WorldWideScience

Sample records for cooling dominated phase

  1. Convection-Dominated Accretion Flows with Radiative Cooling

    Institute of Scientific and Technical Information of China (English)

    LI Shuang-Liang; XUE Li; LU Ju-Fu

    2007-01-01

    @@ By numerically solving the set of basic equations describing black hole accretion flows with low accretion rates,we show that although the dynamical structure of these flows is essentially unaffected by radiative processes in comparison with the case in which the radiation is not considered, the radiative cooling can be more important than the advective cooling in the flow's convection-dominated zone, and this result may have implications to distinguish observationally convection-dominated accretion flows from advection-dominated accretion flows.

  2. Cooling-dominated cracking in thermally stressed volcanic rocks

    Science.gov (United States)

    Browning, John; Meredith, Philip; Gudmundsson, Agust

    2016-08-01

    Most studies of thermally induced cracking in rocks have focused on the generation of cracks formed during heating and thermal expansion. Both the nature and the mechanism of crack formation during cooling are hypothesized to be different from those formed during heating. We present in situ acoustic emission data recorded as a proxy for crack damage evolution in a series of heating and cooling experiments on samples of basalt and dacite. Results show that both the rate and the energy of acoustic emission are consistently much higher during cooling than during heating. Seismic velocity comparisons and crack morphology analysis of our heated and cooled samples support the contemporaneous acoustic emission data and also indicate that thermal cracking is largely isotropic. These new data are important for assessing the contribution of cooling-induced damage within volcanic structures and layers such as dikes, sills, and lava flows.

  3. Two-phase cooling fluids; Les fluides frigoporteurs diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)

    1997-12-31

    In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry

  4. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The

  5. Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates

    Energy Technology Data Exchange (ETDEWEB)

    Fallahi, A. [Fraunhofer Center for Sustainable Energy Systems (CSE), Boston, MA (United States); Durschlag, H. [Fraunhofer Center for Sustainable Energy Systems (CSE), Boston, MA (United States); Elliott, D. [Fraunhofer Center for Sustainable Energy Systems (CSE), Boston, MA (United States); Hartsough, J. [Fraunhofer Center for Sustainable Energy Systems (CSE), Boston, MA (United States); Shukla, N. [Fraunhofer Center for Sustainable Energy Systems (CSE), Boston, MA (United States); Kosny, J. [Fraunhofer Center for Sustainable Energy Systems (CSE), Boston, MA (United States)

    2013-12-01

    This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulkinsulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosedreflective air space and the second uses spray-applied interior radiation control coatings (IRCC).

  6. Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates

    Energy Technology Data Exchange (ETDEWEB)

    Fallahi, A. [Fraunhofer Center for Sustainable Energy Systems, Boston, MA (United States); Duraschlag, H. [Fraunhofer Center for Sustainable Energy Systems, Boston, MA (United States); Elliott, D. [Fraunhofer Center for Sustainable Energy Systems, Boston, MA (United States); Hartsough, J. [Fraunhofer Center for Sustainable Energy Systems, Boston, MA (United States); Shukla, N. [Fraunhofer Center for Sustainable Energy Systems, Boston, MA (United States); Kosny, J. [Fraunhofer Center for Sustainable Energy Systems, Boston, MA (United States)

    2013-12-01

    This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulk insulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosed reflective air space and the second uses spray-applied interior radiation control coatings (IRCC).

  7. Phase space density as a measure of cooling performance for the international muon ionization cooling experiment

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    The International Muon Ionization Cooling Experiment (MICE) is an experiment to demonstrate ionization cooling of a muon beam in a beamline that shares characteristics with one that might be used for a muon collider or neutrino factory. I describe a way to quantify cooling performance by examining the phase space density of muons, and determining how much that density increases. This contrasts with the more common methods that rely on the covariance matrix and compute emittances from that. I discuss why a direct measure of phase space density might be preferable to a covariance matrix method. I apply this technique to an early proposal for the MICE final step beamline. I discuss how matching impacts the measured performance.

  8. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  9. Cooling compact stars and phase transitions in dense QCD

    Energy Technology Data Exchange (ETDEWEB)

    Sedrakian, Armen [J.W. Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany)

    2016-03-15

    We report new simulations of cooling of compact stars containing quark cores and updated fits to the Cas A fast cooling data. Our model is built on the assumption that the transient behaviour of the star in Cas A is due to a phase transition within the dense QCD matter in the core of the star. Specifically, the fast cooling is attributed to an enhancement in the neutrino emission triggered by a transition from a fully gapped, two-flavor, red-green color-superconducting quark condensate to a superconducting crystalline or an alternative gapless, color-superconducting phase. The blue-colored condensate is modeled as a Bardeen-Cooper-Schrieffer (BCS)-type color superconductor with spin-one pairing order parameter. We study the sensitivity of the fits to the phase transition temperature, the pairing gap of blue quarks and the timescale characterizing the phase transition (the latter modelled in terms of a width parameter). Relative variations in these parameter around their best-fit values larger than 10{sup -3} spoil the fit to the data. We confirm the previous finding that the cooling curves show significant variations as a function of compact star mass, which allows one to account for dispersion in the data on the surface temperatures of thermally emitting neutron stars. (orig.)

  10. Preparation of Firefighting Hood for Cooling for Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Shu Hwa Lin

    2016-10-01

    Full Text Available There are two types of Phase Change Materials (PCMs which have been developed and adopted in textiles: heat (energy released and cool (energy absorbed. This paper discusses current PCM applications and explores future applications in firefighting gear. Phase change materials are considered latent heat storage units because as they change phase from solid to liquid, liquid to gas and vice versa, energy in the form of heat is absorbed or released. The goal of PCM textiles is to create reusable energy to maintain body temperature, as well as to optimize the performance of protective wear such as hoods. When the wearer’s body temperature increases or decreases, the PCMs applied to the fabric will change state helping to regulate the wearer’s body temperature by providing warmth or cooling. Maintaining a stable body temperature can improve working conditions and comfort.

  11. Preparation of Firefighting Hood for Cooling For Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Shu Hwa Lin

    2016-10-01

    Full Text Available There are two types of Phase Change Materials (PCMs which have been developed and adopted in textiles: heat (energy released and cool (energy absorbed. This paper discusses current PCM applications and explores future applications in firefighting gear. Phase change materials are considered latent heat storage units because as they change phase from solid to liquid, liquid to gas and vice versa, energy in the form of heat is absorbed or released. The goal of PCM textiles is to create reusable energy to maintain body temperature, as well as to optimize the performance of protective wear such as hoods. When the wearer’s body temperature increases or decreases, the PCMs applied to the fabric will change state helping to regulate the wearer’s body temperature by providing warmth or cooling. Maintaining a stable body temperature can improve working conditions and comfort.

  12. Free-cooling of buildings with phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Zalba, B.; Marin, J.M. [Universidad de Zaragoza Maria de Luna (Spain). Departamento de Ingenieria Mecanica; Cabeza, L.F. [Universitat de Lleida (Spain). Departamento d' Informatica i Eng. Industrial; Mehling, H. [ZAE Bayern, Abt. 1 Energy Conversion and Storage, Garching (Germany)

    2004-12-01

    In this paper, the application of phase change materials (PCM) in free-cooling systems is studied. Free-cooling is understood as a means to store outdoors coolness during the night, to supply indoors cooling during the day. The use of PCMs is suitable because of the small temperature difference between day indoors and night outdoors. An installation that allows testing the performance of PCMs in such systems was designed and constructed. The main influence parameters like ratio of energy/volume in the encapsulates, load/unload rate of the storage, and cost of the installation were determined, and experiments were performed following the design of experiments strategy. The statistical analysis showed that the effects with significant influence in the solidification process are the thickness of the encapsulation, the inlet temperature of the air, the air flow, and the interaction thickness x temperature. For the melting process the same holds, but the inlet air temperature had a higher influence than the thickness of the encapsulation. With the empirical model developed in this work, a real free-cooling system was designed and economically evaluated. (author)

  13. Espresso coffee foam delays cooling of the liquid phase.

    Science.gov (United States)

    Arii, Yasuhiro; Nishizawa, Kaho

    2017-04-01

    Espresso coffee foam, called crema, is known to be a marker of the quality of espresso coffee extraction. However, the role of foam in coffee temperature has not been quantitatively clarified. In this study, we used an automatic machine for espresso coffee extraction. We evaluated whether the foam prepared using the machine was suitable for foam analysis. After extraction, the percentage and consistency of the foam were measured using various techniques, and changes in the foam volume were tracked over time. Our extraction method, therefore, allowed consistent preparation of high-quality foam. We also quantitatively determined that the foam phase slowed cooling of the liquid phase after extraction. High-quality foam plays an important role in delaying the cooling of espresso coffee.

  14. Liouville`s theorem and phase-space cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mills, R.L. [Ohio State Univ., Columbus, OH (United States); Sessler, A.M. [Lawrence Berkeley Lab., CA (United States)

    1993-09-28

    A discussion is presented of Liouville`s theorem and its consequences for conservative dynamical systems. A formal proof of Liouville`s theorem is given. The Boltzmann equation is derived, and the collisionless Boltzmann equation is shown to be rigorously true for a continuous medium. The Fokker-Planck equation is derived. Discussion is given as to when the various equations are applicable and, in particular, under what circumstances phase space cooling may occur.

  15. Cool storage time of phase change wallboard room in summer

    Institute of Scientific and Technical Information of China (English)

    冯国会; 陈其针; 黄凯良; 牛润萍; 王琳

    2009-01-01

    More and more attention was paid to phase change energy storage in air conditioning domain and construction energy conservation,and became the focus of the international research. Through the test and analysis of the parameters of the indoor thermal property in phase change wallboard room and ordinary room,the effects of using phase change wallboards on indoor temperature in summer and air conditioning are obtained. The combination of construct enclosure and phase change materials can stabilize indoor temperature,improve indoor thermal comfort,reduce the frequency of the operation of air conditioning facility,cut the initial investment and operation expense,and meanwhile play an practical role in "the power balancing between the peak period and the valley period" policy. Through the experiment and the test of the effects exerted by phase change wallboard room and ordinary room on the indoor thermal environment,it is obtained that the phase change wallboard can reduce the fluctuation range of indoor temperature and the heat flow from the outside into indoor environment in summer. According to the study,it is found that the effect of cool-storing for 5 h is obvious. Through the analysis of the phase change wallboard without air conditioning in daytime,it is obtained that the frequency of the operation of air conditioning in phase change wallboard room is smaller than that in the ordinary room,which can prolong the lifetime of the facility and reduce operation expense.

  16. Cooling of Compact Stars with Color Superconducting Phase in Quark Hadron Mixed Phase

    CERN Document Server

    Noda, Tsuneo; Matsuo, Yasuhide; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka; Fujimoto, Masayuki

    2011-01-01

    We present a new scenario for the cooling of compact stars considering the central source of Cassiopeia A (Cas A). The Cas A observation shows that the central source is a sort of neutron star which has high effective temperature, and it is consistent with the well known standard cooling model. The observation also gives the mass range of $M \\geq 1.5 M_\\odot$, which is inconsistent with current plausible cooling scenario of compact stars. There are some cooled compact stars such as Vela or 3C58, which cannot be explained by the standard cooling processes: we invoke some kinds of exotic cooling processes, where a heavier star cools faster than lighter one. However, the scenario seems to be inconsistent with the observation of Cas A. Therefore, we give a new cooling scenario to explain the observation of Cas A by constructing models, which include a quark color superconducting phase with a large energy gap, which appears at ultrahigh density region and reduces neutrino emissivity. In our model, a compact star h...

  17. Mechanical properties of cast A356 alloy, solidified at cooling rates enhanced by phase transition of a cooling medium

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: zhangly6244@yahoo.com.cn; Zhou, B.D. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhan, Z.J. [R and D Center for Advanced Materials, National University Science Park Yanshan University, Qinhuangdao 066004 (China); Jia, Y.Z. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shan, S.F. [School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhang, B.Q. [School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wang, W.K. [School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2007-03-15

    Phase transition cooling (PTC), using the absorbed latent heat during the melting of phase transition cooling medium to cool and solidify alloys in the process of casting, is a new fast cooling technology. Specimens of A356 casting aluminum alloy were prepared by this method. For comparison, specimens made by water-cooling copper mould (WCCM) were prepared too. The mechanical properties of A356 alloy made by PTC and WCCM were measured by microhardness and tensile strength testing methods. Microstructures of A356 alloy were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-rays diffraction (XRD). The results show that both microhardness and ultimate tensile strength (UTS) of A356 alloy made by PTC method are much higher than those made by WCCM method. This can be attributed to the refined microstructure and the extended solubility of silicon in {alpha}-Al. The solubility of silicon in {alpha}-Al was 2.7 at.% in specimens solidified in phase transition cooling medium and 2.4 at.% in specimens solidified in water-cooling copper mould.

  18. Cooling of mobile electronic devices using phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Tan, F.L.; Tso, C.P. [Nanyang Technological University (Singapore). School of Mechanical and Production Engineering

    2004-02-01

    An experimental study is conducted on the cooling of mobile electronic devices, such as personal digital assistants (PDAs) and wearable computers, using a heat storage unit (HSU) filled with the phase change material (PCM) of n-eicosane inside the device. The high latent heat of n-eicosane in the HSU absorbs the heat dissipation from the chips and can maintain the chip temperature below the allowable service temperature of 50{sup o}C for 2 h of transient operations of the PDA. The heat dissipation of the chips inside a PDA and the orientation of the HSU are experimentally investigated in this paper. It was found that different orientation of the HSU inside the PDA could affect significantly the temperature distribution. (author)

  19. DEVELOPMENT OF SINGLE-PHASED WATER-COOLING RADIATOR FOR COMPUTER CHIP

    Institute of Scientific and Technical Information of China (English)

    ZENG Ping; CHENG Guangming; LIU Jiulong; YANG Zhigang; SUN Xiaofeng; PENG Taijiang

    2007-01-01

    In order to cool computer chip efficiently with the least noise, a single phase water-cooling radiator for computer chip driven by piezoelectric pump with two parallel-connection chambers is developed. The structure and work principle of this radiator is described. Material, processing method and design principles of whole radiator are also explained. Finite element analysis (FEA) software,ANSYS, is used to simulate the heat distribution in the radiator. Testing equipments for water-cooling radiator are also listed. By experimental tests, influences of flowrate inside the cooling system and fan on chip cooling are explicated. This water-cooling radiator is proved more efficient than current air-cooling radiator with comparison experiments. During cooling the heater which simulates the working of computer chip with different power, the water-cooling radiator needs shorter time to reach lower steady temperatures than current air-cooling radiator.

  20. Model Algorithm Research on Cooling Path Control of Hot-rolled Dual-phase Steel

    Institute of Scientific and Technical Information of China (English)

    Xiao-qing XU; Xiao-dong HAO; Shi-guang ZHOU; Chang-sheng LIU; Qi-fu ZHANG

    2016-01-01

    With the development of advanced high strength steel,especially for dual-phase steel,the model algorithm for cooling control after hot rolling has to achieve the targeted coiling temperature control at the location of downcoiler whilst maintaining the cooling path control based on strip microstructure along the whole cooling section.A cooling path control algorithm was proposed for the laminar cooling process as a solution to practical difficulties associated with the realization of the thermal cycle during cooling process.The heat conduction equation coupled with the carbon diffusion equation with moving boundary was employed in order to simulate temperature change and phase transfor-mation kinetics,making it possible to observe the temperature field and the phase fraction of the strip in real time. On this basis,an optimization method was utilized for valve settings to ensure the minimum deviations between the predicted and actual cooling path of the strip,taking into account the constraints of the cooling equipment′s specific capacity,cooling line length,etc.Results showed that the model algorithm was able to achieve the online cooling path control for dual-phase steel.

  1. Development of a Single-Phase Thermosiphon for Cold Collection and Storage of Radiative Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ronggui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Dongliang [University of Colorado; Martini, Christine Elizabeth [University of Colorado; Jiang, Siyu [University of Colorado; Ma, Yaoguang [University of Colorado; Zhai, Yao [University of Colorado; Tan, Gang [University of Wyoming; Yin, Xiaobo [University of Colorado

    2017-09-19

    A single-phase thermosiphon is developed for cold collection and storage of radiative cooling. Compared to the conventional nocturnal radiative cooling systems that use an electric pump to drive the heat transfer fluid, the proposed single-phase thermosiphon uses the buoyancy force to drive heat transfer fluid. This solution does not require electricity, therefore improving the net gain of the radiative cooling system. A single-phase thermosiphon was built, which consists of a flat panel, a cold collection tank, a water return tube, and a water distribution tank. Considering that outdoor radiative cooling flux is constantly changing (i.e. uncontrollable), an indoor testing facility was developed to provide a controllable cooling flux (comparable to a radiative cooling flux of 100 W/m2) for the evaluation of thermosiphon performance. The testing apparatus is a chilled aluminum flat plate that has a controlled air gap separation relative to the flat panel surface of the thermosiphon to emulate radiative cooling. With an average of 105 W/m2 cooling flux, the 18 liters of water in the thermosiphon was cooled to an average temperature of 12.5 degrees C from an initial temperature of 22.2 degrees C in 2 h, with a cold collection efficiency of 96.8%. The results obtained have demonstrated the feasibility of using a single-phase thermosiphon for cold collection and storage of radiative cooling. Additionally, the effects of the thermosiphon operation conditions, such as tilt angle of the flat panel, initial water temperature, and cooling energy flux, on the performance have been experimentally investigated. Modular design of the single-phase thermosiphon gives flexibility for its scalability. A radiative cooling system with multiple thermosiphon modules is expected to play an important role in cooling buildings and power plant condensers.

  2. Evaluation of tumor detection and peak hepatic contrast enhancement in the portal dominant phase of two-phase helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kazuhiro; Sakurada, Akira; Baba, Seiko; Ishida, Jirou; Kakizaki, Dai; Abe, Kimihiko [Tokyo Medical Coll. (Japan)

    1997-11-01

    We evaluated the portal dominant phase of two-phase helical CT. The livers of 203 (112 cirrhotic and 91 non-cirrhotic) patients were examined. Three protocols were performed in succession in three consecutive periods. In the first period 90 ml iohexol (300 mgI/ml) (300/90) was employed. In the second, 120 ml ioversol (240 mgI/ml) (240/120) and in the third 120 ml iomeprol (300 mgI/ml) (300/120) were given. The injection flow rate was 3 ml/sec. Scanning started 25 sec (arterial dominant phase) and 75 sec (portal dominant phase) after the beginning of contrast medium injection. In cirrhotic patients we evaluated whether the peak hepatic contrast enhancement (PHCE) was acquired or not. Among the 203 patients those 48 cases clinically diagnosed as hepatocellular carcinoma were examined in terms of tumor detection. The PHCE for each protocol showed no significant difference in the cirrhotic and non-cirrhotic groups. The presence of portosystemic shunt (P-S shunt) did not affect the PHCE in cirrhotic patients. The peak times were significantly different in cases with or without P-S shunt (p=.0004). Concerning tumor detection, the portal dominant phase was inferior to the arterial dominant phase (p=.00013) and equivalent to the delayed phase (p=.056). (author)

  3. Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  4. Experimental investigation of single-phase microjet cooling of microelectronics

    Directory of Open Access Journals (Sweden)

    Rusowicz Artur

    2015-09-01

    Full Text Available Development of electronics, which aims to improve the functionality of electronic devices, aims at increasing the packing of transistors in a chip and boosting clock speed (the number of elementary operations per second. While pursuing this objective, one encounters the growing problem of thermal nature. Each switching of the logic state at the elementary level of an integrated circuit is associated with the generation of heat. Due to a large number of transistors and high clock speeds, higher heat flux is emitted by the microprocessor to a level where the component needs to be intensively cooled, or otherwise it will become overheated. This paper presents the cooling of microelectronic components using microjets.

  5. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-Yan; CHEN Yan; LIU Yu-Wen; LI Fei; LIU Jian-Hua; PENG Gui-Rong; WANG Wen-Kui

    2009-01-01

    Effects of high pressure (6 GPa) on the solid state phase transformation kinetic parameters of aluminum bronze during the cooling process are investigated, based on the measurement and calculation of its solid state phase transformation temperature, duration and activation energy and the observation of its microstructures. The results show that high pressure treatment can reduce the solid phase transformation temperature and activation energy in the cooling process and can shorten the phase transformation duration, which is favorable when forming fine-grained aluminum bronze.

  6. Monocular deprivation of Fourier phase information boosts the deprived eye's dominance during interocular competition but not interocular phase combination.

    Science.gov (United States)

    Bai, Jianying; Dong, Xue; He, Sheng; Bao, Min

    2017-06-03

    Ocular dominance has been extensively studied, often with the goal to understand neuroplasticity, which is a key characteristic within the critical period. Recent work on monocular deprivation, however, demonstrates residual neuroplasticity in the adult visual cortex. After deprivation of patterned inputs by monocular patching, the patched eye becomes more dominant. Since patching blocks both the Fourier amplitude and phase information of the input image, it remains unclear whether deprivation of the Fourier phase information alone is able to reshape eye dominance. Here, for the first time, we show that removing of the phase regularity without changing the amplitude spectra of the input image induced a shift of eye dominance toward the deprived eye, but only if the eye dominance was measured with a binocular rivalry task rather than an interocular phase combination task. These different results indicate that the two measurements are supported by different mechanisms. Phase integration requires the fusion of monocular images. The fused percept highly relies on the weights of the phase-sensitive monocular neurons that respond to the two monocular images. However, binocular rivalry reflects the result of direct interocular competition that strongly weights the contour information transmitted along each monocular pathway. Monocular phase deprivation may not change the weights in the integration (fusion) mechanism much, but alters the balance in the rivalry (competition) mechanism. Our work suggests that ocular dominance plasticity may occur at different stages of visual processing, and that homeostatic compensation also occurs for the lack of phase regularity in natural scenes. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Effect of the cooling rate on the phase composition and structure of copper matte converting slags

    Science.gov (United States)

    Selivanov, E. N.; Gulyaeva, R. I.; Udoeva, L. Yu.; Belyaev, V. V.; Pankratov, A. A.

    2009-08-01

    The effect of the cooling rate on the phase composition and microstructure of copper matte converting slags is studied by X-ray diffraction, combined thermogravimetry and calorimetry, mineragraphy, and electron-probe microanalysis. The compositions of oxide and sulfide phases are determined, and the forms of nonferrous metals in slags cooled at a rate of 0.3 and 900°C/s are revealed. At high cooling rates of the slags, iron silicate glass is shown to form apart from sulfide phases. Repeated heating of the slags leads to the development of devitrification, “cold” crystallization, and melting. A decrease in the cooling rate favors an increase in the grain sizes in oxides (magnetite, iron silicates) and sulfides (bornite-, sphalerite, and galena-based solid solutions).

  8. Two-Phase Cooling of Targets and Electronics for Particle Physics Experiments

    CERN Document Server

    Thome, J R; Park, J E

    2009-01-01

    An overview of the LTCM lab’s decade of experience with two-phase cooling research for computer chips and power electronics will be described with its possible beneficial application to high-energy physics experiments. Flow boiling in multi-microchannel cooling elements in silicon (or aluminium) have the potential to provide high cooling rates (up to as high as 350 W/cm2), stable and uniform temperatures of targets and electronics, and lightweight construction while also minimizing the fluid inventory. An overview of two-phase flow and boiling research in single microchannels and multi-microchannel test elements will be presented together with video images of these flows. The objective is to stimulate discussion on the use of two-phase cooling in these demanding applications, including the possible use of CO2.

  9. Dynamics of Mixed Dark Energy Domination in Teleparallel Gravity and Phase-Space Analysis

    CERN Document Server

    Dil, Emre

    2016-01-01

    We consider a novel dark energy model to investigate whether it will provide an expanding universe phase. Here we propose a mixed dark energy domination which is constituted by tachyon, quintessence, and phantom scalar fields nonminimally coupled to gravity, in the absence of background dark matter and baryonic matter, in the framework of teleparallel gravity. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions implying the acceleration phase of universe.

  10. Structural Changes of α Phase in Furnace Cooled Eutectoid Zn-Al Based Alloy

    Institute of Scientific and Technical Information of China (English)

    Y.H. Zhu; K.C. Chan; G.K.H. Pang; T.M. Yue; W.B. Lee

    2007-01-01

    Furnace cooling is a slow cooling process. It is of importance to study structural evolution and its effects on the properties of alloys during the furnace cooling. Decomposition of aluminium rich α phase in a furnace cooled eutectoid Zn-Al based alloy was studied by transmission electron microscopy. Two kinds of precipitates in the α phase were detected in the FCZA22 alloy during ageing at 170℃. One was the hcp transitional α"m phase which appears as directional rods and the round precipitates. The other was the fcc α'm phase.It was found that the transitional phase α'm grew in three preferential directions of , and . The orientation relationship between the α phase and transitional phase α'm was determined as (02-2)α'm(fcc)//(02-2)α(fcc), [-111]α'm(fcc)//[-233]α(fcc). The non-equilibrium phase decomposition of the α phase is discussed in correlation with the equilibrium phase relationships.

  11. Computer cooling using a two phase minichannel thermosyphon loop heated from horizontal and vertical sides and cooled from vertical side

    Science.gov (United States)

    Bieliński, Henryk; Mikielewicz, Jarosław

    2010-10-01

    In the present paper it is proposed to consider the computer cooling capacity using the thermosyphon loop. A closed thermosyphon loop consists of combined two heaters and a cooler connected to each other by tubes. The first heater may be a CPU processor located on the motherboard of the personal computer. The second heater may be a chip of a graphic card placed perpendicular to the motherboard of personal computer. The cooler can be placed above the heaters on the computer chassis. The thermosyphon cooling system on the use of computer can be modeled using the rectangular thermosyphon loop with minichannels heated at the bottom horizontal side and the bottom vertical side and cooled at the upper vertical side. The riser and a downcomer connect these parts. A one-dimensional model of two-phase flow and heat transfer in a closed thermosyphon loop is based on mass, momentum, and energy balances in the evaporators, rising tube, condenser and the falling tube. The separate two-phase flow model is used in calculations. A numerical investigation for the analysis of the mass flux rate and heat transfer coefficient in the steady state has been accomplished.

  12. Abnormal correlation between phase transformation and cooling rate for pure metals

    Science.gov (United States)

    Han, J. J.; Wang, C. P.; Liu, X. J.; Wang, Y.; Liu, Z.-K.; Zhang, T.-Y.; Jiang, J. Z.

    2016-03-01

    This work aims to achieve deep insight into the phenomenon of phase transformation upon rapid cooling in metal systems and reveal the physical meaning of scatter in the time taken to reach crystallization. The total number of pure metals considered in this work accounts for 14. Taking pure copper as an example, the correlation between phase selection of crystal or glass and cooling rate was investigated using molecular dynamic simulations. The obtained results demonstrate that there exists a cooling rate region of 6.3 × 1011–16.6 × 1011 K/s, in which crystalline fractions largely fluctuate along with cooling rates. Glass transformation in this cooling rate region is determined by atomic structure fluctuation, which is controlled by thermodynamic factors. According to the feature of bond-orientation order at different cooling rates, we propose two mechanisms of glass formation: (i) kinetic retardation of atom rearrangement or structural relaxation at a high cooling rate; and (ii) competition of icosahedral order against crystal order near the critical cooling rate.

  13. Abnormal correlation between phase transformation and cooling rate for pure metals.

    Science.gov (United States)

    Han, J J; Wang, C P; Liu, X J; Wang, Y; Liu, Z-K; Zhang, T-Y; Jiang, J Z

    2016-03-04

    This work aims to achieve deep insight into the phenomenon of phase transformation upon rapid cooling in metal systems and reveal the physical meaning of scatter in the time taken to reach crystallization. The total number of pure metals considered in this work accounts for 14. Taking pure copper as an example, the correlation between phase selection of crystal or glass and cooling rate was investigated using molecular dynamic simulations. The obtained results demonstrate that there exists a cooling rate region of 6.3 × 10(11)-16.6 × 10(11) K/s, in which crystalline fractions largely fluctuate along with cooling rates. Glass transformation in this cooling rate region is determined by atomic structure fluctuation, which is controlled by thermodynamic factors. According to the feature of bond-orientation order at different cooling rates, we propose two mechanisms of glass formation: (i) kinetic retardation of atom rearrangement or structural relaxation at a high cooling rate; and (ii) competition of icosahedral order against crystal order near the critical cooling rate.

  14. Model Based Control of Single-Phase Marine Cooling Systems

    DEFF Research Database (Denmark)

    Hansen, Michael

    2014-01-01

    ”, it is shown that the part of the proposed model relating to the thermodynamics is dynamically accurate and with relatively small steady state deviations. The same is shown for a linear version of the part of the model governing the hydraulics of the cooling system. On the subject of control, the main focus...... in this work is on the development of a nonlinear robust control design. The design is based on principles from feedback. linearization to compensate for nonlinearities as well as transport delays by including a delay estimate in the feedback law. To deal with the uncertainties that emerged from the feedback...

  15. CLOSURE OF HLW TANKS PHASE 2 FULL SCALE COOLING COILS GROUT FILL DEMONSTATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E; Alex Cozzi, A

    2008-06-19

    This report documents the Savannah River National Laboratory (SRNL) support for the Tank Closure and Technology Development (TCTD) group's strategy for closing high level radioactive waste (HLW) tanks at the Savannah River Site (SRS). Specifically, this task addresses the ability to successfully fill intact cooling coils, presently within the HLW tanks, with grout that satisfies the fresh and cured grout requirements [1] under simulated field conditions. The overall task was divided into two phases. The first phase was the development of a grout formulation that satisfies the processing requirements for filling the HLW tank cooling coils [5]. The second phase of the task, which is documented in this report, was the filling of full scale cooling coils under simulated field conditions using the grout formulation developed in the first phase. SRS Type I tank cooling coil assembly design drawings and pressure drop calculations were provided by the Liquid Waste (LW) customer to be used as the basis for configuring the test assemblies. The current concept for closing tanks equipped with internal cooling coils is to pump grout into the coils to inhibit pathways for infiltrating water. Access to the cooling coil assemblies is through the existing supply/return manifold headers located on top of the Type I tanks. The objectives for the second phase of the testing, as stated in the Task Technical and Quality Assurance plan (TTQAP) [2], were to: (1) Perform a demonstration test to assess cooling coil grout performance in simulated field conditions, and (2) Measure relevant properties of samples prepared under simulated field conditions. SRNL led the actual work of designing, fabricating and filling two full-scale cooling coil assemblies which were performed at Clemson Engineering Technologies Laboratory (CETL) using the South Carolina University Research and Education Foundation (SCUREF) program. A statement of work (SOW) was issued to CETL [6] to perform this work.

  16. Superfluid phases of triplet pairing and rapid cooling of the neutron star in Cassiopeia A

    Directory of Open Access Journals (Sweden)

    Lev B. Leinson

    2015-02-01

    Full Text Available In a simple model it is demonstrated that the neutron star surface temperature evolution is sensitive to the phase state of the triplet superfluid condensate. A multicomponent triplet pairing of superfluid neutrons in the core of a neutron star with participation of several magnetic quantum numbers leads to neutrino energy losses exceeding the losses from the unicomponent pairing. A phase transition of the neutron condensate into the multicomponent state triggers more rapid cooling of superfluid core in neutron stars. This makes it possible to simulate an anomalously rapid cooling of neutron stars within the minimal cooling paradigm without employing any exotic scenarios suggested earlier for rapid cooling of isolated neutron star in Cassiopeia A.

  17. Characterization of Solid State Phase Transformation in Continuously Heated and Cooled Ferritic Weld Metal

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, B [Ohio State University, The, Columbus; Mills, Michael J. [Ohio State University, The, Columbus; Specht, Eliot D [ORNL; Santella, Michael L [ORNL; Babu, Sudarsanam Suresh [Ohio State University, The, Columbus

    2010-12-01

    Arc welding processes involve cooling rates that vary over a wide range (1-100 K/s). The final microstructire is thus a product of the heating and cooling cycles experienced by the weld in addition to the weld composition. It has been shown that the first phase to form under weld cooling conditions may not be that predicted by equilibrium calculations. The partitioning of different interstitial/substitutional alloying elements at high temperatures can dramatically affect the subsequent phase transformations. In order to understand the effect of alloying on phase transformation temperatures and final microstructures time-resolved X-ray diffraction technique has been successfully used for characterization. The work by Jacot and Rappaz on pearlitic steels provided insight into austenitization of hypoeutectic steels using a finite volume model. However there is very little work done on the effect of heating and cooling rates on the phase transformation paths in bainitic/martensitic steels and weld metals. Previous work on a weld with higher aluminum content, deposited with a FCAW-S process indicated that even at aluminum levels where the primary phase to solidify from liquid should be delta ferrite, non-equilibrium austenite was observed. The presence of inhomogeneity in composition of the parent microstructure has been attributed to differences in transformation modes, temperatures and microstructures in dual-phase, TRIP steels and ferritic welds. The objectives of the work included the identification of the stability regions of different phases during heating and cooling, differences in the effect of weld heating and cooling rates on the phase transformation temperatures, and the variation in phase fractions of austenite and ferrite in the two phase regions as a function of temperature. The base composition used for the present work is a Fe-1%Al-2%Mn-1%Ni-0.04%C weld metal. A pseudo-binary phase diagram shows the expected solidification path under equilibrium

  18. Transient state study of electric motor heating and phase change solid-liquid cooling

    Energy Technology Data Exchange (ETDEWEB)

    Bellettre, J.; Sartre, V.; Lallemand, A. [Centre National de la Recherche Scientifique (CNRS), Centre de Thermique de Lyon, Villeurbanne, 69 (France); Biais, F. [AUXILEC, Chatou, 78 (France)

    1997-01-01

    This study reports on modelling of an autosynchronous electric motor stator, operating at transient state. The developed model, of the modal type, includes around 20 nodes. The simulations showed that hot spots are localized on the winding heads and led to the choice of a solid-liquid phase change cooling system. The comparison between simulation and experiment permitted the identification of unknown parameters. The model gives a good accuracy during steady-state and in the rising temperature phase. The modelling of the phase change cooling is realized by the addition of two nodes. The sensitivity analysis to PCM properties shows that the hot spot temperature decreases with increasing conductivities, inertia and latent heat of melting of the PCM and with decreasing melting temperature. Gallium (metal melting at 30{sup o}C) is the best PCM for the cooling of hot spots and P116 paraffin is the best non-metallic PCM. (author)

  19. Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility of nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.

  20. Optimal design variable considerations in the use of phase change materials in indirect evaporative cooling

    Science.gov (United States)

    Chilakapaty, Ankit Paul

    The demand for sustainable, energy efficient and cost effective heating and cooling solutions is exponentially increasing with the rapid advancement of computation and information technology. Use of latent heat storage materials also known as phase change materials (PCMs) for load leveling is an innovative solution to the data center cooling demands. These materials are commercially available in the form of microcapsules dispersed in water, referred to as the microencapsulated phase change slurries and have higher heat capacity than water. The composition and physical properties of phase change slurries play significant role in energy efficiency of the cooling systems designed implementing these PCM slurries. Objective of this project is to study the effect of PCM particle size, shape and volumetric concentration on overall heat transfer potential of the cooling systems designed with PCM slurries as the heat transfer fluid (HTF). In this study uniform volume heat source model is developed for the simulation of heat transfer potential using phase change materials in the form of bulk temperature difference in a fully developed flow through a circular duct. Results indicate the heat transfer potential increases with PCM volumetric concentration with gradually diminishing returns. Also, spherical PCM particles offer greater heat transfer potential when compared to cylindrical particles. Results of this project will aid in efficient design of cooling systems based on PCM slurries.

  1. Heat pipe radiation cooling (HPRC) for high-speed aircraft propulsion. Phase 2 (feasibility) final report

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. [Los Alamos National Lab., NM (United States); Silverstein, C.C. [CCS Associates, Bethel Park, PA (United States)

    1994-03-25

    The National Aeronautics and Space Administration (NASA), Los Alamos National Laboratory (Los Alamos), and CCS Associates are conducting the Heat Pipe Radiation Cooling (HPRC) for High-Speed Aircraft Propulsion program to determine the advantages and demonstrate the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This innovative approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from adjacent external surfaces. HPRC is viewed as an alternative (or complementary) cooling technique to the use of pumped cryogenic or endothermic fuels to provide regenerative fuel or air cooling of the hot surfaces. The HPRC program has been conducted through two phases, an applications phase and a feasibility phase. The applications program (Phase 1) included concept and assessment analyses using hypersonic engine data obtained from US engine company contacts. The applications phase culminated with planning for experimental verification of the HPRC concept to be pursued in a feasibility program. The feasibility program (Phase 2), recently completed and summarized in this report, involved both analytical and experimental studies.

  2. Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Tatkowski, G. [Fermilab; Cheban, S. [Fermilab; Dhanaraj, N. [Fermilab; Evbota, D. [Fermilab; Lopes, M. [Fermilab; Nicol, T. [Fermilab; Sanders, R. [Fermilab; Schmitt, R. [Fermilab; Voirin, E. [Fermilab

    2015-01-01

    The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids

  3. Numerical cooling strategy design for hot rolled dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Suwanpinij, Piyada; Prahl, Ulrich; Bleck, Wolfgang [RWTH Aachen (DE). Dept. of Ferrous Metallurgy (IEHK); Togobytska, Nataliya; Weiss, Wolf; Hoemberg, Dietmar [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany)

    2010-10-21

    In this article, the Mo-Mn dual phase steel and its process parameters in hot rolling are discussed. The process window was derived by combining the experimental work in a hot deformation dilatometer and numerical calculation of process parameters using rate law models for ferrite and martensite transformation. The ferrite formation model is based on the Leblond and Devaux approach while martensite formation is based on the Koistinen- Marburger (K-M) formula. The carbon enrichment during ferrite formation is taken into account for the following martensite formation. After the completion of the parameter identification for the rate law model, the evolution of phases in multiphase steel can be addressed. Particularly, the simulations allow for predicting the preferable degree of retained strain and holding temperature on the run out table (ROT) for the required ferrite fraction. (orig.)

  4. Dynamics of Mixed Dark Energy Domination in Teleparallel Gravity and Phase-Space Analysis

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2015-01-01

    Full Text Available We consider a novel dark energy model to investigate whether it will provide an expanding universe phase. Here we propose a mixed dark energy domination which is constituted by tachyon, quintessence, and phantom scalar fields nonminimally coupled to gravity, in the absence of background dark matter and baryonic matter, in the framework of teleparallel gravity. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions implying the acceleration phase of universe.

  5. Decay Phase Cooling and Inferred Heating of M- and X-class Solar Flares

    CERN Document Server

    Ryan, Daniel F; Milligan, Ryan O; Gallgher, Peter T

    2014-01-01

    In this paper, the cooling of 72 M- and X-class flares is examined using GOES/XRS and SDO/EVE. The observed cooling rates are quantified and the observed total cooling times are compared to the predictions of an analytical 0-D hydrodynamic model. It is found that the model does not fit the observations well, but does provide a well defined lower limit on a flare's total cooling time. The discrepancy between observations and the model is then assumed to be primarily due to heating during the decay phase. The decay phase heating necessary to account for the discrepancy is quantified and found be ~50% of the total thermally radiated energy as calculated with GOES. This decay phase heating is found to scale with the observed peak thermal energy. It is predicted that approximating the total thermal energy from the peak is minimally affected by the decay phase heating in small flares. However, in the most energetic flares the decay phase heating inferred from the model can be several times greater than the peak the...

  6. Decay-phase cooling and inferred heating of M- and X-class solar flares

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Daniel F.; Gallagher, Peter T. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Chamberlin, Phillip C.; Milligan, Ryan O. [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-11-20

    In this paper, the cooling of 72 M- and X-class flares is examined using GOES/XRS and SDO/EVE. The observed cooling rates are quantified and the observed total cooling times are compared with the predictions of an analytical zero-dimensional hydrodynamic model. We find that the model does not fit the observations well, but does provide a well-defined lower limit on a flare's total cooling time. The discrepancy between observations and the model is then assumed to be primarily due to heating during the decay phase. The decay-phase heating necessary to account for the discrepancy is quantified and found be ∼50% of the total thermally radiated energy, as calculated with GOES. This decay-phase heating is found to scale with the observed peak thermal energy. It is predicted that approximating the total thermal energy from the peak is minimally affected by the decay-phase heating in small flares. However, in the most energetic flares the decay-phase heating inferred from the model can be several times greater than the peak thermal energy.

  7. Development of a prototype thermoelectric space cooling system using phase change material to improve the performance

    Science.gov (United States)

    Zhao, Dongliang

    The thermoelectric cooling system has advantages over conventional vapor compression cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no refrigerant, being powered by direct current, and easily switching between cooling and heating modes. However, it has been long suffering from its relatively high cost and low energy efficiency, which has restricted its usage to niche applications, such as space missions, portable cooling devices, scientific and medical equipment, where coefficient of performance (COP) is not as important as reliability, energy availability, and quiet operation environment. Enhancement of thermoelectric cooling system performance generally relies on two methods: improving thermoelectric material efficiency and through thermoelectric cooling system thermal design. This research has been focused on the latter one. A prototype thermoelectric cooling system integrated with phase change material (PCM) thermal energy storage unit for space cooling has been developed. The PCM thermal storage unit used for cold storage at night, functions as the thermoelectric cooling system's heat sink during daytime's cooling period and provides relatively lower hot side temperature for the thermoelectric cooling system. The experimental test of the prototype system in a reduced-scale chamber has realized an average cooling COP of 0.87, with the maximum value of 1.22. Another comparison test for efficacy of PCM thermal storage unit shows that 35.3% electrical energy has been saved from using PCM for the thermoelectric cooling system. In general, PCM faces difficulty of poor thermal conductivity at both solid and liquid phases. This system implemented a finned inner tube to increase heat transfer during PCM charging (melting) process that directly impacts thermoelectric system's performance. A simulation tool for the entire system has been developed including mathematical models for a single thermoelectric module

  8. Phase transformation upon cooling path in Ca2SiO4: Possible geological implication

    Science.gov (United States)

    Chang, Yun-Ting; Kung, Jennifer; Hsu, Han

    2016-04-01

    At the contact metamorphism zone two different Ca2SiO4 phases can be found; calcio-olivine (γ phase) and larnite (β phase). In-situ experiments illustrated the existence of five various polymorphs in Ca2SiO4, i.e., α, α'H, α'L, β and γ. The path of phase transformation and the transformation temperatures are shown as follows. γ → α'L(700° C) → α'H(1100° C) → α (1450° C) α'L → β (680° C) → γ (500° C) Experiments showed that the phase transitions at lower temperature is not reversible and seemed to be complicated; β phase is only stable from 500° C to 680° C upon cooling. To understand the possible mechanism of the β phase being metastable at room temperature, atmosphere condition, we were motivated to investigate the route of phase transition in Ca2SiO4 in different thermal process. Powder samples were synthesized by the solid-state reaction. Pure reagent oxides CaCO3 and SiO2 were mixed in 2:1 stoichiometric mole. Two control factors were designated in the experiments; the sintering temperature of starting materials and the cooling path. The sintering temperature was set within the range of stable phase field of α'L phase (˜900° C) and α'H phase (1300° C). The cooling process was designed in three different routes: 1) the quenched procedure from sintering temperature with rate of 900° C/min and 1300° C/min, 2) the furnace cooling procedure, 3) set a slow cooling rate (0.265 ° C/min). The products were examined for the crystal structure by X-ray powder diffraction. First-principle calculation was also applied to investigate the thermodynamic properties of α'H, β and γ phases. A major finding in this study showed that the γ phase presented in the final product when the sintering temperature was set at the stable field of α'H phase; on the other hand, the β phase would present when the sintering temperature was set within the field of α'L phase. It was noted that the existing phase in the product would be modified by the

  9. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    Science.gov (United States)

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  10. Free cooling phase-diagram of hard-spheres with short- and long-range interactions

    NARCIS (Netherlands)

    Gonzalez Briones, J.S.L.; Thornton, A.R.; Luding, S.

    2014-01-01

    We study the stability, the clustering and the phase-diagram of free cooling granular gases. The systems consist of mono-disperse particles with additional non-contact (long-range) interactions, and are simulated here by the event-driven molecular dynamics algorithm with discrete (short-range should

  11. Supernova-regulated ISM: the effects of radiative cooling and thermal conductivity on the multi-phase structure

    CERN Document Server

    Gent, Frederick; Shukurov, Anvar; Fletcher, Andrew; Sarson, Graeme R

    2010-01-01

    The hydrodynamic state of the interstellar medium (ISM) heated and randomly stirred by supernovae (SNe) is investigated. We use a three-dimensional non-ideal hydrodynamic ISM model in a domain extending 0.5 x 0.5 kpc horizontally and 2 kpc vertically to explore the relative importance of various physical and numerical effects on the multi-phase, turbulent ISM. We include both Type I and II SNe, the latter occurring only in dense regions. First we investigate the role of the thermal instability in the temperature range 300-6100 K, comparing results obtained for two different cooling functions, one susceptible to the instability, the other stable. The presence of thermal instability in the system is mainly visible as the tendency of the gas to avoid the relevant temperature range, as it quickly evolves towards either colder or warmer phases. Nevertheless, the formation of dense structures for both cooling functions appears to be dominated by expanding and colliding supernova remnants, rather than by the thermal...

  12. Solar heating and cooling of mobile homes, Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, A.A.

    1976-12-01

    The specific objectives of the Phase II program were: (1) through system testing, confirm the feasibility of a solar heated and cooled mobile home; (2) update system performance analysis and provide solar heating and cooling computer model verification; (3) evaluate the performance of both an absorption and a Rankine air conditioning system; (4) perform a consumer demand analysis through field survey to ascertain the acceptance of solar energy into the mobile home market; and (5) while at field locations to conduct the consumer demand analysis, gather test data from various U.S. climatic zones. Results are presented and discussed. (WHK)

  13. Phase-locking of bursting neuronal firing to dominant LFP frequency components.

    Science.gov (United States)

    Constantinou, Maria; Elijah, Daniel H; Squirrell, Daniel; Gigg, John; Montemurro, Marcelo A

    2015-10-01

    Neuronal firing in the hippocampal formation relative to the phase of local field potentials (LFP) has a key role in memory processing and spatial navigation. Firing can be in either tonic or burst mode. Although bursting neurons are common in the hippocampal formation, the characteristics of their locking to LFP phase are not completely understood. We investigated phase-locking properties of bursting neurons using simulations generated by a dual compartmental model of a pyramidal neuron adapted to match the bursting activity in the subiculum of a rat. The model was driven with stochastic input signals containing a power spectral profile consistent with physiologically relevant frequencies observed in LFP. The single spikes and spike bursts fired by the model were locked to a preferred phase of the predominant frequency band where there was a peak in the power of the driving signal. Moreover, the preferred phase of locking shifted with increasing burst size, providing evidence that LFP phase can be encoded by burst size. We also provide initial support for the model results by analysing example data of spontaneous LFP and spiking activity recorded from the subiculum of a single urethane-anaesthetised rat. Subicular neurons fired single spikes, two-spike bursts and larger bursts that locked to a preferred phase of either dominant slow oscillations or theta rhythms within the LFP, according to the model prediction. Both power-modulated phase-locking and gradual shift in the preferred phase of locking as a function of burst size suggest that neurons can use bursts to encode timing information contained in LFP phase into a spike-count code.

  14. A Review On Free Cooling Through Heat Pipe by Using Phase Change Materials

    Directory of Open Access Journals (Sweden)

    A.S.Futane ,

    2011-06-01

    Full Text Available Thermal energy storage is renewable source of energy to develop energy storage system, which minimize environmental impact such as ozone depletion and global warming. Thermal energy can be stored as latent heat which is latter use when substance changes from one phase to another phase by either freezing or melting. Now a days need of refrigeration and air conditioning has been increased, which can be achieved by free cooling, for this various substances are use, depending upon required temperature. Phase change materials are one of the substances having low temperature of melting and solidification.

  15. Supercritical supersaturations and ultrafast cooling of the growth solution in liquid-phase epitaxy of semiconductors

    Science.gov (United States)

    Abramov, A. V.; Deryagin, N. G.; Tret'yakov, D. N.

    1996-04-01

    A method for accomplishing ultrafast cooling is proposed which makes possible supercritical supersaturations of the growth solution in liquid-phase epitaxy. Growth boat designs providing cooling rates as high as 0268-1242/11/4/025/img1 are considered. The temperatures of contact, 0268-1242/11/4/025/img2, of a GaAs substrate with a Ga-based solution and of a Si substrate with a Sn-based growth solution, calculated for various substrate 0268-1242/11/4/025/img3 and solution temperatures 0268-1242/11/4/025/img4, are in good agreement with experimental values. The maximum attainable supercooling is markedly increased to as high as 0268-1242/11/4/025/img5 for the Ga - As system, when the growth solution is subjected to ultrafast cooling. The prospects of using the method for fabricating heterostructures with a large lattice mismatch are discussed.

  16. Time-Dependent Phase-Space Mapping of Space-Charge-Dominated Beams

    Energy Technology Data Exchange (ETDEWEB)

    D. Stratakis, R.B. Fiorito, I. Haber, R.A. Kishek, P.G. O' Shea, M. Reiser, J.C.T. Thangaraj, K. Tian

    2009-05-01

    In this paper we report on a proof of principle experiment for demonstrating the possibility of reconstructing the time resolved-phase-space distribution of a space-charge dominated beam by a tomographic technique which provides us with far more information than a time-sliced emittance. We emphasize that this work describes and demonstrates a new methodology which can be applicable to any beam pulse using imaging methods with the appropriate time resolution for the pulse duration. The combination of a high precision tomographic diagnostic with fast imaging screens and a gated camera are used to produce phase space maps of two beams: one with a parabolic current profile and another with a short perturbation atop a rectangular pulse. The correlations between longitudinal and transverse phase spaces are apparent and their impact on the dynamics is discussed.

