WorldWideScience

Sample records for coolers

  1. Evaporative cooler including one or more rotating cooler louvers

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, David W

    2015-02-03

    An evaporative cooler may include an evaporative cooler housing with a duct extending therethrough, a plurality of cooler louvers with respective porous evaporative cooler pads, and a working fluid source conduit. The cooler louvers are arranged within the duct and rotatably connected to the cooler housing along respective louver axes. The source conduit provides an evaporative cooler working fluid to the cooler pads during at least one mode of operation.

  2. The Recycler Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Prost, L. R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-03-19

    The Recycler Electron cooler was the first (and so far, the only) cooler working at a relativistic energy (γ = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. This paper describes the cooler, difficulties in achieving the required electron beam parameters and the ways to overcome them, cooling measurements, and details of operation.

  3. Vacuum Camera Cooler

    Science.gov (United States)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  4. Shipboard electronics thermoacoustic cooler

    OpenAIRE

    Ballister, Stephen C.; McKelvey, Dennis J.

    1995-01-01

    A thermoacoustic refrigerator that was optimized for preservation of biological samples in space, was modified for use as a cooler for the CV-2095 shipboard radar electronics rack. The thermoacoustic cooler was tested in the laboratory and demonstrated at sea aboard USS DEYO (DD-989). In the laboratory, using a calibrated heat load, the data acquisition system was able to account for the total energy balance to within 4%. At the highest operating power aboard ship, 226.6 Watts of acoustic pow...

  5. LEIR electron cooler status

    CERN Document Server

    Tranquille, G; Parkhomchuk, V; Prieto, V; Sautier, R

    2006-01-01

    The electron cooler for LEIR is the first of a new generation of coolers being commissioned for fast phase space cooling of ion beams in storage rings. It is a stateof- the-art cooler incorporating all the recent developments in electron cooling technology (adiabatic expansion, electrostatic bend, variable density electron beam) and is designed to deliver up to 600 mA of electron current for the cooling and stacking of Pb54+ ions in the frame of the ions for LHC project. In this paper we present our experience with the commissioning of the new device as well as the first results of ion beam cooling with a high-intensity variable-density electron beam.

  6. Materials for syngas coolers

    Science.gov (United States)

    Perkins, R. A.; Morse, G.; Coons, W. C.

    1982-08-01

    A technical basis for materials selection and laboratory testing of practical boiler tube materials which will provide reliable long term service in syngas coolers for coal gasification combined cycle power plants is outlined. The resistance of low alloy steel, stainless steels, and aluminum rich coatings to attach by a high sulfur, medium Btu coal gasification atmosphere was evaluated at 300 to 500 deg C. The materials may have adequate resistance for long time service in radiant coolers operating up to 500 deg C on high sulfur medium Btu gas. Performance is analyzed for thermodynamic and kinetic properties and recommendations for long term tests and development of protective coatings are presented.

  7. Cooler-Lower Down

    Science.gov (United States)

    Deeson, Eric

    1971-01-01

    Reports a verification that hot water begins to freeze sooner than cooler water. Includes the investigations that lead to the conclusions that convection is a major influence, water content may have some effect, and the melting of the ice under the container makes no difference on the experimental results. (DS)

  8. Superfluid Vortex Cooler

    Science.gov (United States)

    Tanaeva, I. A.; Lindemann, U.; Jiang, N.; de Waele, A. T. A. M.; Thummes, G.

    2004-06-01

    A superfluid vortex cooler (SVC) is a combination of a fountain pump and a vortex cooler. The working fluid in the SVC is 4He at a temperature below the lambda line. The cooler has no moving parts, is gravity independent, and hardly requires any additional infrastructure. At saturated vapour pressure the SVC is capable of reaching a temperature as low as 0.75 K. At pressures close to the melting pressure the temperature can be brought down to 0.65 K. As the SVC operates only below the lambda line, it has to be precooled e.g. by a liquid-helium bath or a cryocooler. As a first step of our research we have carried out a number of experiments, using a liquid-helium bath as a precooler for the SVC. In this arrangement we have reached temperatures below 1 K with 3.5 mW heating power supplied to the fountain part of the SVC at 1.4 K. The next step was combining the SVC with a pulse tube refrigerator (PTR), developed at the University of Giessen. It is a two-stage G-M type refrigerator with 3He as a working fluid that reached a lowest temperature of 1.27 K. In this contribution we report on the results of the SVC tests in liquid helium and the progress in the integration of the SVC with the PTR.

  9. Microsystem Cooler Development

    Science.gov (United States)

    Moran, Matthew E.; Wesolek, Danielle M.; Berhane, Bruk T.; Rebello, Keith J.

    2004-01-01

    A patented microsystem Stirling cooler is under development with potential application to electronics, sensors, optical and radio frequency (RF) systems, microarrays, and other microsystems. The microsystem Stirling cooler is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include: two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines; and a micro-regenerator that stores and releases thermal energy to the working gas during the Stirling cycle. The use of diaphragms eliminates frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were custom fabricated for initial evaluation: two constructed of porous ceramic, and one made of multiple layers of nickel and photoresist in an offset grating pattern. An additional regenerator was prepared with a random stainless steel fiber matrix commonly used in existing Stirling machines for comparison to the custom fabricated regenerators. The candidate regenerators were tested in a piezoelectric-actuated test apparatus designed to simulate the Stirling refrigeration cycle. In parallel with the regenerator testing, electrostatically-driven comb-drive diaphragm actuators for the prototype device have been designed for deep reactive ion etching (DRIE) fabrication.

  10. Impulse sales cooler. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Per Henrik (DTI, Taastrup (Denmark))

    2010-11-15

    In the past years, the use of impulse coolers has increased considerably and it is estimated that at least 30.000 are installed in shops in Denmark. In addition, there are many small barrel-shaped can coolers. Most impulse coolers are open, which results in a large consumption of energy, and the refrigeration systems are often quite inefficient. A typical impulse cooler uses app. 5 - 8 kWh/day corresponding to a consumption of energy in the magnitude of 60 GWh/year. For several years, the Danish company Vestfrost A/S has produced an impulse sales cooler in the high-efficiency end and the energy consumption of the cooler is measured to be 4.15 kWh/day. The POS72 cooler formed the baseline of this project. At the start-up meeting in 2008, several ideas were discussed with the objective to reduce energy consumption and to use natural refrigerants. Among the ideas were better air curtains, removable lids, better condensers, use of R600a refrigeration system and better insulation. Three generations of prototypes were built and tested in a climate chamber at Danish Technological Institute and the third generation showed very good performance: the energy consumption was measured to 2.215 kWh/day, which is a 47% reduction compared to the baseline. That was achieved by: 1) Improving the cold air cycling system including the air curtain. 2) Using the natural refrigerant R600a (isobutane) and the Danfoss NLE9KTK compressor, which has better efficiency compared to the compressor in the baseline product. 3) Using a box type condenser without fins (preventing dust build-up) and with a relatively high surface area. 4) Improving the insulation value of the plastic cabinet by reducing turbulence in the air gap between the plastic walls and improving the insulation value of the EPS moulded insulation surrounding the refrigeration system at the bottom of the cooler. 5) Preventing short-circuit of warm air around the condenser. 6) The improvements are cost efficient and will not add

  11. ENERGY STAR Certified Water Coolers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Water Coolers that are effective as of February...

  12. Development of the Sandia Cooler.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan; Koplow, Jeffrey P.; Staats, Wayne Lawrence,; Curgus, Dita Brigitte; Leick, Michael Thomas.; Matthew, Ned Daniel; Zimmerman, Mark D.; Arienti, Marco; Gharagozloo, Patricia E.; Hecht, Ethan S.; Spencer, Nathan A.; Vanness, Justin William.; Gorman, Ryan

    2013-12-01

    This report describes an FY13 effort to develop the latest version of the Sandia Cooler, a breakthrough technology for air-cooled heat exchangers that was developed at Sandia National Laboratories. The project was focused on fabrication, assembly and demonstration of ten prototype systems for the cooling of high power density electronics, specifically high performance desktop computers (CPUs). In addition, computational simulation and experimentation was carried out to fully understand the performance characteristics of each of the key design aspects. This work culminated in a parameter and scaling study that now provides a design framework, including a number of design and analysis tools, for Sandia Cooler development for applications beyond CPU cooling.

  13. MEMS Stirling Cooler Development Update

    Science.gov (United States)

    Moran, Matthew E.; Wesolek, Danielle

    2003-01-01

    This presentation provides an update on the effort to build and test a prototype unit of the patented MEMS Stirling cooler concept. A micro-scale regenerator has been fabricated by Polar Thermal Technologies and is currently being integrated into a Stirling cycle simulator at Johns Hopkins University Applied Physics Laboratory. A discussion of the analysis, design, assembly, and test plans for the prototype will be presented.

  14. Overview of Sumitomo coolers and Dewars for space use

    Science.gov (United States)

    Kanao, Kenichi; Narasaki, Katsuhiro; Tsunematsu, Shoji; Ootsuka, Kiyomi; Okabayashi, Akinobu; Mitsuda, Kazuhisa; Murakami, Hiroshi; Nakagawa, Takao; Nishibori, Toshiyuki; Kikuchi, Ken'ichi; Sato, Ryota; Sugita, Hiroyuki; Sato, Yoichi; Murakami, Masahide

    2016-05-01

    Sumitomo Heavy Industries, ltd. (SHI) has been developing cooler and Dewar technology for space application with Japan Aerospace Exploration Agency. SHI has four types of coolers to cover temperature range from 1.7K to 80K or more. Those are Single stage Stirling coolers for 80K, two-stage Stirling coolers for 20K, 4K-class cooler and 1K-class cooler. 4K and 1K class coolers consist of a Joule-Thomson cooler and a two-stage Stirling as a pre-cooler. SHI also provided Dewars. In this paper, SHI's cooler and Dewar technology are described.

  15. Study of a thermoacoustic Stirling cooler

    Energy Technology Data Exchange (ETDEWEB)

    Spoelstra, S.; Tijani, M.E.H. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2007-05-15

    A thermoacoustic-Stirling cooler is built and performance measurements are carried out. The cooler uses the acoustic power produced by a linear motor to pump heat through a regenerator from a cold heat exchanger to an ambient one. The cooler incorporates a compact acoustic network to create the traveling-wave phasing necessary to operate in a Stirling cycle. The network has a coaxial topology instead of the toroidal one usually applied. The design, construction and performance measurements of the cooler are presented. A measured coefficient of performance relative to Carnot of 25% and a low temperature of -54C are achieved by the cooler. This efficiency surpasses the performance of the most efficient standing wave cooler by almost a factor of two.

  16. Development trends in IR detector coolers

    Science.gov (United States)

    Mai, M.; Rühlich, I.; Wiedmann, Th.; Rosenhagen, C.

    2009-05-01

    For different IR application specific cooler requirements are needed to achieve best performance on system level. Handheld applications require coolers with highest efficiency and lowest weight. For application with continuous operation, i.e. border surveillance or homeland security, a very high MTTF is mandatory. Space applications additionally require extremely high reliability. In other application like fighter aircraft sufficient cooling capacity even at extreme high reject temperatures has to be provided. Meeting all this requirements within one cooler design is technically not feasible. Therefore, different coolers designs like integral rotary, split rotary or split linear are being employed. The use of flexure bearings supporting the driving mechanism has generated a new sub-group for the linear coolers; also, the coolers may either use a motor with moving magnet or with moving coil. AIM has mainly focussed on long life linear cooler technology and therefore developed a series of moving magnet flexure bearing compressors which meets MTTF's exceeding 20,000h (up to 50,000h with a Pulse-Tube coldfinger). These compressors have a full flexure bearing support on both sides of the driving mechanism. Cooler designs are being compared in regard to characteristic figures as described above.

