, H.
1996-09-01
This letter report documents models for quantifying the likelihood of loss of spent fuel pool cooling; models for identifying post-boiling scenarios that lead to core damage; qualitative and quantitative results generated for a selected plant that account for plant design and operational practices; a comparison of these results and those generated from earlier studies; and a review of available data on spent fuel pool accidents. The results of this study show that for a representative two-unit boiling water reactor, the annual probability of spent fuel pool boiling is 5 x 10 -5 and the annual probability of flooding associated with loss of spent fuel pool cooling scenarios is 1 x 10 -3 . Qualitative arguments are provided to show that the likelihood of core damage due to spent fuel pool boiling accidents is low for most US commercial nuclear power plants. It is also shown that, depending on the design characteristics of a given plant, the likelihood of either: (a) core damage due to spent fuel pool-associated flooding, or (b) spent fuel damage due to pool dryout, may not be negligible
MODEL PREDICTIVE CONTROL FUNDAMENTALS
African Journals Online (AJOL)
2012-07-02
Jul 2, 2012 ... signal based on a process model, coping with constraints on inputs and ... paper, we will present an introduction to the theory and application of MPC with Matlab codes ... section 5 presents the simulation results and section 6.
Critical percolation in the slow cooling of the bi-dimensional ferromagnetic Ising model
Ricateau, Hugo; Cugliandolo, Leticia F.; Picco, Marco
2018-01-01
We study, with numerical methods, the fractal properties of the domain walls found in slow quenches of the kinetic Ising model to its critical temperature. We show that the equilibrium interfaces in the disordered phase have critical percolation fractal dimension over a wide range of length scales. We confirm that the system falls out of equilibrium at a temperature that depends on the cooling rate as predicted by the Kibble-Zurek argument and we prove that the dynamic growing length once the cooling reaches the critical point satisfies the same scaling. We determine the dynamic scaling properties of the interface winding angle variance and we show that the crossover between critical Ising and critical percolation properties is determined by the growing length reached when the system fell out of equilibrium.
A method and programme (BREACH) for predicting the flow distribution in water cooled reactor cores
International Nuclear Information System (INIS)
Randles, J.; Roberts, H.A.
1961-03-01
The method presented here of evaluating the flow rate in individual reactor channels may be applied to any type of water cooled reactor in which boiling occurs The flow distribution is calculated with the aid of a MERCURY autocode programme, BREACH, which is described in detail. This programme computes the steady state longitudinal void distribution and pressure drop in a single channel on the basis of the homogeneous model of two phase flow. (author)
A method and programme (BREACH) for predicting the flow distribution in water cooled reactor cores
Energy Technology Data Exchange (ETDEWEB)
Randles, J; Roberts, H A [Technical Assessments and Services Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1961-03-15
The method presented here of evaluating the flow rate in individual reactor channels may be applied to any type of water cooled reactor in which boiling occurs The flow distribution is calculated with the aid of a MERCURY autocode programme, BREACH, which is described in detail. This programme computes the steady state longitudinal void distribution and pressure drop in a single channel on the basis of the homogeneous model of two phase flow. (author)
Melanoma Risk Prediction Models
Developing statistical models that estimate the probability of developing melanoma cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Modelling bankruptcy prediction models in Slovak companies
Directory of Open Access Journals (Sweden)
Kovacova Maria
2017-01-01
Full Text Available An intensive research from academics and practitioners has been provided regarding models for bankruptcy prediction and credit risk management. In spite of numerous researches focusing on forecasting bankruptcy using traditional statistics techniques (e.g. discriminant analysis and logistic regression and early artificial intelligence models (e.g. artificial neural networks, there is a trend for transition to machine learning models (support vector machines, bagging, boosting, and random forest to predict bankruptcy one year prior to the event. Comparing the performance of this with unconventional approach with results obtained by discriminant analysis, logistic regression, and neural networks application, it has been found that bagging, boosting, and random forest models outperform the others techniques, and that all prediction accuracy in the testing sample improves when the additional variables are included. On the other side the prediction accuracy of old and well known bankruptcy prediction models is quiet high. Therefore, we aim to analyse these in some way old models on the dataset of Slovak companies to validate their prediction ability in specific conditions. Furthermore, these models will be modelled according to new trends by calculating the influence of elimination of selected variables on the overall prediction ability of these models.
Predictive models of moth development
Degree-day models link ambient temperature to insect life-stages, making such models valuable tools in integrated pest management. These models increase management efficacy by predicting pest phenology. In Wisconsin, the top insect pest of cranberry production is the cranberry fruitworm, Acrobasis v...
Mathematical model of an integrated circuit cooling through cylindrical rods
Directory of Open Access Journals (Sweden)
Beltrán-Prieto Luis Antonio
2017-01-01
Full Text Available One of the main challenges in integrated circuits development is to propose alternatives to handle the extreme heat generated by high frequency of electrons moving in a reduced space that cause overheating and reduce the lifespan of the device. The use of cooling fins offers an alternative to enhance the heat transfer using combined a conduction-convection systems. Mathematical model of such process is important for parametric design and also to gain information about temperature distribution along the surface of the transistor. In this paper, we aim to obtain the equations for heat transfer along the chip and the fin by performing energy balance and heat transfer by conduction from the chip to the rod, followed by dissipation to the surrounding by convection. Newton's law of cooling and Fourier law were used to obtain the equations that describe the profile temperature in the rod and the surface of the chip. Ordinary differential equations were obtained and the respective analytical solutions were derived after consideration of boundary conditions. The temperature along the rod decreased considerably from the initial temperature (in contatct with the chip surface. This indicates the benefit of using a cilindrical rod to distribute the heat generated in the chip.
Predictive Models and Computational Embryology
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Directory of Open Access Journals (Sweden)
Samuel Raja Ayyanan
2014-01-01
Full Text Available The cold start hydrocarbon emission from the increasing population of two wheelers in countries like India is one of the research issues to be addressed. This work describes the prediction of cold start hydrocarbon emissions from air cooled spark ignition engines through fuzzy logic technique. Hydrocarbon emissions were experimentally measured from test engines of different cubic capacity, at different lubricating oil temperature and at different idling speeds with and without secondary air supply in exhaust. The experimental data were used as input for modeling average hydrocarbon emissions for 180 seconds counted from cold start and warm start of gasoline bike engines. In fuzzy logic simulation, member functions were assigned for input variables (cubic capacity and idling rpm and output variables (average hydrocarbon emission for first 180 seconds at cold start and warm start. The knowledge based rules were adopted from the analyzed experimental data and separate simulations were carried out for predicting hydrocarbon emissions from engines equipped with and without secondary air supply. The simulation yielded the average hydrocarbon emissions of air cooled gasoline engine for a set of given input data with accuracy over 90%.
Predictive Modeling in Race Walking
Directory of Open Access Journals (Sweden)
Krzysztof Wiktorowicz
2015-01-01
Full Text Available This paper presents the use of linear and nonlinear multivariable models as tools to support training process of race walkers. These models are calculated using data collected from race walkers’ training events and they are used to predict the result over a 3 km race based on training loads. The material consists of 122 training plans for 21 athletes. In order to choose the best model leave-one-out cross-validation method is used. The main contribution of the paper is to propose the nonlinear modifications for linear models in order to achieve smaller prediction error. It is shown that the best model is a modified LASSO regression with quadratic terms in the nonlinear part. This model has the smallest prediction error and simplified structure by eliminating some of the predictors.
International Nuclear Information System (INIS)
Song, Yin; Gu, Chun-wei; Ji, Xing-xing
2015-01-01
The performance analysis of a gas turbine is important for both its design and its operation. For modern gas turbines, the cooling flow introduces a noteworthy thermodynamic loss; thus, the determination of the cooling flow rate will clearly influence the accuracy of performance calculations. In this paper, a full-range performance analysis model is established for a three-spool gas turbine with an open-circuit convective blade cooling system. A hybrid turbine cooling model is embedded in the analysis to predict the amount of cooling air accurately and thus to remove the errors induced by the relatively arbitrary value of cooling air requirements in the previous research. The model is subsequently used to calculate the gas turbine performance; the calculation results are validated with detailed test data. Furthermore, multistage conjugate heat transfer analysis is performed for the turbine section. The results indicate that with the same coolant condition and flow rate as those in the performance analysis, the blade metal has been effectively cooled; in addition, the maximum temperature predicted by conjugate heat transfer analysis is close to the corresponding value in the cooling model. Hence, the present model provides an effective tool for analyzing the performance of a gas turbine with cooling. - Highlights: • We established a performance model for a gas turbine with convective cooling. • A hybrid turbine cooling model is embedded in the performance analysis. • The accuracy of the model is validated with detailed test data of the gas turbine. • Conjugate heat transfer analysis is performed for the turbine for verification
Nonconvex model predictive control for commercial refrigeration
Gybel Hovgaard, Tobias; Boyd, Stephen; Larsen, Lars F. S.; Bagterp Jørgensen, John
2013-08-01
We consider the control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms. In each time period we choose cooling capacity to each unit and a common evaporation temperature. The goal is to minimise the total energy cost, using real-time electricity prices, while obeying temperature constraints on the zones. We propose a variation on model predictive control to achieve this goal. When the right variables are used, the dynamics of the system are linear, and the constraints are convex. The cost function, however, is nonconvex due to the temperature dependence of thermodynamic efficiency. To handle this nonconvexity we propose a sequential convex optimisation method, which typically converges in fewer than 5 or so iterations. We employ a fast convex quadratic programming solver to carry out the iterations, which is more than fast enough to run in real time. We demonstrate our method on a realistic model, with a full year simulation and 15-minute time periods, using historical electricity prices and weather data, as well as random variations in thermal load. These simulations show substantial cost savings, on the order of 30%, compared to a standard thermostat-based control system. Perhaps more important, we see that the method exhibits sophisticated response to real-time variations in electricity prices. This demand response is critical to help balance real-time uncertainties in generation capacity associated with large penetration of intermittent renewable energy sources in a future smart grid.
Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb
2014-01-01
SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.
Gilmore, Michelle E.; McQuarrie, Nadine; Eizenhöfer, Paul R.; Ehlers, Todd A.
2018-05-01
In this study, reconstructions of a balanced geologic cross section in the Himalayan fold-thrust belt of eastern Bhutan are used in flexural-kinematic and thermokinematic models to understand the sensitivity of predicted cooling ages to changes in fault kinematics, geometry, topography, and radiogenic heat production. The kinematics for each scenario are created by sequentially deforming the cross section with ˜ 10 km deformation steps while applying flexural loading and erosional unloading at each step to develop a high-resolution evolution of deformation, erosion, and burial over time. By assigning ages to each increment of displacement, we create a suite of modeled scenarios that are input into a 2-D thermokinematic model to predict cooling ages. Comparison of model-predicted cooling ages to published thermochronometer data reveals that cooling ages are most sensitive to (1) the location and size of fault ramps, (2) the variable shortening rates between 68 and 6.4 mm yr-1, and (3) the timing and magnitude of out-of-sequence faulting. The predicted ages are less sensitive to (4) radiogenic heat production and (5) estimates of topographic evolution. We used the observed misfit of predicted to measured cooling ages to revise the cross section geometry and separate one large ramp previously proposed for the modern décollement into two smaller ramps. The revised geometry results in an improved fit to observed ages, particularly young AFT ages (2-6 Ma) located north of the Main Central Thrust. This study presents a successful approach for using thermochronometer data to test the viability of a proposed cross section geometry and kinematics and describes a viable approach to estimating the first-order topographic evolution of a compressional orogen.
International Nuclear Information System (INIS)
Marc, Olivier; Praene, Jean-Philippe; Bastide, Alain; Lucas, Franck
2011-01-01
Solar cooling applied to buildings is without a doubt an interesting alternative for reducing energy consumption in traditional mechanical steam compression air conditioning systems. The study of these systems should have a closely purely fundamental approach including the development of numerical models in order to predict the overall installation performance. The final objective is to estimate cooling capacity, power consumption, and overall installation performance with relation to outside factors (solar irradiation, outside temperature...). The first stage in this work consists of estimating the primary energy produced by the solar collector field. The estimation of this primary energy is crucial to ensure the evaluation of the cooling capacity and therefore the cooling distribution and thermal comfort in the building. Indeed, the absorption chiller performance is directly related to its heat source. This study presents dynamic models for double glazing solar collectors and compares the results of the simulation with experimental results taken from our test bench (two collectors). In the second part, we present an extensive collector field model (36 collectors) from our solar cooling installation at The University Institute of Technology in St Pierre, Reunion Island as well as our stratified tank storage model. A comparison of the simulation results with real scale solar experimental data taken from our installation enables validation of the double glazing solar collector and stratified tank dynamic models.
Neutrino nucleosynthesis in supernovae: Shell model predictions
International Nuclear Information System (INIS)
Haxton, W.C.
1989-01-01
Almost all of the 3 · 10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. I will argue that these neutrinos interact with nuclei in the ejected shells of the supernovae to produce new elements. It appears that this nucleosynthesis mechanism is responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, and 180 Ta, and contributes significantly to the abundances of about 15 other light nuclei. I discuss shell model predictions for the charged and neutral current allowed and first-forbidden responses of the parent nuclei, as well as the spallation processes that produce the new elements. 18 refs., 1 fig., 1 tab
Generalisation of two-layer turbulent model for passive cooling in a channel
International Nuclear Information System (INIS)
Bennacer, R.; Hammami, T.; Mohamad, A.A.; Beji, H.
2003-01-01
Turbulent natural convection still under improvement and no perfect compromise exist. The near wall region modelisation poses numerical difficulties and current modeling are either expensive or lack universality. Uncertainness in evaluating the good heat transfer rate can be catastrophically in causing local overheat and materials destruction which can be of heavy consequence as cooling nuclear component (rodes). Using the recent DNS done on natural convection flow in an infinite channel differentially heated for (10 4 6 ) a scaling analysis is developed and a one-equation near-wall turbulence model is deduced (inner layer). The inner model is coupled with a Low Reynolds Model (LRM) in the outer region (second layer) and applied to calculate natural flow for different Ra numbers. It yields good performance, computation time reduction and much better heat transfer prediction compared to the diffusive Jones Launder LRM. The efficiency is tested in one-dimensional and two-dimensional case. (author)
Modification and application of water film model in COCOSYS for PWR's passive containment cooling
International Nuclear Information System (INIS)
Huang, Xi; Cheng, Xu
2014-01-01
Highlights: • Water film model in COCOSYS has been modified by considering film breakup. • Shear stress on film surface created by countercurrent flow has been considered. • Formation and development of rivulets have been taken into account. • Modified model has been applied for passive containment cooling system. • The modified water film model has optimized the simulation results. - Abstract: In this paper the physical model describing water film behaviors in German containment code system COCOSYS has been modified by taking into consideration the film breakup and subsequent phenomena as well as the effect of film interfacial shear stress created by countercurrent air flow. The modified model has extended its capability to predict particular water film behaviors including breakup at a critical film thickness based on minimum total energy criterion, the formation of rivulets according to total energy equilibrium as well as subsequent performance of rivulets according to several assumptions and observations from experiments. Furthermore, the modification considers also the change of velocity distribution on the cross section of film/rivulets due to shear stress. Based on the geometry of AP1000 and Generic Containment, simulations predicting containment pressure variation during accidents with operation of passive containment cooling system have been carried out. With the new model, considerably larger peak pressures are observed by comparing with those predicted with original water film model within a certain range of water film flow rate. Sensitivity analyses also point out that contact angle between water rivulets and steel substrate plays a significant role in the film cooling
Modeling the methane hydrate formation in an aqueous film submitted to steady cooling
Energy Technology Data Exchange (ETDEWEB)
Avendano-Gomez, J.R. [ESIQIE, Laboratorio de Ingenieria Quimica Ambiental, Mexico (Mexico). Inst. Politecnico Nacional; Garcia-Sanchez, F. [Laboratorio de Termodinamica, Mexico (Mexico). Inst. Mexicano del Petroleo; Gurrola, D.V. [UPIBI, Laboratorio de Diseno de Plantas, Mexico (Mexico). Inst. Politecnico Nacional
2008-07-01
Gas hydrates, or clathrate hydrates, are ice-like compounds that results from the kinetic process of crystallization of an aqueous solution supersaturated with a dissolved gas. This paper presented a model that took into account two factors involved in the hydrate crystallization, notably the stochastic nature of crystallization that causes sub-cooling and the heat resulting from the exothermic enthalpy of hydrate formation. The purpose of this study was to model the thermal evolution inside a hydrate forming system which was submitted to an imposed steady cooling. The study system was a cylindrical thin film of aqueous solution at 19 Mpa. The study involved using methane as the hydrate forming molecule. It was assumed that methane was homogeneously dissolved in the aqueous phase. Ethane hydrate was formed through a kinetic process of nucleation and crystallization. In order to predict the onset time of nucleation, the induction time needed to be considered. This paper discussed the probability of nucleation as well as the estimation of the rate of nucleation. It also presented the mathematical model and boundary conditions. These included assumptions and derivation of the model; boundary conditions; initial conditions; and numerical solution of the model equation. It was concluded that the heat source must be considered when investigating crystallization effects. 34 refs., 2 tabs., 2 figs.
Modeling of a solar photovoltaic water pumping system under the influence of panel cooling
Directory of Open Access Journals (Sweden)
Chinathambi Gopal
2017-01-01
Full Text Available In this paper, the performance of a solar photovoltaic water pumping system was improved by maintaining the cell temperature in the range between 30°C and 40°C. Experiments have been conducted on a laboratory experimental set-up installed with 6.4 m2 solar panel (by providing air cooling either on the top surface or over the beneath surface of the panel to operate a centrifugal pump with a rated capacity of 0.5 HP. The performance characteristics of the photovoltaic panel (such as, cell temperature, photovoltaic panel output, and photovoltaic efficiency, pump performance characteristics (such as pump efficiency and discharge, and system performance characteristics are observed with reference to solar irradiation, ambient temperature and wind velocity. A thermal model has been developed to predict the variations of photovoltaic cell temperature based on the measured glass and tedlar temperatures. The influences of cell temperature and solar irradiation on the performance of the system are described. The results concluded that cooling of photovoltaic panel on beneath surface has maintained the cell temperature in the range between 30°C and 40°C and improved the overall efficiency by about 1.8% when compared to the system without panel cooling.
International Nuclear Information System (INIS)
Egorov, Yu.A.; Kazakov, S.V.
1987-01-01
The problems of prediction of radionuclide accumulation in ecosystem main components of NPP cooling water-reservoirs (CWR) and assessment of radionuclide acceptable disposal into water reservoir are considered. Two models are nessecary for the calculation technique: model of radionuclide migration and accumulation in CWR ecosystem components and calculation model of population dose commitment due to water consumption (at the public health approach to the normalization of the NPP radioactive effect on CWC) or calculation model of dose commitment on hydrocenosis components (at the ecological approach to the normalization). Analytical calculations and numerical calculation results in the model CWC, located in the USSR middle region, are presented
Uysal, Selcuk Can
In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).
Nguyen, Tuan A H; Biggs, Simon R; Nguyen, Anh V
2018-05-30
Current analytical models for sessile droplet evaporation do not consider the nonuniform temperature field within the droplet and can overpredict the evaporation by 20%. This deviation can be attributed to a significant temperature drop due to the release of the latent heat of evaporation along the air-liquid interface. We report, for the first time, an analytical solution of the sessile droplet evaporation coupled with this interfacial cooling effect. The two-way coupling model of the quasi-steady thermal diffusion within the droplet and the quasi-steady diffusion-controlled droplet evaporation is conveniently solved in the toroidal coordinate system by applying the method of separation of variables. Our new analytical model for the coupled vapor concentration and temperature fields is in the closed form and is applicable for a full range of spherical-cap shape droplets of different contact angles and types of fluids. Our analytical results are uniquely quantified by a dimensionless evaporative cooling number E o whose magnitude is determined only by the thermophysical properties of the liquid and the atmosphere. Accordingly, the larger the magnitude of E o , the more significant the effect of the evaporative cooling, which results in stronger suppression on the evaporation rate. The classical isothermal model is recovered if the temperature gradient along the air-liquid interface is negligible ( E o = 0). For substrates with very high thermal conductivities (isothermal substrates), our analytical model predicts a reversal of temperature gradient along the droplet-free surface at a contact angle of 119°. Our findings pose interesting challenges but also guidance for experimental investigations.
International Nuclear Information System (INIS)
Koncar, Bostjan; Simonovski, Igor; Norajitra, Prachai
2009-01-01
Numerical analyses of jet impingement cooling presented in this paper were performed as a part of helium-cooled divertor studies for post-ITER generation of fusion reactors. The cooling ability of divertor cooled by multiple helium jets was analysed. Thermal-hydraulic characteristics and temperature distributions in the solid structures were predicted for the reference geometry of one cooling finger. To assess numerical errors, different meshes (hexagonal, tetra, tetra-prism) and discretisation schemes were used. The temperatures in the solid structures decrease with finer mesh and higher order discretisation and converge towards finite values. Numerical simulations were validated against high heat flux experiments, performed at Efremov Institute, St. Petersburg. The predicted design parameters show reasonable agreement with measured data. The calculated maximum thimble temperature was below the tile-thimble brazing temperature, indicating good heat removal capability of reference divertor design. (author)
Directory of Open Access Journals (Sweden)
A. M. El-jummah
2017-04-01
Full Text Available Internal wall heat transfer relevant to impingement/effusion cooling techniques was investigated using conjugate heat transfer (CHT computational fluid dynamics (CFD with ANSYS Fluent and ICEM commercial software. This work concentrates on the development of CHT CFD design procedures that are applicable to combustor wall and turbine blade heat transfer optimisation in gas turbine (GT. It specifically modelled and compares two configuration which are specifically relevant to the impingement and effusion holes density n (m-2 and is the ratio of the hole pitch X2. The configurations investigated are equal and unequal impingement and effusion holes density n (m-2, respectively, whereby in each case the variation in the number of cooling holes were carried out. The ratio of impingement and effusion number of holes/m2 (or hole density n, investigated were impingement/effusion: 4306/4306 and 1076/4306, respectively. The geometries were for impingement wall, hole pitch X to diameter D, X/D ratio of ~ 11 but different number of holes N for both n geometries, at a constant offset effusion wall, hole X/D of 4.7 of the same N for both the two configurations. The model geometries have a constant impingement gap of 8 mm with both impingement and effusion walls at 6.35 mm thick Nimonic - 75 material and were computed for varied air mass flux G from 0.1 - 0.94 kg/sm2. Symmetrical applications were employed in modelling each of the geometry, whereby for the impingement hole, only quarter of one hole was modelled, while for the effusion side the holes were either quarter or half modelled. The two n geometries were computed with k - ɛ turbulence model using standard wall functions, which also applies to all G. The predicted locally surface X2 (or hole square area average heat transfer coefficient (HTC h values compared with with previously published experimental data showed good agreement. The reduced internal gap flow recirculation with reduced heat transfer to
Directory of Open Access Journals (Sweden)
Kazutaka Takata
2016-04-01
Full Text Available Heated moist air from a cooling tower forms a visible plume and needs to be predicted, not only for the performance design of the cooling tower, but also for environmental impact assessments. In this study, a computational fluid dynamics analysis is conducted to predict the scale of a visible plume rising from a cross flow cooling tower with mechanical draft (provided by a rotating fan. The results of computational fluid dynamics analysis are verified by comparing predictions with an actual observed plume. The results show that the predicted visible plume represents the observed plume in an error range of 15%–20%, which is permissible for designing a cooling tower. Additionally, the mixing condition of heated dry air and moist air under dry and wet combined operation is examined, and the condition is thought to affect the scale of the visible plume. It is found that, in the case of a mechanical-draft cooling tower, the fan has a mixing function which performs the complete mixing of wet and dry air, and this suggests that the generation of the plume can be determined by the intersection of the operation line and saturation line. Additionally, the effect of external wind on the scale of the visible plume is large, especially for dry and wet combined operation.
Testing Numerical Models of Cool Core Galaxy Cluster Formation with X-Ray Observations
Henning, Jason W.; Gantner, Brennan; Burns, Jack O.; Hallman, Eric J.
2009-12-01
Using archival Chandra and ROSAT data along with numerical simulations, we compare the properties of cool core and non-cool core galaxy clusters, paying particular attention to the region beyond the cluster cores. With the use of single and double β-models, we demonstrate a statistically significant difference in the slopes of observed cluster surface brightness profiles while the cluster cores remain indistinguishable between the two cluster types. Additionally, through the use of hardness ratio profiles, we find evidence suggesting cool core clusters are cooler beyond their cores than non-cool core clusters of comparable mass and temperature, both in observed and simulated clusters. The similarities between real and simulated clusters supports a model presented in earlier work by the authors describing differing merger histories between cool core and non-cool core clusters. Discrepancies between real and simulated clusters will inform upcoming numerical models and simulations as to new ways to incorporate feedback in these systems.
Magnetic reconnection in the low solar chromosphere with a more realistic radiative cooling model
Ni, Lei; Lukin, Vyacheslav S.; Murphy, Nicholas A.; Lin, Jun
2018-04-01
Magnetic reconnection is the most likely mechanism responsible for the high temperature events that are observed in strongly magnetized locations around the temperature minimum in the low solar chromosphere. This work improves upon our previous work [Ni et al., Astrophys. J. 852, 95 (2018)] by using a more realistic radiative cooling model computed from the OPACITY project and the CHIANTI database. We find that the rate of ionization of the neutral component of the plasma is still faster than recombination within the current sheet region. For low β plasmas, the ionized and neutral fluid flows are well-coupled throughout the reconnection region resembling the single-fluid Sweet-Parker model dynamics. Decoupling of the ion and neutral inflows appears in the higher β case with β0=1.46 , which leads to a reconnection rate about three times faster than the rate predicted by the Sweet-Parker model. In all cases, the plasma temperature increases with time inside the current sheet, and the maximum value is above 2 ×104 K when the reconnection magnetic field strength is greater than 500 G. While the more realistic radiative cooling model does not result in qualitative changes of the characteristics of magnetic reconnection, it is necessary for studying the variations of the plasma temperature and ionization fraction inside current sheets in strongly magnetized regions of the low solar atmosphere. It is also important for studying energy conversion during the magnetic reconnection process when the hydrogen-dominated plasma approaches full ionization.
Poirier, Martin P; Notley, Sean R; Flouris, Andreas D; Kenny, Glen P
2018-03-12
We examined if physical characteristics could be used to predict cooling time during cold water immersion (CWI, 2°C) following exertional hyperthermia (rectal temperature ≥39.5°C) in a physically heterogeneous group of men and women (n=62). Lean body mass was the only significant predictor of cooling time following CWI (R2=0.137; P<0.001); however that prediction did not provide the precision (mean residual square error: 3.18±2.28 min) required to act as a safe alternative to rectal temperature measurements.
International Nuclear Information System (INIS)
Sutton, S.B.; Stein, W.; Reitter, T.A.; Hindmarsh, A.C.
1983-01-01
A numerical model for calculating the thermodynamic behavior of the MFTF-B cryogenic cooling system is described. Nine component types are discussed with governing equations given. The algorithm for solving the coupled set of algebraic and ordinary differential equations is described. The model and its application to the MFTF-B cryogenic cooling system has not been possible due to lack of funding
Model-based fault detection for generator cooling system in wind turbines using SCADA data
DEFF Research Database (Denmark)
Borchersen, Anders Bech; Kinnaert, Michel
2016-01-01
In this work, an early fault detection system for the generator cooling of wind turbines is presented and tested. It relies on a hybrid model of the cooling system. The parameters of the generator model are estimated by an extended Kalman filter. The estimated parameters are then processed by an ...
CFD Modeling of Sodium-Oxide Deposition in Sodium-Cooled Fast Reactor Compact Heat Exchangers
Energy Technology Data Exchange (ETDEWEB)
Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason
2015-09-02
The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HX channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.
A fast converging CFD model for thermal hydraulic analysis of gas cooled reactor cores
International Nuclear Information System (INIS)
Chen, Gary; Anghaie, Samim
1999-01-01
A computational fluid dynamics (CFD) approach to the solution of Navier-Stokes equations for the thermal and flow fields of gas cooled reactor cores is presented. An implicit-explicit MacCormack method based on finite volume discretization scheme, in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve axisymmetric, thin-layer Navier-Stokes equations. This numerical method requires only the inversion of block bidiagonal systems rather than block tridiagonal systems, thus yielding savings in computer time and storage requirements. A two-layer algebraic eddy viscosity turbulence model is used in this study. The effects of turbulence are simulated in terms of the eddy viscosity coefficient, which is calculated for an inner and an outer region separately. An enthalpy-rebalancing scheme is implemented to allow the convergence solutions to be obtained with the application of a wall heat flux. The detailed computational analysis developed in this work is used to evaluate many different Nusselt number equations, property corrections, and axial distance corrections. The calculation based on this CFD model is compared with other published results. The good agreement indicates the usefulness of the presented model for the prediction of flow and temperature distributions for gas cooled reactor cores. (author)
Amézquita, A; Weller, C L; Wang, L; Thippareddi, H; Burson, D E
2005-05-25
Numerous small meat processors in the United States have difficulties complying with the stabilization performance standards for preventing growth of Clostridium perfringens by 1 log10 cycle during cooling of ready-to-eat (RTE) products. These standards were established by the Food Safety and Inspection Service (FSIS) of the US Department of Agriculture in 1999. In recent years, several attempts have been made to develop predictive models for growth of C. perfringens within the range of cooling temperatures included in the FSIS standards. Those studies mainly focused on microbiological aspects, using hypothesized cooling rates. Conversely, studies dealing with heat transfer models to predict cooling rates in meat products do not address microbial growth. Integration of heat transfer relationships with C. perfringens growth relationships during cooling of meat products has been very limited. Therefore, a computer simulation scheme was developed to analyze heat transfer phenomena and temperature-dependent C. perfringens growth during cooling of cooked boneless cured ham. The temperature history of ham was predicted using a finite element heat diffusion model. Validation of heat transfer predictions used experimental data collected in commercial meat-processing facilities. For C. perfringens growth, a dynamic model was developed using Baranyi's nonautonomous differential equation. The bacterium's growth model was integrated into the computer program using predicted temperature histories as input values. For cooling cooked hams from 66.6 degrees C to 4.4 degrees C using forced air, the maximum deviation between predicted and experimental core temperature data was 2.54 degrees C. Predicted C. perfringens growth curves obtained from dynamic modeling showed good agreement with validated results for three different cooling scenarios. Mean absolute values of relative errors were below 6%, and deviations between predicted and experimental cell counts were within 0.37 log10
Energy Technology Data Exchange (ETDEWEB)
Vehauc, A; Zaric, Z [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)
1977-07-01
The paper deals with quantitative contribution of variations of starting conditions to cooling tower plume predictions. The starting conditions are: plume velocity and temperature and concentration of water drops in the plume at the cooling tower outlet. For the same thermal discharge and meteorological conditions, starting conditions are given by characteristics of cooling towers. (author)
Directory of Open Access Journals (Sweden)
Djordje Cica
2013-01-01
Full Text Available Cutting forces are one of the inherent phenomena and a very significant indicator of the metal cutting process. The work presented in this paper is an investigation of the prediction of these parameters in turning using soft computing techniques. During the experimental research focus is placed on the application of various methods of cooling and lubricating of the cutting zone. On this occasion were used the conventional method of cooling and lubricating, high pressure jet assisted machining, and minimal quantity lubrication technique. The data obtained by experiment are used to create two different models, namely, artificial neural network and adaptive networks based fuzzy inference systems for prediction of cutting forces. Furthermore, both models are compared with the experimental data and results are indicated.
Research on heat and mass transfer model for passive containment cooling system
International Nuclear Information System (INIS)
Jiang Xiaowei; Yu Hongxing; Sun Yufa; Huang Daishun
2013-01-01
Different with the traditional dry style containment design without external cooling, the PCCS design increased the temperature difference between the wall and the containment atmosphere significantly, and also the absolute temperature of the containment surfaces will be lower, affecting properties relevant in the condensation process. A research on the heat and mass transfer model has been done in this paper, especially the improvement on the condensation and evaporation model in the presence of noncondensable gases. Firstly, the Peterson's diffusion layer model was proved to equivalent to the stagnant film model adopted by CONTAIN code using the Clausius-Clapeyron equation, then a factor which can be used to stagnant film model was derived from the comparison between the Y.Liao's generalized diffusion layer model and the Peterson's diffusion layer model. Finally, the model in CONTAIN code used to compute the condensation and evaporation mass flux was modified using the factor, and the Wisconsin condensation tests and Westinghouse film evaporation on heated plate tests were simulated which had proved the improved model can predict more closer value of the heat and mass transfer coefficient to experimental value than original model. (authors)
Energy Technology Data Exchange (ETDEWEB)
Manera, Annalisa [Univ. of Michigan, Ann Arbor, MI (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Petrov, Victor [Univ. of Michigan, Ann Arbor, MI (United States); Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Tompkins, Casey [Univ. of Wisconsin, Madison, WI (United States); Nunez, Daniel [Univ. of Michigan, Ann Arbor, MI (United States)
2018-02-13
This project has been focused on the experimental and numerical investigations of the water-cooled and air-cooled Reactor Cavity Cooling System (RCCS) designs. At this aim, we have leveraged an existing experimental facility at the University of Wisconsin-Madison (UW), and we have designed and built a separate effect test facility at the University of Michigan. The experimental facility at UW has underwent several upgrades, including the installation of advanced instrumentation (i.e. wire-mesh sensors) built at the University of Michigan. These provides highresolution time-resolved measurements of the void-fraction distribution in the risers of the water-cooled RCCS facility. A phenomenological model has been developed to assess the water cooled RCCS system stability and determine the root cause behind the oscillatory behavior that occurs under normal two-phase operation. Testing under various perturbations to the water-cooled RCCS facility have resulted in changes in the stability of the integral system. In particular, the effects on stability of inlet orifices, water tank volume have and system pressure been investigated. MELCOR was used as a predictive tool when performing inlet orificing tests and was able to capture the Density Wave Oscillations (DWOs) that occurred upon reaching saturation in the risers. The experimental and numerical results have then been used to provide RCCS design recommendations. The experimental facility built at the University of Michigan was aimed at the investigation of mixing in the upper plenum of the air-cooled RCCS design. The facility has been equipped with state-of-theart high-resolution instrumentation to achieve so-called CFD grade experiments, that can be used for the validation of Computational Fluid Dynanmics (CFD) models, both RANS (Reynold-Averaged) and LES (Large Eddy Simulations). The effect of risers penetration in the upper plenum has been investigated as well.