  17. STUDYING ATMOSPHERE-DOMINATED HOT JUPITER KEPLER PHASE CURVES: EVIDENCE THAT INHOMOGENEOUS ATMOSPHERIC REFLECTION IS COMMON

    Energy Technology Data Exchange (ETDEWEB)

    Shporer, Avi; Hu, Renyu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2015-10-15

    We identify three Kepler transiting planets, Kepler-7b, Kepler-12b, and Kepler-41b, whose orbital phase-folded light curves are dominated by planetary atmospheric processes including thermal emission and reflected light, while the impact of non-atmospheric (i.e., gravitational) processes, including beaming (Doppler boosting) and tidal ellipsoidal distortion, is negligible. Therefore, those systems allow a direct view of their atmospheres without being hampered by the approximations used in the inclusion of both atmospheric and non-atmospheric processes when modeling the phase-curve shape. We present here the analysis of Kepler-12b and Kepler-41b atmosphere based on their Kepler phase curve, while the analysis of Kepler-7b was already presented elsewhere. The model we used efficiently computes reflection and thermal emission contributions to the phase curve, including inhomogeneous atmospheric reflection due to longitudinally varying cloud coverage. We confirm Kepler-12b and Kepler-41b show a westward phase shift between the brightest region on the planetary surface and the substellar point, similar to Kepler-7b. We find that reflective clouds located on the west side of the substellar point can explain the phase shift. The existence of inhomogeneous atmospheric reflection in all three of our targets, selected due to their atmosphere-dominated Kepler phase curve, suggests this phenomenon is common. Therefore, it is also likely to be present in planetary phase curves that do not allow a direct view of the planetary atmosphere as they contain additional orbital processes. We discuss the implications of a bright-spot shift on the analysis of phase curves where both atmospheric and gravitational processes appear, including the mass discrepancy seen in some cases between the companion’s mass derived from the beaming and ellipsoidal photometric amplitudes. Finally, we discuss the potential detection of non-transiting but otherwise similar planets, whose mass is too

  18. Primordial black hole formation in the matter-dominated phase of the Universe

    CERN Document Server

    Harada, Tomohiro; Kohri, Kazunori; Nakao, Ken-ichi; Jhingan, Sanjay

    2016-01-01

    We investigate primordial black hole formation in the matter-dominated phase of the Universe, where nonspherical effects in gravitational collapse play a crucial role. This is in contrast to the black hole formation in a radiation-dominated era. We apply the Zel'dovich approximation, Thorne's hoop conjecture, and Doroshkevich's probability distribution and subsequently derive the production probability $\\beta_{0}$ of primordial black holes. The numerical result obtained is applicable even if the density fluctuation $\\sigma$ at horizon entry is of the order of unity. For $\\sigma\\ll 1$, we find a semi-analytic formula $\\beta_{0}\\simeq 0.05556 \\sigma^{5}$, which is comparable with the Khlopov-Polnarev formula. We find that the production probability in the matter-dominated era is much larger than that in the radiation-dominated era for $\\sigma\\lesssim 0.05$, while they are comparable with each other for $\\sigma\\gtrsim 0.05$. We also discuss how $\\sigma$ can be written in terms of primordial curvature perturbatio...

  19. Experimental investigations on the cooling of a motorcycle helmet with phase change material (PCM

    Directory of Open Access Journals (Sweden)

    Fok S.C.

    2011-01-01

    Full Text Available The thermal comfort of motorcycle helmet during hot weather is important as it can affect the physiological and psychological condition of the rider. This paper examines the use of phase change material (PCM to cool a motorcycle helmet and presents the experimental investigations on the influences of the simulated solar radiation, wind speed, and heat generation rate on the cooling system. The result shows that the PCM-cooled helmet is able to prolong the thermal comfort period compared to a normal helmet. The findings also indicate that the heat generation from the head is the predominant factor that will affect the PCM melting time. Simulated solar radiation and ram-air due to vehicle motion under adiabatic condition can have very little influences on the PCM melting time. The results suggested that the helmet usage time would be influenced by the amount of heat generated from the head. Some major design considerations based on these findings have been included. Although this investigation focuses on the cooling of a motorcyclist helmet, the findings would also be useful for the development of PCM-cooling systems in other applications.

  20. Transformation behavior of the γU(Zr,Nb) phase under continuous cooling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Komar Varela, C.L., E-mail: cavarela@cnea.gov.ar [Instituto Sabato, UNSAM-CNEA, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Gerencia de Ciclo del Combustible Nuclear, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Gribaudo, L.M. [Gerencia de Materiales, GAEN, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); González, R.O.; Aricó, S.F. [Instituto Sabato, UNSAM-CNEA, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Gerencia de Materiales, GAEN, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina)

    2014-10-15

    The selected alloy for designing a high-density monolithic-type nuclear fuel with U–Zr–Nb alloy as meat and Zry-4 as cladding, has to remain in the γU(Zr,Nb) phase during the whole fabrication process. Therefore, it is necessary to define a range of concentrations in which the γU(Zr,Nb) phase does not decompose under the process conditions. In this work, several U alloys with concentrations between 28.2–66.9 at.% Zr and 0–13.3 at.% Nb were fabricated to study the possible transformations of the γU(Zr,Nb) phase under different continuous cooling conditions. The results of the electrical resistivity vs temperature experiments are presented. For a cooling rate of 4 °C/min a linear regression was determined by fitting the starting decomposition temperature as a function of Nb concentration. Under these conditions, a concentration of 45.3 at.% Nb would be enough to avoid any transformation of the γU(Zr,Nb) phase. In experiments that involve higher cooling conditions, it has been determined that this concentration can be halved.

  1. Using multi-shell phase change materials layers for cooling a lithium-ion battery

    Directory of Open Access Journals (Sweden)

    Nasehi Ramin

    2016-01-01

    Full Text Available One of the cooling methods in engineering systems is usage of phase change materials. Phase change materials or PCMs, which have high latent heats, are usually used where high energy absorption in a constant temperature is required. This work presents a numerical analysis of PCMs effects on cooling Li-ion batteries and their decrease in temperature levels during intense discharge. In this study, three PCM shells with different thermo-physical specifications located around a battery pack is examined. The results of each possible arrangement are compared together and the best arrangement leading to the lowest battery temperature during discharge is identified. In addition, the recovery time for the system which is the time required for the PCMs to refreeze is investigated.

  2. A Mathematical Model for Forecasting Distortion of Workpieces with Phase Transformation on Cooling Process

    Institute of Scientific and Technical Information of China (English)

    Jiansong YE; Yikang LIU; Yuanjun ZHOU

    2003-01-01

    A temperature phase transformation stress coupled 3D nonlinear mathematical model has been proposed for forecasting distortion of workpieces on the cooling processes in this paper. Moreover, a series of subroutines were developed on the MARC (analysis research corporation) software platform and the simulation result is basically identical with the experimental one that measured on the workpiece shape with LEITZ equipment. This verifies that the mathematical model and method are feasible.

  3. DEVELOPMENT OF A SOFTWARE DESIGN TOOL FOR HYBRID SOLAR-GEOTHERMAL HEAT PUMP SYSTEMS IN HEATING- AND COOLING-DOMINATED BUILDINGS

    Energy Technology Data Exchange (ETDEWEB)

    Yavuzturk, C. C. [Univ. of Hartford, West Hartford, CT (United States); Chiasson, A. D. [Univ. of Hartford, West Hartford, CT (United States); Filburn, T. P. [Univ. of Hartford, West Hartford, CT (United States)

    2012-11-29

    This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primary benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance the ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems is

  4. Dilatometric investigations of phase transformations at heating and cooling of hardened, unalloyed, high-carbon steels

    Directory of Open Access Journals (Sweden)

    J. Pacyna

    2011-05-01

    Full Text Available Purpose: The reason for writing this paper was to describe the kinetics of phase transformations during continuous heating from hardened state and subsequent cooling of unalloyed high carbon steel.Design/methodology/approach: Dilatometric investigations were performed using a DT 1000 dilatometer of a French company Adamel. Samples after quenching and quenching and sub-quenching in liquid nitrogen (-196 °C were heated up 700 °C at the rate of 0.05 °C/s and subsequent cooled to room temperature at the rate of 0.05 °C/s.Findings: Regardless of heating the hardened high-carbon steel to 700 °C, a small fraction of the retained austenite remained in its structure, and was changing into fresh martensite only during cooling in the temperature range: 280°C-170°C.Research limitations/implications: Schematic presentation of the differential curve of tempering of the hardened high-carbon, unalloyed steel illustrating the phase transformations occurring during heating from hardened state.Practical implications: An observation, that a small fraction of the retained austenite remained in the structure of tempered high-carbon steel, indicates that even unalloyed steel should be tempered two times.Originality/value: Detailed descriptions of kinetics phase transformations during heating from hardened state of unalloyed high carbon steel.

  5. Tomographic measurement of the phase space distribution of a space-charge-dominated beam

    Science.gov (United States)

    Stratakis, Diktys

    Many applications of accelerators, such as free electron lasers, pulsed neutron sources, and heavy ion fusion, require a good quality beam with high intensity. In practice, the achievable intensity is often limited by the dynamics at the low-energy, space-charge dominated end of the machine. Because low-energy beams can have complex distribution functions, a good understanding of their detailed evolution is needed. To address this issue, we have developed a simple and accurate tomographic method to map the beam phase using quadrupole magnets, which includes the effects from space charge. We extend this technique to use also solenoidal magnets which are commonly used at low energies, especially in photoinjectors, thus making the diagnostic applicable to most machines. We simulate our technique using a particle in cell code (PIC), to ascertain accuracy of the reconstruction. Using this diagnostic we report a number of experiments to study and optimize injection, transport and acceleration of intense space charge dominated beams. We examine phase mixing, by studying the phase-space evolution of an intense beam with a transversely nonuniform initial density distribution. Experimental measurements, theoretical predictions and PIC simulations are in good agreement each other. Finally, we generate a parabolic beam pulse to model those beams from photoinjectors, and combine tomography with fast imaging techniques to investigate the time-sliced parameters of beam current, size, energy spread and transverse emittance. We found significant differences between the slice emittance profiles and slice orientation as the beam propagates downstream. The combined effect of longitudinal nonuniform profiles and fast imaging of the transverse phase space provided us with information about correlations between longitudinal and transverse dynamics that we report within this dissertation.

  6. Detection and characterization of hepatocellular carcinoma: Value of dynamic CT during the arterial dominant phase with uniphasic contrast medium injection

    Energy Technology Data Exchange (ETDEWEB)

    Cho, June-Sik; Kwag, Jin-Geun; Oh, Young-Ran; Han, Se-Dong; Song, Chang-June [Chungnam Univ. Hospital, Taejon (Korea, Democratic People`s Republic of)

    1996-01-01

    Our goal was to assess the effect of dynamic CT during the arterial dominant phase with uniphasic injection of intravenous contrast material (5 ml/s) in the detection and characterization of hepatocellular carcinomas (HCCs). Three-phase incremental dynamic CT was performed in 66 patients with 84 HCCs diagnosed by pathologic findings, characteristic angiographic findings, and clinical manifestations. One hundred fifty milliliters of nonionic contrast medium was administered intravenously by using a power injector at a flow rate of 5 ml/s for 30 s, and three-phase images were obtained at 20-45 s (arterial dominant phase), 55-80 s (portal venous phase), and 2-4 min (equilibrium phase) after the start of uniphasic intravenous injection. Three-phase images in 66 patients were compared and assessed for the delectability and enhancement pattern of the tumors. The arterial dominant phase images of dynamic CT showed a moderate to marked hyperattenuation in 73 (87%) of the 84 HCCs, isoattenuation in 6 (7%), and hypoattenuation in 5 (6%). The portal venous phase images showed hyperattenuation in 6 (7%), isoattenuation in 45 (54%), and hypoattenuation in 33 (39%). In the equilibrium phase, CT findings showed hypoattenuation in 67 (80%) and isoattenuation in 17 (20%). The delectability of HCCs in the arterial dominant, portal venous, and equilibrium phase was 93, 46, and 80%, respectively. The delectability of HCCs in the arterial dominant phase was significantly (p < 0.0001) superior to that in both the portal venous phase and the equilibrium phase. Dynamic CT during the arterial dominant phase with uniphasic injection of intravenous contrast medium (5 ml/s) is a useful method in the detection and characterization of HCCs. 20 refs., 4 figs., 1 tab.

  7. Influence of cooling rate on secondary phase precipitation and proeutectoid phase transformation of micro-alloyed steel containing vanadium

    Science.gov (United States)

    Dou, Kun; Meng, Lingtao; Liu, Qing; Liu, Bo; Huang, Yunhua

    2016-05-01

    During continuous casting process of low carbon micro-alloyed steel containing vanadium, the evolution of strand surface microstructure and the precipitation of secondary phase particles (mainly V(C, N)) are significantly influenced by cooling rate. In this paper, influence of cooling rate on the precipitation behavior of proeutectoid α-ferrite at the γ-austenite grain boundary and in the steel matrix are in situ observed and analyzed through high temperature confocal laser scanning microscopy. The relationship between cooling rate and precipitation of V(C, N) from steel continuous casting bloom surface microstructure is further studied by scanning electron microscopy and electron dispersive spectrometer. Relative results have shown the effect of V(C, N) precipitation on α-ferrite phase transformation is mainly revealed in two aspects: (i) Precipitated V(C, N) particles act as inoculant particles to promote proeutectoid ferrite nucleation. (ii) Local carbon concentration along the γ-austenite grain boundaries is decreased with the precipitation of V(C, N), which in turn promotes α-ferrite precipitation.

  8. Use of volatile organic solvents in headspace liquid-phase microextraction by direct cooling of the organic drop using a simple cooling capsule.

    Science.gov (United States)

    Ghiasvand, Ali Reza; Yazdankhah, Fatemeh; Hajipour, Somayeh

    2016-08-01

    A low-cost and simple cooling-assisted headspace liquid-phase microextraction device for the extraction and determination of 2,6,6-trimethyl-1,3 cyclohexadiene-1-carboxaldehyde (safranal) in Saffron samples, using volatile organic solvents, was fabricated and evaluated. The main part of the cooling-assisted headspace liquid-phase microextraction system was a cooling capsule, with a Teflon microcup to hold the extracting organic solvent, which is able to directly cool down the extraction phase while the sample matrix is simultaneously heated. Different experimental factors such as type of organic extraction solvent, sample temperature, extraction solvent temperature, and extraction time were optimized. The optimal conditions were obtained as: extraction solvent, methanol (10 μL); extraction temperature, 60°C; extraction solvent temperature, 0°C; and extraction time, 20 min. Good linearity of the calibration curve (R(2) = 0.995) was obtained in the concentration range of 0.01-50.0 μg/mL. The limit of detection was 0.001 μg/mL. The relative standard deviation for 1.0 μg/mL of safranal was 10.7% (n = 6). The proposed cooling-assisted headspace liquid-phase microextraction device was coupled (off-line) to high-performance liquid chromatography and used for the determination of safranal in Saffron samples. Reasonable agreement was observed between the results of the cooling-assisted headspace liquid-phase microextraction high-performance liquid chromatography method and those obtained by a validated ultrasound-assisted solvent extraction procedure.

  9. Discrimination of micrometre-sized ice and super-cooled droplets in mixed-phase cloud

    Science.gov (United States)

    Hirst, E.; Kaye, P. H.; Greenaway, R. S.; Field, P.; Johnson, D. W.

    Preliminary experimental results are presented from an aircraft-mounted probe designed to provide in situ data on cloud particle shape, size, and number concentration. In particular, the probe has been designed to facilitate discrimination between super-cooled water droplets and ice crystals of 1-25 μm size within mixed-phase clouds and to provide information on cloud interstitial aerosols. The probe acquires spatial light scattering data from individual particles at throughput rates of several thousand particles per second. These data are logged at 100 ms intervals to allow the distribution and number concentration of each particle type to be determined with 10 m spatial resolution at a typical airspeed of 100 m s -1. Preliminary results from flight data recorded in altocumulus castellanus, showing liquid water phase, mixed phase, and ice phase are presented to illustrate the probe's particle discrimination capabilities.

  10. Effect of Cooling Rate on Phase Transformations in a High-Strength Low-Alloy Steel Studied from the Liquid Phase

    Science.gov (United States)

    Dorin, Thomas; Stanford, Nicole; Taylor, Adam; Hodgson, Peter

    2015-12-01

    The phase transformation and precipitation in a high-strength low-alloy steel have been studied over a large range of cooling rates, and a continuous cooling transformation (CCT) diagram has been produced. These experiments are unique because the measurements were made from samples cooled directly from the melt, rather than in homogenized and re-heated billets. The purpose of this experimental design was to examine conditions pertinent to direct strip casting. At the highest cooling rates which simulate strip casting, the microstructure was fully bainitic with small regions of pearlite. At lower cooling rates, the fraction of polygonal ferrite increased and the pearlite regions became larger. The CCT diagram and the microstructural analysis showed that the precipitation of NbC is suppressed at high cooling rates, and is likely to be incomplete at intermediate cooling rates.

  11. Experimental study of efficiency of solar panel by phase change material cooling

    Science.gov (United States)

    Wei, Nicholas Tan Jian; Nan, Wong Jian; Guiping, Cheng

    2017-07-01

    The dependence of efficiency of photovoltaic panels on their temperature during operation is a major concern for developers and users. In this paper, a phase change material (PCM) cooling system was designed for a 60W mono-crystalline solar panel. Tealights candle was selected as the cooling medium. The solar irradiance was recorded using Kipp & Zonen CMP3 pyranometer and Meteon data logger. Temperature distribution on the surface of solar panel, output voltage and output current of solar panel were measured. The average irradiance throughout data collection was found to be 705W/m2 and highest irradiance was 1100 W/m2. The average solar panel temperature was 43.6°C and a maximum temperature of 53°C was at the center of solar panel. Results showed that average power output and efficiency of the solar panel were 44.4W and 15%, respectively. It was found that the higher the solar irradiance, the lower the efficiency of solar panel and the higher the temperature and power output of solar panel. This is due to the fact that high irradiance results in high power input and high solar panel temperature. But high PV panel temperature reduces its power output. Therefore, the increase of power input outweighs that of power output, which leads to the decrease of efficiency of solar panel with the increase of solar irradiance. Compared with solar panel without cooling, the power output and efficiency of solar panel did not increase with PCM cooling. It indicates that Tealights candle as PCM cooling is not efficient in improving the efficiency of solar panel in this study.

  12. Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling

    Directory of Open Access Journals (Sweden)

    Jan Skovajsa

    2017-01-01

    Full Text Available The article deals with the use of modern materials and technologies that can improve the thermal comfort in buildings. The article describes the design and usage of a special accumulation device, which is composed of thermal panels based on phase change materials (PCMs. The thermal panels have an integrated tube heat exchanger and heating foils. The technology can be used as a passive or active system for heating and cooling. It is designed as a “green technology”, so it is able to use renewable energy sources, e.g., photovoltaic (PV panels, solar thermal collectors and heat pumps. Moreover, an interesting possibility is the ability to use thermoelectric coolers. In the research, measurements of the different operating modes were made, and the results are presented in the text. The measurement approves that the technology improves the thermal capacity of the building, and it is possible to use it for active heating and cooling.

  13. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    Directory of Open Access Journals (Sweden)

    R. E. Dunmore

    2015-09-01

    Full Text Available Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London, which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20–30 % of the total hydrocarbon mixing ratio but comprise more than 50 % of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that 60 % of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50 % of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for, but very significant, under-reporting of diesel-related hydrocarbons; an underestimation of a factor ~4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  14. Effect of cooling-heating rate on sol-gel transformation of fish gelatin-gum arabic complex coacervate phase.

    Science.gov (United States)

    Anvari, Mohammad; Chung, Donghwa

    2016-10-01

    The objective of this study was to characterize influence of different cooling and heating rates on gelation of fish gelatin (FG)-gum arabic (GA) complex coacervate phase using rheological measurements. For the coacervate phase prepared at 10°C, the gelling temperature, melting temperature, gel strength, and stress relaxation decreased with increasing cooling or heating rate, however, no gelation was observed at the highest cooling rate of 0.05°C/min. Similar trends were obtained for the coacervates phase prepared at 30°C, but the gelation did not occur at a cooling rate of 0.033 or 0.05°C/min. The results indicated that rheological properties of FG-GA coacervate gels were highly dependent to the cooling process, where more thermos-stable and stronger gels formed at slower cooling. This was probably because of higher degree of molecular rearrangements, more hydrogen bindings, and formation of greater junction zones into the gel network at slower cooling rates. However, all of the FG-GA coacervate gels obtained at different cooling rates were classified as a weak physical gel.

  15. Carbon-based nanostructured surfaces for enhanced phase-change cooling

    Science.gov (United States)

    Selvaraj Kousalya, Arun

    To maintain acceptable device temperatures in the new generation of electronic devices under development for high-power applications, conventional liquid cooling schemes will likely be superseded by multi-phase cooling solutions to provide substantial enhancement to the cooling capability. The central theme of the current work is to investigate the two-phase thermal performance of carbon-based nanostructured coatings in passive and pumped liquid-vapor phase-change cooling schemes. Quantification of the critical parameters that influence thermal performance of the carbon nanostructured boiling surfaces presented herein will lead to improved understanding of the underlying evaporative and boiling mechanisms in such surfaces. A flow boiling experimental facility is developed to generate consistent and accurate heat transfer performance curves with degassed and deionized water as the working fluid. New means of boiling heat transfer enhancement by altering surface characteristics such as surface energy and wettability through light-surface interactions is explored in this work. In this regard, carbon nanotube (CNT) coatings are exposed to low-intensity irradiation emitted from a light emitting diode and the subcooled flow boiling performance is compared against a non-irradiated CNT-coated copper surface. A considerable reduction in surface superheat and enhancement in average heat transfer coefficient is observed. In another work involving CNTs, the thermal performance of CNT-integrated sintered wick structures is evaluated in a passively cooled vapor chamber. A physical vapor deposition process is used to coat the CNTs with varying thicknesses of copper to promote surface wetting with the working fluid, water. Thermal performance of the bare sintered copper powder sample and the copper-functionalized CNT-coated sintered copper powder wick samples is compared using an experimental facility that simulates the capillary fluid feeding conditions of a vapor chamber

  16. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  17. Renormalization-group theory for cooling first-order phase transitions in Potts models.

    Science.gov (United States)

    Liang, Ning; Zhong, Fan

    2017-03-01

    We develop a dynamic field-theoretic renormalization-group (RG) theory for cooling first-order phase transitions in the Potts model. It is suggested that the well-known imaginary fixed points of the q-state Potts model for q>10/3 in the RG theory are the origin of the dynamic scaling found recently from numerical simulations, apart from logarithmic corrections. This indicates that the real and imaginary fixed points of the Potts model are both physical and control the scalings of the continuous and discontinuous phase transitions, respectively, of the model. Our one-loop results for the scaling exponents are already not far away from the numerical results. Further, the scaling exponents depend on q only slightly, consistent with the numerical results. Therefore, the theory is believed to provide a natural explanation of the dynamic scaling including the scaling exponents and their scaling laws for various observables in the cooling first-order phase transition of the Potts model.

  18. Renormalization-group theory for cooling first-order phase transitions in Potts models

    Science.gov (United States)

    Liang, Ning; Zhong, Fan

    2017-03-01

    We develop a dynamic field-theoretic renormalization-group (RG) theory for cooling first-order phase transitions in the Potts model. It is suggested that the well-known imaginary fixed points of the q -state Potts model for q >10 /3 in the RG theory are the origin of the dynamic scaling found recently from numerical simulations, apart from logarithmic corrections. This indicates that the real and imaginary fixed points of the Potts model are both physical and control the scalings of the continuous and discontinuous phase transitions, respectively, of the model. Our one-loop results for the scaling exponents are already not far away from the numerical results. Further, the scaling exponents depend on q only slightly, consistent with the numerical results. Therefore, the theory is believed to provide a natural explanation of the dynamic scaling including the scaling exponents and their scaling laws for various observables in the cooling first-order phase transition of the Potts model.

  19. Application of a two-phase thermosyphon loop with minichannels and a minipump in computer cooling

    Directory of Open Access Journals (Sweden)

    Bieliński Henryk

    2016-03-01

    Full Text Available This paper focuses on the computer cooling capacity using the thermosyphon loop with minichannels and minipump. The one-dimensional separate model of two-phase flow and heat transfer in a closed thermosyphon loop with minichannels and minipump has been used in calculations. The latest correlations for minichannels available in literature have been applied. This model is based on mass, momentum, and energy balances in the evaporator, rising tube, condenser and the falling tube. A numerical analysis of the mass flux and heat transfer coefficient in the steady state has been presented.

  20. Improving cooling devices for the hot face of Peltier pellets based on phase change fluids

    Energy Technology Data Exchange (ETDEWEB)

    Esarte, J. [Centros Tecnologicos de Navarra, Poligono Industrial Noain, 31009 Navarra (Spain); Blanco, J.M.; Mendia, F. [Depto. Maquinas y Motores Termicos, Universidad del Pais Vasco/EHU, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Pena, F. [Iberdrola Generacion, Bahia de Santurce, 48009 Vizcaya (Spain)

    2006-07-15

    The thermoelectricity has not suffered any important progress for the last twenty years, owed mainly to the low efficiency of the heat sinks, because the Peltier pellet provides a high calorific power across a small surface. In this paper a deep study of the fin cooling for Peltier pellets, has been carried out, by means of both an experimental model and also through computational fluid dynamics. A phase change device called thermosyphon has also been designed and optimized, which allows to uniform the heat flow, decreasing in this way the pellet thermal resistance. The work focuses on its hot face and leaves for another study the cold face optimization. (author)

  1. Emergence of the advancing neuromechanical phase in a resistive force dominated medium.

    Science.gov (United States)

    Ding, Yang; Sharpe, Sarah S; Wiesenfeld, Kurt; Goldman, Daniel I

    2013-06-18

    Undulatory locomotion, a gait in which thrust is produced in the opposite direction of a traveling wave of body bending, is a common mode of propulsion used by animals in fluids, on land, and even within sand. As such, it has been an excellent system for discovery of neuromechanical principles of movement. In nearly all animals studied, the wave of muscle activation progresses faster than the wave of body bending, leading to an advancing phase of activation relative to the curvature toward the tail. This is referred to as "neuromechanical phase lags" (NPL). Several multiparameter neuromechanical models have reproduced this phenomenon, but due to model complexity, the origin of the NPL has proved difficult to identify. Here, we use perhaps the simplest model of undulatory swimming to predict the NPL accurately during sand-swimming by the sandfish lizard, with no fitting parameters. The sinusoidal wave used in sandfish locomotion, the friction-dominated and noninertial granular resistive force environment, and the simplicity of the model allow detailed analysis, and reveal the fundamental mechanism responsible for the phenomenon: the combination of synchronized torques from distant points on the body and local traveling torques. This general mechanism should help explain the NPL in organisms in other environments; we therefore propose that sand-swimming could be an excellent system with which to generate and test other neuromechanical models of movement quantitatively. Such a system can also provide guidance for the design and control of robotic undulatory locomotors in complex environments.

  2. Emergence of the advancing neuromechanical phase in a resistive force dominated medium

    CERN Document Server

    Ding, Yang; Wiesenfeld, Kurt; Goldman, Daniel I

    2013-01-01

    Undulatory locomotion, a gait in which thrust is produced in the opposite direction of a traveling wave of body bending, is a common mode of propulsion used by animals in fluids, on land, and even within sand. As such it has been an excellent system for discovery of neuromechanical principles of movement. In nearly all animals studied, the wave of muscle activation progresses faster than the wave of body bending, leading to an advancing phase of activation relative to the curvature towards the tail. This is referred to as "neuromechanical phase lags" (NPL). Several multi-parameter neuromechanical models have reproduced this phenomenon, but due to model complexity the origin of the NPL has proved difficult to identify. Here we use perhaps the simplest model of undulatory swimming to accurately predict the NPL during sand-swimming by the sandfish lizard, with no fitting parameters. The sinusoidal wave used in sandfish locomotion, the friction-dominated and non-inertial granular resistive force environment, and ...

  3. Cold fiber solid-phase microextraction device based on thermoelectric cooling of metal fiber.

    Science.gov (United States)

    Haddadi, Shokouh Hosseinzadeh; Pawliszyn, Janusz

    2009-04-03

    A new cold fiber solid-phase microextraction device was designed and constructed based on thermoelectric cooling. A three-stage thermoelectric cooler (TEC) was used for cooling a copper rod coated with a poly(dimethylsiloxane) (PDMS) hollow fiber, which served as the solid-phase microextraction (SPME) fiber. The copper rod was mounted on a commercial SPME plunger and exposed to the cold surface of the TEC, which was enclosed in a small aluminum box. A heat sink and a fan were used to dissipate the generated heat at the hot side of the TEC. By applying an appropriate dc voltage to the TEC, the upper part of the copper rod, which was in contact to the cold side of the TEC, was cooled and the hollow fiber reached a lower temperature through heat transfer. A thermocouple was embedded in the cold side of the TEC for indirect measurement of the fiber temperature. The device was applied in quantitative analysis of off-flavors in a rice sample. Hexanal, nonanal, and undecanal were chosen as three off-flavors in rice. They were identified according to their retention times and analyzed by GC-flame ionization detection instrument. Headspace extraction conditions (i.e., temperature and time) were optimized. Standard addition calibration graphs were obtained at the optimized conditions and the concentrations of the three analytes were calculated. The concentration of hexanal was also measured using a conventional solvent extraction method (697+/-143ng/g) which was comparable to that obtained from the cold fiber SPME method (644+/-8). Moreover, the cold fiber SPME resulted in better reproducibility and shorter analysis time. Cold fiber SPME with TEC device can also be used as a portable device for field sampling.

  4. Nonlinear ultrasonic phased array imaging of closed cracks using global preheating and local cooling

    Science.gov (United States)

    Ohara, Yoshikazu; Takahashi, Koji; Ino, Yoshihiro; Yamanaka, Kazushi

    2015-10-01

    Closed cracks are the main cause of underestimation in ultrasonic inspection, because the ultrasound transmits through the crack. Specifically, the measurement of closed-crack depth in coarse-grained materials, which are highly attenuative due to linear scatterings at the grains, is the most difficult issue. To solve this problem, we have developed a temporary crack opening method, global preheating and local cooling (GPLC), using tensile thermal stress, and a high-selectivity imaging method, load difference phased array (LDPA), based on the subtraction of phased array images between different stresses. To demonstrate our developed method, we formed a closed fatigue crack in coarse-grained stainless steel (SUS316L) specimen. As a result of applying it to the specimen, the high-selectivity imaging performance was successfully demonstrated. This will be useful in improving the measurement accuracy of closed-crack depths in coarse-grained material.

  5. Cooling field tuned magnetic phase transition and exchange bias-like effect in Y{sub 0.9}Pr{sub 0.1}CrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Dongmei, E-mail: dmdeng@shu.edu.cn, E-mail: dyu@ansto.gov.au, E-mail: jczhang@staff.shu.edu.cn; Feng, Zhenjie; Jing, Chao; Ren, Wei; Cao, Shixun; Zhang, Jincang, E-mail: dmdeng@shu.edu.cn, E-mail: dyu@ansto.gov.au, E-mail: jczhang@staff.shu.edu.cn [Department of Physics and International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Zheng, Jiashun [Department of Physics and International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444 (China); Yu, Dehong, E-mail: dmdeng@shu.edu.cn, E-mail: dyu@ansto.gov.au, E-mail: jczhang@staff.shu.edu.cn; Sun, Dehui; Avdeev, Maxim [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); Wang, Baomin [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Lu, Bo [Analysis and Measurement Center and Laboratory for Microstructures of Shanghai University, Shanghai 200444 (China)

    2015-09-07

    Cooling magnetic field dependence of magnetic phase transition has been observed in Y{sub 0.9}Pr{sub 0.1}CrO{sub 3}. G{sub z}F{sub x} order (spin structure of PrCrO{sub 3}) is dominant after zero field cooling (ZFC), whereas G{sub x}F{sub z} order (spin structure of YCrO{sub 3}) is dominant after cooling under a field higher than 100 Oe. Positive/negative exchange bias-like effect, with large vertical shift and small horizontal shift, has been observed after FC/ZFC process. The vertical shift can be attributed to the frozen ordered Pr{sup 3+} and Cr{sup 3+} spins in magnetic domains, because of the strong coupling between Pr{sup 3+} and Cr{sup 3+} sublattices; while the horizontal shift is a result of the pinning of spins at the interfaces. The frozen structure is generated by the field used for the measurement of the initial magnetization curve of M(H) for the ZFC cooled sample, while it is generated by the cooling field for the sample cooled under a cooling field higher than 100 Oe.

  6. Performance characteristics of two-phase-flow turbo-expanders used in water-cooled chillers

    Energy Technology Data Exchange (ETDEWEB)

    Brasz, J.J. [United Technologies Carrier, New York, NY (United States)

    1999-07-01

    Use of two-phase-flow throttle loss recovery devices in water-cooled chillers requires satisfactory part-load operation. This paper describes the results of two-phase-flow impulse turbine testing and the data reduction of the test results into a two-phase-flow turbine off-design performance model. It was found that the main parameter controlling the efficiency of two-phase-flow turbine is the ratio of the nozzle spouting velocity to the rotor speed. The turbine mass flow rate is mainly controlled by inlet subcooling of the entering liquid. The strong sensitivity of turbine mass flow rate on inlet subcooling allows the use of a conventional float valve upstream of the turbine as an effective means of controlling the turbine during part-load operation. For a well-designed two-phase-flow turbine, nozzle spouting velocity and therefore turbine efficiency is hardly affected by the amount of inlet subcooling. Also, capacity can be substantially reduced by a reduction in the amount of inlet subcooling entering the turbine nozzles. Hence, turbine part-load efficiency equals its full-load efficiency over a wide range of flow rates using this control concept. (Author)

  7. Design and Analysis of Phase Change Material based thermal energy storage for active building cooling: a Review

    Directory of Open Access Journals (Sweden)

    Nitin .D. Patil

    2012-06-01

    Full Text Available Phase Change Materials (PCMs are "latent" thermal storage materials. They use chemical bonds to store and release heat. The thermal energy transfer occurs when a material changes from a solid to a liquid orfrom a liquid to a solid form. This is called a change in state or "phase." Initially, these solid-liquid PCMs perform like conventional storage materials; their temperature rises as they absorb solar heat. Unlike conventional heat storage materials, when PCMs reach the temperature at which they change phase (their melting point, they absorb large amounts of heat without getting hotter. When the ambient temperature in the space around the PCM material drops, the Phase Change Material solidifies, releasing its stored latent heat. PCMs absorb and emit heat while maintaining a nearly constant temperature. Within the human comfort and electronic-equipment tolerance range of 20°C to 35°C, latent thermal storage materials are very effective.They can be used for equalization of day & night temperature and for transport of refrigerated products. In the proposed project heat of fusion of Cacl2. 6H2o as PCM is used for cooling water during night and this cooled water is used as circulating medium trough fan coil unit, air trough FCU will get cooled by transferring heat to water and fresh & cool air will be thrown in a room. In the proposed project FREE COOLING & ACTIVE BUILDING COOLING concepts of Thermal Energy Storage are used in combine

  8. Dominance in the prototyping phase - The case of hydrogen passenger cars

    NARCIS (Netherlands)

    Bakker, S.; Lente, H. van; Meeus, M.T.H.

    2012-01-01

    The notion of dominant designs refers to dominance in the market, hence the literature on dominant designs ignores the selection process that already takes place in pre-market R&D stages of technological innovation. In this paper we address the question to what extent pre-market selection takes

  9. Dominance in the prototyping phase - The case of hydrogen passenger cars

    NARCIS (Netherlands)

    Bakker, S.; Lente, H. van; Meeus, M.T.H.

    2012-01-01

    The notion of dominant designs refers to dominance in the market, hence the literature on dominant designs ignores the selection process that already takes place in pre-market R&D stages of technological innovation. In this paper we address the question to what extent pre-market selection takes plac

  10. Structural and phase transformations in iron-based alloy obtained in conditions of high cooling rate crystallization

    Science.gov (United States)

    Kovalevskaya, Zh. G.; Khimich, M. A.

    2016-11-01

    The production of parts by selective electron beam melting (SEBM) is accompanied by the formation of nonequilibrium structures. This is caused by the crystallization of alloys with high cooling rates. To evaluate the influence of cooling rate on the process of structural and phase transformations in the Fe-8Si-5Al-2C alloy, the electron beam melting of plasma coating was carried out. The dendritic structure was formed in the molten pool. The distance between dendritic branches of the second order was 2-5 µm. This corresponds to the cooling rate of about 103 K/s. The electron microscopy has shown that dendrites were formed by α-phase, while γ-phase was localized between α-phase crystals in form of intercalations. The secondary phases (intermetallic, aluminum and iron carbosilicides, aluminates and iron carboaluminates) are of sub-micron size and located in the α- and γ-phase boundary intersections or within the grains of the main phase. The microhardness of the alloy increases twofold. This suggests that complex hardening by solid-solution and dispersed hardening by the secondary phase particles occurs during crystallization with the above-mentioned cooling rate.

  11. Towards a phoenix phase in aeolian research: shifting geophysical perspectives from fluvial dominance

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Field, Jason P [UNIV OF ARIZONA; Breshears, David D [UNIV OF ARIZONA

    2008-01-01

    Aeolian processes are a fundamental driver of earth surface dynamics, yet the importance of aeolian processes in a broader geosciences context may be overshadowed by an unbalanced emphasis on fluvial processes. Here we wish to highlight that aeolian and fluvial processes need to be considered in concert relative to total erosion and to potential interactions, that relative dominance and sensitivity to disturbance vary with mean annual precipitation, and that there are important scale-dependencies associated with aeolian-fluvial interactions. We build on previous literature to present relevant conceptual syntheses highlighting these issues. We then highlight the relative investments that have been made in aeolian research on dust emission and management relative to that in fluvial research on sediment production. Literature searches highlight that aeolian processes are greatly understudied relative to fluvial processes when considering total erosion in different environmental settings. Notably, within the USA, aeolian research was triggered by the Dust Bowl catastrophe of the 1930s, but the resultant research agencies have shifted to almost completely focusing on fluvial processes, based on number of remaining research stations and on monetary investments in control measures. However, numerous research issues associated with intensification of land use and climate change impacts require a rapid ramping up in aeolian research that improves information about aeolian processes relative to fluvial processes, which could herald a post-Dust Bowl Phoenix phase in which aeolian processes are recognized as broadly critical to geo- and environmental sciences.

  12. Beyond optical molasses: 3D raman sideband cooling of atomic cesium to high phase-space density

    Science.gov (United States)

    Kerman; Vuletic; Chin; Chu

    2000-01-17

    We demonstrate a simple, general purpose method to cool neutral atoms. A sample containing 3x10(8) cesium atoms prepared in a magneto-optical trap is cooled and simultaneously spin polarized in 10 ms at a density of 1.1x10(11) cm (-3) to a phase space density nlambda(3)(dB) = 1/500, which is almost 3 orders of magnitude higher than attainable in free space with optical molasses. The technique is based on 3D degenerate Raman sideband cooling in optical lattices and remains efficient even at densities where the mean lattice site occupation is close to unity.

  13. Heat transfer characteristics of coconut oil as phase change material to room cooling application

    Science.gov (United States)

    Irsyad, M.; Harmen

    2017-03-01

    Thermal comfort in a room is one of human needs in the workplace and dwellings, so that the use of air conditioning system in tropical countries is inevitable. This equipment has an impact on the increase of energy consumption. One method of minimizing the energy use is by using the phase change material (PCM) as thermal energy storage. This material utilizes the temperature difference between day and night for the storage and release of thermal energy. PCM development on application as a material for air cooling inlet, partitioning and interior needs to be supported by the study of heat transfer characteristics when PCM absorbs heat from ambient temperature. This study was conducted to determine the heat transfer characteristics on coconut oil as a phase change material. There are three models of experiments performed in this research. Firstly, an experiment was conducted to analyze the time that was needed by material to phase change by varying the temperature. The second experiment analyzed the heat transfer characteristics of air to PCM naturally convection. The third experiment analyzed the forced convection heat transfer on the surface of the PCM container by varying the air velocity. The data of experimental showed that, increasing ambient air temperature resulted in shorter time for phase change. At temperatures of 30°C, the time for phase change of PCM with the thickness of 8 cm was 1700 min, and it was stable at temperatures of 27°C. Increasing air temperature accelerated the phase change in the material. While for the forced convection heat transfer, PCM could reduce the air temperature in the range of 30 to 35°C at about 1 to 2°C, with a velocity of 1-3 m/s.

  14. Legionnaires' Disease Bacterium in power-plant cooling systems: Phase 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, S.W.; Solomon, J.A.; Gough, S.B.; Tyndall, R.L.; Fliermans, C.B.

    1983-06-01

    A survey was undertaken of the distribution, density, viability, and infectivity of Legionnaires' Disease Bacteria (Legionella) in power plant cooling systems. Water samples were collected during each of the four seasons at various locations within each of nine power plants and from ambient waters at each site. Measurements of a number of physical and chemical characteristics were made, and Legionella profiles (density, viability, and infectivity for guinea pigs) were obtained. Legionella were detected in nearly all samples. Water from closed-cycle cooling systems frequently had lower densities of Legionella than the ambient water. Nonetheless, infectious Legionella, as defined by their isolation from inoculated guinea pigs, were significantly more likely to be found in samples from the plant-exposed water of closed-cycle plants than in samples from once-through plants or in ambient samples. A new species (L. oakridgensis) was initially isolated from two of the sites, and it has since been found to have a widespread distribution. Two other organisms found to cause illness in guinea pigs may also be new species. Phase II of the project involves investigating possible cause/effect relationships between physicochemical variables and Legionella. This work may contribute toward eventual control techniques for this pathogen.

  15. Weakly doped InP layers prepared by liquid phase epitaxy using a modulated cooling rate

    Science.gov (United States)

    Krukovskyi, R.; Mykhashchuk, Y.; Kost, Y.; Krukovskyi, S.; Saldan, I.

    2017-04-01

    Epitaxial structures based on InP are widely used to manufacture a number of devices such as microwave transistors, light-emitting diodes, lasers and Gunn diodes. However, their temporary instability caused by heterogeneity of resistivity along the layer thickness and the influence of various external or internal factors prompts the need for the development of a new reliable technology for their preparation. Weak doping by Yb, Al and Sn together with modulation of the cooling rate applied to prepare InP epitaxial layers is suggested to be adopted within the liquid phase epitaxy (LPE) method. The experimental results confirm the optimized conditions created to get a uniform electron concentration in the active n-InP layer. A sharp profile of electron concentration in the n+-InP(substrate)/n-InP/n+-InP epitaxial structure was observed experimentally at the proposed modulated cooling rate of 0.3 °С-1.5 °С min-1. The proposed technological method can be used to control the electrical and physical properties of InP epitaxial layers to be used in Gunn diodes.

  16. Ultrafast cooling and heating scenarios for the laser-induced phase transition in CuO

    Science.gov (United States)

    Hellsvik, Johan; Mentink, Johan H.; Lorenzana, José

    2016-10-01

    The multiferroic compound CuO exhibits low-temperature magnetic properties similar to antiferromagnetic iron oxides, while the electronic properties have much more in common with the high-Tc cuprate superconductors. This suggests novel possibilities for the ultrafast optical excitation of magnetism. On the basis of atomistic spin dynamics simulations, we study the effect of phonon-assisted multimagnon absorption and photodoping on the spin dynamics in the vicinity of the first-order phase transition from collinear to spin-spiral magnetic order. Similar as in recent experiments, we find that for both excitations the phase transition can proceed on the picosecond timescale. Interestingly, however, these excitation mechanisms display very distinct dynamics. Following photodoping, the spin system first cools down on subpicosecond time scales, which we explain as an ultrafast magnetocaloric effect. Opposed to this, following phonon-assisted multimagnon excitation, the spin systems rapidly heats up and subsequently evolves to the noncollinear phase even under the influence of isotropic exchange interactions alone.

  17. Gravitational waves from first order phase transitions as a probe of an early matter domination era and its inverse problem

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela, E-mail: Gabriela.Barenboim@uv.es; Park, Wan-Il, E-mail: Wanil.Park@uv.es

    2016-08-10

    We investigate the gravitational wave background from a first order phase transition in a matter-dominated universe, and show that it has a unique feature from which important information about the properties of the phase transition and thermal history of the universe can be easily extracted. Also, we discuss the inverse problem of such a gravitational wave background in view of the degeneracy among macroscopic parameters governing the signal.

  18. Comparative Effectiveness of Different Phase Change Materials to Improve Cooling Performance of Heat Sinks for Electronic Devices

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2016-08-01

    Full Text Available This paper thermo-physically characterizes salt hydrate, paraffin wax and milk fat as phase change materials (PCMs. The three PCMs are compared in terms of improving heat sink (HS performance for cooling electronic packaging. An experimental study is carried out on commercially available finned HS with and without PCM under natural ventilation (NV and forced ventilation (FV at different heat loads (4 W to 10 W. The results indicate that integration of all of the PCMs into the HS improves its cooling performance; however, milk fat lags behind the other two PCMs in terms of cooling produced. A three-dimensional pressure-based conjugate heat transfer model has been developed and validated with experimental results. The model predicts the parametric influence of PCM melting range, thermal conductivity and density on HS thermal management performance. The HS cooling performance improves with increased density and conductivity while it deteriorates with the wider melting range of the PCMs.

  19. Reducing Pumping Power in Hydronic Heating and Cooling Systems with Microencapsulated Phase Change Material Slurries

    Science.gov (United States)

    Karas, Kristoffer Jason

    Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.

  20. Legionnaires' disease bacteria in power plant cooling systems: Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Tyndall, R.L.; Christensen, S.W.; Solomon, J.A.

    1985-04-01

    Legionnaires' Disease Bacteria (Legionella) are a normal component of the aquatic community. The study investigated various environmental factors that affect Legionella profiles in power plant cooling waters. The results indicate that each of the four factors investigated (incubation temperature, water quality, the presence and type of associated biota, and the nature of the indigenous Legionella population) is important in determining the Legionella profile of these waters. Simple predictive relationships were not found. At incubation temperatures of 32/sup 0/ and 37/sup 0/C, waters from a power plant where infectious Legionella were not observed stimulated the growth of stock Legionella cultures more than did waters from plants where infectious Legionella were prevalent. This observation is consistent with Phase I results, which showed that densities of Legionella were frequently reduced in closed-cycle cooling systems despite the often higher infectivity of Legionella in closed-cycle waters. In contrast, water from power plants where infectious Legionella were prevalent supported the growth of indigenous Legionella pneumophila at 42/sup 0/C, while water from a power plant where infectious Legionella were absent did not support growth of indigenous Legionella. Some Legionella are able to withstand a water temperature of 85/sup 0/C for several hours, thus proving more tolerant than was previously realized. Finally, the observation that water from two power plants where infectious Legionella were prevalent usually supported the growth of Group A Legionella at 45/sup 0/C indicates the presence, of soluble Legionella growth promoters in these waters. This test system could allow for future identification and control of these growth promoters and, hence, of Legionella. 25 refs., 23 figs., 10 tabs.

  1. Effect of cooling rate during solidification on the hard phases of M23C6-type of cast CoCrMo alloy

    Directory of Open Access Journals (Sweden)

    M. Alvarez-Vera

    2016-07-01

    Full Text Available Microstructural morphology of CoCrMo alloy by control of the cooling rate during the solidification was investigated. Samples were obtained using both an induction furnace for slow cooling rate and electric arc furnace for fast cooling rate. Microstructural characterizations were performed with metallographic techniques. It was found that the difference between the formation temperature of hard secondary phases of M23C6-type carbides determine the reduction of carbide size by increasing the cooling rate.

  2. Advanced Pumps and Cold Plates for Two-Phase Cooling Loops Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced instruments used for earth science missions require improved cooling systems to remove heat from high power electronic components and maintain tight...

  3. Advanced Pumps and Cold Plates for Two-Phase Cooling Loops Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced instruments used for earth science missions require improved cooling systems to remove heat from high power electronic components and maintain tight...

  4. Numerical Simulation for Natural State of Two-Phase Liquid Dominated Geothermal Reservoir with Steam Cap Underlying Brine Reservoir

    Science.gov (United States)

    Pratama, Heru Berian; Miryani Saptadji, Nenny

    2016-09-01

    Hydrothermal reservoir which liquid-dominated hydrothermal reservoir is a type of geothermal reservoir that most widely used for power plant. The exploitation of mass and heat from the geothermal fluid will decrease the pressure in the reservoir over time. Therefore the pressure drop in the reservoir will have an impact on the formation of boiling zones or boiling will increase. The impacts are an increase in the fraction of steam, dryness, in the reservoir and with good vertical permeability will form a steam cap underlying the brine reservoir. The two- phase liquid dominated reservoir is sensitive to the porosity and difficult to assign average properties of the entire reservoir when there is boiling zone in some area of the reservoir. These paper showed successful development of two-phase liquid dominated geothermal reservoir and discussed the formation of steam cap above brine reservoir through numerical simulation for state natural conditions. The natural state modeling in steam cap shows a match with the conceptual model of the vapor-dominated developed. These paper also proofed the presence of transition zone, boiling zone, between steam cap and brine reservoir.