  17. The stack induced draft aerial cooler (SIDAC)

    Energy Technology Data Exchange (ETDEWEB)

    Hircock, N.C. [NC Hircock Process Consulting Ltd., Calgary, AB (Canada)]|[Patching Associates Acoustical Engineering Ltd. Calgary, AB (Canada)

    2007-07-01

    The oil and gas industry uses stack induced draft aerial coolers (SIDAC) for process cooling in noise sensitive areas or in areas where no electrical power is available. The technology produces zero noise, zero operating costs and zero emissions. This paper examined the use, operation and economics of fanless, noiseless aerial coolers. Although retrofitting to convert from fin-fan to SIDAC is not viable, this paper illustrated one common application where the installation of a tapered stack over a cooler could work together with variable speed fan drives to enhance the noise suppression achieved by variable speed fan drives. A stack assisted draft air cooler (SADAC) was installed over a conventional engine cooler enclosing the engine exhaust and muffler. The exhaust stack was also acoustically lined to augment the noise suppression of the engine silencer itself. The waste heat of the engine exhaust, combined with the heat from the cooler discharge, was used to create a negative pressure behind the cooler fan. Therefore, at night the fan could back off in speed. Since fan noise is proportional to speed to the exponent 5, even a 20 per cent reduction of fan speed generates a noticeable noise reduction. The noise directive of the Alberta Energy and Utilities Board is for lower noise levels at night rather than daytime. Therefore, this innovation allows plant operators to run coolers at full capacity in the day while backing off fan speed at night. It was concluded that substantial benefits can be achieved by SIDAC and SADAC technology in the areas of noise control, process improvements and emission reductions. The capital costs of using these devices are comparable with conventional systems, and operating costs are reduced.

  18. Mitigation of Syngas Cooler Plugging and Fouling

    Energy Technology Data Exchange (ETDEWEB)

    Bockelie, Michael J. [Reaction Engineering International, Salt Lake City, UT (United States)

    2015-06-29

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling of the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better

  19. Small high cooling power space cooler

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E. [Northrop Grumman Aerospace Systems Redondo Beach, Ca, 90278 (United States)

    2014-01-29

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  20. Micro cryogenic coolers for IR imaging

    Science.gov (United States)

    Lewis, Ryan; Wang, Yunda; Cooper, Jill; Lin, Martin M.; Bright, Victor M.; Lee, Y. C.; Bradley, Peter E.; Radebaugh, Ray; Huber, Marcia L.

    2011-06-01

    Joule-Thomson micro cryogenic coolers (MCCs) are a preferred approach for small and low power cryocoolers. With the same heat lift, MCC's power input can be only 1/10 of a thermoelectric cooler's input, and MCC's size can be only 1/10 of a Stirling cooler's size. With futuristic planar MCC and with high frequency MEMS compressors to be developed, its size can be reduced another order of magnitude. Such "invisible" cryocoolers may revolutionize future IR imaging systems. We will review our studies on the feasibility of MCC with an emphasis on: 1) high thermal isolation levels reaching 89,000 K/W; 2) custom-designed gas mixtures with refrigeration capabilities increased by 10X and pressure ratio reduced to only 4:1; 3) compressors with low pressure ratios; and 4) excellent scalability for further size reduction.

  1. Microsystem Cooler Concept Developed and Being Fabricated

    Science.gov (United States)

    Moran, Matthew E.

    2005-01-01

    A patented microsystem cooler concept has been developed by the NASA Glenn Research Center. It incorporates diaphragm actuators to produce the Stirling refrigeration cycle within a planar configuration compatible with the thermal management of electronics, sensors, optical and radiofrequency systems, microarrays, and other microsystems. The microsystem cooler is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Johns Hopkins University Applied Physics Laboratory is conducting development testing and fabrication of a prototype under a grant from Glenn.

  2. TNO : your partner in air cooler development

    NARCIS (Netherlands)

    Fransen, J.G.B.

    2002-01-01

    At TNO we know that manufacturing air coolers is a highty competitive business. With TNO’s trusted expertise solidly behind you, your company can focus on reaching your target market with supporting product development through TNO’s research, consultancy and independent test data in conformity with

  3. Integrated thermal simulation of buildings and regenerative evaporative coolers

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P.G.; Mathews, E.H.; Grobler, L.J. (Pretoria Univ. (South Africa). Centre for Experimental and Numerical Thermoflow)

    1994-01-01

    The thermal environment inside a building, fitted with a regenerative evaporative cooler, is influenced by the performance of the cooler. However, this performance is again influenced by the indoor air conditions. It means that the thermal performance of the building and the performance of the cooler cannot be separated. This paper proposes an innovative model for simulating the integrated thermal performance of buildings and regenerative evaporative coolers. The cooler model employs a standard single equation to characterize the performance of a cooler. Only the coefficients of this equation differs for different coolers. These coefficients are found from empirical performance data available from suppliers. The model was integrated with a comprehensive building thermal analysis program and verified successfully. This model now enables the designer to simulate any regenerative evaporative cooler connected to any building in any climatic region. The control strategy best suited for different off-design conditions can now also be investigated. (Author)

  4. 46 CFR 56.50-96 - Keel cooler installations.

    Science.gov (United States)

    2010-10-01

    ... ship's hull such that the cooler tubes are welded directly to the hull of the vessel with the hull forming part of the tube and satisfies all of the following: (i) The cooler structure is fabricated...

  5. Ion beam coolers in nuclear physics

    CERN Document Server

    Äystö, J

    2003-01-01

    Cooling techniques for low-energy radioactive ion beams are reviewed together with applications on high-precision measurements of ground state properties of exotic nuclei. The emphasis in the presentation is on cooling, bunching and improving the overall characteristics of ion beams by RFQ-driven buffer gas cooling devices. Application of cooled and bunched beams in collinear laser spectroscopy to extract isotope shifts and hyperfine structure are presented with examples on radioactive Ti, Zr and Hf isotopes. The impact of the new-generation coolers on mass measurements of short-lived nuclei is discussed with examples on precision measurements of masses of super-allowed beta emitters. As a new concept, decay spectroscopy of radioactive ions trapped in a cooler Penning trap is presented.

  6. Measurements of Flat-Plate Milk Coolers

    Directory of Open Access Journals (Sweden)

    Vlastimil Nejtek

    2014-01-01

    Full Text Available Measuring in laboratory conditions was performed with the aim to collect a sufficient quantity of measured data for the qualified application of flat-plate coolers in measuring under real operating conditions. The cooling water tank was filled with tap water; the second tank was filled with water at a temperature equivalent to freshly milked milk. At the same time, pumps were activated that delivered the liquids into the flat-plate cooler where heat energy was exchanged between the two media. Two containers for receiving the run-out liquid were placed on the outputs from the cooler; here, temperature was measured with electronic thermometer and volume was measured with calibrated graduated cylinder. Flow rate was regulated both on the side of the cooling fluid and on the side of the cooled liquid by means of a throttle valve. The measurements of regulated flow-rates were repeated several times and the final values were calculated using arithmetic average. To calculate the temperature coefficient and the amount of brought-in and let-out heat, the volume measured in litres was converted to weight unit. The measured values show that the volume of exchanged heat per weight unit increases with the decreasing flow-rate. With the increasing flow-rate on the throttled side, the flow-rate increases on the side without the throttle valve. This phenomenon is caused by pressure increase during throttling and by the consequent increase of the diameter of channels in the cooler at the expense of the opposite channels of the non-throttled part of the circuit. If the pressure is reduced, there is a pressure decrease on the external walls of opposite channels and the flow-rate increases again. This feature could be utilised in practice: a pressure regulator on one side could regulate the flow-rate on the other side. The operating measurement was carried out on the basis of the results of laboratory measurements. The objective was to determine to what extent the

  7. Radiant coolers - Theory, flight histories, design comparisons and future applications

    Science.gov (United States)

    Donohoe, M. J.; Sherman, A.; Hickman, D. E.

    1975-01-01

    Radiant coolers have been developed for application to the cooling of infrared detectors aboard NASA earth observation systems and as part of the Defense Meteorological Satellite Program. The prime design constraints for these coolers are the location of the cooler aboard the satellite and the satellite orbit. Flight data from several coolers indicates that, in general, design temperatures are achieved. However, potential problems relative to the contamination of cold surfaces are also revealed by the data. A comparison among the various cooler designs and flight performances indicates design improvements that can minimize the contamination problem in the future.

  8. Results from the Cooler and Lead Tests

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A

    2010-06-10

    The report presents the results of testing MICE spectrometer magnet current leads on a test apparatus that combines both the copper leads and the high temperature superconducting (HTS) leads with a single Cryomech PT415 cooler and liquid helium tank. The current is carried through the copper leads from 300 K to the top of the HTS leads. The current is then carried through the HTS leads to a feed-through from the vacuum space to the inside of a liquid helium tank. The experiment allows one to measure the performance of both cooler stages along with the performance of the leads. While the leads were powered we measured the voltage drops through the copper leads, through the HTS leads, through spliced to the feed-through, through the feed-through and through the low-temperature superconducting loop that connects one lead to the other. Measurements were made using the leads that were used in spectrometer magnet 1A and spectrometer magnet 2A. These are the same leads that were used for Superbend and Venus magnets at LBNL. The IL/A for these leads was 5.2 x 10{sup 6} m{sup -1}. The leads turned out to be too long. The same measurements were made using the leads that were installed in magnet 2B. The magnet 2B leads had an IL/A of 3.3 x 10{sup 6} A m{sup -1}. This report discusses the cooler performance and the measured electrical performance of the lead circuit that contains the copper leads and the superconducting leads. All of the HTS leads that were installed in magnet 2B were current tested using this apparatus.

  9. An introduction to closed cycle cryogenic coolers

    Science.gov (United States)

    Chellis, F. F.

    1980-01-01

    Closed cycle cryogenic coolers are used extensively for cooling infrared detectors and other specialized electronic devices. Because of the special requirements of each electro-optical system it is generally necessary to custom design the cryocooler to fit the requirements. Early and close cooperation between the electro-optical systems designer and the cryocooler manufacturer is important to the successful marriage of the cryocooler with the total electro-optical system. Limitations of various cryocooling techniques are presented, and consideration for cryocooling integration are addressed.

  10. The LEBIT ion cooler and buncher

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S. [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI (United States); Bollen, G. [Facility for Rare Isotope Beams, MSU, East Lansing, MI (United States); Department of Physics and Astronomy, MSU, East Lansing, MI (United States); Ringle, R. [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI (United States); Savory, J. [National Institute of Standards and Technology, Boulder, CO (United States); Schury, P. [University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)

    2016-04-21

    This paper presents a detailed description of the ion cooler and buncher, installed at the Low Energy Beam and Ion Trap Facility (LEBIT) at the National Superconducting Cyclotron Laboratory (NSCL). NSCL uses gas stopping to provide rare isotopes from projectile fragmentation for its low-energy physics program and to the re-accelerator ReA. The LEBIT ion buncher converts the continuous rare-isotope beam, delivered from the gas stopping cell, into short, low-emittance ion pulses, required for high-precision mass measurements with a 9.4 T Penning trap mass spectrometer. Operation at cryogenic temperatures, a simplified electrode structure and dedicated rugged electronics contribute to the high performance and reliability of the device, which have been essential to the successful LEBIT physics program since 2005. - Highlights: • High-performance ion cooler/buncher for rare-isotope Penning trap mass spectrometry. • Cryogenic operation lowers emittance; observed effect scales with temperature. • Optimized ion extraction schemes allow for time-of-flight based mass selection. • Observation and characterization of RF-phase dependent ion-pulse profiles.