International Nuclear Information System (INIS)
Tatebe, Yasumasa; Yoshida, Yoshitaka
2012-01-01
If an emergency event occurs in a nuclear power plant, appropriate action is selected and taken in accordance with the plant status, which changes from time to time, in order to prevent escalation and mitigate the event consequences. It is thus important to predict the event sequence and identify the plant behavior resulting from the action taken. In predicting the event sequence during a loss-of-coolant accident (LOCA), it is necessary to estimate break diameter. The conventional method for this estimation is time-consuming, since it involves multiple sensitivity analyses to determine the break diameter that is consistent with the plant behavior. To speed up the process of predicting the nuclear emergency event sequence, a new break diameter estimation technique that is applicable to pressurized water reactors was developed in this study. This technique enables the estimation of break diameter using the plant data sent from the safety parameter display system (SPDS), with focus on the depressurization rate in the reactor cooling system (RCS) during LOCA. The results of LOCA analysis, performed by varying the break diameter using the MAAP4 and RELAP5/MOD3.2 codes, confirmed that the RCS depressurization rate could be expressed by the log linear function of break diameter, except in the case of a small leak, in which RCS depressurization is affected by the coolant charging system and the high-pressure injection system. A correlation equation for break diameter estimation was developed from this function and tested for accuracy. Testing verified that the correlation equation could estimate break diameter accurately within an error of approximately 16%, even if the leak increases gradually, changing the plant status. (author)
Modeling of Cooling Channels of Injection Mould using Functionally Graded Material
International Nuclear Information System (INIS)
Shin, Ki Hoon
2011-01-01
The cycle time in injection moulding greatly depends on the cooling time of the plastic part that is controlled by cooling channels. Cooling channels are required to facilitate the heat transfer rate from the die to the coolant without reducing the strength of the die. Employing layered manufacturing techniques (LMT), a die embedding conformal cooling channels can be fabricated directly while conventional cooling channels are usually made of straight drilled hole. Meanwhile, H13 tool steel is widely used as the die material because of its high thermal resistance and dimensional stability. However, H13 with a low thermal conductivity is not efficient for certain part geometries. In this context, the use of functionally graded materials (FGMs) between H13 and copper may circumvent a tradeoff between the strength and the heat transfer rate. This paper presents a method for modeling of conformal cooling channels made of FGMs
Mathematical model of drift deposition from a bifurcated cooling tower plume
International Nuclear Information System (INIS)
Chen, N.C.J.; Jung, L.
1978-01-01
Cooling tower drift deposition modeling has been extended by including centrifugal force induced through plume bifurcation in a crosswind as a mechanism for drift droplet removal from the plume. The model, in its current state of development, is capable of predicting the trajectory of a single droplet from the stage of strong interaction with the vortex field soon after droplet emission at the tower top through the stage of droplet evaporation in an unsaturated atmosphere after droplet breakaway from the plume. The computer program developed from the mathematical formulation has been used to explore the dependency of the droplet trajectory on droplet size, vortex strength, point of droplet emission, drag coefficient, droplet efflux speed, and ambient conditions. A specific application to drift from a mechanical-draft cooling tower (for a wind speed twice the efflux speed, a relative humidity of 70 per cent, and an initial droplet radius of 100 μm) showed the droplet to follow a helical trajectory within the plume, with breakaway occurring at 2.5 tower diameters downwind and ground impact of the droplet (reduced through evaporation to 55 μm radius) at 11 tower diameters
The transfer function model for dynamic response of wet cooling coils
International Nuclear Information System (INIS)
Yao Ye; Liu Shiqing
2008-01-01
This paper mainly concerned about the dynamic response model of wet cooling coils that is developed by the Laplace transform method. The theoretic equations are firstly established based on the theory of energy conservation. Then, the transfer functions on the transient responses of wet cooling coils have been deduced using the method of Laplace transform. The transfer functions reveal the dynamic relationships between the inlet variables and the outlet ones of the cooling coils. Partial-fraction method and Newton-Raphson method are both used in the inversion of the transfer functions from the s-domain to τ-domain. To make the dynamic model of wet cooling coils more adaptive, RBFNN method is employed to determine the coefficients of heat and mass transfer. Experiments have been done and manifested that the coefficients of heat and mass transfer by RBFNN will be of great value to the validity of the transient response model of wet cooling coils in this study
A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models
Ameri, A. A.; Rigby, D. L.
1999-01-01
A computational study has been performed to predict the distribution of convective heat transfer coefficient on a simulated blade tip with cooling holes. The purpose of the examination was to assess the ability of a three-dimensional Reynolds-averaged Navier-Stokes solver to predict the rate of tip heat transfer and the distribution of cooling effectiveness. To this end, the simulation of tip clearance flow with blowing of Kim and Metzger was used. The agreement of the computed effectiveness with the data was quite good. The agreement with the heat transfer coefficient was not as good but improved away from the cooling holes. Numerical flow visualization showed that the uniformity of wetting of the surface by the film cooling jet is helped by the reverse flow due to edge separation of the main flow.
Modeling of a regenerative indirect evaporative cooler for a desiccant cooling system
DEFF Research Database (Denmark)
Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.
This paper presents a numerical study of a regenerative indirect evaporative cooler, the so-called Dew Point Cooler (DPC), which is part of a Desiccant Cooling system that may both dehumidify and cool humid air. The DPC model is based on first principles using a 1D finite volume scheme...
Modeling of existing cooling towers in ASPEN PLUS using an equilibrium stage method
International Nuclear Information System (INIS)
Queiroz, João A.; Rodrigues, Vitor M.S.; Matos, Henrique A.; Martins, F.G.
2012-01-01
Highlights: ► Simulation of cooling tower performance under different operating conditions. ► Cooling tower performance is simulated using ASPEN PLUS. ► Levenberg–Marquardt method used to adjust model parameters. ► Air and water outlet temperatures are in good accordance with experimental data. - Abstract: Simulation of cooling tower performance considering operating conditions away from design is typically based on the geometrical parameters provided by the cooling tower vendor, which are often unavailable or outdated. In this paper a different approach for cooling tower modeling based on equilibrium stages and Murphree efficiencies to describe heat and mass transfer is presented. This approach is validated with published data and with data collected from an industrial application. Cooling tower performance is simulated using ASPEN PLUS. Murphree stage efficiency values for the process simulator model were optimized by minimizing the squared difference between the experimental and calculated data using the Levenberg–Marquardt method. The minimization algorithm was implemented in Microsoft Excel with Visual Basic for Applications, integrated with the process simulator (ASPEN PLUS) using Aspen Simulation Workbook. The simulated cooling tower air and water outlet temperatures are in good accordance with experimental data when applying only the outlet water temperature to calibrate the model. The methodology is accurate for simulating cooling towers at different operational conditions.
International Nuclear Information System (INIS)
Takase, Kazuyuki
1994-11-01
The turbulent heat transfer of a fuel rod with three-dimensional trapezoidal spacer ribs for high temperature gas-cooled reactors was analyzed numerically using the k-ε turbulence model, and investigated experimentally using a simulated fuel rod under the helium gas condition of a maximum outlet temperature of 1000degC and pressure of 4MPa. From the experimental results, it found that the turbulent heat transfer coefficients of the fuel rod were 18 to 80% higher than those of a concentric smooth annulus at a region of Reynolds number exceeding 2000. On the other hand, the predicted average Nusselt number of the fuel rod agreed well with the heat transfer correlation obtained from the experimental data within a relative error of 10% with Reynolds number of more than 5000. It was verified that the numerical analysis results had sufficient accuracy. Furthermore, the numerical prediction could clarify quantitatively the effects of the heat transfer augmentation by the spacer rib and the axial velocity increase due to a reduction in the annular channel cross-section. (author)
Comparison between field data and ultimate heat-sink cooling-pond and spray-pond models
International Nuclear Information System (INIS)
Codell, R.
1982-09-01
Two previously published reports, NUREG-0693 and NUREG-0733, presented models and methods by which ultimate heat sink cooling ponds and spray ponds used for safety-related water supplies in nuclear power plants could be analyzed for design-basis conditions of heat load and meteorology. These models were only partially verified with field data. The present report compares the NRC models to data collected for NRC by Battelle Pacific Northwest Laboratories on the performance of small geothermally heated ponds and spray ponds. These comparisons generally support the conclusion that the NRC models are useful tools in predicting ultimate heat sink performance
International Nuclear Information System (INIS)
Conklin, J.C.
1990-04-01
The Reactor Cavity Cooling System (RCCS) of the Modular High- Temperature Gas-Cooled Reactor (MHTGR) proposed by the U.S. Department of Energy is designed to remove the nuclear afterheat passively in the event that neither the heat transport system nor the shutdown cooling circulator subsystem is available. A computer dynamic simulation for the physical and mathematical modeling of and RCCS is described here. Two conclusions can be made form computations performed under the assumption of a uniform reactor vessel temperature. First, the heat transferred across the annulus from the reactor vessel and then to ambient conditions is very dependent on the surface emissivities of the reactor vessel and RCCS panels. These emissivities should be periodically checked to ensure the safety function of the RCCS. Second, the heat transfer from the reactor vessel is reduced by a maximum of 10% by the presence of steam at 1 atm in the reactor cavity annulus for an assumed constant in the transmission of radiant energy across the annulus can be expected to result in an increase in the reactor vessel temperature for the MHTGR. Further investigation of participating radiation media, including small particles, in the reactor cavity annulus is warranted. 26 refs., 7 figs., 1 tab
Prediction model for initial point of net vapor generation for low-flow boiling
International Nuclear Information System (INIS)
Sun Qi; Zhao Hua; Yang Ruichang
2003-01-01
The prediction of the initial point of net vapor generation is significant for the calculation of phase distribution in sub-cooled boiling. However, most of the investigations were developed in high-flow boiling, and there is no common model that could be successfully applied for the low-flow boiling. A predictive model for the initial point of net vapor generation for low-flow forced convection and natural circulation is established here, by the analysis of evaporation and condensation heat transfer. The comparison between experimental data and calculated results shows that this model can predict the net vapor generation point successfully in low-flow sub-cooled boiling
An improved model for the analysis of evaporative counterflow cooling towers
International Nuclear Information System (INIS)
Nahavandi, A.N.; Oellinger, J.
1977-01-01
A rigorous approach is applied to the thermal design of counterflow cooling towers, by obviating the six simplifying assumptions in the classical Merkel method. It is indicated that: (1) neglecting evaporation losses is the main cause of inaccuracy in the Merkel results; (2) the error in the Merkel method may reach 12%; and (3) the present solution provides a more accurate and more ecologically favorable prediction for the cooling water tower. (Auth.)
mathematical model for direct evaporative space cooling systems
African Journals Online (AJOL)
eobe
of the sensible heat of the air is transferred to the water and becomes latent heat by evaporating some of the water. The latent heat follows the water vapour and diffuses into the air. In a DEC (direct evaporative cooling), the heat and mass transferred between air and water decreases the air dry bulb temperature (DBT) and ...
Predicting Comfort Temperature in Indonesia, an Initial Step to Reduce Cooling Energy Consumption
Directory of Open Access Journals (Sweden)
Tri Harso Karyono
2015-07-01
Full Text Available Indonesia has no reliable thermal comfort standard that is based on research works. The current national standard (SNI 6390:2011 states only a single range of comfort temperature that is 25.5 °C Ta, with a range of +1.5 °C Ta. Previous thermal studies in a number of different buildings in Indonesia showed that the neutral (comfort temperatures of subjects were about 27 to 28 °C, which is higher than the values stated in the standard. As a big country with various ambient temperatures, Indonesian needs a better and more reliable thermal comfort predictor which can be applied properly across the country. This study is an attempt to propose an initial Indonesian thermal predictor, in the form of a simple equation, which could predict comfort temperatures properly across the country. Reanalysing the previous comfort studies in Indonesia, a simple regression equation is constructed as to be used as the initial Indonesian comfort predictor. Using this predictor, the comfort temperatures in a lowland or coastal cities like Jakarta is found to be higher than the current comfort standard. It is expected that this predictor would help to provide a better indoor thermal environment and at the same reduce the cooling energy in air conditioning (AC building, thus reducing a building’s carbon emissions.
Validation of Supersonic Film Cooling Modeling for Liquid Rocket Engine Applications
Morris, Christopher I.; Ruf, Joseph H.
2010-01-01
Topics include: upper stage engine key requirements and design drivers; Calspan "stage 1" results, He slot injection into hypersonic flow (air); test articles for shock generator diagram, slot injector details, and instrumentation positions; test conditions; modeling approach; 2-d grid used for film cooling simulations of test article; heat flux profiles from 2-d flat plate simulations (run #4); heat flux profiles from 2-d backward facing step simulations (run #43); isometric sketch of single coolant nozzle, and x-z grid of half-nozzle domain; comparison of 2-d and 3-d simulations of coolant nozzles (run #45); flowfield properties along coolant nozzle centerline (run #45); comparison of 3-d CFD nozzle flow calculations with experimental data; nozzle exit plane reduced to linear profile for use in 2-d film-cooling simulations (run #45); synthetic Schlieren image of coolant injection region (run #45); axial velocity profiles from 2-d film-cooling simulation (run #45); coolant mass fraction profiles from 2-d film-cooling simulation (run #45); heat flux profiles from 2-d film cooling simulations (run #45); heat flux profiles from 2-d film cooling simulations (runs #47, #45, and #47); 3-d grid used for film cooling simulations of test article; heat flux contours from 3-d film-cooling simulation (run #45); and heat flux profiles from 3-d and 2-d film cooling simulations (runs #44, #46, and #47).
Alpert, P. A.; Knopf, D. A.
2015-05-01
apparent cooling rate dependence ofJhet is explained by assuming identical ISA in each droplet. When accounting for ISA variability, the cooling rate dependence of ice nucleation kinetics vanishes as expected from classical nucleation theory. The model simulations allow for a quantitative experimental uncertainty analysis for parameters Ntot, T, RH, and the ISA variability. In an idealized cloud parcel model applying variability in ISAs for each droplet, the model predicts enhanced immersion freezing temperatures and greater ice crystal production compared to a case when ISAs are uniform in each droplet. The implications of our results for experimental analysis and interpretation of the immersion freezing process are discussed.
International Nuclear Information System (INIS)
Davidson, Sean R H; Sherar, Michael D
2003-01-01
Urethral cooling catheters are used to prevent thermal damage to the urethra during thermal therapy of the prostate. Quantification of a catheter's heat transfer characteristics is necessary for prediction of the catheter's influence on the temperature and thermal dose distribution in periurethral tissue. Two cooling catheters with different designs were examined: the Dornier Urowave catheter and a prototype device from BSD Medical Corp. A convection coefficient, h, was used to characterize the cooling ability of each catheter. The value of the convection coefficient (h = 330 W m -2 deg C -1 for the Dornier catheter, h = 160 W m -2 deg C -1 for the BSD device) was obtained by comparing temperatures measured in a tissue-equivalent phantom material to temperatures predicted by a finite element method simulation of the phantom experiments. The coefficient was found to be insensitive to the rate of coolant flow inside the catheter between 40 and 120 ml min -1 . The convection coefficient method for modelling urethral catheters was incorporated into simulations of microwave heating of the prostate. Results from these simulations indicate that the Dornier device is significantly more effective than the BSD catheter at cooling the tissue surrounding the urethra
International Nuclear Information System (INIS)
Silva, Alice Cunha da; Su, Jian
2013-01-01
The High Temperature Gas cooled Reactor (HTGR) is a fourth generation thermal nuclear reactor, graphite-moderated and helium cooled. The HTGRs have important characteristics making essential the study of these reactors, as well as its fuel element. Examples of these are: high thermal efficiency,low operating costs and construction, passive safety attributes that allow implication of the respective plants. The Pebble Bed Modular Reactor (PBMR) is a HTGR with spherical fuel elements that named the reactor. This fuel element is composed by a particulate region with spherical inclusions, the fuel UO2 particles, dispersed in a graphite matrix and a convective heat transfer by Helium happens on the outer surface of the fuel element. In this work, the transient heat conduction in a spherical fuel element of a pebble-bed high temperature reactor was studied in a transient situation of combined convective and radiative cooling. Improved lumped parameter model was developed for the transient heat conduction in the two-layer composite sphere subjected to combined convective and radiative cooling. The improved lumped model was obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of the two-layer spherical fuel element was analyzed to illustrate the applicability of the proposed lumped model, with respect to die rent values of the Biot number, the radiation-conduction parameter, the dimensionless thermal contact resistance, the dimensionless inner diameter and coating thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the improved lumped model, with H2,1/H1,1/H0,0 approximation yielded significant improvement of average temperature prediction over the classical lumped model. (author)
Spot size predictions of a focused ion beam based on laser cooling
Haaf, ten G.; Wouters, S.H.W.; Geer, van der S.B.; Mutsaers, P.H.A.; Luiten, O.J.; Vredenbregt, E.J.D.
2014-01-01
The Atomic Beam Laser Cooled Ion Source (ABLIS) is a new source for focused ion beam instruments, which are used in the semiconductor industry, to image and modify structures on the nanometer length scale. The ABLIS employs laser cooling and compression of an atomic beam of rubidium to increase its
Model predictive control using fuzzy decision functions
Kaymak, U.; Costa Sousa, da J.M.
2001-01-01
Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the
International Nuclear Information System (INIS)
2005-11-01
In recent years it has been recognized that the application of passive safety systems (i.e. those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. Further, the IAEA Conference on The Safety of Nuclear Power: Strategy for the Future which was convened in 1991 noted that for new plants 'the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate'. Considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to assure that the systems perform their intended functions. To support the development of advanced water cooled reactor designs with passive systems, investigations of natural circulation are an ongoing activity in several IAEA Member States. Some new designs also utilize natural circulation as a means to remove core power during normal operation. In response to the motivating factors discussed above, and to foster international collaboration on the enabling technology of passive systems that utilize natural circulation, an IAEA Coordinated Research Project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation was started in early 2004. Building on the shared expertise within the CRP, this publication presents extensive information on natural circulation phenomena, models, predictive tools and experiments that currently support design and analyses of natural circulation systems and highlights areas where additional research is needed. Therefore, this publication serves both to provide a description of the present state of knowledge on natural circulation in water cooled nuclear power plants and to guide the planning and conduct of the CRP in
International Nuclear Information System (INIS)
Yuan, Yanping; Gao, Xiangkui; Wu, Hongwei; Zhang, Zujin; Cao, Xiaoling; Sun, Liangliang; Yu, Nanyang
2017-01-01
The traditional cooling methods cannot meet the requirements of safety, stability, reliability and no-power at the same time under some special circumstances. In this study, a new coupled cooling method of Latent Heat Thermal Energy Storage (LHTES) combined with Pre-cooling of Envelope (PE) is proposed and the numerical model of the coupled cooling method is developed. In the current study, a refuge chamber is selected as a case study. A semi-analytical method is used to analyze the cold storage performance of the Surrounding Rock (SR). Afterwards, a numerical model of the coupled cooling system, which takes the heat source, SR, Phase Change Material (PCM) and air heat transfer into consideration, is further established. The study identified that the simplified semi-analytical calculation formula with the diagram of the cold storage quantity of SR are very helpful for engineering calculation. The influence of the Fourier and Biot number on the cold storage capacity of SR can be easily analyzed. In addition, the whole-field model of the coupled cooling system is completely developed based on the PCM unit. - Highlights: • A new coupled cooling method that combines LHTES with PE is proposed. • This method can be applicable to a high-temperature and no-power circumstance. • The simplified calculation formula of the cold storage quantity of SR is given. • An efficient simulation model of the coupled cooling system is established.
Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms
Heidmann, James D.; Hunter, Scott D.
2001-01-01
The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.
Numerical model of sprayed air cooled condenser coupled to refrigerating system
International Nuclear Information System (INIS)
Youbi-Idrissi, M.; Macchi-Tejeda, H.; Fournaison, L.; Guilpart, J.
2007-01-01
Because of technological, economic and environmental constraints, many refrigeration and air conditioning units are equipped with a simple air cooled condenser. Spraying the condenser seems to be an original solution to improve the energetic performances of such systems. To characterise this energetic benefit, a semi-local mathematical model was developed and applied to a refrigerating machine with and without spraying its air cooled condenser. It is found that, compared to a dry air cooled condenser, both the calorific capacity and machine COP increase by 13% and 55%, respectively. Furthermore, the model shows that a spray flow rate threshold occurs. It should not be exceeded to assure an effective and rational spray use
A simulation for predicting potential cooling effect on LPG-fuelled vehicles
Setiyo, M.; Soeparman, S.; Wahyudi, S.; Hamidi, N.
2016-03-01
Liquefied Petroleum Gas vehicles (LPG Vehicles) provide a potential cooling effect about 430 kJ/kg LPG consumption. This cooling effect is obtained from the LPG phase change from liquid to vapor in the vaporizer. In the existing system, energy to evaporate LPG is obtained from the coolant which is circulated around the vaporizer. One advantage is that the LPG (70/30 propane / butane) when expanded from 8 bar to at 1.2 bar, the temperature is less than -25 °C. These conditions provide opportunities to evaporate LPG with ambient air flow, then produce a cooling effect for cooling car's cabin. In this study, some LPG mix was investigated to determine the optimum condition. A simulation was carried out to estimate potential cooling effects of 2000 cc engine from 1000 rpm to 6000 rpm. In this case, the mass flow rate of LPG is a function of fuel consumption. The simulation result shows that the LPG (70/30 propane/butane) provide the greatest cooling effect compared with other mixtures. In conclusion, the 2000 cc engine fueled LPG at 3000 rpm provides potential cooling effect more than 1.3 kW, despite in the low engine speed (1000 rpm) only provides about 0.5 kW.
Zero-field-cooled/field-cooled magnetization study of Dendrimer model
Energy Technology Data Exchange (ETDEWEB)
Arejdal, M., E-mail: arejdal.achdad@gmail.com [Laboratory of Magnetism and Physics of High Energies, Department of Physics, L.M.P.H.E (URAC-12), Faculty of Sciences, Mohammed V University, Rabat (Morocco); Bahmad, L. [Laboratory of Magnetism and Physics of High Energies, Department of Physics, L.M.P.H.E (URAC-12), Faculty of Sciences, Mohammed V University, Rabat (Morocco); Benyoussef, A. [Hassan II Academy of Science and Technology, Rabat (Morocco)
2017-01-01
Being motivated by Dendrimer model with mixed spins σ=3 and S=7/2, we investigated the magnetic nanoparticle system in this study. We analyzed and discussed the ground-state phase diagrams and the stable phases. Then, we elaborated and explained the magnetic properties of the system by using Monte Carlo Simulations (MCS) in the framework of the Ising model. In this way, we determined the blocking temperature, which is deduced through studying the partial-total magnetization and susceptibility as a function of the temperature, and we established the effects of both the exchange coupling interaction and the crystal field on the hysteresis loop.
Development of heat transfer models for gap cooling
Energy Technology Data Exchange (ETDEWEB)
Kohriyama, Tamio; Murase, Michio; Tamaki, Tomohiko [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)
2001-09-01
In a severe accident of a light water reactor (LWR), heat transfer models in a narrow annular gap between superheated core debris and a reactor pressure vessel (RPV) are important to evaluate the integrity of RPV and emergency procedures. This paper discusses the effects of superheat on the heat flux based on existing data. In low superheat conditions, the heat flux in the narrow gap is higher than the heat flux in pool nucleate boiling due to restricted flow area. It approaches the nucleate boiling heat flux as superheat increasing and reaches a critical value subject to the counter-current flow limiting (CCFL) at the top end of the gap. A heat transfer correlation was derived as a function of dimensionless superheat and a Kutateladze-type CCFL correlation was deduced for critical heat flux (CHF) restricted by CCFL, which gave good prediction for a wide range of the CHF data. Effect of an angle of inclination of the gap could also be incorporated in the CCFL correlation. In high superheat conditions, the heat flux in the narrow gap maintains a similar shape to the pool boiling curve but shifts the position to a higher superheated side than the pool boiling except film boiling, which could be expressed by the typical pool film boiling correlation. Incorporating quench test data, the heat flux correlation was derived as a function of dimensionless superheat using the same formula for the low superheat and the Kutateladze-type CCFL correlation was deduced for CHF. The CHF at the high superheat was 3-4 times as large as CHF at the low superheat and this difference was well predicted by different flow patterns in the gap and the balance of pressure gradients between gas and liquid phases. (author)
Sensitivity analysis of an Advanced Gas-cooled Reactor control rod model
International Nuclear Information System (INIS)
Scott, M.; Green, P.L.; O’Driscoll, D.; Worden, K.; Sims, N.D.
2016-01-01
Highlights: • A model was made of the AGR control rod mechanism. • The aim was to better understand the performance when shutting down the reactor. • The model showed good agreement with test data. • Sensitivity analysis was carried out. • The results demonstrated the robustness of the system. - Abstract: A model has been made of the primary shutdown system of an Advanced Gas-cooled Reactor nuclear power station. The aim of this paper is to explore the use of sensitivity analysis techniques on this model. The two motivations for performing sensitivity analysis are to quantify how much individual uncertain parameters are responsible for the model output uncertainty, and to make predictions about what could happen if one or several parameters were to change. Global sensitivity analysis techniques were used based on Gaussian process emulation; the software package GEM-SA was used to calculate the main effects, the main effect index and the total sensitivity index for each parameter and these were compared to local sensitivity analysis results. The results suggest that the system performance is resistant to adverse changes in several parameters at once.
International Nuclear Information System (INIS)
Chevet, G; Schlosser, J; Courtois, X; Escourbiac, F; Missirlian, M; Herb, V; Martin, E; Camus, G; Braccini, M
2009-01-01
In order to predict the lifetime of carbon fibre composite (CFC) armoured plasma-facing components in magnetic fusion devices, it is necessary to analyse the damage mechanisms and to model the damage propagation under cycling heat loads. At Tore Supra studies have been launched to better understand the damage process of the armoured flat tile elements of the actively cooled toroidal pump limiter, leading to the characterization of the damageable mechanical behaviour of the used N11 CFC material and of the CFC/Cu bond. Up until now the calculations have shown damage developing in the CFC (within the zone submitted to high shear stress) and in the bond (from the free edge of the CFC/Cu interface). Damage is due to manufacturing shear stresses and does not evolve under heat due to stress relaxation. For the ITER divertor, NB31 material has been characterized and the characterization of NB41 is in progress. Finite element calculations show again the development of CFC damage in the high shear stress zones after manufacturing. Stresses also decrease under heat flux so the damage does not evolve. The characterization of the CFC/Cu bond is more complex due to the monoblock geometry, which leads to more scattered stresses. These calculations allow the fabrication difficulties to be better understood and will help to analyse future high heat flux tests on various mock-ups.
Blast-cooling of beef-in-sauce catering meals: numerical results based on a dynamic zero-order model
Directory of Open Access Journals (Sweden)
Jose A. Rabi
2014-10-01
Full Text Available Beef-in-sauce catering meals under blast-cooling have been investigated in a research project which aims at quantitative HACCP (hazard analysis critical control point. In view of its prospective coupling to a predictive microbiology model proposed in the project, zero-order spatial dependence has proved to suitably predict meal temperatures in response to temperature variations in the cooling air. This approach has modelled heat transfer rates via the a priori unknown convective coefficient hc which is allowed to vary due to uncertainty and variability in the actual modus operandi of the chosen case study hospital kitchen. Implemented in MS Excel®, the numerical procedure has successfully combined the 4th order Runge-Kutta method, to solve the governing equation, with non-linear optimization, via the built-in Solver, to determine the coefficient hc. In this work, the coefficient hc was assessed for 119 distinct recently-cooked meal samples whose temperature-time profiles were recorded in situ after 17 technical visits to the hospital kitchen over a year. The average value and standard deviation results were hc = 12.0 ± 4.1 W m-2 K-1, whilst the lowest values (associated with the worst cooling scenarios were about hc » 6.0 W m-2 K-1.
A simplified simulation model for a HPDC die with conformal cooling channels
Frings, Markus; Behr, Marek; Elgeti, Stefanie
2017-10-01
In general, the cooling phase of the high-pressure die casting process is based on complex physical phenomena: so-lidification of molten material; heat exchange between cast part, die and cooling fluid; turbulent flow inside the cooling channels that needs to be considered when computing the heat flux; interdependency of properties and temperature of the cooling liquid. Intuitively understanding and analyzing all of these effects when designing HPDC dies is not feasible. A remedy that has become available is numerical design, based for example on shape optimization methods. However, current computing power is not sufficient to perform optimization while at the same time fully resolving all physical phenomena. But since in HPDC suitable objective functions very often lead to integral values, e.g., average die temperature, this paper identifies possible simplifications in the modeling of the cooling phase. As a consequence, the computational effort is reduced to an acceptable level. A further aspect that arises in the context of shape optimization is the evaluation of shape gradients. The challenge here is to allow for large shape deformations without remeshing. In our approach, the cooling channels are described by their center lines. The flow profile of the cooling fluid is then estimated based on experimental data found in literature for turbulent pipe flows. In combination, the heat flux throughout cavity, die, and cooling channel can be described by one single advection-diffusion equation on a fixed mesh. The parameters in the equation are adjusted based on the position of cavity and cooling channel. Both results contribute towards a computationally efficient, yet accurate method, which can be employed within the frame of shape optimization of cooling channels in HPDC dies.
Paul, Subhajit; Das, Subir K.
2018-03-01
Via event-driven molecular dynamics simulations we study kinetics of clustering in assemblies of inelastic particles in various space dimensions. We consider two models, viz., the ballistic aggregation model (BAM) and the freely cooling granular gas model (GGM), for each of which we quantify the time dependence of kinetic energy and average mass of clusters (that form due to inelastic collisions). These quantities, for both the models, exhibit power-law behavior, at least in the long time limit. For the BAM, corresponding exponents exhibit strong dimension dependence and follow a hyperscaling relation. In addition, in the high packing fraction limit the behavior of these quantities become consistent with a scaling theory that predicts an inverse relation between energy and mass. On the other hand, in the case of the GGM we do not find any evidence for such a picture. In this case, even though the energy decay, irrespective of packing fraction, matches quantitatively with that for the high packing fraction picture of the BAM, it is inversely proportional to the growth of mass only in one dimension, and the growth appears to be rather insensitive to the choice of the dimension, unlike the BAM.
Updating of a finite element model of the Cruas 2 cooling tower
International Nuclear Information System (INIS)
Billet, L.
1994-03-01
A method based on modal analysis and inversion of a dynamic FEM model is used to detect changes in the dynamic behavior of nuclear plant cooling towers. Prior to detection, it is necessary to build a representative model of the structure. In this paper are given details about the CRUAS N. 2 cooling tower modelling and the updating procedure used to match the model to on-site measurements. First, were reviewed previous numerical and experimental studies on cooling towers vibrations. We found that the first eigenfrequencies of cooling towers are very sensitive to boundary conditions at the top and the bottom of the structure. Then, we built a beam and plate FEM model of the CRUAS N. 2 cooling tower. The first calculated modes were located in the proper frequency band (0.9 Hz - 1.30 Hz) but not distributed according to the experimental order. We decided to update the numerical model with MADMACS, an updating model software. It was necessary to: - decrease the shell stiffness by 30%; - increase the top ring stiffness by 300%; - modify the boundary conditions at the bottom by taking into account the soil impedance. In order to obtain a difference between the measured and the corresponding calculated frequencies less than 1%. The model was then judged to be realistic enough. (author). 23 figs., 13 refs., 1 annex
Duan, Yifei; Feng, Zhi-Gang
2017-12-01
Kinetic theory (KT) has been successfully used to model rapid granular flows in which particle interactions are frictionless and near elastic. However, it fails when particle interactions become frictional and inelastic. For example, the KT is not able to accurately predict the free cooling process of a vibrated granular medium that consists of inelastic frictional particles under microgravity. The main reason that the classical KT fails to model these flows is due to its inability to account for the particle surface friction and its inelastic behavior, which are the two most important factors that need be considered in modeling collisional granular flows. In this study, we have modified the KT model that is able to incorporate these two factors. The inelasticity of a particle is considered by establishing a velocity-dependent expression for the restitution coefficient based on many experimental studies found in the literature, and the particle friction effect is included by using a tangential restitution coefficient that is related to the particle friction coefficient. Theoretical predictions of the free cooling process by the classical KT and the improved KT are compared with the experimental results from a study conducted on an airplane undergoing parabolic flights without the influence of gravity [Y. Grasselli, G. Bossis, and G. Goutallier, Europhys. Lett. 86, 60007 (2009)10.1209/0295-5075/86/60007]. Our results show that both the velocity-dependent restitution coefficient and the particle surface friction are important in predicting the free cooling process of granular flows; the modified KT model that integrates these two factors is able to improve the simulation results and leads to better agreement with the experimental results.
A simplified model of Passive Containment Cooling System in a CFD code
International Nuclear Information System (INIS)
Jiang, X.W.; Studer, E.; Kudriakov, S.