  5. Simulation of cooling channel rheocasting process of A356 aluminum alloy using three-phase volume averaging model

    Institute of Scientific and Technical Information of China (English)

    T. Wang; B.Pustal; M. Abondano; T. Grimmig; A. B(u)hrig-Polaczek; M. Wu; A. Ludwig

    2005-01-01

    The cooling channel process is a rehocasting method by which the prematerial with globular microstructure can be produced to fit the thixocasting process. A three-phase model based on volume averaging approach is proposed to simulate the cooling channel process of A356 Aluminum alloy. The three phases are liquid, solid and air respectively and treated as separated and interacting continua, sharing a single pressure field. The mass, momentum, enthalpy transport equations for each phase are solved. The developed model can predict the evolution of liquid, solid and air fraction as well as the distribution of grain density and grain size. The effect of pouring temperature on the grain density, grain size and solid fraction is analyzed in detail.

  6. Surface-induced evaporative cooling

    Institute of Scientific and Technical Information of China (English)

    Ke Min; Yan Bo; Cheng Feng; Wang Yu-Zhu

    2009-01-01

    The effects of surface-induced evaporative cooling on an atom chip are investigated. The evolutions of temperature, number and phase-space density of the atom cloud are measured when the atom cloud is brought close to the surface. Rapid decrease of the temperature and number of the atoms is found when the atom-surface distance is < 100 μm. A gain of about a factor of five on the phase-space density is obtained. It is found that the efficiency of the surface-induced evaporative cooling depends on the atom-surface distance and the shape of the evaporative trap. When the atoms are moved very close to the surface, severe heating is observed, which dominates when the holding time is > 8 ms. It is important that the surface-induced evaporative cooling offers novel possibilities for the realization of a continuous condensation, where a spatially varying evaporative cooling is required.

  7. Solar Heating and Cooling of Buildings (Phase O). Volume 1: Executive Summary.

    Science.gov (United States)

    TRW Systems Group, Redondo Beach, CA.

    The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings. Five selected building types in 14 selected cities were used to determine loads for space heating, space cooling and dehumidification, and domestic service hot water heating. Relying on existing and…

  8. Alterations in transcript abundance of bovine oocytes recovered at growth and dominance phases of the first follicular wave

    Directory of Open Access Journals (Sweden)

    Kanitz Wilhelm

    2007-07-01

    Full Text Available Abstract Background Oocyte developmental competence is highly affected by the phase of ovarian follicular wave. Previous studies have shown that oocytes from subordinate follicles recovered at growth phase (day 3 after estrus are developmentally more competent than those recovered at dominance phase (day 7 after estrus. However, the molecular mechanisms associated with these differences are not well elucidated. Therefore, the objective of this study was to investigate transcript abundance of bovine oocytes retrieved from small follicles at growth and dominance phases of the first follicular wave and to identify candidate genes related to oocyte developmental competence using cDNA microarray. Results Comparative gene expression analysis of oocytes from growth and dominance phases and subsequent data analysis using Significant Analysis of Microarray (SAM revealed a total of 51 differentially regulated genes, including 36 with known function, 6 with unknown function and 9 novel transcripts. Real-time PCR has validated 10 transcripts revealed by microarray analysis and quantified 5 genes in cumulus cells derived from oocytes of both phases. The expression profile of 8 (80% transcripts (ANAXA2, FL396, S100A10, RPL24, PP, PTTG1, MSX1 and BMP15 was in agreement with microarray data. Transcript abundance of five candidate genes in relation to oocyte developmental competence was validated using Brilliant Cresyl Blue (BCB staining as an independent model. Furthermore, localization of mRNA and protein product of the candidate gene MSX1 in sections of ovarian follicles at days 0, 1, 3 and 7 of estrous cycle showed a clear fluorescent signal in both oocytes and cumulus cells with higher intensity in the former. Moreover, the protein product was detected in bovine oocytes and early cleavage embryos after fertilization with higher intensity around the nucleus. Conclusion This study has identified distinct sets of differentially regulated transcripts between

  9. Precipitation of α2 Phase in α+β Solution-Treated and Air-cooled Ti-Al-Sn-Zr-Mo-Si-Nd Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of Ti-Al-Sn-Zr-Mo-Si-Nd alloys with various content of Al were solution treated in α+β phase field and air-cooled.The precipitation of α2 phase in cooling was investigated by transmission electron microscopic analysis.The precipitation characteristic of α2 phase was discussed. The precipitation of α2 phase would proceed by the nucleation and growth of α2 phase dependent on the diffusion of Al atoms. And a comparison on the difference of precipitation of α2 phase was carried out under the conditions of air-cooling and quenching in water.The investigation showed that the air-cooling and even quenching could supply enough time for the precipitation and growth of α2 phase when Al content reached a certain value even though far away from the stoichiometric composition of TisAl.

  10. Phase transformations in an AISI 410S stainless steel observed in directional and laser-induced cooling regimes

    Directory of Open Access Journals (Sweden)

    Milton Sergio Fernandes de Lima

    2012-02-01

    Full Text Available The applications of the chromium ferritic stainless steel AISI 410S have been considerably increased in the last years in many technical fields as chemical industries and oil or gas transportation. However, the phase transformation temperatures are, currently, unknown for this alloy. The aim of this work is to determine the alpha to gamma transformation temperatures of the AISI 410S alloy in different cooling conditions and to analyze them using continuous cooling theory. In order to achieve different cooling rates and thermal conditions, two complementary techniques were used: Bridgman furnace crystal growth and laser remelting technique. The measured solidification temperature was around 1730 and 1750 K. Plate-like and dendritic austenite precipitates were obtained in solid-state phase using growth rates between 5 and 10 µm/s in directional growth experiments. Only plate-like austenite phase was observed in the experiments using growth rates above 100 µm/s. The appearance of dendrites, with the consequent segregation of the elements, can be previously determined by the microstructure modeling currently proposed. Massive austenite can be produced from 0.3 to 10 mm/s rates at temperatures between 1100-1300 K. The structure might be less sensitive to corrosion because this phase is produced without microsegregation.

  11. Cold phase fluid model of the longitudinal dynamics ofspace-charged dominated beams

    Energy Technology Data Exchange (ETDEWEB)

    de Hoon, Michiel J.L.; Lee, Edward P.; Barnard, John J.; Friedman, Alex

    2002-03-01

    The dynamics of a longitudinally cold, charged-particle beam can be simulated by dividing the beam into slices and calculating the motion of the slice boundaries due to the longitudinal electric field generated by the beam. On each time step, the beam charge is deposited onto an (r, z) grid, and an existing (r, z) electrostatic field solver is used to find the longitudinal electric field. Transversely, the beam envelope equation is used for each slice boundary separately. In contrast to the g-factor model, it can be shown analytically that the repulsive electric field of a slice compressed to zero length is bounded. Consequently, this model allows slices to overtake their neighbors, effectively incorporating mixing. The model then effectively describes a cold fluid in longitudinal z, v{sub z} phase space. Longitudinal beam compression calculations based on this cold phase fluid model showed that slice overtaking reflects local mixing, while the global phase space structure is preserved.

  12. Predicting the growth of S i3N4 nanowires by phase-equilibrium-dominated vapor-liquid-solid mechanism

    Science.gov (United States)

    Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng

    2017-09-01

    Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.

  13. Maximum principle for the optimal control of an ablation-transpiration cooling system with free final time and phase constraints

    Institute of Scientific and Technical Information of China (English)

    Bing SUN; Baozhu GUO

    2005-01-01

    This paper is concerned with an optimal control problem of an ablation-transpiration cooling control system with Stefan-Signorini boundary condition.As the continuation of the authors'previous paper,the Dubovits Rii-Milyutin functional approach is again adopted in investigation of the Pontryagin's maximun principle of the system.The necessary optimality condition is presented for the problem with free final horizon and phase constraints.

  14. DOMINANT PHYSICAL PROCESSES ASSOCIATED WITH PHASE DIFFERENCES BETWEEN SURFACE RAINFALL AND CONVECTIVE AVAILABLE POTENTIAL ENERGY

    Institute of Scientific and Technical Information of China (English)

    Xiaofan LI

    2009-01-01

    A lag correlation analysis is conducted with a 21-day TOGA COARE cloud-resolving model simulation data to identify the phase relation between surface rainfall and convective available potential energy (CAPE) and associated physical processes. The analysis shows that the maximum negative lag correlations between the model domain mean CAPE and rainfall occurs around lag hour 6. The minimum mean CAPE lags mean and convective rainfall through the vapor condensation and depositions, water vapor convergence, and heat divergence whereas it lags stratiform rainfall via the transport of hydrometeor concentration from convective regions to raining stratiform regions, vapor condensation and depositions, water vapor storage, and heat divergence over raining stratiform regions.

  15. Phase shift from a coral to a corallimorph-dominated reef associated with a shipwreck on Palmyra atoll.

    Science.gov (United States)

    Work, Thierry M; Aeby, Greta S; Maragos, James E

    2008-08-20

    Coral reefs can undergo relatively rapid changes in the dominant biota, a phenomenon referred to as phase shift. Various reasons have been proposed to explain this phenomenon including increased human disturbance, pollution, or changes in coral reef biota that serve a major ecological function such as depletion of grazers. However, pinpointing the actual factors potentially responsible can be problematic. Here we show a phase shift from coral to the corallimorpharian Rhodactis howesii associated with a long line vessel that wrecked in 1991 on an isolated atoll (Palmyra) in the central Pacific Ocean. We documented high densities of R. howesii near the ship that progressively decreased with distance from the ship whereas R. howesii were rare to absent in other parts of the atoll. We also confirmed high densities of R. howesii around several buoys recently installed on the atoll in 2001. This is the first time that a phase shift on a coral reef has been unambiguously associated with man-made structures. This association was made, in part, because of the remoteness of Palmyra and its recent history of minimal human habitation or impact. Phase shifts can have long-term negative ramification for coral reefs, and eradication of organisms responsible for phase shifts in marine ecosystems can be difficult, particularly if such organisms cover a large area. The extensive R. howesii invasion and subsequent loss of coral reef habitat at Palmyra also highlights the importance of rapid removal of shipwrecks on corals reefs to mitigate the potential of reef overgrowth by invasives.

  16. Single-Sided Digital Microfluidic (SDMF Devices for Effective Coolant Delivery and Enhanced Two-Phase Cooling

    Directory of Open Access Journals (Sweden)

    Sung-Yong Park

    2016-12-01

    Full Text Available Digital microfluidics (DMF driven by electrowetting-on-dielectric (EWOD has recently been attracting great attention as an effective liquid-handling platform for on-chip cooling. It enables rapid transportation of coolant liquid sandwiched between two parallel plates and drop-wise thermal rejection from a target heating source without additional mechanical components such as pumps, microchannels, and capillary wicks. However, a typical sandwiched configuration in DMF devices only allows sensible heat transfer, which seriously limits heat rejection capability, particularly for high-heat-flux thermal dissipation. In this paper, we present a single-sided digital microfluidic (SDMF device that enables not only effective liquid handling on a single-sided surface, but also two-phase heat transfer to enhance thermal rejection performance. Several droplet manipulation functions required for two-phase cooling were demonstrated, including continuous droplet injection, rapid transportation as fast as 7.5 cm/s, and immobilization on the target hot spot where heat flux is locally concentrated. Using the SDMF platform, we experimentally demonstrated high-heat-flux cooling on the hydrophilic-coated hot spot. Coolant droplets were continuously transported to the target hot spot which was mitigated below 40 K of the superheat. The effective heat transfer coefficient was stably maintained even at a high heat flux regime over ~130 W/cm2, which will allow us to develop a reliable thermal management module. Our SDMF technology offers an effective on-chip cooling approach, particularly for high-heat-flux thermal management based on two-phase heat transfer.

  17. A closed-loop electronics cooling by implementing single phase impinging jet and mini channels heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Bintoro, Jemmy S. [University of Maine, Laboratory for Surface Science and Technology (LASST), ESRB-Barrows, Orono, ME, 04469-5708 (United States); Akbarzadeh, Aliakbar [RMIT University, Bundoora East Campus, P.O. Box 71, Bundoora, Vic. 3083 (Australia); Mochizuki, Masataka [1-5-1, Kiba, Koto-ku, Tokyo 135-8512 (Japan)

    2005-12-01

    This paper reports our works in the design and testing of a closed-loop electronics cooling system that adopts bi-technologies: single phase impinging jet and mini channels heat exchanger. The system has the cooling capacity of 200W over a single chip with a hydraulic diameter of 12mm. The equivalent heat flux is 177W/cm{sup 2}. The cooling system maintains the chip's surface temperature below 95{sup o}C maximum when the ambient temperature is 30{sup o}C. De-ionized water is the working fluid of the system. For the impinging jet, two different nozzles are designed and tested. The hydraulic diameters (d{sub N}) are 0.5mm and 0.8mm. The corresponding volume flow rates are 280mL/min and 348mL/min. Mini channels heat exchanger has 6 (six) copper tubes with the inner diameter of 1.27mm and the total length of about 1m. The cooling system has a mini diaphragm pump and a DC electric fan with the maximum power consumptions of 8.4W and 0.96W respectively. The coefficient of performance of the system is 21.4. (author)

  18. Variant of a volume-of-fluid method for surface tension-dominant two-phase flows

    Indian Academy of Sciences (India)

    G Biswas

    2013-12-01

    The capabilities of the volume-of-fluid method for the calculation of surface tension-dominant two-phase flows are explained. The accurate calculation of the interface remains a problem for the volume-of-fluid method if the density ratios of the fluids in different phases are high. The simulations of bubble growth is performed in water at near critical pressure for different degrees of superheat using combined levelset and volume-of fluid (CLSVOF) method. The effect of superheat on the frequency of bubble formation was analyzed. A deviation from the periodic bubble release is observed in the case of superheat of 20 K in water. The vapor-jet-like columnar structure is observed. Effect of heat flux on the slender vapor column has also been explained.

  19. The role of competition in the phase shift to dominance of the zoanthid Palythoa cf. variabilis on coral reefs.

    Science.gov (United States)

    Cruz, Igor Cristino Silva; Meira, Verena Henschen; de Kikuchi, Ruy Kenji Papa; Creed, Joel Christopher

    2016-04-01

    Phase shift phenomena are becoming increasingly common. However, they are also opportunities to better understand how communities are structured. In Southwest Atlantic coral reefs, a shift to the zoanthid Palythoa cf. variabilis dominance has been described. To test if competition drove this process, we carried out a manipulative experiment with three coral species. To estimate the natural frequency of encounters we assess the relationship between the proportion of encounters and this zoanthids coverage. The contact causes necrosis in 78% of coral colonies (6.47 ± SD 7.92 cm(2)) in 118 days. We found a logarithmic relationship between the proportion of these encounters and the cover of P. cf. variabilis, where 5.5% coverage of this zoanthid is enough to put 50% of coral colonies in contact, increasing their partial mortality. We demonstrate that zoanthid coverage increase followed by coral mortality increase will reduce coral cover and that competition drives the phase shift process.

  20. Droplet phase characteristics in liquid-dominated steam--water nozzle flow

    Energy Technology Data Exchange (ETDEWEB)

    Alger, T.W.

    1978-08-09

    An experimental study was undertaken to determine the droplet size distribution, the droplet spatial distribution and the mean droplet velocity in low-quality, steam-water flow from a rectangular cross-section, converging-diverging nozzle. A unique forward light scattering technique was developed for droplet size distribution measurements. Droplet spatial variations were investigated using light transmission measurements, and droplet velocities were measured with a laser-Doppler velocimeter (LDV) system incorporating a confocal Fabry-Perot interferometer. Nozzle throat radius of curvature and height were varied to investigte their effects on droplet size. Droplet size distribution measurements yielded a nominal Sauter mean droplet diameter of 1.7 ..mu..m and a nominal mass-mean droplet diameter of 2.4 ..mu..m. Neither the throat radius of curvature nor the throat height were found to have a significant effect upon the nozzle exit droplet size. The light transmission and LDV measurement results confirmed both the droplet size measurements and demonstrated high spatial uniformity of the droplet phase within the nozzle jet flow. One-dimensional numerical calculations indicated that both the dynamic breakup (thermal equilibrium based on a critical Weber number of 6.0) and the boiling breakup (thermal nonequilibrium based on average droplet temperature) models predicted droplet diameters on the order of 7.5 ..mu..m, which are approximately equal to the maximum stable droplet diameters within the nozzle jet flow.

  1. A small-scale dynamo in feedback-dominated galaxies as the origin of cosmic magnetic fields - I. The kinematic phase

    Science.gov (United States)

    Rieder, Michael; Teyssier, Romain

    2016-04-01

    The origin and evolution of magnetic fields in the Universe is still an open question. Their observations in galaxies suggest strong magnetic fields already at high redshift as well as at present time. However, neither primordial magnetic fields nor battery processes can account for such high field strengths, which implies the presence of a dynamo process with rapid growth rates in high-redshift galaxies and subsequent maintenance against decay. We investigate the particular role played by feedback mechanisms in creating strong fluid turbulence, allowing for a magnetic dynamo to emerge. Performing magnetohydrodynamic simulations of isolated cooling gas haloes, we compare the magnetic field evolution for various initial field topologies and various stellar feedback mechanisms. We find that feedback can indeed drive strong gas turbulence and dynamo action. We see typical properties of Kolmogorov turbulence with a k-5/3 kinetic energy spectrum, as well as a small-scale dynamo, with a k3/2 magnetic energy spectrum predicted by Kazantsev dynamo theory. We also investigate simulations with a final quiescent phase. As turbulence decreases, the galactic fountain settles into a thin, rotationally supported disc. The magnetic field develops a large-scale well-ordered structure with even symmetry, which is in good agreement with magnetic field observations of nearby spirals. Our findings suggest that weak initial seed fields were first amplified by a small-scale dynamo during a violent feedback-dominated early phase in the galaxy formation history, followed by a more quiescent evolution, where the fields have slowly decayed or were maintained via large-scale dynamo action.

  2. Variable Gravity Effects on the Cooling Performance of a Single Phase Confined Spray

    Science.gov (United States)

    Michalak, Travis; Yerkes, Kirk; Baysinger, Karri; McQuillen, John

    2005-01-01

    The objective of this paper is to discuss the testing of a spray cooling experiment designed to be flown on NASA's KC-135 Reduced Gravity Testing Platform. Spray cooling is an example of a thermal management technique that may be utilized in high flux heat acquisition and high thermal energy transport concepts. Many researchers have investigated the utility of spray cooling for the thermal management of devices generating high heat fluxes. However, there has been little research addressing the physics and ultimate performance of spray cooling in a variable gravity environment. An experimental package, consisting of a spray chamber coupled to a fluid delivery loop system, was fabricated for variable gravity flight tests. The spray chamber contains two opposing nozzles spraying on target Indium Tin Oxide (ITO) heaters. These heaters are mounted on glass pedestals, which are part of a sump system to remove unconstrained liquid from the test chamber. Liquid is collected in the sumps and returned to the fluid delivery loop. Thermocouples mounted in and around the pedestals are used to determine both the heat loss through the underside of the IT0 heater and the heat extracted by the spray. A series of flight tests were carried out aboard the KC-135, utilizing the ability of the aircraft to produce various gravity conditions. During the flight tests, for a fixed flow rate, heat input was varied at 20, 30, 50, and 80W with variable gravities of 0.01, 0.16, 0.36, and 1.8g. Flight test data was compared to terrestrial baseline data in addition to analytical and numerical solutions to evaluate the heat transfer in the heater and support structure . There were significant differences observed in the spray cooling performance as a result of variable gravity conditions and heat inputs. In general, the Nussult number at the heater surface was found to increase with decreasing gravity conditions for heat loads greater than 30W.

  3. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2016-01-01

    Full Text Available The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  4. Phase shift from a coral to a corallimorph-dominated reef associated with a shipwreck on Palmyra atoll.

    Directory of Open Access Journals (Sweden)

    Thierry M Work

    Full Text Available Coral reefs can undergo relatively rapid changes in the dominant biota, a phenomenon referred to as phase shift. Various reasons have been proposed to explain this phenomenon including increased human disturbance, pollution, or changes in coral reef biota that serve a major ecological function such as depletion of grazers. However, pinpointing the actual factors potentially responsible can be problematic. Here we show a phase shift from coral to the corallimorpharian Rhodactis howesii associated with a long line vessel that wrecked in 1991 on an isolated atoll (Palmyra in the central Pacific Ocean. We documented high densities of R. howesii near the ship that progressively decreased with distance from the ship whereas R. howesii were rare to absent in other parts of the atoll. We also confirmed high densities of R. howesii around several buoys recently installed on the atoll in 2001. This is the first time that a phase shift on a coral reef has been unambiguously associated with man-made structures. This association was made, in part, because of the remoteness of Palmyra and its recent history of minimal human habitation or impact. Phase shifts can have long-term negative ramification for coral reefs, and eradication of organisms responsible for phase shifts in marine ecosystems can be difficult, particularly if such organisms cover a large area. The extensive R. howesii invasion and subsequent loss of coral reef habitat at Palmyra also highlights the importance of rapid removal of shipwrecks on corals reefs to mitigate the potential of reef overgrowth by invasives.

  5. Daytime space cooling with phase change material ceiling panels discharged using rooftop photovoltaic/thermal panels and night-time ventilation

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Pean, Thibault Quentin; Gennari, Luca

    2016-01-01

    The possibility of using photovoltaic/thermal panels for producing cold water through the process of night-time radiative cooling was experimentally examined. The cold water was used to discharge phase change material in ceiling panels in a climatic chamber. Both night-time radiative cooling...... the photovoltaic/thermal varied from 56% to 122%. The phase change material ceiling panels were thus, capable of providing an acceptable thermal environment and the photovoltaic/thermal panels were able to provide most of the required electricity and cold water needed for cooling....

  6. Effect of heating and cooling rate on the kinetics of allotropic phase changes in uranium: A differential scanning calorimetry study

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Arun Kumar [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603 102, Tamilnadu (India); Raju, S. [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603 102, Tamilnadu (India)], E-mail: sraju@igcar.gov.in; Jeyaganesh, B.; Mohandas, E. [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603 102, Tamilnadu (India); Sudha, R.; Ganesan, V. [Materials Chemistry Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603 102, Tamilnadu (India)

    2009-01-01

    The kinetic aspects of allotropic phase changes in uranium are studied as a function of heating/cooling rate in the range 10{sup 0}-10{sup 2} K min{sup -1} by isochronal differential scanning calorimetry. The transformation arrest temperatures revealed a remarkable degree of sensitivity to variations of heating and cooling rate, and this is especially more so for the transformation finish (T{sub f}) temperatures. The results obtained for the {alpha} {yields} {beta} and {beta} {yields} {gamma} transformations during heating confirm to the standard Kolmogorov-Johnson-Mehl-Avrami (KJMA) model for a nucleation and growth mediated process. The apparent activation energy Q{sub eff} for the overall transformation showed a mild increase with increasing heating rate. In fact, the heating rate normalised Arrhenius rate constant, k/{beta} reveals a smooth power law decay with increasing heating rate ({beta}). For the {alpha} {yields} {beta} phase change, the observed DSC peak profile for slower heating rates contained a distinct shoulder like feature, which however is absent in the corresponding profiles found for higher heating rates. The kinetics of {gamma} {yields} {beta} phase change on the other hand, is best described by the two-parameter Koistinen-Marburger empirical relation for the martensitic transformation.

  7. Phase transformations of under-cooled austenite of new bainitic materials for scissors crossovers

    Directory of Open Access Journals (Sweden)

    J. Pacyna

    2008-07-01

    Full Text Available The paper contains CCT diagrams presenting a transformation kinetics of under-cooled austenite from two new bainitic cast steels which the scissors crossovers for heavy-duty railway tracks (min. 230kN/axle at the speed up to 200 km/h are made of. The cooling ranges of UIC60 type railway tracks plot on the CCT diagrams indicate that there is a 100% bainitic structure in the scissors crossovers made of these cast steels as well, but mainly it would be a favourable for cracking resistance lower bainite. The achievable hardness of scissors crossovers made of new materials make it possible to use high–temperature tempering resulting in obtaining of good crack resistance. However one should provide a good quality of castings made.

  8. Review of Two-phase Electronics Cooling for Army Vehicle Applications

    Science.gov (United States)

    2010-09-01

    by Incropera et al. (21), and indicated in figure 7a, the transition 14 from subcooled boiling, to bubbly flow, slug flow, and annular flow...Sullivan, P. F.; Ramadhyani, S.; Incropera , F. P. Extended surfaces to enhance impingement cooling with single circular liquid jets. in...Coolant Comparison of Oil and PGW; ADM002075; U.S. Naval Academy, Annapolis, MD, Nov. 1 2006. 21. Incropera , F.; Dewitt, D.; Bergman, T.; Lavine, A

  9. Analysis of the solar powered/fuel assisted Rankine cycle cooling system. Phase 1: Revision

    Science.gov (United States)

    Lior, N.; Koai, K.; Yeh, H.

    1985-04-01

    The subject of this analysis is a solar cooling system which consists of a conventional open-compressor chiller, driven by a novel hybrid steam Rankine cycle. Steam is generated by the use of solar energy collected at about 100C, and it is then superheated to about 600C in a fossil-fuel fired superheater. The steam drives a novel counter-rotating turbine, some of the heat from it is regenerated, and it is then condensed. Thermal storage is implemented as an integral part of the cycle, by means of hot-water which is flashed to steam when needed for driving the turbine. For the solar energy input, both evacuated and double-glazed flat-plate collectors were considered. A comprehensive computer program was developed to analyze the operation and performance of the entire power/cooling system. Each component was described by a separate subroutine to compute its performance from basic principles, and special attention was given to the parasitic losses, including pumps, fans and pressure drops in the piping and heat exchangers, and to describe the off-design performance of the components. The thermophysical properties of the fluids used are also described in separate subroutines. Transient simulation of the entire system was performed on an hourly basis over a cooling season in two representative climatic regions (Washington, DC, and Phoenix, AZ) for a number of system configurations.

  10. A phase I study of daily treatment with a ceramide-dominant triple lipid mixture commencing in neonates.

    Science.gov (United States)

    Lowe, Adrian J; Tang, Mimi Lk; Dharmage, Shyamali C; Varigos, George; Forster, Della; Gurrin, Lyle C; Robertson, Colin F; Abramson, Michael J; Allen, Katrina J; Su, John

    2012-04-04

    Defects in skin barrier function are associated with an increase risk of eczema and atopic sensitisation. Ceramide-dominant triple lipid mixture may improve and maintain the infant skin barrier function, and if shown to be safe and feasible, may therefore offer an effective approach to reduce the incidence of eczema and subsequent atopic sensitisation. We sort to assess the safety and compliance with daily application of a ceramide-dominant triple lipid formula (EpiCeram™) commencing in the neonatal period for the prevention of eczema. Ten infants (0-4 weeks of age) with a family history of allergic disease were recruited into an open-label, phase one trial of daily application of EpiCeram™ for six weeks. The primary outcomes were rate of compliance and adverse events. Data on development of eczema, and physiological properties of the skin (transepidermal water loss, hydration, and surface pH) were also measured. Eighty percent (8/10) of mothers applied the study cream on 80% or more of days during the six week intervention period. Though a number of adverse events unrelated to study product were reported, there were no adverse skin reactions to the study cream. These preliminary results support the safety and parental compliance with daily applications of a ceramide-dominant formula for the prevention of eczema, providing the necessary ground work for a randomised clinical trial to evaluate EpiCeram™ for the prevention of eczema. The study was listed at the Australian/New Zealand Clinical Trial Registry (ANZCTR): reg. no. ACTRN12609000727246.

  11. A phase i study of daily treatment with a ceramide-dominant triple lipid mixture commencing in neonates

    Directory of Open Access Journals (Sweden)

    Lowe Adrian J

    2012-04-01

    Full Text Available Abstract Background Defects in skin barrier function are associated with an increase risk of eczema and atopic sensitisation. Ceramide-dominant triple lipid mixture may improve and maintain the infant skin barrier function, and if shown to be safe and feasible, may therefore offer an effective approach to reduce the incidence of eczema and subsequent atopic sensitisation. We sort to assess the safety and compliance with daily application of a ceramide-dominant triple lipid formula (EpiCeram™ commencing in the neonatal period for the prevention of eczema. Methods Ten infants (0-4 weeks of age with a family history of allergic disease were recruited into an open-label, phase one trial of daily application of EpiCeram™ for six weeks. The primary outcomes were rate of compliance and adverse events. Data on development of eczema, and physiological properties of the skin (transepidermal water loss, hydration, and surface pH were also measured. Results Eighty percent (8/10 of mothers applied the study cream on 80% or more of days during the six week intervention period. Though a number of adverse events unrelated to study product were reported, there were no adverse skin reactions to the study cream. Conclusions These preliminary results support the safety and parental compliance with daily applications of a ceramide-dominant formula for the prevention of eczema, providing the necessary ground work for a randomised clinical trial to evaluate EpiCeram™ for the prevention of eczema. Trial registration The study was listed at the Australian/New Zealand Clinical Trial Registry (ANZCTR: reg. no. ACTRN12609000727246.

  12. A clinical study concerning hepatic arterial dominant phase and arrival time of contrast media on helical dynamic CT

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Susumu; Uchida, Chiharu; Sato, Sei; Ishida, Junichi; Masuya, Ryozo [Hiroshima Teishin Hospital (Japan); Makiguchi, Mako [Radiation Effects Research Foundation, Hiroshima (Japan); Kanamori, Isao [Gifu Coll. of Medical Technology (Japan)

    2001-10-01

    Hepatic arterial dominant phase in helical dynamic CT was optimized by measuring the arrival time of contrast media (ATCM) with time-density curve (TDC). Subjects were 1005 patients (577 males and 428 females) and 98 nodules diagnosed as advanced hepatocellular carcinoma (HCC). The CT was done with Toshiba 4MHU X-vision SP, ultrasonography with Toshiba SSH-160A and automatic infusion of the contrast medium, iopamidol or iohexol, with Nemotokyorindo Autoenhance A-50. ATCM was found correlated with pulse rate and with arterial diameter, and significantly different between the sex. Elevation slope of TDC was suggested to be made constant by a defined infusion time of the dose corrected by body weight. Fluctuation of TDC among patients , when normalized by ATCM, was found smaller and the TDC was suggested to be useful for better imaging of HCC of less than 10 mm diameter. (K.H.)

  13. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state...

  14. Effect of cooling rate on the microstructure of electron beam welded joints of two-phase TiAl-based alloy

    Institute of Scientific and Technical Information of China (English)

    Chen Guoqing; Zhang Binggang; He Jingshan; Feng Jicai

    2007-01-01

    The analysis of the microstructural characterization and phase composition of electron beam welded joint zones of Ti-43Al-9V-0.3Y alloy has been done in this study. The welded seam is mainly composed of B2 phase, the partial γ+α2 two-phase lamellar structure and granular γm phase. And the lanthanon Y existed as YAl2 phase and served as grain refined. The impact of different cooling rates on joint microstructure, fracture characteristic and tensile strength were investigated. The high cooling rate restrained the structural transformation and resulted in the ordering structure. The fracture of the joint was brittle cleavage fracture because the ordering structure went against restraining the crack propagation. With the decrease of cooling rate, the transformation amounts of lamellar structure increased, and the fracture presented the layered and cross-layered characteristic.

  15. Scattering-dominated high-temperature phase of 1 T -TiS e2 : An optical conductivity study

    Science.gov (United States)

    Velebit, K.; Popčević, P.; Batistić, I.; Eichler, M.; Berger, H.; Forró, L.; Dressel, M.; Barišić, N.; Tutiš, E.

    2016-08-01

    The controversy regarding the precise nature of the high-temperature phase of 1 T -TiS e2 lasts for decades. It has intensified in recent times when new evidence for the excitonic origin of the low-temperature charge-density wave state started to unveil. Here we address the problem of the high-temperature phase through precise measurements and detailed analysis of the optical response of 1 T -TiS e2 single crystals. The separate responses of electron and hole subsystems are identified and followed in temperature. We show that neither semiconductor nor semimetal pictures can be applied in their generic forms as the scattering for both types of carriers is in the vicinity of the Ioffe-Regel limit with decay rates being comparable to or larger than the offsets of band extrema. The nonmetallic temperature dependence of transport properties comes from the anomalous temperature dependence of scattering rates. Near the transition temperature the heavy electrons and the light holes contribute equally to the conductivity; this surprising coincidence is regarded as the consequence of dominant intervalley scattering that precedes the transition. The low-frequency peak in the optical spectra is identified and attributed to the critical softening of the L -point collective mode.

  16. Analysis of two-phase flow instability in helical tube steam generator in high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yu; Lv, Xuefeng; Wang, Shengfei; Niu, Fenglei; Tian, Li [North China Electric Power Univ., Beijing (Switzerland)

    2012-03-15

    The steam generator composed of multi-helical tubes is used in high temperature gas cooled reactors and two-phase flow instability should be avoided in design. And density-wave oscillation which is mainly due to flow, density and the relationship between the pressure drop delays and feedback effects is one of the two-phase flow instability phenomena easily to occur. Here drift-flux model is used to simulate the performance of the fluid in the secondary side and frequency domain and time domain methods are used to evaluate whether the density-wave oscillation will happen or not. Several operating conditions with nominal power from 15% to 30% are calculated in this paper. The results of the two methods are in accordance, flow instability will occur when power is less than 20% nominal power, which is also according with the result of the experiments well.

  17. Study of two-phase turbine engine for solar space cooling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amend, W.E.

    1980-08-01

    Detailed mathematical description of two promising Biphase refrigeration cycles were developed and programmed on the computer (all known first-order irreversibilities were accounted for). Extensive parameter sweeps were made to identify the most effective working-fluid combinations and to determine the sensitivity of cycle-performance levels. A Cycle configuration was established for a nominal 3-ton air cooled refrigeration system and the design parameters were determined from the computer code. A series of fluid compatibility tests were run to weed out potential fluid combinations that are reactive.

  18. The cooling phase of Type-I X-ray bursts in 4U 1636-53

    CERN Document Server

    Zhang, Guobao; Altamirano, Diego

    2010-01-01

    Time-resolved spectra during the cooling phase of thermonuclear X-ray bursts in low-mass X-ray binaries (LMXBs) can be used to measure the radii and masses of neutron stars. We analyzed ~ 300 bursts of the LMXB 4U 1636-53 using data from the Rossi X-ray Timing Explorer. We divided the bursts in three groups, photospheric radius expansion (PRE), hard non-PRE and soft non-PRE bursts, based on the properties of the bursts and the state of the source at the time of the burst. For the three types of bursts, we found that the average relation between the bolometric flux and the temperature during the cooling phase of the bursts is significantly different from the canonical $F \\propto T^4$ relation that is expected if the apparent emitting area on the surface of the neutron star remains constant as the flux decreases during the decay of the bursts. We also found that a single power law cannot fit the average flux-temperature relation for any of the three types of bursts, and that the flux-temperature relation for th...

  19. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification.

    Science.gov (United States)

    Niu, Xiaofeng; Xu, Qing; Zhang, Yi; Zhang, Yue; Yan, Yufeng; Liu, Tao

    2017-04-29

    Micro-nanoencapsulated phase change materials (M-NEPCMs) are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n-octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate):Tween80 (polyoxyethylene sorbitan monooleate):Span80 (sorbitan monooleate) = 0.1:0.6:0.3, which achieves the best stability of the n-octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%.

  20. Effect of Cooling Rate and Deformation on Microstructures and Critical Phase-Transformation Temperature of Boron-Nickel Added HSLA H-Beams

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao; WANG Zuo-cheng; WANG Xie-bin; WANG Yi-ran; GAO Jun-qing; ZHAO Xiu-ling

    2012-01-01

    Microstructures and critical phase-transformation temperature of boron-nickel added Nb-treated high strength low alloy (HSLA) H-beams cooled at different cooling rate, with different deformation were investigated. Continuous cooling transformation (CCT) diagram of this new type of steel was obtained by using Gleeble 1500 ther- momechanical simulator. Microstructures and hardness, especially micro-hardness of the experimental steel were in- vestigated by optical microscopy (OM), scanning electron microscope (SEM), Rockwell and Vickers hardness tests. Phase analysis was also studied by X~ray diffraction (XRD). The results indicated that with increase of cooling rate, microstructures of continuous cooled specimens gradually transformed from polygonal ferrite and pearlite, grain boundary ferrite and bainite, bainite and martensite to single martensite. The CCT diagram revealed that slow cool- ing was needed to avoid austenite-bainite transformation to ensure toughness of this steel. By plastic deformation of 40%, austenite-ferrite transformation temperature increased by 46℃, due to deformation induced ferrite transfor- mation during continuous cooling, but Rockwell hardness has little change.

  1. On the use of a small-scale two-phase thermosiphon to cool high-power electronics

    Science.gov (United States)

    Schrage, D. S.

    1990-01-01

    An experimental and analytical investigation of the steady-state thermal-hydraulic operating characteristics of a small-scale two-phase thermosiphon cooling actual power electronics are presented. Boiling heat transfer coefficients and circulation mass velocities were measured while varying heat load and pressure. Both a plain and augmented riser structure, utilizing micro-fins and reentrant cavities, were simultaneously tested. The boiling heat transfer coefficients increased with both increasing heat load and pressure. The mass velocity increased with increasing pressure while both increasing and then decreasing with increasing heat load. The reentrant cavity enhancement factor, a ratio of the augmented-to-plain riser nucleate boiling heat transfer coefficients, ranged from 1 to 1.4. High-speed photography revealed bubbly, slug, churn, wispy-annular and annular flow patterns. The experimental mass velocity and heat transfer coefficient data were compared to an analytical model with average absolute deviations of 16.3 and 26.3 percent, respectively.

  2. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    Science.gov (United States)

    Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  3. Phoenix light - Heating and cooling with phase-change materials; Phoenix light: Heizen und Kuehlen mit PCM - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Haechler, E. [Suiselectra Ingenieurunternehmung AG, Basel (Switzerland); Schneider, B. [Hochschule Esslingen, University of Applied Sciences, Esslingen (Germany)

    2002-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the use of phase-change materials (PCM) in buildings in order to help provide cooling in summer and heating in winter. General information on PCM and its use in the automotive industry, clothing, heating systems and office materials as well as in the electronics industry is provided. The physical and chemical basics are discussed and examples of PCM use in practice are provided. Also, work done in research institutes is mentioned. PCM systems from various manufacturers are noted. The 'phoenix light' system concept is discussed. The 'comfort cooler' concept is introduced and laboratory measurements made at the University of Applied Sciences in Esslingen, Germany, are discussed. Further, measurements made at an installation in an existing building are presented and discussed. Knowledge gained and the optimisation of the system are discussed. Finally, proposals for further work to be done are noted.

  4. Graphic visualization of non-variant phase transformations in binary systems in course of cooling

    Directory of Open Access Journals (Sweden)

    Martin Nekuda

    2006-01-01

    Full Text Available Non-variant phase transformations in the binary diagrams have both, some common features and some differences. The authors arranged an interactive animation by the help of the computer to catch the time course of non-variant transformations in many contexts. The program helps to illustrate and describe the matter all of non-variant transformations.

  5. Heat transfer and parametric studies of an encapsulated phase change material based cool thermal energy storage system

    Institute of Scientific and Technical Information of China (English)

    CHERALATHAN M.; VELRAJ R.; RENGANARAYANAN S.

    2006-01-01

    This work investigates the transient behaviour of a phase change material based cool thermal energy storage (CTES)system comprised of a cylindrical storage tank filled with encapsulated phase change materials (PCMs) in spherical container integrated with an ethylene glycol chiller plant. A simulation program was developed to evaluate the temperature histories of the heat transfer fluid (HTF) and the phase change material at any axial location during the charging period. The results of the model were validated by comparison with experimental results of temperature profiles of HTF and PCM. The model was also used to investigate the effect of porosity, Stanton number, Stefan number and Peclet number on CTES system performance. The results showed that increase in porosity contributes to a higher rate of energy storage. However, for a given geometry and heat transfer coefficient, the mass of PCM charged in the unit decreases as the increase in porosity. The St number as well as the Ste number is also influential in the performance of the unit. The model is a convenient and more suitable method to determine the heat transfer characteristics of CTES system. The results reported are much useful for designing CTES system.

  6. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification

    Directory of Open Access Journals (Sweden)

    Xiaofeng Niu

    2017-04-01

    Full Text Available Micro-nanoencapsulated phase change materials (M-NEPCMs are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n-octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate:Tween80 (polyoxyethylene sorbitan monooleate:Span80 (sorbitan monooleate = 0.1:0.6:0.3, which achieves the best stability of the n-octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%.

  7. Night time cooling by ventilation or night sky radiation combined with in-room radiant cooling panels including phase change materials

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Olesen, Bjarne W.; Grossule, Fabio

    Night sky radiative cooling technology using PhotoVoltaic/Thermal panels (PVT) and night time ventilation have been studied both by means of simulations and experiments to evaluate their potential and to validate the created simulation model used to describe it. An experimental setup has been...

  8. A shirt containing multistage phase change material and active cooling components was associated with increased exercise capacity in a hot, humid environment.

    Science.gov (United States)

    McFarlin, Brian K; Henning, Andrea L; Venable, Adam S; Williams, Randall R; Best Sampson, Jill N

    2016-08-01

    Recent advances in clothing design include the incorporation of phase change materials (PCM) and other active cooling components (ACC) to provide better body heat dissipation. The purpose of this study was to determine the effect of wearing a shirt containing multistage PCM/ACC on exercise capacity at low (5.0), moderate-high (7.5) and extreme (9.0) levels of the physiological strain index (PSI). Fourteen individuals tested two shirts (control vs. cooling) during 45-min of interval running in a hot, humid (35 ± 1 °C; 55 ± 6% RH) environment. The cooling shirt resulted in an 8% improvement in exercise capacity at a PSI of 7.5 (p active cooling components.

  9. Mathematical modelling of the thermal performance of a phase-change material (PCM) store: cooling cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kuerklue, A. [Akdeniz University, Faculty of Agriculture, Antalya (Turkey); Wheldon, A.; Hadley, P. [Reading Univ. (United Kingdom). Dept. of Engineering]|[Reading Univ. (United Kingdom). School of Plant Sciences

    1996-07-01

    A mathematical model for the prediction of the thermal performances of a PCM store containing 1 m long and 38 mm diameter polypropylene tube has been developed in this study. Air was utilised in the store as the heat transfer fluid. The model was based on an energy balance or the `conservation of energy principle`. The results indicate that the agreement between the predicted and observed temperature of heat transfer data is generally good. The amount of energy used in increasing the temperature of the PCM at any time during the phase- change process is predicted to be about 3.5% of the total energy stored. (Author)

  10. Effect of cooling rate on evolution of superconducting phases during decomposition and recrystallization of (Bi,Pb)-2223 core in Ag-sheathed tape

    Institute of Scientific and Technical Information of China (English)

    LI Jingyong; LI Jianguo; ZHENG Huiling; LI Chengshan; LU Yafeng; ZHOU Lian

    2006-01-01

    The reformation of (Bi,Pb)-2223 from the liquid or melt is very important for a melting process of (Bi,Pb)-2223 tape. By combination of quenching experiment with X-ray diffraction (XRD) analysis, the effect of cooling rate on the evolution of three superconducting phases in the (Bi,Pb)-2223 core of Ag-sheathed tape was investigated. The results show that (Bi,Pb)-2223 reformation from the melt seems to experience different routes during slowly cooling at different rates. One is that (Bi,Pb)-2223 phase reformed directly from the melt, and no Bi-2212 participate in this process. The other is that (Bi,Pb)-2223 is converted from the intermediate product, Bi-2212, which formed from the melt during the first cooling stage. Due to the inherent sluggish formation kinetics of (Bi,Pb)-2223 from Bi-2212, only partial (Bi,Pb)-2223 can finally be reformed with the second route.

  11. Stability and Phase Noise Tests of Two Cryo-Cooled Sapphire Oscillators

    Science.gov (United States)

    Dick, G. John; Wang, Rabi T.

    1998-01-01

    A cryocooled Compensated Sapphire Oscillator (CSO), developed for the Cassini Ka-band Radio Science experiment, and operating in the 8K - 10K temperature range was previously demonstrated to show ultra-high stability of sigma(sub y) = 2.5 x 10 (exp -15) for measuring times 200 seconds less than or equal to tau less than or equal to 600 seconds using a hydrogen maser as reference. We present here test results for a second unit which allows CSO short-term stability and phase noise to be measured for the first time. Also included are design details of a new RF receiver and an intercomparison with the first CSO unit. Cryogenic oscillators operating below about 10K offer the highest possible short term stability of any frequency sources. However, their use has so far been restricted to research environments due to the limited operating periods associated with liquid helium consumption. The cryocooled CSO is being built in support of the Cassini Ka-band Radio Science experiment and is designed to operate continuously for periods of a year or more. Performance targets are a stability of 3-4 x 10 (exp -15) (1 second less than or equal to tau less than or equal to 100 seconds) and phase noise of -73dB/Hz @ 1Hz measured at 34 GHz. Installation in 5 stations of NASA's deep space network (DSN) is planned in the years 2000 - 2002. In the previous tests, actual stability of the CSO for measuring times tau less than or equal to 200 seconds could not be directly measured, being masked by short-term fluctuations of the H-maser reference. Excellent short-term performance, however, could be inferred by the success of an application of the CSO as local oscillator (L.O.) to the JPL LITS passive atomic standard, where medium-term stability showed no degradation due to L.O. instabilities at a level of (sigma)y = 3 x 10 (exp -14)/square root of tau. A second CSO has now been constructed, and all cryogenic aspects have been verified, including a resonator turn-over temperature of 7.907 K

  12. Evaluation of the initial and chronic phases of toxocariasis after consumption of liver treated by freezing or cooling.

    Science.gov (United States)

    Dutra, Gisele Ferreira; Pinto, Nitza Souto França; da Costa de Avila, Luciana Farias; de Lima Telmo, Paula; da Hora, Vanusa Pousada; Martins, Lourdes Helena Rodrigues; Berne, Maria Elisabeth Aires; Scaini, Carlos James

    2013-06-01

    Human toxocariasis is a neglected parasitic zoonosis of worldwide distribution. The consumption of raw or undercooked meat and offal from paratenic hosts of the Toxocara canis nematode can cause infection in humans, but there have been a lack of studies examining specific prophylactic measures to combat this mode of transmission. The aim of this study was to evaluate the establishment of infection by T. canis larvae at the initial and chronic phases of visceral toxocariasis after the consumption of mouse liver subjected to cold treatment. This study was divided into two stages using groups (G) of five donor mice inoculated with 2,000 eggs of T. canis. Two days post-inoculation, the livers of donor mice in G1 and G2 were kept at -20 °C and between 0 and 4 °C, respectively, for 10 days. In the first stage of the study, the livers of mice from G1, G2, and G3 (control) were subjected to a tissue digestion technique and found to be positive for infection. In the second stage, which evaluated infection in mice that had consumed livers from donor mice, receiver mice of G4 and G7 were fed with livers of donor mice from G1 (freezing), receiver mice of G5 and G8 were fed with livers of donor mice from G2 (cooling), and receiver mice of G6 and G9 with livers from G3 (control). Then, the tissue digestion technique was performed for recovering larvae from organs and carcasses of mice, at 2 days (G4, G5, and G6) and 60 days after liver consumption (G7, G8, and G9). It was observed that freezing inhibited the viability of 100 % of the larvae, while cooling promoted 87.7 and 95.7 % reductions in the intensity of infection at 2 and 60 days after liver consumption, respectively. Under the studied conditions, cold treatment shows great potential to help control this parasitosis, both in the initial and chronic phases of toxocariasis.

  13. Stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron.

  14. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    Science.gov (United States)

    Sakitani, Katsumi; Honda, Hiroshi

    Experimental and theoretical studies were made of the heat transfer characteristics of a latent heat storage unit used for a natural circulation cooling /latent heat storage system. Heating and cooling curves of the latent heat storage unit undergoing solid-liquid phase change of a PCM (lauric acid) was obtained by using anatural circulation loop of R22 which consisted of an electrically heated evaporater, a water cooled condenser and the latent heat storage unit. The latent heat storage unit showed a heat transfer performance which was high enough for practical use. An approximate theoretical analysis was conducted to investigate transient behavior of the latent heat storage unit. Predictions of the refrigerant and outer surface temperatures during the melting process were in fair agreement with the experimental data, whereas that of the refrigerant temperature during the solidification process was considerably lower than the measurement.

  15. Cooling the dark energy camera CCD array using a closed-loop two-phase liquid nitrogen system

    Science.gov (United States)

    Cease, H.; DePoy, D.; Derylo, G.; Diehl, H. T.; Estrada, J.; Flaugher, B.; Kuk, K.; Kuhlmann, S.; Lathrop, A.; Schultz, K.; Reinert, R. J.; Schmitt, R. L.; Stefanik, A.; Zhao, A.

    2010-07-01

    The Dark Energy Camera (DECam) is the new wide field prime-focus imager for the Blanco 4m telescope at CTIO. This instrument is a 3 sq. deg. camera with a 45 cm diameter focal plane consisting of 62 2k × 4k CCDs and 12 2k × 2k CCDs and was developed for the Dark Energy Survey that will start operations at CTIO in 2011. The DECam CCD array is inside the imager vessel. The focal plate is cooled using a closed loop liquid nitrogen system. As part of the development of the mechanical and cooling design, a full scale prototype imager vessel has been constructed and is now being used for Multi-CCD readout tests. The cryogenic cooling system and thermal controls are described along with cooling results from the prototype camera. The cooling system layout on the Blanco telescope in Chile is described.

  16. A small-scale dynamo in feedback-dominated galaxies as the origin of cosmic magnetic fields. I-the kinematic phase

    CERN Document Server

    Rieder, Michael

    2015-01-01

    Astrophysical dynamo theories provide various mechanisms for magnetic field amplification inside galaxies, where weak initial fields grow exponentially on various timescales. We investigate the particular role played by stellar feedback mechanisms in creating strong fluid turbulence, allowing for a magnetic dynamo to emerge. Performing magnetohydrodynamic simulations of isolated cooling halos, for both dwarf and Milky Way sized objects, we compare the magnetic field evolution for various initial field topologies and various stellar feedback mechanisms. We find that feedback can indeed drive strong gas turbulence which gives rise to a fast exponential magnetic field growth. Our simulations feature typical properties of Kolmogorov turbulence with a $k ^{-5/3}$ kinetic energy spectrum, as well as the characteristic properties of a small-scale dynamo, with a $k^{3/2}$ magnetic energy spectrum as predicted by Kazantsev dynamo theory. In these feedback-dominated galaxies, stellar feedback provides forcing on large ...