  11. Interim cryo-cooler/detector report

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, K.; Ruhter, W. [Lawrence Livermore National Lab., CA (United States); Anderson, E. [CSA Engineering, Inc., Palo Alto, CA (United States)

    1995-04-19

    This report describes development of an electronic system designed to reduce vibration generated by a cryocooler. The diminished vibration makes it practical to use the active cooler to extract heat from a portable gamma ray detector instrument. The system was developed for a Sunpower cryocooler with an integrated counterbalance mass. The overall momentum cancellation approach is also applicable to other similar cryocoolers. The cancellation system is an assembly of several components tailored to accomplish the required vibration reduction with minimum power consumption and volume. It is designed to be powered by a 18--32 Volt battery. Up to ten harmonics of the 58.65 Hz drive frequency are controlled. In addition to the vibration cancellation, the electronic system produces the drive signal for the cryocooler and regulates the cooler temperature. The system employs a sinusoidal drive to reduce the amount of higher harmonic vibration. A digital signal processor (DSP) is used to perform the high speed vibration control. The Texas Instruments TMS320C31 processor is housed on a third-party board. A second board has analog-to-digital (A/D) and digital-to-analog (D/A) converters. The DSP was programmed in C. The physical system consists of two sets of electronics. The first is housed in a case that is separate from the detector unit.

  12. Study of a coaxial thermoacoustic-Stirling cooler

    Science.gov (United States)

    Tijani, M. E. H.; Spoelstra, S.

    2008-01-01

    A coaxial thermoacoustic-Stirling cooler is built and performance measurements are performed. The cooler uses the acoustic power produced by a linear motor to pump heat through a regenerator from a cold heat exchanger to an ambient one. The cooler incorporates a compact acoustic network to create the traveling-wave phasing necessary for the operation in a Stirling cycle. The network has a coaxial geometry instead of the toroidal one usually used in such systems. The design, construction and performance measurements of the cooler are presented. A measured coefficient of performance relative to Carnot of 25% and a low temperature of -54 °C are achieved by the cooler. This efficiency surpasses the performance of the most efficient standing-wave cooler by almost a factor of two.

  13. Study of a coaxial thermoacoustic-Stirling cooler

    Energy Technology Data Exchange (ETDEWEB)

    Spoelstra, S.; Tijani, M.E.H. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2008-05-15

    A coaxial thermoacoustic-Stirling cooler is built and performance measurements are performed. The cooler uses the acoustic power produced by a linear motor to pump heat through a regenerator from a cold heat exchanger to an ambient one. The cooler incorporates a compact acoustic network to create the traveling-wave phasing necessary for the operation in a Stirling cycle. The network has a coaxial geometry instead of the toroidal one usually used in such systems. The design, construction and performance measurements of the cooler are presented. A measured coefficient of performance relative to Carnot of 25% and a low temperature of -54 degrees C are achieved by the cooler. This efficiency surpasses the performance of the most efficient standing-wave cooler by almost a factor of two.

  14. Assessment of Drinking Water Quality from Bottled Water Coolers.

    Directory of Open Access Journals (Sweden)

    Marzieh Farhadkhani

    2014-05-01

    Full Text Available Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers.A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC, temperature, pH, residual chlorine, turbidity, electrical conductivity (EC and total organic carbon (TOC. Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA.The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05 higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified.A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control.

  15. Ion beam cooler-buncher at the IGISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, A.; Hakala, J.; Huikari, J.; Kolhinen, V.S.; Rinta-Antila, S.; Szerypo, J. [Dept. of Physics, Univ. of Jyvaeskylae (Finland); Billowes, J.; Campbell, P.; Moore, I.D.; Moore, R. [Schuster Lab., Univ. of Manchester (United Kingdom); Forest, D.H.; Thayer, H.L.; Tungate, G. [School of Physics and Astronomy, Univ. of Birmingham, Edgbaston (United Kingdom); Jokinen, A.; Aeystoe, J. [Dept. of Physics, Univ. of Jyvaeskylae (Finland)]|[CERN, Geneva (Switzerland)

    2003-07-01

    An ion beam cooler-buncher for manipulating low-energy radioactive ion beams at the IGISOL facility is described. The cooler-buncher serves as a source of cooled ion bunches for collinear laser spectroscopy and it will be used for preparation of ion bunches for injection into a Penning trap system. (orig.)

  16. Thermo-Electron Ballistic Coolers or Heaters

    Science.gov (United States)

    Choi, Sang H.

    2003-01-01

    Electronic heat-transfer devices of a proposed type would exploit some of the quantum-wire-like, pseudo-superconducting properties of single-wall carbon nanotubes or, optionally, room-temperature-superconducting polymers (RTSPs). The devices are denoted thermo-electron ballistic (TEB) coolers or heaters because one of the properties that they exploit is the totally or nearly ballistic (dissipation or scattering free) transport of electrons. This property is observed in RTSPs and carbon nanotubes that are free of material and geometric defects, except under conditions in which oscillatory electron motions become coupled with vibrations of the nanotubes. Another relevant property is the high number density of electrons passing through carbon nanotubes -- sufficient to sustain electron current densities as large as 100 MA/square cm. The combination of ballistic motion and large current density should make it possible for TEB devices to operate at low applied potentials while pumping heat at rates several orders of magnitude greater than those of thermoelectric devices. It may also enable them to operate with efficiency close to the Carnot limit. In addition, the proposed TEB devices are expected to operate over a wider temperature range

  17. Beam accumulation with the SIS electron cooler

    CERN Document Server

    Steck, Markus; Blasche, K; Franczak, B J; Franzke, B; Winkler, T; Parkhomchuk, V V

    2000-01-01

    An electron cooling system has started operation in the heavy ion synchrotron SIS which is used to increase the intensity for highly charged ions. Fast transverse cooling of the hot ion beam after horizontal multiturn injection allows beam accumulation at the injection energy. After optimization of the accumulation process an intensity increase in a synchrotron pulse by more than one order of magnitude has been achieved. For highly charged ions the maximum number of particles has been increased from 1x10 sup 8 to 1x10 sup 9. For lighter ions intensity limitations have been encountered which are caused by the high phase space density of the cooled ion beam. Momentum spreads in the 10 sup - sup 4 range and emittances well below 10 pi mm mrad have been demonstrated. Recombination losses both in the residual gas and with the free cooler electrons determine the maximum intensity for highly charged ions. Systematic measurements of the recombination rates have been performed providing data for an optimum choice of t...

  18. Thermoelectric cooler application in electronic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Reiyu Chein; Guanming Huang [National Chung Hsing University, Taichung City (China). Dept. of Mechanical Engineering

    2004-10-01

    This study addresses thermoelectric cooler (TEC) applications in the electronic cooling. The cold side temperature (T{sub c}) and temperature difference between TEC cold and hot sides ({delta}T=T{sub h} T{sub c}, T{sub h} temperature of hot side of TEC) were used as the parameters. The cooling capacity, junction temperature, coefficient of performance (COP) of TEC and the required heat sink thermal resistance at the TEC hot side were computed. The results indicated that the cooling capacity could be increased as T{sub c} increased and {delta}T was reduced. The maximum cooling capacity and chip junction temperature obtained were 207 W and 88{sup o}C, respectively. The required heat sink thermal resistance on TEC hot side was 0.054{sup o}C/W. Larger cooling capacity and higher COP could be obtained when the TEC was operated in the enforced regimes ({delta}T<0). However, TEC performance was restricted by the T{sub c} values and heat sink thermal resistance at the TEC hot side. A microchannel heat sink using water or air as the coolant was demonstrated to meet the low thermal heat sink resistance requirement for TEC operated at maximum cooling capacity conditions. (author)

  19. Thermoelectric cooler application in electronic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Chein Reiyu; Huang Guanming

    2004-10-01

    This study addresses thermoelectric cooler (TEC) applications in the electronic cooling. The cold side temperature (T{sub c}) and temperature difference between TEC cold and hot sides ({delta}T=T{sub h}-T{sub c}, T{sub h}=temperature of hot side of TEC) were used as the parameters. The cooling capacity, junction temperature, coefficient of performance (COP) of TEC and the required heat sink thermal resistance at the TEC hot side were computed. The results indicated that the cooling capacity could be increased as T{sub c} increased and {delta}T was reduced. The maximum cooling capacity and chip junction temperature obtained were 207 W and 88 deg. C, respectively. The required heat sink thermal resistance on TEC hot side was 0.054 deg. C/W. Larger cooling capacity and higher COP could be obtained when the TEC was operated in the enforced regimes ({delta}T<0). However, TEC performance was restricted by the T{sub c} values and heat sink thermal resistance at the TEC hot side. A microchannel heat sink using water or air as the coolant was demonstrated to meet the low thermal heat sink resistance requirement for TEC operated at maximum cooling capacity conditions.

  20. Development of a hybrid cooler; Udvikling af hybridkoeler

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, P.; Toftegaard, R.; Weinkauff Kristoffersen, J. [Teknologisk Institut, Aarhus (Denmark); Juel Skovrup, M. [IPU, Kgs. Lyngby (Denmark); Ibsen, C. [VP Industries, Lem (Denmark)

    2013-04-15

    The project aims to develop a hybrid cooler which acts as a dry cooler in the winter and as cooling tower in summer. Energy consumption for cooling systems with a dry cooler and a cooling tower, respectively, is comparable in the winter months. This phase 1 of the project shows that improvements of 50-100% on the performance of a hybrid cooler can be achieved as compared to a dry cooler. The improvement is achieved by humidifying the air with recirculated water through nozzles so that the air temperature decreases from the dry temperature to the wet temperature, and that the dry cooler surface is humidified with a film of water, which increases the heat transfer coefficient considerably compared to a dry surface. The experiments showed that a humidifier system cannot be used without further action. At face velocities less than 5 m/s the humidification does not yield any improvement, and in some cases the heat transfer in a standard dry cooler is decreased. This is due to entrainment of not fully vaporized droplets which are deposited between the dry cooler fins and form bridges that block parts of the cooler. By modifying the surface characteristics with a coating, it will be possible to drain the water away so that no bridges are formed. The company Accoat, which makes special surfaces, will therefore be associated to phase 2 of the project. Another aspect that was evident in the tests, is the formation of biofilm on the heat exchanger surface, which can reduce performance by up to 25%. Biofilm can be prevented by treating the feed water, and therefore Danish Clean Water A/S associated to phase 2 of the project, as they produce water purification systems for biofouling decomposition. (LN)

  1. A 300 Hz high frequency thermoacoustically driven pulse tube cooler

    Institute of Scientific and Technical Information of China (English)

    ZHU ShangLong; YU GuoYao; ZHANG XiaoDong; DAI Wei; LUO ErCang; ZHOU Yuan

    2008-01-01

    This article introduces the latest progress of a 300 Hz thermoacoustically driven pulse tube cooler. Based on the experience of former experiments, improvements have been made in the standing-wave engine, pulse tube cooler and their coupling mechanism. An inlet pressure ratio of 1.248 was obtained with the mean pressure and heating power of 4.13 MPa and 1760 W, respectively. A lowest no-load temperature of 69.5 K has been reached under this condition. This is the first time for thermoacousti-cally driven pulse tube coolers to reach the temperature below 76 K with such a high frequency.

  2. Development of software for the thermohydraulic analysis of air coolers

    Directory of Open Access Journals (Sweden)

    Šerbanović Slobodan P.

    2003-01-01

    Full Text Available Air coolers consume much more energy compared to other heat exchangers due to the large fan power required. This is an additional reason to establish reliable methods for the rational design and thermohydraulic analysis of these devices. The optimal values of the outlet temperature and air flow rate are of particular importance. The paper presents a methodology for the thermohydraulic calculation of air cooler performances, which is incorporated in the "Air Cooler" software module. The module covers two options: cooling and/or condensation of process fluids by ambient air. The calculated results can be given in various ways ie. in the tabular and graphical form.