2013-01-01
Highlights: ► We have built a condensing model using Navier–Stokes equations in CAST3M code. ► We have done a benchmark work on the condensing model using the COPAIN tests data. ► We have built an evaporating model according to Aiello's model in CAST3M code. ► We used Kang and Park's film evaporation tests data to validate the model. ► An integrated model was derived by coupling two individual models with a steel plate. -- Abstract: In this paper, we built up a simplified model of the Passive Containment Cooling System in a CFD code, including a steel plate, a condensing channel and an evaporating channel. In the inner side of the plate, the condensing channel is supposed to be the source of heat transfer into the steel plate. Along the outer side, an evaporating falling film is used to extract the heat from the steel plate. Upward flow of air is also considered along the evaporating film. In the condensing channel, a flow solver based on an asymptotic model of the Navier–Stokes equations at the low Mach number regime and two turbulence models (Buleev's model and Chien's k–ε model) are considered. The condensing channel model was used to model the COPAIN test, the computed heat flux and condensation rate were compared with the experimental data. In the evaporating channel, a simplified model developed by Aiello and Ciofalo (2009) was used, which considered the heat and mass balance between the falling film and the ascending air flow. The model was validated for two cases: a dry wall case and a completely wet wall case. In the former case, the results were compared with 2D predictions obtained by using the CFX-4 CFD code. In the latter case, the results were compared with experimental data obtained by Kang and Park. The comparison showed a satisfactory agreement on heat transfer rates, despite some overprediction depending on the air velocity. At the end, the condensing channel model and the evaporating channel model were coupled by the steel plate
A mathematical model for supplying air-cooling for a building using a packed bed
Energy Technology Data Exchange (ETDEWEB)
Marewo, G.T. [Zimbabwe Univ., Mathematics Dept., Harare (Zimbabwe); Henwood, D.J. [School of Computing and Mathematical Sciences, Brighton (United Kingdom)
2006-01-15
The cooling system at the Harare International School uses a packed bed system for storing the coldness of the night-time to be used later for day-time air-conditioning. A two-phase mathematical model is described for the packed bed which includes heat dispersion in the fluid, and heat loss to the environment. This is in contrast to other studies, where at least one of these terms is neglected to simplify the mathematical model. A numerical method for obtaining a solution is proposed and implemented. Using measured inlet temperatures, the measured and predicted outlet temperatures of the bed show good trend agreement. The differences in detail are examined through sensitivity analyses for both the heat convection transfer and air velocity. It is apparent that adjusting these parameters can increase the agreement between the predicted and measured data. A parametric study for heat storage with various materials and bed sizes is given, which indicates how the code may be used as a tool for improving design and operational parameters. Practical application: A mathematical model of a packed bed is described; the bed is made up of fluid flowing over solid material with heat interchange between the two. The solid material is idealized as spheres and the fluid temperature is assumed uniform in a cross-section of the bed. The model includes heat interchange between the bed and its surrounding environment and allows for time varying fluid velocity. The input data is the inlet temperature to the bed, which may be measured. The comparison with measured data may be helpful to anyone attempting to develop and test a similar model. The sensitivity tests give an understanding of the significance of some of the parameters involved. The Appendix gives a mathematical statement of the problem and an outline of an approach to developing computer code for a numerical solution. (Author)
International Nuclear Information System (INIS)
Radosavljevic, D.; Spalding, D.B.
1989-01-01
The quantitative simulation of cooling-tower performance is useful to designers, enabling them to make optimal choices regarding: the type, volume and shape of the packing (i.e. fill); and the shape and size of the tower. In order to simulate performance realistically, non-uniformities of distribution of water and air mass-flow rates across the tower radius must be taken into account. This necessitates at least 2D modeling; and in order to establish the influence of a cross-wind, boundary conditions must be far away from the tower inlet and outlet, and 3D modeling must be performed. This paper is concerned with large wet natural-draught cooling towers of the type used in many steam power stations for cooling large quantities of water by direct contact with the atmosphere. The aim of the present work has been to improve the procedures of calculation by using numerical integration of the heat and mass transfer equations, and to connect internal and external aerodynamics thus enabling wind influence to be studied. It permits predicting the performance of a proposed design of the tower over a range of operating conditions. PHOENICS, a general-purpose computer code for fluid-flow simulation, is used to provide numerical solutions to governing differential equations
Directory of Open Access Journals (Sweden)
Feng Chai
2016-10-01
Full Text Available High power density outer-rotor motors commonly use water or oil cooling. A reasonable thermal design for outer-rotor air-cooling motors can effectively enhance the power density without the fluid circulating device. Research on the heat dissipation mechanism of an outer-rotor air-cooling motor can provide guidelines for the selection of the suitable cooling mode and the design of the cooling structure. This study investigates the temperature field of the motor through computational fluid dynamics (CFD and presents a method to overcome the difficulties in building an accurate temperature field model. The proposed method mainly includes two aspects: a new method for calculating the equivalent thermal conductivity (ETC of the air-gap in the laminar state and an equivalent treatment to the thermal circuit that comprises a hub, shaft, and bearings. Using an outer-rotor air-cooling in-wheel motor as an example, the temperature field of this motor is calculated numerically using the proposed method; the results are experimentally verified. The heat transfer rate (HTR of each cooling path is obtained using the numerical results and analytic formulas. The influences of the structural parameters on temperature increases and the HTR of each cooling path are analyzed. Thereafter, the overload capability of the motor is analyzed in various overload conditions.
Prediction of burnout of a conduction-cooled BSCCO current lead
International Nuclear Information System (INIS)
Seol, S.Y.; Cha, Y.S.; Niemann, R.C.; Hull, J.R.
1996-01-01
A one-dimensional heat conduction model is employed to predict burnout of a Bi 2 Sr 2 CaCu 2 O 8 current lead. The upper end of the lead is assumed to be at 77 K and the lower end is at 4 K. The results show that burnout always occurs at the warmer end of the lead. The lead reaches its burnout temperature in two distinct stage. Initially, the temperature rises slowly when part of the lead is in flux-flow state. As the local temperature reaches the critical temperature, it begins to increase sharply. Burnout time depends strongly on flux-flow resistivity
Model Prediction Control For Water Management Using Adaptive Prediction Accuracy
Tian, X.; Negenborn, R.R.; Van Overloop, P.J.A.T.M.; Mostert, E.
2014-01-01
In the field of operational water management, Model Predictive Control (MPC) has gained popularity owing to its versatility and flexibility. The MPC controller, which takes predictions, time delay and uncertainties into account, can be designed for multi-objective management problems and for
Numerical modelling of series-parallel cooling systems in power plant
Directory of Open Access Journals (Sweden)
Regucki Paweł
2017-01-01
Full Text Available The paper presents a mathematical model allowing one to study series-parallel hydraulic systems like, e.g., the cooling system of a power boiler's auxiliary devices or a closed cooling system including condensers and cooling towers. The analytical approach is based on a set of non-linear algebraic equations solved using numerical techniques. As a result of the iterative process, a set of volumetric flow rates of water through all the branches of the investigated hydraulic system is obtained. The calculations indicate the influence of changes in the pipeline's geometrical parameters on the total cooling water flow rate in the analysed installation. Such an approach makes it possible to analyse different variants of the modernization of the studied systems, as well as allowing for the indication of its critical elements. Basing on these results, an investor can choose the optimal variant of the reconstruction of the installation from the economic point of view. As examples of such a calculation, two hydraulic installations are described. One is a boiler auxiliary cooling installation including two screw ash coolers. The other is a closed cooling system consisting of cooling towers and condensers.
International Nuclear Information System (INIS)
2015-11-01
The demands on nuclear fuel have recently been increasing, and include transient regimes, higher discharge burnup and longer fuel cycles. This has resulted in an increase of loads on fuel and core internals. In order to satisfy these demands while ensuring compliance with safety criteria, new national and international programmes have been launched and advanced modelling codes are being developed. The Fukushima Daiichi accident has particularly demonstrated the need for adequate analysis of all aspects of fuel performance to prevent a failure and also to predict fuel behaviour were an accident to occur.This publication presents the Proceedings of the Technical Meeting on Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents, which was hosted by the Nuclear Power Institute of China (NPIC) in Chengdu, China, following the recommendation made in 2013 at the IAEA Technical Working Group on Fuel Performance and Technology. This recommendation was in agreement with IAEA mid-term initiatives, linked to the post-Fukushima IAEA Nuclear Safety Action Plan, as well as the forthcoming Coordinated Research Project (CRP) on Fuel Modelling in Accident Conditions. At the technical meeting in Chengdu, major areas and physical phenomena, as well as types of code and experiment to be studied and used in the CRP, were discussed. The technical meeting provided a forum for international experts to review the state of the art of code development for modelling fuel performance of nuclear fuel for water cooled reactors with regard to steady state and transient conditions, and for design basis and early phases of severe accidents, including experimental support for code validation. A round table discussion focused on the needs and perspectives on fuel modelling in accident conditions. This meeting was the ninth in a series of IAEA meetings, which reflects Member States’ continuing interest in nuclear fuel issues. The previous meetings were held in 1980 (jointly with
Yu. A. Rounov; O. G. Shirokov; D. I. Zalizny; D. M. Los
2004-01-01
The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.
Directory of Open Access Journals (Sweden)
Yu. A. Rounov
2004-01-01
Full Text Available The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.
Modeling and Control of a Single-Phase Marine Cooling System
DEFF Research Database (Denmark)
Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon
2013-01-01
This paper presents two model-based control design approaches for a single-phase marine cooling system. Models are derived from first principles and aim at describing significant system dynamics including nonlinearities and transport delays, while keeping the model complexity low. The two...
The choice between cooled tubular reactor models: analysis of the hot spot
Westerink, E.J.; Koster, N.; Westerterp, K.R.
1990-01-01
The applicability of the one-dimensional pseudo-homogeneous model of the cooled tubular reactor is studied. Using the two-dimensional model as the more accurate one we compared both models by studying the influence of the design and operating variables on the conditions in the hot spot of the
Inter-subchannel heat transfer modeling for a subchannel analysis of liquid metal-cooled reactors
International Nuclear Information System (INIS)
Hae-Yong, Jeong; Kwi-Seok, Ha; Young-Min, Kwon; Yong-Bum, Lee; Dohee, Hahn
2007-01-01
In a subchannel approach, the temperature, pressure and velocity in a subchannel are averaged, and one representative thermal-hydraulic condition specifies the state of a subchannel. To enhance the predictability of a subchannel analysis code, it is required to model the inter-subchannel heat transfer between the adjacent subchannels as accurately as possible. One of the critical parameters which determine the thermal-hydraulic behavior of the coolant in subchannels is the heat conduction between two neighboring sub-channels. This portion of a heat transfer becomes more important in the design of an LMR (Liquid Metal-cooled Reactor) because of the high heat capacity of the liquid metal coolant. The other important part of heat transfer is the mixing of flow as a form of cross flow. Especially, the turbulent mixing caused by the eddy motion of fluid across the gap between the subchannels enhances the exchange of the momentum and the energy through the gap with no net transport of the mass. Major results of recent efforts on these modeling have been implemented in a subchannel analysis code MATRA-LMR-FB. The analysis shows that the accuracy of a subchannel analysis code is improved by enhancing the models describing the conduction heat transfer and the cross-flow mixing, especially at low flow rate. (authors)
Precipitation model in microalloyed steels both isothermal and continuous cooling conditions
International Nuclear Information System (INIS)
Medina, S. F.; Quispe, A.; Gomez, M.
2015-01-01
Niobium and vanadium precipitates (nitrides and carbides) can inhibit the static recrystallization of austenite but this does not happen for Ti, which form nitrides at high temperatures. RPTT diagrams show the interaction between recrystallization and precipitation allowing study the strain induced precipitation kinetics and precipitate coarsening. Based on Dutta and Sellars expression for the start of strain-induced precipitation in microalloyed steels, a new model has been constructed which takes into account the influence of variables such as microalloying element percentages, strain, temperature, strain rate and grain size. Recrystallization- Precipitation-Time-Temperature (RPTT) diagrams have been plotted thanks to a new experimental study carried out by means of hot torsion tests on approximately twenty microalloyed steels with different Nb, V and Ti contents. Mathematical analysis of the results recommends the modification of some parameters such as the supersaturation ratio (ks) and constant B, which is no longer a constant but a function of ks. The expressions are now more consistent and predict the Precipitation-Time-Temperature (PTT) curves with remarkable accuracy. The model for strain-induced precipitation kinetics is completed by means of Avramis equation. Finally, the model constructed in isothermal testing conditions, it has been converted to continuous cooling conditions in order to apply it in hot rolling. (Author)
Iowa calibration of MEPDG performance prediction models.
2013-06-01
This study aims to improve the accuracy of AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement : performance predictions for Iowa pavement systems through local calibration of MEPDG prediction models. A total of 130 : representative p...
Model complexity control for hydrologic prediction
Schoups, G.; Van de Giesen, N.C.; Savenije, H.H.G.
2008-01-01
A common concern in hydrologic modeling is overparameterization of complex models given limited and noisy data. This leads to problems of parameter nonuniqueness and equifinality, which may negatively affect prediction uncertainties. A systematic way of controlling model complexity is therefore
Two-dimensional modeling of water spray cooling in superheated steam
Directory of Open Access Journals (Sweden)
Ebrahimian Vahid
2008-01-01
Full Text Available Spray cooling of the superheated steam occurs with the interaction of many complex physical processes, such as initial droplet formation, collision, coalescence, secondary break up, evaporation, turbulence generation, and modulation, as well as turbulent mixing, heat, mass and momentum transfer in a highly non-uniform two-phase environment. While it is extremely difficult to systematically study particular effects in this complex interaction in a well defined physical experiment, the interaction is well suited for numerical studies based on advanced detailed models of all the processes involved. This paper presents results of such a numerical experiment. Cooling of the superheated steam can be applied in order to decrease the temperature of superheated steam in power plants. By spraying the cooling water into the superheated steam, the temperature of the superheated steam can be controlled. In this work, water spray cooling was modeled to investigate the influences of the droplet size, injected velocity, the pressure and velocity of the superheated steam on the evaporation of the cooling water. The results show that by increasing the diameter of the droplets, the pressure and velocity of the superheated steam, the amount of evaporation of cooling water increases. .
International Nuclear Information System (INIS)
De Rosa, Mattia; Bianco, Vincenzo; Scarpa, Federico; Tagliafico, Luca A.
2014-01-01
Highlights: • A dynamic model to estimate the energy performance of buildings is presented. • The model is validated against leading software packages, TRNSYS and Energy Plus. • Modified degree days are introduced to account for solar irradiation effects. - Abstract: Degree days represent a versatile climatic indicator which is commonly used in building energy performance analysis. In this context, the present paper proposes a simple dynamic model to simulate heating/cooling energy consumption in buildings. The model consists of several transient energy balance equations for external walls and internal air according to a lumped-capacitance approach and it has been implemented utilizing the Matlab/Simulink® platform. Results are validated by comparison to the outcomes of leading software packages, TRNSYS and Energy Plus. By using the above mentioned model, energy consumption for heating/cooling is analyzed in different locations, showing that for low degree days the inertia effect assumes a paramount importance, affecting the common linear behavior of the building consumption against the standard degree days, especially for cooling energy demand. Cooling energy demand at low cooling degree days (CDDs) is deeply analyzed, highlighting that in this situation other factors, such as solar irradiation, have an important role. To take into account these effects, a correction to CDD is proposed, demonstrating that by considering all the contributions the linear relationship between energy consumption and degree days is maintained
Concept of CFD model of natural draft wet-cooling tower flow
Directory of Open Access Journals (Sweden)
Hyhlík T.
2014-03-01
Full Text Available The article deals with the development of CFD model of natural draft wet-cooling tower flow. The physical phenomena taking place within a natural draft wet cooling tower are described by the system of conservation law equations along with additional equations. The heat and mass transfer in the counterflow wet-cooling tower fill are described by model [1] which is based on the system of ordinary differential equations. Utilization of model [1] of the fill allows us to apply commonly measured fill characteristics as shown by [2].The boundary value problem resulting from the fill model is solved separately. The system of conservation law equations is interlinked with the system of ordinary differential equations describing the phenomena occurring in the counterflow wet-cooling tower fill via heat and mass sources and via boundary conditions. The concept of numerical solution is presented for the quasi one dimensional model of natural draft wet-cooling tower flow. The simulation results are shown.
Spallation Neutron Source Drift Tube Linac Resonance Control Cooling System Modeling
Tang, Johnny Y; Champion, Marianne M; Feschenko, Alexander; Gibson, Paul; Kiselev, Yuri; Kovalishin, A S; Kravchuk, Leonid V; Kvasha, Adolf; Schubert, James P
2005-01-01
The Resonance Control Cooling System (RCCS) for the warm linac of the Spallation Neutron Source was designed by Los Alamos National Laboratory. The primary design focus was on water cooling of individual component contributions. The sizing the RCCS water skid was accomplished by means of a specially created SINDA/FLUINT model tailored to these system requirements. A new model was developed in Matlab Simulink and incorporates actual operational values and control valve interactions. Included is the dependence of RF input power on system operation, cavity detuning values during transients, time delays that result from water flows through the heat exchanger, the dynamic process of water warm-up in the cooling system due to dissipated RF power on the cavity surface, differing contributions on the cavity detuning due to drift tube and wall heating, and a dynamic model of the heat exchanger with characteristics in close agreement to the real unit. Because of the Matlab Simulink model, investigation of a wide range ...
Directory of Open Access Journals (Sweden)
V. Yu. Stetsenko
2012-01-01
Full Text Available Numerical modeling of heat transfer coefficient on the surface of the water-cooled rod with a slotted and jet cooling was made. calculations were carried out in a free, open source CFD software package OpenFOAM. it is shown that jet cooling is more uniform and intense compared to the slotted cooling.
International Nuclear Information System (INIS)
Choi, B.; Pearce, J.A.; Welch, A.J.
2000-01-01
The use of thermographic techniques has increased as infrared detector technology has evolved and improved. For laser-tissue interactions, thermal cameras have been used to monitor the thermal response of tissue to pulsed and continuous wave irradiation. It is important to note that the temperature indicated by the thermal camera may not be equal to the actual surface temperature. It is crucial to understand the limitations of using thermal cameras to measure temperature during laser irradiation of tissue. The goal of this study was to demonstrate the potential difference between measured and actual surface temperatures in a quantitative fashion using a 1D finite difference model. Three ablation models and one cryogen spray cooling simulation were adapted from the literature, and predictions of radiometric temperature measurements were calculated. In general, (a) steep superficial temperature gradients, with a surface peak, resulted in an underestimation of the actual surface temperature, (b) steep superficial temperature gradients, with a subsurface peak, resulted in an overestimation, and (c) small gradients led to a relatively accurate temperature estimate. (author)
Nonlinear chaotic model for predicting storm surges
Directory of Open Access Journals (Sweden)
M. Siek
2010-09-01
Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.
Staying Power of Churn Prediction Models
Risselada, Hans; Verhoef, Peter C.; Bijmolt, Tammo H. A.
In this paper, we study the staying power of various churn prediction models. Staying power is defined as the predictive performance of a model in a number of periods after the estimation period. We examine two methods, logit models and classification trees, both with and without applying a bagging
Predictive user modeling with actionable attributes
Zliobaite, I.; Pechenizkiy, M.
2013-01-01
Different machine learning techniques have been proposed and used for modeling individual and group user needs, interests and preferences. In the traditional predictive modeling instances are described by observable variables, called attributes. The goal is to learn a model for predicting the target
The Design of Cooling System Model on The AP1000 Containment
International Nuclear Information System (INIS)
Daddy Setyawan; Yerri Noer Kartiko; Aryadi Suwono; Ari Darmawan Pasek; Nathanael P Tandian; Efrizon Umar
2009-01-01
The policy of national energy leads to the utilization of new energy as nuclear energy, and also contains some efforts to increase reactor safety and optimizing in the design of safety system component such as passive cooling system on reactor containment tank. Because of this, the assessment of safety level to passive safety system needs to be made. To increase the understanding it, the design of cooling system model on containment tank should be done to get safety level on cooling system in the AP1000 containment. To reach the similar model with reality and inexpensive cost, we should make assessment about similarity and dimensionless number. While the heat transfer of air natural circulation and water spray cooling system are a result of gravity approach, we can calculate Grashof modification number and Reynolds number respectively. By this approach, we have a factor of forty for laboratory model. From this model, we hope that we get characteristic correlation to heat transfer on the containment of AP1000 for both air natural circulation and water spray result from gravity. Finally, we can assess the safety level of passive cooling system on the AP1000 containment. (author)
EFFICIENT PREDICTIVE MODELLING FOR ARCHAEOLOGICAL RESEARCH
Balla, A.; Pavlogeorgatos, G.; Tsiafakis, D.; Pavlidis, G.
2014-01-01
The study presents a general methodology for designing, developing and implementing predictive modelling for identifying areas of archaeological interest. The methodology is based on documented archaeological data and geographical factors, geospatial analysis and predictive modelling, and has been applied to the identification of possible Macedonian tombs’ locations in Northern Greece. The model was tested extensively and the results were validated using a commonly used predictive gain, which...
Theoretical Models for the Cooling Power and Base Temperature of Dilution Refrigerators
Wikus, Patrick
2010-01-01
He-3/He-4 dilution refrigerators are widely used for applications requiring continuous cooling at temperatures below approximately 300 mK. Despite of the popularity of these devices in low temperature physics, the thermodynamic relations underlying the cooling mechanism of He-3/He-4 refrigerators are very often incorrectly used. Several thermodynamic models of dilution refrigeration have been published in the past, sometimes contradicting each other. These models are reviewed and compared with each other over a range of different He-3 flow rates. In addition, a new numerical method for the calculation of a dilution refrigerator's cooling power at arbitrary flow rates is presented. This method has been developed at CERN's Central Cryogenic Laboratory. It can be extended to include many effects that cannot easily be accounted for by any of the other models, including the degradation of heat exchanger performance due to the limited number of step heat exchanger elements, which can be considerable for some design...
From drop impact physics to spray cooling models: a critical review
Breitenbach, Jan; Roisman, Ilia V.; Tropea, Cameron
2018-03-01
Spray-wall interaction is an important process encountered in a large number of existing and emerging technologies and is the underlying phenomenon associated with spray cooling. Spray cooling is a very efficient technology, surpassing all other conventional cooling methods, especially those not involving phase change and not exploiting the latent heat of vaporization. However, the effectiveness of spray cooling is dependent on a large number of parameters, including spray characteristics like drop size, velocity and number density, the surface morphology, but also on the temperature range and thermal properties of the materials involved. Indeed, the temperature of the substrate can have significant influence on the hydrodynamics of drop and spray impact, an aspect which is seldom considered in model formulation. This process is extremely complex, thus most design rules to date are highly empirical in nature. On the other hand, significant theoretical progress has been made in recent years about the interaction of single drops with heated walls and improvements to the fundamentals of spray cooling can now be anticipated. The present review has the objective of summarizing some of these recent advances and to establish a framework for future development of more reliable and universal physics-based correlations to describe quantities involved in spray cooling.
Reliability Model of Power Transformer with ONAN Cooling
M. Sefidgaran; M. Mirzaie; A. Ebrahimzadeh
2010-01-01
Reliability of a power system is considerably influenced by its equipments. Power transformers are one of the most critical and expensive equipments of a power system and their proper functions are vital for the substations and utilities. Therefore, reliability model of power transformer is very important in the risk assessment of the engineering systems. This model shows the characteristics and functions of a transformer in the power system. In this paper the reliability model...
Robust predictions of the interacting boson model
International Nuclear Information System (INIS)
Casten, R.F.; Koeln Univ.
1994-01-01
While most recognized for its symmetries and algebraic structure, the IBA model has other less-well-known but equally intrinsic properties which give unavoidable, parameter-free predictions. These predictions concern central aspects of low-energy nuclear collective structure. This paper outlines these ''robust'' predictions and compares them with the data
Comparison of Prediction-Error-Modelling Criteria
DEFF Research Database (Denmark)
Jørgensen, John Bagterp; Jørgensen, Sten Bay
2007-01-01
Single and multi-step prediction-error-methods based on the maximum likelihood and least squares criteria are compared. The prediction-error methods studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model, which is a r...
Test results of the SMES model coil. Cool-down and thermal characteristics
International Nuclear Information System (INIS)
Hamada, Kazuya; Kato, Takashi; Kawano, Katsumi
1998-01-01
A model coil of a superconducting magnetic energy storage (SMES) device, which is a forced-cooled Nb-Ti coil, has been fabricated and a performance test at cryogenic temperatures has been carried out. The SMES model coil is composed of 4 dual pancakes and its total weight is 4.5 t. The applied conductors are cable-in-conduit conductors cooled by supercritical helium (SHe) at 4.5 K and 0.7 MPa. SHe is supplied to the SMES model coil and the structure by a reciprocating bellows pump. The test facility is located at the International Thermonuclear Experimental Reactor (ITER) common test facility, was constructed for the testing of an ITER central solenoid model coil. In the experiments, cool-down was finished within 10 days under controlled temperature differences in the SMES model coil. During cool-down and 4.5 K operation, pressure drop characteristics of the conductor were measured and the friction factor estimated. The pressure drop characteristics of the SMES model coil were in good agreement with those of the previous cable-in-conduit conductor. During static operation without current, the heat load and refrigerator operation conditions were measured. The heat load of the SMES model coil is 7.5 W, which is within the expected value. (author)
Domestic appliances energy optimization with model predictive control
International Nuclear Information System (INIS)
Rodrigues, E.M.G.; Godina, R.; Pouresmaeil, E.; Ferreira, J.R.; Catalão, J.P.S.
2017-01-01
Highlights: • An alternative power management control for home appliances that require thermal regulation is presented. • A Model Predictive Control scheme is assessed and its performance studied and compared to the thermostat. • Problem formulation is explored through tuning weights with the aim of reducing energetic consumption and cost. • A modulation scheme of a two-level Model Predictive Control signal as an interface block is presented. • The implementation costs in home appliances with thermal regulation requirements are reduced. - Abstract: A vital element in making a sustainable world is correctly managing the energy in the domestic sector. Thus, this sector evidently stands as a key one for to be addressed in terms of climate change goals. Increasingly, people are aware of electricity savings by turning off the equipment that is not been used, or connect electrical loads just outside the on-peak hours. However, these few efforts are not enough to reduce the global energy consumption, which is increasing. Much of the reduction was due to technological improvements, however with the advancing of the years new types of control arise. Domestic appliances with the purpose of heating and cooling rely on thermostatic regulation technique. The study in this paper is focused on the subject of an alternative power management control for home appliances that require thermal regulation. In this paper a Model Predictive Control scheme is assessed and its performance studied and compared to the thermostat with the aim of minimizing the cooling energy consumption through the minimization of the energy cost while satisfying the adequate temperature range for the human comfort. In addition, the Model Predictive Control problem formulation is explored through tuning weights with the aim of reducing energetic consumption and cost. For this purpose, the typical consumption of a 24 h period of a summer day was simulated a three-level tariff scheme was used. The new
Modeling of the corium cooling and loading factor analysis for containment during severe accidents
International Nuclear Information System (INIS)
Konoval, A.V.; Kalvand, Ali.; Kazachkov, I.V.
2013-01-01
The paper is devoted to the development and study of the mathematical model for corium melt interaction with low-temperature melting blocks in the passive protection systems (PPS) against severe accidents at the NPP, and learning the peculiarities of construction and operation of the PPS. The configurations of cooling blocks' distributions considered and the results of their work in the corium cooling pool are compared to the data of other PPS's conceptions. The conclusion is made that the models developed and the results obtained may be useful for constructing the PPS against severe accidents
Modeling of the corium cooling and loading factor analysis for containment during severe accidents
Directory of Open Access Journals (Sweden)
O. V. Konoval
2013-09-01
Full Text Available The paper is devoted to the development and study of the mathematical model for corium melt interaction with low-temperature melting blocks in the passive protection systems (PPS against severe accidents at the NPP, and learning the peculiarities of construction and operation of the PPS. The configurations of cooling blocks’ distributions considered and the results of their work in the corium cooling pool are compared to the data of oth-er PPS’s conceptions. The conclusion is made that the models developed and the results obtained may be useful for constructing the PPS against severe accidents.
A model for cooling systems analysis under natural convection
International Nuclear Information System (INIS)
Santos, S.J. dos.
1988-01-01
The present work analyses thermosyphons and their non dimensional numbers. The mathematical model considers constant pressure, single-phase incompressible flow. It simulates both open and closed thermosyphons, and deals with heat sources like PWR cores of electrical heaters and cold sinks like heat exchangers or reservoirs. A computer code named STRATS was developed based on this model. (author)
International Nuclear Information System (INIS)
Hou Zhijian; Lian Zhiwei; Yao Ye; Yuan Xinjian
2006-01-01
A novel method integrating rough sets (RS) theory and an artificial neural network (ANN) based on data-fusion technique is presented to forecast an air-conditioning load. Data-fusion technique is the process of combining multiple sensors data or related information to estimate or predict entity states. In this paper, RS theory is applied to find relevant factors to the load, which are used as inputs of an artificial neural-network to predict the cooling load. To improve the accuracy and enhance the robustness of load forecasting results, a general load-prediction model, by synthesizing multi-RSAN (MRAN), is presented so as to make full use of redundant information. The optimum principle is employed to deduce the weights of each RSAN model. Actual prediction results from a real air-conditioning system show that, the MRAN forecasting model is better than the individual RSAN and moving average (AMIMA) ones, whose relative error is within 4%. In addition, individual RSAN forecasting results are better than that of ARIMA
Das, Prosenjit; Samanta, Sudip K.; Mondal, Biswanath; Dutta, Pradip
2018-04-01
In the present paper, we present an experimentally validated 3D multiphase and multiscale solidification model to understand the transport processes involved during slurry generation with a cooling slope. In this process, superheated liquid alloy is poured at the top of the cooling slope and allowed to flow along the slope under the influence of gravity. As the melt flows down the slope, it progressively loses its superheat, starts solidifying at the melt/slope interface with formation of solid crystals, and eventually exits the slope as semisolid slurry. In the present simulation, the three phases considered are the parent melt as the primary phase, and the solid grains and air as secondary phases. The air phase forms a definable air/liquid melt interface as the free surface. After exiting the slope, the slurry fills an isothermal holding bath maintained at the slope exit temperature, which promotes further globularization of microstructure. The outcomes of the present model include prediction of volume fractions of the three different phases considered, grain evolution, grain growth, size, sphericity and distribution of solid grains, temperature field, velocity field, macrosegregation and microsegregation. In addition, the model is found to be capable of making predictions of morphological evolution of primary grains at the onset of isothermal coarsening. The results obtained from the present simulations are validated by performing quantitative image analysis of micrographs of the rapidly oil-quenched semisolid slurry samples, collected from strategic locations along the slope and from the isothermal slurry holding bath.
modelling room cooling capacity with fuzzy logic procedure
African Journals Online (AJOL)
user
The human calculation and model results were observed to be strongly correlated ... questions and; provide information to aid in the design and development of the ..... Journal on Computer Science and Engineering, Vol., 3. Number 2, 2011.
Extracting falsifiable predictions from sloppy models.
Gutenkunst, Ryan N; Casey, Fergal P; Waterfall, Joshua J; Myers, Christopher R; Sethna, James P
2007-12-01
Successful predictions are among the most compelling validations of any model. Extracting falsifiable predictions from nonlinear multiparameter models is complicated by the fact that such models are commonly sloppy, possessing sensitivities to different parameter combinations that range over many decades. Here we discuss how sloppiness affects the sorts of data that best constrain model predictions, makes linear uncertainty approximations dangerous, and introduces computational difficulties in Monte-Carlo uncertainty analysis. We also present a useful test problem and suggest refinements to the standards by which models are communicated.
The prediction of epidemics through mathematical modeling.
Schaus, Catherine
2014-01-01
Mathematical models may be resorted to in an endeavor to predict the development of epidemics. The SIR model is one of the applications. Still too approximate, the use of statistics awaits more data in order to come closer to reality.
Calibration of PMIS pavement performance prediction models.
2012-02-01
Improve the accuracy of TxDOTs existing pavement performance prediction models through calibrating these models using actual field data obtained from the Pavement Management Information System (PMIS). : Ensure logical performance superiority patte...
Evaluating Predictive Uncertainty of Hyporheic Exchange Modelling
Chow, R.; Bennett, J.; Dugge, J.; Wöhling, T.; Nowak, W.
2017-12-01
Hyporheic exchange is the interaction of water between rivers and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic fluxes have been attributed to the representation of heterogeneous subsurface properties. This research aims to evaluate which aspect of the subsurface representation - the spatial distribution of hydrofacies or the model for local-scale (within-facies) heterogeneity - most influences the predictive uncertainty. Also, we seek to identify data types that help reduce this uncertainty best. For this investigation, we conduct a modelling study of the Steinlach River meander, in Southwest Germany. The Steinlach River meander is an experimental site established in 2010 to monitor hyporheic exchange at the meander scale. We use HydroGeoSphere, a fully integrated surface water-groundwater model, to model hyporheic exchange and to assess the predictive uncertainty of hyporheic exchange transit times (HETT). A highly parameterized complex model is built and treated as `virtual reality', which is in turn modelled with simpler subsurface parameterization schemes (Figure). Then, we conduct Monte-Carlo simulations with these models to estimate the predictive uncertainty. Results indicate that: Uncertainty in HETT is relatively small for early times and increases with transit times. Uncertainty from local-scale heterogeneity is negligible compared to uncertainty in the hydrofacies distribution. Introducing more data to a poor model structure may reduce predictive variance, but does not reduce predictive bias. Hydraulic head observations alone cannot constrain the uncertainty of HETT, however an estimate of hyporheic exchange flux proves to be more effective at reducing this uncertainty. Figure: Approach for evaluating predictive model uncertainty. A conceptual model is first developed from the field investigations. A complex model (`virtual reality') is then developed based on that conceptual model
International Nuclear Information System (INIS)
Lambert, Philippa; Lepine, Gaelle; Rapenne, Sophie; Demay, Eric; Jardin, Audrey; Shakourzadeh, Khalil; Alos-Ramos, Olga
2012-09-01
The main issue of condenser open recirculating cooling systems remains scaling. This can have high economic consequences due to a loss of thermal exchange, an increase of maintenance costs and potentially plant shutdown. To tackle this problem, EDF is currently designing new chemicals' dosing equipment for anti-scalants or acid. To optimise treatment cost and limit the chemicals' environmental impact, dosing and control systems should be efficient enough to add only the required quantity to prevent scaling without overdosing. CooliSS C , a model developed for simulating the water chemistry of open recirculating cooling systems, can be used to adjust acid dosage and to pre-evaluate selected acid control systems. In circuits with no current treatment, where the scaling situation is being monitored, CooliSS C is a useful tool in predicting scaling potential and could even be used to predict the expected quantity of deposits. In the first case study, CooliSS ST, the static version of the model, was used to evaluate the sulfuric acid injection needs for Golfech nuclear power plant following a modification to the condenser cooling water circuit operating conditions. The results obtained via simulation were compared with manual calculations in order to demonstrate the accuracy of the software. In the second case study, CooliSS DX, the dynamic version of the CooliSS C model, was used to evaluate new acid control systems planned for Cruas nuclear power plant before the systems' commissioning. CooliSS DX predicts the scaling rate in the different parts of the cooling water system as a function of time. In fact, this version is able to calculate the variations of chemical composition along the circuit when operating conditions change (make-up quality, flow rates, evaporation rate, temperature...). A module was combined to CooliSS DX to evaluate acid control equipment. This module allows the initial calculation of the acid flow rate as a function of operating
Modeling and simulation of an activated carbon–CO2 four bed based adsorption cooling system
International Nuclear Information System (INIS)
Jribi, Skander; Saha, Bidyut Baran; Koyama, Shigeru; Bentaher, Hatem
2014-01-01
Highlights: • A transient mathematical model of a 4-bed adsorption chiller is proposed. • The performances of the cyclic-steady-state system are presented for different heating and cooling water inlet temperatures. • The desorption pressure has a big influence in the performances. • With 80 kg of Maxsorb III, the CO 2 based adsorption chiller produces 2 kW of cooling power and presents a COP of 0.1. - Abstract: In this study, a transient mathematical model of a 4-bed adsorption chiller using Maxsorb III as the adsorbent and CO 2 as the refrigerant has been analyzed. The performances of the cyclic-steady-state system are presented for different heating and cooling water inlet temperatures. It is found that the desorption pressure has a big influence in the performances due to the low critical point of CO 2 (T c = 31 °C). With 80 kg of Maxsorb III, the CO 2 based adsorption chiller produces 2 kW of cooling power and presents a COP of 0.1, at driving heat source temperature of 95 °C along with a cooling temperature of 27 °C and at optimum desorption pressure of 79 bar. The present thermal compression air-conditioning system could be driven with solar energy or waste heat from internal combustion engines and therefore is suitable for both residential and mobile air-conditioning applications
Directory of Open Access Journals (Sweden)
Shao Jian
2014-10-01
Full Text Available Little attention had been given to the evaluation of subsectional cooling control ability under complicated working conditions. In this paper, heat generation was calculated by using finite difference method. Strip hardening, work roll elastic deformation and elastic recovery of strip were taken into account. The mean coefficient of convective heat transfer on work roll surface was simulated by FLUENT. Calculation model had used the alternative finite difference scheme, which improved the model stability and computing speed. The simulation result shows that subsectional cooling control ability is different between different rolling passes. Positive and negative control abilities are roughly the same in the same pass. The increase of rolled length, working pressure of header and friction coefficient has positive effect on subsectional cooling control ability, and the rolling speed is on the contrary. On the beginning of the pass, when work roll surface has not reached the stable temperature, control ability of subsectional cooling is mainly affected by rolled length. The effect of mean coefficient of convective heat transfer and coefficient of friction is linear. When rolling speed is over 500 m/min, control ability of subsectional cooling becomes stable.