  17. Laser cooling of solids

    OpenAIRE

    Nemova, Galina

    2009-01-01

    Parallel to advances in laser cooling of atoms and ions in dilute gas phase, which has progressed immensely, resulting in physics Nobel prizes in 1997 and 2001, major progress has recently been made in laser cooling of solids. I compare the physical nature of the laser cooling of atoms and ions with that of the laser cooling of solids. I point out all advantages of this new and very promising area of laser physics. Laser cooling of solids (optical refrigeration) at the present time can be lar...

  18. Effect of Cooling Rate on the Longitudinal Modulus of Cu3Sn Phase of Ag-Sn-Cu Amalgam Alloy (Part II

    Directory of Open Access Journals (Sweden)

    R. H. Rusli

    2015-10-01

    Full Text Available Effects of cooling rate (at the time of solidification on the elastic constants of Cu3Sn phase of Ag-Sn-Cu dental amalgam alloy were studied. In this study, three types of alloys were made, with the composition Cu-38-37 wt% Sn by means of casting, where each alloy was subjected to different cooling rate, such as cooling on the air (AC, air blown (AB, and quenched in the water (WQ. X-ray diffraction, metallography, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy studies of three alloys indicated the existence of Cu3Sn phase. Determination of the modulus of elasticity of Cu3Sn (ε phase was carried out by the measurement of longitudinal and transversal waves velocity using ultrasonic technique. The result shows that Cu3Sn (ε phase on AC gives higher modulus of elasticity values than those of Cu3Sn (ε on AB and WQ. The high modulus of elasticity value will produce a strong Ag-Sn-Cu dental amalagam alloy.

  19. Experimental study of passive cooling of building facade using phase change materials to increase thermal comfort in buildings in hot humid areas

    Directory of Open Access Journals (Sweden)

    A. A. Madhumathi, B. M.C. Sundarraja

    2012-01-01

    Full Text Available Storage of cooler night temperatures using Phase Change Material (PCM energy storage technique, for cooling of ambient air during hot day times can be an alternate of current cooling techniques in building sector. This work presents the results of an experimental set-up to test energy saving potential of phase change materials with typical construction materials in building facade in Hot-Humid Climatic Regions in real conditions. The main objective of this research is to demonstrate experimentally that it is possible to improve the thermal comfort and reduce the energy consumption of a building without substantial increase in the weight of the construction materials with the inclusion of PCM. This research was conducted to study and evaluate the performance of the existing materials integrated with Organic PCM Polyethylene glycol (PEG E600. This research suggested that the heat gain is significantly reduced when the PCM is incorporated into the brick (conventional building material.

  20. Development of Continuous Cooling Transformation Diagrams of Zirconium-Niobium Alloy Phase Transformations within the Kolmogorov-Johnson-Mehl-Avrami Framework

    Science.gov (United States)

    Kautz, Elizabeth J.

    Microstructure and chemistry of zirconium alloys have a major influence on material performance, including mechanical properties and corrosion resistance. Therefore, it is essential to thoroughly understand processing required to obtain desired microstructures for application in commercial nuclear reactors. Zirconium-niobium alloys are of particular interest for commercial nuclear applications (e.g., in boiling water reactors, pressurized water reactors, Canadian deuterium uranium reactors) due to increased corrosion resistance in aqueous environments over other zirconium alloys. Heat treatments of zirconium-niobium alloys affect overall microstructure, precipitate distributions and size, and ultimately determine material performance. Phase transformations in zirconium-niobium alloys were modeled for a range of niobium concentrations and heat treatment conditions, by conducting controlled experiments. Heat-flux differential scanning calorimetry was performed and data was collected and analyzed for zirconium-niobium alloys with niobium content ranging from 0.6-3.0 weight percent. Continuous cooling transformation diagrams were constructed for slow cooling rate conditions (9-34°C/minute) based on calorimetry test results. A standard operating procedure for performing these calorimetry tests and corresponding data analysis technique was developed specifically to study the zirconium-niobium material system. A mathematical model was developed utilizing the Kolmogorov-Johnson-Mehl-Avrami theory that accurately describes phase transformations upon continuous cooling in zirconium-niobium binary alloys. This model relates fraction of phase transformed to kinetic parameters that were calculated from experimental test results in order to model the phase transformation for various cooling rates from 10-40°C/minute.

  1. Detailed evaluation of two phase natural circulation flow in the cooling channel of the ex-vessel core catcher for EU-APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae-Joon, E-mail: rjpark@kaeri.re.kr; Ha, Kwang-Soon; Rhee, Bo-Wook; Kim, Hwan Yeol

    2016-03-15

    Highlights: • Ex-vessel core catcher of PECS is installed in EU-APR1400. • CE-PECS has been conducted to test a cooling capability of the PECS. • Two phase flow in CE-PECS and PECS was analyzed using RELAP5/MOD3. • RELAP5 results are very similar to the CE-PECS data. • The super-step design is suitable for steam injection into the downcomer in PECS. - Abstract: The ex-vessel core catcher of the PECS (Passive Ex-vessel corium retaining and Cooling System) is installed to retain and cool down the corium in the reactor cavity of the EU (European Union)-APR (Advanced Power Reactor) 1400. A verification experiment on the cooling capability of the PECS has been conducted in the CE (Cooling Experiment)-PECS. Simulations of a two-phase natural circulation flow using the RELAP5/MOD3 computer code in the CE-PECS and PECS have been conducted to predict the two-phase flow characteristics, to determine the natural circulation mass flow rate in the cooling channel, and to evaluate the scaling in the experimental design of the CE-PECS. Particularly from a comparative study of the prototype PECS and the scaled test facility of the CE-PECS, the orifice loss coefficient in the CE-PECS was found to be 6 to maintain the coolant circulation mass flux, which is approximately 273.1 kg/m{sup 2} s. The RELAP5 results on the coolant circulation mass flow rate are very similar to the CE-PECS experimental results. An increase in the coolant injection temperature and the heat flux lead to an increase in the coolant circulation mass flow rate. In the base case simulation, a lot of vapor was injected into the downcomer, which leads to an instability of the two-phase natural circulation flow. A super-step design at a downcomer inlet is suitable to prevent vapor injection into the downcomer piping.

  2. MicroRNA Expression Profile in Bovine Granulosa Cells of Preovulatory Dominant and Subordinate Follicles during the Late Follicular Phase of the Estrous Cycle.

    Science.gov (United States)

    Gebremedhn, Samuel; Salilew-Wondim, Dessie; Ahmad, Ijaz; Sahadevan, Sudeep; Hossain, Md Munir; Hoelker, Michael; Rings, Franca; Neuhoff, Christiane; Tholen, Ernst; Looft, Christian; Schellander, Karl; Tesfaye, Dawit

    2015-01-01

    In bovine, ovarian follicles grow in a wave-like fashion with commonly 2 or 3 follicular waves emerging per estrous cycle. The dominant follicle of the follicular wave which coincides with the LH-surge becomes ovulatory, leaving the subordinate follicles to undergo atresia. These physiological processes are controlled by timely and spatially expressed genes and gene products, which in turn are regulated by post-transcriptional regulators. MicroRNAs, a class of short non-coding RNA molecules, are one of the important posttranscriptional regulators of genes associated with various cellular processes. Here we investigated the expression pattern of miRNAs in granulosa cells of bovine preovulatory dominant and subordinate follicles during the late follicular phase of bovine estrous cycle using Illumina miRNA deep sequencing. In addition to 11 putative novel miRNAs, a total of 315 and 323 known miRNAs were detected in preovulatory dominant and subordinate follicles, respectively. Moreover, in comparison with the subordinate follicles, a total of 64 miRNAs were found to be differentially expressed in preovulatory dominant follicles, of which 34 miRNAs including the miR-132 and miR-183 clusters were significantly enriched, and 30 miRNAs including the miR-17-92 cluster, bta-miR-409a and bta-miR-378 were significantly down regulated in preovulatory dominant follicles. In-silico pathway analysis revealed that canonical pathways related to oncogenesis, cell adhesion, cell proliferation, apoptosis and metabolism were significantly enriched by the predicted target genes of differentially expressed miRNAs. Furthermore, Luciferase reporter assay analysis showed that one of the differentially regulated miRNAs, the miR-183 cluster miRNAs, were validated to target the 3'-UTR of FOXO1 gene. Moreover FOXO1 was highly enriched in granulosa cells of subordinate follicles in comparison with the preovulatory dominant follicles demonstrating reciprocal expression pattern with miR-183

  3. MicroRNA Expression Profile in Bovine Granulosa Cells of Preovulatory Dominant and Subordinate Follicles during the Late Follicular Phase of the Estrous Cycle.

    Directory of Open Access Journals (Sweden)

    Samuel Gebremedhn

    Full Text Available In bovine, ovarian follicles grow in a wave-like fashion with commonly 2 or 3 follicular waves emerging per estrous cycle. The dominant follicle of the follicular wave which coincides with the LH-surge becomes ovulatory, leaving the subordinate follicles to undergo atresia. These physiological processes are controlled by timely and spatially expressed genes and gene products, which in turn are regulated by post-transcriptional regulators. MicroRNAs, a class of short non-coding RNA molecules, are one of the important posttranscriptional regulators of genes associated with various cellular processes. Here we investigated the expression pattern of miRNAs in granulosa cells of bovine preovulatory dominant and subordinate follicles during the late follicular phase of bovine estrous cycle using Illumina miRNA deep sequencing. In addition to 11 putative novel miRNAs, a total of 315 and 323 known miRNAs were detected in preovulatory dominant and subordinate follicles, respectively. Moreover, in comparison with the subordinate follicles, a total of 64 miRNAs were found to be differentially expressed in preovulatory dominant follicles, of which 34 miRNAs including the miR-132 and miR-183 clusters were significantly enriched, and 30 miRNAs including the miR-17-92 cluster, bta-miR-409a and bta-miR-378 were significantly down regulated in preovulatory dominant follicles. In-silico pathway analysis revealed that canonical pathways related to oncogenesis, cell adhesion, cell proliferation, apoptosis and metabolism were significantly enriched by the predicted target genes of differentially expressed miRNAs. Furthermore, Luciferase reporter assay analysis showed that one of the differentially regulated miRNAs, the miR-183 cluster miRNAs, were validated to target the 3'-UTR of FOXO1 gene. Moreover FOXO1 was highly enriched in granulosa cells of subordinate follicles in comparison with the preovulatory dominant follicles demonstrating reciprocal expression pattern

  4. Investigation of the thermal performance of a vertical two-phase closed thermosyphon as a passive cooling system for a nuclear reactor spent fuel storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Kusuma, Mukhsinun Hadi; Putra, Nandy; Imawan, Ficky Augusta [Heat Transfer Laboratory, Department of Mechanical Engineering Universitas Indonesia, Kampus (Indonesia); Antariksawan, Anhar Riza [Centre for Nuclear Reactor Safety and Technology, National Nuclear Energy Agency of Indonesia (BATAN), Kawasan Puspiptek Serpong (Indonesia)

    2017-04-15

    The decay heat that is produced by nuclear reactor spent fuel must be cooled in a spent fuel storage pool. A wickless heat pipe or a vertical two-phase closed thermosyphon (TPCT) is used to remove this decay heat. The objective of this research is to investigate the thermal performance of a prototype model for a large-scale vertical TPCT as a passive cooling system for a nuclear research reactor spent fuel storage pool. An experimental investigation and numerical simulation using RELAP5/MOD 3.2 were used to investigate the TPCT thermal performance. The effects of the initial pressure, filling ratio, and heat load were analyzed. Demineralized water was used as the TPCT working fluid. The cooled water was circulated in the water jacket as a cooling system. The experimental results show that the best thermal performance was obtained at a thermal resistance of 0.22°C/W, the lowest initial pressure, a filling ratio of 60%, and a high evaporator heat load. The simulation model that was experimentally validated showed a pattern and trend line similar to those of the experiment and can be used to predict the heat transfer phenomena of TPCT with varying inputs.

  5. The cooling phase of Type I X-ray bursts observed with RXTE in 4U 1820-30 does not follow the canonical F - T^4 relation

    CERN Document Server

    García, Federico; Méndez, Mariano

    2013-01-01

    We analysed the complete set of bursts from the neutron-star low-mass X-ray binary 4U 1820-30 detected with the Rossi X-ray Timing Explorer (RXTE). We found that all are photospheric radius expansion bursts, and have similar duration, peak flux and fluence. From the analysis of time-resolved spectra during the cooling phase of the bursts, we found that the relation between the bolometric flux and the temperature is very different from the canonical F - T^4 relation that is expected if the apparent emitting area on the surface of the neutron star remains constant. The flux-temperature relation can be fitted using a broken power law, with indices 2.0$\\pm$0.3 and 5.72$\\pm$0.06. The departure from the F - T^4 relation during the cooling phase of the X-ray bursts in 4U 1820-30 could be due to changes in the emitting area of the neutron star while the atmosphere cools-down, variations in the colour-correction factor due to chemical evolution, or the presence of a source of heat, e.g. residual hydrogen nuclear burni...

  6. Communication: Charge transfer dominates over proton transfer in the reaction of nitric acid with gas-phase hydrated electrons

    Science.gov (United States)

    Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K.

    2017-09-01

    The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.

  7. Identifying the representative flow unit for capillary dominated two-phase flow in porous media using morphology-based pore-scale modeling

    Science.gov (United States)

    Mu, Yaoming; Sungkorn, Radompon; Toelke, Jonas

    2016-09-01

    In this paper, we extend pore-morphology-based methods proposed by Hazlett (1995) and Hilpert and Miller (2001) to simulate drainage and imbibition in uniformly wetting porous media and add an (optional) entrapment of the (non-)wetting phase. By improving implementation, this method allows us to identify the statistical representative elementary volume and estimate uncertainty by computing fluid flow properties and saturation distributions of hundreds of subsamples within a reasonable time-frame. The method was utilized to study three different porous medium systems and results demonstrate that morphology-based pore-scale modeling is a viable approach to assess the representative elementary volume with respect to capillary dominated two-phase flow. The focus of this paper is the determination of the representative elementary volume for multiphase-flow properties for a digital representation of a rock.

  8. Experimental study on two-phase flow natural circulation in a core catcher cooling channel for EU-APR1400 using air-water system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Won [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Nguyen, Thanh Hung [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ha, Kwang Soon; Kim, Hwan Yeol; Song, Jinho [Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Park, Hyun Sun [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Revankar, Shripad T., E-mail: shripad@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2017-05-15

    Highlights: • Two-phase flow regimes and transition behavior were observed in the coolant channel. • Test were conducted for natural circulation with air-water. • Data were obtained on flow regime, void fraction, flow rates and re-wetting time. • The data were related to a cooling capability of core catcher system. - Abstract: Ex-vessel core catcher cooling system driven by natural circulation is designed using a full scaled air-water system. A transparent half symmetric section of a core catcher coolant channel of a pressurized water reactor was designed with instrumentations for local void fraction measurement and flow visualization. Two designs of air-water top separator water tanks are studied including one with modified ‘super-step’ design which prevents gas entrainment into down-comer. In the experiment air flow rates are set corresponding to steam generation rate for given corium decay power. Measurements of natural circulation flow rate, spatial local void fraction distribution and re-wetting time near the top wall are carried out for various air flow rates which simulate boiling-induced vapor generation. Since heat transfer and critical heat flux are strongly dependent on the water mass flow rate and development of two-phase flow on the heated wall, knowledge of two-phase flow characteristics in the coolant channel is essential. Results on flow visualization showing two phase flow structure specifically near the high void accumulation regions, local void profiles, rewetting time, and natural circulation flow rate are presented for various air flow rates that simulate corium power levels. The data are useful in assessing the cooling capability of and safety of the core catcher system.

  9. Electron cooling

    Science.gov (United States)

    Meshkov, I.; Sidorin, A.

    2004-10-01

    The brief review of the most significant and interesting achievements in electron cooling method, which took place during last two years, is presented. The description of the electron cooling facilities-storage rings and traps being in operation or under development-is given. The applications of the electron cooling method are considered. The following modern fields of the method development are discussed: crystalline beam formation, expansion into middle and high energy electron cooling (the Fermilab Recycler Electron Cooler, the BNL cooler-recuperator, cooling with circulating electron beam, the GSI project), electron cooling in traps, antihydrogen generation, electron cooling of positrons (the LEPTA project).

  10. Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  11. Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

    Directory of Open Access Journals (Sweden)

    Seon Oh Yu

    2017-08-01

    Full Text Available The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

  12. Feasibility of measuring renal blood flow by phase-contrast magnetic resonance imaging in patients with autosomal dominant polycystic kidney disease

    Energy Technology Data Exchange (ETDEWEB)

    Spithoven, E.M.; Meijer, E.; Boertien, W.E.; Gaillard, C.A.J.M.; Jong, P.E. de; Gansevoort, R.T. [University of Groningen, Department of Nephrology, Community and Occupational Medicine, University Medical Center Groningen, PO Box 30.001, RB Groningen (Netherlands); Borns, C.; Kappert, P.; Greuter, M.J.W.; Jagt, E. van der [University of Groningen, Department of Radiology, Community and Occupational Medicine, University Medical Center Groningen, Groningen (Netherlands); Vart, P. [University of Groningen, Department of Health Sciences, Community and Occupational Medicine, University Medical Center Groningen, Groningen (Netherlands)

    2016-03-15

    Renal blood flow (RBF) has been shown to predict disease progression in autosomal dominant polycystic kidney disease (ADPKD). We investigated the feasibility and accuracy of phase-contrast RBF by MRI (RBF{sub MRI}) in ADPKD patients with a wide range of estimated glomerular filtration rate (eGFR) values. First, we validated RBF{sub MRI} measurement using phantoms simulating renal artery hemodynamics. Thereafter, we investigated in a test-set of 21 patients intra- and inter-observer coefficient of variation of RBF{sub MRI}. After validation, we measured RBF{sub MRI} in a cohort of 91 patients and compared the variability explained by characteristics indicative for disease severity for RBF{sub MRI} and RBF measured by continuous hippuran infusion. The correlation in flow measurement using phantoms by phase-contrast MRI was high and fluid collection was high (CCC=0.969). Technical problems that precluded RBF{sub MRI} measurement occurred predominantly in patients with a lower eGFR (34% vs. 16%). In subjects with higher eGFRs, variability in RBF explained by disease characteristics was similar for RBF{sub MRI} compared to RBF{sub Hip,} whereas in subjects with lower eGFRs, this was significantly less for RBF{sub MRI}. Our study shows that RBF can be measured accurately in ADPKD patients by phase-contrast, but this technique may be less feasible in subjects with a lower eGFR. (orig.)

  13. Two-stage magneto-optical trapping and narrow-line cooling of $^6$Li atoms to high phase-space density

    CERN Document Server

    Sebastian, Jimmy; Li, Ke; Gan, Huat Chai Jaren; Li, Wenhui; Dieckmann, Kai

    2014-01-01

    We report an experimental study of peak and phase-space density of a two-stage magneto-optical trap (MOT) of 6-Li atoms, which exploits the narrower $2S_{1/2}\\rightarrow 3P_{3/2}$ ultra-violet (UV) transition at 323 nm following trapping and cooling on the more common D2 transition at 671 nm. The UV MOT is loaded from a red MOT and is compressed to give a high phase-space density up to $3\\times 10^{-4}$. Temperatures as low as 33 $\\mu$K are achieved on the UV transition. We study the density limiting factors and in particular find a value for the light-assisted collisional loss coefficient of $1.3 \\pm0.4\\times10^{-10}\\,\\textrm{cm}^3/\\textrm{s}$ for low repumping intensity.

  14. Method and apparatus maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Farthing, William Earl (Pinson, AL); Felix, Larry Gordon (Pelham, AL); Snyder, Todd Robert (Birmingham, AL)

    2009-12-15

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  15. [Multicenter trial for optimization of bolus tracking settings and contrast material injection protocol in arterial dominant phase of dynamic computed tomography for diagnosis of hepatocellular carcinoma].

    Science.gov (United States)

    Yoshikawa, Shushi; Okada, Masahiro; Kondo, Hiroshi; Sou, Hironobu; Murakami, Takamichi; Kanematsu, Masayuki; Ichikawa, Tomoaki; Hayakawa, Akiko; Shiosakai, Kazuhito; Awai, Kazuo; Yoshimitsu, Kengo; Yamashita, Yasuyuki

    2014-08-01

    Alongside current improvements in the performance of computer tomography (CT) systems, there has been an increase in the use of bolus tracking (BT) to acquire arterial dominant phase images for dynamic CT at optimal timing for characterization of liver focal lesions. However, optimal BT settings have not been established. In the present study, methods of contrast enhancement and BT setting values were evaluated using a multicenter post-marketing surveillance study on contrast media used in patients with chronic hepatitis and/or cirrhosis who had undergone liver dynamic CT for diagnosis of hepatocellular carcinoma, conducted by Daiichi Sankyo Co., Ltd. The results suggested the contrast injection method to be clinically useful if the amount of iodine per kilogram of body weight is set at 600 mg/kg and the injection duration at 30 s. To achieve a good arterial dominant scan under conditions where the injection duration is fixed at 30 s or the average injection duration is 34 s using the fixed injection rate method, the scan delay time should ideally to be set to longer than 13 s. If using the BT method, we recommend that the BT settings should be revalidated in reference to our results.

  16. A broad spectral feature detected during the cooling phase of a type I X-ray burst from GRS 1747-312 with Suzaku

    Science.gov (United States)

    Iwai, Masachika; Dotani, Tadayasu; Ozaki, Masanobu; Maeda, Yoshitomo; Mori, Hideyuki; Saji, Shigetaka

    2017-08-01

    We analyzed the Suzaku archive data of a type I X-ray burst from GRS 1747-312, a low-mass X-ray binary located in the globular cluster Terzan 6. During the Galactic bulge mapping observations with Suzaku, which covered Terzan 6, an X-ray burst of long duration and with moderate photospheric-radius expansion was serendipitously detected and was considered to be most probably originating from GRS 1747-312. The time-divided burst spectra were reproduced well with an absorbed blackbody over the majority of the time, but significant deviation was detected late in the cooling phase. The deviation was due to a rolled-off feature, which gradually developed in the cooling phase of the burst, in the energy spectra above ∼7 keV. We tested various models to reproduce the spectral feature and found three types of models (reflection by cold matter, partial-covering absorption, and Doppler-smeared absorption edges due to the rapid spin of a neutron star) gave a statistically acceptable fit. We discussed the feasibility of these models, including a non-Planckian nature of the burst spectra.

  17. Magnetic cooling close to a quantum phase transition—The case of Er2Ti2O7

    Science.gov (United States)

    Wolf, B.; Tutsch, U.; Dörschug, S.; Krellner, C.; Ritter, F.; Assmus, W.; Lang, M.

    2016-10-01

    Magnetic cooling, first introduced in the late twenties of last century, has regained considerable interest recently as a cost-efficient and easy-to-handle alternative to 3He-based refrigeration techniques. Especially, adiabatic demagnetization of paramagnets—the standard materials for magnetic refrigeration—has become indispensable for the present space applications. To match the growing demand for increasing the efficiency in these applications, a new concept for magnetic cooling based on many-body effects around a quantum-critical-point has been introduced and successfully tested [B. Wolf et al., Proc. Natl. Acad. Sci. U.S.A. 108, 6862 (2011)]. By extending this concept to three-dimensional magnetic systems, we present here the magnetothermal response of the cubic pyrochlore material Er2Ti2O7 in the vicinity of its B-induced quantum-critical point which is located around 1.5 T. We discuss performance characteristics such as the range of operation, the efficiency, and the hold time. These figures are compared with those of state-of-the-art paramagnetic coolants and with other quantum-critical systems which differ by the dimensionality of the magnetic interactions and the degree of frustration.

  18. Experimental Study of Single Phase Flow in a Closed-Loop Cooling System with Integrated Mini-Channel Heat Sink

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-06-01

    Full Text Available The flow and heat transfer characteristics of a closed-loop cooling system with a mini-channel heat sink for thermal management of electronics is studied experimentally. The heat sink is designed with corrugated fins to improve its heat dissipation capability. The experiments are performed using variable coolant volumetric flow rates and input heating powers. The experimental results show a high and reliable thermal performance using the heat sink with corrugated fins. The heat transfer capability is improved up to 30 W/cm2 when the base temperature is kept at a stable and acceptable level. Besides the heat transfer capability enhancement, the capability of the system to transfer heat for a long distance is also studied and a fast thermal response time to reach steady state is observed once the input heating power or the volume flow rate are varied. Under different input heat source powers and volumetric flow rates, our results suggest potential applications of the designed mini-channel heat sink in cooling microelectronics.

  19. The expression pattern of microRNAs in granulosa cells of subordinate and dominant follicles during the early luteal phase of the bovine estrous cycle.

    Science.gov (United States)

    Salilew-Wondim, Dessie; Ahmad, Ijaz; Gebremedhn, Samuel; Sahadevan, Sudeep; Hossain, M D Munir; Rings, Franca; Hoelker, Michael; Tholen, Ernst; Neuhoff, Christiane; Looft, Christian; Schellander, Karl; Tesfaye, Dawit

    2014-01-01

    This study aimed to investigate the miRNA expression patterns in granulosa cells of subordinate (SF) and dominant follicle (DF) during the early luteal phase of the bovine estrous cycle. For this, miRNA enriched total RNA isolated from granulosa cells of SF and DF obtained from heifers slaughtered at day 3 and day 7 of the estrous cycle was used for miRNAs deep sequencing. The results revealed that including 17 candidate novel miRNAs, several known miRNAs (n = 291-318) were detected in SF and DF at days 3 and 7 of the estrous cycle of which 244 miRNAs were common to all follicle groups. The let-7 families, bta-miR-10b, bta-miR-26a, bta-miR-99b and bta-miR-27b were among abundantly expressed miRNAs in both SF and DF at both days of the estrous cycle. Further analysis revealed that the expression patterns of 16 miRNAs including bta-miR-449a, bta-miR-449c and bta-miR-222 were differentially expressed between the granulosa cells of SF and DF at day 3 of the estrous cycle. However, at day 7 of the estrous cycle, 108 miRNAs including bta-miR-409a, bta-miR-383 and bta-miR-184 were differentially expressed between the two groups of granulosa cell revealing the presence of distinct miRNA expression profile changes between the two follicular stages at day 7 than day 3 of the estrous cycle. In addition, unlike the SF, marked temporal miRNA expression dynamics was observed in DF groups between day 3 and 7 of the estrous cycle. Target gene prediction and pathway analysis revealed that major signaling associated with follicular development including Wnt signaling, TGF-beta signaling, oocyte meiosis and GnRH signaling were affected by differentially expressed miRNAs. Thus, this study highlights the miRNA expression patterns of granulosa cells in subordinate and dominant follicles that could be associated with follicular recruitment, selection and dominance during the early luteal phase of the bovine estrous cycle.

  20. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  1. Large power diode laser of phase-change cooling%基于相变冷却的大功率二极管激光器技术

    Institute of Scientific and Technical Information of China (English)

    高松信; 武德勇; 曹宏章; 王宏; 李弋; 杨波; 刘军; 唐淳

    2011-01-01

    By combining the methods of spray cooling heat transfer and micro-grooves phase change heat transfer, we design a heat sink based on throttle microgrooves phase change cooling theory. It has been proved by experiments that the vaporization rate of the coolant in the microgrooves of the cooler had reached 70%. The cooling efficiency increased rapidly while the coolant flow became smaller and the thermal management unit lighter. At the same time, we investigated the packaging of laser diode stacks with back surface cooling heat sink. Using the new technique of compound heat sink, AuSn alloy solder and the multi inter-face soldering, we completed the packaging of quasi-continuous wave(QCW) 3 kW laser diode stacks, with a packing spacing of 1.3 mm. It has been proved by experiments that this unit stacks device achieved a 3. 01 kW peak output power with duty cycle 10%, and the HWFM of spectrum is smaller than 3. 5 nm. The flow rate of the coolant R134a is 110 mL/min, which is about 10 times lower than that of water.%设计了一种基于相变冷却方式工作的大功率二极管激光器,该激光器的散热器是基于节流式喷射微槽道相变冷却的原理,使冷却液在微槽中的气化率达到了70%,大幅度提高了冷却效果,减小了冷却液流量,在同样制冷功率条件下,冷却液流量仅为水冷方式的1/10.利用相变冷却器进行了背冷式半导体激光器叠阵封装工艺的研究,采用复合热沉与AuSn硬焊料结合的新型封装工艺,完成了准连续3 kW叠阵的封装.实验测试表明,单元叠阵的输出功率达到3.01 kW,占空比10%,封装间距为1.3 mm,光谱宽度小于3.5 nm.最大功率输出时所需R134a冷却液的流量仅为110 mL/min.

  2. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  3. A Super Cooled, Non-toxic, Non-flammable Phase Change Material Thermal Pack for Portable Life Support Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept development and test of a water-based, advanced Phase Change Material (PCM) heat sink is proposed. Utilizing a novel material choice for both an...

  4. A Super Cooled, Non-toxic, Non-flammable Phase Change Material Thermal Pack for Portable Life Support Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The continuation of concept development and test of a water-based, advanced Phase Change Material (PCM) heat sink is proposed. Utilizing a novel material choice for...

  5. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  6. Behaviour of IPG waste forms bearing BaSO{sub 4} as the dominant sludge constituent generated from the treatment of water used for cooling the stricken power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Amamoto, Ippei; Kobayashi, Hidekazu; Yokozawa, Takuma; Yamashita, Teruo; Nagai, Takayuki [Japan Atomic Energy Agency, Tokai-mura, Ibaraki Pref. (Japan); Kitamura, Naoto; Takebe, Hiromichi [Ehime University, Matsuyama, Ehime Pref. (Japan); Mitamura, Naoki; Tsuzuki, Tatsuya [Central Glass Co.,Ltd., Matsusaka, Mie Pref. (Japan)

    2013-07-01

    The great amount of water used for cooling the stricken power reactors at Fukushima Dai-ichi following the earthquake and tsunami of 11 March 2011 has resulted in accumulation of cooling water so-called the remaining water in some buildings. As the cooling water is subsequently contaminated by fission products (FPs) and some other radioactive substances, it is necessary to decontaminate this 'cooling water' to reduce the volume of liquid radioactive waste and to reuse it again for cooling the affected reactors. Some methods are applied to remove the radioactive substances from the cooling water. However, after treatments of water, there arises a secondary radioactive waste, the sludge. Steps are now taken to immobilize this sludge. In this paper, BaSO{sub 4}, as one of main constituents of the sludge, was chosen as an immobilizing target substance. The appropriate manufacturing condition of glass waste form for loading the sludge (BaSO{sub 4}) was studied and the chemical durability was evaluated by measuring the dissolution rate. For this experiment, the iron phosphate glass (IPG), which is known to possess a large loading capacity for a variety of chemical substances, was employed as the glass medium. Based on experimental results, it is evident that BaSO{sub 4} can be loaded into the IPG medium when it possesses the appropriate composition and melting temperature. During loading, BaSO{sub 4} converted into BaO, acting as a network modifier, which leads to enhanced stability of IPG. (authors)

  7. Tephra architecture, pyroclast texture and magma rheology of mafic, ash-dominated eruptions: the Violent Strombolian phase of the Pleistocene Croscat (NE Spain) eruption.

    Science.gov (United States)

    Cimarelli, C.; Di Traglia, F.; Vona, A.,; Taddeucci, J.

    2012-04-01

    A broad range of low- to mid-intensity explosive activity is dominated by the emission of ash-sized pyroclasts. Among this activity, Violent Strombolian phases characterize the climax of many mafic explosive eruptions. Such phases last months to years, and produce ash-charged plumes several kilometers in height, posing severe threats to inhabited areas. To tackle the dominant processes leading to ash formation during Violent Strombolian eruptions, we investigated the magma rheology and the field and textural features of products from the 11 ka Croscat basaltic complex scoria cone in the Quaternary Garrotxa Volcanic Field (GVF). Field, grain-size, chemical (XRF, FE-SEM and electron microprobe) and textural analyses of the Croscat pyroclastic succession outlined the following eruption evolution: activity at Croscat began with fissural, Hawaiian-type fountaining that rapidly shifted towards Strombolian style from a central vent. Later, a Violent Strombolian explosion included several stages, with different emitted volumes and deposit features indicative of differences within the same eruptive style: at first, quasi-sustained fire-fountaining with ash jet and plume produced a massive, reverse to normal graded, scoria deposit; later, a long lasting series of ash-explosions produced a laminated scoria deposit. The eruption ended with a lava flow breaching the western-side of the volcano. Scoria clasts from the Croscat succession ubiquitously show micrometer- to centimeter-sized, microlite-rich domains (MRD) intermingled with volumetrically dominant, microlite-poor domains (MPD). MRD magmas resided longer in a relatively cooler, degassed zone lining the conduit walls, while MPD ones travelled faster along the central, hotter streamline, the two interminging along the interface between the two velocity zones. The preservation of two distinct domains in the short time-scale of the eruption was favoured by their rheological contrast related to the different microlite

  8. Phase change of First Wall in Water-Cooled Breeding Blankets of K-DEMO for Vertical

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo; Lee, Jeong Hun; Cho, Hyoung Kyu; Park, Goon Cherl [Seoul National University, Seoul (Korea, Republic of); Im, Ki Hak [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to simulate thermal-hydraulic behavior of a single blanket module when plasma disruption occurs. Plasma disruptions, such as vertical displacement events (VDE), with high heat flux can cause melting and vaporization of plasma facing materials and also burnout of coolant channels. The thermal design, evaluation and validation have been performed in order to establish the conceptual design guidelines of the water-cooled breeding blanket for the K-DEMO reactor. As a part of the NFRI research, Seoul National University (SNU) is conducting transient thermal-hydraulic analysis to confirm the integrity of blanket system for plasma disruption events. Vertical displacement events (VDE) with high heat flux can cause melting and vaporization of plasma facing materials (PFCs) and also burnout of coolant channels. In order to simulate melting of first wall in blanket module when VDE occurs, one-dimensional heat conduction equations were solved numerically with modification of the specific heat of the first wall materials using effective heat capacity method. Temperature profiles in first wall for VDE are shown in fig 7 - 9. At first, temperature of tungsten rapidly raised and even exceeded its melting temperature. When VDE just ended at 0.1 second, 0.83 mm thick of tungsten melted. But the other materials including vanadium and RAFM didn't exceed their melting temperatures after 500 seconds.

  9. Alfv\\'en wave phase mixing in flows -- why over-dense solar coronal open magnetic field structures are cool?

    CERN Document Server

    Tsiklauri, D

    2015-01-01

    Our magnetohydrodynamic (MHD) simulations and analytical calculations show that, when a background flow is present, mathematical expressions for the Alfv\\'en wave (AW) damping via phase mixing are modified by a following substitution $C_A^\\prime(x) \\to C_A^\\prime(x)+V_0^\\prime(x)$, where $C_A$ and $V_0$ are AW phase and the flow speeds and prime denotes derivative in the direction across the background magnetic field. In uniform magnetic field and over-dense plasma structures, in which $C_A$ is smaller compared to surrounding plasma, the flow, that is confined to the structure, in the same direction as the AW, reduces the effect of phase mixing, because on the edges of the structure $C_A^\\prime$ and $V_0^\\prime$ have opposite sign. Thus, the wave damps via phase mixing {\\it slower} compared to the case without the flow. This is the consequence of the co-directional flow reducing the wave front stretching in the transverse direction. Although, the result is generic and is applicable to different laboratory or ...

  10. Benchmarking of thermal hydraulic loop models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES), phase-I: Isothermal steady state forced convection

    Science.gov (United States)

    Cho, Jae Hyun; Batta, A.; Casamassima, V.; Cheng, X.; Choi, Yong Joon; Hwang, Il Soon; Lim, Jun; Meloni, P.; Nitti, F. S.; Dedul, V.; Kuznetsov, V.; Komlev, O.; Jaeger, W.; Sedov, A.; Kim, Ji Hak; Puspitarini, D.

    2011-08-01

    As highly promising coolant for new generation nuclear reactors, liquid Lead-Bismuth Eutectic has been extensively worldwide investigated. With high expectation about this advanced coolant, a multi-national systematic study on LBE was proposed in 2007, which covers benchmarking of thermal hydraulic prediction models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES). This international collaboration has been organized by OECD/NEA, and nine organizations - ENEA, ERSE, GIDROPRESS, IAEA, IPPE, KIT/IKET, KIT/INR, NUTRECK, and RRC KI - contribute their efforts to LACANES benchmarking. To produce experimental data for LACANES benchmarking, thermal-hydraulic tests were conducted by using a 12-m tall LBE integral test facility, named as Heavy Eutectic liquid metal loop for integral test of Operability and Safety of PEACER (HELIOS) which has been constructed in 2005 at the Seoul National University in the Republic of Korea. LACANES benchmark campaigns consist of a forced convection (phase-I) and a natural circulation (phase-II). In the forced convection case, the predictions of pressure losses based on handbook correlations and that obtained by Computational Fluid Dynamics code simulation were compared with the measured data for various components of the HELIOS test facility. Based on comparative analyses of the predictions and the measured data, recommendations for the prediction methods of a pressure loss in LACANES were obtained. In this paper, results for the forced convection case (phase-I) of LACANES benchmarking are described.

  11. Additivity dominance

    Directory of Open Access Journals (Sweden)

    Paul Rozin

    2009-10-01

    Full Text Available Judgments of naturalness of foods tend to be more influenced by the process history of a food, rather than its actual constituents. Two types of processing of a ``natural'' food are to add something or to remove something. We report in this study, based on a large random sample of individuals from six countries (France, Germany, Italy, Switzerland, UK and USA that additives are considered defining features of what makes a food not natural, whereas ``subtractives'' are almost never mentioned. In support of this, skim milk (with major subtraction of fat is rated as more natural than whole milk with a small amount of natural vitamin D added. It is also noted that ``additives'' is a common word, with a synonym reported by a native speaker in 17 of 18 languages, whereas ``subtractive'' is lexicalized in only 1 of the 18 languages. We consider reasons for additivity dominance, relating it to omission bias, feature positive bias, and notions of purity.

  12. The relationship among complex fractionated electrograms, wavebreak, phase singularity, and local dominant frequency in fibrillation wave-dynamics: a modeling comparison study.

    Science.gov (United States)

    Yun, Yonghyeon; Hwang, Minki; Park, Jae Hyung; Shin, Hangsik; Shim, Eun Bo; Pak, Hui-Nam

    2014-03-01

    Although complex fractionated electrogram (CFE) is known to be a target for catheter ablation of fibrillation, its physiological meaning in fibrillation wave-dynamics remains to be clarified. We evaluated the spatiotemporal relationships among the parameters of fibrillation wave-dynamics by simulation modeling. We generated maps of CFE-cycle length (CFE-CL), local dominant frequency (LDF), wave break (WB), and phase singularity (PS) of fibrillation in 2-dimensional homogeneous bidomain cardiac modeling (1,000 × 1,000 cells ten Tusscher model). We compared spatiotemporal correlations by dichotomizing each maps into 10 × 10 lattice zones. In spatial distribution, WB and PS showed excellent correlation (R = 0.963, P CFE-CL had weak correlations with WB (R = 0.288, P CFE-CL area. Virtual ablation (5% of critical mass) of CFE-CL CFE-CL was weakly correlated with WB, PS, and LDF, spatiotemporally. PSs are mostly positioned at the periphery of low CFE-CL areas, and virtual ablation targeting low CFE-CL regions terminated fibrillation successfully.

  13. Danish Cool

    DEFF Research Database (Denmark)

    Toft, Anne Elisabeth

    2016-01-01

    Danish Cool. Keld Helmer-Petersen, Photography and the Photobook Handout exhibition text in English and Chinese by Anne Elisabeth Toft, Curator The exhibition Danish Cool. Keld Helmer-Petersen, Photography and the Photobook presents the ground-breaking work of late Danish photographer Keld Helmer...

  14. Numerical Investigation of Single Phase Fluid Flow and Heat Transfer In Rectangular Micro Channel Using Nanofluids as A Cooling Liquid

    Directory of Open Access Journals (Sweden)

    Mr. Sanjay V. Barad,

    2014-04-01

    Full Text Available In this paper The Thermal behaviour of Micro channel heat sink were investigated used Al2o3-water base nanoluid. The model have been solved by ANSYS fluent 14.5 solver. The Dimension of each rectangular channel is 215m width, 821m depth and 4.48cm length. The Reynolds number range from 200 to 400 for power input 100 w. The high thermal conductivity of nanoparticles is shown to enhance the single phase heat transfer coefficient, especially for laminar flow. Higher heat transfer coefficient were achieved mostly in entrances region of micro channels. The enhancement was weaker in fully developed region.

  15. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  16. Laser cooling of molecular anions.

    Science.gov (United States)

    Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-05-29

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C_{2}^{-}, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C_{2}^{-}, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics.

  17. The Proposed Heating and Cooling System in the CH2 Building and Its Impact on Occupant Productivity

    Directory of Open Access Journals (Sweden)

    Lu Aye

    2012-11-01

    Full Text Available Melbourne's climatic conditions demand that its buildings require both heating and cooling systems. In a multi-storey office building , however, cooling requirements will dominate. How the internal space is cooled and ventilation air is delivered will significantly impact on occupant comfort. This paper discusses the heating and cooling systems proposed for the CH2building. The paper critiques the proposed systems against previous experience, both internationally and in Australia. While the heating system employs proven technologies, less established techniques are proposed for the cooling system. Air movement in the shower towers, for example, is to be naturally induced and this has not always been successful elsewhere. Phase change material for storage of "coolth" does not appear to have been demonstrated previously in a commercial building, so the effectiveness of the proposed system is uncertain. A conventional absorption chiller backs up the untried elements of the cooling system, so that ultimately occupant comfort should not be compromised .

  18. Temperature initiated passive cooling system

    Science.gov (United States)

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  19. Quantum limit of photothermal cooling

    CERN Document Server

    De Liberato, Simone; Nori, Franco

    2010-01-01

    We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force. Contrary to previous attempts to model this system, we take into account the noise effects due to the granular nature of photon absorption. This allows us to tackle the cooling problem down to the noise dominated regime and to find reasonable estimates for the lowest achievable phonon occupation in the cantilever.

  20. Rapid cooled lens cell

    Science.gov (United States)

    Stubbs, David M.; Hsu, Ike C.

    1991-12-01

    This paper describes the optomechanical design, thermal analysis, fabrication, and test evaluation processes followed in developing a rapid cooled, infrared lens cell. Thermal analysis was the key engineering discipline exercised in the design phase. The effect of thermal stress on the lens, induced by rapid cooling of the lens cell, was investigated. Features of this lens cell that minimized the thermal stress will be discussed in a dedicated section. The results of thermal analysis on the selected lens cell design and the selection of the flow channel design in the heat exchanger will be discussed. Throughout the paper engineering drawings, illustrations, analytical results, and photographs of actual hardware are presented.

  1. YXKK系列高效率三相异步电机通风系统%Cooling System of YXKK Series High Efficiency Three Phase Asynchronous Motor

    Institute of Scientific and Technical Information of China (English)

    韩振乾

    2016-01-01

    分析了YXKK系列高效率三相异步电机冷却系统。从通风系统方式、风扇结构、冷却器结构、定转子通风道分布、铜条转子与铸铝转子的选用5个方面,结合不同的数据分析,说明了高效率电机风路结构设计参数的优化方向。结论对高效率电机的风路设计具有一定的参考价值。%The YXKK series high efficiency three phase asynchronous motor cooling system was analyzed. Combined data analysis of different structures and illustrated the optimization of wind path structure design parameters of high efficiency motors, from five aspects including way ventilation system, fan structure, cooler structure, stator and rotor duct distribution, selection of copper rotor and cast aluminum rotor. The conclusion has some reference value for wind path structure design of high efficiency motors.

  2. Domination, Eternal Domination, and Clique Covering

    Directory of Open Access Journals (Sweden)

    Klostermeyer William F.

    2015-05-01

    Full Text Available Eternal and m-eternal domination are concerned with using mobile guards to protect a graph against infinite sequences of attacks at vertices. Eternal domination allows one guard to move per attack, whereas more than one guard may move per attack in the m-eternal domination model. Inequality chains consisting of the domination, eternal domination, m-eternal domination, independence, and clique covering numbers of graph are explored in this paper.

  3. Effect of cooling rate on phase transitions and ferroelectric properties in 0.75BiFeO3-0.25BaTiO3 ceramics

    Science.gov (United States)

    Kim, Dae Su; Cheon, Chae Il; Lee, Seong Su; Kim, Jeong Seog

    2016-11-01

    The effect of the cooling rate on the electrical properties was investigated in the 0.75BiFeO3-0.25BaTiO3 ceramics. The air-quenched samples had superior ferroelectric and piezoelectric properties to the slowly cooled samples. The quenching effect weakened when the quenching temperature was less than 700 °C and eventually disappeared at 500 °C and below. The X-ray diffraction and transmission electron microscopy showed that the cooling rate had a significant effect on the crystal structure and domain structure. The slowly cooled sample showed a very small rhombohedral distortion and a poorly developed domain structure, which leads to weak ferroelectric and piezoelectric properties at room temperature. The quenched and slowly cooled samples had a ferroelectric rhombohedral structure (R3c) at room temperature and a paraelectric cubic structure (Pm-3m) at temperatures above 650 °C. On the other hand, the slowly cooled sample had a centro-symmetric orthorhombic (Pbnm) structure at intermediate temperatures, while the quenched sample had a noncentrosymmetric orthorhombic structure (Amm2). The diffusion of oxygen vacancies in the slowly cooled sample is believed to lead to a more symmetric orthorhombic structure at intermediate temperatures between 500 °C and 650 °C during the slow-cooling process and consequently very small rhombohedral distortion at room temperature.

  4. Cool snacks

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Brock, Steen; Brunsø, Karen

    2016-01-01

    such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...

  5. Isoreticular bio-MOF 100-102 coated solid-phase microextraction fibers for fast and sensitive determination of organic pollutants by the pore structure dominated mechanism.

    Science.gov (United States)

    Liu, Shuqin; Zhou, Yiwei; Zheng, Juan; Xu, Jianqiao; Jiang, Ruifeng; Shen, Yong; Jiang, Jijun; Zhu, Fang; Su, Chengyong; Ouyang, Gangfeng

    2015-07-07

    Here we report the successful utilization of the stepwise ligand exchange strategy for the improvement of adsorption ability of a series of bio-MOFs. The fast extraction rate and the different adsorption performances of the three bio-MOF coatings were dominated by their pore structures.

  6. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  7. Sex-linked dominant

    Science.gov (United States)

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... can be either an autosomal chromosome or a sex chromosome. It also depends on whether the trait ...

  8. Cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Todd R; Vyas, Brijesh; Kota, Krishna; Simon, Elina

    2017-01-31

    An apparatus and a method are provided. Use is made of a wick structure configured to receive a liquid and generate vapor in when such wick structure is heated by heat transferred from heat sources to be cooled off. A vapor channel is provided configured to receive the vapor generated and direct said vapor away from the wick structure. In some embodiments, heat conductors are used to transfer the heat from the heat sources to the liquid in the wick structure.

  9. A novel electronic cooling concept

    Science.gov (United States)

    Ponnappan, R.; Beam, J. E.

    Advanced electrical power conditioning systems for the More Electric Aircraft Initiative involve high currents and high voltages with the attendant waste heat generation and cooling problems. The use of solid state switching devices such as MCTs for these systems will result in power dissipation of several hundred Watts per square centimeter. Conventional forced air or low velocity single phase fluid cooling is inadequate to handle the waste heat dissipation of these high power devices. More advanced and innovative methods of cooling which can use fluids available in the aircraft and also easy to package are sought. A new approach called 'venturi flow cooling concept' is described. It is shown that localized cooling up to 200 W/sq cm is possible at the venturi throat region where the MCTs can be mounted. PAO coolant with Pr = 56 at 40 C can be conveniently used in aircraft.

  10. Laser cooling to quantum degeneracy.

    Science.gov (United States)

    Stellmer, Simon; Pasquiou, Benjamin; Grimm, Rudolf; Schreck, Florian

    2013-06-28

    We report on Bose-Einstein condensation in a gas of strontium atoms, using laser cooling as the only cooling mechanism. The condensate is formed within a sample that is continuously Doppler cooled to below 1  μK on a narrow-linewidth transition. The critical phase-space density for condensation is reached in a central region of the sample, in which atoms are rendered transparent for laser cooling photons. The density in this region is enhanced by an additional dipole trap potential. Thermal equilibrium between the gas in this central region and the surrounding laser cooled part of the cloud is established by elastic collisions. Condensates of up to 10(5) atoms can be repeatedly formed on a time scale of 100 ms, with prospects for the generation of a continuous atom laser.

  11. ATLAS - Liquid Cooling Systems

    CERN Multimedia

    Bonneau, P.