  3. Instrumentation Upgrades to TITAN's Cooler Penning Trap

    Science.gov (United States)

    Lascar, Daniel; Titan Collaboration

    2016-09-01

    The use of Highly Charged Ions (HCIs) is critical to improving the precision of Penning trap mass measurements of nuclides with half-lives substantially less than 100 ms, but the process of charge breeding imparts an unacceptably high energy spread to the ion bunch sent to TITAN's precision Penning trap for mass measurement. TITAN's Cooler PEnning Trap (CPET) at TRIUMF in Vancouver, Canada was designed to cool HCIs with a plasma of simultaneously trapped electrons. CPET is currently undergoing commissioning offline at TRIUMF. In order to prepare CPET for full operation, several technical challenges associated with the use of electrons in a strong magnetic field had to be overcome. First among these was the detection of electrons outside of CPET. A novel, thin charge-collecting detector was successfully developed. Known as the mesh detector, it is charge-agnostic and can be made effectively transparent to allow for the passage of any charged particle at the user's request. The second challenge, moving CPET's electron source off the central beam axis was overcome by the creation of an electron source which would allow for electron injection into CPET and the passage of cooled ions out of CPET. CPET's 7 T solenoid generates a stray field far outside of the magnet's central bore that forced the design of a set of electron injection optics that bend, steer and focus the beam in three dimensions. Results from the successful installation of these upgrades as well as a report on future work will be discussed. This work was partially supported by NSERC, the CFI and the DFG.

  4. Micromachined Active Magnetic Regenerator for Low Temperature Magnetic Coolers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future science missions to investigate the structure and evolution of the universe require highly efficient, very low temperature coolers for low noise...

  5. Lightweight Magnetic Cooler with a Reversible Circulator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future missions to investigate the structure and evolution of the universe require highly-efficient, very low temperature coolers for low-noise detector...

  6. Lightweight Magnetic Cooler with a Reversible Circulator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future missions to investigate the structure and evolution of the universe require highly efficient, very low temperature coolers for low-noise detector...

  7. Lightweight Superconducting Magnets for Low Temperature Magnetic Coolers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future science missions to investigate the structure and evolution of the universe require efficient, very low temperature coolers for low noise detector...

  8. Miniaturized Thermal-Cooler for IC Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is submitted for research on using MEMS technology to make unique, highly reliable, miniaturized capillary pumped coolers in the application of Thermal...

  9. Performance study on primary gas coolers with horizontal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, E.L.; Lekhter, V.I.; Gostev, Yu.A. [and others

    1992-12-31

    No. 1-bis coke-oven battery system at the Mariupol C&CW was equipped with primary gas coolers of horizontal-tube type. They consisted of three sections, with working surface areas in m{sup 2} of: I (bottom) 800 (middle) 800 and III (top) 600 respectively. The nominal water flow rate through each cooler was 600-720 m. The coolers were constantly irrigated with tar/water emulsions to remove scale deposits in the inter-tube space. The circulating water from the primary gas coolers is cooled in a e-section cooling tower (type 2VG) equipped with spray nozzles designed by the Dnepropetrovsk Chemical Technology Institute (nominal water throughput 3000 m{sup 3}/h). 1 tab.

  10. Micromachined Active Magnetic Regenerator for Low Temperature Magnetic Coolers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future science missions to investigate the structure and evolution of the universe require highly efficient, very low temperature coolers for low noise...

  11. MM&T for Linear Resonant Cooler. Volume 1

    Science.gov (United States)

    1988-02-16

    COOSS 16-S SUBJECT TERMS (COntInuf O on fri WUI( Rfe*"Gnr and identify 6) bloct ri.rmbe, FIELD GROUP j SUB. GRPI Li near-Resonant; Compressor; Stirling ...Cycle I i Free-Displacer Cooler; Regenerator IS. ABSTRACT (Con notuor on Forvermi if necorstwy mnd iden afr 67 Weorknufflep This final report...producibility and performance of the prototype linear-drive Stirling cycle cooler design established in a prior contract, 2) qualify the design to the target

  12. A digital energy control system for the LEAR electron cooler

    CERN Document Server

    Caspers, Fritz; Molinari, G; Ramos, U

    1993-01-01

    A feedback control system has been developed to correct any energy errors that may occur when operating the electron cooler on LEAR. Drifts and, above all, the space charge effects are the main sources of error. Error cancellation must be compatible with the pulsed mode of operation of the electron cooler so that the beam must be stabilized at the right energy before the end of the corresponding flat top is reached.

  13. Evaluation of Stirling cooler system for cryogenic CO2 capture

    OpenAIRE

    Song, Chun Feng; Kitamura, Yutaka; Li, Shu Hong

    2012-01-01

    In previous research, a cryogenic system based on Stirling coolers has been developed. In this work, the novel system was applied on CO2 capture from post-combustion flue gas and different process parameters (i.e. flow rate of feed gas, temperature of Stirling cooler and operating condition) were investigated to obtain the optimal performance (CO2 recovery and energy consumption). From the extensive experiments, it was concluded that the cryogenic system could realize CO2 capture without solv...

  14. Large-Scale Containment Cooler Performance Experiments under Accident Conditions

    Directory of Open Access Journals (Sweden)

    Ralf Kapulla

    2012-01-01

    Full Text Available Computational Fluid Dynamics codes are increasingly used to simulate containment conditions after various transient accident scenarios. This paper presents validation experiments, conducted in the frame of the OECD/SETH-2 project. These experiments address the combined effects of mass sources and heat sinks related to gas mixing and hydrogen transport within containment compartments. A wall jet interacts with an operating containment cooler located in the middle (M-configuration and the top (T-configuration of the containment vessel. The experiments are characterized by a 3-phase injection scenario. In Phase I, pure steam is injected, while in Phase II, a helium-steam mixture is injected. Finally, in Phase III, pure steam is injected again. Results for the M-configuration show helium stratification build up during Phase II. During Phase III, a positively buoyant plume emerging from the cooler housing becomes negatively buoyant once it reaches the helium-steam layer and continuously erodes the layer. For the M-configuration, a strong degradation of the cooler performance was observed during the injection of the helium/steam mixture (Phase II. For the T-configuration, we observe a mainly downwards acting cooler resulting in a combination of forced and natural convection flow patterns. The cooler performance degradation was much weaker compared with the M-configuration and a good mixing was ensured by the operation of the cooler.

  15. 46 CFR 119.422 - Integral and non-integral keel cooler installations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Integral and non-integral keel cooler installations. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.422 Integral and non-integral keel cooler... connections for a keel cooler installation. (e) Shutoff valves are not required for integral keel coolers. A...

  16. Tests of Four PT-415 Coolers Installed in the Drop-in Mode

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.; Wang, S.T.

    2008-07-08

    The superconducting magnets and absorbers for MICE will be cooled using PT415 pulse tube coolers. The cooler 2nd stage will be connected to magnets and the absorbers through a helium or hydrogen re-condensing system. It was proposed that the coolers be connected to the magnets in such a way that the cooler can be easily installed and removed, which permits the magnets to be shipped without the coolers. The drop-in mode requires that the cooler 1st stage be well connected to the magnet shields and leads through a low temperature drop demountable connection. The results of the PT415 drop-in cooler tests are presented.

  17. A mechanical cooler for dual-temperature applications

    Science.gov (United States)

    Gully, W.; Carrington, H.; Kiehl, W.; Byrne, Kevin

    1998-01-01

    Ball Aerospace has been developing Stirling cycle mechanical cryocoolers specifically for space applications. These coolers are special in that they are designed from the beginning for power efficiency, high reliability, and compatibility with sensitive instruments. We have delivered several of these coolers to NASA Goddard Space Flight Center, and are currently assembling one for the High Resolution Dynamics Limb Sounder (HIRDLS) program. In our current research effort, funded by the Ballistic Missile Defense Organization (BMDO), we are tailoring our basic design to new requirements from the Air Force Research Laboratory and its customers. We describe our success in optimizing a cooler to efficiently provide refrigeration at two different temperatures simultaneously. This two-temperature application requires 0.4 W of cooling at 35 K, and 0.6 W of cooling at 60 K. We have met these requirements with an input power of approximately 70 W from a dc source with a breadboard version of the cooler. We expect to deliver the protoflight version of this cooler to the Air Force Research Laboratory in January 1998.

  18. Micro-cooler enhancements by barrier interface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen, A.; Dunn, G. M. [Department of Physics, University of Aberdeen, King' s College, AB24 3UE Aberdeen (United Kingdom); Glover, J.; Oxley, C. H. [Department of Engineering, De Montfort University, Gateway, LE1 9BH Leicester (United Kingdom); Bajo, M. Montes; Kuball, M. [Center for Device Thermography and Reliability, H. H. Wills Physics Laboratory, University of Bristol, BS8 1TL Bristol (United Kingdom); Cumming, D. R. S.; Khalid, A. [School of Engineering, University of Glasgow, Rankine Building, G12 8LT Glasgow (United Kingdom)

    2014-02-15

    A novel gallium arsenide (GaAs) based micro-cooler design, previously analysed both experimentally and by an analytical Heat Transfer (HT) model, has been simulated using a self-consistent Ensemble Monte Carlo (EMC) model for a more in depth analysis of the thermionic cooling in the device. The best fit to the experimental data was found and was used in conjunction with the HT model to estimate the cooler-contact resistance. The cooling results from EMC indicated that the cooling power of the device is highly dependent on the charge distribution across the leading interface. Alteration of this charge distribution via interface extensions on the nanometre scale has shown to produce significant changes in cooler performance.

  19. Micro-cooler enhancements by barrier interface analysis

    Directory of Open Access Journals (Sweden)

    A. Stephen

    2014-02-01

    Full Text Available A novel gallium arsenide (GaAs based micro-cooler design, previously analysed both experimentally and by an analytical Heat Transfer (HT model, has been simulated using a self-consistent Ensemble Monte Carlo (EMC model for a more in depth analysis of the thermionic cooling in the device. The best fit to the experimental data was found and was used in conjunction with the HT model to estimate the cooler-contact resistance. The cooling results from EMC indicated that the cooling power of the device is highly dependent on the charge distribution across the leading interface. Alteration of this charge distribution via interface extensions on the nanometre scale has shown to produce significant changes in cooler performance.

  20. Exergoeconomic, enviroeconomic and sustainability analyses of a novel air cooler

    Energy Technology Data Exchange (ETDEWEB)

    Caliskan, Hakan [Department of Mechanical Engineering, Faculty of Engineering, Ege University (Turkey)], email: hakan.caliskan@ege.edu.tr; Dincer, Ibrahim [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], email: Ibrahim.Dincer@uoit.ca; Hepbasli, Arif [Department of Mechanical Engineering, College of Engineering, King Saud University (Saudi Arabia)], email: ahepbasli.c@ksu.edu.sa

    2011-07-01

    With the energy crisis and the rising concerns about the environment, energy-saving measures are urgently needed. In the building sector, air conditioning systems consume important amounts of energy and a new evaporative air cooler system has been developed. This system is based on the Maisotsenko cycle and aims at providing comfortable indoor conditions for low energy consumption and with high efficiency. The objective of this paper is to present the analysis of the energy, exergy, environmental, exergoeconomic, enviroeconomic and sustainability performances of this novel air cooler. The different analyses were carried out for 9 dead state temperatures from 0 to 37.77 degree celsius. Results of all the different analyses performed are provided herein. This study provided useful information on the performance of the Maisotsenko cycle-based air cooler system and showed the originality of the system.