Energy Technology Data Exchange (ETDEWEB)
Kaellblad, K
1998-05-01
The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs
Case studies in archaeological predictive modelling
Verhagen, Jacobus Wilhelmus Hermanus Philippus
2007-01-01
In this thesis, a collection of papers is put together dealing with various quantitative aspects of predictive modelling and archaeological prospection. Among the issues covered are the effects of survey bias on the archaeological data used for predictive modelling, and the complexities of testing
Pretorius, Thea; Lix, Lisa; Giesbrecht, Gordon
2011-03-01
Previous studies showed that core cooling rates are similar when only the head or only the body is cooled. Structural equation modeling was used on data from two cold water studies involving body-only, or whole body (including head) cooling. Exposure of both the body and head increased core cooling, while only body cooling elicited shivering. Body fat attenuates shivering and core cooling. It is postulated that this protection occurs mainly during body cooling where fat acts as insulation against cold. This explains why head cooling increases surface heat loss with only 11% while increasing core cooling by 39%. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wessler, Benjamin S; Lai Yh, Lana; Kramer, Whitney; Cangelosi, Michael; Raman, Gowri; Lutz, Jennifer S; Kent, David M
2015-07-01
Clinical prediction models (CPMs) estimate the probability of clinical outcomes and hold the potential to improve decision making and individualize care. For patients with cardiovascular disease, there are numerous CPMs available although the extent of this literature is not well described. We conducted a systematic review for articles containing CPMs for cardiovascular disease published between January 1990 and May 2012. Cardiovascular disease includes coronary heart disease, heart failure, arrhythmias, stroke, venous thromboembolism, and peripheral vascular disease. We created a novel database and characterized CPMs based on the stage of development, population under study, performance, covariates, and predicted outcomes. There are 796 models included in this database. The number of CPMs published each year is increasing steadily over time. Seven hundred seventeen (90%) are de novo CPMs, 21 (3%) are CPM recalibrations, and 58 (7%) are CPM adaptations. This database contains CPMs for 31 index conditions, including 215 CPMs for patients with coronary artery disease, 168 CPMs for population samples, and 79 models for patients with heart failure. There are 77 distinct index/outcome pairings. Of the de novo models in this database, 450 (63%) report a c-statistic and 259 (36%) report some information on calibration. There is an abundance of CPMs available for a wide assortment of cardiovascular disease conditions, with substantial redundancy in the literature. The comparative performance of these models, the consistency of effects and risk estimates across models and the actual and potential clinical impact of this body of literature is poorly understood. © 2015 American Heart Association, Inc.
Durability and life prediction modeling in polyimide composites
Binienda, Wieslaw K.
1995-01-01
Sudden appearance of cracks on a macroscopically smooth surface of brittle materials due to cooling or drying shrinkage is a phenomenon related to many engineering problems. Although conventional strength theories can be used to predict the necessary condition for crack appearance, they are unable to predict crack spacing and depth. On the other hand, fracture mechanics theory can only study the behavior of existing cracks. The theory of crack initiation can be summarized into three conditions, which is a combination of a strength criterion and laws of energy conservation, the average crack spacing and depth can thus be determined. The problem of crack initiation from the surface of an elastic half plane is solved and compares quite well with available experimental evidence. The theory of crack initiation is also applied to concrete pavements. The influence of cracking is modeled by the additional compliance according to Okamura's method. The theoretical prediction by this structural mechanics type of model correlates very well with the field observation. The model may serve as a theoretical foundation for future pavement joint design. The initiation of interactive cracks of quasi-brittle material is studied based on a theory of cohesive crack model. These cracks may grow simultaneously, or some of them may close during certain stages. The concept of crack unloading of cohesive crack model is proposed. The critical behavior (crack bifurcation, maximum loads) of the cohesive crack model are characterized by rate equations. The post-critical behavior of crack initiation is also studied.
A modular approach to lead-cooled reactors modelling
Energy Technology Data Exchange (ETDEWEB)
Casamassima, V. [CESI RICERCA, via Rubattino 54, I-20134 Milano (Italy)], E-mail: casamassima@cesiricerca.it; Guagliardi, A. [CESI RICERCA, via Rubattino 54, I-20134 Milano (Italy)], E-mail: guagliardi@cesiricerca.it
2008-06-15
After an overview of the lego plant simulation tools (LegoPST), the paper gives some details about the ongoing LegoPST extension for modelling lead fast reactor plants. It refers to a simple mathematical model of the liquid lead channel dynamic process and shows the preliminary results of its application in dynamic simulation of the BREST 300 liquid lead steam generator. Steady state results agree with reference data [IAEA-TECDOC 1531, Fast Reactor Database, 2006 Update] both for water and lead.
A modular approach to lead-cooled reactors modelling
International Nuclear Information System (INIS)
Casamassima, V.; Guagliardi, A.
2008-01-01
After an overview of the lego plant simulation tools (LegoPST), the paper gives some details about the ongoing LegoPST extension for modelling lead fast reactor plants. It refers to a simple mathematical model of the liquid lead channel dynamic process and shows the preliminary results of its application in dynamic simulation of the BREST 300 liquid lead steam generator. Steady state results agree with reference data [IAEA-TECDOC 1531, Fast Reactor Database, 2006 Update] both for water and lead
FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES
International Nuclear Information System (INIS)
Tremblin, P.; Amundsen, D. S.; Mourier, P.; Baraffe, I.; Chabrier, G.; Drummond, B.; Homeier, D.; Venot, O.
2015-01-01
This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral types T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g., other types of clouds or internal energy transport mechanisms. We use a one-dimensional radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H 2 -H 2 , H 2 -He, H 2 O, CO, CO 2 , CH 4 , NH 3 , K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH 3 quenching are taken into account. T dwarf spectra still have some reddening in, e.g., J–H, compared to cloudless models. This reddening can be reproduced by slightly reducing the temperature gradient in the atmosphere. We propose that this reduction of the stabilizing temperature gradient in these layers, leading to cooler structures, is due to the onset of fingering convection, triggered by the destabilizing impact of condensation of very thin dust
FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES
Energy Technology Data Exchange (ETDEWEB)
Tremblin, P.; Amundsen, D. S.; Mourier, P.; Baraffe, I.; Chabrier, G.; Drummond, B. [Astrophysics Group, University of Exeter, EX4 4QL Exeter (United Kingdom); Homeier, D. [Ecole Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, F-69364 Lyon Cedex 07 (France); Venot, O., E-mail: tremblin@astro.ex.ac.uk, E-mail: pascal.tremblin@cea.fr [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)
2015-05-01
This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral types T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g., other types of clouds or internal energy transport mechanisms. We use a one-dimensional radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H{sub 2}-H{sub 2}, H{sub 2}-He, H{sub 2}O, CO, CO{sub 2}, CH{sub 4}, NH{sub 3}, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH{sub 3} quenching are taken into account. T dwarf spectra still have some reddening in, e.g., J–H, compared to cloudless models. This reddening can be reproduced by slightly reducing the temperature gradient in the atmosphere. We propose that this reduction of the stabilizing temperature gradient in these layers, leading to cooler structures, is due to the onset of fingering convection, triggered by the destabilizing impact of condensation of very thin dust.
Application of Sub-cooled Boiling Model to Thermal-hydraulic Analysis Inside a CANDU-6 Fuel Channel
International Nuclear Information System (INIS)
Kim, Man Woong; Lee, Sang Kyu; Kim, Hyun Koon; Yoo, Kun Joong; Kang, Hyoung Chul; Yoo, Seong Yeon
2007-01-01
Forced convection nucleate boiling is encountered in heat exchangers during normal and non-nominal modes of operation in pressurized water or boiling water reactors (PWRs or BWRs). If the wall temperature of the piping is higher than the saturation temperature of the nearby liquid, nucleate boiling occurs. In this regime, bubbles are formed at the wall. Their growth is promoted by the wall superheat (the difference between the wall and saturation temperatures), and they depart from the wall as a result of gravitational and liquid inertia forces. If the bulk liquid is subcooled, condensation at the bubble-liquid interface takes place and the bubble may collapse. This convection nucleate boiling is called as a sub-cooled nucleate boiling. As for the fuel channel of a CANDU 6 reactor, forced convection nucleate boiling models for flows along fuel elements enclosed inside typical CANDU-6 fuel channel has encountered difficulties due to the modeling of local effects along the horizontal channel. Therefore, the subcooled nucleate boiling has been modeled through temperature driven boiling heat and mass transfer, using a model developed at Rensselaer Polytechnic Institute. The objectives of this study are: (i) to investigate a proposed sub-cooled boiling model developed at Rensselaer Polytechnic Institute and (ii) to apply against a experiment and (iii) to predict local distributions of flow fields for the actual fuel channel geometries of CANDU-6 reactors. The numerical implementation is conducted using by the FLUENT 6.2 CFD computer code
Modelling of Transport of Radioactive Substances in the Primary Circuit of Water Cooled Reactors
International Nuclear Information System (INIS)
2012-03-01
Since the beginning of the development of water cooled nuclear power reactors, it has been known that the materials in contact with the water release some of their corrosion products into the water. As a consequence, some of the corrosion products are neutron-activated while in the reactor core and then create a gamma radiation field when deposited outside the core. These radiation fields are hazardous to the inspection, maintenance and operating staff in the power plant and therefore must be minimized. Many methods have been developed to control these radiation fields, such as the proper selection of materials and surface finishing technologies at the design stage, operating and shutdown water chemistry optimization, and the application of different decontamination methods. The need to understand the causes of this radioactivity transport has resulted in many mathematical models to describe the transport, irradiation and deposition of the radioactive corrosion products out of the core. Early models were empirical descriptions of the transport, irradiation and deposition steps, and these models allowed analytical solution of the resulting differential equations. As the mechanisms responsible for radioactivity transport gradually became better understood, more precise models of the mechanisms were made. Computer codes to solve the equations describing these models are necessary. Accurate codes are invaluable design tools for carrying out cost-benefit analysis during materials selection, for estimating shielding thicknesses and for evaluating water chemistry specifications, for example. Such codes are also useful in operating plants to predict radiation fields at specific locations where shielding may be required during a maintenance shutdown, for example, when control of radiation dose to staff is essential. To complement the previous work of the International Atomic Energy Agency (IAEA) to improve the mechanistic understanding of radioactivity transport, a
Hyhlík, Tomáš
2018-06-01
The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.
Directory of Open Access Journals (Sweden)
Hyhlík Tomáš
2018-01-01
Full Text Available The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.
Incorporating uncertainty in predictive species distribution modelling.
Beale, Colin M; Lennon, Jack J
2012-01-19
Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.
Model Predictive Control for Smart Energy Systems
DEFF Research Database (Denmark)
Halvgaard, Rasmus
pumps, heat tanks, electrical vehicle battery charging/discharging, wind farms, power plants). 2.Embed forecasting methodologies for the weather (e.g. temperature, solar radiation), the electricity consumption, and the electricity price in a predictive control system. 3.Develop optimization algorithms....... Chapter 3 introduces Model Predictive Control (MPC) including state estimation, filtering and prediction for linear models. Chapter 4 simulates the models from Chapter 2 with the certainty equivalent MPC from Chapter 3. An economic MPC minimizes the costs of consumption based on real electricity prices...... that determined the flexibility of the units. A predictive control system easily handles constraints, e.g. limitations in power consumption, and predicts the future behavior of a unit by integrating predictions of electricity prices, consumption, and weather variables. The simulations demonstrate the expected...
International Nuclear Information System (INIS)
Singh, Rupesh; Das, Koushik; Okajima, Junnosuke; Maruyama, Shigenao; Mishra, Subhash C.
2015-01-01
This article deals with the spatial and the temporal evolution of tissue temperature during skin surface cooled laser induced hyperthermia. Three different skin surface cooling methodologies viz., optical window contact cooling, cryogenic spray cooling and cryogen cooled optical window contact cooling are considered. Sapphire, yttrium aluminum garnet, lithium tantalate, and magnesium oxide doped lithium niobate are the considered optical windows. The cryogens considered are liquid CO_2 and R1234yf. Heat transfer in the multilayer skin tissue embedded with thermally significant blood vessels pairs is modeled using the Pennes and Weinbaum–Jiji bioheat equations. Weinbaum–Jiji bioheat equation is used for the vascularized tissue. Laser transport in the tissue is modeled using the radiative transfer equation. Axial and radial (skin surface) temperature distributions for different combinations of optical windows and cryogens are analyzed. Liquid CO_2 cooled yttrium aluminum garnet is found to be the best surface cooling mechanism. - Highlights: • Skin surface cooled laser induced hyperthermia is studied. • A multi-layer 2-D cylindrical tissue geometry is considered. • Both Pennes and Weinbaum–Jiji bioheat models are considered. • Laser transport in the tissue is modeled using discrete ordinate method. • Results for 4 optical windows and 2 cryogens for skin cooling are presented.
Energy Technology Data Exchange (ETDEWEB)
Cousineau, Justine E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chieduko, Victor [UQM Technologies, Inc.; Lall, Rajiv [UQM Technologies, Inc.; Gilbert, Alan [UQM Technologies, Inc.
2018-05-08
Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. The results were compared to currently available models for contact resistance, and one model was adapted for prediction of TCR in future motor designs.
Design and performance prediction of solar adsorption cooling for mobile vaccine refrigerator
Djubaedah, Euis; Taufan, Andi; Ratnasari, Nadhira; Fahrizal, Adjie; Hamidi, Qayyum; Nasruddin
2017-03-01
Adsorption cooling is a process that uses a drop-in pressure caused by the adsorption of adsorbate by adsorbent. Adsorption process creates a pressure drop which can bring down the temperature to the intended condition. This approach can be used in vaccine transportation as the vaccines need to be stored at low temperatures (2°C to 8°C for preserving vaccines). The pressure decrease can be obtained by adsorption water in zeolites and can also produce the temperature drop in the main chamber. The adsorption process of water will decrease until reaching saturation condition. Heat is needed to keep the system continuous as it starts a desorption process. From the simulation using MATLAB, it is found that the mobile vaccine refrigerator can reach the temperature of 2°C in 180 seconds with the amount of cooling power generated is up to 1530 W. The insulation can hold the allowable temperature range inside the vaccine cabin for 15.6795 hours.
Cooling problems of thermal power plants. Physical model studies
International Nuclear Information System (INIS)
Neale, L.C.
1975-01-01
The Alden Research Laboratories of Worcester Polytechnic Institute has for many years conducted physical model studies, which are normally classified as river or structural hydraulic studies. Since 1952 one aspect of these studies has involved the heated discharge from steam power plants. The early studies on such problems concentrated on improving the thermal efficiency of the system. This was accomplished by minimizing recirculation and by assuring full use of available cold water supplies. With the growing awareness of the impact of thermal power generation on the environment attention has been redirected to reducing the effect of heated discharges on the biology of the receiving body of water. More specifically the efforts of designers and operators of power plants are aimed at meeting or complying with standards established by various governmental agencies. Thus the studies involve developing means of minimizing surface temperatures at an outfall or establishing a local area of higher temperature with limits specified in terms of areas or distances. The physical models used for these studies have varied widely in scope, size, and operating features. These models have covered large areas with both distorted geometric scales and uniform dimensions. Instrumentations has also varied from simple mercury thermometers to computer control and processing of hundreds of thermocouple indicators
Directory of Open Access Journals (Sweden)
A. M. El-Jummah
2017-02-01
Full Text Available Numerical calculations relevant to gas turbine internal wall heat transfer cooling were conducted using conjugate heat transfer (CHT computational Fluid Dynamics (CFD commercial codes. The CHT CFD predictions were carried out for impingement heat transfer with different types of obstacle walls (fins on the target surfaces. A 10 × 10 row of impingement air jet holes (or hole density n of 4306 m-2 was used, which gives ten rows of holes in the cross-flow direction and only one heat transfer enhancement obstacle per impingement jet was investigated. Previously, four different shaped obstacles were investigated experimentally and were used to validate the present predictions. The obstacle walls, which were equally spaced on the centreline between each impingement jet are of the co-flow and cross-flow configurations. The impingement jet pitch X to diameter D, X/D and gap Z to diameter, Z/D ratios were kept constant at 4.66 and 3.06 for X, Z and D of 15.24, 10.00 and 3.27 mm, respectively. The obstacles investigated were ribs and rectangular pin-fins shapes, using two obstacles height H to diameter, H/D ratio of 1.38 and 2.45. Computations were carried out for three different mass flux G of 1.08, 1.48 and 1.94 kg/sm2. Relative pressure loss ∆P/P and surface average heat transfer coefficient (HTC h predictions for the range of G, showed good agreement with the experimental results. The prediction also reveals that obstacles not only increases the turbulent flows, but also takes away most of the cooling heat transfer that produces the regions with highest thermal gradients. It also reduces the impingement gap downstream cross-flow.
Evaluating the Predictive Value of Growth Prediction Models
Murphy, Daniel L.; Gaertner, Matthew N.
2014-01-01
This study evaluates four growth prediction models--projection, student growth percentile, trajectory, and transition table--commonly used to forecast (and give schools credit for) middle school students' future proficiency. Analyses focused on vertically scaled summative mathematics assessments, and two performance standards conditions (high…
EXPERIMENTAL VERIFICATION OF COMPUTER MODEL OF COOLING SYSTEM FOR POWERFUL SEMI- CONDUCTOR DEVICE
Directory of Open Access Journals (Sweden)
I. A. Khorunzhii
2007-01-01
Full Text Available A cooling system for powerful semi-conductor device (power -1 kW consisting of a pin-type radiator and a body is considered in the paper. Cooling is carried out by forced convection of a coolant. Calculated values of temperatures on the radiator surface and experimentally measured values of temperatures in the same surface points have been compared in the paper. It has been shown that the difference between calculated and experimentally measured temperatures does not exceed 0,1-0,2 °C and it is comparable with experimental error value. The given results confirm correctness of a computer model.
Analysis and Modeling of Heat Generation in Overcharged Li-Ion Battery with Passive Cooling
DEFF Research Database (Denmark)
Coman, Paul Tiberiu; Veje, Christian
2013-01-01
This paper presents a dynamic model for simulating the heat generation in Lithium batteries and an investigation of the heat transfer as well as the capacity of Phase Change Materials (PCM’s) to store energy inside a battery cell module when the battery is overcharged. The study is performed......-cooled and passively cooled using a PCM, respectively. As expected, the results show that for high currents, the heat generation and implicitly the temperature increases. However, using a PCM the temperature increase is found to be limited allowing the battery to be overcharged to a certain degree. It is found...
Mathematical Model and Program for the Sizing of Counter-flow Natural Draft Wet Cooling Towers
Directory of Open Access Journals (Sweden)
Victor-Eduard Cenușă
2017-08-01
Full Text Available Assuring the necessary temperature and mass flow rate of the cooling water to the condenser represents an essential condition for the efficient operation of a steam power plant. The paper presents equations which describe the physical phenomena and the mathematical model for the design of counter-flow natural draft wet cooling towers. Following is given the flow-chart of the associated computer program. A case study is made to show the results of the computer program and emphasize the interdependence between the main design parameters.
A predictive model for the tokamak density limit
International Nuclear Information System (INIS)
Teng, Q.; Brennan, D. P.; Delgado-Aparicio, L.; Gates, D. A.; Swerdlow, J.; White, R. B.
2016-01-01
We reproduce the Greenwald density limit, in all tokamak experiments by using a phenomenologically correct model with parameters in the range of experiments. A simple model of equilibrium evolution and local power balance inside the island has been implemented to calculate the radiation-driven thermo-resistive tearing mode growth and explain the density limit. Strong destabilization of the tearing mode due to an imbalance of local Ohmic heating and radiative cooling in the island predicts the density limit within a few percent. Furthermore, we found the density limit and it is a local edge limit and weakly dependent on impurity densities. Our results are robust to a substantial variation in model parameters within the range of experiments.
Chato, J. C.; Shitzer, A.
1971-01-01
An analytical method was developed to estimate the amount of heat extracted from an artery running close to the skin surface which is cooled in a symmetrical fashion by a cooling strip. The results indicate that the optimum width of a cooling strip is approximately three times the depth to the centerline of the artery. The heat extracted from an artery with such a strip is about 0.9 w/m-C which is too small to affect significantly the temperature of the blood flow through a main blood vessel, such as the carotid artery. The method is applicable to veins as well.
Concerning modeling of double-stage water evaporation cooling
Shatskiy, V. P.; Fedulova, L. I.; Gridneva, I. V.
2018-03-01
The matter of need for setting technical norms for production, as well as acceptable microclimate parameters, such as temperature and humidity, at the work place, remains urgent. Use of certain units should be economically sound and that should be taken into account for construction, assembly, operation, technological, and environmental requirements. Water evaporation coolers are simple to maintain, environmentally friendly, and quite cheap, but the development of the most efficient solutions requires mathematical modeling of the heat and mass transfer processes that take place in them.
Model predictive control classical, robust and stochastic
Kouvaritakis, Basil
2016-01-01
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplic...
Modeling, robust and distributed model predictive control for freeway networks
Liu, S.
2016-01-01
In Model Predictive Control (MPC) for traffic networks, traffic models are crucial since they are used as prediction models for determining the optimal control actions. In order to reduce the computational complexity of MPC for traffic networks, macroscopic traffic models are often used instead of
Deep Predictive Models in Interactive Music
Martin, Charles P.; Ellefsen, Kai Olav; Torresen, Jim
2018-01-01
Automatic music generation is a compelling task where much recent progress has been made with deep learning models. In this paper, we ask how these models can be integrated into interactive music systems; how can they encourage or enhance the music making of human users? Musical performance requires prediction to operate instruments, and perform in groups. We argue that predictive models could help interactive systems to understand their temporal context, and ensemble behaviour. Deep learning...
Flemsæter, Bjorn
2000-01-01
The temperature of the superconducting magnets for the 27 km LHC particle accelerator under construction at CERN is a control parameter with strict operating constraints imposed by (a) the maximum temperature at which the magnets can operate, (b) the cooling capacity of the cryogenic system, (c) the variability of applied heat loads and (d) the accuracy of the instrumentation. A pilot plant for studying aspects beyond single magnet testing has been constructed. This magnet test string is a 35-m full-scale model if the LHC and consists of four superconducting cryogmagnets operating in a static bath of He II at 1.9 K. An experimental investigation of the properties dynamic characteristics of the 1.9 K cooling loop of the magnet test string has been carried out. A first principle model of the system has been created. A series of experiments designed for system identification purposes have been carried out, and black box models of the system have been created on the basis on the recorded data. A Model Predictive ...
International Nuclear Information System (INIS)
Icleanu, D.L.; Prisecaru, I.
2015-01-01
This paper aims at modeling the cooling of the primary heat transport system using shutdown cooling system (SDCS), for a CANDU 6 NPP in all operating modes, normal and abnormal (particularly in case of LOCA accident), using the Flowmaster calculation code. The modelling of heavy water flow through the shutdown cooling system and primary heat transport system was performed to determine the distribution of flows, pressure in various areas of the hydraulic circuit and the pressure loss corresponding to the components but also for the heat calculation of the heat exchangers related to the system. The results of the thermo-hydraulic analysis show that in all cases analyzed, normal operation and for LOCA accident regime, the performance requirements are confirmed by analysis
Modelling the cooling and partial dismantling of the Febex in-situ test
International Nuclear Information System (INIS)
Sanchez, M.; Gens, A.; Guimaraes, L.
2010-01-01
predictions from analysis. The operation related to the partial dismantling included the demolition of the concrete plug and the removal of the sections of the barrier corresponding to 'Heater 1'. The objective was to carry out the partial dismantling causing minimum disturbance to the sections of test corresponding to the second heater, which remained in operation at all times. A new concrete plug was constructed immediately after excavation. A detailed description of the work performed during the partial dismantling of the in-situ test can be found in Huertas et al. (2006). This contribution focuses on the modelling of the cooling and partly dismantling of the FEBEX in-situ experiment. The finite element computer program CODE-BRIGHT has been used for the numerical analysis. CODE-BRIGHT is a program developed to handle coupled Thermo-Hydro- Mechanical and Geochemical problems in geological media. It has been observed a very good performance of the model to reproduce the evolution of the main THM variables of the tests, during the cooling of the Heater No.1, concrete demolition and excavation of the clay barrier. It is worth mentioning that these are a kind of 'blind model predictions', as the constitutive laws and model parameters adopted at the beginning of the heating were used in this analysis. (authors)
Unreachable Setpoints in Model Predictive Control
DEFF Research Database (Denmark)
Rawlings, James B.; Bonné, Dennis; Jørgensen, John Bagterp
2008-01-01
In this work, a new model predictive controller is developed that handles unreachable setpoints better than traditional model predictive control methods. The new controller induces an interesting fast/slow asymmetry in the tracking response of the system. Nominal asymptotic stability of the optimal...... steady state is established for terminal constraint model predictive control (MPC). The region of attraction is the steerable set. Existing analysis methods for closed-loop properties of MPC are not applicable to this new formulation, and a new analysis method is developed. It is shown how to extend...
Bayesian Predictive Models for Rayleigh Wind Speed
DEFF Research Database (Denmark)
Shahirinia, Amir; Hajizadeh, Amin; Yu, David C
2017-01-01
predictive model of the wind speed aggregates the non-homogeneous distributions into a single continuous distribution. Therefore, the result is able to capture the variation among the probability distributions of the wind speeds at the turbines’ locations in a wind farm. More specifically, instead of using...... a wind speed distribution whose parameters are known or estimated, the parameters are considered as random whose variations are according to probability distributions. The Bayesian predictive model for a Rayleigh which only has a single model scale parameter has been proposed. Also closed-form posterior...... and predictive inferences under different reasonable choices of prior distribution in sensitivity analysis have been presented....
Predictive Modelling and Time: An Experiment in Temporal Archaeological Predictive Models
David Ebert
2006-01-01
One of the most common criticisms of archaeological predictive modelling is that it fails to account for temporal or functional differences in sites. However, a practical solution to temporal or functional predictive modelling has proven to be elusive. This article discusses temporal predictive modelling, focusing on the difficulties of employing temporal variables, then introduces and tests a simple methodology for the implementation of temporal modelling. The temporal models thus created ar...
Modeling and Simulation of Truck Engine Cooling System for Onboard Diagnosis
Institute of Scientific and Technical Information of China (English)
朱正礼; 张建武; 包继华
2004-01-01
A cooling system model of a selected internal combustion engine has been built for onboard diagnosis. The model uses driving cycle data available within the production Engine Control Module (ECM): vehicle speed, engine speed, and fuel flow rate for the given ambient temperature and pressure, etc. Based on the conservation laws for heat transfer and mass flow process, the mathematical descriptions for the components involved in the cooling circuit are obtained and all the components are integrated into a model on Matlab/Simulink platform. The model can simulate the characteristics of thermostat (e.g. time-lag, hysteresis effect).The changes of coolant temperature, heat transfer flow rate, and pressure at individual component site are also shown.
ATHENA calculation model for the ITER-FEAT divertor cooling system. Final report with updates
International Nuclear Information System (INIS)
Eriksson, John; Sjoeberg, A.; Sponton, L.L.
2001-05-01
An ATHENA model of the ITER-FEAT divertor cooling system has been developed for the purpose of calculating and evaluating consequences of different thermal-hydraulic accidents as specified in the Accident Analysis Specifications for the ITER-FEAT Generic Site Safety Report. The model is able to assess situations for a variety of conceivable operational transients from small flow disturbances to more critical conditions such as total blackout caused by a loss of offsite and emergency power. The main objective for analyzing this type of scenarios is to determine margins against jeopardizing the integrity of the divertor cooling system components and pipings. The model of the divertor primary heat transport system encompasses the divertor cassettes, the port limiter systems, the pressurizer, the heat exchanger and all feed and return pipes of these components. The development was pursued according to practices and procedures outlined in the ATHENA code manuals using available modelling components such as volumes, junctions, heat structures and process controls
Fingerprint verification prediction model in hand dermatitis.
Lee, Chew K; Chang, Choong C; Johor, Asmah; Othman, Puwira; Baba, Roshidah
2015-07-01
Hand dermatitis associated fingerprint changes is a significant problem and affects fingerprint verification processes. This study was done to develop a clinically useful prediction model for fingerprint verification in patients with hand dermatitis. A case-control study involving 100 patients with hand dermatitis. All patients verified their thumbprints against their identity card. Registered fingerprints were randomized into a model derivation and model validation group. Predictive model was derived using multiple logistic regression. Validation was done using the goodness-of-fit test. The fingerprint verification prediction model consists of a major criterion (fingerprint dystrophy area of ≥ 25%) and two minor criteria (long horizontal lines and long vertical lines). The presence of the major criterion predicts it will almost always fail verification, while presence of both minor criteria and presence of one minor criterion predict high and low risk of fingerprint verification failure, respectively. When none of the criteria are met, the fingerprint almost always passes the verification. The area under the receiver operating characteristic curve was 0.937, and the goodness-of-fit test showed agreement between the observed and expected number (P = 0.26). The derived fingerprint verification failure prediction model is validated and highly discriminatory in predicting risk of fingerprint verification in patients with hand dermatitis. © 2014 The International Society of Dermatology.
Massive Predictive Modeling using Oracle R Enterprise
CERN. Geneva
2014-01-01
R is fast becoming the lingua franca for analyzing data via statistics, visualization, and predictive analytics. For enterprise-scale data, R users have three main concerns: scalability, performance, and production deployment. Oracle's R-based technologies - Oracle R Distribution, Oracle R Enterprise, Oracle R Connector for Hadoop, and the R package ROracle - address these concerns. In this talk, we introduce Oracle's R technologies, highlighting how each enables R users to achieve scalability and performance while making production deployment of R results a natural outcome of the data analyst/scientist efforts. The focus then turns to Oracle R Enterprise with code examples using the transparency layer and embedded R execution, targeting massive predictive modeling. One goal behind massive predictive modeling is to build models per entity, such as customers, zip codes, simulations, in an effort to understand behavior and tailor predictions at the entity level. Predictions...
Multi-model analysis in hydrological prediction
Lanthier, M.; Arsenault, R.; Brissette, F.
2017-12-01
Hydrologic modelling, by nature, is a simplification of the real-world hydrologic system. Therefore ensemble hydrological predictions thus obtained do not present the full range of possible streamflow outcomes, thereby producing ensembles which demonstrate errors in variance such as under-dispersion. Past studies show that lumped models used in prediction mode can return satisfactory results, especially when there is not enough information available on the watershed to run a distributed model. But all lumped models greatly simplify the complex processes of the hydrologic cycle. To generate more spread in the hydrologic ensemble predictions, multi-model ensembles have been considered. In this study, the aim is to propose and analyse a method that gives an ensemble streamflow prediction that properly represents the forecast probabilities and reduced ensemble bias. To achieve this, three simple lumped models are used to generate an ensemble. These will also be combined using multi-model averaging techniques, which generally generate a more accurate hydrogram than the best of the individual models in simulation mode. This new predictive combined hydrogram is added to the ensemble, thus creating a large ensemble which may improve the variability while also improving the ensemble mean bias. The quality of the predictions is then assessed on different periods: 2 weeks, 1 month, 3 months and 6 months using a PIT Histogram of the percentiles of the real observation volumes with respect to the volumes of the ensemble members. Initially, the models were run using historical weather data to generate synthetic flows. This worked for individual models, but not for the multi-model and for the large ensemble. Consequently, by performing data assimilation at each prediction period and thus adjusting the initial states of the models, the PIT Histogram could be constructed using the observed flows while allowing the use of the multi-model predictions. The under-dispersion has been
Prostate Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing prostate cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Colorectal Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing colorectal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Esophageal Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing esophageal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Bladder Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing bladder cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Lung Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Breast Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing breast cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Pancreatic Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing pancreatic cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Ovarian Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing ovarian cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Liver Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing liver cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Testicular Cancer Risk Prediction Models
Developing statistical models that estimate the probability of testicular cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Cervical Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Modeling and Prediction Using Stochastic Differential Equations
DEFF Research Database (Denmark)
Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp
2016-01-01
Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...