    1998-01-01

    Photo 1 - Cooling Unit - Side View Photo 2 - Cooling Unit - Detail Manifolds Photo 3 - Cooling Unit - Rear View Photo 4 - Cooling Unit - Detail Pump, Heater and Exchanger Photo 5 - Cooling Unit - Detail Pump and Fridge Photo 6 - Cooling Unit - Front View

  12. Phase Transformation Temperature of Heating and Cooling of X60 Steel by DSC Research Method%X60钢加热和冷却相变温度DSC法研究

    Institute of Scientific and Technical Information of China (English)

    曹建刚; 庄英菊

    2012-01-01

    采用差示扫描量热仪(DSC),分析了X60管线钢在加热与冷却过程中的相变温度.结果表明:在冷却时DSC曲线上出现三个峰值,除先共析铁素体析出和珠光体转变外,还有铌或钒的碳化物析出;相变温度随冷却速度的增大而降低;在加热至950℃时,DSC曲线上出现二个峰值,除先共析铁素体溶解和奥氏体转变外,没有明显的铌或钒的碳化物峰溶入奥氏体峰.%The phase transformation temperature of X60 pipeline steel in heating and cooling process was studied by DSC method. The results show that when cooling, the three peaks of DSC curve is proeutectoid ferrite, pearlite transformation, carbide precipitation of Nb or V, respectively. The phase transformation temperature decreases with increasing cooling rate. During heating at 900 ℃, the DSC curve shows that the two peaks are pro-eutectoid ferrite dissolution, austenite transformation and the DSC curve do not has obvious peak of Nb or V carbide dissolution in austenite peak.

  13. Fragment production in central heavy-ion collisions: reconciling the dominance of dynamics with observed phase transition signals through universal fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Frankland, J.D.; Chbihi, A.; Hudan, S. [and others

    2002-07-01

    Fragment production in central collisions of Xe+Sn has been systematically studied with the INDRA multidetector from 25 to 150 AMeV. The predominant role of collision dynamics is evidenced in multiple intermediate mass fragment production even at the lowest energies, around the so-called multifragmentation threshold. For beam energies 50 AMeV and above, a promising agreement with suitably modified Anti-symmetrized Molecular Dynamics calculations has been achieved. Intriguingly the same reactions have recently been interpreted as evidence for a liquid-gas phase transition in thermodynamically equilibrated systems. The universal fluctuation theory, thanks to its lack of any equilibrium hypothesis, shows clearly that in all but a tiny minority of carefully-selected central collisions fragment production is incompatible with either critical or phase coexistence behaviour. On the other hand, it does not exclude some similarity with aggregation scenarios such as the lattice-gas or Fisher droplet models. (authors)

  14. Magnetic entropy and cooling

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl; Kuhn, Luise Theil; Bahl, Christian Robert Haffenden

    2010-01-01

    Some manifestations of magnetism are well-known and utilized on an everyday basis, e.g. using a refrigerator magnet for hanging that important note on the refrigerator door. Others are, so far, more exotic, such as cooling by making use of the magnetocaloric eect. This eect can cause a change...... or nitrogen liquefaction or for room-temperature cooling. The magnetocaloric eect can further be used to determine phase transition boundaries, if a change in the magnetic state occurs at the boundary.In this talk, I will introduce the magnetocaloric eect (MCE) and the two equations, which characterize...... in the temperature of a magnetic material when a magnetic eld is applied or removed. For many years, experimentalists have made use of dilute paramagnetic materials to achieve milliKelvin temperatures by use of the magnetocaloric eect. Also, research is done on materials, which might be used for hydrogen, helium...

  15. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  16. H I absorption toward cooling flows in clusters of galaxies

    Science.gov (United States)

    Mcnamara, Brian R.; O'Connell, Robert W.; Bregman, Joel N.

    1990-01-01

    An H I survey of 14 cooling flow clusters and two noncooling flow clusters was conducted, and H I absorption features were detected against the nuclear radio continuum sources of two cooling flow dominant (CFD) galaxies, 2A 0335 + 096 and MKW3s. The absorption features are broad and redshifted with respect to the stellar absorption-line velocity of the CFDs by 90-225 km/s. This indicates that the H I is falling onto, and is probably gravitationally bound to, the CFDs. The kinematics of the H I clouds suggest a possible kinematic link between the warm and cold phases of the intracluster medium. The clouds are orders of magnitude smaller in radius and mass and larger in density than Galactic H I clouds. The detected CFDs have mass-accretion rates that are about 2.5 times larger than the CFDs that were not detected.

  17. Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications. Part 1: Micro-Channel Heat Sink for Direct Refrigeration Cooling

    Science.gov (United States)

    2008-09-01

    relation [Shah and London (1978), Incropera and Dewitt (2002)]: Boiling and Two-Phase Flow Laboratory 21 AP,pg = L- fsp.,G 2V, (1.3.4) where f,,.,Reg = 24...1.4.1) where q is the fin efficiency. Since the top wall is adiabatic, the fin efficiency is given by [ Incropera and Dewitt (2002)] tanh (m Hh...phase convection heat transfer coefficient prevalent in the highly subcooled inlet is given by the relation ( Incropera and Dewitt, 2002) Nu = -h D

  18. Dominant conformer of tetrahydropyran-2-methanol and its clusters in the gas phase explored by the use of VUV photoionization and vibrational spectroscopy

    Science.gov (United States)

    Zhan, Huaqi; Hu, Yongjun; Wang, Pengchao; Chen, Jiaxin

    2017-04-01

    Tetrahydropyran-2-methanol (THPM) is a typical alcohol containing a six-member cyclic ether, which can be considered as the model molecule of cyclic sugar. Herein, vacuum ultraviolet (VUV) photodissociation spectroscopy is employed to study fragmentation pathways and infrared (IR) plus VUV photoionization spectroscopy to investigate the structures of neutral THPM and its clusters with the size up to the trimer. Qualitative structural assignments are confirmed for the neutral species and ions based on MP2/aug-cc-pVTZ and ωB97X-D/cc-pVTZ calculations. The fragment cations at m/z = 84, 85, and 98 arise by the losing of CH2OH, CH3OH, and H2O from the monomer, respectively, as a result of C-C bond and C-O bond dissociation under the VUV (118 nm) radiation. It is found that the loss of CH3OH and H2O involves hydrogen transfer from the CH2 group to the dissociating CH2 and OH groups. Comparing the observed and calculated spectra of the monomer THPM, it suggests that the conformer containing a chair tetrahydropyran ring and an intramolecular hydrogen bond would be dominantly survived in a supersonic beam. Moreover, the IR spectra of larger clusters n > 1 (n = 2, 3) show only the broad hydrogen bonded OH stretch mode, and thus these larger clusters would form a closed-cyclic structure, where all OH groups are participating in hydrogen bonding. Partially the CH stretch positions of THPM clusters do not change significantly with the increasing of cluster size, thus the CH and CH2 groups are not involved in H-bonding interactions.

  19. Dimensioning of a two-phase loop for the study of the cooling of power electronics components; Dimensionnement d`une boucle diphasique pour l`etude du refroidissement des composants d`electronique de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Bricard, A. [CEA Centre d`Etudes Nucleaires de Grenoble, 38 (France). STTGRETh

    1996-12-31

    After having chosen between different cooling solutions for a given power electronics component, the dimensioning of a two-phase forced convection loop is described. The power electronics component is a 12 x 12 mm silicon pellet which can dissipate up to 400 W/cm{sup 2} heat fluxes. In a first step, the minimum size of channels is determined according to fluid characteristics, pressure drop and critical fluxes. In a second step, the coupled dimensioning of both the evaporator and the condenser is determined for different values of pipes diameter and mass flow rates. (J.S.) 8 refs.

  20. 稠密栅堆芯再淹没先驱冷却区域换热模型研究%Study on Heat Transfer Prediction Models of Precursory Cooling Region in Reflooding Phase of Tight Lattice

    Institute of Scientific and Technical Information of China (English)

    吴丹; 余红星

    2012-01-01

    On the basis of the reflooding experiment NEPTUN-LWHCR performed in Switzerland, this paper summarized the characteristics of the reflooding phase of tight lattice, and analyzed the reasons for the high peak clad temperature. A new heat transfer model of precursory cooling is established. It is proposed that the steam cooling is relatively poor in the precursory cooling to make the peak clad temperature higher. Through validating this mew model by calculating the peak clad temperature, it can be concluded that the new model is reasonable.%以瑞士NEPTUN-LWHCR稠密栅堆芯再淹没实验为基础,总结稠密栅再淹没过程的特点,建立先驱冷却换热新模型,分析造成再淹没过程包壳峰值温度较高的原因.分析表明,稠密栅再淹没过程中先驱冷却较差主要原因是蒸汽冷却较差.包壳峰值温度的对比验证了先驱冷却换热新模型的合理性.

  1. Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications. Part 2: Low Temperature Hybrid Micro-Channel/Micro-Jet Impingement Cooling

    Science.gov (United States)

    2008-09-01

    pressure gradient ( Incropera , 1999). Watson (1964) used inviscid theory to determine Boiling and Two-Phase Flow Laboratory 23 thickness h of the wall jet...the pressure drop coefficient, f is inversely proportional to jet Reynolds ( Incropera , 1999) f = KRe,.,, (4.4) and K is fairly constant for the...both pool and forced convection boiling on submerged bodies in saturated liquids", Int. J. Heat Mass Transfer, Vol. 26, pp. 389-399. Incropera , F.P

  2. GCr15钢连续冷却过程中的相变和组织演变%Phase transformation and microstructure evolution of GCr15 steel during continuous cooling

    Institute of Scientific and Technical Information of China (English)

    张小垒; 李辉; 徐士新; 李志超; 米振莉

    2014-01-01

    采用膨胀法结合组织观察和硬度测试,绘制了GCr15钢的连续冷却转变( CCT )曲线,分析了不同加热温度、不同连续冷却速率下的相变及显微组织。结果表明,随着冷却速率增加,GCr15钢的硬度增大;加热温度由临界区升高到完全奥氏体区时,CCT曲线中珠光体转变区域向右下方移动、珠光体转变推迟且珠光体转变的温度区域扩大;随着奥氏体化温度升高,晶粒粗化,珠光体和马氏体开始转变点温度降低。%By thermal dilation method combining with microstructure examination and hardness measurement , the continuous cooling transformation (CCT) curves of GCr15 steel were studied.The phase transformation and microstructure evolution rules of the GCr 15 steel at different heating temperature and continuous cooling conditions were analyzed .The results show that with the cooling rate increasing , the hardness values of the GCr 15 steel rise.When the heating temperature increases from critical region to the complete austenitizing area , the pearlite zone in the CCT curve shifts to the bottom right , the pearlite transformation postpones and the phase transition range is gradually expanded.With the austenitizing temperature increasing , the grains coursen and the pearlite and martensite starting transition points gradually decrease .

  3. Rectlinear cooling scheme for bright muon sources

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    A fast cooling technique is described that simultaneously reduces all six phase-space dimensions of a charged particle beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in absorbers and replenishing the momentum loss only in the longitudinal direction rf cavities. In this work we review its main features and describe the main results.

  4. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; France, D. M.; Routbort, J. L. (Energy Systems)

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  5. Topics on domination

    CERN Document Server

    Hedetniemi, ST

    1991-01-01

    The contributions in this volume are divided into three sections: theoretical, new models and algorithmic. The first section focuses on properties of the standard domination number &ggr;(G), the second section is concerned with new variations on the domination theme, and the third is primarily concerned with finding classes of graphs for which the domination number (and several other domination-related parameters) can be computed in polynomial time.

  6. Dominance in domestic dogs

    NARCIS (Netherlands)

    Borg, Van Der J.A.M.; Schilder, M.B.H.; Vinke, C.M.; Vries, De Han; Petit, Odile

    2015-01-01

    A dominance hierarchy is an important feature of the social organisation of group living animals. Although formal and/or agonistic dominance has been found in captive wolves and free-ranging dogs, applicability of the dominance concept in domestic dogs is highly debated, and quantitative data are

  7. Total well dominated trees

    DEFF Research Database (Denmark)

    Finbow, Arthur; Frendrup, Allan; Vestergaard, Preben D.

    cardinality then G is a total well dominated graph. In this paper we study composition and decomposition of total well dominated trees. By a reversible process we prove that any total well dominated tree can both be reduced to and constructed from a family of three small trees....

  8. Dominance in domestic dogs

    NARCIS (Netherlands)

    Borg, Van Der J.A.M.; Schilder, M.B.H.; Vinke, C.M.; Vries, De Han; Petit, Odile

    2015-01-01

    A dominance hierarchy is an important feature of the social organisation of group living animals. Although formal and/or agonistic dominance has been found in captive wolves and free-ranging dogs, applicability of the dominance concept in domestic dogs is highly debated, and quantitative data are

  9. Dominating Sets and Domination Polynomials of Paths

    Directory of Open Access Journals (Sweden)

    Saeid Alikhani

    2009-01-01

    Full Text Available Let G=(V,E be a simple graph. A set S⊆V is a dominating set of G, if every vertex in V\\S is adjacent to at least one vertex in S. Let 𝒫ni be the family of all dominating sets of a path Pn with cardinality i, and let d(Pn,j=|𝒫nj|. In this paper, we construct 𝒫ni, and obtain a recursive formula for d(Pn,i. Using this recursive formula, we consider the polynomial D(Pn,x=∑i=⌈n/3⌉nd(Pn,ixi, which we call domination polynomial of paths and obtain some properties of this polynomial.

  10. Application of vacuum steam systems to hot water district heating and cooling systems; Phase 2, System design and installation: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-01-01

    Pequod Associates, Inc. and District Energy St. Paul, Inc. installed a pilot project of an innovative District Heating technology through a contract with the US Department of Energy: Application of Vacuum Steam Systems to Hot Water District Heating and Cooling Systems FG01-88CE26560. This applied research was funded by the Energy Research and Development Act (94-163) for District Heating and Cooling Research. The Department of Energy recognizes the importance of developing low-cost conversion techniques for hot water district heating systems. The experimental design is an intervention technique that permits hot water district heating systems to connect to buildings equipped with steam heating systems. This method can substantially reduce conversion cost in many older buildings. The method circulates moist hot air as a heating medium under atmospheric and vacuum conditions in standard steam radiators and steam heating coils. The system operates with heat exchangers and blower/receiver package. The pilot project involved the installation of such a system in an office building located at 310 Cedar Street, St. Paul, Minnesota. The installation enabled District Energy to provide service to a building that otherwise could not be converted to district heating without major system renovations. If the operating results of the pilot project are favorable, the technology cab be adopted by many district heating systems to lower conversion costs and increase market penetration. Among the additional benefits from this technology are eliminating old, inefficient boilers, lower maintenance costs and improved fuel efficiency.

  11. Magnetic cooling close to a quantum phase transition—The case of Er{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, B.; Tutsch, U.; Dörschug, S.; Krellner, C.; Ritter, F.; Assmus, W.; Lang, M. [Physikalisches Institut, Goethe Universität, SFB-TR49, 60438 Frankfurt (Germany)

    2016-10-14

    Magnetic cooling, first introduced in the late twenties of last century, has regained considerable interest recently as a cost-efficient and easy-to-handle alternative to {sup 3}He-based refrigeration techniques. Especially, adiabatic demagnetization of paramagnets—the standard materials for magnetic refrigeration—has become indispensable for the present space applications. To match the growing demand for increasing the efficiency in these applications, a new concept for magnetic cooling based on many-body effects around a quantum-critical-point has been introduced and successfully tested [B. Wolf et al., Proc. Natl. Acad. Sci. U.S.A. 108, 6862 (2011)]. By extending this concept to three-dimensional magnetic systems, we present here the magnetothermal response of the cubic pyrochlore material Er{sub 2}Ti{sub 2}O{sub 7} in the vicinity of its B-induced quantum-critical point which is located around 1.5 T. We discuss performance characteristics such as the range of operation, the efficiency, and the hold time. These figures are compared with those of state-of-the-art paramagnetic coolants and with other quantum-critical systems which differ by the dimensionality of the magnetic interactions and the degree of frustration.

  12. Phase transitions and He-synthesis driven winds in neutrino cooled accretion disks: prospects for late flares in short gamma-ray bursts

    CERN Document Server

    Lee, William H; Diego-Lopez-Camara,

    2009-01-01

    We consider the long term evolution of debris following the tidal disruption of compact stars in the context of short gamma ray bursts (SGRBs). The initial encounter impulsively creates a hot, dense, neutrino-cooled disk capable of powering the prompt emission. After a long delay, we find that powerful winds are launched from the surface of the disk, driven by the recombination of free nucleons into alpha-particles. The associated energy release depletes the mass supply and eventually shuts off activity of the central engine. As a result, the luminosity and mass accretion rate deviate from the earlier self-similar behavior expected for an isolated ring with efficient cooling. This then enables a secondary episode of delayed activity to become prominent as an observable signature, when material in the tidal tails produced by the initial encounter returns to the vicinity of the central object. The time scale of the new accretion event can reach tens of seconds to minutes, depending on the details of the system....

  13. Relationship between the size of the dominant follicle, vaginal electrical resistance, serum concentrations of oestradiol and progesterone and sexual receptivity during the follicular phase of the dromedary camel (Camelus dromedarius).

    Science.gov (United States)

    Ghoneim, I M; Waheed, M M; Adam, Mohammed I; Al-Eknah, M M

    2015-03-01

    Thirteen dromedaries were used to study the relationship between the size of the dominant follicle, vaginal electrical resistance (VER), sexual receptivity, and serum concentrations of oestradiol-17β (E2) and progesterone (P4) throughout the follicular phase. On a daily basis, the animals experienced teasing with a vasectomised camel, trans-rectal ultrasound examination of the ovaries, and measurement of VER and blood collection for serum E2 and P4. Results revealed no significant differences between the mean VER in the animals that had a follicle of 5-10mm (group I, n=11), 11-15mm (group II, n=12) and 16-20mm (group III, n=13). The VER did not correlate with the follicular size. The E2 concentrations in the animals in groups II (60.14pg/ml) and III (66.52pg/ml) were significantly (Pdromedary camels.

  14. Phase formation of Cu{sub 50−x}Co{sub x}Zr{sub 50} (x = 0–20 at.%) alloys: Influence of cooling rate

    Energy Technology Data Exchange (ETDEWEB)

    Javid, F.A., E-mail: f.a.javid@ifw-dresden.de [Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden (Germany); Institute of Materials Science, Dresden University of Technology, D-01062 Dresden (Germany); Mattern, N. [Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden (Germany); Samadi Khoshkhoo, M. [Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden (Germany); Institute of Materials Science, Dresden University of Technology, D-01062 Dresden (Germany); Stoica, M.; Pauly, S. [Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden (Germany); Eckert, J. [Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden (Germany); Institute of Materials Science, Dresden University of Technology, D-01062 Dresden (Germany)

    2014-03-25

    Highlights: • Pseudo-binary (Cu,Co)Zr phase diagram. • Stable and metastable phases of Cu–Co–Zr alloys. • Martensitic transformation. -- Abstract: The dependence of phase formation on quenching rate and the thermodynamical stability of Cu{sub 50−x}Co{sub x}Zr{sub 50} (x = 0–20) was investigated. It was found that cobalt decreases the glass forming ability of the alloys and changes the crystalline products of the system from Cu{sub 10}Zr{sub 7} + CuZr{sub 2} to a (Cu,Co)Zr phase with a B2 structure. The results indicate that for the melt-spun ribbons with at least 5 at.% Co, the glass crystallizes directly into B2 (Cu,Co)Zr, while in the case of bulk specimens, compositions with 0 ⩽ x < 5 of Co contain the monoclinic (Cu,Co)Zr phase as well as Cu{sub 10}Zr{sub 7} and CuZr{sub 2}, whereas for x ⩾ 10, the B2 (Cu,Co)Zr phase is the equilibrium phase at room temperature. Complete solubility of cobalt in B2 CuZr is indicated by the linear change of the lattice constant, which can be readily understood by Vegard’s law. Furthermore, increasing the cobalt content decreases the martensitic transformation temperatures. The phase formation in the ternary system is summarized in a pseudo-binary (Cu,Co)Zr phase diagram. The results are useful for designing new shape memory alloys, as well as bulk metallic glass composites with the addition of glass former elements.

  15. Simulation Research on Thermal Performance of Radiant Cooling Ceiling with Phase Change Material for Thermal Storage%相变材料蓄能式吊顶辐射供冷系统热性能模拟研究

    Institute of Scientific and Technical Information of China (English)

    张群力; 狄洪发

    2012-01-01

    In this paper, a radiant cooling ceiling for thermal storage was presented, in which the capillary grid with phase change material was buried. Firstly,the mathematical model for the thermal performance of such ceiling under interval cooling conditions was set up. Secondly,the influences of various thermal property factors of phase change material on the average heat flux and energy storage ratio were analyzed, and the main influence factors were determined based on the sensitivity analysis. Thirdly, the thermal performance differences between the phase change material ceiling and the concrete ceiling were analyzed. The results indicated that the energy storage ratio of the former one was lager than that of the latter one.%本文将单位体积蓄能密度较大的相变材料与毛细管网格栅埋入到建筑吊顶中,设计出了一种相变材料蓄能式吊顶辐射供冷末端形式,建立了分析该吊顶在间歇运行工况下热性能的数学模型,利用该模型可以分析不同相变材料物性对该相变材料蓄能式吊顶的表面平均热流密度和蓄能比的影响.通过对影响因素的敏感性分析,得出了影响吊顶热性能的主要因素.此外,对比分析了相变材料蓄能式吊顶与混凝土蓄能式吊顶热性能的差异,指出相变材料蓄能式吊顶辐射供冷方式具有蓄能比更高的特点.

  16. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  17. 一种相控阵雷达用耐气压冷板的焊接工艺方法研究%Research on Welding Processes of A Pressure-resistant Cooling Plate for Phased Array Radar

    Institute of Scientific and Technical Information of China (English)

    王志鹏; 冉振旺; 杨文静; 肖爱群; 许明珠

    2014-01-01

    某相控阵雷达冷板对焊缝提出了气密性要求,为实现装配,还要求焊接后平面度公差不超过0.1mm。使用真空钎焊、激光焊、电子束焊方法分别对耐气压冷板进行焊接试验,对焊接变形及密封性检测的情况进行了分析,确定了满足冷板使用要求的焊接工艺方法,通过对焊接方法的改进,使形位公差、气密性指标均得到很好的保证,解决了该冷板焊接的技术难题。%A new sort of cooling plate, pressure-resistant cooling plate, is proposed in the phased array radar. For its new filler in the plate, a higher requirement of air tightness is necessary. What’s more, its flatness tolerance after welding should be no more than 0.1mm so that a very thin PCB assembles onto the plate. In order to meet the requirement, three welding methods of vacuum brazing, laser welding and electron beam welding were carried out. By testing the welding deformation and air tightness, the advantages and disadvantages of the welding methods were compared. As a result, an optimized welding process was formed to solve the cooling plate welding technical problems.

  18. Axion Cooling of Neutron Stars

    CERN Document Server

    Sedrakian, Armen

    2015-01-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting X-ray sources puts constraints on the properties of axions, and by extension of any light pseudo-scalar dark matter particles, whose existence has been postulated to solve the strong-CP problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by $S$- and $P$-wave nucleonic condensates in a benchmark code for cooling simulations as well as provide fit formulae for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring non-accreted iron and accreted light element envelopes, and a range of nucleon-axion coupling. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the tempe...

  19. The contrasting roles of creep and stress relaxation in the time-dependent deformation during in-situ cooling of a nickel-base single crystal superalloy.

    Science.gov (United States)

    Panwisawas, Chinnapat; D'Souza, Neil; Collins, David M; Bhowmik, Ayan

    2017-09-11

    Time dependent plastic deformation in a single crystal nickel-base superalloy during cooling from casting relevant temperatures has been studied using a combination of in-situ neutron diffraction, transmission electron microscopy and modelling. Visco-plastic deformation during cooling was found to be dependent on the stress and constraints imposed to component contraction during cooling, which mechanistically comprises creep and stress relaxation. Creep results in progressive work hardening with dislocations shearing the γ' precipitates, a high dislocation density in the γ channels and near the γ/γ' interface and precipitate shearing. When macroscopic contraction is restricted, relaxation dominates. This leads to work softening from a decreased dislocation density and the presence of long segment stacking faults in γ phase. Changes in lattice strains occur to a similar magnitude in both the γ and γ' phases during stress relaxation, while in creep there is no clear monotonic trend in lattice strain in the γ phase, but only a marginal increase in the γ' precipitates. Using a visco-plastic law derived from in-situ experiments, the experimentally measured and calculated stresses during cooling show a good agreement when creep predominates. However, when stress relaxation dominates accounting for the decrease in dislocation density during cooling is essential.

  20. Applicability Assessment of Phase Transfromation Models of Low Carbon Steel in Laminar Flow Cooling Process%层流冷却过程低碳钢相变模型的适用性分析

    Institute of Scientific and Technical Information of China (English)

    程杰锋; 唐广波; 刘正东

    2011-01-01

    Available austenite phase transformation models of C-Mn steels were collected and compared to investigate their applicability. Five groups of incubation period models (according to Scheil's additivity rule) were used to calculate ferrite transformation start temperature, seven groups of avrami equations were used to describe phase transformation kinetic process, and five groups of grain size models were used to predict ferrite grain size after transformation completion. By use of a developed integrated process modeling system in which thermal, mechanical and metallurgical processes from reheating furnace to coiling of a steel strip had been numerically and successfully coupled together. Phase transformation process was investigated under three different runout table cooling conditions (cooling rate is 10 ℃/s, 20 ℃/s and 40 ℃/s respectively) during hot strip rolling at 2050 HSM of Baosteel Co. Ltd. Applicability of phase transformation models were discussed by comparing the calculated data with experimental data. The results show that models proposed by Kwon are suitable for the incubation period,models of Avrami equations proposed by Liu, Donnay and Sun are suitable for the kinetics of phase transformation, and for the ferrite grain size, models proposed by Hodgson is suitable.%选取了现有典型的C-Mn钢相变过程的物理冶金模型,包括5组孕育期模型、7组相变动力学方程模型、5组相变后铁素体晶粒尺寸模型.利用自行开发的组织性能预报系统软件模拟计算了在3组实际冷却工艺条件下各模型的奥氏体转变过程,并对各模型进行了评价.结果表明,对于所设定的成分和工艺条件,适用性较好的孕育期模型是Kwon所提出的模型;适用性较好的动力学方程模型是Liu、Donnay和Sun所提出的模型;适用性较好的铁索体晶粒尺寸模型是Hodgson所提出的模型.

  1. Numerical analysis of influence of heat load on temperature of battery surface with cooling by a two-phase closed thermosyphon

    Directory of Open Access Journals (Sweden)

    Krasnoshlykov Alexander

    2017-01-01

    Full Text Available Numerical analysis of thermal conditions of a two-phase closed thermosyphon using the software package ANSYS FLUENT has been carried out. Time dependence of temperature of heat source surface, which characterize the efficiency of thermosyphon at critical temperatures of batteries have been obtained.

  2. Autosomal dominant lamellar ichthyosis.

    Science.gov (United States)

    Toribio, J; Fernández Redondo, V; Peteiro, C; Zulaica, A; Fabeiro, J M

    1986-08-01

    Five members of two generations of one family were affected with lamellar ichthyosis, suggesting autosomal dominant transmission. The clinical and histopathological characteristics of the cases described here are similar to those reported by Traupe et al. (1984) as autosomal dominant lamellar ichthyosis and thus confirm the existence of this new form of ichthyosis.

  3. Cooling of Compact Stars with Color Superconducting Quark Matter

    CERN Document Server

    Noda, Tsuneo; Hashimoto, Masa-aki; Maruyama, Toshiki; Tatsumi, Toshitaka; Fujimoto, Masayuki Y

    2015-01-01

    We show a scenario for the cooling of compact stars considering the central source of Cassiopeia A (Cas A). The Cas A observation shows that the central source is a compact star with high effective temperature, and it is consistent with the cooling without exotic phases. The Cas A observation also gives the mass range of $M \\geq 1.5 M_\\odot$. It may conflict with the current cooling scenarios of compact stars that heavy stars show rapid cooling. We include the effect of the color superconducting (CSC) quark matter phase on the thermal evolution of compact stars. We assume the gap energy of CSC quark phase is large ($\\Delta \\gtrsim \\mathrm{10 MeV}$), and we simulate the cooling of compact stars. We present cooling curves obtained from the evolutionary calculations of compact stars: while heavier stars cool slowly, and lighter ones indicate the opposite tendency.

  4. 脉冲功率3kW二极管激光器叠阵的相变冷却%Phase transition cooling of 3 kW pulsed diode laser stack

    Institute of Scientific and Technical Information of China (English)

    李弋; 高松信; 武德勇; 杨波; 曹宏章

    2012-01-01

    The paper studies the cooling system of a diode laser stack, and presents a phase transition cooling system using R134a as coolant and a heat sink based on throttle microchannel phase transition cooling. The packaging of the quasi-continuous wave (pulsed) 3 kW laser diode stack is finished. The influence of the temperature difference of coolant at inlet and outlet on the output wavelength of the stack is analyzed. Experimental results show that the stack achieves a 3 030 W peak light-output power with a duty cycle of 20% at a current of 197 A. The wall plug efficiency is 39% and the vaporization rate of R134a in the cooler is 50%. The half width at full maximum of spectrum is smaller than 3. 8 nm. The flow rate of the coolant R134a is 0. 60 L/min, which is about 20% that of water. Therefore, the coolant flow becomes smaller and the volume of the thermal management unit diminishes significantly.%针对二极管激光器叠阵的高效散热冷却开展了研究,设计了基于R134a制冷剂的相变冷却系统和以节流式微通道相变冷却方式工作的冷却器,完成了脉冲功率3 kW叠阵的封装,并分析了制冷剂在热沉进出口的温度对叠阵出光波长的影响.实验测试结果表明:在20%的高占空比下,电流197 A时叠阵的输出功率达到3 030W,插座效率为39%,光谱宽度小于3.8 nm,冷却器内R134a的气化率约为50%.制冷剂R134a的流量为0.60 L/min,仅为水系统的1/5,大幅减小了冷却液流量和热管理系统的体积.

  5. The MICE Demonstration of Ionization Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Pasternak, J.; Blackmore, V.; Hunt, C.; Lagrange, J-B.; Long, K.; Collomb, N.; Snopok, P.

    2015-05-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The International Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization cooling channel, the muon beam passes through a material (the absorber) in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised project plan, which has received the formal endorsement of the international MICE Project Board and the international MICE Funding Agency Committee, will deliver a demonstration of ionization cooling by September 2017. In the revised configuration a central lithium-hydride absorber provides the cooling effect. The magnetic lattice is provided by the two superconducting focus coils and acceleration is provided by two 201 MHz single-cavity modules. The phase space of the muons entering and leaving the cooling cell will be measured by two solenoidal spectrometers. All the superconducting magnets for the ionization cooling demonstration are available at the Rutherford Appleton Laboratory and the first single-cavity prototype is under test in the MuCool Test Area at Fermilab. The design of the cooling demonstration experiment will be described together with a summary of the performance of each of its components. The cooling performance of the revised configuration will also be presented.

  6. Conductivity probes for two-phase flow pattern determination during emergency core cooling (ECC) injection experiments at the COCO facility (PHDR)

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M. (Research Centre Rossendorf, Dresden (Germany)); Kueppers, L. (Nuclear Research Centre Karlsruhe (Germany)); May, R. (Fraunhofer Inst. for Nondestructive Testing, Dept. Acoustical Methods for Nondestructive Testing, Evaluation and Quality Assurance, Dresden (Germany))

    1992-07-01

    The paper describes the use of needle-shaped conductivity probes for two-phase flow pattern determination during simulated ECC. The first results appear promising and the use of such probes as additional instrumentation can be envisaged in the future on power reactors, e.g. for the control of water level, once some improvements have been achieved, in particular regarding the stability of the probe. (orig.)

  7. THERMAL PROPERTIES OF CAPRYLIC ACID AND LAURIC ACID AS PHASE CHANGE COOL STORAGE MATERIAL%辛酸/月桂酸作为相变蓄冷材料的热性能研究

    Institute of Scientific and Technical Information of China (English)

    左建国; 李维仲; 徐士鸣

    2012-01-01

    利用差示扫描量热法和低温显微技术研究辛酸、月桂酸及其二元系统的热性能,建立辛酸/月桂酸二元系统相图.实验结果表明:辛酸/月桂酸二元系统的相图较复杂,辛酸质量分数较低时发生转熔,转熔温度约为14℃,转熔点相应的辛酸质量分数为60%;辛酸质量分数较高时发生共晶,共晶熔融温度为7.44℃,相变潜热为136.43J/g,共晶点相应的辛酸质量分数为80%,该共晶熔融温度适合于空调蓄冷.辛酸/月桂酸共晶混合物经过60次、120次冻熔循环后,其共晶熔融温度、熔融热、比热未发生明显变化,具有较好的热稳定性,可用作相变蓄冷材料.%Differential scanning calorimetry (DSC) and cryomicroscope were used to investigate the thermal proper-ties of caprylic acid, lauric acid and their binary system, and the phase diagram was obtained. The experimental results showed that the phase diagram of caprylic acid/lauric acid binary system is complex. Peritectic occurs in the low concentration range of caprylic acid. The peritectic temperature is about 14℃, and the corresponding mass fraction of caprylic acid in peritectic point is 60%. Eutectic occurs in the high concentration range of caprylic acid. The eutectic melting temperature is 7.44℃, and the latent heat is 136.43J/g. The corresponding mass fraction of caprylic acid in eutectic mixture is 80%. The eutectic melting temperature is suitable for air-conditioning cool stor-age. The eutectic melting temperature, the latent heat of phase change and the specific heat of eutectic mixture have not obvious variations after 60 and 120 thermal cycles, which proves that the eutectic mixture has good thermal stability. Therefore, it can be used as phase change cool storage material.

  8. Determination of phase transition points of ionic liquids by combination of thermal analysis and conductivity measurements at very low heating and cooling rates

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, Philipp; Schreiner, Christian; Schweiger, Hans-Georg [Workgroup Electrochemistry and Electrolytes, Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitaetsstr. 31, D-93040 Regensburg (Germany); Gores, Heiner Jakob, E-mail: Heiner.Gores@Chemie.Uni-Regensburg.d [Workgroup Electrochemistry and Electrolytes, Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitaetsstr. 31, D-93040 Regensburg (Germany)

    2010-07-15

    The determination of phase transition points of nine different ionic liquids (ILs) was performed by thermal analysis with simultaneous recording of conductivity. Conductivity of electrolyte solutions and ILs drastically changes during phase transitions and thus is an additional and very sensitive indicator for measuring phase transition points. Evaluation of temperature-time functions and conductivity-time functions with our computer-coupled automated equipment enabled the determination of melting temperatures with high accuracy and reliability. This claim is based on large samples, low temperature change rates and by regularly repeated measurements, i.e. at least seven measurements per IL. The melting temperatures of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate, 1-butyl-1-methylpyrrolidinium tris(penta-fluoroethyl)trifluorophosphate, and 1-methyl-3-propylimidazolium iodide were, to our knowledge, determined for the first time. The melting temperatures of the other 1-butyl-1-methylpyrrolidinium-, 1-ethyl-3-methylimidazolium-, 1-hexyl-3-methylimidazolium-, and trimethylsulfonium-based ILs showed either a very good accordance with values published in literature or were distinctly higher.

  9. Liquid-Cooled Garment

    Science.gov (United States)

    1977-01-01

    A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.

  10. Data center cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  11. Downhill Domination in Graphs

    OpenAIRE

    Haynes Teresa W.; Hedetniemi Stephen T.; Jamieson Jessie D.; Jamieson William B.

    2014-01-01

    A path π = (v1, v2, . . . , vk+1) in a graph G = (V,E) is a downhill path if for every i, 1 ≤ i ≤ k, deg(vi) ≥ deg(vi+1), where deg(vi) denotes the degree of vertex vi ∈ V. The downhill domination number equals the minimum cardinality of a set S ⊆ V having the property that every vertex v ∈ V lies on a downhill path originating from some vertex in S. We investigate downhill domination numbers of graphs and give upper bounds. In particular, we show that the downhill domination number of a grap...

  12. Stochastic cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

    2009-05-04

    After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

  13. Cooling rate dependence of solidification for liquid aluminium: a large-scale molecular dynamics simulation study.

    Science.gov (United States)

    Hou, Z Y; Dong, K J; Tian, Z A; Liu, R S; Wang, Z; Wang, J G

    2016-06-29

    The effect of the cooling rate on the solidification process of liquid aluminium is studied using a large-scale molecular dynamics method. It is found that there are various types of short-range order (SRO) structures in the liquid, among which the icosahedral (ICO)-like structures are dominant. These SRO structures are in dynamic fluctuation and transform each other. The effect of the cooling rate on the microstructure is very weak at high temperatures and in supercooled liquids, and it appears only below the liquid-solid transition temperature. Fast cooling rates favour the formation of amorphous structures with ICO-like features, while slow cooling rates favour the formation of FCC crystalline structures. Furthermore, FCC and HCP structures can coexist in crystalline structures. It is also found that nanocrystalline aluminium can be achieved at appropriate cooling rates, and its formation mechanism is thoroughly investigated by tracing the evolution of nanoclusters. The arrangement of FCC and HCP atoms in the nanograins displays various twinned structures as observed using visualization analysis, which is different from the layering or phase separation structures observed in the solidification of Lennard-Jones fluids and some metal liquids.

  14. Convective cooling of photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, E.; Gibbons, C. [Energy Engineering Group, Mechanical Engineering Department, Cork Institute of Technology, Bishopstown, Cork (Ireland)

    2004-07-01

    Most solar cells presently on the market are based on silicon wafers, the so-called first generation technology. As this technology has matured costs have become increasingly dominated by material costs. In the last ten years, continuous work has brought the efficiency of standard cells to the 25% region. A switch to second generation or thin film technology cells now seems imminent. Thin film technology eliminates the silicon wafer and offer the prospect of reducing material and manufacturing costs, but they exhibit lower efficiencies of around 10% for a commercial device. Third generation or tandem cells are currently at a 'proof of concept' research level, with a theoretical conversion rate of 86.8% being asserted Whatever the material construction and manufacturing method of cells, the thermal effect of overheating will prevail in the semiconductor and it is accepted that a lowered temperature will bring about an increase in conversion efficiency. The aim of this project is to improve the efficiency of PV electrical output, by convectively cooling the cells through perforations in them. As the cells heat up they lose efficiency. As the panel heats up a loss in efficiency of 0.5% per C increase in temperature has been recorded. (orig.)

  15. Downhill Domination in Graphs

    Directory of Open Access Journals (Sweden)

    Haynes Teresa W.

    2014-08-01

    Full Text Available A path π = (v1, v2, . . . , vk+1 in a graph G = (V,E is a downhill path if for every i, 1 ≤ i ≤ k, deg(vi ≥ deg(vi+1, where deg(vi denotes the degree of vertex vi ∈ V. The downhill domination number equals the minimum cardinality of a set S ⊆ V having the property that every vertex v ∈ V lies on a downhill path originating from some vertex in S. We investigate downhill domination numbers of graphs and give upper bounds. In particular, we show that the downhill domination number of a graph is at most half its order, and that the downhill domination number of a tree is at most one third its order. We characterize the graphs obtaining each of these bounds

  16. Dominantly Inherited Nemaline Myopathy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-08-01

    Full Text Available A locus on chromosome 15q21-23 for a dominantly inherited nemaline myopathy with core-like lesions is reported in two unrelated families evaluated at University Medical Center, Nijmegen, The Netherlands.

  17. The development of advanced cooling methods for high-power electronics

    Science.gov (United States)

    Bland, T. J.; Ciaccio, M. P.; Downing, R. S.; Smith, W. G.

    1990-10-01

    Consideration is given to various technologies developed to meet the difficult cooling requirements of high-density power electronics equipment for the aerospace industry. Topics discussed include liquid impingement cooling, compact high-density cooler, integrally cooled semiconductor, high heat flux cold plane, immersion cooling, modular reflux cooler, and forced-flow two-phase cooling systems. It is concluded that the new technologies are capable of providing the temperature control necessary to maintain desired electronic reliabilities using high-conductance cooling approaches.

  18. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [Fermilab

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  19. Three-dimensional numerical study of laminar confined slot jet impingement cooling using slurry of nano-encapsulated phase change material

    Science.gov (United States)

    Mohib Ur Rehman, M.; Qu, Z. G.; Fu, R. P.

    2016-10-01

    This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material (NEPCM) as a coolant. The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100nm suspended in it. A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code. The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered. The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid. It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and Cm=0.28. However, due to the higher viscosity of slurry compared with the base fluid, the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.

  20. Brillouin Cooling in a Linear Waveguide

    CERN Document Server

    Chen, Yin-Chung; Bahl, Gaurav

    2016-01-01

    Brillouin scattering is rarely considered as a mechanism that can cause cooling of a material due to the thermodynamic dominance of Stokes scattering in most practical systems. However, it has been shown in experiments on resonators that net phonon annihilation through anti-Stokes Brillouin scattering can be enabled by means of a suitable set of optical and acoustic states. The cooling of traveling phonons in a linear waveguide, on the other hand, could lead to the exciting future prospect of manipulating unidirectional heat fluxes and even the nonreciprocal transport of quantum information via phonons. In this work, we present the first analysis of the conditions under which Brillouin cooling may be achieved in a linear waveguide. We analyze the three-wave mixing interaction between the optical and acoustic modes that participate in forward Brillouin scattering, and reveal the key regimes of operation for the process. Our calculations indicate that measurable cooling may occur in state-of-the-art systems whe...

  1. EVAPORATIVE COOLING - CONCEPTUAL DESIGN FOR ATLAS SCT

    CERN Document Server

    Niinikoski, T O

    1998-01-01

    The conceptual design of an evaporative two-phase flow cooling system for the ATLAS SCT detector is described, using perfluorinated propane (C3F8) as a coolant. Comparison with perfluorinated butane (C4F10) is made, although the detailed design is presented only for C3F8. The two-phase pressure drop and heat transfer coefficient are calculated in order to determine the dimensions of the cooling pipes and module contacts for the Barrel SCT. The region in which the flow is homogeneous is determined. The cooling cycle, pipework, compressor, heat exchangers and other main elements of the system are calculated in order to be able to discuss the system control, safety and reliability. Evaporative cooling appears to be substantially better than the binary ice system from the point of view of safety, reliability, detector thickness, heat transfer coefficient, cost and simplicity.

  2. Evidence of the existence of the high-density and low-density phases in deeply-cooled confined heavy water under high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe; Chen, Sow-Hsin, E-mail: sowhsin@mit.edu [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Liu, Kao-Hsiang [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Harriger, Leland; Leão, Juscelino B. [National Institute of Standards and Technology Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-07-07

    The average density of D{sub 2}O confined in a nanoporous silica matrix (MCM-41-S) is studied with neutron scattering. We find that below ∼210 K, the pressure-temperature plane of the system can be divided into two regions. The average density of the confined D{sub 2}O in the higher-pressure region is about 16% larger than that in the lower-pressure region. These two regions could represent the so-called “low-density liquid” and “high-density liquid” phases. The dividing line of these two regions, which could represent the associated 1st order liquid-liquid transition line, is also determined.

  3. 控冷工艺对热轧双相钢盘条组织和性能的影响%Effect of Controlling Cooling Process on Microstructure and Properties of Dual Phase Steel Wire Rods

    Institute of Scientific and Technical Information of China (English)

    徐向俊; 孔俊其

    2012-01-01

    通过840℃精轧后空冷到760℃然后淬水(工艺1)和850℃精轧后在保温罩中缓冷到760℃然后风冷(工艺2)两种工艺轧制ER70s-6钢盘条,并分析了其盘条的组织和性能.结果表明,工艺1生产的盘条横截面表层和内部组织不均匀,内部含20.7%成条带状分布的马氏体,其抗拉强度、屈服强度和伸长率分别为725、382 MPa和16.5%:工艺2生产的盘条组织较均匀,含11.5%马氏体,其抗拉强度、屈服强度和伸长率分别为608、338 MPa和31.3%.双相钢中马氏体含量高对强度有利,但其成条带状分布对塑性不利.%ER70s-6 steel wire rods rolled at finishing rolling temperature of 840 ℃ and cooled to 760℃ in air then quenched in water (process 1) and rolled at finishing rolling temperature of 850 ℃, cooled to 760 ℃ in heat insulation mantle and then cooled in flow air (process 2) were produced, and their microstructures and the mechanical properties were analyzed. The results show that the wire rod produced in process 1 has different microstructures between internal and external parts of the rod cross section. In internal part the martensite distributed in banded form is 20.7% in volume fraction. The wire rod produced in process 2 has uniform microstructure with 11.5% martensite in volume fraction. The wire rod produced in process 1 has yield strength level of 382MPa, ultimate tensile strength level of 725 MPa and plastic elongation of 16.5 %, respectively. The wire rod produced in process 2 has yield strength level of 338MPa, ultimate tensile strength level of 608 MPa and plastic elongation of 31.3%, respectively. For dual phase steel high content of martensite is beneficial for strength, but the bended distribution of martensite is bad for the ductility.

  4. Thermophysical Properties of Cool Storage of Paraffin-based Composite Phase Change Materials Filled with Carbon Nanotubes%石蜡基碳纳米管复合相变蓄冷材料的热性能研究

    Institute of Scientific and Technical Information of China (English)

    陈杨华; 李钰; 郭文帅; 陈非凡; 陈姮

    2014-01-01

    To address thermal conductivity of paraffin wax ( PW), carbon nanotubes ( CNTs) were mixed with PW to form PW-CNTs composites. PW-CNTs composites has been prepared with various mass fractions (1% 、2%、5%) of carbon nanotubes. The thermal prop-erties including phase transition temperature, latent heat of phase change, thermal conductivity and thermal stability during the phase change process are investigated. The phase change property was characterized using differential scanning calorimeter( DSC) and the ther-mal conductivity was measured by using transient hot wire method. The results show that with the increasing of mass fraction of CNTs, ther-mal conductivity become larger, and the latent heat decrease gradually. Phase transition temperature of PW-5CNTs is 4-8 ℃, latent heat of phase change is 137. 6-142. 7 kJ/kg, thermal conductivity is 0. 28 W/(m�K)(liquid), and PW-5CNTs have good enough stability to be widely used as cool storage materials.%针对石蜡导热系数低,传热性能差的缺点,采用向其中添加碳纳米管来改善其导热性能。实验制备了碳纳米管质量分数为1%、2%和5%的石蜡基复合相变材料,通过差示扫描量热仪和热传导系数仪研究了复合材料的相变性能,导热性能和稳定性。实验结果表明,随着碳纳米管质量分数的增加,复合材料的导热系数逐渐增大,相变焓有所减小。质量分数为5%的石蜡基碳纳米管复合材料相变温度为4~8℃,相变焓为137�6~142�7 kJ/kg,比纯石蜡下降了约18%,液态导热系数为0�28 W/( m�K),比纯石蜡提高了40%,稳定性较好,可作为蓄冷材料广泛应用于蓄冷系统。

  5. The MICE Demonstration of Muon Ionization Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lagrange, Jean-Baptiste [Imperial Coll., London; Hunt, Christopher [Imperial Coll., London; Palladino, Vittorio [INFN, Naples; Pasternak, Jaroslaw [Imperial Coll., London

    2016-06-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions up to several TeV at the Muon Collider. The international Muon Ionization Cooling Experiment (MICE) will demonstrate muon ionization cooling, the technique proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam traverses a material (the absorber) loosing energy, which is replaced using RF cavities. The combined effect is to reduce the transverse emittance of the beam (transverse cooling). The configuration of MICE required to deliver the demonstration of ionization cooling is being prepared in parallel to the execution of a programme designed to measure the cooling properties of liquid-hydrogen and lithium hydride. The design of the cooling-demonstration experiment will be presented together with a summary of the performance of each of its components and the cooling performance of the experiment.

  6. Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H{sub 2}O absorption cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Agyenim, Francis [Room A10 Marmont Renewable Energy Centre, Department of The Built Environment, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Eames, Philip [Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Smyth, Mervyn [School of The Built Environment, University of Ulster, Newtownabbey, Co. Antrim, Belfast BT37 0QB (United Kingdom)

    2011-01-15

    Experimental studies using a concentric annulus storage system with Erythritol (melting point of 117.7 C) as a phase change material (PCM) and augmented with longitudinal fins on the shell side, have been conducted to assess the thermal behaviour and heat transfer characteristics of this system. The study forms part of a broader investigation of PCMs to store energy to operate a LiBr/H{sub 2}O absorption cooling system which operates with generator inlet temperatures of 70 C-90 C. The experiments investigated the effect of changing mass flow rates (m) and inlet heat transfer fluid (HTF) temperatures (T{sub in}) on the thermal behaviour of the PCM system. The results showed that the suitable mass flow rate and inlet HTF temperature for charging the system to power a LiBr/H{sub 2}O absorption system are m=30kg/min and T{sub in} = 140 C respectively. The experimental programme also investigated the temperature gradient in the axial, radial and angular directions during charging to help predict heat transfer in the system during phase change of Erythritol. Isothermal plots and temperature-time curves were used to analyse the results. Temperature gradients in the axial and angular directions were 3.6% and 9.7% respectively that of the radial direction, indicating essentially a two-dimensional heat transfer in the radial and angular directions during the phase change. The amount of energy recovered from the 20 kg store during solidification was 70.9% of the maximum energy charged, at an average temperature of 80 C. (author)

  7. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  8. Cooling off with physics

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Chris [Unilever R and D (United Kingdom)

    2003-08-01

    You might think of ice cream as a delicious treat to be enjoyed on a sunny summer's day. However, to the ice-cream scientists who recently gathered in Thessaloniki in Greece for the 2nd International Ice Cream Symposium, it is a complex composite material. Ice cream consists of three dispersed phases: ice crystals, which have a mean size of 50 microns, air bubbles with a diameter of about 70 microns, and fat droplets with a size of 1 micron. These phases are held together by what is called the matrix - not a sci-fi film, but a viscous solution of sugars, milk proteins and polysaccharides. The microstructure, and hence the texture that you experience when you eat ice cream, is created in a freezing process that has remained fundamentally unchanged since the first ice-cream maker was patented in the 1840s. The ingredients - water, milk protein, fat, sugar, emulsifiers, stabilizers, flavours and a lot of air - are mixed together before being pasteurized and homogenized. They are then pumped into a cylinder that is cooled from the outside with a refrigerant. As the mixture touches the cylinder wall it freezes and forms ice crystals, which are quickly scraped off by a rotating blade. The blade is attached to a beater that disperses the ice crystals into the mixture. At the same time, air is injected and broken down into small bubbles by the shear that the beater generates. As the mixture passes along the cylinder, the number of ice crystals increases and its temperature drops. As a result, the viscosity of the mixture increases, so that more energy input is needed to rotate the beater. This energy is dissipated as heat, and when the ice cream reaches about -6 deg. C the energy input through the beater equals the energy removed as heat by the refrigerant. The process therefore becomes self-limiting and it is not possible to cool the ice cream any further. However, at -6 deg. C the microstructure is unstable. The ice cream therefore has to be removed from the freezer

  9. The cooling conditions effects on the fraction and morphology of the epsilon primary phase in an ACuZinc5TM commercial alloy; Efecto de las condiciones de enfriamiento sobre la fraccion y morfologia de la fase primaria epsilon en una aleacion comercial ACuZinc5TM

    Energy Technology Data Exchange (ETDEWEB)

    Jareno, E. D.; Maldonado, S. I.; Hernandez, F. A.