  1. New Regenerator Materials for use in pulse tube coolers

    Energy Technology Data Exchange (ETDEWEB)

    A. Kashani; B.P.M. Helvensteijn; P. Kittel; K.A. Gschneidner,jr; V.K. Pecharsky; A.O. Pecharsky

    2004-09-30

    A two-stage pulse tube cooler driven by a linear compressor is being developed to provide cooling at 20 K. The first stage of the cooler will have the conventional stainless steel screen regenerator matrix. The matrix for the second stage regenerator (<60 K) will be made from a new class of Er based alloys which was recently developed at Ames Laboratory, in Ames, Iowa. These alloys exhibit heat capacities that exceed that of all other materials, including lead, over a Wide range in temperature (15 K < T C 85 K). The performance of one such alloy was shown to be better than lead when tested in a single-stage pulse tube cooler driven by a G-M compressor and operating at 2 Hz. An effort is underway to establish their suitability at frequencies above 40 IIZ. An approach to testing these alloys at low temperatures while using a low-power linear compressor is presented.

  2. USE OF PELTIER COOLERS AS SOIL HEAT FLUX TRANSDUCERS.

    Science.gov (United States)

    Weaver, H.L.; Campbell, G.S.

    1985-01-01

    Peltier coolers were modified and calibrated to serve as soil heat flux transducers. The modification was to fill their interiors with epoxy. The average calibration constant on 21 units was 13. 6 plus or minus 0. 8 kW m** minus **2 V** minus **1 at 20 degree C. This sensitivity is about eight times that of the two thermopile transducers with which comparisons were made. The thermal conductivity of the Peltier cooler transducers was 0. 4 W m** minus **1 degree C** minus **1, which is comparable to that of dry soil.

  3. Investigations of waste heat recovery from bulk milk cooler

    OpenAIRE

    S.N. Sapali; S.M. Pise; A.T. Pise; D.V. Ghewade

    2014-01-01

    Bulk milk coolers are used to chill the milk from its harvest temperature of 35–4 °C to arrest the bacterial growth and maintain the quality of harvested milk. Milk chilling practices are energy intensive with low coefficient of performance (COP) of about 3.0. Increased energy cost concern encouraged an investigation of heat recovery from bulk milk cooler as one conservation alternative for reducing water heating cost in dairy industry. Heat dissipated to atmosphere through condenser is recov...

  4. Electrocaloric cooler combining ceramic multi-layer capacitors and fluid

    Directory of Open Access Journals (Sweden)

    Daniele Sette

    2016-09-01

    Full Text Available In this paper, an electrocaloric (EC cooler prototype made of 150 ceramic-based Multi-Layer Capacitors (MLCs has been detailed. This cooler involves a column of dielectric fluid where heat exchange with the MLCs takes place. The maximum variation of temperature in the fluid column due to the EC effect reaches 0.13 K whereas the heat exchanged during one stroke is 0.28 J. Although this prototype requires improvements with respect to heat exchange, the basic principle of creating a temperature gradient in a column of fluid has been validated.

  5. Simulations of space charge neutralization in a magnetized electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Gerity, James [Texas A-M; McIntyre, Peter M. [Texas A-M; Bruhwiler, David Leslie [RadiaSoft, Boulder; Hall, Christopher [RadiaSoft, Boulder; Moens, Vince Jan [Ecole Polytechnique, Lausanne; Park, Chong Shik [Fermilab; Stancari, Giulio [Fermilab

    2017-02-02

    Magnetized electron cooling at relativistic energies and Ampere scale current is essential to achieve the proposed ion luminosities in a future electron-ion collider (EIC). Neutralization of the space charge in such a cooler can significantly increase the magnetized dynamic friction and, hence, the cooling rate. The Warp framework is being used to simulate magnetized electron beam dynamics during and after the build-up of neutralizing ions, via ionization of residual gas in the cooler. The design follows previous experiments at Fermilab as a verification case. We also discuss the relevance to EIC designs.

  6. Market Assessment and Commercialization Strategy for the Radial Sandia Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Shandross, Richard [Navigant Consulting, Inc., Burlington, MA (United States); Weintraub, Daniel [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States)

    2014-02-01

    This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.

  7. Laser pumping of ions in a cooler buncher

    Energy Technology Data Exchange (ETDEWEB)

    Cheal, B., E-mail: bradley.cheal@manchester.ac.uk [University of Manchester (United Kingdom); Baczynska, K. [University of Birmingham, School of Physics and Astronomy (United Kingdom); Billowes, J.; Campbell, P. [University of Manchester (United Kingdom); Eronen, T. [University of Jyvaeskylae, Department of Physics (Finland); Forest, D. H. [University of Birmingham, School of Physics and Astronomy (United Kingdom); Kessler, T.; Moore, I. D. [University of Jyvaeskylae, Department of Physics (Finland); Rueffer, M. [University of Birmingham, School of Physics and Astronomy (United Kingdom); Tordoff, B. [University of Manchester (United Kingdom); Tungate, G. [University of Birmingham, School of Physics and Astronomy (United Kingdom); Aystoe, J. [University of Jyvaeskylae, Department of Physics (Finland)

    2008-01-15

    Optical experiments at the IGISOL isotope separator facility, Jyvaeskylae, have for many years benefited from the introduction of an ion beam cooler. The device, a gas-filled RF quadrupole, reduces the emittance and longitudinal energy spread of the ion beam. Very recently, use has been made of the axial confinement of slowly travelling ions at the end of the cooler to redistribute the electronic populations through efficient laser excitation. Such a technique has proved beneficial to laser spectroscopic measurements and is a precursor to using the method to polarize the ion beam.

  8. CoolerMaster COSMOS S运动版

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    说起前一年的顶级机箱,CoolerMaster COSMOS绝对要算一个。在2008年德国CeBIT展会上,CoolerMaster公司又在该作的基础上推出了COSMOS S运动版,在提供极致散热性能的同时,新的动感机身,触控式按键设计,让COSMOS有一种焕然如新的感觉。

  9. Molecular absorption cryogenic cooler for liquid hydrogen propulsion systems

    Science.gov (United States)

    Klein, G. A.; Jones, J. A.

    1982-01-01

    A light weight, long life molecular absorption cryogenic cooler (MACC) system is described which can use low temperature waste heat to provide cooling for liquid hydrogen propellant tanks for interplanetary spacecraft. Detailed tradeoff studies were made to evaluate the refrigeration system component interactions in order to minimize the mass of the spacecraft cooler system. Based on this analysis a refrigerator system mass of 31 kg is required to provide the .48 watts of cooling required by a 2.3 meter diameter liquid hydrogen tank.

  10. Status of the IUCF Cooler Injector Synchrotron Construction Project

    Science.gov (United States)

    Friesel, D. L.; Lee, S. Y.

    1997-05-01

    Construction of a 2.24 T-m, rapid-cycling booster synchrotron is nearing completion at IUCF. The synchrotron is designed to accelerate protons to 220 MeV and will replace the IUCF isochronous cyclotrons as an injector of polarized light ion beams into the 3.6 T-m electron-cooled storage ring. CIS (Cooler Injector Synchrotron), with a circumference of 1/5th the Cooler ring, will fill the Cooler to about 10^11 protons via ``boxcar" stacking in a few seconds for research. The compact booster design, which can accelerate protons to energies between 60 and 220 MeV, is also well suited for use in proton therapy applications. At 28 months into the construction program, all major ring elements (dipoles, quads, injector linac, RF system) are fabricated, assembled, installed and in some cases, commissioned. Ring beam injection and ramping studies are scheduled to start in May, 1997 and Cooler injection studies are planned for late 1997. The booster design properties, component commissioning results and construction completion schedule will be summarized.

  11. Space Charge Dominated Beams in the Iucf Cooler

    Science.gov (United States)

    Nagaitsev, Sergei

    1995-01-01

    Many present and future accelerator projects require significantly increased brightness of the accelerated and stored beams to make modern nuclear and high energy experiments feasible. In the case of IUCF Cooler it has been stated that there is strong motivation for increased beam intensity to provide the designed luminosity for the future Light Ion Spin Synchrotron. To achieve the desired brightness of the beam one must consider a complex problem involving both effective injection and circumventing various intensity limits. This dissertation is essentially a collection of theoretical models and experimental observations which, taken together, make an attempt to analyze numerous intensity and space charge related effects in the IUCF Cooler. We found that the proton beams in the IUCF Cooler are nearly completely space charge dominated longitudinally. This leads to a number of beam properties, such as coherent synchrotron frequency shift and an absence of decoherence in the synchrotron phase oscillations, which have not been observed before. We observed experimentally that the intensity limit in the IUCF Cooler is a peak current limit due to space charge effects. Beam losses occur due to incoherent transverse effects, such as large space charge tune shift and the formation of tails. In addition to that, a very precise bunched beam current monitor was invented and tested. This device could be used in the future precise nuclear experiments.

  12. Optimal digital control of a Stirling cycle cooler

    Science.gov (United States)

    Feeley, J.; Feeley, P.; Langford, G.

    1990-01-01

    This short paper describes work in progress on the conceptual design of a control system for a cryogenic cooler intended for use aboard spacecraft. The cooler will produce 5 watts of cooling at 65 K and will be used to support experiments associated with the following: earth observation; atmospheric measurements; infrared, x-ray, and gamma-ray astronomy; and magnetic field characterization. The cooler has been designed and constructed for NASA/GSFC by Philips Laboratories and is described in detail. The cooler has a number of unique design features intended to enhance long life and maintenance free operation in space including use of the high efficiency Stirling thermodynamic refrigeration cycle, linear magnetic motors, clearance-seals, and magnetic bearings. The proposed control system design is based on optimal control theory and is targeted for custom integrated circuit implementation. The resulting control system will meet the following mission requirements: efficiency, reliability, optimal thermodynamic, electrical, and mechanical performance; freedom from operator intervention; light weight; and small size.

  13. Commissioning of the LEIR electron cooler with Pb$^{+54}$ ions

    CERN Document Server

    Tranquille, G; Carly, Ch; Prieto, V; Sautier, R; Bubley, A; Parkhomchuk, V; Reva, V; Brizgunov, M; Vedenev, M; Panasyuk, V

    2006-01-01

    The new LEIR cooler with a variable profile of the electron beam and electrostatic bending was commissioned in 2005-2006. In this paper we present our experience with the commissioning of the new device as well as the first results of the ion beam Pb +54 cooling with a high-intensity variable-density electron beam.

  14. Initial Evaluation of a New Electromechanical Cooler for Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, RL

    2002-10-21

    The use of liquid nitrogen (LN{sub 2}) constitutes the current state of the art in cryogenic cooling for high-purity germanium (HPGe) detectors, which are widely used for {gamma}-ray and characteristic X-ray spectroscopy because of their excellent energy discrimination. Use of LN{sub 2} requires a liquid nitrogen supply, cumbersome storage tanks and plumbing, and the frequent attention of personnel to be sure that nitrogen levels are sufficient to maintain the detectors at a sufficiently low operating temperature. Safety hazards also are associated with the use of LN{sub 2}, both because of the potential for severe frostbite on exposure to skin and because it displaces ambient oxygen when it evaporates in closed spaces. Existing electromechanical coolers have, until now, been more expensive to procure and maintain than LN{sub 2} systems. Performance and reliability have also been serious issues because of microphonic degradation of photon energy peak resolution and cooler failures due to compressor oil becoming entrained in the refrigerant. This report describes the results of tests of a new HPGe detector cooling technology, the PerkinElmer ORTEC{reg_sign} Products X-Cooler{trademark} that, according to the manufacturer, significantly reduces the lifetime cost of the cooling system without degradation of the output signal. The manufacturer claims to have overcome cost, performance and reliability problems of older-generation electromechanical coolers, but the product has no significant history of use, and this project is the first independent evaluation of its performance for Total cost savings for the DOE and other agencies that use HPGe systems extensively for safeguards monitoring is expected to be quite significant if the new electromechanical cooler technology is shown to be reliable and if performance characteristics indicate its usefulness for this application. The technology also promises to make HPGe monitoring, characterization and detection available for

  15. Analisis Laju Pendinginan pada Kulkas Thermoelektrik Super Cooler Dibandingkan Sistem Pendingin Konvensional Menggunakan Gas Freon

    OpenAIRE

    Banjarnahor, Hendri Pronoto

    2016-01-01

    It has been designed and analyzed by using a cooling device which was have a Peltier cooler hot side and a cold side using a principle works of Peltier effect . These study analyze and compare the rate-based thermoelectric cooling refrigerator cooler than conventional cooling systems using freon gas. These study also focused on utilizing conventional refrigerator (Air Freon) that have been damaged as the peltier coolers. By using the DC fan on the cooler side to accelerate c...