International Nuclear Information System (INIS)
Matuo, Youichirou; Miyahara, Shinya; Izumi, Yoshinobu
2011-01-01
Radioactive corrosion products (CP) are main cause of personal radiation exposure during maintenance without fuel failure in FBR plants. In order to establish the techniques of radiation dose estimation for worker in radiation-controlled area, Program SYstem for Corrosion Hazard Evaluation code 'PSYCHE' has been developed. The PSYCHE is based on the Solution-Precipitation model. The CP transfer calculation using the Solution-Precipitation model needs a fitting factor for the calculation of the precipitation of CP. This fitting factor must be determined based on the measured values in reactors that have operating experience. For this reason, the inability to make accurate predictions for reactor without measured values is a major issue. In this study, in addition to existing Solution-Precipitation model in PSYCHE, a transfer-model of CP species in particle form was applied to calculations of CP behavior in the primary cooling system of fast breeder reactor MONJU. Based on the calculated results, we estimated the contribution of CP deposition in the particle-form. It was suggested that the improved model including transfer-model of CP species in particle-form could be used for evaluation of CP transfer and radiation-source distribution in place of conventional Solution-Precipitation model with fitting factor in the PSYCHE. Moreover, it was predicted that CP particles would tend to be deposited in region with high-flow rate of coolant. (author)
Predictive Model of Systemic Toxicity (SOT)
In an effort to ensure chemical safety in light of regulatory advances away from reliance on animal testing, USEPA and L’Oréal have collaborated to develop a quantitative systemic toxicity prediction model. Prediction of human systemic toxicity has proved difficult and remains a ...
Directory of Open Access Journals (Sweden)
Wang Wei
2016-01-01
Full Text Available When searching for the optimum condenser cooling water flow in a thermal power plant with natural draft cooling towers, it is essential to evaluate the outlet water temperature of cooling towers when the cooling water flow and inlet water temperature change. However, the air outlet temperature and tower draft or inlet air velocity are strongly coupled for natural draft cooling towers. Traditional methods, such as trial and error method, graphic method and iterative methods are not simple and efficient enough to be used for plant practice. In this paper, we combine Merkel equation with draft equation, and develop the coupled description for performance evaluation of natural draft cooling towers. This model contains two inputs: the cooling water flow, the inlet cooling water temperature and two outputs: the outlet water temperature, the inlet air velocity, equivalent to tower draft. In this model, we furthermore put forward a soft-sensing algorithm to calculate the total drag coefficient instead of empirical correlations. Finally, we design an iterative approach to solve this coupling model, and illustrate three cases to prove that the coupling model and solving approach proposed in our paper are effective for cooling tower performance evaluation.
Modeling and characteristics analysis of hybrid cooling-tower-solar-chimney system
International Nuclear Information System (INIS)
Zou, Zheng; He, Suoying
2015-01-01
Highlights: • A 3-D model for hybrid cooling-tower-solar-chimney system is developed. • The inclusion of heat exchangers into solar chimney boosts the power output. • The huge jump in power output is at the expense of heat dissipation capacity. • The heat exchanger as second heat source has greater impact on system performance. - Abstract: The hybrid cooling-tower-solar-chimney system (HCTSC), combining solar chimney with natural draft dry cooling tower, generates electricity and dissipates waste heat for the coupled geothermal power plant simultaneously. Based on a developed 3-D model, performance comparisons between the HCTSC system, solar chimney and natural draft dry cooling tower were performed in terms of power output of turbine and heat dissipation capacity. Results show that compared to the traditional solar chimney with similar geometric dimensions, HCTSC system can achieve over 20 times increase in the power output of turbine. However, this huge jump in power output is at the expense of heat dissipation capacity, which may lead to the malfunction of the coupled thermal power plant. By increasing the heat transfer area of the heat exchanger, the HCTSC system can manage to recover its heat dissipation capacity
Spent fuel: prediction model development
International Nuclear Information System (INIS)
Almassy, M.Y.; Bosi, D.M.; Cantley, D.A.
1979-07-01
The need for spent fuel disposal performance modeling stems from a requirement to assess the risks involved with deep geologic disposal of spent fuel, and to support licensing and public acceptance of spent fuel repositories. Through the balanced program of analysis, diagnostic testing, and disposal demonstration tests, highlighted in this presentation, the goal of defining risks and of quantifying fuel performance during long-term disposal can be attained
Navy Recruit Attrition Prediction Modeling
2014-09-01
have high correlation with attrition, such as age, job characteristics, command climate, marital status, behavior issues prior to recruitment, and the...the additive model. glm(formula = Outcome ~ Age + Gender + Marital + AFQTCat + Pay + Ed + Dep, family = binomial, data = ltraining) Deviance ...0.1 ‘ ‘ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance : 105441 on 85221 degrees of freedom Residual deviance
Predicting and Modeling RNA Architecture
Westhof, Eric; Masquida, Benoît; Jossinet, Fabrice
2011-01-01
SUMMARY A general approach for modeling the architecture of large and structured RNA molecules is described. The method exploits the modularity and the hierarchical folding of RNA architecture that is viewed as the assembly of preformed double-stranded helices defined by Watson-Crick base pairs and RNA modules maintained by non-Watson-Crick base pairs. Despite the extensive molecular neutrality observed in RNA structures, specificity in RNA folding is achieved through global constraints like lengths of helices, coaxiality of helical stacks, and structures adopted at the junctions of helices. The Assemble integrated suite of computer tools allows for sequence and structure analysis as well as interactive modeling by homology or ab initio assembly with possibilities for fitting within electronic density maps. The local key role of non-Watson-Crick pairs guides RNA architecture formation and offers metrics for assessing the accuracy of three-dimensional models in a more useful way than usual root mean square deviation (RMSD) values. PMID:20504963
Predictive Models and Computational Toxicology (II IBAMTOX)
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Finding furfural hydrogenation catalysts via predictive modelling
Strassberger, Z.; Mooijman, M.; Ruijter, E.; Alberts, A.H.; Maldonado, A.G.; Orru, R.V.A.; Rothenberg, G.
2010-01-01
We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes
FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL ...
African Journals Online (AJOL)
FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL STRESSES IN ... the transverse residual stress in the x-direction (σx) had a maximum value of 375MPa ... the finite element method are in fair agreement with the experimental results.
Evaluation of CASP8 model quality predictions
Cozzetto, Domenico; Kryshtafovych, Andriy; Tramontano, Anna
2009-01-01
established a prediction category to evaluate their performance in 2006. In 2008 the experiment was repeated and its results are reported here. Participants were invited to infer the correctness of the protein models submitted by the registered automatic
Analysis and Modeling of Heat Generation in Overcharged Li-Ion Battery with Passive Cooling
DEFF Research Database (Denmark)
Coman, Paul Tiberiu; Veje, Christian
2013-01-01
This paper presents a dynamic model for simulating the heat generation in Lithium batteries and an investigation of the heat transfer as well as the capacity of Phase Change Materials (PCM’s) to store energy inside a battery cell module when the battery is overcharged. The study is performed...... by coupling a one-dimensional model of the electrochemical processes with a two-dimensional model for the heat transfer in a cross section of a battery pack. The heat generation and subsequent temperature rise is analyzed for different charging currents for the two cases where the cell is air......-cooled and passively cooled using a PCM, respectively. As expected, the results show that for high currents, the heat generation and implicitly the temperature increases. However, using a PCM the temperature increase is found to be limited allowing the battery to be overcharged to a certain degree. It is found...
Development and validation of the shutdown cooling system CATHENA model for Gentilly-2
International Nuclear Information System (INIS)
Lecuyer, H.; Hasnaoui, C.; Sabourin, G.; Chapados, S.
2008-01-01
A CATHENA representation of the Gentilly-2 Shutdown Cooling system has been developed for Hydro-Quebec. The model includes the SDCS circuit piping, valves, pumps and heat exchangers. The model is integrated in the G2 CATHENA overall plant model and coupled with the plant control software simulator TROLG2 to allow the simulation of various plant operational modes using the SDCS. Results have been obtained for normal cooling of the primary heat transport system following a planned shut down (transition from full power to shutdown) and for two special SDCS configurations that were used on September 14 and 15, 2006 at Gentilly-2. The results show close match with values measured at Gentilly-2 during either steady or transient states. (author)
Development and validation of the shutdown cooling system CATHENA model for Gentilly-2
Energy Technology Data Exchange (ETDEWEB)
Lecuyer, H.; Hasnaoui, C. [Nucleonex Inc., Westmount, Quebec (Canada); Sabourin, G. [Atomic Energy of Canada Limited, Montreal, Quebec (Canada); Chapados, S. [Hydro-Quebec, Unite Analyse et Fiabilite, Montreal, Quebec (Canada)
2008-07-01
A CATHENA representation of the Gentilly-2 Shutdown Cooling system has been developed for Hydro-Quebec. The model includes the SDCS circuit piping, valves, pumps and heat exchangers. The model is integrated in the G2 CATHENA overall plant model and coupled with the plant control software simulator TROLG2 to allow the simulation of various plant operational modes using the SDCS. Results have been obtained for normal cooling of the primary heat transport system following a planned shut down (transition from full power to shutdown) and for two special SDCS configurations that were used on September 14 and 15, 2006 at Gentilly-2. The results show close match with values measured at Gentilly-2 during either steady or transient states. (author)
Theory of semiconductor laser cooling
Rupper, Greg
Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order to study semiconductor laser cooling at cryogenic temperatures, it is crucial that the theory include both the effects of excitons and the electron-hole plasma. In this dissertation, I present a theoretical analysis of laser cooling of bulk GaAs based on a microscopic many-particle theory of absorption and luminescence of a partially ionized electron-hole plasma. This theory has been analyzed from a temperature 10K to 500K. It is shown that at high temperatures (above 300K), cooling can be modeled using older models with a few parameter changes. Below 200K, band filling effects dominate over Auger recombination. Below 30K excitonic effects are essential for laser cooling. In all cases, excitonic effects make cooling easier then predicted by a free carrier model. The initial cooling model is based on the assumption of a homogeneous undoped semiconductor. This model has been systematically modified to include effects that are present in real laser cooling experiments. The following modifications have been performed. (1) Propagation and polariton effects have been included. (2) The effect of p-doping has been included. (n-doping can be modeled in a similar fashion.) (3) In experiments, a passivation layer is required to minimize non-radiative recombination. The passivation results in a npn heterostructure. The effect of the npn heterostructure on cooling has been analyzed. (4) The effect of a Gaussian pump beam was analyzed and (5) Some of the parameters in the cooling model have a large uncertainty. The effect of modifying these parameters has been analyzed. Most of the extensions to the original theory have only had a modest effect on the overall results. However we find that the current passivation technique may not be sufficient to allow cooling. The passivation technique currently used appears
International Nuclear Information System (INIS)
Hsieh, T.C.; Billone, M.C.; Rest, J.
1982-03-01
The fuel-pin modeling code LIFE-GCFR has been developed to predict the thermal, mechanical, and fission-gas behavior of a Gas-Cooled Fast Reactor (GCFR) fuel rod under normal operating conditions. It consists of three major components: thermal, mechanical, and fission-gas analysis. The thermal analysis includes calculations of coolant, cladding, and fuel temperature; fuel densification; pore migration; fuel grain growth; and plenum pressure. Fuel mechanical analysis includes thermal expansion, elasticity, creep, fission-product swelling, hot pressing, cracking, and crack healing of fuel; and thermal expansion, elasticity, creep, and irradiation-induced swelling of cladding. Fission-gas analysis simultaneously treats all major mechanisms thought to influence fission-gas behavior, which include bubble nucleation, resolution, diffusion, migration, and coalescence; temperature and temperature gradients; and fission-gas interaction with structural defects
DEFF Research Database (Denmark)
Saeed Madani, Seyed; Swierczynski, Maciej Jozef; Kær, Søren Knudsen
2017-01-01
This paper gives insight into the cooling simulation and thermal abuse modeling of lithium-ion batteries by ANSYS FLUENT. Cooling strategies are important issues in the thermal management of lithium-ion battery systems, and it is essential to investigate them attentively in order to maintain...... the functioning temperature of batteries within an optimum range. The high temperature is able not only to decrease the efficiency of batteries but also may lead to the thermal runaway. To comprehend further, the thermal abuse behavior of lithium-ion batteries based on The Newman, Tiedemann, Gu, and Kim (NTGK......) model has been implemented in ANSYS FLUENT software. The results show that to achieve an optimum energy consumption for battery cooling, a minimum value of average heat transfer coefficient can be selected in order to keep the functioning temperature of batteries within an optimum range....
Mental models accurately predict emotion transitions.
Thornton, Mark A; Tamir, Diana I
2017-06-06
Successful social interactions depend on people's ability to predict others' future actions and emotions. People possess many mechanisms for perceiving others' current emotional states, but how might they use this information to predict others' future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others' emotional dynamics. People could then use these mental models of emotion transitions to predict others' future emotions from currently observable emotions. To test this hypothesis, studies 1-3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants' ratings of emotion transitions predicted others' experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation-valence, social impact, rationality, and human mind-inform participants' mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants' accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone.
Mental models accurately predict emotion transitions
Thornton, Mark A.; Tamir, Diana I.
2017-01-01
Successful social interactions depend on people’s ability to predict others’ future actions and emotions. People possess many mechanisms for perceiving others’ current emotional states, but how might they use this information to predict others’ future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others’ emotional dynamics. People could then use these mental models of emotion transitions to predict others’ future emotions from currently observable emotions. To test this hypothesis, studies 1–3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants’ ratings of emotion transitions predicted others’ experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation—valence, social impact, rationality, and human mind—inform participants’ mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants’ accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone. PMID:28533373
Cooling as a method of finding topological dislocations in lattice models
International Nuclear Information System (INIS)
Gomberoff, K.
1989-01-01
It is well known that the O(3) two-dimensional model has configurations with topological charge Q=1 and action S/sub min/=6.69. Since the exponent characterizing the renormalization-group behavior of this model is 4π such configurations invalidate the standard scaling behavior of the topological susceptibility. The analog exponent for the four-dimensional lattice SU(2) gauge model is 10.77. If there would exist configurations with Q=1 and S<10.77 in this model, they would invalidate the standard scaling behavior of its topological susceptibility. Kremer et al. have calculated the action of different configurations during cooling runs. They report that they do not find any configuration with S<12.7 and Q=1. I show that in the O(3) two-dimensional model cooling runs fail to uncover the well-known configurations with S<8. We conclude that the cooling method is not effective in uncovering the smallest action configurations in the Q=1 sector
Hyhlík, Tomáš
2017-09-01
The article deals with an evaluation of moist air state above counterflow wet-cooling tower fill. The results based on Klimanek & Białecky model are compared with results of Merkel model and generalised Merkel model. Based on the numerical simulation it is shown that temperature is predicted correctly by using generalised Merkel model in the case of saturated or super-saturated air above the fill, but the temperature is underpredicted in the case of unsaturated moist air above the fill. The classical Merkel model always under predicts temperature above the fill. The density of moist air above the fill, which is calculated using generalised Merkel model, is strongly over predicted in the case of unsaturated moist air above the fill.
International Nuclear Information System (INIS)
Dinsdale, Alan; Gisby, John; Davies, Hugh; Konings, Rudy; Benes, Ondrej
2013-06-01
Understanding the behaviour of nuclear fuels in various environments is vital to the design and safe operation of nuclear reactors. While this is true if the reactor is operating within its design specification, it is even more so if accidents occur and the fuel is exposed to unexpected temperatures, pressures or chemical environments. It is clearly hazardous and costly to explore all such scenarios experimentally and therefore it is necessary to undertake modelling where possible using well-grounded theoretical approaches. This paper will show examples of where calculations of chemical and phase equilibria have been applied successfully to the long term storage of nuclear waste, phase formation during core meltdown and prediction of fission product release into the atmosphere. It will also highlight the development of thermodynamic data carried out during the European Metrology Research Project Metrofission required to model the potential interaction between the coolant, nuclear fuel, containment materials and atmosphere of a sodium cooled fast reactor. (authors)
Return Predictability, Model Uncertainty, and Robust Investment
DEFF Research Database (Denmark)
Lukas, Manuel
Stock return predictability is subject to great uncertainty. In this paper we use the model confidence set approach to quantify uncertainty about expected utility from investment, accounting for potential return predictability. For monthly US data and six representative return prediction models, we...... find that confidence sets are very wide, change significantly with the predictor variables, and frequently include expected utilities for which the investor prefers not to invest. The latter motivates a robust investment strategy maximizing the minimal element of the confidence set. The robust investor...... allocates a much lower share of wealth to stocks compared to a standard investor....
Model predictive Controller for Mobile Robot
Alireza Rezaee
2017-01-01
This paper proposes a Model Predictive Controller (MPC) for control of a P2AT mobile robot. MPC refers to a group of controllers that employ a distinctly identical model of process to predict its future behavior over an extended prediction horizon. The design of a MPC is formulated as an optimal control problem. Then this problem is considered as linear quadratic equation (LQR) and is solved by making use of Ricatti equation. To show the effectiveness of the proposed method this controller is...
Spatial Economics Model Predicting Transport Volume
Directory of Open Access Journals (Sweden)
Lu Bo
2016-10-01
Full Text Available It is extremely important to predict the logistics requirements in a scientific and rational way. However, in recent years, the improvement effect on the prediction method is not very significant and the traditional statistical prediction method has the defects of low precision and poor interpretation of the prediction model, which cannot only guarantee the generalization ability of the prediction model theoretically, but also cannot explain the models effectively. Therefore, in combination with the theories of the spatial economics, industrial economics, and neo-classical economics, taking city of Zhuanghe as the research object, the study identifies the leading industry that can produce a large number of cargoes, and further predicts the static logistics generation of the Zhuanghe and hinterlands. By integrating various factors that can affect the regional logistics requirements, this study established a logistics requirements potential model from the aspect of spatial economic principles, and expanded the way of logistics requirements prediction from the single statistical principles to an new area of special and regional economics.
Accuracy assessment of landslide prediction models
International Nuclear Information System (INIS)
Othman, A N; Mohd, W M N W; Noraini, S
2014-01-01
The increasing population and expansion of settlements over hilly areas has greatly increased the impact of natural disasters such as landslide. Therefore, it is important to developed models which could accurately predict landslide hazard zones. Over the years, various techniques and models have been developed to predict landslide hazard zones. The aim of this paper is to access the accuracy of landslide prediction models developed by the authors. The methodology involved the selection of study area, data acquisition, data processing and model development and also data analysis. The development of these models are based on nine different landslide inducing parameters i.e. slope, land use, lithology, soil properties, geomorphology, flow accumulation, aspect, proximity to river and proximity to road. Rank sum, rating, pairwise comparison and AHP techniques are used to determine the weights for each of the parameters used. Four (4) different models which consider different parameter combinations are developed by the authors. Results obtained are compared to landslide history and accuracies for Model 1, Model 2, Model 3 and Model 4 are 66.7, 66.7%, 60% and 22.9% respectively. From the results, rank sum, rating and pairwise comparison can be useful techniques to predict landslide hazard zones
A dynamic model of an innovative high-temperature solar heating and cooling system
Directory of Open Access Journals (Sweden)
Buonomano Annamaria
2016-01-01
Full Text Available In this paper a new simulation model of a novel solar heating and cooling system based on innovative high temperature flat plate evacuated solar thermal collector is presented. The system configuration includes: flat-plate evacuated solar collectors, a double-stage LiBr-H2O absorption chiller, gas-fired auxiliary heater, a closed loop cooling tower, pumps, heat exchangers, storage tanks, valves, mixers and controllers. The novelty of this study lies in the utilization of flat-plate stationary solar collectors, manufactured by TVP Solar, rather than concentrating ones (typically adopted for driving double-stage absorption chillers. Such devices show ultra-high thermal efficiencies, even at very high (about 200°C operating temperatures, thanks to the high vacuum insulation. Aim of the paper is to analyse the energy and economic feasibility of such novel technology, by including it in a prototypal solar heating and cooling system. For this purpose, the solar heating and cooling system design and performance were analysed by means of a purposely developed dynamic simulation model, implemented in TRNSYS. A suitable case study is also presented. Here, the simulated plant is conceived for the space heating and cooling and the domestic hot water production of a small building, whose energy needs are fulfilled through a real installation (settled also for experimental purposes built up close to Naples (South Italy. Simulation results show that the investigated system is able to reach high thermal efficiencies and very good energy performance. Finally, the economic analysis shows results comparable to those achieved through similar renewable energy systems.
A “poor man's approach” to topology optimization of cooling channels based on a Darcy flow model
DEFF Research Database (Denmark)
Zhao, Xi; Zhou, Mingdong; Sigmund, Ole
2018-01-01
. Several numerical examples demonstrate the applicability of this approach. Verification studies with a full turbulence model show that, although the equivalent model has limitations in yielding a perfect realistic velocity field, it generally provides well-performing cooling channel designs....
National Research Council Canada - National Science Library
Gerendas, M
2003-01-01
.... The combustor cooling concept chosen was of the angled effusion type. Development of adequate modeling techniques and steady-state and transient rig tests to calibrate the thermal models was the key factor for the success...
Review of the Technical Status on the Debris Bed Cooling Model
Energy Technology Data Exchange (ETDEWEB)
Kim, Eui Kwang; Cho, Chung Ho; Lee, Yong Bum
2007-09-15
Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double-fault initiators such as ATWS events without coolant boiling or fuel melting. However, for the future design of sodium cooled fast reactor, the evaluation of the safety performance and the determination of containment requirements may be worth due consideration of triple-fault accident sequences of extremely low probability of occurrence that leads to core melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will be required as a design requirement for the future design of sodium cooled fast reactor. Also, proof of the capacity of the debris bed cooling is an essential condition to solve the problem of in-vessel retention of the core debris. In this study, review of the technical status on the debris bed cooling model was carried out for in-vessel retention of the core debris0.
Review of the Technical Status on the Debris Bed Cooling Model
International Nuclear Information System (INIS)
Kim, Eui Kwang; Cho, Chung Ho; Lee, Yong Bum
2007-09-01
Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double-fault initiators such as ATWS events without coolant boiling or fuel melting. However, for the future design of sodium cooled fast reactor, the evaluation of the safety performance and the determination of containment requirements may be worth due consideration of triple-fault accident sequences of extremely low probability of occurrence that leads to core melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will be required as a design requirement for the future design of sodium cooled fast reactor. Also, proof of the capacity of the debris bed cooling is an essential condition to solve the problem of in-vessel retention of the core debris. In this study, review of the technical status on the debris bed cooling model was carried out for in-vessel retention of the core debris
Heptinstall, D. A.; Neuberg, J. W.; Bouvet de Maisonneuve, C.; Collinson, A.; Taisne, B.; Morgan, D. J.
2015-12-01
Heat flow models can bring new insights into the thermal and rheological evolution of volcanic systems. We shall investigate the thermal processes and timescales in a crystallizing, static magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/°C (runs 1 & 3) and 0.2MPa/°C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69e5 J/kg*K, 9.32e5 J/kg*K, and 9.49e5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the center of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10 m depth, it takes 4.1-9.2 years for the magma column to cool over 108-130oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and dominant latent heat producing crystallizing phases (Quartz), where run 1 cools fastest and run 3 cools slowest. Surface cooling by comparison has the strongest influence on the upper tens of meters in all
Heptinstall, David; Bouvet de Maisonneuve, Caroline; Neuberg, Jurgen; Taisne, Benoit; Collinson, Amy
2016-04-01
Heat flow models can bring new insights into the thermal and rheological evolution of volcanic 3 systems. We shall investigate the thermal processes and timescales in a crystallizing, static 4 magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/° C (runs 1 & 3) and 0.2MPa/° C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69E5 J/kg*K, 9.32E5 J/kg*K, and 9.49E5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the centre of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10m depth, it takes 4.1-9.2 years for the magma column to cool by 108-131oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and the dominant latent heat producing crystallizing phase, Albite-rich Plagioclase Feldspar. Run 1 is shown to cool fastest and run 3 cool the slowest, with surface emissivity having the strongest cooling
A mathematical model of endovascular heat transfer for human brain cooling
Salsac, Anne-Virginie; Lasheras, Juan Carlos; Yon, Steven; Magers, Mike; Dobak, John
2000-11-01
Selective cooling of the brain has been shown to exhibit protective effects in cerebral ischemia, trauma, and spinal injury/ischemia. A multi-compartment, unsteady thermal model of the response of the human brain to endovascular cooling is discussed and its results compared to recent experimental data conducted with sheep and other mammals. The model formulation is based on the extension of the bioheat equation, originally proposed by Pennes(1) and later modified by Wissler(2), Stolwijk(3) and Werner and Webb(4). The temporal response of the brain temperature and that of the various body compartments to the cooling of the blood flowing through the common carotid artery is calculated under various scenarios. The effect of the boundary conditions as well as the closure assumptions used in the model, i.e. perfusion rate, metabolism heat production, etc. on the cooling rate of the brain are systematically investigated. (1) Pennes H. H., “Analysis of tissue and arterial blood temperature in the resting forearm.” J. Appl. Physiol. 1: 93-122, 1948. (2) Wissler E. H., “Steady-state temperature distribution in man”, J. Appl. Physiol., 16: 764-740, 1961. (3) Stolwick J. A. J., “Mathematical model of thermoregulation” in “Physiological and behavioral temperature regulation”, edited by J. D. Hardy, A. P. Gagge and A. J. Stolwijk, Charles C. Thomas Publisher, Springfiels, Ill., 703-721, 1971. (4) Werner J., Webb P., “A six-cylinder model of human thermoregulation for general use on personal computers”, Ann. Physiol. Anthrop., 12(3): 123-134, 1993.
Predictive validation of an influenza spread model.
Directory of Open Access Journals (Sweden)
Ayaz Hyder
Full Text Available BACKGROUND: Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. METHODS AND FINDINGS: We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998-1999. Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type. Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. CONCLUSIONS: Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve
Predictive Validation of an Influenza Spread Model
Hyder, Ayaz; Buckeridge, David L.; Leung, Brian
2013-01-01
Background Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. Methods and Findings We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998–1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. Conclusions Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive
Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance
Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.
2014-01-01
This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.
Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs
Energy Technology Data Exchange (ETDEWEB)
Lv, Quiping [The Ohio State Univ., Columbus, OH (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Chtistensen, Richard [The Ohio State Univ., Columbus, OH (United States); Blue, Thomas [The Ohio State Univ., Columbus, OH (United States); Yoder, Graydon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-05-08
The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.
Performance modelling and simulation of an absorption solar cooling system for Malaysia
International Nuclear Information System (INIS)
Assilzadeh, F.; Ali, Y.; Kamaruzzaman Sopian
2006-01-01
Solar radiation contains huge amounts of energy and is required for almost all the natural processes on earth. Solar-powered air-conditioning has many advantages when compared to normal electricity system. This paper presents a solar cooling system that has been designed for Malaysia and other tropical regions using evacuated tube solar collector and LiBr absorption system. A modelling and simulation of absorption solar cooling system is modeled in Transient System Simulation (TRNSYS) environment. The typical meteorological year file containing the weather parameters is used to simulate the system. Then a system optimization is carried out in order to select the appropriate type of collector, the optimum size of storage tank, the optimum collector slope and area and the optimum thermostat setting of the auxiliary boiler
Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs
International Nuclear Information System (INIS)
Lv, Quiping; Sun, Xiaodong; Chtistensen, Richard; Blue, Thomas; Yoder, Graydon; Wilson, Dane
2015-01-01
The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.
Numerical modeling for the retrofit of the hydraulic cooling subsystems in operating power plant
AlSaqoor, S.; Alahmer, A.; Al Quran, F.; Andruszkiewicz, A.; Kubas, K.; Regucki, P.; Wędrychowicz, W.
2017-08-01
This paper presents the possibility of using the numerical methods to analyze the work of hydraulic systems on the example of a cooling system of a power boiler auxiliary devices. The variety of conditions at which hydraulic system that operated in specific engineering subsystems requires an individualized approach to the model solutions that have been developed for these systems modernizing. A mathematical model of a series-parallel propagation for the cooling water was derived and iterative methods were used to solve the system of nonlinear equations. The results of numerical calculations made it possible to analyze different variants of a modernization of the studied system and to indicate its critical elements. An economic analysis of different options allows an investor to choose an optimal variant of a reconstruction of the installation.
Finding Furfural Hydrogenation Catalysts via Predictive Modelling.
Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi
2010-09-10
We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (k(H):k(D)=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R(2)=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model's predictions, demonstrating the validity and value of predictive modelling in catalyst optimization.
Corporate prediction models, ratios or regression analysis?
Bijnen, E.J.; Wijn, M.F.C.M.
1994-01-01
The models developed in the literature with respect to the prediction of a company s failure are based on ratios. It has been shown before that these models should be rejected on theoretical grounds. Our study of industrial companies in the Netherlands shows that the ratios which are used in
Predicting Protein Secondary Structure with Markov Models
DEFF Research Database (Denmark)
Fischer, Paul; Larsen, Simon; Thomsen, Claus
2004-01-01
we are considering here, is to predict the secondary structure from the primary one. To this end we train a Markov model on training data and then use it to classify parts of unknown protein sequences as sheets, helices or coils. We show how to exploit the directional information contained...... in the Markov model for this task. Classifications that are purely based on statistical models might not always be biologically meaningful. We present combinatorial methods to incorporate biological background knowledge to enhance the prediction performance....
Energy based prediction models for building acoustics
DEFF Research Database (Denmark)
Brunskog, Jonas
2012-01-01
In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...... on underlying basic assumptions, such as diffuse fields, high modal overlap, resonant field being dominant, etc., and the consequences of these in terms of limitations in the theory and in the practical use of the models....
Comparative Study of Bancruptcy Prediction Models
Directory of Open Access Journals (Sweden)
Isye Arieshanti
2013-09-01
Full Text Available Early indication of bancruptcy is important for a company. If companies aware of potency of their bancruptcy, they can take a preventive action to anticipate the bancruptcy. In order to detect the potency of a bancruptcy, a company can utilize a a model of bancruptcy prediction. The prediction model can be built using a machine learning methods. However, the choice of machine learning methods should be performed carefully. Because the suitability of a model depends on the problem specifically. Therefore, in this paper we perform a comparative study of several machine leaning methods for bancruptcy prediction. According to the comparative study, the performance of several models that based on machine learning methods (k-NN, fuzzy k-NN, SVM, Bagging Nearest Neighbour SVM, Multilayer Perceptron(MLP, Hybrid of MLP + Multiple Linear Regression, it can be showed that fuzzy k-NN method achieve the best performance with accuracy 77.5%
Prediction Models for Dynamic Demand Response
Energy Technology Data Exchange (ETDEWEB)
Aman, Saima; Frincu, Marc; Chelmis, Charalampos; Noor, Muhammad; Simmhan, Yogesh; Prasanna, Viktor K.
2015-11-02
As Smart Grids move closer to dynamic curtailment programs, Demand Response (DR) events will become necessary not only on fixed time intervals and weekdays predetermined by static policies, but also during changing decision periods and weekends to react to real-time demand signals. Unique challenges arise in this context vis-a-vis demand prediction and curtailment estimation and the transformation of such tasks into an automated, efficient dynamic demand response (D^{2}R) process. While existing work has concentrated on increasing the accuracy of prediction models for DR, there is a lack of studies for prediction models for D^{2}R, which we address in this paper. Our first contribution is the formal definition of D^{2}R, and the description of its challenges and requirements. Our second contribution is a feasibility analysis of very-short-term prediction of electricity consumption for D^{2}R over a diverse, large-scale dataset that includes both small residential customers and large buildings. Our third, and major contribution is a set of insights into the predictability of electricity consumption in the context of D^{2}R. Specifically, we focus on prediction models that can operate at a very small data granularity (here 15-min intervals), for both weekdays and weekends - all conditions that characterize scenarios for D^{2}R. We find that short-term time series and simple averaging models used by Independent Service Operators and utilities achieve superior prediction accuracy. We also observe that workdays are more predictable than weekends and holiday. Also, smaller customers have large variation in consumption and are less predictable than larger buildings. Key implications of our findings are that better models are required for small customers and for non-workdays, both of which are critical for D^{2}R. Also, prediction models require just few days’ worth of data indicating that small amounts of
Evaluation of CASP8 model quality predictions
Cozzetto, Domenico
2009-01-01
The model quality assessment problem consists in the a priori estimation of the overall and per-residue accuracy of protein structure predictions. Over the past years, a number of methods have been developed to address this issue and CASP established a prediction category to evaluate their performance in 2006. In 2008 the experiment was repeated and its results are reported here. Participants were invited to infer the correctness of the protein models submitted by the registered automatic servers. Estimates could apply to both whole models and individual amino acids. Groups involved in the tertiary structure prediction categories were also asked to assign local error estimates to each predicted residue in their own models and their results are also discussed here. The correlation between the predicted and observed correctness measures was the basis of the assessment of the results. We observe that consensus-based methods still perform significantly better than those accepting single models, similarly to what was concluded in the previous edition of the experiment. © 2009 WILEY-LISS, INC.
Finding Furfural Hydrogenation Catalysts via Predictive Modelling
Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi
2010-01-01
Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (kH:kD=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R2=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model’s predictions, demonstrating the validity and value of predictive modelling in catalyst optimization. PMID:23193388
General correlation for prediction of critical heat flux ratio in water cooled channels
Energy Technology Data Exchange (ETDEWEB)
Pernica, R.; Cizek, J.
1995-09-01
The paper present the general empirical Critical Heat Flux Ration (CHFR) correlation which is valid for vertical water upflow through tubes, internally heated concentric annuli and rod bundles geometries with both wide and very tight square and triangular rods lattices. The proposed general PG correlation directly predicts the CHFR, it comprises axial and radial non-uniform heating, and is valid in a wider range of thermal hydraulic conditions than previously published critical heat flux correlations. The PG correlation has been developed using the critical heat flux Czech data bank which includes more than 9500 experimental data on tubes, 7600 data on rod bundles and 713 data on internally heated concentric annuli. Accuracy of the CHFR prediction, statistically assessed by the constant dryout conditions approach, is characterized by the mean value nearing 1.00 and the standard deviation less than 0.06. Moverover, a subchannel form of the PG correlations is statistically verified on Westinghouse and Combustion Engineering rod bundle data bases, i.e. more than 7000 experimental CHF points of Columbia University data bank were used.