    2012-07-01

    The mechanical properties of ACuZinc5TM alloys are influenced by the fraction solid of the primary epsilon (e) phase and their interrelations with the eta ({eta}) phase. In this study the primary epsilon phase fraction results from cooling conditions similar to that applied in different casting processes have been measured. Additionally an analysis was made from the morphology's changes and from the thermal analysis results to suggest the probably adequate moment to apply stirring in semisolid metal processing. From these results it is possible to design experimental thermal cycles to obtain an adequate distribution of e and . phases in the end castings microstructure. (Author) 21 refs.

  10. Stochastic cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Brennan J. M.; Blaskiewicz, M.; Mernick, K.

    2012-05-20

    The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

  11. Dominant Voice in Hamlet

    Institute of Scientific and Technical Information of China (English)

    李丹

    2015-01-01

    <正>The Tragedy of Hamlet dramatizes the revenge Prince Hamlet exacts on his uncle Claudius for murdering King Hamlet,Claudius’s brother and Prince Hamlet’s father,and then succeeding to the throne and taking as his wife Gertrude,the old king’s widow and Prince Hamlet’s mother.This paper will discuss something about dominant voice in the play.Dominant voice is the major voice in the country,the society,or the whole world.Those people who have the power or

  12. Dominant cystoid macular dystrophy

    NARCIS (Netherlands)

    Saksens, N.T.M.; Huet, R.A.C. van; Lith-Verhoeven, J.J. van; Hollander, A.I. den; Hoyng, C.B.; Boon, C.J.

    2015-01-01

    OBJECTIVE: To describe the clinical characteristics and long-term follow-up in patients with autosomal dominant cystoid macular dystrophy (DCMD). DESIGN: Retrospective case series. PARTICIPANTS: Ninety-seven patients with DCMD. METHODS: Extensive ophthalmic examination, including visual acuity (VA),

  13. Iron dominated magnets

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  14. discourse of domination

    African Journals Online (AJOL)

    suffering justifies the position and work of The Bank and other social forces with similar ... include accounts of the growing and increasingly interwoven resistance in .... tural domination or as parasites able to feed off a social body weakened by the ... through objective analysis of poor people's descriptions of their realities'.

  15. Searching for world domination

    CERN Multimedia

    Quillen, E

    2004-01-01

    "Optimists might believe Microsoft suffered a setback last week that will impede its progress toward world domination, but I suspect the company has already found a way to prevail. At issue before the European Union was Microsoft's bundling of its Windows Media Player with its operating system" (1 page)

  16. Autosomal dominant osteopetrosis revisited

    DEFF Research Database (Denmark)

    Bollerslev, Jens; Henriksen, Kim; Nielsen, Morten Frost Munk

    2013-01-01

    Systematic studies of autosomal dominant osteopetrosis (ADO) were followed by the identification of underlying mutations giving unique possibilities to perform translational studies. What was previously designated ADO1 turned out to be a high bone mass phenotype caused by a missense mutation...

  17. Dominant optic atrophy

    DEFF Research Database (Denmark)

    Lenaers, Guy; Hamel, Christian; Delettre, Cécile

    2012-01-01

    DEFINITION OF THE DISEASE: Dominant Optic Atrophy (DOA) is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC...

  18. Cooling by Thermodynamic Induction

    Science.gov (United States)

    Patitsas, S. N.

    2017-03-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  19. Cooling by Thermodynamic Induction

    Science.gov (United States)

    Patitsas, S. N.

    2016-11-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  20. Cooling Augmentation with Microchanneled Structures

    Institute of Scientific and Technical Information of China (English)

    X.F.Peng; B.X.Wang

    1993-01-01

    Experiments were conducted to investigate the heat transfer characteristics and cooling performance of subcooled liquid,water,flowing through rectangular cross-section microchanneled structures machined on a stainless steel plate.Heat transfer or flow mode stransition was observed when the heating rate or wall temperature was increased.This transition was found to be suggestively induced by the variation in liquid thermophysical properties due to the significant rise of liquid temperature in the microstructures.The influence of such parameters as liquid velocity,subcooling,property variation,and microchannel geometric configuration on the heat transfer behavior,cooling performance and the heat transfer and liquid flow mode transition were also investigated.The experiments indicated that both single-phase forced convection and flow boiling characteristics were quite different from those in normal-sized tubes and the heat transfer was obviously intensified.

  1. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  2. Initial Cooling Experiment (ICE)

    CERN Multimedia

    Photographic Service

    1978-01-01

    In 1977, in a record-time of 9 months, the magnets of the g-2 experiment were modified and used to build a proton/antiproton storage ring: the "Initial Cooling Experiment" (ICE). It served for the verification of the cooling methods to be used for the "Antiproton Project". Stochastic cooling was proven the same year, electron cooling followed later. Also, with ICE the experimental lower limit for the antiproton lifetime was raised by 9 orders of magnitude: from 2 microseconds to 32 hours. For its previous life as g-2 storage ring, see 7405430. More on ICE: 7711282, 7809081, 7908242.

  3. High energy electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Parkhomchuk, V. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  4. Power electronics cooling apparatus

    Science.gov (United States)

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  5. Large Eddy Simulation of complex sidearms subject to solar radiation and surface cooling.

    Science.gov (United States)

    Dittko, Karl A; Kirkpatrick, Michael P; Armfield, Steven W

    2013-09-15

    Large Eddy Simulation (LES) is used to model two lake sidearms subject to heating from solar radiation and cooling from a surface flux. The sidearms are part of Lake Audrey, NJ, USA and Lake Alexandrina, SA, Australia. The simulation domains are created using bathymetry data and the boundary is modelled with an Immersed Boundary Method. We investigate the cooling and heating phases with separate quasi-steady state simulations. Differential heating occurs in the cavity due to the changing depth. The resulting temperature gradients drive lateral flows. These flows are the dominant transport process in the absence of wind. Study in this area is important in water quality management as the lateral circulation can carry particles and various pollutants, transporting them to and mixing them with the main lake body.

  6. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Directory of Open Access Journals (Sweden)

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  7. Towards a physical understanding of stratospheric cooling under global warming through a process-based decomposition method

    Science.gov (United States)

    Yang, Yang; Ren, R.-C.; Cai, Ming

    2016-12-01

    The stratosphere has been cooling under global warming, the causes of which are not yet well understood. This study applied a process-based decomposition method (CFRAM; Coupled Surface-Atmosphere Climate Feedback Response Analysis Method) to the simulation results of a Coupled Model Intercomparison Project, phase 5 (CMIP5) model (CCSM4; Community Climate System Model, version 4), to demonstrate the responsible radiative and non-radiative processes involved in the stratospheric cooling. By focusing on the long-term stratospheric temperature changes between the "historical run" and the 8.5 W m-2 Representative Concentration Pathway (RCP8.5) scenario, this study demonstrates that the changes of radiative radiation due to CO2, ozone and water vapor are the main divers of stratospheric cooling in both winter and summer. They contribute to the cooling changes by reducing the net radiative energy (mainly downward radiation) received by the stratospheric layer. In terms of the global average, their contributions are around -5, -1.5, and -1 K, respectively. However, the observed stratospheric cooling is much weaker than the cooling by radiative processes. It is because changes in atmospheric dynamic processes act to strongly mitigate the radiative cooling by yielding a roughly 4 K warming on the global average base. In particular, the much stronger/weaker dynamic warming in the northern/southern winter extratropics is associated with an increase of the planetary-wave activity in the northern winter, but a slight decrease in the southern winter hemisphere, under global warming. More importantly, although radiative processes dominate the stratospheric cooling, the spatial patterns are largely determined by the non-radiative effects of dynamic processes.

  8. CO2 cooling for HEP experiments

    CERN Document Server

    Verlaat; Van Lysebetten, A

    2008-01-01

    The new generation silicon detectors require more efficient cooling of the front-end electronics and the silicon sensors themselves. To minimize reverse annealing of the silicon sensors the cooling temperatures need to be reduced. Other important requirements of the new generation cooling systems are a reduced mass and a maintenance free operation of the hardware inside the detector. Evaporative CO2 cooling systems are ideal for this purpose as they need smaller tubes than conventional systems. The heat transfer capability of evaporative CO2 is high. CO2 is used as cooling fluid for the LHCb-VELO and the AMS-Tracker cooling systems. A special method for the fluid circulation is developed at Nikhef to get a very stable temperature of both detectors without any active components like valves or heaters inside. This method is called 2-phase Accumulator Controlled Loop (2PACL) and is a good candidate technology for the design of the future cooling systems for the Atlas and CMS upgrades.

  9. Elastocaloric cooling: Stretch to actively cool

    Science.gov (United States)

    Ossmer, Hinnerk; Kohl, Manfred

    2016-10-01

    The elastocaloric effect can be exploited in solid-state cooling technologies as an alternative to conventional vapour compression. Now, an elastocaloric device based on the concept of active regeneration achieves a temperature lift of 15.3 K and efficiencies competitive with other caloric-based approaches.

  10. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  11. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.-S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  12. Passive evaporative cooling

    NARCIS (Netherlands)

    Tzoulis, A.

    2011-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Smart & Bioclimatic Design. Passive techniques for cooling are a great way to cope with the energy problem of the present day. This manual introduces passive cooling by evaporation. These methods have been used for many years in traditi

  13. Data center cooling method

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  14. Liquid Cooled Garments

    Science.gov (United States)

    1979-01-01

    Astronauts working on the surface of the moon had to wear liquid-cooled garments under their space suits as protection from lunar temperatures which sometimes reach 250 degrees Fahrenheit. In community service projects conducted by NASA's Ames Research Center, the technology developed for astronaut needs has been adapted to portable cooling systems which will permit two youngsters to lead more normal lives.

  15. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.-S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still remain

  16. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  17. Modeling gasodynamic vortex cooling

    Science.gov (United States)

    Allahverdyan, A. E.; Fauve, S.

    2017-08-01

    We aim at studying gasodynamic vortex cooling in an analytically solvable, thermodynamically consistent model that can explain limitations on the cooling efficiency. To this end, we study an angular plus radial flow between two (coaxial) rotating permeable cylinders. Full account is taken of compressibility, viscosity, and heat conductivity. For a weak inward radial flow the model qualitatively describes the vortex cooling effect, in terms of both temperature and the decrease of the stagnation enthalpy, seen in short uniflow vortex (Ranque) tubes. The cooling does not result from external work and its efficiency is defined as the ratio of the lowest temperature reached adiabatically (for the given pressure gradient) to the lowest temperature actually reached. We show that for the vortex cooling the efficiency is strictly smaller than 1, but in another configuration with an outward radial flow, we find that the efficiency can be larger than 1. This is related to both the geometry and the finite heat conductivity.

  18. Hydronic rooftop cooling systems

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian Eric; Berman, Mark J.

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  19. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    1979-01-01

    ICE was built in 1977, using the modified bending magnets of the g-2 muon storage ring (see 7405430). Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project. Stochastic cooling proved a resounding success early in 1978 and the antiproton project could go ahead, now entirely based on stochastic cooling. Electron cooling was experimented with in 1979. The 26 kV equipment is housed in the cage to the left of the picture, adjacent to the "e-cooler" located in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7809081.

  20. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    1978-01-01

    ICE was built in 1977, in a record time of 9 months, using the modified bending magnets of the g-2 muon storage ring. Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project, to be launched in 1978. Already early in 1978, stochastic cooling proved a resounding success, such that the antiproton (p-pbar)project was entirely based on it. Tests of electron cooling followed later: protons of 46 MeV kinetic energy were cooled with an electron beam of 26 kV and 1.3 A. The cage seen prominently in the foreground houses the HV equipment, adjacent to the "cooler" installed in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7908242.

  1. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  2. Simulation of inverter dominated minigrids

    Energy Technology Data Exchange (ETDEWEB)

    Engler, A.; Osika, O. [Inst. fuer Solare Energieversorgungstechnik (ISET) e.V., Kassel (Germany)

    2003-07-01

    In order to assess the load flow, the transient behaviour and the stability of inverter dominated minigrids, a model for inverters and a transmission system has been developed. The inverters are represented by a frequency and voltage controlled three phase voltage source and the transmission systems consists of switches, overhead lines ({pi}-equivalent), transformers and a load. The inverters operate in parallel via the MV-distribution system and supply an active load. The contribution of each inverter is determined by the setting of the applied droops (similar to conventional power plants). Furthermore an approach for stability assessment of such systems is introduced. This research work is related to the EC-funded project MicroGrids. (orig.)

  3. Disk Instabilities and Cooling Fronts

    CERN Document Server

    Vishniac, E T

    1998-01-01

    Accretion disk outbursts, and their subsequent decline, offer a unique opportunity to constrain the physics of angular momentum transport in hot accretion disks. Recent work has centered on the claim by Cannizzo et al. that the exponential decay of luminosity following an outburst in black hole accretion disk systems is only consistent with a particular form for the dimensionless viscosity, $\\alpha=35(c_s/r\\Omega)^{3/2}$. This result can be understood in terms of a simple model of the evolution of cooling fronts in accretion disks. In particular, the cooling front speed during decline is $\\sim cooling front, and the exact value of $n$ depends on the hot state opacity, (although generally $n\\approx 1/2$). Setting this speed proportional to $r$ constrains the functional form of $\\alpha$ in the hot phase of the disk, which sets it apart from previous arguments based on the relative durations of outburst and quiescence. However, it remains uncertain how well we know the exponent $n$. In addition, more work is nee...

  4. Dominating biological networks.

    Directory of Open Access Journals (Sweden)

    Tijana Milenković

    Full Text Available Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC" genes (i.e., their protein products, such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.

  5. Challenging Credit Dominance

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Europe's widening sovereign debt crisis has brought independent credit ratings to the forefront of the EU's agenda.To directly address the mat ter,the EU announced plans to set up a European creditrating authority for sovereign debt ratings on April 30.This marked a milestone in the international credit history,and the beginning of changes to U.S.-dominated international credit ratings and the pattern of international politics and economics,said Sun Zhe,Director of the Center for U.S.

  6. Temperature effects in supercritical fluid chromatography: a trade-off between viscous heating and decompression cooling.

    Science.gov (United States)

    De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2014-10-24

    The study of radial and axial temperature profiles always has been an area interest both in liquid chromatography (LC) and supercritical fluid chromatography (SFC). Whereas in LC always an increase in temperature is observed due to the dominance of viscous heating, in SFC, especially for low modifier content, a decrease in temperature is found due to the much larger decompression cooling. However, for higher modifier content and higher operating pressure, the temperature effects become a trade-off between viscous heating and decompression cooling, since in SFC the latter is a strong function of operating pressure and mobile phase composition. At a temperature of 40°C and for neat CO2, the effect of decompression cooling and viscous heating cancel each other out at a pressure 450bar. This pressure decreases almost linearly with volume fraction of methanol to 150bar at 25vol%. As a result, both cooling and heating effects can be observed when operating at high back pressure, large column pressure drops or high modifier content. For example at a back pressure of 150bar and a column pressure drop of 270bar decompression cooling is observed throughout the column. However at 300bar back pressure and the same pressure drop, the mobile phase heats up in the first part of the column due to viscous heating and then cools in the second part due to decompression cooling. When coupling columns (2.1mm×150mm, 1.8μm fully porous particles) at very high operating pressure (e.g. 750bar for 8vol%), the situation is even more complex. E.g. at a back pressure of 150bar and using 8vol% methanol, viscous heating is only observed in the first column whereas only decompression cooling in the second. Further increasing the inlet pressure up to 1050bar resulted in no excessive temperature differences along the column. This implies that the inlet pressure of SFC instrumentation could be expanded above 600bar without additional band broadening caused by excessive radial temperature

  7. Research and development of forced air cooling lfat type three-phase straight line asynchronous motor cooling system%强迫风冷扁平型三相直线异步电动机冷却系统的研发

    Institute of Scientific and Technical Information of China (English)

    宋文芳

    2013-01-01

    The cooling system of linear induction motor for metro vehicle is researched and developed. It describes the cooling method of forced air linear motor, cooling structure and work principle to ifll the domestic blank.%研发了一种牵引轨道交通车辆用直线电机的冷却系统,阐述强迫风冷直线电机的冷却方式、冷却结构和工作原理,填补了国内空白。

  8. Measuring the coolness of interactive products: the COOL questionnaire

    DEFF Research Database (Denmark)

    Bruun, Anders; Raptis, Dimitrios; Kjeldskov, Jesper;

    2016-01-01

    is the COOL questionnaire. We based the creation of the questionnaire on literature suggesting that perceived coolness is decomposed to outer cool (the style of a product) and inner cool (the personality characteristics assigned to it). In this paper, we focused on inner cool, and we identified 11 inner cool......, rebelliousness and usability. These factors and their underlying 16 question items comprise the COOL questionnaire. The whole process of creating the questionnaire is presented in detail in this paper and we conclude by discussing our work against related work on coolness and HCI....

  9. Formation of L1{sub 0}-type ordered {beta} Prime phase in as-solutionized dental Ag-Pd-Au-Cu alloys and hardening behavior

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yonghwan [Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6 Aoba, Aramaki Aza, Aoba-ku, Sendai 980-8579 (Japan); Niinomi, Mitsuo, E-mail: niinomi@imr.tohoku.ac.jp [Department of Biomaterials Science, Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Hieda, Junko; Nakai, Masaaki [Department of Biomaterials Science, Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Fukui, Hisao [Department of Dental Materials Science, School of Dentistry, Aichi-Gakuin University, Nagoya 464-0045 (Japan)

    2012-04-01

    The relationship between the microstrucutural changes of L1{sub 0}-type ordered {beta} Prime phase and hardening behavior in as-solutionized dental Ag-Pd-Au-Cu alloys was investigated by changing the cooling rate and the solution treatment temperature. Additionally, the formation process of the {beta} Prime phase in as-solutionized Ag-Pd-Au-Cu alloy was attempted to clarify. The microstructural changes were observed by X-ray diffraction (XRD) method and transmission electron microscopy (TEM). The hardness was evaluated using a Vickers microhardness tester. The {beta} Prime phase is precipitated regardless of the cooling rate, after solution treatment at 1123 K. TEM dark field images show that the size of the {beta} Prime phase decreases and the number of {beta} Prime phase increases with an increase in the cooling rate. The Vickers hardness value increases with an increase in cooling rate. TEM dark field images show that the microstructure of {beta} Prime phase is similar when the solution treatment temperature increases from 1123 K to 1173 K. However, the Vickers hardness increases with an increase of solution treatment temperature. It is of great significance to reveal that the {beta} Prime phase precipitated in as-solutionized Ag-Pd-Au-Cu alloy is formed during cooling after high-temperature solution treatment and that the growth of the {beta} Prime phase is diffusion controlled. - Highlights: Black-Right-Pointing-Pointer The microstructure of {beta} Prime phase of Ag-Pd-Au-Cu alloy is changed by cooling rates. Black-Right-Pointing-Pointer The {beta} Prime phase is formed during the cooling process. Black-Right-Pointing-Pointer Growth of the {beta} Prime phase is dominated by diffusion. Black-Right-Pointing-Pointer Hardness of Ag-Pd-Au-Cu alloy increases remarkably with precipitation of the {beta} Prime phase.

  10. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Barry Univ., Miami Shores, FL (United States). Physical Sciences; Irastorza, Igor [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Redondo, Javier [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [DESY Hamburg (Germany). Theory Group

    2015-12-15

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a preference for a mild non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP represents the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO.

  11. Cool WISPs for stellar cooling excesses

    CERN Document Server

    Giannotti, Maurizio; Redondo, Javier; Ringwald, Andreas

    2015-01-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a preference for a mild non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP represents the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO.

  12. Water-cooled electronics

    CERN Document Server

    Dumont, G; Righini, B

    2000-01-01

    LHC experiments demand on cooling of electronic instrumentation will be extremely high. A large number of racks will be located in underground caverns and counting rooms, where cooling by conventional climatisation would be prohibitively expensive. A series of tests on the direct water cooling of VMEbus units and of their standard power supplies is reported. A maximum dissipation of 60 W for each module and more than 1000 W delivered by the power supply to the crate have been reached. These values comply with the VMEbus specifications. (3 refs).

  13. Modelling of the generation phase of an absorption cooling cycle operating intermittently; Modelisation de la phase generation d'un cycle de refrigeration par absorption solaire a fonctionnement intermittent

    Energy Technology Data Exchange (ETDEWEB)

    Boukhchana, Yasmina; Fellah, Ali; Ben Brahim, Ammar [Unite de Recherche, Thermodynamique Appliquee (99/UR/11-21), Universite de Gabes, Ecole Nationale d' ingenieurs, 6072 Gabes (Tunisia)

    2011-01-15

    No abstract prepared. [French] La modelisation en regime dynamique de la phase generation d'une installation frigorifique a absorption solaire a fonctionnement intermittent utilisant le couple ammoniac/eau a ete elaboree. L'etude basee sur l'intermittence du fonctionnement a permis d'elaborer, a travers les bilans matieres et thermiques, un modele thermodynamique reliant les temperatures, les debits et les fractions massiques dans les differents compartiments. Des journees ensoleillees representatives des quatre saisons de l'annee ont ete considerees. Les variations du taux d'ensoleillement, des temperatures et des concentrations ont ete explorees. Les resultats ont montre, moyennant les hypotheses adoptees en particulier a pression de fonctionnement constante, que la demarche proposee a permis d'avoir une temperature de generation autour de 135 C et une temperature de condensation de 60 C. Ces temperatures sont atteinte par l'adaptation de la convection naturelle a l'air pour le fonctionnement du condenseur. (orig.)

  14. 高密度CO2对虾优势腐败菌的杀菌效果及机理%Sterilizing effect of dense phase carbon dioxide on dominant spoilage bacteria from shrimp and its mechanism

    Institute of Scientific and Technical Information of China (English)

    刘书成; 张良; 吉宏武※; 屈小娟; 章超桦; 郝记明

    2013-01-01

      为了探讨高密度CO2(dense phase carbon dioxide,DPCD)对水产品腐败菌的杀菌效果和机制,以一株凡纳滨对虾优势腐败菌(Chryseobacterium sp. LV1)为研究对象,研究了DPCD处理温度(30~55℃)、压力(5~25 MPa)、时间(5~60 min)对杀菌效果的影响,分析了DPCD处理前后该菌理化性质的变化。结果表明:DPCD对其具有较好的杀菌效果,温度升高、压力增大、延长时间都会增强杀菌效果,而且超临界CO2比亚临界CO2的杀菌效果好。当在45℃、15 MPa和55℃、15 MPa下处理菌悬液30 min时,菌落总数均能下降5个对数;菌悬液的pH值从6.97分别下降至5.58和5.56;细胞外蛋白由最初的78.69μg/mL分别增至151.91和157.40μg/mL,200~800 nm范围内的吸光度值增大,这说明DPCD处理改变了其细胞膜的通透性,造成胞内蛋白质和核酸泄漏;可溶性和不溶性蛋白的电泳图谱发生变化,说明DPCD处理能够诱导Chryseobacterium sp. LV1可溶性蛋白质变性,降低其溶解度;能够钝化与其新陈代谢相关的14种酶类;但不会造成其DNA的降解。因此,DPCD处理致使其理化性质的改变可能是杀菌的主要原因之一。研究结果将为DPCD技术在对虾加工中的应用提供参考。%  Dense phase carbon dioxide (DPCD) is a non-thermal pasteurization method that affects microorganisms and enzymes through molecular effects of CO2 under pressures below 50MPa and temperature below 60℃. The DPCD sterilization technique could be one of the most promising techniques for sterilizing foods without exposing them to adverse effects of heat, thereby retaining their fresh physical, nutritional, and sensory qualities. In order to investigate the sterilization effect and mechanism of aquatic product spoilage bacteria induced by dense phase carbon dioxide (DPCD), using a strain of Litopenaeus vannamei dominant spoilage bacteria (Chryseobacterium sp. LV

  15. Rings dominate western Gulf

    Science.gov (United States)

    Vidal L., Francisco V.; Vidal L., Victor M. V.; Molero, José María Pérez

    Surface and deep circulation of the central and western Gulf of Mexico is controlled by interactions of rings of water pinched from the gulf's Loop Current. The discovery was made by Mexican oceanographers who are preparing a full-color, 8-volume oceanographic atlas of the gulf.Anticyclonic warm-core rings pinch off the Loop Current at a rate of about one to two per year, the scientists of the Grupo de Estudios Oceanográficos of the Instituto de Investigaciones Eléctricas (GEO-IIE) found. The rings migrate west until they collide with the continental shelf break of the western gulf, almost always between 22° and 23°N latitude. On their westward travel they transfer angular momentum and vorticity to the surrounding water, generating cyclonic circulations and vortex pairs that completely dominate the entire surface and deep circulation of the central and western gulf.

  16. Dominant modal decomposition method

    Science.gov (United States)

    Dombovari, Zoltan

    2017-03-01

    The paper deals with the automatic decomposition of experimental frequency response functions (FRF's) of mechanical structures. The decomposition of FRF's is based on the Green function representation of free vibratory systems. After the determination of the impulse dynamic subspace, the system matrix is formulated and the poles are calculated directly. By means of the corresponding eigenvectors, the contribution of each element of the impulse dynamic subspace is determined and the sufficient decomposition of the corresponding FRF is carried out. With the presented dominant modal decomposition (DMD) method, the mode shapes, the modal participation vectors and the modal scaling factors are identified using the decomposed FRF's. Analytical example is presented along with experimental case studies taken from machine tool industry.

  17. Cooling Devices in Laser therapy.

    Science.gov (United States)

    Das, Anupam; Sarda, Aarti; De, Abhishek

    2016-01-01

    Cooling devices and methods are now integrated into most laser systems, with a view to protecting the epidermis, reducing pain and erythema and improving the efficacy of laser. On the basis of method employed, it can be divided into contact cooling and non-contact cooling. With respect to timing of irradiation of laser, the nomenclatures include pre-cooling, parallel cooling and post-cooling. The choice of the cooling device is dictated by the laser device, the physician's personal choice with respect to user-friendliness, comfort of the patient, the price and maintenance costs of the device. We hereby briefly review the various techniques of cooling, employed in laser practice.

  18. Beta to alpha transformation kinetics and microstructure of Ti-6Al-4V alloy during continuous cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kherrouba, Nabil [LGSDS – ENP, Avenue Hassan Badi, 16200, El Harrach (Algeria); Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014 (Algeria); Univ. Bretagne Sud, FRE CNRS 3744, IRDL, Rue de Saint-Maudé, F-56100, Lorient (France); Bouabdallah, Mabrouk [LGSDS – ENP, Avenue Hassan Badi, 16200, El Harrach (Algeria); Badji, Riad, E-mail: riadbadji@gmail.com [Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014 (Algeria); Carron, Denis [Univ. Bretagne Sud, FRE CNRS 3744, IRDL, Rue de Saint-Maudé, F-56100, Lorient (France); Amir, Mounir [Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014 (Algeria)

    2016-09-15

    In the present paper, an approach based on the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model has been developed and applied to study the transformation kinetics of the β phase in Ti-6Al-4V titanium alloy during cooling. To this purpose, Differential Scanning Calorimetry (DSC) tests have been conducted using a set of cooling rates ranging from 10 to 50 °C/min. This approach allows the kinetics parameters, particularly the activation energy, to be calculated from a single DSC test using a simple linear regression. The microstructural analysis indicates that the microstructure is dominated by the α Widmanstätten morphology (α{sub W}). Microstructural observations along with the calculated values of the Avrami index and of the activation energy suggest that the growth of the α{sub W} platelets obeys a mixed mode combining the vanadium diffusion and a displacive mechanism. - Highlights: • The kinetics of the β → α phase transformation is investigated. • An approach is proposed to adapt the KJMA model for continuous cooling. • The model permits the determination of the kinetics parameters for each cooling rate. • The growth of α{sub W} plates may obey a combined displacive-diffusional growth mode. • The growth involves shear mechanism and partitioning of vanadium between α{sub W} plates.

  19. LHC cooling gains ground

    CERN Multimedia

    Huillet-Miraton Catherine

    The nominal cryogenic conditions of 1.9 K have been achieved in sectors 5-6 and 7-8. This means that a quarter of the machine has reached the nominal conditions for LHC operation, having attained a temperature of below 2 K (-271°C), which is colder than interstellar space! Elsewhere, the cryogenic system in Sector 8-1 has been filled with liquid helium and cooled to 2K and will soon be available for magnet testing. Sectors 6-7 and 2-3 are being cooled down and cool-down operations have started in Sector 3-4. Finally, preparations are in hand for the cool-down of Sector 1-2 in May and of Sector 4-5, which is currently being consolidated. The LHC should be completely cold for the summer. For more information: http://lhc.web.cern.ch/lhc/Cooldown_status.htm.

  20. Why Exercise Is Cool

    Science.gov (United States)

    ... to Know About Puberty Train Your Temper Why Exercise Is Cool KidsHealth > For Kids > Why Exercise Is ... day and your body will thank you later! Exercise Makes Your Heart Happy You may know that ...

  1. Waveguide cooling system

    Science.gov (United States)

    Chen, B. C. J.; Hartop, R. W.

    1981-04-01

    An improved system is described for cooling high power waveguides by the use of cooling ducts extending along the waveguide, which minimizes hot spots at the flanges where waveguide sections are connected together. The cooling duct extends along substantially the full length of the waveguide section, and each flange at the end of the section has a through hole with an inner end connected to the duct and an opposite end that can be aligned with a flange hole in another waveguide section. Earth flange is formed with a drainage groove in its face, between the through hole and the waveguide conduit to prevent leakage of cooling fluid into the waveguide. The ducts have narrowed sections immediately adjacent to the flanges to provide room for the installation of fasteners closely around the waveguide channel.

  2. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  3. GT1_cdedes_1: Heating and cooling mechanics in massive star formation

    Science.gov (United States)

    Dedes, C.

    2010-03-01

    Massive stars are important constituents of the interstellar medium (ISM) in our Galaxy and beyond. Their strong feedback processes influence the dynamics, energetics and chemistry of the surrounding interstellar medium both locally and on large scales. An important question to be answered is the one of cooling and heating mechanisms in regions of massive star formation. In the vicinity of massive stars, heating is provided mostly by far-UV (FUV) and infra-red radiation. Cooling is mostly provided by emission in the fine structure lines of CII. There are however other atomic and molecular lines such as OI, CO, OH and H_2O which can become significant coolants in the dense, embedded regions of massive star formation. This early phase when the forming massive star is still deeply embedded in its natal envelope, yet already interacting with, and potentially destroying, its environment through copious amounts of UV radiation, massive outflows and ultra compact HII (UCHII) regions, is an important phase in the star formation process. To understand the heating and cooling balance in this phase, one has to consider the contributions of various radiative and dynamical processes such as the FUV radiation from the young star itself, shocks created by strong stellar winds and the photon dominated regions (PDRs) where the radiation impinges on the molecular material. The tracers of these processes can be observed in the far-infrared, a wavelength range that is now accessible at unprecedented high spectral and spatial resolution with the Herschel Space Observatory. We propose to observe the aformentioned tracers of cooling and heating in the massive star forming region IRAS 12326-6245 to obtain a complete picture of the different processes, the regions they originate from and how they interact. This proposal is for time granted to the HIFI hardware team (PI: Frank Helmich) and to be accounted as part of the Swiss guaranteed time (Lead-Co-I: Arnold O. Benz).

  4. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  5. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...... is considered as extruded profiles are inadequate for compact designs. An optimal pin fin shape and configuration is sought also taking manufacturing costs into consideration. Standard methods for geometrical modeling and thermal analysis are applied....

  6. Anomalous law of cooling

    OpenAIRE

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Oliveira, Fernando A.; Rubí, J. Miguel

    2014-01-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergo a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature ma...

  7. Cooling tower waste reduction

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

    1998-05-01

    At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

  8. Cooling with Superfluid Helium

    CERN Document Server

    Lebrun, P

    2014-01-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics

  9. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  10. Stacking with Stochastic Cooling

    CERN Document Server

    Caspers, Friedhelm

    2004-01-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles seen by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly protected from the Schottky noise of the stack. Vice versa the stack has to be efficiently shielded against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105, the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters)....

  11. Alternative Room Cooling System

    Directory of Open Access Journals (Sweden)

    Md. Fazle Rabbi

    2015-06-01

    Full Text Available The rapidly growing population results in an increasing demand for much more residential and commercial buildings, which leads to vertical growth of the buildings and needs proper ventilation of those buildings. Natural air ventilation system is not sufficient for conventional building structures. Hence fans and air-conditioners are must to meet the requirement of proper ventilation as well as space conditioning. Globally building sector consumes largest energy in heating, cooling, ventilation and space conditioning. This load can be minimized by the application of solar chimney and modification in building structure for heating, cooling, ventilation and space conditioning. Passive solar cooling is a subject of interest to provide cooling by using the sun, a powerful energy source. This is done for ensuring human comfort in hot climates. ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers defines Comfort as ‘that state of mind which expresses satisfaction with the thermal environment.’ The present paper describes the development of a solar passive cooling system, which can provide thermal cooling throughout the summer season in hot and humid climates. The constructed passive system works on natural convection mode of air. Such system reduces the inside temperature of up to 5°C from the atmospheric temperature. Temperature can further be reduced by the judicious use of night ventilation.

  12. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  13. Measuring the coolness of interactive products: the COOL questionnaire

    DEFF Research Database (Denmark)

    Bruun, Anders; Raptis, Dimitrios; Kjeldskov, Jesper

    2016-01-01

    characteristics. These were used to create an initial pool of question items and 2236 participants were asked to assess 16 mobile devices. By performing exploratory and confirmatory factor analyses, we identified three factors that can measure the perceived inner coolness of interactive products: desirability...... is the COOL questionnaire. We based the creation of the questionnaire on literature suggesting that perceived coolness is decomposed to outer cool (the style of a product) and inner cool (the personality characteristics assigned to it). In this paper, we focused on inner cool, and we identified 11 inner cool...

  14. Onset dominance in lateralization.

    Science.gov (United States)

    Freyman, R L; Zurek, P M; Balakrishnan, U; Chiang, Y C

    1997-03-01

    Saberi and Perrott [Acustica 81, 272-275 (1995)] found that the in-head lateralization of a relatively long-duration pulse train could be controlled by the interaural delay of the single pulse pair that occurs at onset. The present study examined this further, using an acoustic pointer measure of lateralization, with stimulus manipulations designed to determine conditions under which lateralization was consistent with the interaural onset delay. The present stimuli were wideband pulse trains, noise-burst trains, and inharmonic complexes, 250 ms in duration, chosen for the ease with which interaural delays and correlations of select temporal segments of the stimulus could be manipulated. The stimulus factors studied were the periodicity of the ongoing part of the signal as well as the multiplicity and ambiguity of interaural delays. The results, in general, showed that the interaural onset delay controlled lateralization when the steady state binaural cues were relatively weak, either because the spectral components were only sparsely distributed across frequency or because the interaural time delays were ambiguous. Onset dominance can be disrupted by sudden stimulus changes within the train, and several examples of such changes are described. Individual subjects showed strong left-right asymmetries in onset effectiveness. The results have implications for understanding how onset and ongoing interaural delay cues contribute to the location estimates formed by the binaural auditory system.

  15. Modular Spray-Cooled Assemblies for High Heat Fluxes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase II project will produce a flight suitable test bench based on a modular spray-cooled assembly that considers NASA power and mass budgets and can...

  16. The dominance of norm

    Directory of Open Access Journals (Sweden)

    Edward L. Rubin

    2017-06-01

    Full Text Available Objective to revisit the debate about rational choice theory from the legal cultural and historical perspectives. Methods dialectic approach to the cognition of social phenomena allowing to analyze them in their historical development and functioning in the context of the integrity of subjective and objective factors this determines the choice of the research methods systemicstructural formallegal and comparative. Results The first part of this chapter will explain the way in which people in societies different from our own were subject to other motivations in situations where selfinterest would tend to dominate in our society. The reasoning is based on three examples one drawn from the history of Ancient Rome one from the High Middle Ages of the European society and one from a contemporary nonWestern culture. The second part of the chapter analyzes the reason why material selfinterest maximizing became a dominant motivation in the modern Western society. The works on historical sociology attribute this development to Calvinism but this hypothesis suffers from some serious defects. In the article we prove that the modern sensibility resulted from much longeracting trends specifically secularization urbanization and commercialization. The final section of the chapter explores the relationship between the Westrsquos prevailing norm of selfinterest maximization and the particular norms that have been discussed in microeconomic theory. It argues that some of these norms are internal to the prevailing one and are thus explicable in terms of material selfinterest but that others reflect additional norms in the general society that exist alongside and sometimes in competition with the prevailing norm of selfinterest maximization. The historicallybased view that selfinterest maximizing is a prevailing norm rather than a human universal allows these other norms to be acknowledged in a plausible and realistic manner rather than being explained away by a

  17. Why Canonical Disks Cannot Produce Advection Dominated Flows

    CERN Document Server

    Molteni, D; Valenza, M A

    2001-01-01

    Using simple arguments we show that the canonical thin keplerian accretion disks cannot smoothly match any plain advection dominated flow (ADAF) model. By 'plain' ADAF model we mean the ones with zero cooling. The existence of sonic points in exact solutions is critical and imposes constraints that cannot be surpassed adopting 'reasonable' physical conditions at the hypothetical match point. Only the occurrence of new critical physical phenomena may produce a transition. We propose that exact advection models are a class of solutions which don't necessarily involve the standard thin cool disks and suggest a different scenario in which good ADAF solutions could eventually occur.

  18. Lattice design and expected performance of the Muon Ionization Cooling Experiment demonstration of ionization cooling

    Directory of Open Access Journals (Sweden)

    2017-06-01

    Full Text Available Muon beams of low emittance provide the basis for the intense, well-characterized neutrino beams necessary to elucidate the physics of flavor at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muon collider. The international Muon Ionization Cooling Experiment (MICE aims to demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material in which it loses energy. The energy lost is then replaced using rf cavities. The combined effect of energy loss and reacceleration is to reduce the transverse emittance of the beam (transverse cooling. A major revision of the scope of the project was carried out over the summer of 2014. The revised experiment can deliver a demonstration of ionization cooling. The design of the cooling demonstration experiment will be described together with its predicted cooling performance.

  19. The definition of cool

    Energy Technology Data Exchange (ETDEWEB)

    Nichiporuk, A.

    2005-05-01

    A new air cooling system at Agnico-Eagle's LaRonde mine, located in the Abitibi Region of Quebec is described. The new system serves a mine operating at 7,250 plus feet level. The system is installed at the surface; it utilizes ammonia to cool water, which cools the air. The system consists of four compressors which lower the temperature of the ammonia to minus 2 degrees C. Water, which at this temperature is 14 degrees, and ammonia pass through a plate heat exchanger simultaneously, however, without coming into contact with each other. The heat transfer that occurs causes the water's temperature to drop to 2 degrees C. The total volume of water cooled is 220 litres per second. The system is capable of reducing 636,000 cfm of air from 30 degrees C to 6 degrees C, to which 214,000 cfm of non-cooled air is added. This mixture, which is maintained at approximately 8 degrees C throughout the summer season, is sent underground to the deepest parts of the mine. The system runs from June to September, depending on the weather. In the evenings, when the temperature dips to around four to five degrees C, the water is shut down and side doors are opened to prevent the water from freezing.

  20. Recent Development of Air-Cooled Bainitic Steels Containing Manganese

    Institute of Scientific and Technical Information of China (English)

    FANG Hong-sheng; YANG Fu-bao; BAI Bing-zhe; YANG Zhi-gang; YIN Jiang

    2005-01-01

    The superiorities of air-cooled bainitic steels were described.A series of air-cooled bainitic steels containing manganese were developed and presented,which include low carbon granular bainitic steels,low carbon grain-boundary allotriomorphic ferrite/granular bainite dual phase steels,medium and medium high carbon bainite/martensite dual phase steels and casting bainitic steels.The development of ultra-low carbon bainitic steels in China was also introduced.

  1. Raman Cooling of Solids through Photonic Density of States Engineering

    CERN Document Server

    Chen, Yin-Chung

    2015-01-01

    The laser cooling of vibrational states of solids has been achieved through photoluminescence in rare-earth elements, optical forces in optomechanics, and the Brillouin scattering light-sound interaction. The net cooling of solids through spontaneous Raman scattering, and laser refrigeration of indirect band gap semiconductors, both remain unsolved challenges. Here, we analytically show that photonic density of states (DoS) engineering can address the two fundamental requirements for achieving spontaneous Raman cooling: suppressing the dominance of Stokes (heating) transitions, and the enhancement of anti-Stokes (cooling) efficiency beyond the natural optical absorption of the material. We develop a general model for the DoS modification to spontaneous Raman scattering probabilities, and elucidate the necessary and minimum condition required for achieving net Raman cooling. With a suitably engineered DoS, we establish the enticing possibility of refrigeration of intrinsic silicon by annihilating phonons from ...

  2. Longitudinal dynamics of laser-cooled fast ion beams

    DEFF Research Database (Denmark)

    Weidemüller, M.; Eike, B.; Eisenbarth, U.

    1999-01-01

    We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal......-transverse coupling mechanisms. Laser cooling in novel bunch forms consisting of square-well buckets leads to longitudinally space-charge dominated beams. The observed longitudinal ion density distributions can be well described by a self-consistent mean-field model based on a thermodynamic Debye-Huckel approach....... When applying laser cooling in square-well buckets over long time intervals, hard Coulomb collisions suddenly disappear and the longitudinal temperature drops by about a factor of three. The observed longitudinal behaviour of the beam shows strong resemblance with the transition to an Coulomb...

  3. Influence of Cooling Rate on Microsegregation Behavior of Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Md. Imran Khan

    2014-01-01

    Full Text Available The effect of cooling rate on microstructure and microsegregation of three commercially important magnesium alloys was investigated using Wedge (V-shaped castings of AZ91D, AM60B, and AE44 alloys. Thermocouples were distributed to measure the cooling rate at six different locations of the wedge casts. Solute redistribution profiles were drawn based on the chemical composition analysis obtained by EDS/WDS analysis. Microstructural and morphological features such as dendrite arm spacing and secondary phase particle size were analyzed using both optical and scanning electron microscopes. Dendritic arm spacing and secondary phase particle size showed an increasing trend with decreasing cooling rate for the three alloys. Area percentage of secondary phase particles decreased with decreasing cooling rate for AE44 alloy. The trend was different for AZ91D and AM60B alloys, for both alloys, area percentage of β-Mg17Al12 increased with decreasing cooling rate up to location 4 and then decreased slightly. The tendency for microsegregation was more severe at slower cooling rates, possibly due to prolonged back diffusion. At slower cooling rate, the minimum concentration of aluminum at the dendritic core was lower compared to faster cooled locations. The segregation deviation parameter and the partition coefficient were calculated from the experimentally obtained data.

  4. Study of the circulation theory of the cooling system in vertical evaporative cooling generator

    Institute of Scientific and Technical Information of China (English)

    YU; Shunzhou; CAI; Jing; GUO; Chaohong

    2006-01-01

    The article briefly states the current development of evaporative cooling generator and its advantages comparing with generators of traditional cooling. Vertical evaporative cooling generator, which adopts Close-Loop-Self-Cycle with no-pump and free convection boil in the hollow stator bar, is one of the great developments in generator design. This article emphasizes the importance of cooling system in generator; expatiates the circulation theory in two aspects, energy and flow; and analyzes the essential reason,motivity and stability of Close-Loop-Self-Cycle. The article points out that the motivity of the circulation is the heat absorbed by coolant. After absorbing heat the coolant will have the ability of doing work because of the phase change. In another words, it is the buoyancy causing by density difference leads to the Close-Loop-Self-Cycle. This conclusion is validated by experimental data.

  5. PERFORMANCE ANALYSIS OF MECHANICAL DRAFT COOLING TOWER

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L

    2009-02-10

    Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has cross-flow and counter-current MDCT's consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to simulate the cooling tower performance for the counter-current cooling tower and to conduct a parametric study under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model and performed the benchmarking analysis against the integral measurement results to accomplish the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of parametric calculations was performed to investigate the impact of wind speeds and ambient conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was also benchmarked against the literature data and the SRS integral test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be published here.

  6. Low Temperature Heating and High Temperature Cooling in Buildings

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk

    , a single-family house designed for plus-energy targets and equipped with a radiant water-based floor heating and cooling system was studied by means of full-scale measurements, dynamic building simulations and thermodynamic evaluation tools. Thermal indoor environment and energy performance of the house...... performance of heating and cooling systems for achieving the same thermal indoor environment. The results show that it is crucial to minimize the heating and cooling demands in the design phase since these demands determine the terminal units and heat sources and sinks that could be used. Low temperature...... heating and high temperature cooling systems (a radiant water-based floor heating and cooling system in this study) proved to be superior to compared systems, evaluated with different system analysis tools; energy, exergy, and entransy. Radiant systems should be coupled to appropriate heating and cooling...

  7. Aspects of Household Cooling Technology

    OpenAIRE

    Mrzyglod, Matthias; Holzer, Stefan

    2014-01-01

    Actually available household cooling appliances in the highest efficiency class may consume less then 10W average electrical power. To achieve such power consumptions special challenges for the cooling system had to overcome. The related cooling system design has to consider several effects, which arise from the corresponding low cooling capacity demand, start/stop cycles and additional power consumptions by control accessories. The lecture provides symptomatic aspects of cooling technology, ...

  8. Laser cooling of a semiconductor by 40 kelvin.

    Science.gov (United States)

    Zhang, Jun; Li, Dehui; Chen, Renjie; Xiong, Qihua

    2013-01-24

    Optical irradiation accompanied by spontaneous anti-Stokes emission can lead to cooling of matter, in a phenomenon known as laser cooling, or optical refrigeration, which was proposed by Pringsheim in 1929. In gaseous matter, an extremely low temperature can be obtained in diluted atomic gases by Doppler cooling, and laser cooling of ultradense gas has been demonstrated by collisional redistribution of radiation. In solid-state materials, laser cooling is achieved by the annihilation of phonons, which are quanta of lattice vibrations, during anti-Stokes luminescence. Since the first experimental demonstration in glasses doped with rare-earth metals, considerable progress has been made, particularly in ytterbium-doped glasses or crystals: recently a record was set of cooling to about 110 kelvin from the ambient temperature, surpassing the thermoelectric Peltier cooler. It would be interesting to realize laser cooling in semiconductors, in which excitonic resonances dominate, rather than in systems doped with rare-earth metals, where atomic resonances dominate. However, so far no net cooling in semiconductors has been achieved despite much experimental and theoretical work, mainly on group-III-V gallium arsenide quantum wells. Here we report a net cooling by about 40 kelvin in a semiconductor using group-II-VI cadmium sulphide nanoribbons, or nanobelts, starting from 290 kelvin. We use a pump laser with a wavelength of 514 nanometres, and obtain an estimated cooling efficiency of about 1.3 per cent and an estimated cooling power of 180 microwatts. At 100 kelvin, 532-nm pumping leads to a net cooling of about 15 kelvin with a cooling efficiency of about 2.0 per cent. We attribute the net laser cooling in cadmium sulphide nanobelts to strong coupling between excitons and longitudinal optical phonons (LOPs), which allows the resonant annihilation of multiple LOPs in luminescence up-conversion processes, high external quantum efficiency and negligible background

  9. Doppler cooling a microsphere

    CERN Document Server

    Barker, P F

    2010-01-01

    Doppler cooling the center-of-mass motion of an optically levitated microsphere via the velocity dependent scattering force from narrow whispering gallery mode (WGM) resonances is described. Light that is red detuned from the WGM resonance can be used to damp the center-of-mass motion in a process analogous to the Doppler cooling of atoms. Leakage of photons out of the microsphere when the incident field is near resonant with the narrow WGM resonance acts to damp the motion of the sphere. The scattering force is not limited by saturation, but can be controlled by the incident power. Cooling times on the order of seconds are calculated for a 20 micron diameter silica microsphere trapped within optical tweezers, with a Doppler temperature limit in the microKelvin regime.

  10. Natural radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.

    1979-01-01

    Natural radiative cooling at night was measured based on the surface-radiation spectrum after the heat balance of the surface exposed to the sun had been reradiated. A concept equivalent to the sky temperature and a concept useful for obtaining the net heat flux are discussed. The highest possible equilibrium temperature of the selective surface can be lowered; however, how to apply this practically is not yet known. A simple radiator, completely enclosed by a transparent screen, can produce a significant and inexpensive cooling effect. The results of experiments carried out in an area such as Padua, Italy, where the climate is not suitable for cooling purposes can still be predicted theoretically. The possibility of using the collector for heat collection during the day and as a radiator at night is indicated.