  16. Fluid flow and heat transfer in Joule-Thomson coolers coupled with infrared detectors

    Science.gov (United States)

    Du, Bingyan; Jia, Weimin

    2011-08-01

    Joule-Thomson coolers have been widely used in infrared detectors with respect to compact, light and low cost. For self-regulating Joule-Thomson cooler, its performance is required to be improved with the development of higher mass and larger diameter of focal plane infrared detectors. Self-regulating Joule-Thomson coolers use a limited supply of high pressure gas to support the cooling of infrared detectors. In order to develop Joule-Thomson coolers with a given volume of stored gas, it is important to study on fluid flow and heat transfer of Joule-Thomson coolers coupled with infrared detectors, especially the starting time of Joule-Thomson coolers. A serial of experiments of Joule-Thomson coolers coupled with 128×128 focal plane infrared detectors have been carried out. The exchanger of coolers are made of a d=0.5mm capillary finned with a copper wire. The coolers are self-regulated by bellows and the diameters are about 8mm. Nitrogen is used as working gas. The effect of pressure of working gas has been studied. The relation between starting time and pressure of working gas is proved to fit exponential decay. Error analysis has also been carried. It is crucial to study the performance of Joule-Thomson coolers coupled with infrared detectors. Deeper research on Joule-Thomson coolers will be carried on to improve the Joule-Thomson coolers for infrared detectors.

  17. 46 CFR 182.422 - Integral and non-integral keel cooler installations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Integral and non-integral keel cooler installations. 182... VESSELS (UNDER 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.422 Integral and non-integral keel cooler installations. (a) A keel cooler installation used for engine cooling...

  18. 46 CFR 128.430 - Non-integral keel cooler installations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Non-integral keel cooler installations. 128.430 Section... MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Design Requirements for Specific Systems § 128.430 Non-integral keel cooler installations. (a) Each hull penetration for a non-integral keel cooler installation must...

  19. 46 CFR 169.608 - Non-integral keel cooler installations

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Non-integral keel cooler installations 169.608 Section... SCHOOL VESSELS Machinery and Electrical Internal Combustion Engine Installations § 169.608 Non-integral keel cooler installations (a) Hull penetrations for non-integral keel cooler installations must be made...

  20. Plasma-beam traps and radiofrequency quadrupole beam coolers.

    Science.gov (United States)

    Maggiore, M; Cavenago, M; Comunian, M; Chirulotto, F; Galatà, A; De Lazzari, M; Porcellato, A M; Roncolato, C; Stark, S; Caruso, A; Longhitano, A; Cavaliere, F; Maero, G; Paroli, B; Pozzoli, R; Romé, M

    2014-02-01

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  1. Growth of Chrysomya megacephala (Fabricius) maggots in a morgue cooler.

    Science.gov (United States)

    Thevan, Kumara; Ahmad, Abu Hassan; Rawi, Che Salmah Md; Singh, Bhupinder

    2010-11-01

    In estimating the postmortem interval (PMI) using maggots obtained during autopsy, the forensic entomologist makes decisions regarding the effects of low-temperature storage of the body on the insects. In this case report, a corpse was found in an abandoned house in the residential area of Bukit Mertajam, Penang, Malaysia. The maggots were found to be alive inside the mouth of the deceased although the corpse had been in the morgue cooler for 12 days. The maggots were reared and identified as Chrysomya megacephala (Fabricius). The emerged adult flies were kept as a stock colony, and the duration of development under the indoor fluctuating temperature regime was studied. The total duration of developmental process of this species was 9.5 ± 0.5 days, and the PMI estimated was 3.2 ± 0.6 days. This case report demonstrates the survival of Ch. megacephala maggots for 12 days and their growth inside the morgue cooler.

  2. Vortex Pressure-Reducing Desuperheating Plants and Steam Coolers

    Directory of Open Access Journals (Sweden)

    V. Kascheev

    2012-01-01

    Full Text Available The authors have developed and tested the entire device class that appeared as a result of fundamental investigations of multiphase flows in centrifugal force fields, understanding of process mechanism occurring in them and their mathematical description for optimization. Method for reduction of pressure and steam temperature in vortex pressure-reducing desuperheating plants and steam coolers has been proposed for the first time in the paper.

  3. Rahoitusselvitys aloittelevalle pk-yritykselle : Case: Pets Cooler

    OpenAIRE

    Uotinen, Emmi

    2013-01-01

    Tarkoituksena oli selvittää erilaisia rahoitusvaihtoehtoja aloittelevalle pienelle ja keskisuurelle yritykselle. Opinnäytetyön tavoite oli helpottaa toimeksiantajayrityksen Pets Cooler rahoituslähteiden valintaa. Yritystoiminnan on tarkoitus käynnistyä mahdollisimman nopeasti, ja selvitys on tukena aloituksessa. Toimeksiantaja halusi käsiteltävän myös kansainvälisen liiketoiminnan rahoitusta. Vienti ja mahdollisesti myös ulkomailla tapahtuva tuotanto on yrityksen haaveena tulevaisuudessa. ...

  4. Addressing Water Consumption of Evaporative Coolers with Greywater

    OpenAIRE

    Sahai, Rashmi

    2013-01-01

    Evaporative coolers (ECs) provide significant gains in energy efficiency compared to vapor compression air conditioners, but simultaneously have significant onsite water demand. This can be a major barrier to deployment in areas of the world with hot and arid climates. To address this concern, this study determined where in the world evaporative cooling is suitable, the water consumption of ECs in these cities, and the potential that greywater can be used reduce the consumption of potable wat...

  5. Numerical simulation of a semi-indirect evaporative cooler

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R. Herrero [Departamento de Ingenieria Termica y de Fluidos, Universidad Politecnica de Cartagena, C/Dr. Fleming, s/n (Campus Muralla), 30202 Cartagena, Murcia (Spain)

    2009-11-15

    This paper presents the experimental study and numerical simulation of a semi-indirect evaporative cooler (SIEC), which acts as an energy recovery device in air conditioning systems. The numerical simulation was conducted by applying the CFD software FLUENT implementing a UDF to model evaporation/condensation. The numerical model was validated by comparing the simulation results with experimental data. Experimental data and numerical results agree for the lower relative humidity series but not for higher relative humidity values. (author)

  6. Cooler storage ring accomplished at heavy ion facility in Lanzhou

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFLCSR),a flagship facility of basic research in China,passed the acceptance check under auspices of the State Development and Reform Commission on 30 July in Lanzhou,capital of Gansu Province.The event was jointly presided over by the Commission's Vice Minister ZHANG Xiaoqian and CAS Executive Vice President BAI Chunli.

  7. Six Sigma methods applied to cryogenic coolers assembly line

    Science.gov (United States)

    Ventre, Jean-Marc; Germain-Lacour, Michel; Martin, Jean-Yves; Cauquil, Jean-Marc; Benschop, Tonny; Griot, René

    2009-05-01

    Six Sigma method have been applied to manufacturing process of a rotary Stirling cooler: RM2. Name of the project is NoVa as main goal of the Six Sigma approach is to reduce variability (No Variability). Project has been based on the DMAIC guideline following five stages: Define, Measure, Analyse, Improve, Control. Objective has been set on the rate of coolers succeeding performance at first attempt with a goal value of 95%. A team has been gathered involving people and skills acting on the RM2 manufacturing line. Measurement System Analysis (MSA) has been applied to test bench and results after R&R gage show that measurement is one of the root cause for variability in RM2 process. Two more root causes have been identified by the team after process mapping analysis: regenerator filling factor and cleaning procedure. Causes for measurement variability have been identified and eradicated as shown by new results from R&R gage. Experimental results show that regenerator filling factor impacts process variability and affects yield. Improved process haven been set after new calibration process for test bench, new filling procedure for regenerator and an additional cleaning stage have been implemented. The objective for 95% coolers succeeding performance test at first attempt has been reached and kept for a significant period. RM2 manufacturing process is now managed according to Statistical Process Control based on control charts. Improvement in process capability have enabled introduction of sample testing procedure before delivery.

  8. Storage-ring Electron Cooler for Relativistic Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Johnson, Rolland P. [Muons Inc., Batavia, IL (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This paper reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.

  9. Digital control of magnetic bearings in a cryogenic cooler

    Science.gov (United States)

    Feeley, J.; Law, A.; Lind, F.

    1990-01-01

    This paper describes the design of a digital control system for control of magnetic bearings used in a spaceborne cryogenic cooler. The cooler was developed by Philips Laboratories for the NASA Goddard Space Flight Center. Six magnetic bearing assemblies are used to levitate the piston, displacer, and counter-balance of the cooler. The piston and displacer are driven by linear motors in accordance with Stirling cycle thermodynamic principles to produce the desired cooling effect. The counter-balance is driven by a third linear motor to cancel motion induced forces that would otherwise be transmitted to the spacecraft. An analog control system is currently used for bearing control. The purpose of this project is to investigate the possibilities for improved performance using digital control. Areas for potential improvement include transient and steady state control characteristics, robustness, reliability, adaptability, alternate control modes, size, weight, and cost. The present control system is targeted for the Intel 80196 microcontroller family. The eventual introduction of application specific integrated circuit (ASIC) technology to this problem may produce a unique and elegant solution both here and in related industrial problems.

  10. Performance evaluation of indirect evaporative cooler using clay pot

    Science.gov (United States)

    Ramkumar, R.; Ragupathy, A.

    2016-05-01

    The aim of the experimental study is to investigate the performance of indirect evaporator cooler in hot and humid regions. A novel approach is implemented in the cooler using clay pot with different position (single, double and three pots) and different orientation as aligned and staggered position for potential and feasibility study. The clay pot is the ceramic material where the water filled inside the pot and due to the property of porosity, the water comes outer surface of the pot and contact with the air passing over the pot surface and air get cooled. A test rig was designed and fabricated to collect experimental data. The clay pots were arranged in aligned and staggered position. In our study heat transfer was analysed with various air velocity of 1m/s to 5m/s. The air temperature, relative humidity, pressure drop and effectiveness were measured and the performance of the evaporative cooler was evaluated. The analysis of the data indicated that cooling effectiveness improve with decrease of air velocity at staggered position. It was shown that staggered position has the higher performance (57%) at 1 m/s air velocity comparison with aligned position values at three pots position.