Wind farm production prediction - The Zephyr model
Energy Technology Data Exchange (ETDEWEB)
Landberg, L. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Giebel, G. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Madsen, H. [IMM (DTU), Kgs. Lyngby (Denmark); Nielsen, T.S. [IMM (DTU), Kgs. Lyngby (Denmark); Joergensen, J.U. [Danish Meteorologisk Inst., Copenhagen (Denmark); Lauersen, L. [Danish Meteorologisk Inst., Copenhagen (Denmark); Toefting, J. [Elsam, Fredericia (DK); Christensen, H.S. [Eltra, Fredericia (Denmark); Bjerge, C. [SEAS, Haslev (Denmark)
2002-06-01
This report describes a project - funded by the Danish Ministry of Energy and the Environment - which developed a next generation prediction system called Zephyr. The Zephyr system is a merging between two state-of-the-art prediction systems: Prediktor of Risoe National Laboratory and WPPT of IMM at the Danish Technical University. The numerical weather predictions were generated by DMI's HIRLAM model. Due to technical difficulties programming the system, only the computational core and a very simple version of the originally very complex system were developed. The project partners were: Risoe, DMU, DMI, Elsam, Eltra, Elkraft System, SEAS and E2. (au)
Model predictive controller design of hydrocracker reactors
GÖKÇE, Dila
2011-01-01
This study summarizes the design of a Model Predictive Controller (MPC) in Tüpraş, İzmit Refinery Hydrocracker Unit Reactors. Hydrocracking process, in which heavy vacuum gasoil is converted into lighter and valuable products at high temperature and pressure is described briefly. Controller design description, identification and modeling studies are examined and the model variables are presented. WABT (Weighted Average Bed Temperature) equalization and conversion increase are simulate...
Gruyters, Willem; Verboven, Pieter; Rogge, Seppe; Vanmaercke, Simon; Ramon, Herman; Nicolai, Bart
2017-10-01
Freshly harvested horticultural produce require a proper temperature management to maintain their high economic value. Towards this end, low temperature storage is of crucial importance to maintain a high product quality. Optimizing both the package design of packed produce and the different steps in the postharvest cold chain can be achieved by numerical modelling of the relevant transport phenomena. This work presents a novel methodology to accurately model both the random filling of produce in a package and the subsequent cooling process. First, a cultivar-specific database of more than 100 realistic CAD models of apple and pear fruit is built with a validated geometrical 3D shape model generator. To have an accurate representation of a realistic picking season, the model generator also takes into account the biological variability of the produce shape. Next, a discrete element model (DEM) randomly chooses surface meshed bodies from the database to simulate the gravitational filling process of produce in a box or bin, using actual mechanical properties of the fruit. A computational fluid dynamics (CFD) model is then developed with the final stacking arrangement of the produce to study the cooling efficiency of packages under several conditions and configurations. Here, a typical precooling operation is simulated to demonstrate the large differences between using actual 3D shapes of the fruit and an equivalent spheres approach that simplifies the problem drastically. From this study, it is concluded that using a simplified representation of the actual fruit shape may lead to a severe overestimation of the cooling behaviour.
Model-Based Fault Detection and Isolation of a Liquid-Cooled Frequency Converter on a Wind Turbine
DEFF Research Database (Denmark)
Li, Peng; Odgaard, Peter Fogh; Stoustrup, Jakob
2012-01-01
advanced fault detection and isolation schemes. In this paper, an observer-based fault detection and isolation method for the cooling system in a liquid-cooled frequency converter on a wind turbine which is built up in a scalar version in the laboratory is presented. A dynamic model of the scale cooling...... system is derived based on energy balance equation. A fault analysis is conducted to determine the severity and occurrence rate of possible component faults and their end effects in the cooling system. A method using unknown input observer is developed in order to detect and isolate the faults based...... on the developed dynamical model. The designed fault detection and isolation algorithm is applied on a set of measured experiment data in which different faults are artificially introduced to the scaled cooling system. The experimental results conclude that the different faults are successfully detected...
Reliability analysis of nuclear component cooling water system using semi-Markov process model
International Nuclear Information System (INIS)
Veeramany, Arun; Pandey, Mahesh D.
2011-01-01
Research highlights: → Semi-Markov process (SMP) model is used to evaluate system failure probability of the nuclear component cooling water (NCCW) system. → SMP is used because it can solve reliability block diagram with a mixture of redundant repairable and non-repairable components. → The primary objective is to demonstrate that SMP can consider Weibull failure time distribution for components while a Markov model cannot → Result: the variability in component failure time is directly proportional to the NCCW system failure probability. → The result can be utilized as an initiating event probability in probabilistic safety assessment projects. - Abstract: A reliability analysis of nuclear component cooling water (NCCW) system is carried out. Semi-Markov process model is used in the analysis because it has potential to solve a reliability block diagram with a mixture of repairable and non-repairable components. With Markov models it is only possible to assume an exponential profile for component failure times. An advantage of the proposed model is the ability to assume Weibull distribution for the failure time of components. In an attempt to reduce the number of states in the model, it is shown that usage of poly-Weibull distribution arises. The objective of the paper is to determine system failure probability under these assumptions. Monte Carlo simulation is used to validate the model result. This result can be utilized as an initiating event probability in probabilistic safety assessment projects.
Multi-Model Ensemble Wake Vortex Prediction
Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.
2015-01-01
Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.
Study on blast furnace cooling stave for various refractory linings based on numerical modeling
International Nuclear Information System (INIS)
Mohanty, T R; Sahoo, S K; Moharana, M K
2016-01-01
Cooling technology for refractory lining of blast furnace is very important for the metallurgical industry, because it can substantially increase output and operation life of furnaces. A three dimensional mathematical model for the temperature field of the blast furnace stave cooler with refractory lining has been developed and analyzed. The temperature and heat dissipated by stave cooler is examined by using the finite element method. The cast steel stave is studied and computational analysis is made to know the effect of the cooling water velocity, temperature, and the lining material on the maximum temperature of the stave hot surface. The refractory lining materials, which are used in this experiment, are high alumina bricks with different stave materials (copper, aluminum and cast iron). The obtained numerical calculations are compared with that obtained from experiments performed at Rourkela Steel Plant, Odisha taking a stave in belly zone having maximum heat load shows very good agreement. (paper)
Risk terrain modeling predicts child maltreatment.
Daley, Dyann; Bachmann, Michael; Bachmann, Brittany A; Pedigo, Christian; Bui, Minh-Thuy; Coffman, Jamye
2016-12-01
As indicated by research on the long-term effects of adverse childhood experiences (ACEs), maltreatment has far-reaching consequences for affected children. Effective prevention measures have been elusive, partly due to difficulty in identifying vulnerable children before they are harmed. This study employs Risk Terrain Modeling (RTM), an analysis of the cumulative effect of environmental factors thought to be conducive for child maltreatment, to create a highly accurate prediction model for future substantiated child maltreatment cases in the City of Fort Worth, Texas. The model is superior to commonly used hotspot predictions and more beneficial in aiding prevention efforts in a number of ways: 1) it identifies the highest risk areas for future instances of child maltreatment with improved precision and accuracy; 2) it aids the prioritization of risk-mitigating efforts by informing about the relative importance of the most significant contributing risk factors; 3) since predictions are modeled as a function of easily obtainable data, practitioners do not have to undergo the difficult process of obtaining official child maltreatment data to apply it; 4) the inclusion of a multitude of environmental risk factors creates a more robust model with higher predictive validity; and, 5) the model does not rely on a retrospective examination of past instances of child maltreatment, but adapts predictions to changing environmental conditions. The present study introduces and examines the predictive power of this new tool to aid prevention efforts seeking to improve the safety, health, and wellbeing of vulnerable children. Copyright Â© 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
PREDICTIVE CAPACITY OF ARCH FAMILY MODELS
Directory of Open Access Journals (Sweden)
Raphael Silveira Amaro
2016-03-01
Full Text Available In the last decades, a remarkable number of models, variants from the Autoregressive Conditional Heteroscedastic family, have been developed and empirically tested, making extremely complex the process of choosing a particular model. This research aim to compare the predictive capacity, using the Model Confidence Set procedure, than five conditional heteroskedasticity models, considering eight different statistical probability distributions. The financial series which were used refers to the log-return series of the Bovespa index and the Dow Jones Industrial Index in the period between 27 October 2008 and 30 December 2014. The empirical evidences showed that, in general, competing models have a great homogeneity to make predictions, either for a stock market of a developed country or for a stock market of a developing country. An equivalent result can be inferred for the statistical probability distributions that were used.
Alcator C-Mod predictive modeling
International Nuclear Information System (INIS)
Pankin, Alexei; Bateman, Glenn; Kritz, Arnold; Greenwald, Martin; Snipes, Joseph; Fredian, Thomas
2001-01-01
Predictive simulations for the Alcator C-mod tokamak [I. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] are carried out using the BALDUR integrated modeling code [C. E. Singer et al., Comput. Phys. Commun. 49, 275 (1988)]. The results are obtained for temperature and density profiles using the Multi-Mode transport model [G. Bateman et al., Phys. Plasmas 5, 1793 (1998)] as well as the mixed-Bohm/gyro-Bohm transport model [M. Erba et al., Plasma Phys. Controlled Fusion 39, 261 (1997)]. The simulated discharges are characterized by very high plasma density in both low and high modes of confinement. The predicted profiles for each of the transport models match the experimental data about equally well in spite of the fact that the two models have different dimensionless scalings. Average relative rms deviations are less than 8% for the electron density profiles and 16% for the electron and ion temperature profiles
Energy Technology Data Exchange (ETDEWEB)
Conley, J.G.; Huang, J.; Asada, J.; Akiba, K. [Northwestern Univ., Evanston, IL (United States). Dept. of Mechanical Engineering
2000-06-15
Cast Aluminum-Silicon alloys are used in numerous automotive and industrial weight sensitive applications because of their low density and excellent castability. The presence of trapped gas and or shrinkage pores in certain locations within castings has been shown to influence fatigue life. These micromechanical defects can be found most anywhere in a casting depending on processing conditions. A large amount of porosity located in the center of the cast material thickness may have no effect on mechanical properties or fatigue performance. A smaller, isolated pore near a surface may have a significant impact on mechanical properties. Hence, it is important to develop a comprehensive model to predict the size, location and distribution of microporosity in castings. In this work, we model the effect of various casting process parameters on microporosity formation for aluminum A356 alloy castings. The process parameters include cooling rate, hydrogen content, grain refiner and modifier. The proposed two-dimensional model predicts the size, morphology and distribution of microporosity at a given location in the casting. The method couples a mathematical model of porosity evolution with a probabilistic grain structure prediction model. The porosity evolution model is based on the simultaneous solution of the continuity and momentum equations for the metal and the mass conservation equation for the dissolved gas. The nucleation and growth of grains are simulated with a probabilistic method that uses the information from a heat transfer simulation, i.e. temperature and solid fraction, to determine the transition rules for grain evolution. The simulation results correlate well with experimental observation of porosity in cast structures. (orig.)
N3S-AERO: a multidimensional model for numerical simulation of all wet cooling tower systems
International Nuclear Information System (INIS)
Razafindrakoto, E.; Hofmann, F.
1997-01-01
3D model is more required to optimize the design of new cooling tower by way of parameters studies, to improve the performance of the existing ones from changes in fill zone or water distribution. Therefore, the Directions des Etudes et Recherches with collaboration of the Direction de l'Equipement of EDF, has developed a specific version of the finite element CFD code N3S, denoted N3S-AERO, for the simulation of natural or mechanical draught wet cooling towers. It solves mass, momentum, heat and humidity averaged Navier-Stokes equations including buoyancy terms with variable density for air flow in the whole domain mass, heat equations for water flow in exchange zones. With standard results of N3S as air velocity and scalar fields, N3S-AERO gives in return water temperature fields mean values of variables at inlet or outlet of each exchange zone and thermal performance of the tower. 2D axisymmetrical and 3D industrial cases have soon been done. Major flow phenomena are well predicted and averaged cold water values are in good agreement with ID-TEFERI code or measurements
Directory of Open Access Journals (Sweden)
Dionysios I. Kolaitis
2010-12-01
Full Text Available Diesel fuel is used in a variety of technological applications due to its high energy density and ease of distribution and storage. Motivated by the need to use novel fuel utilization techniques, such as porous burners and fuel cells, which have to be fed with a gaseous fuel, a Diesel fuel evaporation device, operating in the “Stabilized Cool Flame” (SCF regime, is numerically investigated. In this device, a thermo-chemically stable low-temperature oxidative environment is developed, which produces a well-mixed, heated air-fuel vapour gaseous mixture that can be subsequently fed either to premixed combustion systems or fuel reformer devices for fuel cell applications. In this work, the ANSYS CFX 11.0 CFD code is used to simulate the three-dimensional, turbulent, two-phase, multi-component and reacting flow-field, developed in a SCF evaporation device. An innovative modelling approach, based on the fitting parameter concept, has been developed in order to simulate cool flame reactions. The model, based on physico-chemical reasoning coupled with information from available experimental data, is implemented in the CFD code and is validated by comparing numerical predictions to experimental data obtained from an atmospheric pressure, recirculating flow SCF device. Numerical predictions are compared with temperature measurements, achieving satisfactory levels of agreement. The developed numerical tool can effectively support the theoretical study of the physical and chemical phenomena emerging in practical devices of liquid fuel spray evaporation in a SCF environment, as well as the design optimisation process of such innovative devices.
International Nuclear Information System (INIS)
Moore, J.; Grimes, R.; Walsh, E.; O'Donovan, A.
2014-01-01
This paper aims at developing a novel air-cooled condenser for concentrated solar power plants. The condenser offers two significant advantages over the existing state-of-the-art. Firstly, it can be installed in a modular format where pre-assembled condenser modules reduce installation costs. Secondly, instead of using large fixed speed fans, smaller speed controlled fans are incorporated into the individual modules. This facility allows the operating point of the condenser to change and continuously maximise plant efficiency. A thorough experimental analysis was performed on a number of prototype condenser designs. This analysis investigated the validly and accuracy of correlations from literature in predicting the thermal and aerodynamic characteristics of different designs. These measurements were used to develop a thermodynamic model to predict the performance of a 50 MW CSP (Concentrated Solar Power) plant with various condenser designs installed. In order to compare different designs with respect to the specific plant capital cost, a techno-economic analysis was performed which identified the optimum size of each condenser. The results show that a single row plate finned tube design, a four row, and a two row circular finned tube design are all similar in terms of their techno-economic performance and offer significant savings over other designs. - Highlights: • A novel air cooled condenser for CSP (Concentrated Solar Power) applications is proposed. • A thorough experimental analysis of various condenser designs was performed. • Heat transfer and flow friction correlations validated for fan generated air flow. • A thermodynamic model to calculate CSP plant output is presented. • Results show the proposed condenser design can continually optimise plant output
Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems
Energy Technology Data Exchange (ETDEWEB)
Ferroni, Paolo [Westinghouse Electric Company LLC, Cranberry Township, PA (United States). Global Technology Development; Tatli, Emre [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Czerniak, Luke [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Yoichi, Momozaki [Argonne National Lab. (ANL), Argonne, IL (United States); Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States)
2016-06-29
The project “Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems” was conducted jointly by Westinghouse Electric Company (Westinghouse) and Argonne National Laboratory (ANL), over the period October 1, 2013- March 31, 2016. The project’s motivation was the need to provide designers of Sodium Fast Reactors (SFRs) with a validated, state-of-the-art computational tool for the prediction of sodium oxide (Na_{2}O) deposition in small-diameter sodium heat exchanger (HX) channels, such as those in the diffusion bonded HXs proposed for SFRs coupled with a supercritical CO_{2} (sCO_{2}) Brayton cycle power conversion system. In SFRs, Na_{2}O deposition can potentially occur following accidental air ingress in the intermediate heat transport system (IHTS) sodium and simultaneous failure of the IHTS sodium cold trap. In this scenario, oxygen can travel through the IHTS loop and reach the coldest regions, represented by the cold end of the sodium channels of the HXs, where Na_{2}O precipitation may initiate and continue. In addition to deteriorating HX heat transfer and pressure drop performance, Na_{2}O deposition can lead to channel plugging especially when the size of the sodium channels is small, which is the case for diffusion bonded HXs whose sodium channel hydraulic diameter is generally below 5 mm. Sodium oxide melts at a high temperature well above the sodium melting temperature such that removal of a solid plug such as through dissolution by pure sodium could take a lengthy time. The Sodium Plugging Phenomena Loop (SPPL) was developed at ANL, prior to this project, for investigating Na_{2}O deposition phenomena within sodium channels that are prototypical of the diffusion bonded HX channels envisioned for SFR-sCO_{2} systems. In this project, a Computational Fluid Dynamic (CFD) model capable of simulating the thermal-hydraulics of the SPPL test
Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance
Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.
2014-01-01
This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.
International Nuclear Information System (INIS)
Jiang, Y.-H.; Liu, F.; Song, S.-J.
2012-01-01
An extended analytical model is derived for non-isothermal solid-state phase transformation assuming interface-controlled growth mode, e.g. polymorphic or allotropic transformation. In the modeling, incorporation of thermodynamic factor into kinetics of nucleation and growth is performed, so that the model can be used to describe the transformation occurring either near or far from the equilibrium state. Furthermore, the effect of the initial transformation temperature is included through a special treatment for the “temperature integral”, so that the model can be used to depict the transformation during either continuous heating or continuous cooling. Numerical calculations demonstrate that the extended analytical model is accurate enough for practical use. On this basis, a general rate equation for non-isothermal (isochronal heating and cooling) transformation is derived. Applying the present model, the overall kinetic behavior of γ/α transformation in binary substitutional Fe-based alloys (e.g. Fe–Mn and Fe–Cu) upon cooling, measured by dilatometry, is described successfully. Compared with previous work, where a site saturation assumption is generally made, the prevalence of continuous nucleation deduced using the present model prediction seems more reasonable.
Modelling the predictive performance of credit scoring
Directory of Open Access Journals (Sweden)
Shi-Wei Shen
2013-07-01
Research purpose: The purpose of this empirical paper was to examine the predictive performance of credit scoring systems in Taiwan. Motivation for the study: Corporate lending remains a major business line for financial institutions. However, in light of the recent global financial crises, it has become extremely important for financial institutions to implement rigorous means of assessing clients seeking access to credit facilities. Research design, approach and method: Using a data sample of 10 349 observations drawn between 1992 and 2010, logistic regression models were utilised to examine the predictive performance of credit scoring systems. Main findings: A test of Goodness of fit demonstrated that credit scoring models that incorporated the Taiwan Corporate Credit Risk Index (TCRI, micro- and also macroeconomic variables possessed greater predictive power. This suggests that macroeconomic variables do have explanatory power for default credit risk. Practical/managerial implications: The originality in the study was that three models were developed to predict corporate firms’ defaults based on different microeconomic and macroeconomic factors such as the TCRI, asset growth rates, stock index and gross domestic product. Contribution/value-add: The study utilises different goodness of fits and receiver operator characteristics during the examination of the robustness of the predictive power of these factors.
Predictive modeling of reactive wetting and metal joining.
Energy Technology Data Exchange (ETDEWEB)
van Swol, Frank B.
2013-09-01
The performance, reproducibility and reliability of metal joints are complex functions of the detailed history of physical processes involved in their creation. Prediction and control of these processes constitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy and reactive wetting. Understanding this process requires coupling strong molecularscale chemistry at the interface with microscopic (diffusion) and macroscopic mass transport (flow) inside the liquid followed by subsequent cooling and solidification of the new metal mixture. The final joint displays compositional heterogeneity and its resulting microstructure largely determines the success or failure of the entire component. At present there exists no computational tool at Sandia that can predict the formation and success of a braze joint, as current capabilities lack the ability to capture surface/interface reactions and their effect on interface properties. This situation precludes us from implementing a proactive strategy to deal with joining problems. Here, we describe what is needed to arrive at a predictive modeling and simulation capability for multicomponent metals with complicated phase diagrams for melting and solidification, incorporating dissolutive and composition-dependent wetting.
Electrode cooling for long pulse high current ion sources
International Nuclear Information System (INIS)
McKenzie-Wilson, R.B.
1979-01-01
The need for cooling of electrode surface in ion sources for neutral beam line applications is summarized. The properties of possible cooling fluids are discussed and the decision to use water as a cooling fluid of choice is explained. The influence of source geometry on the design of a cooling canal is examined and two possible designs are presented. The need for model testing and the results of the tests on a model cathode are also discussed. Some remarks are also made on a method of predicting burnout failure of a cooled electrode
Energy Technology Data Exchange (ETDEWEB)
Huang, Hai; Plummer, Mitchell; Podgorney, Robert
2013-02-01
Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.
Comparison of two ordinal prediction models
DEFF Research Database (Denmark)
Kattan, Michael W; Gerds, Thomas A
2015-01-01
system (i.e. old or new), such as the level of evidence for one or more factors included in the system or the general opinions of expert clinicians. However, given the major objective of estimating prognosis on an ordinal scale, we argue that the rival staging system candidates should be compared...... on their ability to predict outcome. We sought to outline an algorithm that would compare two rival ordinal systems on their predictive ability. RESULTS: We devised an algorithm based largely on the concordance index, which is appropriate for comparing two models in their ability to rank observations. We...... demonstrate our algorithm with a prostate cancer staging system example. CONCLUSION: We have provided an algorithm for selecting the preferred staging system based on prognostic accuracy. It appears to be useful for the purpose of selecting between two ordinal prediction models....
Energy Technology Data Exchange (ETDEWEB)
Zhao, Haihua [Idaho National Laboratory; Zhang, Hongbin [Idaho National Laboratory; Zou, Ling [Idaho National Laboratory; Martineau, Richard Charles [Idaho National Laboratory
2015-03-01
The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoid overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety
Modeling the Cloudy Atmospheres of Cool Stars, Brown Dwarfs and Hot Exoplanets
DEFF Research Database (Denmark)
Juncher, Diana
M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing the proper......M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing......-consistent cloudy atmosphere models that can be used to properly determine the stellar parameters of cool stars. With this enhanced model atmosphere code I have created a grid of cool, dusty atmosphere models ranging in effective temperatures from Teff = 2000 − 3000 K. I have studied the formation and structure...... of their clouds and found that their synthetic spectra fit the observed spectra of mid to late type M-dwarfs and early type L-dwarfs well. With additional development into even cooler regimes, they could be used to characterize the atmospheres of exoplanets and aid us in our search for the kind of chemical...
A p-version embedded model for simulation of concrete temperature fields with cooling pipes
Directory of Open Access Journals (Sweden)
Sheng Qiang
2015-07-01
Full Text Available Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model.
Analysis of a combined heating and cooling system model under different operating strategies
Dzierzgowski, Mieczysław; Zwierzchowski, Ryszard
2017-11-01
The paper presents an analysis of a combined heating and cooling system model under different operating strategies. Cooling demand for air conditioning purposes has grown steadily in Poland since the early 1990s. The main clients are large office buildings and shopping malls in downtown locations. Increased demand for heat in the summer would mitigate a number of problems regarding District Heating System (DHS) operation at minimum power, affecting the average annual price of heat (in summertime the share of costs related to transport losses is a strong cost factor). In the paper, computer simulations were performed for different supply network water temperature, assuming as input, real changes in the parameters of the DHS (heat demand, flow rates, etc.). On the basis of calculations and taking into account investment costs of the Absorption Refrigeration System (ARS) and the Thermal Energy Storage (TES) system, an optimal capacity of the TES system was proposed to ensure smooth and efficient operation of the District Heating Plant (DHP). Application of ARS with the TES system in the DHS in question increases net profit by 19.4%, reducing the cooling price for consumers by 40%.
Predictive analytics can support the ACO model.
Bradley, Paul
2012-04-01
Predictive analytics can be used to rapidly spot hard-to-identify opportunities to better manage care--a key tool in accountable care. When considering analytics models, healthcare providers should: Make value-based care a priority and act on information from analytics models. Create a road map that includes achievable steps, rather than major endeavors. Set long-term expectations and recognize that the effectiveness of an analytics program takes time, unlike revenue cycle initiatives that may show a quick return.
Predictive performance models and multiple task performance
Wickens, Christopher D.; Larish, Inge; Contorer, Aaron
1989-01-01
Five models that predict how performance of multiple tasks will interact in complex task scenarios are discussed. The models are shown in terms of the assumptions they make about human operator divided attention. The different assumptions about attention are then empirically validated in a multitask helicopter flight simulation. It is concluded from this simulation that the most important assumption relates to the coding of demand level of different component tasks.
Model Predictive Control of Sewer Networks
DEFF Research Database (Denmark)
Pedersen, Einar B.; Herbertsson, Hannes R.; Niemann, Henrik
2016-01-01
The developments in solutions for management of urban drainage are of vital importance, as the amount of sewer water from urban areas continues to increase due to the increase of the world’s population and the change in the climate conditions. How a sewer network is structured, monitored and cont...... benchmark model. Due to the inherent constraints the applied approach is based on Model Predictive Control....
Distributed Model Predictive Control via Dual Decomposition
DEFF Research Database (Denmark)
Biegel, Benjamin; Stoustrup, Jakob; Andersen, Palle
2014-01-01
This chapter presents dual decomposition as a means to coordinate a number of subsystems coupled by state and input constraints. Each subsystem is equipped with a local model predictive controller while a centralized entity manages the subsystems via prices associated with the coupling constraints...
International Nuclear Information System (INIS)
Coutant, C.C.
1978-01-01
Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project
Dynamic Predictive Model for Growth of Bacillus cereus from Spores in Cooked Beans.
Juneja, Vijay K; Mishra, Abhinav; Pradhan, Abani K
2018-02-01
Kinetic growth data for Bacillus cereus grown from spores were collected in cooked beans under several isothermal conditions (10 to 49°C). Samples were inoculated with approximately 2 log CFU/g heat-shocked (80°C for 10 min) spores and stored at isothermal temperatures. B. cereus populations were determined at appropriate intervals by plating on mannitol-egg yolk-polymyxin agar and incubating at 30°C for 24 h. Data were fitted into Baranyi, Huang, modified Gompertz, and three-phase linear primary growth models. All four models were fitted to the experimental growth data collected at 13 to 46°C. Performances of these models were evaluated based on accuracy and bias factors, the coefficient of determination ( R 2 ), and the root mean square error. Based on these criteria, the Baranyi model best described the growth data, followed by the Huang, modified Gompertz, and three-phase linear models. The maximum growth rates of each primary model were fitted as a function of temperature using the modified Ratkowsky model. The high R 2 values (0.95 to 0.98) indicate that the modified Ratkowsky model can be used to describe the effect of temperature on the growth rates for all four primary models. The acceptable prediction zone (APZ) approach also was used for validation of the model with observed data collected during single and two-step dynamic cooling temperature protocols. When the predictions using the Baranyi model were compared with the observed data using the APZ analysis, all 24 observations for the exponential single rate cooling were within the APZ, which was set between -0.5 and 1 log CFU/g; 26 of 28 predictions for the two-step cooling profiles also were within the APZ limits. The developed dynamic model can be used to predict potential B. cereus growth from spores in beans under various temperature conditions or during extended chilling of cooked beans.
Studies on plant dynamics of sodium-cooled fast breeder reactors - verification of a plant model
International Nuclear Information System (INIS)
Schubert, B.
1988-01-01
For the analysis of sodium-cooled FBR safety and dynamics theoretical models are used, which have to be verified. In this report the verification of the plant model SSC-L is conducted by the comparison of calculated data with measurements of the experimental reactors KNK II and RAPSODIE. For this the plant model is extended and adapted. In general only small differences between calculated and measured data are recognized. The results are used to improve and complete the plant model. The extensions of the plant model applicability are used for the calculation of a loss of heat sink transient with reactor scram, considering pipes as passive heat sinks. (orig./HP) With 69 figs., 10 tabs [de
Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel
International Nuclear Information System (INIS)
Mella, R.; Wenman, M.R.
2013-01-01
Thermo-mechanical contributions to pellet–clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS’s well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used
Energy Technology Data Exchange (ETDEWEB)
C. AMMERMAN; J. BERNARDIN
1999-11-01
This report presents results for design and analysis of the hot model water cooling system for the Spallation Neutron Source (SNS) coupled-cavity linac (CCL). The hot model, when completed, will include segments for both the CCL and coupled-cavity drift-tube linac (CCDTL). The scope of this report encompasses the modeling effort for the CCL portion of the hot model. This modeling effort employed the SINDA/FLUINT network modeling tool. This report begins with an introduction of the SNS hot model and network modeling using SINDA/FLUINT. Next, the development and operation of the SINDA/FLUINT model are discussed. Finally, the results of the SINDA/FLUINT modeling effort are presented and discussed.
A stepwise model to predict monthly streamflow
Mahmood Al-Juboori, Anas; Guven, Aytac
2016-12-01
In this study, a stepwise model empowered with genetic programming is developed to predict the monthly flows of Hurman River in Turkey and Diyalah and Lesser Zab Rivers in Iraq. The model divides the monthly flow data to twelve intervals representing the number of months in a year. The flow of a month, t is considered as a function of the antecedent month's flow (t - 1) and it is predicted by multiplying the antecedent monthly flow by a constant value called K. The optimum value of K is obtained by a stepwise procedure which employs Gene Expression Programming (GEP) and Nonlinear Generalized Reduced Gradient Optimization (NGRGO) as alternative to traditional nonlinear regression technique. The degree of determination and root mean squared error are used to evaluate the performance of the proposed models. The results of the proposed model are compared with the conventional Markovian and Auto Regressive Integrated Moving Average (ARIMA) models based on observed monthly flow data. The comparison results based on five different statistic measures show that the proposed stepwise model performed better than Markovian model and ARIMA model. The R2 values of the proposed model range between 0.81 and 0.92 for the three rivers in this study.
International Nuclear Information System (INIS)
Zhiyu, You; Tao, Xu; Zhixiang, Liu; Yun, Peng; Weirong, Cheng
2014-01-01
In order to obtain the optimal output performance of the air-cooled self-humidifying proton exchange membrane fuel cell (PEMFC), the operating temperature, the air flow, purge interval and some other parameters must be controlled strictly. As a key factor, the operating temperature mainly determines the optimal output performance of the fuel cell. However, some intrinsic issues such as long adjusting time, over-shoot still exist inevitably for the traditional PID temperature-controlled method in circumstances of the load variation. Consequently, output performance of PEMFC decreases because the operating temperature of the fuel cell fails to reach, and the corresponding lifetime of PEMFC is also reduced. In this study, a segmented predict negative feedback control method, based on the advance proportional control one, is proposed and verified by experiments to overcome the shortcomings of PID temperature control. The results demonstrate that the optimal output performance of PEMFC can be realized by utilizing the proposed method for temperature control due to its excellent properties, simple controlling and small over-shoot
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyung-Kyu; Lee, Young-Ho; Lee, Hyun-Seung; Lee, Kang-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2017-05-15
This paper reports the results of an acceleration test to predict the contact-induced failure that could occur at the cylinder-to-hole joint for the fuel rod of a sodium-cooled fast reactor (SFR). To incorporate the fuel life of the SFR currently under development at KAERI (around 35,000 h), the acceleration test method of reliability engineering was adopted in this work. A finite element method was used to evaluate the flow-induced vibration frequency and amplitude for the test parameter values. Five specimens were tested. The failure criterion during the life of the SFR fuel was applied. The S-N curve of the HT-9, the material of concern, was used to obtain the acceleration factor. As a result, a test time of 16.5 h was obtained for each specimen. It was concluded that the B{sub 0.004} life would be guaranteed for the SFR fuel rods with 99% confidence if no failure was observed at any of the contact surfaces of the five specimens.
Electrostatic ion thrusters - towards predictive modeling
Energy Technology Data Exchange (ETDEWEB)
Kalentev, O.; Matyash, K.; Duras, J.; Lueskow, K.F.; Schneider, R. [Ernst-Moritz-Arndt Universitaet Greifswald, D-17489 (Germany); Koch, N. [Technische Hochschule Nuernberg Georg Simon Ohm, Kesslerplatz 12, D-90489 Nuernberg (Germany); Schirra, M. [Thales Electronic Systems GmbH, Soeflinger Strasse 100, D-89077 Ulm (Germany)
2014-02-15
The development of electrostatic ion thrusters so far has mainly been based on empirical and qualitative know-how, and on evolutionary iteration steps. This resulted in considerable effort regarding prototype design, construction and testing and therefore in significant development and qualification costs and high time demands. For future developments it is anticipated to implement simulation tools which allow for quantitative prediction of ion thruster performance, long-term behavior and space craft interaction prior to hardware design and construction. Based on integrated numerical models combining self-consistent kinetic plasma models with plasma-wall interaction modules a new quality in the description of electrostatic thrusters can be reached. These open the perspective for predictive modeling in this field. This paper reviews the application of a set of predictive numerical modeling tools on an ion thruster model of the HEMP-T (High Efficiency Multi-stage Plasma Thruster) type patented by Thales Electron Devices GmbH. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
An Intelligent Model for Stock Market Prediction
Directory of Open Access Journals (Sweden)
IbrahimM. Hamed
2012-08-01
Full Text Available This paper presents an intelligent model for stock market signal prediction using Multi-Layer Perceptron (MLP Artificial Neural Networks (ANN. Blind source separation technique, from signal processing, is integrated with the learning phase of the constructed baseline MLP ANN to overcome the problems of prediction accuracy and lack of generalization. Kullback Leibler Divergence (KLD is used, as a learning algorithm, because it converges fast and provides generalization in the learning mechanism. Both accuracy and efficiency of the proposed model were confirmed through the Microsoft stock, from wall-street market, and various data sets, from different sectors of the Egyptian stock market. In addition, sensitivity analysis was conducted on the various parameters of the model to ensure the coverage of the generalization issue. Finally, statistical significance was examined using ANOVA test.