  11. Clean cooling; Saubere Kuehlung

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-07-01

    The round hybrid cooling towers which Balcke-Duerr GmbH is currently building for the 550-MW-IGCC-power-station of a refinery project on Sardinia have to meet particularly stringent requirements as seawater is used for cooling. The advantages are: Avoidance of visible plume with minimal energy consumption, optimal plume exit velocity and discharge, greatest possible stability of the plume column, avoidance of interference and recirculation, high operating reliability of the cooling tower. (orig.) [Deutsch] Derzeit werden die Kuehltuerme fuer ein 550-MW-IGCC-Kraftwerk einer Raffinierie auf Sardinien errichtet. Die Anforderungen an die Technik sind hoch, denn gekuehlt wird mit Seewasser. Zum Einsatz kommen Hybridrundkuehltuerme der Balcke-Duerr GmbH, Ratingen. Damit setzt das Unternehmen diesen Typ erstmals ausserhalb von Deutschland ein. (orig.)

  12. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  13. Research on Cooling Effectiveness in Stepped Slot Film Cooling Vane

    Institute of Scientific and Technical Information of China (English)

    LI Yulong; WU Hong; ZHOU Feng; RONG Chengjun

    2016-01-01

    As one of the most important developments in air cooling technology for hot parts of the aero-engine,film cooling technology has been widely used.Film cooling hole structure exists mainly in areas that have high temperature,uneven cooling effectiveness issues when in actual use.The first stage turbine vanes of the aero-engine consume the largest portion of cooling air,thereby the research on reducing the amount of cooling air has the greatest potential.A new stepped slot film cooling vane with a high cooling effectiveness and a high cooling uniformity was researched initially.Through numerical methods,the affecting factors of the cooling effectiveness of a vane with the stepped slot film cooling structure were researched.This paper focuses on the cooling effectiveness and the pressure loss in different blowing ratio conditions,then the most reasonable and scientific structure parameter can be obtained by analyzing the results.The results show that 1.0 mm is the optimum slot width and 10.0 is the most reasonable blowing ratio.Under this condition,the vane achieved the best cooling result and the highest cooling effectiveness,and also retained a low pressure loss.

  14. The ATLAS IBL CO2 cooling system

    Science.gov (United States)

    Verlaat, B.; Ostrega, M.; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.

    2017-02-01

    The ATLAS Pixel detector has been equipped with an extra pixel layer in the space obtained by a smaller radius beam pipe. This new pixel layer called the Insertable B-Layer (IBL) was installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the expected high radiation dose received at an integrated luminosity of 550 fb1. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  15. Anomalous law of cooling.

    Science.gov (United States)

    Lapas, Luciano C; Ferreira, Rogelma M S; Rubí, J Miguel; Oliveira, Fernando A

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  16. Anomalous law of cooling

    Science.gov (United States)

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  17. Superconductor rotor cooling system

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  18. A Cool Emperor Penguin

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    哇,这只帝企鹅的胸前居然有个心形!It’s cool!(乐天:没错,它的胸前少了这幺撮毛,应该会感觉挺凉快的)cool在这里可不是“凉快”的意思,而是“酷.帅气”的意思。我们《英语大王》的英文名字就叫English Cool Kids哦!(乐天拿出一副墨镜戴上:

  19. Gas cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-06-01

    Although most of the development work on fast breeder reactors has been devoted to the use of liquid metal cooling, interest has been expressed for a number of years in alternative breeder concepts using other coolants. One of a number of concepts in which interest has been retained is the Gas-Cooled Fast Reactor (GCFR). As presently envisioned, it would operate on the uranium-plutonium mixed oxide fuel cycle, similar to that used in the Liquid Metal Fast Breeder Reactor (LMFBR), and would use helium gas as the coolant.

  20. Quantum thermodynamic cooling cycle

    CERN Document Server

    Palao, J P; Gordon, J M; Palao, Jose P.; Kosloff, Ronnie; Gordon, Jeffrey M.

    2001-01-01

    The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

  1. On Dominator Colorings in Graphs

    Indian Academy of Sciences (India)

    S Arumugam; Jay Bagga; K Raja Chandrasekar

    2012-11-01

    A dominator coloring of a graph is a proper coloring of in which every vertex dominates every vertex of at least one color class. The minimum number of colors required for a dominator coloring of is called the dominator chromatic number of and is denoted by $ d(G)$. In this paper we present several results on graphs with $ d(G)=(G)$ and $ d(G)=(G)$ where $(G)$ and $(G)$ denote respectively the chromatic number and the domination number of a graph . We also prove that if $(G)$ is the Mycielskian of , then $ d(G)+1≤ d((G))≤ d(G)+2$.

  2. Hiatus-like decades in the absence of equatorial Pacific cooling and accelerated global ocean heat uptake

    Science.gov (United States)

    von Känel, Lukas; Frölicher, Thomas L.; Gruber, Nicolas

    2017-08-01

    A surface cooling pattern in the equatorial Pacific associated with a negative phase of the Interdecadal Pacific Oscillation is the leading hypothesis to explain the smaller rate of global warming during 1998-2012, with these cooler than normal conditions thought to have accelerated the oceanic heat uptake. Here using a 30-member ensemble simulation of a global Earth system model, we show that in 10% of all simulated decades with a global cooling trend, the eastern equatorial Pacific actually warms. This implies that there is a 1 in 10 chance that decadal hiatus periods may occur without the equatorial Pacific being the dominant pacemaker. In addition, the global ocean heat uptake tends to slow down during hiatus decades implying a fundamentally different global climate feedback factor on decadal time scales than on centennial time scales and calling for caution inferring climate sensitivity from decadal-scale variability.

  3. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  4. Dominant optic atrophy

    Directory of Open Access Journals (Sweden)

    Lenaers Guy

    2012-07-01

    Full Text Available Abstract Definition of the disease Dominant Optic Atrophy (DOA is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC and their axons forming the optic nerve, which transfer the visual information from the photoreceptors to the lateral geniculus in the brain. Epidemiology The prevalence of the disease varies from 1/10000 in Denmark due to a founder effect, to 1/30000 in the rest of the world. Clinical description DOA patients usually suffer of moderate visual loss, associated with central or paracentral visual field deficits and color vision defects. The severity of the disease is highly variable, the visual acuity ranging from normal to legal blindness. The ophthalmic examination discloses on fundoscopy isolated optic disc pallor or atrophy, related to the RGC death. About 20% of DOA patients harbour extraocular multi-systemic features, including neurosensory hearing loss, or less commonly chronic progressive external ophthalmoplegia, myopathy, peripheral neuropathy, multiple sclerosis-like illness, spastic paraplegia or cataracts. Aetiology Two genes (OPA1, OPA3 encoding inner mitochondrial membrane proteins and three loci (OPA4, OPA5, OPA8 are currently known for DOA. Additional loci and genes (OPA2, OPA6 and OPA7 are responsible for X-linked or recessive optic atrophy. All OPA genes yet identified encode mitochondrial proteins embedded in the inner membrane and ubiquitously expressed, as are the proteins mutated in the Leber Hereditary Optic Neuropathy. OPA1 mutations affect mitochondrial fusion, energy metabolism, control of apoptosis, calcium clearance and maintenance of mitochondrial genome integrity. OPA3 mutations only affect the energy metabolism and the control of apoptosis. Diagnosis Patients are usually diagnosed during their early childhood, because of

  5. Subdominant H60 antigen-specific CD8 T-cell response precedes dominant H4 antigen-specific response during the initial phase of allogenic skin graft rejection.

    Science.gov (United States)

    Yoo, Kang Il; Jeon, Ji Yeong; Ryu, Su Jeong; Nam, Giri; Youn, Hyewon; Choi, Eun Young

    2015-02-13

    In allogeneic transplantation, including the B6 anti-BALB.B settings, H60 and H4 are two representative dominant minor histocompatibility antigens that induce strong CD8 T-cell responses. With different distribution patterns, H60 expression is restricted to hematopoietic cells, whereas H4 is ubiquitously expressed. H60-specific CD8 T-cell response has been known to be dominant in most cases of B6 anti-BALB.B allo-responses, except in the case of skin transplantation. To understand the mechanism underlying the subdominance of H60 during allogeneic skin transplantation, we investigated the dynamics of the H60-specific CD8 T cells in B6 mice transplanted with allogeneic BALB.B tail skin. Unexpectedly, longitudinal bioluminescence imaging and flow cytometric analyses revealed that H60-specific CD8 T cells were not always subdominant to H4-specific cells but instead showed a brief dominance before the H4 response became predominant. H60-specific CD8 T cells could expand in the draining lymph node and migrate to the BALB.B allografts, indicating their active participation in the anti-BALB.B allo-response. Enhancing the frequencies of H60-reactive CD8 T cells prior to skin transplantation reversed the immune hierarchy between H60 and H4. Additionally, H60 became predominant when antigen presentation was limited to the direct pathway. However, when antigen presentation was restricted to the indirect pathway, the expansion of H60-specific CD8 T cells was limited, whereas H4-specific CD8 T cells expanded significantly, suggesting that the temporary immunodominance and eventual subdominance of H60 could be due to their reliance on the direct antigen presentation pathway. These results enhance our understanding of the immunodominance phenomenon following allogeneic tissue transplantation.

  6. General Relativistic Magnetohydrodynamic Simulations of the Hard State as a Magnetically-Dominated Accretion Flow

    CERN Document Server

    Fragile, P Chris

    2008-01-01

    (Abridged) We present one of the first physically-motivated two-dimensional general relativistic magnetohydrodynamic (GRMHD) numerical simulations of a radiatively-cooled black-hole accretion disk. The fiducial simulation combines a total-energy-conserving formulation with a radiative cooling function, which includes bremsstrahlung, synchrotron, and Compton effects. By comparison with other simulations we show that in optically thin advection-dominated accretion flows, radiative cooling can significantly affect the structure, without necessarily leading to an optically thick, geometrically thin accretion disk. We further compare the results of our radiatively-cooled simulation to the predictions of a previously developed analytic model for such flows. For the very low stress parameter and accretion rate found in our simulated disk, we closely match a state called the "transition" solution between an outer advection-dominated accretion flow and what would be a magnetically-dominated accretion flow (MDAF) in th...

  7. Muon Beam Helical Cooling Channel Design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G; Kazakevich, G M; Marhauser, Frank; Neubauer, Michael; Roberts, T; Yoshikawa, C; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V S; Lopes, Mattlock; Tollestrup, A; Yonehara, Katsuya; Zloblin, A

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  8. Solar-powered cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  9. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  10. Cooling of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Grigorian H.

    2010-10-01

    Full Text Available We introduce the theoretical basis for modeling the cooling evolution of compact stars starting from Boltzmann equations in curved space-time. We open a discussion on observational verification of different neutron star models by consistent statistics. Particular interest has the question of existence of quark matter deep inside of compact object, which has to have a specific influence on the cooling history of the star. Besides of consideration of several constraints and features of cooling evolution, which are susceptible of being critical for internal structure of hot compact stars we have introduced a method of extraction of the mass distribution of the neutron stars from temperature and age data. The resulting mass distribution has been compared with the one suggested by supernove simulations. This method can be considered as an additional checking tool for the consistency of theoretical modeling of neutron stars. We conclude that the cooling data allowed existence of neutron stars with quark cores even with one-flavor quark matter.

  11. Elementary stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  12. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  13. Collisional cooling of light ions by co-trapped heavy atoms

    CERN Document Server

    Dutta, Sourav; Rangwala, S A

    2015-01-01

    The most generic cooling and thermalization pathway at the lowest temperatures is via elastic collisions. In hybrid ion-atom traps, ion cooling to temperatures where low partial wave collisions dominate require the collisional cooling mechanism to be well understood and controlled. There exists great uncertainty on whether cooling of light ions by heavier neutral atoms is possible. Here we experimentally demonstrate the cooling of light ions by co-trapped heavy atoms for the first time. We show that trapped 39K+ ions are cooled by localized ultracold neutral 85Rb atoms for an ion-atom mass ratio where most theoretical models predict ion heating. We demonstrate, based on detailed numerical simulation of our ion-cooling model, which is in excellent agreement with experiments, that cooling of ions by localized cold atoms is possible for any mass ratio. Our result opens up the possibility of studying quantum collisions and chemistry in trapped atom-ion systems.

  14. Research Proposal for the Design and Engineering Phase of a Solar Heating and Cooling System Experiment at the Warner Robins Public Library, Warner Robins, Georgia. Submitted to the United States Energy Research and Development Administration.

    Science.gov (United States)

    Phillips, Warren H.; And Others

    A number of reasons are advanced to include a solar heating and cooling experiment in a library building. The unique aspects of the experiment are to be a seasonally adjustable collector tilt and testing of a new generation of absorption air conditioners. After a brief description of the proposed experiment, the proposal contains forms filed by…

  15. Physiologic and Functional Responses of MS Patients to Body Cooling Using Commercially Available Cooling Garments

    Science.gov (United States)

    Ku, Yu-Tsuan E.; Montgomery, Leslie D.; Lee, Hank C.; Luna, Bernadette; Webbon, Bruce W.; Mead, Susan C. (Technical Monitor)

    1999-01-01

    Personal cooling systems are widely used in industrial and aerospace environments to alleviate thermal stress. Increasingly they are also used by heat sensitive multiple sclerosis (HSMS) patients to relieve symptoms and improve quality of life. There are a variety of cooling systems commercially available to the MS community. However, little information is available regarding the comparative physiological changes produced by routine operation of these various systems. The objective of this study was to document and compare the patient response to two passive cooling vests and one active cooling garment. The Life Enhancement Technology, Inc. (LET) lightweight active cooling vest with cap, the MicroClimate Systems (MCS) Change of Phase garment, and the Steele Vest were each used to cool 13 male and 13 female MS subjects (31 to 67 yr.) in this study. The subjects, seated in an upright position at normal room temperature (approximately 22 C), were tested with one of the cooling garments. Oral, fight and left ear temperatures were logged manually every 5 min. An-n, leg, chest and rectal temperatures; heart rate; and respiration were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. Each subject was given a series of subjective and objective evaluation tests before and after cooling. The LET and Steele vests test groups had similar, significant (P less than 0.01) cooling effects on oral and ear canal temperature, which decreased approximately 0.4 C, and 0.3 C, respectively. Core temperature increased (N.S.) with all three vests during cooling. The LET vest produced the coldest (P less than 0.01) skin temperature. Overall, the LET vest provided the most improvement on subjective and objective performance measures. These results show that the garment configurations tested do not elicit a similar thermal response in all MS patients. Cooling with the LET active garment configuration resulted in the lowest body temperatures for the MS subjects; cooling with

  16. Dominantly-inherited lop ears.

    Science.gov (United States)

    Leung, Alexander K C; Kong, Albert Y F; Robson, W Lane M; McLeod, D Ross

    2007-10-01

    We describe a four-generation Chinese family that included five members who had an isolated bilateral lop ear anomaly. The presentation suggested a dominant mode of inheritance. The absence of male-to-male transmission does not exclude an X-linked dominant mode of inheritance. Since the phenotypic anomaly of the male proband was no more severe than the affected female members, an autosomal dominant mode of inheritance is most likely. 2007 Wiley-Liss, Inc

  17. Sorption cooling: a valid extension to passive cooling

    NARCIS (Netherlands)

    Doornink, D.J.; Burger, J.F.; Brake, ter H.J.M.

    2008-01-01

    Passive cooling has shown to be a very dependable cryogenic cooling method for space missions. Several missions employ passive radiators to cool down their delicate sensor systems for many years, without consuming power, without exporting vibrations or producing electromagnetic interference. So for

  18. Comments on Ionization Cooling Channel Characteristics

    CERN Document Server

    Neuffer, David

    2013-01-01

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the ionization cooling theory developed previously. In this paper we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  19. Comments on Ionization Cooling Channel Characteristics

    OpenAIRE

    Neuffer, David

    2013-01-01

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the ionization cooling theory developed previously. In this paper we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  20. Feedback Regulated Star Formation in Cool Core Clusters of Galaxies

    Science.gov (United States)

    Tremblay, Grant Russell

    2011-07-01

    act as observable "beacons" for assembling protoclusters. Probing the epoch of cluster assembly will be critical to a better understanding of the evolution of the cool core phenomenon and the history of cluster entropy regulation in general. The relative inability of X-ray cluster selection techniques to extend to these redshifts necessitates alternative detection methods, one of which we describe in this thesis. Finally, in Chapter 6 we discuss the main conclusions of this thesis, which can be summarized as follows: (1) AGN feedback is real, and likely plays a dominant role in regulating the pathway of entropy loss from hot ambient medium to cold gas to star formation; (2) AGN feedback does not establish an impassable "entropy floor" below which gas cannot cool; and (3) star formation plays an important role in determining the temperature and ionization of the warm (˜104 K) and cold (10 < T < 104 K) gas phases in brightest cluster galaxies.

  1. Laser-cooling-assisted mass spectrometry

    CERN Document Server

    Schneider, Christian; Chen, Kuang; Sullivan, Scott T; Hudson, Eric R

    2014-01-01

    Mass spectrometry is used in a wide range of scientific disciplines including proteomics, pharmaceutics, forensics, and fundamental physics and chemistry. Given this ubiquity, there is a worldwide effort to improve the efficiency and resolution of mass spectrometers. However, the performance of all techniques is ultimately limited by the initial phase-space distribution of the molecules being analyzed. Here, we dramatically reduce the width of this initial phase-space distribution by sympathetically cooling the input molecules with laser-cooled, co-trapped atomic ions, improving both the mass resolution and detection efficiency of a time-of-flight mass spectrometer by over an order of magnitude. Detailed molecular dynamics simulations verify the technique and aid with evaluating its effectiveness. Our technique appears to be applicable to other types of mass spectrometers.

  2. Laser-Cooling-Assisted Mass Spectrometry

    Science.gov (United States)

    Schneider, Christian; Schowalter, Steven J.; Chen, Kuang; Sullivan, Scott T.; Hudson, Eric R.

    2014-09-01

    Mass spectrometry is used in a wide range of scientific disciplines including proteomics, pharmaceutics, forensics, and fundamental physics and chemistry. Given this ubiquity, there is a worldwide effort to improve the efficiency and resolution of mass spectrometers. However, the performance of all techniques is ultimately limited by the initial phase-space distribution of the molecules being analyzed. Here, we dramatically reduce the width of this initial phase-space distribution by sympathetically cooling the input molecules with laser-cooled, cotrapped atomic ions, improving both the mass resolution and detection efficiency of a time-of-flight mass spectrometer by over an order of magnitude. Detailed molecular-dynamics simulations verify the technique and aid with evaluating its effectiveness. This technique appears to be applicable to other types of mass spectrometers.

  3. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ, M.

    2005-05-16

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  4. ALP hints from cooling anomalies

    CERN Document Server

    Giannotti, Maurizio

    2015-01-01

    We review the current status of the anomalies in stellar cooling and argue that, among the new physics candidates, an axion-like particle would represent the best option to account for the hinted additional cooling.

  5. Cooling devices in laser therapy

    Directory of Open Access Journals (Sweden)

    Anupam Das

    2016-01-01

    Full Text Available Cooling devices and methods are now integrated into most laser systems, with a view to protecting the epidermis, reducing pain and erythema and improving the efficacy of laser. On the basis of method employed, it can be divided into contact cooling and non-contact cooling. With respect to timing of irradiation of laser, the nomenclatures include pre-cooling, parallel cooling and post-cooling. The choice of the cooling device is dictated by the laser device, the physician′s personal choice with respect to user-friendliness, comfort of the patient, the price and maintenance costs of the device. We hereby briefly review the various techniques of cooling, employed in laser practice.

  6. Evaluation of the energy efficiency of active pass through wall cooling surface with phase change material in residential buildings combined with cistern cooling and operation optimization by development of suitable control strategies; Evaluierung der Energieeffizienz von aktiv durchstroemten Wandkuehlflaechen mit Phasenwechselmaterial in Wohngebaeuden in Kombination mit einer Zisternenkuehlung und Optimierung des Betriebes durch Entwicklung geeigneter Regelstrategien

    Energy Technology Data Exchange (ETDEWEB)

    Stoelzel, Christof [Variotec, Neumarkt (Germany); Kalz, Doreen; Wienold, Jan; Fischer, Martin [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany). Gruppe Solares Bauen

    2009-07-01

    This work introduces and evaluates a novel heating and cooling concept employing thermo-active building systems and environmental energy harnessed from 22-m{sup 3} rainwater cisterns for a 290-m{sup 2} low energy residential building in Germany. The building strives for a significantly reduced primary energy use with carefully coordinated measures such as high quality building envelope by means of vacuum insulated panels, supply and exhaust air system with heat recovery, reduced solar heat gains (solar shading), and the integration of thermal solar collectors and photovoltaic in the plant system. On this premise, a comprehensive long-term monitoring over the course of two years in high time resolution was carried out with an accompanying commissioning of the building performance. Measurements comprise the energy use for heating, cooling, and ventilation, as well as the auxiliary equipment, the performance of the environmental heat source/sink, thermal comfort, air quality, and local climatic site conditions. The analysis focuses on the performance and the efficiency of the rainwater cisterns as natural heat source and sink as well as the heat pump system. First, the paper discusses the performance of the thermo-active building systems, investigates the occupant thermal comfort, determines the efficiency of the heating/cooling system, and evaluates the total end and primary energy use of the building. Second, various operation and control strategies for the cooling plant are investigated by means of a validated building and plant model in the dynamic simulation environment TRNSYS. The optimization is carried out in terms of energy efficiency, occupant thermal comfort and the availability of the rainwater cisterns over the summer months. The central findings of the analysis of the energy and efficiency performance of the HVAC according to four defined balance boundaries are the following: Rainwater cistern as environmental source und sink: The energy balance of the

  7. Anomalous Cooling of Coronal Loops with Turbulent Suppression of Thermal Conduction

    Science.gov (United States)

    Bian, Nicolas H.; Watters, Jonathan M.; Kontar, Eduard P.; Emslie, A. Gordon

    2016-12-01

    We investigate the impact of turbulent suppression of parallel heat conduction on the cooling of post-flare coronal loops. Depending on the value of the mean free path {λ }T associated with the turbulent scattering process, we identify four main cooling scenarios. The overall temperature evolution, from an initial temperature in excess of 107 K, is modeled in each case, highlighting the evolution of the dominant cooling mechanism throughout the cooling process. Comparison with observed cooling times allows the value of {λ }T to be constrained, and interestingly this range corresponds to situations where collision-dominated conduction plays a very limited role, or even no role at all, in the cooling of post-flare coronal loops.

  8. Anomalous Cooling of Coronal Loops with Turbulent Suppression of Thermal Conduction

    CERN Document Server

    Bian, Nicolas H; Kontar, Eduard P; Emslie, A Gordon

    2016-01-01

    We investigate the impact of turbulent suppression of parallel heat conduction on the cooling of post-flare coronal loops. Depending on the value of the mean free path $\\lambda_T$ associated with the turbulent scattering process, we identify four main cooling scenarios. The overall temperature evolution, from an initial temperature in excess of $10^7$~K, is modeled in each case, highlighting the evolution of the dominant cooling mechanism throughout the cooling process. Comparison with observed cooling times allows the value of $\\lambda_T$ to be constrained, and interestingly this range corresponds to situations where collision-dominated conduction plays a very limited role, or even no role at all, in the cooling of post-flare coronal loops.

  9. Self pumping magnetic cooling

    Science.gov (United States)

    Chaudhary, V.; Wang, Z.; Ray, A.; Sridhar, I.; Ramanujan, R. V.

    2017-01-01

    Efficient thermal management and heat recovery devices are of high technological significance for innovative energy conservation solutions. We describe a study of a self-pumping magnetic cooling device, which does not require external energy input, employing Mn-Zn ferrite nanoparticles suspended in water. The device performance depends strongly on magnetic field strength, nanoparticle content in the fluid and heat load temperature. Cooling (ΔT) by ~20 °C and ~28 °C was achieved by the application of 0.3 T magnetic field when the initial temperature of the heat load was 64 °C and 87 °C, respectively. These experiments results were in good agreement with simulations performed with COMSOL Multiphysics. Our system is a self-regulating device; as the heat load increases, the magnetization of the ferrofluid decreases; leading to an increase in the fluid velocity and consequently, faster heat transfer from the heat source to the heat sink.

  10. Cooled particle accelerator target

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  11. Water Cooled Mirror Design

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pulliam, Elias Noel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  12. Cooling Floor AC Systems

    Science.gov (United States)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  13. Heating, ventilation and cooling

    CSIR Research Space (South Africa)

    Osburn, L

    2009-02-01

    Full Text Available content and is evaporated by the air stream with less moisture. Enthalpy wheels are more effective at transferring energy between the air streams as both sensible and latent heat is transferred. Ground-Coupled Heat Exchanger Ground-coupled heat... with high diurnal temperature variations. Evaporative Coolers Evaporative coolers work on the concept that the evaporation of water has a cooling effect on its immediate environment due to the latent heat that it absorbs in order to evaporate...

  14. Cooled Ion Frequency Standard.

    Science.gov (United States)

    2014-09-26

    when the cooling laser is turned off, the ions are heated by: (1) background gas collisions and (2) a plasma heating process which may be " resonant ...causes heating in our Penning traps. One way resonant particle transport is mediated is by misalignm.nt between the trap’s magnetic and electric axis...using computer solutions. The trap of Fig. 1 is noteworthy because although the inner surfaces of the trap are machined with simple conical cuts, the

  15. Brain Dominance & Self-Actualization.

    Science.gov (United States)

    Bernhoft, Franklin O.

    Numerous areas associated with brain dominance have been researched since Bogen and Sperry's work with split-brain patients in the 1960s, but only slight attention has been given to the connection between brain dominance and personality. No study appears in the literature seeking to understand optimal mental health as defined by Maslow's…

  16. Distributional dominance with dirty data

    OpenAIRE

    2001-01-01

    Distributional dominance criteria are commonly applied to draw welfare in- ferences about comparisons, but conclusions drawn from empirical imple- mentations of dominance criteria may be inßuenced by data contamination. We examine a non-parametric approach to reÞning Lorenz-type comparisons and apply the technique to two important examples from the LIS data-base.

  17. Dominant Leadership Style in Schools

    Science.gov (United States)

    Rajbhandari, Mani Man Singh

    2006-01-01

    The dominant leadership style is defined by the situation and the kind of organizational environment and climate. This, however, does not sufficiently define the leadership qualities in school organizations. There are other factors which also determine the dominant leadership style, which are the traits and style, teachers commitments, pass out…

  18. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  19. Low mass integrated cooling

    CERN Document Server

    Mapelli, Alessandro

    2014-01-01

    Low mass on - detec tor cooling systems are being developed and stud ied by the Detector Technology group (PH - DT) in the CERN Physics Department in close collaboration with LHC and non - LHC experiments . Two approaches are currently being investigated. The first approach, for barrel configurations, consists in integrating the cooli ng apparatus in light mechanical structures support ing the detectors. In this case , the thermal management can be achieved either with light cooling pipes and thin plates or with a network of microchannels embedded in thin strips of silicon or polyimide . Both configuratio ns are being investigated in the context of the 2018 upgrade program of the ALICE Inner Tracking System (ITS). Moreover, it is also possible to use a s ilicon microchannel cooling device itself as structural support for the detectors and electronics. Such a configur ation has been adopted by the NA62 collaboration for the ir GigaTracKer (GTK) as well as by the LHCb collaboration for the 2018 major upgrade of...

  20. Simulation of Desiccant Cooling

    Directory of Open Access Journals (Sweden)

    Kamaruddin A.

    2017-06-01

    Full Text Available Desiccant cooling system has been an attractive topic for study lately, due to its environmentally friendly nature. It also consume less electricity and capable to be operated without refrigerant. A simulation study was conducted using 1.5 m long ducting equipped with one desiccant wheel, one sensible heat exchanger wheel, one evaporative cooling chamber and two blowers and one electric heater. The simulation study used 8.16 m/s primary air, the drying coefficient from desiccant wheel, k1=2.1 (1/s, mass transfer coefficient in evaporative cooling, k2=1.2 kg vapor/s, heat transfer coefficient in desiccant wheel, h1=4.5 W/m2 oC, and heat transfer coefficient in sensible heat exchanger wheel h2= 4.5 W/m2 oC. The simulation results show that the final temperature before entering into the air conditioning room was 25 oC and RH of 65 %, were in accordance with the Indonesian comfort index.

  1. Instability during bunch shortening of an electron-cooled beam

    Directory of Open Access Journals (Sweden)

    M. Takanaka

    2003-10-01

    Full Text Available Bunch shortening causes an electron-cooled beam to be space charge dominated at low energies. Instability during the bunch shortening has been studied using a particle-tracking program where the 3D space-charge field due to the beam is calculated with a simplifying model.

  2. Stochastic cooling of bunched beams from fluctuation and kinetic theory

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.

    1982-09-01

    A theoretical formalism for stochastic phase-space cooling of bunched beams in storage rings is developed on the dual basis of classical fluctuation theory and kinetic theory of many-body systems in phase-space. The physics is that of a collection of three-dimensional oscillators coupled via retarded nonconservative interactions determined by an electronic feedback loop. At the heart of the formulation is the existence of several disparate time-scales characterizing the cooling process. Both theoretical approaches describe the cooling process in the form of a Fokker-Planck transport equation in phase-space valid up to second order in the strength and first order in the auto-correlation of the cooling signal. With neglect of the collective correlations induced by the feedback loop, identical expressions are obtained in both cases for the coherent damping and Schottky noise diffusion coefficients. These are expressed in terms of Fourier coefficients in a harmonic decomposition in angle of the generalized nonconservative cooling force written in canonical action-angle variables of the particles in six-dimensional phase-space. Comparison of analytic results to a numerical simulation study with 90 pseudo-particles in a model cooling system is presented.

  3. Eternal Domination: Criticality and Reachability

    Directory of Open Access Journals (Sweden)

    Klostermeyer William F.

    2017-02-01

    Full Text Available We show that for every minimum eternal dominating set, D, of a graph G and every vertex v ∈ D, there is a sequence of attacks at the vertices of G which can be defended in such a way that an eternal dominating set not containing v is reached. The study of the stronger assertion that such a set can be reached after a single attack is defended leads to the study of graphs which are critical in the sense that deleting any vertex reduces the eternal domination number. Examples of these graphs and tight bounds on connectivity, edge-connectivity and diameter are given. It is also shown that there exist graphs in which deletion of any edge increases the eternal domination number, and graphs in which addition of any edge decreases the eternal domination number.

  4. Ultraefficient Cooling of Resonators: Beating Sideband Cooling with Quantum Control

    Science.gov (United States)

    Wang, Xiaoting; Vinjanampathy, Sai; Strauch, Frederick; Jacobs, Kurt

    2012-02-01

    There is presently a great deal of interest in cooling high-frequency micro- and nano-mechanical oscillators to their ground states. The present state of the art in cooling mechanical resonators is a version of sideband cooling, which was originally developed in the context of cooling trapped ions. Here we present a method based on quantum control that uses the same configuration as sideband cooling--coupling the resonator to be cooled to a second microwave (or optical) auxiliary resonator--but will cool significantly colder. This is achieved by applying optimal control and varying the strength of the coupling between the two resonators over a time on the order of the period of the mechanical resonator. As part of our analysis, we also obtain a method for fast, high-fidelity quantum information transfer between resonators.

  5. Cooling lubricants; Kuehlschmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  6. Thermodynamic properties of under-cooled silver melts

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Differential scanning calorimeter technique combined with the traditional fluxing treatment was used to investigate the specific heat and related thermodynamic properties of under-cooled pure silver melts. The specific heat of the under-cooled melt showed a linear dependence on the temperature in the range of the obtained under-cooling from 0 to 198 K. The related thermodynamic properties of silver, such as the entropy change, the enthalpy change and the Gibbs free energy difference between the under-cooled melt and the solid phase, were derived from the measured specific heat. The relations between the temperature and the thermal diffusion or the thermal conductivity of the under-cooled melt were analyzed respectively.

  7. Improved dielectric constant and breakdown strength of γ-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: an excellent material for energy storage applications and piezoelectric throughput

    Science.gov (United States)

    Mehebub Alam, Md; Ghosh, Sujoy Kumar; Sarkar, Debabrata; Sen, Shrabanee; Mandal, Dipankar

    2017-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) embedded γ-phase containing polyvinylidene fluoride (PVDF) nanocomposite (PNC) film turns to an excellent material for energy storage application due to an increased dielectric constant (32 at 1 kHz), enhanced electric breakdown strength (400 MV m-1). It also exhibits a high energy density of 4 J cm-3 which is 25 times higher than that of virgin PVDF. 98% of the electroactive γ-phase has been acheived by the incorporation of TiO2 NPs and the resulting PNC behaves like a super-toughened material due to a dramatic improvement (more than 80%) in the tensile strength. Owing to their electroactive nature and extraordinary mechanical properties, PNC films have a strong ability to fabricate the piezoelectric nanogenerators (PNGs) that have recently been an area of focus regarding mechanical energy harvesting. The feasibility of piezoelectric voltage generation from PNGs is demostrated under the rotating fan that also promises further utility such as rotational speed (RPM) determination.

  8. Improved dielectric constant and breakdown strength of γ-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: an excellent material for energy storage applications and piezoelectric throughput.

    Science.gov (United States)

    Alam, Md Mehebub; Ghosh, Sujoy Kumar; Sarkar, Debabrata; Sen, Shrabanee; Mandal, Dipankar

    2017-01-06

    Titanium dioxide (TiO2) nanoparticles (NPs) embedded γ-phase containing polyvinylidene fluoride (PVDF) nanocomposite (PNC) film turns to an excellent material for energy storage application due to an increased dielectric constant (32 at 1 kHz), enhanced electric breakdown strength (400 MV m(-1)). It also exhibits a high energy density of 4 J cm(-3) which is 25 times higher than that of virgin PVDF. 98% of the electroactive γ-phase has been acheived by the incorporation of TiO2 NPs and the resulting PNC behaves like a super-toughened material due to a dramatic improvement (more than 80%) in the tensile strength. Owing to their electroactive nature and extraordinary mechanical properties, PNC films have a strong ability to fabricate the piezoelectric nanogenerators (PNGs) that have recently been an area of focus regarding mechanical energy harvesting. The feasibility of piezoelectric voltage generation from PNGs is demostrated under the rotating fan that also promises further utility such as rotational speed (RPM) determination.

  9. Thermohydraulic safety issues for liquid metal cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, Gunter; Stefani, Frank [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Fluid Dynamics; Eckert, Sven

    2016-05-15

    In this paper recent developments of various techniques for single-phase and two-phase flow measurements with relevance to liquid metal cooled systems will be presented. Further, the status of the DRESDYN platform for large-scale experiments with liquid sodium is sketched.

  10. Bulk Viscous Matter-dominated Universes: Asymptotic Properties

    CERN Document Server

    Avelino, Arturo; Gonzalez, Tame; Nucamendi, Ulises; Quiros, Israel

    2013-01-01

    By means of a combined study of the type Ia supernovae test,together with a study of the asymptotic properties in the equivalent phase space -- through the use of the dynamical systems tools -- we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of very particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed...

  11. Small Liquid Metal Cooled Reactor Safety Study

    Energy Technology Data Exchange (ETDEWEB)

    Minato, A; Ueda, N; Wade, D; Greenspan, E; Brown, N

    2005-11-02

    The Small Liquid Metal Cooled Reactor Safety Study documents results from activities conducted under Small Liquid Metal Fast Reactor Coordination Program (SLMFR-CP) Agreement, January 2004, between the Central Research Institute of the Electric Power Industry (CRIEPI) of Japan and the Lawrence Livermore National Laboratory (LLNL)[1]. Evaluations were completed on topics that are important to the safety of small sodium cooled and lead alloy cooled reactors. CRIEPI investigated approaches for evaluating postulated severe accidents using the CANIS computer code. The methods being developed are improvements on codes such as SAS 4A used in the US to analyze sodium cooled reactors and they depend on calibration using safety testing of metal fuel that has been completed in the TREAT facility. The 4S and the small lead cooled reactors in the US are being designed to preclude core disruption from all mechanistic scenarios, including selected unprotected transients. However, postulated core disruption is being evaluated to support the risk analysis. Argonne National Laboratory and the University of California Berkeley also supported LLNL with evaluation of cores with small positive void worth and core designs that would limit void worth. Assessments were also completed for lead cooled reactors in the following areas: (1) continuing operations with cladding failure, (2) large bubbles passing through the core and (3) recommendations concerning reflector control. The design approach used in the US emphasizes reducing the reactivity in the control mechanisms with core designs that have essentially no, or a very small, reactivity change over the core life. This leads to some positive void worth in the core that is not considered to be safety problem because of the inability to identify scenarios that would lead to voiding of lead. It is also believed that the void worth will not dominate the severe accident analysis. The approach used by 4S requires negative void worth throughout

  12. Belowground productivity of two cool desert communities.

    Science.gov (United States)

    Caldwell, M M; Camp, L B

    1974-06-01

    A new technique based upon the dilution of C (14) /C (12) ratios in structural carbon of root systems during the course of the growing season was used to evaluate belowground turnover or productivity of two cool desert communities in northern Utah, USA. This technique provides a measure of turnover of the root system of established perennial plant communities avoiding many of the disadvantages of other techniques. Adjacent communities dominated by Atriplex confertifolia and Ceratoides lanata both exhibited belowground productivity values exceeding aboveground production by three-fold. The greater belowground turnover of the Atriplex-dominated community may be a factor contributing to the maintenance of a greater quantity of aboveground biomass and prolonged periods of active photosynthesis during the driest portions of the year when Ceratoides becomes largely photosynthetically inactive.

  13. Generalized connected domination in graphs

    Directory of Open Access Journals (Sweden)

    M. Kouider

    2006-01-01

    Full Text Available As a generalization of connected domination in a graph G we consider domination by sets having at most k components. The order γ c k (G of such a smallest set we relate to γ c (G, the order of a smallest connected dominating set. For a tree T we give bounds on γ c k (T in terms of minimum valency and diameter. For trees the inequality γ c k (T≤ n-k-1 is known to hold, we determine the class of trees, for which equality holds.

  14. Process integration: Cooling water systems design

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-10-01

    Full Text Available This paper presents a technique for grassroot design of cooling water system for wastewater minimization which incorporates the performances of the cooling towers involved. The study focuses mainly on cooling systems consisting of multiple cooling...

  15. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  16. LS1 Report: Summer cool down

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    As the final LS1 activities are carried out in the machine, teams have been cooling down the accelerator sector by sector in preparation for beams.   The third sector of the LHC to be cooled down - sector 1-2 - has seen the process begin this week. During the cool-down phase, survey teams are measuring and smoothing (or realigning) the magnets at cold. By the end of August, five sectors of the machine will be in the process of cooling down, with one (sector 6-7) at cold. The LHC Access Safety System (LASS) is now being commissioned, and will be validated during the DSO tests at the beginning of October. As teams consolidate the modifications made to LASS during the shutdown, many points were closed for testing purposes. The CSCM (copper stabiliser continuity measurement) tests have been completed in the first sector (6-7) and no defect has been found. These results will be presented to the LHC Machine Committee next week. CSCM tests will start in the second sector in mid-August. Following many...

  17. An Anatomy of the 1960s Atlantic Cooling.

    Science.gov (United States)

    Hodson, Dan; Robson, Jon; Sutton, Rowan

    2014-05-01

    in the circulation of the atmosphere, and likely that of the ocean too, played an important role. We propose two possible mechanisms, both beginning with a rapid cooling of the Sub Polar Gyre and leading to a subsequent change in atmospheric circulation which pushes the cooling deeper into the Tropical North Atlantic. Further work is required to determine which mechanism was the dominant driver of the observed cooling event. Understanding such past events is essential to improve confidence in decadal predictions.

  18. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A; Beckman, W A

    1976-01-16

    We have adequate theory and engineering capability to design, install, and use equipment for solar space and water heating. Energy can be delivered at costs that are competitive now with such high-cost energy sources as much fuel-generated, electrical resistance heating. The technology of heating is being improved through collector developments, improved materials, and studies of new ways to carry out the heating processes. Solar cooling is still in the experimental stage. Relatively few experiments have yielded information on solar operation of absorption coolers, on use of night sky radiation in locations with clear skies, on the combination of a solar-operated Rankine engine and a compression cooler, and on open cycle, humidification-dehumidification systems. Many more possibilities for exploration exist. Solar cooling may benefit from collector developments that permit energy delivery at higher temperatures and thus solar operation of additional kinds of cycles. Improved solar cooling capability can open up new applications of solar energy, particularly for larger buildings, and can result in markets for retrofitting existing buildings. Solar energy for buildings can, in the next decade, make a significant contribution to the national energy economy and to the pocketbooks of many individual users. very large-aggregate enterprises in manufacture, sale, and installation of solar energy equipment can result, which can involve a spectrum of large and small businesses. In our view, the technology is here or will soon be at hand; thus the basic decisions as to whether the United States uses this resource will be political in nature.

  19. RF system concepts for a muon cooling experiment

    Energy Technology Data Exchange (ETDEWEB)

    Turner, W.C.; Corlett, J.N.; Li, D. [Lawrence Berkeley National Lab., CA (United States); Moretti, A. [Fermi National Accelerator Lab., Batavia, IL (United States); Kirk, H.G.; Palmer, R.B.; Zhao, Y. [Brookhaven National Lab., Upton, NY (United States)

    1998-06-01

    The feasibility of muon colliders for high energy physics experiments has been under intensive study for the past few years and recent activity has focused on defining an R and D program that would answer the critical issues. An especially critical issue is developing practical means of cooling the phase space of the muons once they have been produced and captured in a solenoidal magnetic transport channel. Concepts for the rf accelerating cavities of a muon cooling experiment are discussed.

  20. Proposal for Laser Cooling of Complex Polyatomic Molecules.

    Science.gov (United States)

    Kozyryev, Ivan; Baum, Louis; Matsuda, Kyle; Doyle, John M

    2016-11-18

    An experimentally feasible strategy for direct laser cooling of polyatomic molecules with six or more atoms is presented. Our approach relies on the attachment of a metal atom to a complex molecule, where it acts as an active photon cycling site. We describe a laser cooling scheme for alkaline earth monoalkoxide free radicals taking advantage of the phase space compression of a cryogenic buffer-gas beam. Possible applications are presented including laser cooling of chiral molecules and slowing of molecular beams using coherent photon processes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Scaling behavior of circular colliders dominated by synchrotron radiation

    Science.gov (United States)

    Talman, Richard

    2015-08-01

    The scaling formulas in this paper — many of which involve approximation — apply primarily to electron colliders like CEPC or FCC-ee. The more abstract “radiation dominated” phrase in the title is intended to encourage use of the formulas — though admittedly less precisely — to proton colliders like SPPC, for which synchrotron radiation begins to dominate the design in spite of the large proton mass. Optimizing a facility having an electron-positron Higgs factory, followed decades later by a p, p collider in the same tunnel, is a formidable task. The CEPC design study constitutes an initial “constrained parameter” collider design. Here the constrained parameters include tunnel circumference, cell lengths, phase advance per cell, etc. This approach is valuable, if the constrained parameters are self-consistent and close to optimal. Jumping directly to detailed design makes it possible to develop reliable, objective cost estimates on a rapid time scale. A scaling law formulation is intended to contribute to a “ground-up” stage in the design of future circular colliders. In this more abstract approach, scaling formulas can be used to investigate ways in which the design can be better optimized. Equally important, by solving the lattice matching equations in closed form, as contrasted with running computer programs such as MAD, one can obtain better intuition concerning the fundamental parametric dependencies. The ground-up approach is made especially appropriate by the seemingly impossible task of simultaneous optimization of tunnel circumference for both electrons and protons. The fact that both colliders will be radiation dominated actually simplifies the simultaneous optimization task. All GeV scale electron accelerators are “synchrotron radiation dominated”, meaning that all beam distributions evolve within a fraction of a second to an equilibrium state in which “heating” due to radiation fluctuations is canceled by the “cooling” in

  2. Laser Cooling of Solids

    Science.gov (United States)

    2009-01-01

    observed in a range of glasses and crystals doped with Yb3+ (ZBLANP [19–22], ZBLAN [23,24], CNBZn [9,25] BIG [25, 26], KGd(WO4)2 [9], KY(WO4)2 [9], YAG [27...Yb3+-doped fluorozirconate glass ZBLAN , Phys. Rev. B 75, 144302 (2007). [40] C. W. Hoyt, Laser Cooling in Thulium-doped Solids, Ph. D. Thesis...date, optical refrigeration research has been confined to glasses and crystals doped with rare- earth elements and direct-band semiconductors such as

  3. Dominant investors and strategic transparency

    NARCIS (Netherlands)

    E.C. Perotti; E.-L. von Thadden

    1999-01-01

    This paper studies product market competition under a strategic transparency decision. Dominant investors can influence information collection in the financial market, and thereby corporate transparency, by affecting market liquidity or the cost of information collection. More transparency on a firm

  4. Dominant investors and strategic transparency

    NARCIS (Netherlands)

    E.C. Perotti; E.-L. von Thadden

    1998-01-01

    This paper studies product market competition under a strategic transparency decision. Dominant investors can influence information collection in the financial market, and thereby corporate transparency, by affecting market liquidity or the cost of information collection. More transparency on a firm

  5. Modeling vapor dominated geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Marconcini, R.; McEdwards, D.; Neri, G.; Ruffilli, C.; Schroeder, R.; Weres, O.; Witherspoon, P.

    1977-09-12

    The unresolved questions with regard to vapor-dominated reservoir production and longevity are reviewed. The simulation of reservoir behavior and the LBL computer program are discussed. The geology of Serrazzano geothermal field and its reservoir simulation are described. (MHR)

  6. The Spatially Resolved [CII] Cooling Line Deficit in Galaxies

    CERN Document Server

    Smith, J D T; Draine, Bruce; De Looze, Ilse; Sandstrom, Karin; Armus, Lee; Beirao, Pedro; Bolatto, Alberto; Boquien, Mederic; Brandl, Bernhard; Crocker, Alison; Dale, Daniel A; Galametz, Maud; Groves, Brent; Helou, George; Herrera-Camus, Rodrigo; Hunt, Leslie; Kennicutt, Robert; Walter, Fabian; Wolfire, Mark

    2016-01-01

    We present [CII] 158um measurements from over 15,000 resolved regions within 54 nearby galaxies of the KINGFISH program to investigate the so-called [CII] "line cooling deficit" long known to occur in galaxies with different luminosities. The [CII]/TIR ratio ranges from above 1% to below 0.1% in the sample, with a mean value of 0.48+-0.21%. We find that the surface density of 24um emission dominates this trend, with [CII]/TIR dropping as nuInu{24um} increases. Deviations from this overall decline are correlated with changes in the gas phase metal abundance, with higher metallicity associated with deeper deficits at a fixed surface brightness. We supplement the local sample with resolved [CII] measurements from nearby luminous infrared galaxies and high redshift sources from z=1.8-6.4, and find that star formation rate density drives a continuous trend of deepening [CII] deficit across six orders of magnitude in SFRD. The tightness of this correlation suggests that an approximate star formation rate density ca...

  7. Restrained roman domination in graphs

    Directory of Open Access Journals (Sweden)

    Roushini Leely Pushpam

    2015-03-01

    Full Text Available A Roman dominating function (RDF on a graph G = (V,E is defined to be a function satisfying the condition that every vertex u for which f(u = 0 is adjacent to at least one vertex v for which f(v = 2. A set S V is a Restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in . We define a Restrained Roman dominating function on a graph G = (V,E to be a function satisfying the condition that every vertex u for which f(u = 0 is adjacent to at least one vertex v for which f(v = 2 and at least one vertex w for which f(w = 0. The weight of a Restrained Roman dominating function is the value . The minimum weight of a Restrained Roman dominating function on a graph G is called the Restrained Roman domination number of G and denoted by . In this paper, we initiate a study of this parameter.

  8. Contribution to the study of the thermal and hydrodynamical properties of a two-phase natural circulation flow of normal helium (He I) for the cooling of superconducting magnets; Contribution a l'etude des proprietes thermiques et hydrodynamiques d'un ecoulement d'helium normal (He I) diphasique en circulation naturelle pour le refroidissement des aimants supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Benkheira, L

    2007-06-15

    The method of cooling based on the thermosyphon principle is of great interest because of its simplicity, its passivity and its low cost. It is adopted to cool down to 4,5 K the superconducting magnet of the CMS particles detector of the Large Hadron Collider (LHC) experiment under construction at CERN, Geneva. This work studies heat and mass transfer characteristics of two phase He I in a natural circulation loop. The experimental set-up consists of a thermosyphon single branch loop mainly composed of a phase separator, a downward tube, and a test section. The experiments were conducted with varying several parameters such as the diameter of the test section (10 mm or 14 mm) and the applied heat flux up to the appearance of the boiling crisis. These experiments have permitted to determine the laws of evolution of the various parameters characterizing the flow (circulation mass flow rate, vapour mass flow rate, vapour quality, friction coefficient, two phase heat transfer coefficient and the critical heat flux) as a function of the applied heat flux. On the base of the obtained results, we discuss the validity of the various existing models in the literature. We show that the homogeneous model is the best model to predict the hydrodynamical properties of this type of flow in the vapour quality range 0{<=}x{<=}30%. Moreover, we propose two models for the prediction of the two phase heat transfer coefficient and the density of the critical heat flux. The first one considers that the effects of the forced convection and nucleate boiling act simultaneously and contribute to heat transfer. The second one correlates the measured critical heat flux density with the ratio altitude to diameter. (author)

  9. THE COOLING OF CORONAL PLASMAS. IV. CATASTROPHIC COOLING OF LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Cargill, P. J. [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Bradshaw, S. J., E-mail: p.cargill@imperial.ac.uk [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)

    2013-07-20

    We examine the radiative cooling of coronal loops and demonstrate that the recently identified catastrophic cooling is due to the inability of a loop to sustain radiative/enthalpy cooling below a critical temperature, which can be >1 MK in flares, 0.5-1 MK in active regions, and 0.1 MK in long tenuous loops. Catastrophic cooling is characterized by a rapid fall in coronal temperature, while the coronal density changes by a small amount. Analytic expressions for the critical temperature are derived and show good agreement with numerical results. This effect considerably limits the lifetime of coronal plasmas below the critical temperature.