  11. 6D “Garren” snake cooler and ring cooler for µ{sup ±} cooling of a muon collider

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X., E-mail: xding@bnl.gov [UCLA, Los Angeles, CA 90095 (United States); Berg, J.S. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Cline, D. [UCLA, Los Angeles, CA 90095 (United States); Garren, Al [Particle Beam Lasers, Inc., Northridge, CA 91324 (United States); Kirk, H.G. [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-12-21

    Six dimensional cooling of large emittance µ{sup +} and µ{sup −} beams is required in order to obtain the desired luminosity for a muon collider. In our previous study, we demonstrated that a 6D “Garren” ring cooler using both dipoles and solenoids in four 90{sup 0} achromatic arcs can give substantial cooling in all six phase space dimensions. In this paper, we describe the injection/extraction requirements of this four-sided ring. We also present the performance of an achromat-based 6D “Garren” snake cooler. The achromatic design permits the design to easily switch between a closed ring and a snaking geometry on injection or extraction from the ring.

  12. Dry coolers and air-condensing units (Review)

    Science.gov (United States)

    Milman, O. O.; Anan'ev, P. A.

    2016-03-01

    The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that

  13. Laser spectroscopy of gallium isotopes using the ISCOOL RFQ cooler

    CERN Multimedia

    Blaum, K; Kowalska, M; Ware, T; Procter, T J

    2007-01-01

    We propose to study the radioisotopes of gallium (Z=31) by collinear laser spectroscopy using the ISCOOL RFQ ion cooler. The proposed measurements on $^{62-83}$Ga will span both neutron-deficient and neutron-rich isotopes. Of key interest is the suggested development of a proton-skin in the neutron-deficient isotopes. The isotope shifts measured by laser spectroscopy will be uniquely sensitive to this feature. The measurements will also provide a wealth of new information on the gallium nuclear spins, static moments and nuclear charge radii.

  14. Integral finned heater and cooler for stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-01-01

    A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

  15. Test of a Sub-4K Mechanical Cooler for IXO and Other Space Based Sensors

    Science.gov (United States)

    Petach, Michael B.; Casement, L.; Michaelian, M.; Nguyen, T.; Raab, J.; Tward, E.

    2009-01-01

    X-ray Microcalorimeter Spectrometer Sensors on missions such as the International X-ray Observatory (IXO) require cooling to temperatures around 50mK to achieve the required sensitivity in the 0.6-10 keV band. Cooling an X-ray Sensor such as a Transition Edge Sensor (TES) to 50mK without the limitations on lifetime, mass, volume and reliability penalties of stored cryogen systems can be achieved with a multiple stage mechanical cryocooler. While no single cryocooler technology is appropriate for all of the stages, a hybrid cryocooler can be used. Fortunately, three cooler technologies that are each optimized for efficiency over the appropriate parts of the temperature range are rapidly maturing. For the lowest temperature stage, an Adiabatic Demagnetization Refrigerators (ADR) efficiently cools between 50mK and 2K to 4K. Next, a helium Joule Thomson cooler can efficiently pump the heat to 14K. Finally, a multistage pulse tube cooler efficiently pumps the heat from 14K to 300K. An existing ADR cooler, such as that demonstrated by NASA Goddard to TRL 5, can be cooled by a hybrid JT and pulse tube cooler similar to the cooler that NGST is building for the JWST/MIRI instrument, if its temperature is lowered from 6K to below 4K. The MIRI cooler leverages extensive NGST cooler heritage with >60 years of on-orbit performance with 11 pulse tube coolers currently operating continuously in orbit without failure. In this poster we present test results of a laboratory demonstration JT cooler stage with the sub-4K temperatures needed by the ADR cooler. By basing the test on the 6 K cooler technologies developed for the JWST MIRI program, the current development program provides the next step to reach the goal of TRL6 in time to support the IXO mission. This successful test provides demonstration of TRL 4 for the missing components required for an IXO cooler.

  16. Investigations of waste heat recovery from bulk milk cooler

    Directory of Open Access Journals (Sweden)

    S.N. Sapali

    2014-11-01

    Full Text Available Bulk milk coolers are used to chill the milk from its harvest temperature of 35–4 °C to arrest the bacterial growth and maintain the quality of harvested milk. Milk chilling practices are energy intensive with low coefficient of performance (COP of about 3.0. Increased energy cost concern encouraged an investigation of heat recovery from bulk milk cooler as one conservation alternative for reducing water heating cost in dairy industry. Heat dissipated to atmosphere through condenser is recovered to improve the energy efficiency of plant. The waste heat is utilized to heat the water which is used to clean the milk processing equipments thus saving thermal or electrical energy used to heat the water separately. Shell and coil type heat exchanger is designed and used to recover the waste heat during condensation process. Heat rejected in condensation process consists of superheat and latent heat of the refrigerant. In this work, attempt has been made to recover complete superheat along with part of latent heat which is a present research issue. The results show that complete superheat and 35% of latent heat is recovered. Heat recovery rate is measured for various mass flow rates. Water is flowing on shell side and refrigerant through tubes. The effectiveness of the heat exchanger is determined and the results achieved are presented in this paper. Significant improvements have been achieved and COP of the system is increased from 3 to 4.8.

  17. CFD modeling of thermoelectric generators in automotive EGR-coolers

    Science.gov (United States)

    Högblom, Olle; Andersson, Ronnie

    2012-06-01

    A large amount of the waste heat in the exhaust gases from diesel engines is removed in the exhaust gas recirculation (EGR) cooler. Introducing a thermoelectric generator (TEG) in an EGR cooler requires a completely new design of the heat exchanger. To accomplish that a model of the TEG-EGR system is required. In this work, a transient 3D CFD model for simulation of gas flow, heat transfer and power generation has been developed. This model allows critical design parameters in the TEG-EGR to be identified and design requirements for the systems to be specified. Besides the prediction of Seebeck, Peltier, Thomson and Joule effects, the simulations also give detailed insight to the temperature gradients in the gas-phase and inside the thermoelectric (TE) elements. The model is a very valuable tool to identify bottlenecks, improve design, select optimal TE materials and operating conditions. The results show that the greatest heat transfer resistance is located in the gas phase and it is critical to reduce this in order to achieve a large temperature difference over the thermoelectric elements without compromising on the maximum allowable pressure drop in the system. Further results from an investigation of the thermoelectric performance during a vehicle test cycle is presented.

  18. Storage-ring Electron Cooler for Relativistic Ion Beams

    CERN Document Server

    Lin, F; Douglas, D; Guo, J; Johnson, R P; Krafft, G; Morozov, V S; Zhang, Y

    2016-01-01

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This paper reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the...

  19. Solar-Powered Cooler and Heater for an Automobile Interior

    Science.gov (United States)

    Howard, Richard T.

    2006-01-01

    The apparatus would include a solar photovoltaic panel mounted on the roof and a panellike assembly mounted in a window opening. The window-mounted assembly would include a stack of thermoelectric devices sandwiched between two heat sinks. A fan would circulate interior air over one heat sink. Another fan would circulate exterior air over the other heat sink. The fans and the thermoelectric devices would be powered by the solar photovoltaic panel. By means of a double-pole, double-throw switch, the panel voltage fed to the thermoelectric stack would be set to the desired polarity: For cooling operation, the chosen polarity would be one in which the thermoelectric devices transport heat from the inside heat sink to the outside one; for heating operation, the opposite polarity would be chosen. Because thermoelectric devices are more efficient in heating than in cooling, this apparatus would be more effective as a heater than as a cooler. However, if the apparatus were to include means to circulate air between the outside and the inside without opening the windows, then its effectiveness as a cooler in a hot, sunny location would be increased.

  20. Tuned dynamic absorber for split Stirling cryogenic cooler

    Science.gov (United States)

    Veprik, Alexander; Tuito, Avi

    2016-05-01

    Tuned dynamic absorbers (TDA) find use, in particular, for attenuating tonal vibration export produced by the moving components of cryogenic cooler. For the best performance, the resonant frequency of TDA needs to be essentially equal the driving frequency; accurate frequency match is favorably achieved by minimizing the cooler induced vibration by adjusting the driving frequency. For the best performance, the design of TDA needs to ensure minimum damping ratio; this is achievable by using planar flexural bearings having zero friction anchoring features. Accurate evaluation of effective mass, damping ratio and frequency is needed for TDA characterization during development and manufacturing. This data may be also important for the dynamic modelling. The authors are exploring the express method requiring no physical access to the proof mass of TDA. In this approach, the TDA is mounted upon the low frequency vibration mounted rod, the dynamic properties of TDA are then evaluated using the frequency response function - local accelerance - captured on the above rod using accelerometer, instrumented modal hammer and dual-channel signal analyzer. The authors are presenting the TDA design, outcomes of full-scale experimentation on dynamic properties evaluation and attained performance.

  1. Convective heat transfer in engine coolers influenced by electromagnetic fields

    Science.gov (United States)

    Karcher, C.; Kühndel, J.

    2017-08-01

    In engine coolers of off-highway vehicles, convective heat transfer at the coolant side limits both efficiency and performance density of the apparatus. Here, due to restrictions in construction and design, backwater areas and stagnation regions cannot be avoided. Those unwanted changes in flow characteristics are mainly triggered by flow deflections and sudden cross-sectional expansions. In application, mixtures of water and glysantine are used as appropriate coolants. Such coolants typically show an electrical conductivity of a few S/m. Coolant flow and convective heat transfer can then be controlled using Lorentz forces. These body forces are generated within the conducting fluid by the interactions of an electrical current density and a localized magnetic field, both of which are externally superimposed. In future application, this could be achieved by inserting electrodes in the cooler wall and a corresponding arrangement of permanent magnets. In this paper we perform numerical simulations of such magnetohydrodynamic flow in three model geometries that frequently appear in engine cooling applications: Carnot-Borda diffusor, 90° bend, and 180° bend. The simulations are carried out using the software package ANSYS Fluent. The present study demonstrates that, depending on the electromagnetic interaction parameter and the specific geometric arrangement of electrodes and magnetic field, Lorentz forces are suitable to break up eddy waters and separation zones and thus significantly increase convective heat transfer in these areas. Furthermore, the results show that hydraulic pressure losses can be reduced due to the pumping action of the Lorentz forces.

  2. Experimental research on thermoelectric cooler for imager camera thermal control

    Science.gov (United States)

    Hu, Bing-ting; Kang, Ao-feng; Fu, Xin; Jiang, Shi-chen; Dong, Yao-hai

    2013-09-01

    Conventional passive thermal design failed to satisfy CCD's temperature requirement on a geostationary earth orbit satellite Imager camera because of the high power and low working temperature, leading to utilization of thermoelectric cooler (TEC) for heat dissipation. TEC was used in conjunction with the external radiator in the CCDs' thermal design. In order to maintain the CCDs at low working temperature, experimental research on the performance of thermoelectric cooler was necessary and the results could be the guide for the application of TEC in different conditions. The experimental system to evaluate the performance of TEC was designed and built, consisting of TEC, heat pipe, TEC mounting plate, radiator and heater. A series of TEC performance tests were conducted for domestic and oversea TECs in thermal vacuum environment. The effects of TEC's mounting, input power and heat load on the temperature difference of TEC's cold and hot face were explored. Results demonstrated that the temperature difference of TEC's cold and hot face was slightly increased when TEC's operating voltage reached 80% of rating voltage, which caused the temperature rise of TEC's hot face. It recommended TEC to operate at low voltage. Based on experiment results, thermal analysis indicated that the temperature difference of TEC's cold and hot face could satisfy the temperature requirement and still had surplus.

  3. Refurbishment of the cryogenic coolers for the Skylab earth resources experiment package

    Science.gov (United States)

    Smithson, J. C.; Luksa, N. C.