Predictive Models, How good are they?
DEFF Research Database (Denmark)
Kasch, Helge
The WAD grading system has been used for more than 20 years by now. It has shown long-term viability, but with strengths and limitations. New bio-psychosocial assessment of the acute whiplash injured subject may provide better prediction of long-term disability and pain. Furthermore, the emerging......-up. It is important to obtain prospective identification of the relevant risk underreported disability could, if we were able to expose these hidden “risk-factors” during our consultations, provide us with better predictive models. New data from large clinical studies will present exciting new genetic risk markers...
NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES
Directory of Open Access Journals (Sweden)
SILVA R. G.
1999-01-01
Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.
A statistical model for predicting muscle performance
Byerly, Diane Leslie De Caix
The objective of these studies was to develop a capability for predicting muscle performance and fatigue to be utilized for both space- and ground-based applications. To develop this predictive model, healthy test subjects performed a defined, repetitive dynamic exercise to failure using a Lordex spinal machine. Throughout the exercise, surface electromyography (SEMG) data were collected from the erector spinae using a Mega Electronics ME3000 muscle tester and surface electrodes placed on both sides of the back muscle. These data were analyzed using a 5th order Autoregressive (AR) model and statistical regression analysis. It was determined that an AR derived parameter, the mean average magnitude of AR poles, significantly correlated with the maximum number of repetitions (designated Rmax) that a test subject was able to perform. Using the mean average magnitude of AR poles, a test subject's performance to failure could be predicted as early as the sixth repetition of the exercise. This predictive model has the potential to provide a basis for improving post-space flight recovery, monitoring muscle atrophy in astronauts and assessing the effectiveness of countermeasures, monitoring astronaut performance and fatigue during Extravehicular Activity (EVA) operations, providing pre-flight assessment of the ability of an EVA crewmember to perform a given task, improving the design of training protocols and simulations for strenuous International Space Station assembly EVA, and enabling EVA work task sequences to be planned enhancing astronaut performance and safety. Potential ground-based, medical applications of the predictive model include monitoring muscle deterioration and performance resulting from illness, establishing safety guidelines in the industry for repetitive tasks, monitoring the stages of rehabilitation for muscle-related injuries sustained in sports and accidents, and enhancing athletic performance through improved training protocols while reducing
Energy Technology Data Exchange (ETDEWEB)
Wolk, P.J. van der; Wang, J. [Delft Univ. of Technology (Netherlands); Sietsma, J.; Zwaag, S. van der [Delft Univ. of Technology, Lab. for Materials Science (Netherlands)
2002-12-01
A neural network model for the calculation of the phase regions of the continuous cooling transformation (CCT) diagram of engineering steels has been developed. The model is based on experimental CCT diagrams of 459 low-alloy steels, and calculates the CCT diagram as a function of composition and austenitisation temperature. In considering the composition, 9 alloying elements are taken into account. The model reproduces the original diagrams rather accurately, with deviations that are not larger than the average experimental inaccuracy of the experimental diagrams. Therefore, it can be considered an adequate alternative to the experimental determination of the CCT diagram of a certain steel within the composition range used. The effects of alloying elements can be quantified, either individually or in combination, with the model. Nonlinear composition dependencies are observed. (orig.)
International Nuclear Information System (INIS)
Tanaka, Mitsugu
1978-01-01
LWR plants have a containment spray system to reduce the escape of radioactive material to the environment in a loss-of-coolant accident (LOCA) by washing out fission products, especially radioiodine, and condensing the steam to lower the pressure. For carrying out the containment spray tests, pressure and temperature behaviour of the JAERI Model Containment Vessel in spray cooling has been calculated with computer program CONTEMPT-LT. The following could be studied quantitatively: (1) pressure and temperature raise rates for steam addition rate and (2) pressure fall rate for spray flow rate and spray heat transfer efficiency. (auth.)
Prediction models : the right tool for the right problem
Kappen, Teus H.; Peelen, Linda M.
2016-01-01
PURPOSE OF REVIEW: Perioperative prediction models can help to improve personalized patient care by providing individual risk predictions to both patients and providers. However, the scientific literature on prediction model development and validation can be quite technical and challenging to
Neuro-fuzzy modeling in bankruptcy prediction
Directory of Open Access Journals (Sweden)
Vlachos D.
2003-01-01
Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.
Energy Technology Data Exchange (ETDEWEB)
Bidart, A.; Caltagirone, J.P.; Parneix, S. [Laboratoire MASTER-ENSCPB, 33 - Talence (France)
1997-12-31
The MASTER laboratory has been involved since several years in the creation and utilization of modeling tools for the prediction of 3-D turbulent flows and heat transfers in turbine blades in order to optimize the cooling systems of turbo-machineries. This paper describes one of the test-cases that has been used for the validation of the `Aquilon` calculation code developed in this aim. Then, the modeling performed with the `Fluent` industrial code in order to evaluate the possible improvements of the Aquilon code, is presented. (J.S.) 5 refs.
Experimental study of condensate subcooling with the use of a model of an air-cooled condenser
Sukhanov, V. A.; Bezukhov, A. P.; Bogov, I. A.; Dontsov, N. Y.; Volkovitsky, I. D.; Tolmachev, V. V.
2016-01-01
Water-supply deficit is now felt in many regions of the world. This hampers the construction of new steam-turbine and combined steam-and-gas thermal power plants. The use of dry cooling systems and, specifically, steam-turbine air-cooled condensers (ACCs) expands the choice of sites for the construction of such power plants. The significance of condensate subcooling Δ t as a parameter that negatively affects the engineering and economic performance of steam-turbine plants is thereby increased. The operation and design factors that influence the condensate subcooling in ACCs are revealed, and the research objective is, thus, formulated properly. The indicated research was conducted through physical modeling with the use of the Steam-Turbine Air-Cooled Condenser Unit specialized, multipurpose, laboratory bench. The design and the combined schematic and measurement diagram of this test bench are discussed. The experimental results are presented in the form of graphic dependences of the condensate subcooling value on cooling ratio m and relative weight content ɛ' of air in steam at the ACC inlet at different temperatures of cooling air t ca ' . The typical ranges of condensate subcooling variation (4 ≤ Δ t ≤ 6°C, 2 ≤ Δ t ≤ 4°C, and 0 ≤ Δ t ≤ 2°C) are identified based on the results of analysis of the attained Δ t levels in the ACC and numerous Δ t reduction estimates. The corresponding ranges of cooling ratio variation at different temperatures of cooling air at the ACC inlet are specified. The guidelines for choosing the adjusted ranges of cooling ratio variation with account of the results of experimental studies of the dependences of the absolute pressure of the steam-air mixture in the top header of the ACC and the heat flux density on the cooling ratio at different temperatures of cooling air at the ACC inlet are given.
Predictive Models for Carcinogenicity and Mutagenicity ...
Mutagenicity and carcinogenicity are endpoints of major environmental and regulatory concern. These endpoints are also important targets for development of alternative methods for screening and prediction due to the large number of chemicals of potential concern and the tremendous cost (in time, money, animals) of rodent carcinogenicity bioassays. Both mutagenicity and carcinogenicity involve complex, cellular processes that are only partially understood. Advances in technologies and generation of new data will permit a much deeper understanding. In silico methods for predicting mutagenicity and rodent carcinogenicity based on chemical structural features, along with current mutagenicity and carcinogenicity data sets, have performed well for local prediction (i.e., within specific chemical classes), but are less successful for global prediction (i.e., for a broad range of chemicals). The predictivity of in silico methods can be improved by improving the quality of the data base and endpoints used for modelling. In particular, in vitro assays for clastogenicity need to be improved to reduce false positives (relative to rodent carcinogenicity) and to detect compounds that do not interact directly with DNA or have epigenetic activities. New assays emerging to complement or replace some of the standard assays include VitotoxTM, GreenScreenGC, and RadarScreen. The needs of industry and regulators to assess thousands of compounds necessitate the development of high-t
International Nuclear Information System (INIS)
Moeller, S.P.
1994-01-01
After an introduction to the general concepts of cooling of charged particle beams, some specific cooling methods are discussed, namely stochastic, electron and laser cooling. The treatment concentrates on the physical ideas of the cooling methods and only very crude derivations of cooling times are given. At the end three other proposed cooling schemes are briefly discussed. (orig.)
Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state
Energy Technology Data Exchange (ETDEWEB)
Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl
2016-05-15
Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis
van Vliet, M. T. H.; van Beek, L. P. H.; Eisener, S.; Wada, Y.; Bierkens, M. F. P.
2016-01-01
Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971-2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18-33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11-14% (for RCP2.6 and the shared socioeconomic
Validated predictive modelling of the environmental resistome.
Amos, Gregory C A; Gozzard, Emma; Carter, Charlotte E; Mead, Andrew; Bowes, Mike J; Hawkey, Peter M; Zhang, Lihong; Singer, Andrew C; Gaze, William H; Wellington, Elizabeth M H
2015-06-01
Multi-drug-resistant bacteria pose a significant threat to public health. The role of the environment in the overall rise in antibiotic-resistant infections and risk to humans is largely unknown. This study aimed to evaluate drivers of antibiotic-resistance levels across the River Thames catchment, model key biotic, spatial and chemical variables and produce predictive models for future risk assessment. Sediment samples from 13 sites across the River Thames basin were taken at four time points across 2011 and 2012. Samples were analysed for class 1 integron prevalence and enumeration of third-generation cephalosporin-resistant bacteria. Class 1 integron prevalence was validated as a molecular marker of antibiotic resistance; levels of resistance showed significant geospatial and temporal variation. The main explanatory variables of resistance levels at each sample site were the number, proximity, size and type of surrounding wastewater-treatment plants. Model 1 revealed treatment plants accounted for 49.5% of the variance in resistance levels. Other contributing factors were extent of different surrounding land cover types (for example, Neutral Grassland), temporal patterns and prior rainfall; when modelling all variables the resulting model (Model 2) could explain 82.9% of variations in resistance levels in the whole catchment. Chemical analyses correlated with key indicators of treatment plant effluent and a model (Model 3) was generated based on water quality parameters (contaminant and macro- and micro-nutrient levels). Model 2 was beta tested on independent sites and explained over 78% of the variation in integron prevalence showing a significant predictive ability. We believe all models in this study are highly useful tools for informing and prioritising mitigation strategies to reduce the environmental resistome.
Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system
Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang
2017-02-01
A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.
Nonlinear model predictive control theory and algorithms
Grüne, Lars
2017-01-01
This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...
Baryogenesis model predicting antimatter in the Universe
International Nuclear Information System (INIS)
Kirilova, D.
2003-01-01
Cosmic ray and gamma-ray data do not rule out antimatter domains in the Universe, separated at distances bigger than 10 Mpc from us. Hence, it is interesting to analyze the possible generation of vast antimatter structures during the early Universe evolution. We discuss a SUSY-condensate baryogenesis model, predicting large separated regions of matter and antimatter. The model provides generation of the small locally observed baryon asymmetry for a natural initial conditions, it predicts vast antimatter domains, separated from the matter ones by baryonically empty voids. The characteristic scale of antimatter regions and their distance from the matter ones is in accordance with observational constraints from cosmic ray, gamma-ray and cosmic microwave background anisotropy data
International Nuclear Information System (INIS)
Kyte, W.S.
1980-01-01
The graphite moderator bricks which make up the moderator of an advanced gas-cooled nuclear reactor (AGR) are of many different and complex shapes. Many physico-chemical processes that occur within these porous bricks include a diffusional step and thus to model these processes it is necessary to solve the diffusion equation (with chemical reaction) in a porous medium of complex shape. A finite element technique is applied to calculating the rate at which nitrogen diffuses into and out of the porous moderator graphite during operation of a shutdown procedure for an AGR. However, the finite element method suffers from several disadvantages that undermine its general usefulness for calculating rates of diffusion in AGR moderator cores. A model which overcomes some of these disadvantages is presented (the equivalent cylinder model) and it is shown that this gives good results for a variety of different boundary and initial conditions
Finding Furfural Hydrogenation Catalysts via Predictive Modelling
Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi
2010-01-01
Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre t...
Predictive Modeling in Actinide Chemistry and Catalysis
Energy Technology Data Exchange (ETDEWEB)
Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-05-16
These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.
Tectonic predictions with mantle convection models
Coltice, Nicolas; Shephard, Grace E.
2018-04-01
Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough
Thermo-electrochemical model for forced convection air cooling of a lithium-ion battery module
International Nuclear Information System (INIS)
Tong, Wei; Somasundaram, Karthik; Birgersson, Erik; Mujumdar, Arun S.; Yap, Christopher
2016-01-01
Highlights: • Coupled thermal-electrochemical model for a Li-ion battery module resolving every functional layer in all cells. • Parametric analysis of forced convection air cooling of Li-ion battery module with a detailed multi-scale model. • Reversing/reciprocating airflow for Li-ion battery module thermal management provides uniform temperature distribution. - Abstract: Thermal management is critical for safe and reliable operation of lithium-ion battery systems. In this study, a one-dimensional thermal-electrochemical model of lithium-ion battery interactively coupled with a two-dimensional thermal-fluid conjugate model for forced convection air cooling of a lithium-ion battery module is presented and solved numerically. This coupled approach makes the model more unique and detailed as transport inside each cell in the battery module is solved for and thus covering multiple length and time scales. The effect of certain design and operating parameters of the thermal management system on the performance of the battery module is assessed using the coupled model. It is found that a lower temperature increase of the battery module can be achieved by either increasing the inlet air velocity or decreasing the distance between the cells. Higher air inlet velocity, staggered cell arrangement or a periodic reversal airflow of high reversal frequency results in a more uniform temperature distribution in the module. However, doing so increases the parasitic load as well as the volume of the battery module whence a trade-off should be taken into account between these parameters.
Breast cancer risks and risk prediction models.
Engel, Christoph; Fischer, Christine
2015-02-01
BRCA1/2 mutation carriers have a considerably increased risk to develop breast and ovarian cancer. The personalized clinical management of carriers and other at-risk individuals depends on precise knowledge of the cancer risks. In this report, we give an overview of the present literature on empirical cancer risks, and we describe risk prediction models that are currently used for individual risk assessment in clinical practice. Cancer risks show large variability between studies. Breast cancer risks are at 40-87% for BRCA1 mutation carriers and 18-88% for BRCA2 mutation carriers. For ovarian cancer, the risk estimates are in the range of 22-65% for BRCA1 and 10-35% for BRCA2. The contralateral breast cancer risk is high (10-year risk after first cancer 27% for BRCA1 and 19% for BRCA2). Risk prediction models have been proposed to provide more individualized risk prediction, using additional knowledge on family history, mode of inheritance of major genes, and other genetic and non-genetic risk factors. User-friendly software tools have been developed that serve as basis for decision-making in family counseling units. In conclusion, further assessment of cancer risks and model validation is needed, ideally based on prospective cohort studies. To obtain such data, clinical management of carriers and other at-risk individuals should always be accompanied by standardized scientific documentation.
A predictive model for dimensional errors in fused deposition modeling
DEFF Research Database (Denmark)
Stolfi, A.
2015-01-01
This work concerns the effect of deposition angle (a) and layer thickness (L) on the dimensional performance of FDM parts using a predictive model based on the geometrical description of the FDM filament profile. An experimental validation over the whole a range from 0° to 177° at 3° steps and two...... values of L (0.254 mm, 0.330 mm) was produced by comparing predicted values with external face-to-face measurements. After removing outliers, the results show that the developed two-parameter model can serve as tool for modeling the FDM dimensional behavior in a wide range of deposition angles....
Ensemble models on palaeoclimate to predict India's groundwater challenge
Directory of Open Access Journals (Sweden)
Partha Sarathi Datta
2013-09-01
Full Text Available In many parts of the world, freshwater crisis is largely due to increasing water consumption and pollution by rapidly growing population and aspirations for economic development, but, ascribed usually to the climate. However, limited understanding and knowledge gaps in the factors controlling climate and uncertainties in the climate models are unable to assess the probable impacts on water availability in tropical regions. In this context, review of ensemble models on δ18O and δD in rainfall and groundwater, 3H- and 14C- ages of groundwater and 14C- age of lakes sediments helped to reconstruct palaeoclimate and long-term recharge in the North-west India; and predict future groundwater challenge. The annual mean temperature trend indicates both warming/cooling in different parts of India in the past and during 1901–2010. Neither the GCMs (Global Climate Models nor the observational record indicates any significant change/increase in temperature and rainfall over the last century, and climate change during the last 1200 yrs BP. In much of the North-West region, deep groundwater renewal occurred from past humid climate, and shallow groundwater renewal from limited modern recharge over the past decades. To make water management to be more responsive to climate change, the gaps in the science of climate change need to be bridged.
Two stage neural network modelling for robust model predictive control.
Patan, Krzysztof
2018-01-01
The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Modelling of a condenser-fan control for an air-cooled centrifugal chiller
International Nuclear Information System (INIS)
Yu, F.W.; Chan, K.T.
2007-01-01
There is a lack of detailed experimental and simulation studies on air-cooled centrifugal chillers. This paper investigates how to optimize the control of condenser fans within the chillers to maximize their coefficients of performance (COPs). A thermodynamic model for the chillers was developed and used to analyse the steady-state COP under various load and ambient conditions. An algorithm is introduced to compute the number of staged condenser fans based on settings of the condensing pressure and outdoor temperature. The model was validated using the experimental data and performance data of an existing chiller running under various operating conditions. It is found that the best strategy for switching condenser fans is to vary their rotating speed by the use of a set point of the condensing temperature, which is adjusted in response to the chiller load and condenser air-inlet temperature. The results of this paper provide an important insight into how to increase the COPs of air-cooled chillers
Modelling of a condenser-fan control for an air-cooled centrifugal chiller
Energy Technology Data Exchange (ETDEWEB)
Yu, F.W.; Chan, K.T. [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)
2007-11-15
There is a lack of detailed experimental and simulation studies on air-cooled centrifugal chillers. This paper investigates how to optimize the control of condenser fans within the chillers to maximize their coefficients of performance (COPs). A thermodynamic model for the chillers was developed and used to analyse the steady-state COP under various load and ambient conditions. An algorithm is introduced to compute the number of staged condenser fans based on settings of the condensing pressure and outdoor temperature. The model was validated using the experimental data and performance data of an existing chiller running under various operating conditions. It is found that the best strategy for switching condenser fans is to vary their rotating speed by the use of a set point of the condensing temperature, which is adjusted in response to the chiller load and condenser air-inlet temperature. The results of this paper provide an important insight into how to increase the COPs of air-cooled chillers. (author)
Predicting extinction rates in stochastic epidemic models
International Nuclear Information System (INIS)
Schwartz, Ira B; Billings, Lora; Dykman, Mark; Landsman, Alexandra
2009-01-01
We investigate the stochastic extinction processes in a class of epidemic models. Motivated by the process of natural disease extinction in epidemics, we examine the rate of extinction as a function of disease spread. We show that the effective entropic barrier for extinction in a susceptible–infected–susceptible epidemic model displays scaling with the distance to the bifurcation point, with an unusual critical exponent. We make a direct comparison between predictions and numerical simulations. We also consider the effect of non-Gaussian vaccine schedules, and show numerically how the extinction process may be enhanced when the vaccine schedules are Poisson distributed
Predictive Modeling of the CDRA 4BMS
Coker, Robert F.; Knox, James C.
2016-01-01
As part of NASA's Advanced Exploration Systems (AES) program and the Life Support Systems Project (LSSP), fully predictive models of the Four Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) on the International Space Station (ISS) are being developed. This virtual laboratory will be used to help reduce mass, power, and volume requirements for future missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future crewed Mars missions as well as the resolution of anomalies observed in the ISS CDRA.
Data Driven Economic Model Predictive Control
Directory of Open Access Journals (Sweden)
Masoud Kheradmandi
2018-04-01
Full Text Available This manuscript addresses the problem of data driven model based economic model predictive control (MPC design. To this end, first, a data-driven Lyapunov-based MPC is designed, and shown to be capable of stabilizing a system at an unstable equilibrium point. The data driven Lyapunov-based MPC utilizes a linear time invariant (LTI model cognizant of the fact that the training data, owing to the unstable nature of the equilibrium point, has to be obtained from closed-loop operation or experiments. Simulation results are first presented demonstrating closed-loop stability under the proposed data-driven Lyapunov-based MPC. The underlying data-driven model is then utilized as the basis to design an economic MPC. The economic improvements yielded by the proposed method are illustrated through simulations on a nonlinear chemical process system example.
Hybrid Prediction Model of the Temperature Field of a Motorized Spindle
Directory of Open Access Journals (Sweden)
Lixiu Zhang
2017-10-01
Full Text Available The thermal characteristics of a motorized spindle are the main determinants of its performance, and influence the machining accuracy of computer numerical control machine tools. It is important to accurately predict the thermal field of a motorized spindle during its operation to improve its thermal characteristics. This paper proposes a model to predict the temperature field of a high-speed and high-precision motorized spindle under different working conditions using a finite element model and test data. The finite element model considers the influence of the parameters of the cooling system and the lubrication system, and that of environmental conditions on the coefficient of heat transfer based on test data for the surface temperature of the motorized spindle. A genetic algorithm is used to optimize the coefficient of heat transfer of the spindle, and its temperature field is predicted using a three-dimensional model that employs this optimal coefficient. A prediction model of the 170MD30 temperature field of the motorized spindle is created and simulation data for the temperature field are compared with the test data. The results show that when the speed of the spindle is 10,000 rpm, the relative mean prediction error is 1.5%, and when its speed is 15,000 rpm, the prediction error is 3.6%. Therefore, the proposed prediction model can predict the temperature field of the motorized spindle with high accuracy.
Assessing the Cooling Benefits of Tree Shade by an Outdoor Urban Physical Scale Model at Tempe, AZ
Directory of Open Access Journals (Sweden)
Qunshan Zhao
2018-01-01
Full Text Available Urban green infrastructure, especially shade trees, offers benefits to the urban residential environment by mitigating direct incoming solar radiation on building facades, particularly in hot settings. Understanding the impact of different tree locations and arrangements around residential properties has the potential to maximize cooling and can ultimately guide urban planners, designers, and homeowners on how to create the most sustainable urban environment. This research measures the cooling effect of tree shade on building facades through an outdoor urban physical scale model. The physical scale model is a simulated neighborhood consisting of an array of concrete cubes to represent houses with identical artificial trees. We tested and compared 10 different tree densities, locations, and arrangement scenarios in the physical scale model. The experimental results show that a single tree located at the southeast of the building can provide up to 2.3 °C hourly cooling benefits to east facade of the building. A two-tree cluster arrangement provides more cooling benefits (up to 6.6 °C hourly cooling benefits to the central facade when trees are located near the south and southeast sides of the building. The research results confirm the cooling benefits of tree shade and the importance of wisely designing tree locations and arrangements in the built environment.
A Preliminary Heat Flow Model for Cooling a Batholith near Ica, Peru
Gonzalez, L. U.; Clausen, B. L.; Molano, J. C.; Martinez, A. M.; Poma, O.
2014-12-01
This research models the cooling of a suite in the Linga Super-unit located at the north end of the Arequipa segment in the Cretaceous Peruvian Coastal Batholith. The monzogabbro to granite Linga suite is approximately 50 km long and 15 km wide, with an estimated vertical extent of about 5 km originally intruded to a depth of 3 km. The emplacement was in andesitic volcanics on the west and the Pampahuasi diorite Super-unit on the east and has incorporated earlier gabbroic bodies. The Linga suite is thought to be the result of a sequence of three pulses: an elongate unit to the west then two elliptical units to the northeast and southeast. The data for modeling comes from field observations on internal and external contacts, some well-defined magma chamber walls and roof, pendant and stoped blocks, magma chamber zoning, the nature and distribution of enclaves and xenoliths, magmatic fabric, evidences of magma mingling, rock porosity, mineralogical associations in metamorphic aureoles, extensive mineralization and brecciated conduits, and the types of hydrothermal alteration varying with distance from contacts. More than forty hand samples, thin sections, and geochemical analyses were used to estimate water content, magma and country rock temperature, liquid density, and viscosity. Further data will come from: zircon U-Pb ages for country rock and magma batch timeframes, fluid inclusions for magma pressure and temperature, and δ18O data for source of hydrothermal fluids. Simple heat conduction calculations using MATLAB and HEAT 3D for a single tabular intrusion estimated a cooling time to solidus of about 300 k.y. More complex modeling includes magma convection and multiple intrusions. Extensive veining and pervasive alteration suggested the use of HYDROTHERM to model possible additional heat flow effects from hydrothermal fluids. Extensive propylitic and significant potassic alteration were observed and, with TerraSpec infrared spectroscopy to identify
Improving activity transport models for water-cooled nuclear power reactors
Energy Technology Data Exchange (ETDEWEB)
Burrill, K.A
2001-08-01
Eight current models for describing radioactivity transport and radiation field growth around water-cooled nuclear power reactors have been reviewed and assessed. A frequent failing of the models is the arbitrary nature of the determination of the important processes. Nearly all modelers agree that the kinetics of deposition and release of both dissolved and particulate material must be described. Plant data must be used to guide the selection and development of suitable improved models, with a minimum of empirically-based rate constraints being used. Limiting case modelling based on experimental data is suggested as a way to simplify current models and remove their subjectivity. Improved models must consider the recent change to 'coordinated water chemistry' that appears to produce normal solubility behaviour for dissolved iron throughout the fuel cycle in PWRs, but retrograde solubility remains for dissolved nickel. Profiles are suggested for dissolved iron and nickel concentrations around the heat transport system in CANDU reactors, which operate nominally at constant chemistry, i.e., pH{sub T} constant with time, and which use carbon steel isothermal piping. These diagrams are modified for a CANDU reactor with stainless steel piping, in order to show the changes expected. The significance of these profiles for transport in PWRs is discussed for further model improvement. (author)
Update on Small Modular Reactors Dynamics System Modeling Tool -- Molten Salt Cooled Architecture
Energy Technology Data Exchange (ETDEWEB)
Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Borum, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chaleff, Ethan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rogerson, Doug W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Batteh, John J. [Modelon Corporation (Sweden); Tiller, Michael M. [Xogeny Corporation, Canton, MI (United States)
2014-08-01
The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.
Plant control using embedded predictive models
International Nuclear Information System (INIS)
Godbole, S.S.; Gabler, W.E.; Eschbach, S.L.
1990-01-01
B and W recently undertook the design of an advanced light water reactor control system. A concept new to nuclear steam system (NSS) control was developed. The concept, which is called the Predictor-Corrector, uses mathematical models of portions of the controlled NSS to calculate, at various levels within the system, demand and control element position signals necessary to satisfy electrical demand. The models give the control system the ability to reduce overcooling and undercooling of the reactor coolant system during transients and upsets. Two types of mathematical models were developed for use in designing and testing the control system. One model was a conventional, comprehensive NSS model that responds to control system outputs and calculates the resultant changes in plant variables that are then used as inputs to the control system. Two other models, embedded in the control system, were less conventional, inverse models. These models accept as inputs plant variables, equipment states, and demand signals and predict plant operating conditions and control element states that will satisfy the demands. This paper reports preliminary results of closed-loop Reactor Coolant (RC) pump trip and normal load reduction testing of the advanced concept. Results of additional transient testing, and of open and closed loop stability analyses will be reported as they are available
Modelling of plate-out under gas-cooled reactor (GCR) accident conditions
International Nuclear Information System (INIS)
Taig, A.R.
1981-01-01
The importance of plate-out in mitigating consequences of gas-cooled reactor accidents, and its place in assessing these consequences, are discussed. The data requirements of a plate-out modelling program are discussed, and a brief description is given of parallel work programs on thermal/hydraulic reactor behaviour and fuel modelling, both of which will provide inputs to the plate-out program under development. The representation of a GCR system used in SRD studies is presented, and the equations governing iodine adsorption, desorption and transport round the circuit are derived. The status of SRD's plate-out program is described, and the type of sensitivity studies to be undertaken with the partially-developed computer program in order to identify the most useful lines for future research is discussed. (author)
Ground Motion Prediction Models for Caucasus Region
Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino
2016-04-01
Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.
Modeling and Prediction of Krueger Device Noise
Guo, Yueping; Burley, Casey L.; Thomas, Russell H.
2016-01-01
This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components.
Prediction of Chemical Function: Model Development and ...
The United States Environmental Protection Agency’s Exposure Forecaster (ExpoCast) project is developing both statistical and mechanism-based computational models for predicting exposures to thousands of chemicals, including those in consumer products. The high-throughput (HT) screening-level exposures developed under ExpoCast can be combined with HT screening (HTS) bioactivity data for the risk-based prioritization of chemicals for further evaluation. The functional role (e.g. solvent, plasticizer, fragrance) that a chemical performs can drive both the types of products in which it is found and the concentration in which it is present and therefore impacting exposure potential. However, critical chemical use information (including functional role) is lacking for the majority of commercial chemicals for which exposure estimates are needed. A suite of machine-learning based models for classifying chemicals in terms of their likely functional roles in products based on structure were developed. This effort required collection, curation, and harmonization of publically-available data sources of chemical functional use information from government and industry bodies. Physicochemical and structure descriptor data were generated for chemicals with function data. Machine-learning classifier models for function were then built in a cross-validated manner from the descriptor/function data using the method of random forests. The models were applied to: 1) predict chemi
Evaluating Predictive Models of Software Quality
Ciaschini, V.; Canaparo, M.; Ronchieri, E.; Salomoni, D.
2014-06-01
Applications from High Energy Physics scientific community are constantly growing and implemented by a large number of developers. This implies a strong churn on the code and an associated risk of faults, which is unavoidable as long as the software undergoes active evolution. However, the necessities of production systems run counter to this. Stability and predictability are of paramount importance; in addition, a short turn-around time for the defect discovery-correction-deployment cycle is required. A way to reconcile these opposite foci is to use a software quality model to obtain an approximation of the risk before releasing a program to only deliver software with a risk lower than an agreed threshold. In this article we evaluated two quality predictive models to identify the operational risk and the quality of some software products. We applied these models to the development history of several EMI packages with intent to discover the risk factor of each product and compare it with its real history. We attempted to determine if the models reasonably maps reality for the applications under evaluation, and finally we concluded suggesting directions for further studies.
Predicting FLDs Using a Multiscale Modeling Scheme
Wu, Z.; Loy, C.; Wang, E.; Hegadekatte, V.
2017-09-01
The measurement of a single forming limit diagram (FLD) requires significant resources and is time consuming. We have developed a multiscale modeling scheme to predict FLDs using a combination of limited laboratory testing, crystal plasticity (VPSC) modeling, and dual sequential-stage finite element (ABAQUS/Explicit) modeling with the Marciniak-Kuczynski (M-K) criterion to determine the limit strain. We have established a means to work around existing limitations in ABAQUS/Explicit by using an anisotropic yield locus (e.g., BBC2008) in combination with the M-K criterion. We further apply a VPSC model to reduce the number of laboratory tests required to characterize the anisotropic yield locus. In the present work, we show that the predicted FLD is in excellent agreement with the measured FLD for AA5182 in the O temper. Instead of 13 different tests as for a traditional FLD determination within Novelis, our technique uses just four measurements: tensile properties in three orientations; plane strain tension; biaxial bulge; and the sheet crystallographic texture. The turnaround time is consequently far less than for the traditional laboratory measurement of the FLD.
PREDICTION MODELS OF GRAIN YIELD AND CHARACTERIZATION
Directory of Open Access Journals (Sweden)
Narciso Ysac Avila Serrano
2009-06-01
Full Text Available With the objective to characterize the grain yield of five cowpea cultivars and to find linear regression models to predict it, a study was developed in La Paz, Baja California Sur, Mexico. A complete randomized blocks design was used. Simple and multivariate analyses of variance were carried out using the canonical variables to characterize the cultivars. The variables cluster per plant, pods per plant, pods per cluster, seeds weight per plant, seeds hectoliter weight, 100-seed weight, seeds length, seeds wide, seeds thickness, pods length, pods wide, pods weight, seeds per pods, and seeds weight per pods, showed significant differences (Pâ‰¤ 0.05 among cultivars. PaceÃ±o and IT90K-277-2 cultivars showed the higher seeds weight per plant. The linear regression models showed correlation coefficients â‰¥0.92. In these models, the seeds weight per plant, pods per cluster, pods per plant, cluster per plant and pods length showed significant correlations (Pâ‰¤ 0.05. In conclusion, the results showed that grain yield differ among cultivars and for its estimation, the prediction models showed determination coefficients highly dependable.
Evaluating predictive models of software quality
International Nuclear Information System (INIS)
Ciaschini, V; Canaparo, M; Ronchieri, E; Salomoni, D
2014-01-01
Applications from High Energy Physics scientific community are constantly growing and implemented by a large number of developers. This implies a strong churn on the code and an associated risk of faults, which is unavoidable as long as the software undergoes active evolution. However, the necessities of production systems run counter to this. Stability and predictability are of paramount importance; in addition, a short turn-around time for the defect discovery-correction-deployment cycle is required. A way to reconcile these opposite foci is to use a software quality model to obtain an approximation of the risk before releasing a program to only deliver software with a risk lower than an agreed threshold. In this article we evaluated two quality predictive models to identify the operational risk and the quality of some software products. We applied these models to the development history of several EMI packages with intent to discover the risk factor of each product and compare it with its real history. We attempted to determine if the models reasonably maps reality for the applications under evaluation, and finally we concluded suggesting directions for further studies.
Gamma-Ray Pulsars Models and Predictions
Harding, A K
2001-01-01
Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. N...
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Clinical Predictive Modeling Development and Deployment through FHIR Web Services.
Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng
2015-01-01
Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction.
TRACG prediction of gravity-driven cooling system response in the SBWR/GIST facility LOCA tests
International Nuclear Information System (INIS)
Alamgir, M.; Andersen, J.G.M.; Yang, A.I.; Shiralkar, B.S.