  10. Cooling Performance of an Impingement Cooling Device Combined with Pins

    Institute of Scientific and Technical Information of China (English)

    Dongliang QUAN; Songling LIU; Jianghai LI; Gaowen LIU

    2005-01-01

    Experimental study and one dimensional model analysis were conducted to investigate cooling performance of an integrated impingement and pin fin cooling device. A typical configuration specimen was made and tested in a large scale low speed closed-looped wind tunnel. Detailed two-dimensional contour maps of the temperature and cooling effectiveness were obtained for different pressure ratios and therefore different coolant flow-rates through the tested specimen. The experimental results showed that very high cooling effectiveness can be achieved by this cooling device with relatively small amount of coolant flow. Based on the theory of transpiration cooling in porous material, a one dimensional heat transfer model was established to analyze the effect of various parameters on cooling effectiveness. It was found from this model that the variation of heat transfer on the gas side, including heat transfer coefficient and film cooling effectiveness, of the specimen created much more effect on its cooling effectiveness than that of the coolant side. The predictions of the one-dimensional mode were compared and agreed well with the experimental data.

  11. Different Vocal Parameters Predict Perceptions of Dominance and Attractiveness.

    Science.gov (United States)

    Hodges-Simeon, Carolyn R; Gaulin, Steven J C; Puts, David A

    2010-12-01

    Low mean fundamental frequency (F(0)) in men's voices has been found to positively influence perceptions of dominance by men and attractiveness by women using standardized speech. Using natural speech obtained during an ecologically valid social interaction, we examined relationships between multiple vocal parameters and dominance and attractiveness judgments. Male voices from an unscripted dating game were judged by men for physical and social dominance and by women in fertile and non-fertile menstrual cycle phases for desirability in short-term and long-term relationships. Five vocal parameters were analyzed: mean F(0) (an acoustic correlate of vocal fold size), F(0) variation, intensity (loudness), utterance duration, and formant dispersion (D(f), an acoustic correlate of vocal tract length). Parallel but separate ratings of speech transcripts served as controls for content. Multiple regression analyses were used to examine the independent contributions of each of the predictors. Physical dominance was predicted by low F(0) variation and physically dominant word content. Social dominance was predicted only by socially dominant word content. Ratings of attractiveness by women were predicted by low mean F(0), low D(f), high intensity, and attractive word content across cycle phase and mating context. Low D(f) was perceived as attractive by fertile-phase women only. We hypothesize that competitors and potential mates may attend more strongly to different components of men's voices because of the different types of information these vocal parameters provide.

  12. Study on Static-recrystallization and Phase Transition under Continuous Cooling of Offshore Platform Steel F550%F550再结晶和连续冷却相变行为研究

    Institute of Scientific and Technical Information of China (English)

    王焕洋

    2013-01-01

    Double-pass compression tests were carried out on the MMS-200 thennomechanical simulator to obtain static-recrystalization curves of offshore platform steel F550.By using a combined method of dilatometry and metallography,dilatometric curves of continuous cooling of F550 were measured,and dynamic CCT curves were obtained.Transformation process of austenite during continuous cooling and microstructure of the transformed products were studied.These tests could provide references for the on-site rolling process of F550.%在MMS-200热模拟试验机上进行双道次压缩试验,测定了F550级海洋平台用钢的静态再结晶曲线;利用膨胀法、结合金相法,测定了F550连续冷却转变的膨胀曲线,获得了动态CCT曲线;研究了F550连续冷却过程的奥氏体转变及转变产物的显微组织,为现场轧制工艺的制定提供了依据.

  13. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  14. Optical stochastic cooling in Tevatron

    CERN Document Server

    Lebedev, V

    2012-01-01

    Intrabeam scattering is the major mechanism resulting in a growth of beam emittances and fast luminosity degradation in the Tevatron. As a result in the case of optimal collider operation only about 40% of antiprotons are used to the store end and the rest are discarded. Beam cooling is the only effective remedy to increase the particle burn rate and, consequently, the luminosity. Unfortunately neither electron nor stochastic cooling can be effective at the Tevatron energy and bunch density. Thus the optical stochastic cooling (OSC) is the only promising technology capable to cool the Tevatron beam. Possible ways of such cooling implementation in the Tevatron and advances in the OSC cooling theory are discussed in this paper. The technique looks promising and potentially can double the average Tevatron luminosity without increasing its peak value and the antiproton production.

  15. Efecto de tres modalidades de crioterapia sobre la temperatura de la piel durante las fases de enfriamiento y recalentamiento Effects of three cold modalities on skin temperature during the cooling and rewarming phases

    Directory of Open Access Journals (Sweden)

    Maria Cristina Sandoval O.

    2011-08-01

    Full Text Available Introducción: La crioterapia es útil en el manejo de las lesiones músculo esqueléticas, debido a los efectos derivados del enfriamiento tisular, sin embargo, pocos estudios han evaluado la efectividad de distintas modalidades de crioterapia para mantener el enfriamiento después de la aplicación y los efectos de la actividad post-enfriamiento sobre la recuperación de la temperatura. Objetivo: Comparar los efectos de tres modalidades de crioterapia y de la actividad post-enfriamiento, sobre la recuperación de la temperatura de la piel. Métodos: Estudio experimental con 36 sujetos sanos aleatorizados en tres grupos: paquete de hielo, inmersión en agua helada o criomasaje. Las modalidades se aplicaron por 15min en la pantorrilla. Posteriormente, cada grupo se subdividió aleatoriamente en reposo o marcha seguida de reposo. Para el análisis se aplicaron t de student apareda y ANOVA de mediciones repetidas (α=0,05. Resultados: Las tres modalidades disminuyeron la temperatura de la piel, con un efecto mayor causado por el criomasaje (-27,6°C. Durante el recalentamiento los tres grupos aumentaron la temperatura, independientemente de la actividad post-enfriamiento (pIntroduction: Cryotherapy is useful in the management of muscle-skeletal injuries, due to the effects of tissue cooling; however, few studies have evaluated the effectiveness of diferents forms of cryotherapy to maintain cooling after application and the effects of post-cooling activity on the recovery on the skin temperature. Objectives: To compare the effects of three modalities of cryotherapy on the skin temperature (ST and its variation during the rewarming, under two different activities. Methods: An experimental study with 36 subjects randomly allocated to either three groups: crushed ice pack (CI, massage with ice (MI or ice-water immersion (WI, these modalities were applied for 15min in the calf. Subsequently each group was subdivided randomly in: rest or gait followed

  16. Laser Stabilization with Laser Cooled Strontium

    DEFF Research Database (Denmark)

    Christensen, Bjarke Takashi Røjle

    the nonlinear effects from coupling of an optical cavity to laser cooled atoms having a narrow transition linewidth. Here, we have realized such a system where a thermal sample of laser cooled strontium-88 atoms are coupled to an optical cavity. The strontium-88 atoms were probed on the narrow 1S0-3P1 inter......The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting......-combination line at 689 nm in a strongly saturated regime. The dynamics of the atomic induced phase shift and absorption of the probe light were experimentally studied in details with the purpose of applications to laser stabilization. The atomic sample temperature was in the mK range which brought this system out...

  17. Electron Cooling Experiments in CSR

    CERN Document Server

    Xiaodong, Yang

    2011-01-01

    The six species heavy ion beam was accumulated with the help of electron cooling in the main ring of Cooler Storage Ring of Heavy Ion Research Facility in Lanzhou(HIRFL-CSR), the ion beam accumulation dependence on the parameters of cooler was investigated experimentally. The 400MeV/u 12C6+ and 200MeV/u 129Xe54+ was stored and cooled in the experimental ring CSRe, the cooling force was measured in different condition.

  18. Radiative cooling for thermophotovoltaic systems

    Science.gov (United States)

    Zhou, Zhiguang; Sun, Xingshu; Bermel, Peter

    2016-09-01

    Radiative cooling has recently garnered a great deal of attention for its potential as an alternative method for photovoltaic thermal management. Here, we will consider the limits of radiative cooling for thermal management of electronics broadly, as well as a specific application to thermal power generation. We show that radiative cooling power can increase rapidly with temperature, and is particularly beneficial in systems lacking standard convective cooling. This finding indicates that systems previously operating at elevated temperatures (e.g., 80°C) can be passively cooled close to ambient under appropriate conditions with a reasonable cooling area. To examine these general principles for a previously unexplored application, we consider the problem of thermophotovoltaic (TPV) conversion of heat to electricity via thermal radiation illuminating a photovoltaic diode. Since TPV systems generally operate in vacuum, convective cooling is sharply limited, but radiative cooling can be implemented with proper choice of materials and structures. In this work, realistic simulations of system performance are performed using the rigorous coupled wave analysis (RCWA) techniques to capture thermal emitter radiation, PV diode absorption, and radiative cooling. We subsequently optimize the structural geometry within realistic design constraints to find the best configurations to minimize operating temperature. It is found that low-iron soda-lime glass can potentially cool the PV diode by a substantial amount, even to below ambient temperatures. The cooling effect can be further improved by adding 2D-periodic photonic crystal structures. We find that the improvement of efficiency can be as much as an 18% relative increase, relative to the non-radiatively cooled baseline, as well as a potentially significant improvement in PV diode lifetime.

  19. To Be Cool or Uncool?

    Institute of Scientific and Technical Information of China (English)

    袁会珍

    2007-01-01

    The western world has always been divided into two types of people-the cool and the uncool. It is a division that __1__ in school. The cool kids are good at __2__. They are __3__ with the opposite sex. They are good-looking and people want to __4__ their style. They can do their homework but they don't make a big effort. That would __5__ be cool.

  20. Electron cooling experiments in CSR

    Institute of Scientific and Technical Information of China (English)

    PARKHOMCHUK; Vasily; REVA; Vladimir

    2011-01-01

    The six species heavy ion beam was accumulated with the help of electron cooling in the main ring of Cooler Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR). The ion beam accumulation dependence on the parameters of cooler was investigated experimentally. The 400 MeV/u 12C6+ and 200 MeV/u 129Xe54+ were stored and cooled in the experimental ring CSRe, and the cooling force was measured in different conditions.

  1. Workshop 4 Converter cooling & recuperation

    Science.gov (United States)

    Iles, Peter; Hindman, Don

    1995-01-01

    Cooling the PV converter increases the overall TPV system efficiency, and more than offsets the losses incurred in providing cooling systems. Convective air flow methods may be sufficient, and several standard water cooling systems, including thermo-syphon radiators, capillary pumps or microchannel plates, are available. Recuperation is used to increase system efficiency, rather than to increase the emitter temperature. Recuperators operating at comparable high temperatures, such as in high temperature turbines have worked effectively.

  2. Stochastic cooling technology at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, R.J. E-mail: pasquin@fnal.gov

    2004-10-11

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  3. Hotspot Liquid Microfluidic Cooling: Comparing The Efficiency between Horizontal Flow and Vertical Flow

    Science.gov (United States)

    Okamoto, Yuki; Ryoson, Hiroyuki; Fujimoto, Koji; Honjo, Keiji; Ohba, Takayuki; Mita, Yoshio

    2016-11-01

    This paper reports a novel cooling method for a local high-temperature block in an integrated circuit, which is called a “hotspot”. The method is to cool the chip in out-of-plane (3-D) direction to overcome efficiency limit of traditional horizontal (2-D) cooling. Our result indicates that high-temperature (over 180 °C) circuit block such as a phase-locked-loop (PLL), which is a performance limiting block in a modern CPU, can more efficiently be cooled by the vertical (3-D) cooling scheme.

  4. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  5. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor

    2014-01-01

    We developed cooling clothing that utilizes water evaporation to cool the human body and has a mechanism to control the cooling intensity. Clean water was supplied to the outer surface of the T-shirt of the cooling clothing, and a small fan was used to enhance evaporation on this outer surface...... temperature ranging from 27.4 to 30.7 °C to establish a suitable water supply control method. A water supply control method that prevents water accumulation in the T-shirt and water dribbling was validated; this method is established based on the concept of the water evaporation capacity under the applied...

  6. Regeneratively Cooled Porous Media Jacket

    Science.gov (United States)

    Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)

    2013-01-01

    The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.

  7. Fluid cooled electrical assembly

    Science.gov (United States)

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  8. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  9. Air cooled absorption chillers for solar cooling applications

    Science.gov (United States)

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    The chemical composition of a 'best' absorption refrigerant system is identified, and those properties of the system necessary to design hot water operated, air cooled chilling equipment are determined. Air cooled chillers from single family residential sizes into the commercial rooftop size range are designed and operated.

  10. 周期性热作用下相变材料内部相变传热特征实验研究%Experimental Study on the Characteristics of Phase Change Heat Transfer in PCM with Outside Periodic Heating and Cooling

    Institute of Scientific and Technical Information of China (English)

    冉茂宇; 赵红利

    2013-01-01

    为了揭示周期性热作用下相变材料内部相变传热特征,为建筑外表相变隔热设计和计算提供支撑,本文设计制作了能模拟太阳运行、提供周期性加热的装置,并将正18烷封装于塑料圆桶容器中,使容器底部和侧面绝热,制作了测试试件.利用热电偶和巡检仪自动记录了周期性热作用下相变材料内部各层温度的变化.测试结果表明,在稳定周期性热作用下,材料内部相变传热特征主要可表述为:1)材料在非稳态周期性相变传热阶段,各层温度在达到相变温度点之前,温度变化明显;相界面会随着周期性加热次数的增加间断性地向内部扩展;温度平均值和振幅值向稳态周期性相变传热时的平均值和振幅值靠近.2)材料在稳态周期性相变传热阶段,内部各点温度也表现出与外界热作用等周期性变化,温度振幅从外到内依次减小.这与发生在固体中的周期性传热特性类似.但材料内温度变化呈现折转现象,在温度明显升高前出现等温滞后,在温度降低时会出现等温冷却.这与发生在固体中的传热现象有很大的区别.3)材料在稳定周期性热作用下,内部不会出现多个相界面共存现象.4)空气流速对相变材料中温度振幅和相界面移动速率都有较大影响,提高空气流速可以降低温度振幅和减慢相变进程.这意味着当相变材料用于建筑外表进行相变隔热时,可以通过组织自然通风减少其用量.%In order to reveal the phase change heat transfer characteristics in PCM with outside steady periodic heating and cooling,and provide some suports for thermal insulation of building skin with PCM,an apparatus which can simulate the sun running and provide periodic heating was designed and made in this paper;a test specimen was also fabricated by encapsulating the octadecane into a plastic circular container with its bottom and side thermal insulation.The temperature variations

  11. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  12. Testing the accuracy of radiative cooling approximations in SPH simulations

    CERN Document Server

    Wilkins, Daniel R

    2011-01-01

    Hydrodynamical simulations of star formation have stimulated a need to develop fast and robust algorithms for evaluating radiative cooling. Here we undertake a critical evaluation of what is currently a popular method for prescribing cooling in SPH simulations, i.e. the polytropic cooling due originally to Stamatellos et al. This method uses the local density and potential to estimate the column density and optical depth to each particle and then uses these quantities to evaluate an approximate expression for the net radiative cooling. We evaluate the algorithm by considering both spherical and disc-like systems with analytic density and temperature structures. In spherical systems, the total cooling rate computed by the method is within around 20 for the astrophysically relevant case of opacity dominated by ice grains and is correct to within a factor of order unity for a range of opacity laws. In disc geometry, however, the method systematically under-estimates the cooling by a large factor at all heights i...

  13. From global fits of neutrino data to constrained sequential dominance

    CERN Document Server

    Björkeroth, Fredrik

    2014-01-01

    Constrained sequential dominance (CSD) is a natural framework for implementing the see-saw mechanism of neutrino masses which allows the mixing angles and phases to be accurately predicted in terms of relatively few input parameters. We perform a global analysis on a class of CSD($n$) models where, in the flavour basis, two right-handed neutrinos are dominantly responsible for the "atmospheric" and "solar" neutrino masses with Yukawa couplings to $(\

  14. Vector-meson dominance revisited

    Directory of Open Access Journals (Sweden)

    Terschlüsen Carla

    2012-12-01

    Full Text Available The interaction of mesons with electromagnetism is often well described by the concept of vector-meson dominance (VMD. However, there are also examples where VMD fails. A simple chiral Lagrangian for pions, rho and omega mesons is presented which can account for the respective agreement and disagreement between VMD and phenomenology in the sector of light mesons.

  15. Dominant resistance against plant viruses

    NARCIS (Netherlands)

    Ronde, de D.; Butterbach, P.B.E.; Kormelink, R.J.M.

    2014-01-01

    To establish a successful infection plant viruses have to overcome a defense system composed of several layers. This review will overview the various strategies plants employ to combat viral infections with main emphasis on the current status of single dominant resistance (R) genes identified agains

  16. Hand dominance in orthopaedic surgeons.

    LENUS (Irish Health Repository)

    Lui, Darren F

    2012-08-01

    Handedness is perhaps the most studied human asymmetry. Laterality is the preference shown for one side and it has been studied in many aspects of medicine. Studies have shown that some orthopaedic procedures had poorer outcomes and identified laterality as a contributing factor. We developed a questionnaire to assess laterality in orthopaedic surgery and compared this to an established scoring system. Sixty-two orthopaedic surgeons surveyed with the validated Waterloo Handedness Questionnaire (WHQ) were compared with the self developed Orthopaedic Handedness Questionnaire (OHQ). Fifty-eight were found to be right hand dominant (RHD) and 4 left hand dominant (LHD). In RHD surgeons, the average WHQ score was 44.9% and OHQ 15%. For LHD surgeons the WHQ score was 30.2% and OHQ 9.4%. This represents a significant amount of time using the non dominant hand but does not necessarily determine satisfactory or successful dexterity transferable to the operating room. Training may be required for the non dominant side.

  17. Dominance and Age in Bilingualism

    Science.gov (United States)

    Birdsong, David

    2014-01-01

    The present article examines the relationship between age and dominance in bilingual populations. Age in bilingualism is understood as the point in development at which second language (L2) acquisition begins and as the chronological age of users of two languages. Age of acquisition (AoA) is a factor in determining which of a bilingual's two…

  18. Ergodic averages via dominating processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Mengersen, Kerrie

    2006-01-01

    We show how the mean of a monotone function (defined on a state space equipped with a partial ordering) can be estimated, using ergodic averages calculated from upper and lower dominating processes of a stationary irreducible Markov chain. In particular, we do not need to simulate the stationary ...

  19. Genetics of the dominant ataxias

    NARCIS (Netherlands)

    Verbeek, Dineke S.; van de Warrenburg, Bart P. C.

    2011-01-01

    The relevant clinical, genetic, and cell biologic aspects of the dominantly inherited spinocerebellar ataxias (SCAs) are reviewed in this article. SCAs are diseases of the entire nervous system; in addition to cerebellar ataxia, the central (but not obligate) disease feature, many noncerebellar comp

  20. Feasibility assessment of vacuum cooling followed by immersion vacuum cooling on water-cooked pork.

    Science.gov (United States)

    Dong, Xiaoguang; Chen, Hui; Liu, Yi; Dai, Ruitong; Li, Xingmin

    2012-01-01

    Vacuum cooling followed by immersion vacuum cooling was designed to cool water-cooked pork (1.5±0.05 kg) compared with air blast cooling (4±0.5°C, 2 m/s), vacuum cooling (10 mbar) and immersion vacuum cooling. This combined cooling method was: vacuum cooling to an intermediate temperature of 25°C and then immersion vacuum cooling with water of 10°C to the final temperature of 10°C. It was found that the cooling loss of this combined cooling method was significantly lower (Pvacuum cooling. This combined cooling was faster (Pvacuum cooling in terms of cooling rate. Moreover, the pork cooled by combined cooling method had significant differences (P<0.05) in water content, color and shear force. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Preliminary Assessment of a Debris Bed Cooling Performance for Demonstration Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chung Ho; Park, Chang Gyu; Song, Hoon; Kim, Young Gyun; Jeong, Hae Yong; Chang, Jin Wook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In the case of the sodium-cooled fast reactor such as KALIMER-600, Hypothetical Core Disruptive Accident (HCDA) attributed from mass nuclear fuel melting is unlikely to occur due to defense in depth concepts to meet requirements of redundancy and diversity. Multiple faults such as loss of flow, loss of heat sink, or transient overpower without scram are to lead rising the power level until cladding failure as reactivity increasing. The fact that metallic fuel melts at a lower temperature than the cladding allows significant in-pin- fuel motion to occur prior to cladding failure. Also, the combination of Doppler and axial expansion feedback and negative feedback associated with the in-pin fuel relocation prevents the reactivity from reaching prompt critical. Finally, the resulting reactivity and power reductions help prevent fuel temperatures from rising more than the fuel melting temperature. It is more difficult to occur HCDA in a metallic fueled core because reactor power and heat removal capability is maintained in balance by inherent safety characteristics However, for the future design of sodium-cooled fast reactor, the evaluation of the safety performance and the determination of containment requirements may be worth considering due to the triple-fault accident sequences of extremely low probability of occurrence that leads to core melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will be required as a design requirement for the future design of sodium cooled fast reactor. Also, proof of the capacity of the debris bed cooling is an essential condition to solve the problem of in-vessel retention of the core debris. Accordingly, evaluation of a packed debris bed cooling performance with single phase flow for demonstration sodium-cooled fast reactor was carried out for proof of the in-vessel retention of the core debris

  2. Hot Jupiters and cool stars

    Energy Technology Data Exchange (ETDEWEB)

    Villaver, Eva; Mustill, Alexander J. [Department of Theoretical Physics, Universidad Autónoma de Madrid, Módulo 8, 28049 Madrid (Spain); Livio, Mario [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Siess, Lionel, E-mail: eva.villaver@uam.es [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles, B-1050 Bruxelles (Belgium)

    2014-10-10

    Close-in planets are in jeopardy, as their host stars evolve off the main sequence (MS) to the subgiant and red giant phases. In this paper, we explore the influences of the stellar mass (in the range 1.5-2 M {sub ☉}), mass-loss prescription, planet mass (from Neptune up to 10 Jupiter masses), and eccentricity on the orbital evolution of planets as their parent stars evolve to become subgiants and red giants. We find that planet engulfment along the red giant branch is not very sensitive to the stellar mass or mass-loss rates adopted in the calculations, but quite sensitive to the planetary mass. The range of initial separations for planet engulfment increases with decreasing mass-loss rates or stellar masses and increasing planetary masses. Regarding the planet's orbital eccentricity, we find that as the star evolves into the red giant phase, stellar tides start to dominate over planetary tides. As a consequence, a transient population of moderately eccentric close-in Jovian planets is created that otherwise would have been expected to be absent from MS stars. We find that very eccentric and distant planets do not experience much eccentricity decay, and that planet engulfment is primarily determined by the pericenter distance and the maximum stellar radius.

  3. The cooling of shock-compressed primordial gas

    CERN Document Server

    Johnson, J L; Johnson, Jarrett L.; Bromm, Volker

    2006-01-01

    We find that at redshifts z > 10, HD line cooling allows strongly-shocked primordial gas to cool to the temperature of the cosmic microwave background (CMB). This temperature is the minimum value attainable via radiative cooling. Provided that the abundance of HD, normalized to the total number density, exceeds a critical level of ~ 10^{-8}, the CMB temperature floor is reached in a time which is short compared to the Hubble time. We estimate the characteristic masses of stars formed out of shocked primordial gas in the wake of the first supernovae, and resulting from the mergers of dark matter haloes during hierarchical structure formation to be ~ 10 M_{solar}. In addition, we show that cooling by HD enables the primordial gas in relic H II regions to cool to temperatures considerably lower than those reached via H_2 cooling alone. We confirm that HD cooling is unimportant in cases where the primordial gas does not go through an ionized phase, as in the formation process of the very first stars in z ~ 20 min...

  4. Tensor Modes Damping in Matter and Vacuum Dominated Era

    CERN Document Server

    Khodagholizadeh, Jafar; Asgari, Ali A

    2016-01-01

    The present paper has developed an integro-differential equation to propagate cosmological gravitation waves in matter-dominated era in accounting for the presence of free streaming neutrinos as a traceless transverse tensor part of the anisotropic stress tensor. Its focus is on short and long wavelengths of GWs that enter the horizon in matter-dominated era. Results show that the anisotropic stress reduces the squared amplitude by $ 0.03\\%$ for wavelengths, entering the horizon during matter-dominated phase. This reduction is less for those wavelengths that enter the horizon at $ \\Lambda $ dominated era in flat spacetime. All of the calculations have been done in closed spacetime and the results have been compared with the radiation-dominated case for both flat and closed spacetimes. Finally the paper investigates the effect of closed background on the amplitude of the gravitational waves.

  5. Newton's Law of Cooling Revisited

    Science.gov (United States)

    Vollmer, M.

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer…

  6. Dialogues in the COOL Project

    NARCIS (Netherlands)

    Stalpers, S.I.P.; Kroeze, C.

    2013-01-01

    The Climate Options for the Long-term (COOL) Project is a participatory integrated assessment (PIA) comprising extensive dialogues at three levels: national, European and global. The objective of the COOL Project was to ‘develop strategic notions on how to achieve drastic reductions of greenhouse ga

  7. Be Cool, Man! / Jevgeni Levik

    Index Scriptorium Estoniae

    Levik, Jevgeni

    2005-01-01

    Järg 1995. aasta kriminaalkomöödiale "Tooge jupats" ("Get Shorty") : mängufilm "Be Cool, Chili Palmer on tagasi!" ("Be Cool") : režissöör F. Gary Gray, peaosades J. Travolta ja U. Thurman : USA 2005. Lisatud J. Travolta ja U. Thurmani lühiintervjuud

  8. Be Cool, Man! / Jevgeni Levik

    Index Scriptorium Estoniae

    Levik, Jevgeni

    2005-01-01

    Järg 1995. aasta kriminaalkomöödiale "Tooge jupats" ("Get Shorty") : mängufilm "Be Cool, Chili Palmer on tagasi!" ("Be Cool") : režissöör F. Gary Gray, peaosades J. Travolta ja U. Thurman : USA 2005. Lisatud J. Travolta ja U. Thurmani lühiintervjuud

  9. Dew Point Evaporative Comfort Cooling

    Science.gov (United States)

    2012-11-01

    220 Figure 140. Water-cooled chilled water plant with primary/secondary...enough to buffer the space by carrying away solar loads in unoccupied volumes, such as ceiling plenums. For rooftop installations, where ceiling...and are significant for the three-month period and generally exceed 68%. Larger chilled water plants with water-cooled condensers can operate with

  10. Triatomic molecules laser-cooled

    Science.gov (United States)

    2017-06-01

    Molecules containing three atoms have been laser-cooled to ultracold temperatures for the first time. John Doyle and colleagues at Harvard University in the US used a technique called Sisyphus cooling to chill an ensemble of about a million strontium-monohydroxide molecules to 750 μK.

  11. On analog simulation of ionization cooling of muons

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ming

    2001-06-18

    Analog simulation, proposed here as an alternative approach for the study of ionization cooling of muons, is a scaled cooling experiment, using protons instead of muons as simulation particles. It is intended to be an effective and flexible, quick and inexpensive experiment for the understanding and validation of unprecedentedly complicated cooling physics, for the demonstration and optimization of various elaborated techniques for beam manipulation in 6D phase space. It can be done and perhaps should be done before the costly and time-consuming development of extremely challenging, muon-specific cooling technology. In a nutshell, the idea here is to build a toy machine in a playground of ideas, before staking the Imperial Guard of Napoleon into the bloody battlefield of Waterloo.

  12. Model development and validation of a solar cooling plant

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano, Darine; Garcia-Gabin, Winston [Escuela de Ingenieria Electrica, Facultad de Ingenieria, Universidad de Los Andes, La Hechicera, Merida 5101 (Venezuela); Bordons, Carlos; Camacho, Eduardo F. [Departamento de Ingenieria de Sistemas y Automatica, Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de Los Descubrimientos s/n, Sevilla 41092 (Spain)

    2008-03-15

    This paper describes the dynamic model of a solar cooling plant that has been built for demonstration purposes using market-available technology and has been successfully operational since 2001. The plant uses hot water coming from a field of solar flat collectors which feed a single-effect absorption chiller of 35 kW nominal cooling capacity. The work includes model development based on first principles and model validation with a set of experiments carried out on the real plant. The simulation model has been done in a modular way, and can be adapted to other solar cooling-plants since the main modules (solar field, absorption machine, accumulators and auxiliary heater) can be easily replaced. This simulator is a powerful tool for solar cooling systems both during the design phase, when it can be used for component selection, and also for the development and testing of control strategies. (author)

  13. Simulating the Cooling Flow of Cool-Core Clusters

    CERN Document Server

    Li, Yuan

    2011-01-01

    We carry out high-resolution adaptive mesh refinement simulations of a cool core cluster, resolving the flow from Mpc scales down to pc scales. We do not (yet) include any AGN heating, focusing instead on cooling in order to understand how gas gets to the supermassive black hole (SMBH) at the center of the cluster. We find that, as the gas cools, the cluster develops a very flat temperature profile, undergoing a cooling catastrophe only in the central 10-100 pc of the cluster. Outside of this region, the flow is smooth, with no local cooling instabilities, and naturally produces very little low-temperature gas (below a few keV), in agreement with observations. The gas cooling in the center of the cluster rapidly forms a thin accretion disk. The amount of cold gas produced at the very center grows rapidly until a reasonable estimate of the resulting AGN heating rate (assuming even a moderate accretion efficiency) would overwhelm cooling. We argue that this naturally produces a thermostat which links the coolin...

  14. Asymmetric Laser Radiant Cooling in Storage Rings

    CERN Document Server

    Bulyak, E V; Zimmermann, F

    2011-01-01

    Laser pulses with small spatial and temporal dimensions can interact with a fraction of the electron bunches circulating in Compton storage rings. We studied synchrotron dynamics of such bunches when laser photons scatter off from the electrons with energy higher than the synchronous energy. In this case of ‘asymmetric cooling', as shown theoretically, the stationary energy spread is much smaller than under conditions of regular scattering; the oscillations are damped faster. Coherent oscillations of large amplitude may be damped in one synchrotron period, which makes this method feasible for injection the bunches into a ring in the longitudinal phase space. The theoretical results are validated with simulations.

  15. 46 CFR 153.432 - Cooling systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  16. From nature-dominated to human-dominated environmental changes

    Science.gov (United States)

    Messerli, Bruno; Grosjean, Martin; Hofer, Thomas; Núñez, Lautaro; Pfister, Christian

    2000-01-01

    To what extent is it realistic and useful to view human history as a sequence of changes from highly vulnerable societies of hunters and gatherers through periods with less vulnerable, well buffered and highly productive agrarian-urban societies to a world with regions of extreme overpopulation and overuse of life support systems, so that vulnerability to climatic-environmental changes and extreme events is again increasing? This question cannot be fully answered in our present state of knowledge, but at least we can try to illustrate, with three case studies from different continents, time periods and ecosystems, some fundamental changes in the relationship between natural processes and human activities that occur, as we pass from a nature-dominated to a human dominated environment. 1. Early-mid Holocene: Nature dominated environment — human adaptation, mitigation, and migration. In the central Andes, the Holocene climate changed from humid (10,800-8000 BP) to extreme arid (8000-3600 BP) conditions. Over the same period, prehistoric hunting communities adopted a more sedentary pattern of resource use by settling close to the few perennial water bodies, where they began the process of domesticating camelids around 5000 BP and irrigation from about 3100 BP. 2. Historical period: An agrarian society in transition from an "enduring" to an innovative human response. Detailed documentary evidence from Western Europe may be used to reconstruct quite precisely the impacts of climatic variations on agrarian societies. The period considered spans a major transition from an apparently passive response to the vagaries of the environment during the 16th century to an active and innovative attitude from the onset of the agrarian revolution in the late 18th century through to the present day. The associated changes in technology and in agricultural practices helped to create a society better able to survive the impact of climatic extremes. 3. The present day: A human dominated

  17. Central cooling: absorptive chillers

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-08-01

    This technology evaluation covers commercially available single-effect, lithium-bromide absorption chillers ranging in nominal cooling capacities of 3 to 1,660 tons and double-effect lithium-bromide chillers from 385 to 1,060 tons. The nominal COP measured at operating conditions of 12 psig input steam for the single-effect machine, 85/sup 0/ entering condenser water, and 44/sup 0/F exiting chilled-water, ranges from 0.6 to 0.65. The nominal COP for the double-effect machine varies from 1.0 to 1.15 with 144 psig entering steam. Data are provided to estimate absorption-chiller performance at off-nominal operating conditions. The part-load performance curves along with cost estimating functions help the system design engineer select absorption equipment for a particular application based on life-cycle costs. Several suggestions are offered which may be useful for interfacing an absorption chiller with the remaining Integrated Community Energy System. The ammonia-water absorption chillers are not considered to be readily available technology for ICES application; therefore, performance and cost data on them are not included in this evaluation.

  18. Performance of Air-cooled Engine Cylinders Using Blower Cooling

    Science.gov (United States)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1936-01-01

    An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.

  19. Cool Flames in Propane-Oxygen Premixtures at Low and Intermediate Temperatures at Reduced-Gravity

    Science.gov (United States)

    Pearlman, Howard; Foster, Michael; Karabacak, Devrez

    2003-01-01

    The Cool Flame Experiment aims to address the role of diffusive transport on the structure and the stability of gas-phase, non-isothermal, hydrocarbon oxidation reactions, cool flames and auto-ignition fronts in an unstirred, static reactor. These reactions cannot be studied on Earth where natural convection due to self-heating during the course of slow reaction dominates diffusive transport and produces spatio-temporal variations in the thermal and thus species concentration profiles. On Earth, reactions with associated Rayleigh numbers (Ra) less than the critical Ra for onset of convection (Ra(sub cr) approx. 600) cannot be achieved in laboratory-scale vessels for conditions representative of nearly all low-temperature reactions. In fact, the Ra at 1g ranges from 10(exp 4) - 10(exp 5) (or larger), while at reduced-gravity, these values can be reduced two to six orders of magnitude (below Ra(sub cr)), depending on the reduced-gravity test facility. Currently, laboratory (1g) and NASA s KC-135 reduced-gravity (g) aircraft studies are being conducted in parallel with the development of a detailed chemical kinetic model that includes thermal and species diffusion. Select experiments have also been conducted at partial gravity (Martian, 0.3gearth) aboard the KC-135 aircraft. This paper discusses these preliminary results for propane-oxygen premixtures in the low to intermediate temperature range (310- 350 C) at reduced-gravity.

  20. Ecological succession of the microbial communities of an air-conditioning cooling coil in the tropics.

    Science.gov (United States)

    Acerbi, E; Chénard, C; Miller, D; Gaultier, N E; Heinle, C E; Chang, V W-C; Uchida, A; Drautz-Moses, D I; Schuster, S C; Lauro, F M

    2017-03-01

    Air-conditioning systems harbor microorganisms, potentially spreading them to indoor environments. While air and surfaces in air-conditioning systems are periodically sampled as potential sources of indoor microbes, little is known about the dynamics of cooling coil-associated communities and their effect on the downstream airflow. Here, we conducted a 4-week time series sampling to characterize the succession of an air-conditioning duct and cooling coil after cleaning. Using an universal primer pair targeting hypervariable regions of the 16S/18S ribosomal RNA, we observed a community succession for the condensed water, with the most abundant airborne taxon Agaricomycetes fungi dominating the initial phase and Sphingomonas bacteria becoming the most prevalent taxa toward the end of the experiment. Duplicate air samples collected upstream and downstream of the coil suggest that the system does not act as ecological filter or source/sink for specific microbial taxa during the duration of the experiment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Tapered Six-Dimensional Cooling Channel for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B.; Fernow, R.C.

    2011-03-28

    A high-luminosity muon collider requires a reduction of the six-dimensional emittance of the captured muon beam by a factor of {approx} 10{sup 6}. Most of this cooling takes place in a dispersive channel that simultaneously reduces all six phase space dimensions. We describe a tapered 6D cooling channel that should meet the requirements of a muon collider. The parameters of the channel are given and preliminary simulations are shown of the expected performance. A complete scheme for cooling a muon beam sufficiently for use in a muon collider has been previously described. This scheme uses separate 6D ionization cooling channels for the two signs of the particle charge. In each, a channel first reduces the emittance of a train of muon bunches until they can be injected into a bunch-merging system. The single muon bunches, one of each sign, are then sent through a second tapered 6D cooling channel where the transverse emittance is reduced as much as possible and the longitudinal emittance is cooled to a value below that needed for the collider. The beam can then be recombined and sent through a final cooling channel using high-field solenoids that cools the transverse emittance to the required values for the collider while allowing the longitudinal emittance to grow. This paper mainly describes the design of the 6D cooling channel before bunch merging. Cooling efficiency is conveniently measured using a parameter Q, which is defined as the rate of change of 6D emittance divided by the rate of change of the number of muons in the beam. In a given lattice Q starts off small due to losses from initial matching, then rises to a large value (Q {approx} 15 is typical for the channels discussed here), and finally falls as the emittance of the beam approaches its equilibrium value. The idea for the 6D cooling channel described here originated with the RFOFO cooling ring. This design evolved into a helical channel referred to as a 'Guggenheim' in order to avoid

  2. Cooling Dynamics Trough Transition Temperature of Niobium SRF Cavities Captured by Temperature Mapping

    CERN Document Server

    Martinello, M; Checchin, M; Grassellino, A; Crawford, A C; Melnychuk, A; Sergatskov, D A

    2015-01-01

    Cool-down dynamics of superconducting accelerating cavities became particularly important for obtaining very high quality factors in SRF cavities. Previous studies proved that when cavity is cooled fast, the quality factor is higher than when cavity is cooled slowly. This has been discovered to derive from the fact that a fast cool-down allows better magnetic field expulsion during the superconducting transition. In this paper we describe the first experiment where the temperature all around the cavity was mapped during the cavity cool-down through transition temperature, proving the existence of two different transition dynamics: a sharp superconducting-normal conducting transition during fast cool-down which favors flux expulsion and nucleation phase transition during slow cool-down, which leads to full flux trapping.

  3. Magnetorotational instability in cool cores of galaxy clusters

    Science.gov (United States)

    Nipoti, Carlo; Posti, L.; Ettori, S.; Bianconi, M.

    2015-10-01

    > Clusters of galaxies are embedded in halos of optically thin, gravitationally stratified, weakly magnetized plasma at the system's virial temperature. Owing to radiative cooling and anisotropic heat conduction, such intracluster medium (ICM) is subject to local instabilities, which are combinations of the thermal, magnetothermal and heat-flux-driven buoyancy instabilities. If the ICM rotates significantly, its stability properties are substantially modified and, in particular, also the magnetorotational instability (MRI) can play an important role. We study simple models of rotating cool-core clusters and we demonstrate that the MRI can be the dominant instability over significant portions of the clusters, with possible implications for the dynamics and evolution of the cool cores. Our results give further motivation for measuring the rotation of the ICM with future X-ray missions such as ASTRO-H and ATHENA.

  4. New Solutions for Synchronized Domineering

    Science.gov (United States)

    Bahri, Sahil; Kruskal, Clyde P.

    Cincotti and Iida invented the game of Synchronized Domineering, and analyzed a few special cases. We develop a more general technique of analysis, and obtain results for many more special cases. We obtain complete results for board sizes 3 ×n, 5 ×n, 7 ×n, and 9 ×n (for n large enough) and partial results for board sizes 2×n, 4 ×n, and 6 ×n.

  5. Dominant perceptions on the age

    OpenAIRE

    Komatina Slavica

    2003-01-01

    Contemporary developed society, despite the fact that it is constantly and intensively ageing, is characterized by deeply rooted numerous negative stereotypes on old people and old age as a life period. The study of dominant perceptions on the age of Belgrade population takes not only the universal character of negative connotation of old age into consideration, but also the concrete unfavorable social context. The delicate problematic of stereotypes on old age and old people has been analyze...

  6. Dominant modes via model error

    Science.gov (United States)

    Yousuff, A.; Breida, M.

    1992-01-01

    Obtaining a reduced model of a stable mechanical system with proportional damping is considered. Such systems can be conveniently represented in modal coordinates. Two popular schemes, the modal cost analysis and the balancing method, offer simple means of identifying dominant modes for retention in the reduced model. The dominance is measured via the modal costs in the case of modal cost analysis and via the singular values of the Gramian-product in the case of balancing. Though these measures do not exactly reflect the more appropriate model error, which is the H2 norm of the output-error between the full and the reduced models, they do lead to simple computations. Normally, the model error is computed after the reduced model is obtained, since it is believed that, in general, the model error cannot be easily computed a priori. The authors point out that the model error can also be calculated a priori, just as easily as the above measures. Hence, the model error itself can be used to determine the dominant modes. Moreover, the simplicity of the computations does not presume any special properties of the system, such as small damping, orthogonal symmetry, etc.

  7. Strategies for the long-term climate policy. The results of the Cool project. Final report of the second phase of the Dutch National Research Programme on Global Air Pollution and Climate Change (NRP II) 1995-2001. Part 2

    NARCIS (Netherlands)

    Berk M; Hisschemoller M; Mol T; Hordijk L; Kok M; Metz B; NOP

    2002-01-01

    This report, Climate Change, a Permanent Concern, presents the results of research that was conducted in over 90 projects during the second phase of the National Research Programme on Global Air Pollution and Climate Change (NRP-II, 1995-2001). The report is intended for policymakers, members of bu

  8. Strategies for the long-term climate policy. The results of the Cool project. Final report of the second phase of the Dutch National Research Programme on Global Air Pollution and Climate Change (NRP II) 1995-2001. Part 2

    NARCIS (Netherlands)

    Berk M; Hisschemoller M; Mol T; Hordijk L; Kok M; Metz B; NOP

    2002-01-01

    This report, Climate Change, a Permanent Concern, presents the results of research that was conducted in over 90 projects during the second phase of the National Research Programme on Global Air Pollution and Climate Change (NRP-II, 1995-2001). The report is intended for policymakers, members of

  9. Radiative cooling and broadband phenomenon in low-frequency waves

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, we analyze the effects of radiative cooling on the pure baroclinic low-frequency waves under the approximation of equatorial -plane and semi-geostrophic condition. The results show that radiative cooling does not, exclusively, provide the damping effects on the development of low-frequency waves. Under the delicate radiative-convective equilibrium, radiative effects will alter the phase speed and wave period, and bring about the broadband of phase velocity and wave period by adjusting the vertical profiles of diabatic heating. when the intensity of diabatic heating is moderate and appropriate, it is conductive to the development and sustaining of the low-frequency waves and their broadband phenomena, not the larger, the better. The radiative cooling cannot be neglected in order to reach the moderate and appropriate intensity of diabatic heating.

  10. Immersion Cooling of Electronics in DoD Installations

    Energy Technology Data Exchange (ETDEWEB)

    Coles, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Herrlin, Magnus [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-15

    A considerable amount of energy is consumed to cool electronic equipment in data centers. A method for substantially reducing the energy needed for this cooling was demonstrated. The method involves immersing electronic equipment in a non-conductive liquid that changes phase from a liquid to a gas. The liquid used was 3M Novec 649. Two-phase immersion cooling using this liquid is not viable at this time. The primary obstacles are IT equipment failures and costs. However, the demonstrated technology met the performance objectives for energy efficiency and greenhouse gas reduction. Before commercialization of this technology can occur, a root cause analysis of the failures should be completed, and the design changes proven.

  11. Too cool for school

    DEFF Research Database (Denmark)

    Reinecke Hansen, Kenneth; Blom, Jonas Nygaard; Jønch-Clausen, Heidi

    2016-01-01

    female high achievers in the Danish educational system as they are conveyed in media frames. In our preliminary analysis of news media texts, female high achievers collocate with silent girls, diligent girls and more broadly with the alleged feminized school (cf. Bourdieu, 1999). These girls are often...... sociological implications for a school system possibly working against itself: What are the epistemological consequences for students – girls and boys – and study ability if dominant societal frames position female high achievers’ attitude and behaviour as boring, conventional, ‘nerdy’ – and wrong? Could......In a recent newspaper interview, a high-profiled Danish anthropology professor stated: “Denmark doesn’t need the nice straight A girls! We need crazy minds that can think wildly and create breakthroughs in research and society” (BT, 29 August 2015, our translation). The quote, which is not unusual...

  12. Jet Luminosity from Neutrino-Dominated Accretion Flows in GRBs

    CERN Document Server

    Kawanaka, Norita

    2013-01-01

    A hyperaccretion disk around a stellar-mass black hole is a plausible model for the central engine that powers gamma-ray bursts (GRBs). We estimate the luminosity of a jet driven by magnetohydrodynamic processes such as the Blandford-Znajek (BZ) mechanism as a function of mass accretion rate, the black hole mass, and other accretion parameters. We show that the jet is most efficient when the accretion flow is cooled via optically-thin neutrino emission, and that its luminosity is much larger than the energy deposition rate through neutrino annihilation provided that the black hole is spinning rapidly enough. Also, we find a significant jump in the jet luminosity at the transition mass accretion rate between the advection dominated accretion flow (ADAF) regime and the neutrino-dominated accretion flow (NDAF) regime. This may cause the large variability observed in the prompt emission of GRBs.

  13. The size of clusters in a neutrino-dominated universe

    Science.gov (United States)

    White, S. D. M.; Davis, M.; Frenk, C. S.

    1984-01-01

    Quite soon after the first collapse of structure, almost half the matter in a neutrino-dominated universe is expected to reside in clusters. The masses and binding energies of these neutrino clusters are too large for them to be identified with observed galaxy clusters. Even if such objects were able to suppress all galaxy formation, their X-ray emission would, however, make them highly visible if more than 2.5 percent of their mass was in ordinary matter. Such a low baryon density leads to insuffient cooling for galaxies to form in pancakes. A neutrino-dominated universe appears to conflict with observation irrespective of the details of the processes which govern galaxy formation.

  14. Size of clusters in a neutrino-dominated universe

    Energy Technology Data Exchange (ETDEWEB)

    White, S.D.M.; Davis, M.; Frenk, C.S. (California Univ., Santa Barbara (USA). Inst. for Theoretical Physics)

    1984-07-15

    Quite soon after the first collapse of structure almost half the matter in a neutrino-dominated universe is expected to reside in clusters. The masses and binding energies of these neutrino clusters are too large for them to be identified with observed galaxy clusters. Even if such objects were able to suppress all galaxy formation, their X-ray emission would, however, make them highly visible if more than 2.5 per cent of their mass was in ordinary matter. Such a low baryon density leads to insufficient cooling for galaxies to form in pancakes. A neutrino-dominated universe appears to conflict with observation irrespective of the details of the processes which govern galaxy formation.

  15. Cooling arrangement for a tapered turbine blade

    Science.gov (United States)

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  16. New Approaches to Final Cooling

    CERN Document Server

    Neuffer, David

    2015-01-01

    A high-energy muon collider scenario requires a "final cooling" system that reduces transverse emittance by a factor of ~10 while allowing longitudinal emittance increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of the alternative approach. A more explicit understanding of solenoidal cooling beam dynamics is introduced.

  17. Cooling towers principles and practice

    CERN Document Server

    Hill, G B; Osborn, Peter D

    1990-01-01

    Cooling Towers: Principles and Practice, Third Edition, aims to provide the reader with a better understanding of the theory and practice, so that installations are correctly designed and operated. As with all branches of engineering, new technology calls for a level of technical knowledge which becomes progressively higher; this new edition seeks to ensure that the principles and practice of cooling towers are set against a background of up-to-date technology. The book is organized into three sections. Section A on cooling tower practice covers topics such as the design and operation of c

  18. CLIC inner detectors cooling simulations

    CERN Document Server

    Duarte Ramos, F.; Villarejo Bermudez, M.

    2014-01-01

    The strict requirements in terms of material budget for the inner region of the CLIC detector concepts require the use of a dry gas for the cooling of the respective sen- sors. This, in conjunction with the compactness of the inner volumes, poses several challenges for the design of a cooling system that is able to fulfil the required detec- tor specifications. This note introduces a detector cooling strategy using dry air as a coolant and shows the results of computational fluid dynamics simulations used to validate the proposed strategy.

  19. Cooling and Heating Solid Quark Stars

    CERN Document Server

    Yu, Meng

    2009-01-01

    We present here a phenomenological solid quark star pulsar model to interpret the observed thermal X-ray emission of isolated pulsars. The heat capacity for solid quark stars was found to be quite small, so that the residual internal stellar heat gained at the birth of the star could be dissipated in an extremely short timescale. However, the bombardment induced by backflowing plasma at the poles of solid quark stars would get the stars be reheated, so that long term soft X-ray emission can be sustained. Such a scenario could be used for those X-ray pulsars with significant magnetospheric activities, and their cooling processes would thus be established. Dim X-ray isolated neutron stars (XDINs) as well as compact central objects (CCOs) have been observed with dominant soft X-ray radiation combined with little magnetospheric manifestations. Such sources could be solid quark stars accreting in the propeller regime.

  20. Passive low energy cooling of buildings

    CERN Document Server

    Givoni, Baruch

    1994-01-01

    A practical sourcebook for building designers, providing comprehensive discussion of the impact of basic architectural choices on cooling efficiency, including the layout and orientation of the structure, window size and shading, exterior color, and even the use of plantings around the site. All major varieties of passive cooling systems are presented, with extensive analysis of performance in different types of buildings and in different climates: ventilation; radiant cooling; evaporative cooling; soil cooling; and cooling of outdoor spaces.