1990-01-01
General Electric (BE) Nuclear Energy has initiated work on technology programs in support of the advanced light water reactor (ALWR) plants under contract to the U.S. Department of Energy (DOE). Work has been performed under the advanced boiling water reactor (ABWT) design verification program and the simplified boiling water reactor (SBWR) program. The objective of the SBWR program is to develop the key features of a simplified reactor design. The gravity-driven cooling system (GDCS) is an important feature of the SBWR design. The main objectives of the GDCS test program at GE were to demonstrate the technical feasibility of the GDCS concept by performing a section-scaled integrated systems test of the SBWR design and to provide a data base to qualify the TRACG computer code for use in SBWR accident analysis. This paper describes the qualification of TRACG for GDCS applications. The calculational capability and analytical models of TRACG are tested by performing assessment analysis for five loss-of-coolant-accident (LOCA) tests in the GDCS Integrated Systems Test (GIST) facility. The results of the qualification comparisons are presented and TRACG application ranges are discussed
Gallo, A.; Arana, A.; Oyanguren, A.; García, G.; Barbero, A.; Larrañaga, J.; Ulacia, I.
2013-07-01
In this work the properties of thermoelectric modules (TEMs) and their behavior have been numerically modeled. Moreover, their applications very often require modeling not only of the TEM but also of the working environment and the product in which they will be working. A clear example is the fact that TEMs are very often installed with heat-dissipating elements such as fans, heat sinks, and heat exchangers; thus, the module will only work according to the heat dissipation conditions that these external sources can provide in a certain environment. In this context, analytic approaches, even though they have been proved to be useful, do not provide enough, accurate information in this regard. Therefore, numerical modeling has been identified as a powerful tool to improve detailed designs of thermoelectric solutions. This paper presents numerical simulations of a TEM in different working conditions, as well as with different commercial dissipation devices. The objective is to obtain the characteristic curve of a TEM using a valid numerical model that can be introduced into larger models of different applications. Also, the numerical model of the module and different cooling devices is provided. Both of them are compared against real tested modules, so that the deviation between them can be measured and discussed. Finally, the TEM is introduced into a manufacturing application and results are discussed to validate the model for further use.
2015-04-29
Integrated groin protector (IGP), and Boot Protector); GORE lined leather combat boots; and NOMEX® gloves with Velcro ; and EOD9 full face helmet... effective heat removal or cooling capacity of the active cooling system could not be obtained on the manikin, reasonable estimates can be used to...Price MJ, & Oldroyd M. The effect of heat acclimation on thermal strain during explosives ordnance disposal (EOD) related activity in moderate and
Indra Siswantara, Ahmad; Pujowidodo, Hariyotejo; Darius, Asyari; Ramdlan Gunadi, Gun Gun
2018-03-01
This paper presents the mathematical modeling analysis on cooling system in a combined cycle power plant. The objective of this study is to get the impact of cooling water upsurge on plant performance and operation, using Engineering Equation Solver (EES™) tools. Power plant installed with total power capacity of block#1 is 505.95 MWe and block#2 is 720.8 MWe, where sea water consumed as cooling media at two unit condensers. Basic principle of analysis is heat balance calculation from steam turbine and condenser, concern to vacuum condition and heat rate values. Based on the result shown graphically, there were impact the upsurge of cooling water to increase plant heat rate and vacuum pressure in condenser so ensued decreasing plant efficiency and causing possibility steam turbine trip as back pressure raised from condenser.
Model for fusion and cool compound nucleus formation based on the fragmentation theory
International Nuclear Information System (INIS)
Malhotra, N.; Aroumougame, R.; Saroha, D.R.; Gupta, R.K.
1986-01-01
Collective potential energy surfaces are calculated in both the adiabatic and sudden approximations by using the asymmetric two-center shell model in the Strutinsky method. It is shown that fusion of two colliding heavy ions occurs by their crossing over of the adiabatic interaction barrier. The adiabatic scattering potentials present two barriers, whereas no barrier is shown to occur in sudden scattering potentials. The first barrier is obtained just past the saddle shape but is too low, such that a deep inelastic process is expected. The other, inner, barrier is high enough to let the system fall into the fusion well, whose excitation energy then determines whether a cool compound nucleus is produced or the fusion-fission process occurs. For a given compound nucleus, the excitation energy is found to be small for only a few target-projectile combinations, which increase as their mass asymmetry increases. Such target-projectile combinations which refer to a cool compound nucleus can be identified by a simple calculation of the fragmentation potential based on the ground state binding energies with Coulomb and proximity effects calculated at a constant relative separation of the two nuclei. Our calculations are made for the composite systems with 102 < or =Z < or =114
Model for fusion and cool compound nucleus formation based on the fragmentation theory
International Nuclear Information System (INIS)
Malhotra, N.; Aroumougame, R.; Saroha, D.R.; Gupta, R.K.
1985-07-01
The collective potential energy surfaces are calculated in both the adiabatic and sudden approximations by using the asymmetric two centre shell model in Strutinsky method. It is shown that fusion of two colliding heavy ions occur by their crossing over of the adiabatic interaction barrier. The adiabatic scattering potentials present two barriers whereas no barrier is shown to occur in sudden scattering potentials. The first barrier is obtained just past the saddle shape but is too low, such that a deep inelastic process is expected. The other, inner, barrier is high enough to let the system fall into the fusion well, whose excitation energy then determine whether a cool compound nucleus is produced or the fusion-fission process occurs. For a given compound nucleus, the excitation energy is found to be small for only a few target-projectile combinations, which increase as their mass asymmetry increases. Such target-projectile combinations which refer to a cool compound nucleus, can be identified by a simple calculation of the fragmentation potential based on the ground state binding energies with Couloumb and proximity effects calculated at a constant relative separation of the two nuclei. Our calculations are made for the composite systems with 102<=Z<=114. (author)
Model estimate of NO{sub x} production during the cooling of a lightning flash
Energy Technology Data Exchange (ETDEWEB)
Berton, R [Office National d` Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)
1998-12-31
Since discrepancies of two orders of magnitude are detected in current estimations, the question of NO{sub x} production by lightning has been addressed, and a new theoretical estimate is proposed. The new model deals with a unit length of an evanescent cooling branch of lightning supposed to be cylindrical and axisymmetrical, 1 mm in radius. The kinetics of five chemical species (N, O, N{sub 2}, O{sub 2}, NO) has been coupled to the full set of hydrodynamic equations expressing the conservation of momentum and energy together with an equation of state. This highly nonlinear system is completed by suitable boundary conditions in subsonic regime and then time-integrated by finite differences. It appears that the amount of NO produced in a cross section of channel reaches a maximum at 4,6.10{sup -7} mol/m after 50 {mu}s cooling. At that moment the average temperature is about 3000 K, at which NO is most easily formed. The net yield of NO is found to be 10{sup 16} molecules per Joule, which is one order of magnitude smaller than other theoretical results. (author) 4 refs.
Model estimate of NO{sub x} production during the cooling of a lightning flash
Energy Technology Data Exchange (ETDEWEB)
Berton, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)
1997-12-31
Since discrepancies of two orders of magnitude are detected in current estimations, the question of NO{sub x} production by lightning has been addressed, and a new theoretical estimate is proposed. The new model deals with a unit length of an evanescent cooling branch of lightning supposed to be cylindrical and axisymmetrical, 1 mm in radius. The kinetics of five chemical species (N, O, N{sub 2}, O{sub 2}, NO) has been coupled to the full set of hydrodynamic equations expressing the conservation of momentum and energy together with an equation of state. This highly nonlinear system is completed by suitable boundary conditions in subsonic regime and then time-integrated by finite differences. It appears that the amount of NO produced in a cross section of channel reaches a maximum at 4,6.10{sup -7} mol/m after 50 {mu}s cooling. At that moment the average temperature is about 3000 K, at which NO is most easily formed. The net yield of NO is found to be 10{sup 16} molecules per Joule, which is one order of magnitude smaller than other theoretical results. (author) 4 refs.
MODELING OF HEAT TRANSFER IN A POROUS TURBINE BEARING COOLING SYSTEM
Directory of Open Access Journals (Sweden)
A. A. Genbach
2017-01-01
Full Text Available A new porous cooling system in which the coolant supply is produced by the combined action of capillary and gravitational forces is proposed and studied for various technical devices and systems developed by the authors. The cooling surface is made of stainless steel, brass, copper, bronze, nickel, glass and alundum. The wall thickness is (0.05–2.00 ∙ 10⁻³m. Visual observations were carried out by using high-speed camera filming with the use of SCS-1M. Experiments were carried out with water at pressures ranging between 0.01–10.00 MPa, under-heating to 0–20 K, excess liquid of 1–14 of steam flow, thermal load of (1–60 ∙ 104 W/m², temperature pressure of 1–60 K and the system orientation of ±(0–90 degrees. Studies carried out on a model plant has identified two areas of the process of vaporization of the liquid and an influence of operating and design characteristics. The optimal coolant flow and the most effective form of reticulated porous structure are identified. Visual observations have made it possible to describe the physical picture of the processes and to generalize experimental data on the removed heat flows with an accuracy of ±20 % depending on the thermophysical properties of the fluid, wall, temperature difference, excess fluid, porous structures and heat exchange interface.
An Anisotropic Hardening Model for Springback Prediction
Zeng, Danielle; Xia, Z. Cedric
2005-08-01
As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.
An Anisotropic Hardening Model for Springback Prediction
International Nuclear Information System (INIS)
Zeng, Danielle; Xia, Z. Cedric
2005-01-01
As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test
Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie
2015-01-01
On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.
Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie
2015-01-01
On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073
Energy Technology Data Exchange (ETDEWEB)
Grozdek, Marino
2009-10-15
Ice based Cool Thermal Energy Storage (CTES) systems have attracted much attention during last few decades. The reasons are mainly of economical and environmental nature. Compared to conventional refrigeration and air-conditioning systems without cool thermal energy storage, implementation of CTES will increase environmental standards and overall efficiency of the energy systems as it contributes to the phase-out of synthetic refrigerants and reduces peak loads in electricity grids. For the application of a cool thermal energy storages in refrigeration installations and HVAC systems in industry and building sector, it is necessary to have appropriate design tools in order to sufficiently accurate predict their performance. In this thesis theoretical and experimental investigations of two ice based cool thermal energy storage systems, namely static, indirect, external melt, ice-on-coil, i.e. ice bank system and dynamic, ice slurry cool thermal energy storage system are carried out. An ice bank storage technology for cooling purposes is known for a long time. The main drawbacks which are hindering its wider use are the system complexity, high first costs, system efficiency which is highly dependant on design, control and monitoring of the system, etc. On the other hand, ice slurry technology was not well studied until recently, while in the current scientific literature there are still differences between results and conclusions reported by different investigators. The aim of the present thesis is to extend the knowledge in the field of ice based CTES systems, thereby contributing in the development and wider utilization of those systems. In the first part of the thesis a computer application, named 'BankaLeda' is presented. It enables simulation of an ice bank system performance. In order to verify developed simulation model an experimental evaluation has been performed. Field measurements have been conducted on a two module silo which was installed as a
Web tools for predictive toxicology model building.
Jeliazkova, Nina
2012-07-01
The development and use of web tools in chemistry has accumulated more than 15 years of history already. Powered by the advances in the Internet technologies, the current generation of web systems are starting to expand into areas, traditional for desktop applications. The web platforms integrate data storage, cheminformatics and data analysis tools. The ease of use and the collaborative potential of the web is compelling, despite the challenges. The topic of this review is a set of recently published web tools that facilitate predictive toxicology model building. The focus is on software platforms, offering web access to chemical structure-based methods, although some of the frameworks could also provide bioinformatics or hybrid data analysis functionalities. A number of historical and current developments are cited. In order to provide comparable assessment, the following characteristics are considered: support for workflows, descriptor calculations, visualization, modeling algorithms, data management and data sharing capabilities, availability of GUI or programmatic access and implementation details. The success of the Web is largely due to its highly decentralized, yet sufficiently interoperable model for information access. The expected future convergence between cheminformatics and bioinformatics databases provides new challenges toward management and analysis of large data sets. The web tools in predictive toxicology will likely continue to evolve toward the right mix of flexibility, performance, scalability, interoperability, sets of unique features offered, friendly user interfaces, programmatic access for advanced users, platform independence, results reproducibility, curation and crowdsourcing utilities, collaborative sharing and secure access.
Predictions of models for environmental radiological assessment
International Nuclear Information System (INIS)
Peres, Sueli da Silva; Lauria, Dejanira da Costa; Mahler, Claudio Fernando
2011-01-01
In the field of environmental impact assessment, models are used for estimating source term, environmental dispersion and transfer of radionuclides, exposure pathway, radiation dose and the risk for human beings Although it is recognized that the specific information of local data are important to improve the quality of the dose assessment results, in fact obtaining it can be very difficult and expensive. Sources of uncertainties are numerous, among which we can cite: the subjectivity of modelers, exposure scenarios and pathways, used codes and general parameters. The various models available utilize different mathematical approaches with different complexities that can result in different predictions. Thus, for the same inputs different models can produce very different outputs. This paper presents briefly the main advances in the field of environmental radiological assessment that aim to improve the reliability of the models used in the assessment of environmental radiological impact. The intercomparison exercise of model supplied incompatible results for 137 Cs and 60 Co, enhancing the need for developing reference methodologies for environmental radiological assessment that allow to confront dose estimations in a common comparison base. The results of the intercomparison exercise are present briefly. (author)
A Predictive Maintenance Model for Railway Tracks
DEFF Research Database (Denmark)
Li, Rui; Wen, Min; Salling, Kim Bang
2015-01-01
presents a mathematical model based on Mixed Integer Programming (MIP) which is designed to optimize the predictive railway tamping activities for ballasted track for the time horizon up to four years. The objective function is setup to minimize the actual costs for the tamping machine (measured by time......). Five technical and economic aspects are taken into account to schedule tamping: (1) track degradation of the standard deviation of the longitudinal level over time; (2) track geometrical alignment; (3) track quality thresholds based on the train speed limits; (4) the dependency of the track quality...
Predictive Capability Maturity Model for computational modeling and simulation.
Energy Technology Data Exchange (ETDEWEB)
Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.
2007-10-01
The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.
Effective modelling for predictive analytics in data science ...
African Journals Online (AJOL)
Effective modelling for predictive analytics in data science. ... the nearabsence of empirical or factual predictive analytics in the mainstream research going on ... Keywords: Predictive Analytics, Big Data, Business Intelligence, Project Planning.
Directory of Open Access Journals (Sweden)
Rohitha Weerasinghe
2017-09-01
Full Text Available Use of Peltier cooling in down-hole seismic tooling has been restricted by the performance of such devices at elevated temperatures. Present paper analyses the performance of Peltier cooling in temperatures suited for down-hole measuring equipment using measurements, predicted manufacturer data and computational fluid dynamic analysis. Peltier performance prediction techniques is presented with measurements. Validity of the extrapolation of thermoelectric cooling performance at elevated temperatures has been tested using computational models for thermoelectric cooling device. This method has been used to model cooling characteristics of a prototype downhole tool and the computational technique used has been proven valid.
Darmawan, R.
2018-01-01
Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.
The Effect of Process and Model Parameters in Temperature Prediction for Hot Stamping of Boron Steel
Directory of Open Access Journals (Sweden)
Chaoyang Sun
2013-01-01
Full Text Available Finite element models of the hot stamping and cold die quenching process for boron steel sheet were developed using either rigid or elastic tools. The effect of tool elasticity and process parameters on workpiece temperature was investigated. Heat transfer coefficient between blank and tools was modelled as a function of gap and contact pressure. Temperature distribution and thermal history in the blank were predicted, and thickness distribution of the blank was obtained. Tests were carried out and the test results are used for the validation of numerical predictions. The effect of holding load and the size of cooling ducts on temperature distribution during the forming and the cool die quenching process was also studied by using two models. The results show that higher accuracy predictions of blank thickness and temperature distribution during deformation were obtained using the elastic tool model. However, temperature results obtained using the rigid tool model were close to those using the elastic tool model for a range of holding load.
Combining GPS measurements and IRI model predictions
International Nuclear Information System (INIS)
Hernandez-Pajares, M.; Juan, J.M.; Sanz, J.; Bilitza, D.
2002-01-01
The free electrons distributed in the ionosphere (between one hundred and thousands of km in height) produce a frequency-dependent effect on Global Positioning System (GPS) signals: a delay in the pseudo-orange and an advance in the carrier phase. These effects are proportional to the columnar electron density between the satellite and receiver, i.e. the integrated electron density along the ray path. Global ionospheric TEC (total electron content) maps can be obtained with GPS data from a network of ground IGS (international GPS service) reference stations with an accuracy of few TEC units. The comparison with the TOPEX TEC, mainly measured over the oceans far from the IGS stations, shows a mean bias and standard deviation of about 2 and 5 TECUs respectively. The discrepancies between the STEC predictions and the observed values show an RMS typically below 5 TECUs (which also includes the alignment code noise). he existence of a growing database 2-hourly global TEC maps and with resolution of 5x2.5 degrees in longitude and latitude can be used to improve the IRI prediction capability of the TEC. When the IRI predictions and the GPS estimations are compared for a three month period around the Solar Maximum, they are in good agreement for middle latitudes. An over-determination of IRI TEC has been found at the extreme latitudes, the IRI predictions being, typically two times higher than the GPS estimations. Finally, local fits of the IRI model can be done by tuning the SSN from STEC GPS observations
Mathematical Methodology for New Modeling of Water Hammer in Emergency Core Cooling System
International Nuclear Information System (INIS)
Lee, Seungchan; Yoon, Dukjoo; Ha, Sangjun
2013-01-01
In engineering insight, the water hammer study has carried out through the experimental work and the fluid mechanics. In this study, a new access methodology is introduced by Newton mechanics and a mathematical method. Also, NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the effect of water-hammer for the protection of pipes of the Emergency Core Cooling System, which is related to the Residual Heat Removal System and the Containment Spray System. This paper includes modeling, the processes of derivation of the mathematical equations and the comparison with other experimental work. To analyze the effect of water-hammer, this mathematical methodology is carried out. This study is in good agreement with other experiment results as above. This method is very efficient to explain the water-hammer phenomena
Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores
International Nuclear Information System (INIS)
El Ganaoui, K.
2006-09-01
In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)
Mathematical Methodology for New Modeling of Water Hammer in Emergency Core Cooling System
Energy Technology Data Exchange (ETDEWEB)
Lee, Seungchan; Yoon, Dukjoo; Ha, Sangjun [Korea Hydro Nuclear Power Co. Ltd, Daejeon (Korea, Republic of)
2013-05-15
In engineering insight, the water hammer study has carried out through the experimental work and the fluid mechanics. In this study, a new access methodology is introduced by Newton mechanics and a mathematical method. Also, NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the effect of water-hammer for the protection of pipes of the Emergency Core Cooling System, which is related to the Residual Heat Removal System and the Containment Spray System. This paper includes modeling, the processes of derivation of the mathematical equations and the comparison with other experimental work. To analyze the effect of water-hammer, this mathematical methodology is carried out. This study is in good agreement with other experiment results as above. This method is very efficient to explain the water-hammer phenomena.
Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.
Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F
2013-04-01
In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.
Mathematical models for indoor radon prediction
International Nuclear Information System (INIS)
Malanca, A.; Pessina, V.; Dallara, G.
1995-01-01
It is known that the indoor radon (Rn) concentration can be predicted by means of mathematical models. The simplest model relies on two variables only: the Rn source strength and the air exchange rate. In the Lawrence Berkeley Laboratory (LBL) model several environmental parameters are combined into a complex equation; besides, a correlation between the ventilation rate and the Rn entry rate from the soil is admitted. The measurements were carried out using activated carbon canisters. Seventy-five measurements of Rn concentrations were made inside two rooms placed on the second floor of a building block. One of the rooms had a single-glazed window whereas the other room had a double pane window. During three different experimental protocols, the mean Rn concentration was always higher into the room with a double-glazed window. That behavior can be accounted for by the simplest model. A further set of 450 Rn measurements was collected inside a ground-floor room with a grounding well in it. This trend maybe accounted for by the LBL model
Towards predictive models for transitionally rough surfaces
Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo
2017-11-01
We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).
International Nuclear Information System (INIS)
Stillwell, Ashlynn S; Clayton, Mary E; Webber, Michael E
2011-01-01
Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights-a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions-a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m 3 -enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.
Resource-estimation models and predicted discovery
International Nuclear Information System (INIS)
Hill, G.W.
1982-01-01
Resources have been estimated by predictive extrapolation from past discovery experience, by analogy with better explored regions, or by inference from evidence of depletion of targets for exploration. Changes in technology and new insights into geological mechanisms have occurred sufficiently often in the long run to form part of the pattern of mature discovery experience. The criterion, that a meaningful resource estimate needs an objective measure of its precision or degree of uncertainty, excludes 'estimates' based solely on expert opinion. This is illustrated by development of error measures for several persuasive models of discovery and production of oil and gas in USA, both annually and in terms of increasing exploration effort. Appropriate generalizations of the models resolve many points of controversy. This is illustrated using two USA data sets describing discovery of oil and of U 3 O 8 ; the latter set highlights an inadequacy of available official data. Review of the oil-discovery data set provides a warrant for adjusting the time-series prediction to a higher resource figure for USA petroleum. (author)
Sansinen, M; Santos, M V; Zaritzky, N; Baez, R; Chirife, J
2010-01-01
Heat transfer plays a key role in cryopreservation of liquid semen in plastic straws. The effect of several parameters on the cooling rate of a liquid-filled polypropylene straw when plunged into liquid nitrogen was investigated using a theoretical model. The geometry of the straw containing the liquid was assimilated as two concentric finite cylinders of different materials: the fluid and the straw; the unsteady-state heat conduction equation for concentric cylinders was numerically solved. Parameters studied include external (convection) heat transfer coefficient (h), the thermal properties of straw manufacturing material and wall thickness. It was concluded that the single most important parameter affecting the cooling rate of a liquid column contained in a straw is the external heat transfer coefficient in LN2. Consequently, in order to attain maximum cooling rates, conditions have to be designed to obtain the highest possible heat transfer coefficient when the plastic straw is plunged in liquid nitrogen.
Prediction of pipeline corrosion rate based on grey Markov models
International Nuclear Information System (INIS)
Chen Yonghong; Zhang Dafa; Peng Guichu; Wang Yuemin
2009-01-01
Based on the model that combined by grey model and Markov model, the prediction of corrosion rate of nuclear power pipeline was studied. Works were done to improve the grey model, and the optimization unbiased grey model was obtained. This new model was used to predict the tendency of corrosion rate, and the Markov model was used to predict the residual errors. In order to improve the prediction precision, rolling operation method was used in these prediction processes. The results indicate that the improvement to the grey model is effective and the prediction precision of the new model combined by the optimization unbiased grey model and Markov model is better, and the use of rolling operation method may improve the prediction precision further. (authors)
An Operational Model for the Prediction of Jet Blast
2012-01-09
This paper presents an operational model for the prediction of jet blast. The model was : developed based upon three modules including a jet exhaust model, jet centerline decay : model and aircraft motion model. The final analysis was compared with d...
Evaporative cooling in ATLAS - present and future
Viehhauser, G; The ATLAS collaboration
2010-01-01
The ATLAS Inner Detector cooling system is the largest evaporative cooling system used in High Energy Physics today. During the installation and commissioning of this system many lessons had to be learned, but the system is now operating reliably, although it does not achieve all original design specifications in all its circuits. We have re-evaluated the requirements for the cooling system, in particular for the evaporation temperature, over the full ATLAS operational lifetime. We find that the critical requirement is for thermal stability at the end of the operation in the high-radiation environment. To predict this we have developed a simple thermal model of the detector modules which yields analytical expressions to evaluate the results of changes in the operating conditions. After a comparison of the revised requirements and the actual present cooling system performance we will discuss various modifications to the system which will be required for future operation. In parallel we are developing a cooling...
Sahyoun, Maher; Korsholm, Ulrik S.; Sørensen, Jens H.; Šantl-Temkiv, Tina; Finster, Kai; Gosewinkel, Ulrich; Nielsen, Niels W.
2017-12-01
Bacterial ice-nucleating particles (INP) have the ability to facilitate ice nucleation from super-cooled cloud droplets at temperatures just below the melting point. Bacterial INP have been detected in cloud water, precipitation, and dry air, hence they may have an impact on weather and climate. In modeling studies, the potential impact of bacteria on ice nucleation and precipitation formation on global scale is still uncertain due to their small concentration compared to other types of INP, i.e. dust. Those earlier studies did not account for the yet undetected high concentration of nanoscale fragments of bacterial INP, which may be found free or attached to soil dust in the atmosphere. In this study, we investigate the sensitivity of modeled cloud ice, precipitation and global solar radiation in different weather scenarios to changes in the fraction of cloud droplets containing bacterial INP, regardless of their size. For this purpose, a module that calculates the probability of ice nucleation as a function of ice nucleation rate and bacterial INP fraction was developed and implemented in a numerical weather prediction model. The threshold value for the fraction of cloud droplets containing bacterial INP needed to produce a 1% increase in cloud ice was determined at 10-5 to 10-4. We also found that increasing this fraction causes a perturbation in the forecast, leading to significant differences in cloud ice and smaller differences in convective and total precipitation and in net solar radiation reaching the surface. These effects were most pronounced in local convective events. Our results show that bacterial INP can be considered as a trigger factor for precipitation, but not an enhancement factor.
Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles
Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.
2017-02-01
Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.
Dynamic Models of Heating and Cooling Coils with One—Dimensional Air Distribution
Institute of Scientific and Technical Information of China (English)
WangZijie; G.Krauss
1993-01-01
This paper presents the simulation models of the plate-fin,air-to-water(or water vapour) heat exchangers used as air-heating or air-cooling and dehumidifying colis in the HVAC(Heating,Ventilation and AIr-Conditioning)systems.The thermal models are used to calculate the heat exchange between distributing air and coil pipes and outlet temperatures of air and heat or chilled fluid.The aerodynamic models are used to account for the pressure drop of the air crossing the coil tubes,They can also be used to optimize the structres of such coils.The models are based on principal laws of teat and mass conservation and fluid mechanics.They are transparent and easy to use.In our work,a coil is considered as an assembly of numbers of basic elements in which all the state variables are unique.Therefore we can conveniently simulate the coils with different structures and different geometric parameters.Two modular programs TRNSYS(Transient System Simulation)and ESACAP are utilized as supporting softwares which make the programming and simulation greatly simplified.The coil elements and a real coil were simulated.The results were compared with the data offered by the manufacturer(company SOFICA) and also with those obtained using critical methods such as NTU method ,etc.and good agreement is attained.
Data driven propulsion system weight prediction model
Gerth, Richard J.
1994-10-01
The objective of the research was to develop a method to predict the weight of paper engines, i.e., engines that are in the early stages of development. The impetus for the project was the Single Stage To Orbit (SSTO) project, where engineers need to evaluate alternative engine designs. Since the SSTO is a performance driven project the performance models for alternative designs were well understood. The next tradeoff is weight. Since it is known that engine weight varies with thrust levels, a model is required that would allow discrimination between engines that produce the same thrust. Above all, the model had to be rooted in data with assumptions that could be justified based on the data. The general approach was to collect data on as many existing engines as possible and build a statistical model of the engines weight as a function of various component performance parameters. This was considered a reasonable level to begin the project because the data would be readily available, and it would be at the level of most paper engines, prior to detailed component design.
Predictive modeling of emergency cesarean delivery.
Directory of Open Access Journals (Sweden)
Carlos Campillo-Artero
Full Text Available To increase discriminatory accuracy (DA for emergency cesarean sections (ECSs.We prospectively collected data on and studied all 6,157 births occurring in 2014 at four public hospitals located in three different autonomous communities of Spain. To identify risk factors (RFs for ECS, we used likelihood ratios and logistic regression, fitted a classification tree (CTREE, and analyzed a random forest model (RFM. We used the areas under the receiver-operating-characteristic (ROC curves (AUCs to assess their DA.The magnitude of the LR+ for all putative individual RFs and ORs in the logistic regression models was low to moderate. Except for parity, all putative RFs were positively associated with ECS, including hospital fixed-effects and night-shift delivery. The DA of all logistic models ranged from 0.74 to 0.81. The most relevant RFs (pH, induction, and previous C-section in the CTREEs showed the highest ORs in the logistic models. The DA of the RFM and its most relevant interaction terms was even higher (AUC = 0.94; 95% CI: 0.93-0.95.Putative fetal, maternal, and contextual RFs alone fail to achieve reasonable DA for ECS. It is the combination of these RFs and the interactions between them at each hospital that make it possible to improve the DA for the type of delivery and tailor interventions through prediction to improve the appropriateness of ECS indications.
Evaporative Cooling of Antiprotons to Cryogenic Temperatures
Andresen, G B; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A; Hydomako, R; Jonsell, S; Kurchaninov, L; Lambo, R; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wilding, D; Wurtele, J S; Yamazaki, Y
2010-01-01
We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9~K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.
Model Predictive Control based on Finite Impulse Response Models
DEFF Research Database (Denmark)
Prasath, Guru; Jørgensen, John Bagterp
2008-01-01
We develop a regularized l2 finite impulse response (FIR) predictive controller with input and input-rate constraints. Feedback is based on a simple constant output disturbance filter. The performance of the predictive controller in the face of plant-model mismatch is investigated by simulations...... and related to the uncertainty of the impulse response coefficients. The simulations can be used to benchmark l2 MPC against FIR based robust MPC as well as to estimate the maximum performance improvements by robust MPC....
Directory of Open Access Journals (Sweden)
K. I. Denisova
2016-01-01
Full Text Available The propellant to fill the fuel tanks of the spacecraft, upper stages, and space rockets on technical and ground-based launch sites before fueling should be prepared to ensure many of its parameters, including temperature, in appropriate condition. Preparation of fuel temperature is arranged through heating and cooling the rocket propellants (RP in the tanks of fueling equipment. Processes of RP temperature preparation are the most energy-intensive and timeconsuming ones, which require that a choice of sustainable technologies and modes of cooling (heating RP provided by the ground-based equipment has been made through modeling of the RP [1] temperature preparation processes at the stage of design and operation of the groundbased fueling equipment.The RP temperature preparation in the tanks of the ground-based systems can be provided through the heat-exchangers built-in the internal space and being external with respect to the tank in which antifreeze, air or liquid nitrogen may be used as the heat transfer media. The papers [1-12], which note a promising use of the liquid nitrogen to cool PR, present schematic diagrams and modeling systems for the RP temperature preparation in the fueling equipment of the ground-based systems.We consider the RP temperature preparation using heat exchangers to be placed directly in RP tanks. Feeding the liquid nitrogen into heat exchanger with the antifreeze provides the cooling mode of PR while a heated air fed there does that of heating. The paper gives the systems of equations and results of modeling the processes of RP temperature preparation, and its estimated efficiency.The systems of equations of cooling and heating RP are derived on the assumption that the heat exchange between the fuel and the antifreeze, as well as between the storage tank and the environment is quasi-stationary.The paper presents calculation results of the fuel temperature in the tank, and coolant temperature in the heat exchanger, as
International Nuclear Information System (INIS)
Luo, Yongqiang; Zhang, Ling; Liu, Zhongbing; Wang, Yingzi; Wu, Jing; Wang, Xiliang
2016-01-01
Highlights: • Dynamic model of thermoelectric radiant panel system is established. • The internal parameters of thermoelectric module are dynamically calculated in simulation. • Both artificial neural networks model and system model are verified through experiment data. • Optimized system structure is obtained through parametric study. - Abstract: Radiant panel system can optimize indoor thermal comfort with lower energy consumption. The thermoelectric radiant panel (TERP) system is a new and effective prototype of radiant system using thermoelectric module (TEM) instead of conventional water pipes, as heat source. The TERP can realize more stable and easier system control as well as lower initial and operative cost. In this study, an improved system dynamic model was established by combining analytical system model and artificial neural networks (ANN) as well as the dynamic calculation functions of internal parameters of TEM. The double integral was used for the calculation of surface average temperature of TERP. The ANN model and system model were in good agreement with experiment data in both cooling and heating mode. In order to optimize the system design structure, parametric study was conducted in terms of the thickness of aluminum panel and insulation, as well as the arrangement of TEMs on the surface of radiant panel. It was found through simulation results that the optimum thickness of aluminum panel and insulation are respectively around 1–2 mm and 40–50 mm. In addition, TEMs should be uniformly installed on the surface of radiant panel and each TEM should stand at the central position of a square-shaped typical region with length around 0.387–0.548 m.
DEFF Research Database (Denmark)
Nie, Jinzhe; Li, Zan; Hu, Wenju
2017-01-01
purification aimed at improving indoor air quality and reducing building energy consumption. The heat and moisture transfer in adsorption desiccant rotor was theoretical modelled with one-dimensional partial differential equations. The theoretical model was validated with experimental measurements...... system, the energy performance of HP-SDC was more efficient mainly due to high efficient air purification capacity, reduction of cooling load and raised evaporation temperature. The energy performance of HP-SDC was sensitive to outdoor humidity ratio. Further improvements of HP-SDC energy efficiency......Taking the integrated gaseous contaminants and moisture adsorption potential of desiccant material, a new heat pump assisted solid desiccant cooling system (HP-SDC) was proposed based on the combination of desiccant rotor with heat pump. The HP-SDC was designed for dehumidification, cooling and air...
Methodology for Designing Models Predicting Success of Infertility Treatment
Alireza Zarinara; Mohammad Mahdi Akhondi; Hojjat Zeraati; Koorsh Kamali; Kazem Mohammad
2016-01-01
Abstract Background: The prediction models for infertility treatment success have presented since 25 years ago. There are scientific principles for designing and applying the prediction models that is also used to predict the success rate of infertility treatment. The purpose of this study is to provide basic principles for designing the model to predic infertility treatment success. Materials and Methods: In this paper, the principles for developing predictive models are explained and...
Finite Unification: Theory, Models and Predictions
Heinemeyer, S; Zoupanos, G
2011-01-01
All-loop Finite Unified Theories (FUTs) are very interesting N=1 supersymmetric Grand Unified Theories (GUTs) realising an old field theory dream, and moreover have a remarkable predictive power due to the required reduction of couplings. The reduction of the dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exist RGI relations among dimensional couplings that guarantee the vanishing of all beta-functions in certain N=1 GUTs even to all orders. Furthermore developments in the soft supersymmetry breaking sector of N=1 GUTs and FUTs lead to exact RGI relations, i.e. reduction of couplings, in this dimensionful sector of the theory, too. Based on the above theoretical framework phenomenologically consistent FUTs have been constructed. Here we review FUT models based on the SU(5) and SU(3)^3 gauge groups and their predictions. Of particular interest is the Hig...