    1975-01-01

    Skylab Earth Resources Experiment Package (EREP) experiments, S191 and S192, required a cold temperature reference for operation of a spectrometer. This cold temperature reference was provided by a subminiature Stirling cycle cooler. However, the failure of the cooler to pass the qualification test made it necessary for additional cooler development, refurbishment, and qualification. A description of the failures and the cause of these failures for each of the coolers is presented. The solutions to the various failure modes are discussed along with problems which arose during the refurbishment program. The rationale and results of various tests are presented. The successful completion of the cryogenic cooler refurbishment program resulted in four of these coolers being flown on Skylab. The system operation during the flight is presented.

  4. Reducing Display Bottle Cooler Energy Consumption Using PCM As Active Thermal Storage

    OpenAIRE

    Beek, Marcel van; de Jong, Hans

    2014-01-01

    The final results of an analytical and experimental study in reducing the energy consumption of a display bottle cooler using Phase Change Material (PCM) as an active thermal storage are presented. The objective of the study was to design and built a 350 dm3 glass door bottle cooler having an appliance energy consumption reduction of over 75% compared to state of the art bottle coolers (2010 figures). Calculation results show that active thermal storage using PCM can be effectively applied to...

  5. Functioning efficiency of intermediate coolers of multistage steam-jet ejectors of steam turbines

    Science.gov (United States)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-03-01

    Designs of various types of intermediate coolers of multistage ejectors are analyzed and thermal effectiveness and gas-dynamic resistance of coolers are estimated. Data on quantity of steam condensed from steam-air mixture in stage I of an ejector cooler was obtained on the basis of experimental results. It is established that the amount of steam condensed in the cooler constitutes 0.6-0.7 and is almost independent of operating steam pressure (and, consequently, of steam flow) and air amount in steam-air mixture. It is suggested to estimate the amount of condensed steam in a cooler of stage I based on comparison of computed and experimental characteristics of stage II. Computation taking this hypothesis for main types of mass produced multistage ejectors into account shows that 0.60-0.85 of steam amount should be condensed in stage I of the cooler. For ejectors with "pipe-in-pipe" type coolers (EPO-3-200) and helical coolers (EO-30), amount of condensed steam may reach 0.93-0.98. Estimation of gas-dynamic resistance of coolers shows that resistance from steam side in coolers with built-in and remote pipe bundle constitutes 100-300 Pa. Gas-dynamic resistance of "pipein- pipe" and helical type coolers is significantly higher (3-6 times) compared with pipe bundle. However, performance by "dry" (atmospheric) air is higher for ejectors with relatively high gas-dynamic resistance of coolers than those with low resistance at approximately equal operating flow values of ejectors.

  6. Direct Evaporatrive Coolers of Gases and Liquids with Lowered Limit of Cooling

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-12-01

    Full Text Available We have developed main technical solutions solution of indirect evaporative water and air coolers with reduced cooling limit. Packed part of heat-mass transfer devices is made of the film type based monoblock compositions of polymer materials. A mathematical model describing the processes of joint heat and mass transfer in evaporative coolers is executed. A comparative analysis of the possibilities of coolers designed based on experimental data on the efficiency of processes of heat and mass transfer.

  7. Calculation Method for the Prediction of the Performance of a Traveling-Wave Thermoacoustic Cooler

    Science.gov (United States)

    Ueda, Yuki

    When a traveling acoustic wave propagates through a regenerator, the gas in the regenerator undergoes the Stirling thermodynamic cycle, and thus, the energy conversion between heat flux and acoustic power takes place. A cooler that utilizes this energy conversion is called as a traveling-wave thermoacoustic cooler. Swift et al. [The Journal of the Acoustical Society of America, 105, 711 (1998)] have proposed a new traveling wave thermoacoustic cooler that is equipped with a looped tube. This paper describes a numerical method to estimate the performance of this thermoacoustic cooler and shows a comparison between the estimated and experimentally obtained performances.

  8. A computer program for designing fin-and-tube heat exchanger for EGR cooler application

    Science.gov (United States)

    Syaiful, Marwan, M. A.; Tandian, N. P.; Bae, M.

    2016-03-01

    EGR (exhaust gas recirculation) cooler is a kind of heat exchanger that is used to cool exhaust gas recirculation prior to be mixed with fresh air in an intake manifold of vehicle in order to obtain good reduction of NOxemissions. A fin-and-tube heat exchanger is more preferred as an EGR cooler than a shell-and-tube heat exchanger in this study due to its compactness. Manually designing many configurations of fin-and-tube heat exchanger for EGR cooler application consumes a lot of time and is high cost. Therefore, a computer aided design process of EGR cooler is required to overcome this problem. The EGR cooler design process was started by arranging the sequences of calculation algorithm in a computer program. A cooling media for this EGR cooler is air. The design is based on the effectiveness-number transfer unit (NTU) method. The EGR cooler design gives the geometry, heat transfer surface area, heat transfer coefficient and pressure drop of the EGR cooler. Comparison of the EGR cooler Nusselt number obtained in this study and that reported in literature shows less than 6.2% discrepancy.

  9. High Coefficient of Performance HgCdTe And Metallic Superlattice-Based Thermoelectric Coolers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of nanoscale superlattices (SLs) as the active elements of high efficiency thermoelectric coolers. Recent models predict that the...

  10. Temperature Control of Avalanche Photodiode Using Thermoelectric Cooler

    Science.gov (United States)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    Avalanche photodiodes (APDS) are quantum optical detectors that are used for visible and near infrared optical detection applications. Although APDs are compact, rugged, and have an internal gain mechanism that is suitable for low light intensity; their responsivity, and therefore their output, is strongly dependent on the device temperature. Thermoelectric coolers (TEC) offers a suitable solution to this problem. A TEC is a solid state cooling device, which can be controlled by changing its current. TECs are compact and rugged, and they can precisely control the temperature to within 0.1 C with more than a 150 C temperature gradient between its surfaces. In this Memorandum, a proportional integral (PI) temperature controller for APDs using a TEC is discussed. The controller is compact and can successfully cool the APD to almost 0 C in an ambient temperature environment of up to 27 C.

  11. Performances of thermoelectric cooler integrated with microchannel heat sinks

    Energy Technology Data Exchange (ETDEWEB)

    Reiyu Chein; Yehong Chen [National Chung Hsing University, Taichung (Taiwan). Department of Mechanical Engineering

    2005-09-01

    In this study, experimental and theoretical studies on thermoelectric cooler (TEC) performance for cooling a refrigerated object (water in a tank) were performed. Microchannel heat sinks fabricated with etched silicon wafers were employed on the TEC hot side to dissipate heat. The measurements show that the temperature of the refrigerated object decreased with time. A theoretical model based on a lumped system was established to predict the transient behavior of the variation in temperature for the refrigerated object with time. The theoretical predicted temperature variation was in good agreement with the measured data. The relationship among the heat sink thermal resistances, TEC electric current input and minimum refrigerated objected temperature was examined based on the theoretical model. The calculated minimum temperatures were showed for the several cases of heat sink thermal resistance on the TEC hot side and electric current input. The minimum temperature can be obtained by increasing the electrical current input and decreasing the heat sink thermal resistance. (author)

  12. Modeling of efficient solid-state cooler on layered multiferroics.

    Science.gov (United States)

    Starkov, Ivan; Starkov, Alexander

    2014-08-01

    We have developed theoretical foundations for the design and optimization of a solid-state cooler working through caloric and multicaloric effects. This approach is based on the careful consideration of the thermodynamics of a layered multiferroic system. The main section of the paper is devoted to the derivation and solution of the heat conduction equation for multiferroic materials. On the basis of the obtained results, we have performed the evaluation of the temperature distribution in the refrigerator under periodic external fields. A few practical examples are considered to illustrate the model. It is demonstrated that a 40-mm structure made of 20 ferroic layers is able to create a temperature difference of 25K. The presented work tries to address the whole hierarchy of physical phenomena to capture all of the essential aspects of solid-state cooling.

  13. Integration of RFQ beam coolers and solenoidal magnetic fields

    Science.gov (United States)

    Cavenago, M.; Romé, M.; Maggiore, M.; Porcellato, A. M.; Maero, G.; Chiurlotto, F.; Comunian, M.; Galatà, A.; Cavaliere, F.

    2016-02-01

    Electromagnetic traps are a flexible and powerful method of controlling particle beams, possibly of exotic nuclei, with cooling (of energy spread and transverse oscillations) provided by collisions with light gases as in the Radio Frequency Quadrupole Cooler (RFQC). A RFQC prototype can be placed inside the existing Eltrap solenoid, capable of providing a magnetic flux density component Bz up to 0.2 T, where z is the solenoid axis. Confinement in the transverse plane is provided both by Bz and the rf voltage Vrf (up to 1 kV at few MHz). Transport is provided by a static electric field Ez (order of 100 V/m), while gas collisions (say He at 1 Pa, to be maintained by differential pumping) provide cooling or heating depending on Vrf. The beamline design and the major parameters Vrf, Bz (which affect the beam transmission optimization) are here reported, with a brief description of the experimental setup.

  14. Optimization of a microfluidic electrophoretic immunoassay using a Peltier cooler.

    Science.gov (United States)

    Mukhitov, Nikita; Yi, Lian; Schrell, Adrian M; Roper, Michael G

    2014-11-07

    Successful analysis of electrophoretic affinity assays depends strongly on the preservation of the affinity complex during separations. Elevated separation temperatures due to Joule heating promotes complex dissociation leading to a reduction in sensitivity. Affinity assays performed in glass microfluidic devices may be especially prone to this problem due to poor heat dissipation due to the low thermal conductivity of glass and the large amount of bulk material surrounding separation channels. To address this limitation, a method to cool a glass microfluidic chip for performing an affinity assay for insulin was achieved by a Peltier cooler localized over the separation channel. The Peltier cooler allowed for rapid stabilization of temperatures, with 21°C the lowest temperature that was possible to use without producing detrimental thermal gradients throughout the device. The introduction of cooling improved the preservation of the affinity complex, with even passive cooling of the separation channel improving the amount of complex observed by 2-fold. Additionally, the capability to thermostabilize the separation channel allowed for utilization of higher separation voltages than what was possible without temperature control. Kinetic CE analysis was utilized as a diagnostic of the affinity assay and indicated that optimal conditions were at the highest separation voltage, 6 kV, and the lowest separation temperature, 21°C, leading to 3.4% dissociation of the complex peak during the separation. These optimum conditions were used to generate a calibration curve and produced 1 nM limits of detection, representing a 10-fold improvement over non-thermostated conditions. This methodology of cooling glass microfluidic devices for performing robust and high sensitivity affinity assays on microfluidic systems should be amenable in a number of applications.

  15. Agglomeration in Stripper Ash Coolers and Its Possible Remedial Solutions: a Case Study

    Science.gov (United States)

    Singh, Ravi Inder

    2016-04-01

    The bottom ash of circulating fluidized bed (CFB) boiler contains large amounts of physical heat. When low quality coals are used in these types of boilers, the ash content is normally more than 40 % and the physical heat loss is approximately 3 % if the bottom ash is discharged without cooling. Bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to facilitate the easily handling and transportation of ash. The CFB boiler at BLA Power, Newari, MP (India) is facing problems of clinker formation in strip ash coolers of plant since the installation of unit. These clinkers are basically agglomerates, which leads to defluidization of stripper ash cooler (BAC) units. There are two strip ash coolers in unit. Each strip ash cooler is capable of working independently. The proper functioning of both strip coolers is very important as it is going to increase the combustion efficiency of boiler by stripping of fine unburnt coal particles from ash, which are injected into the furnace. In this paper causes, characterization of agglomerates, thermo gravimetric analysis of fuel used, particular size distribution of coal and sand and possible remedial solution to overcome these agglomerates in strip ash coolers has also been presented. High temperature in compact separators, non uniform supply of coal and not removing small agglomerates from stripper ash cooler are among main causes of agglomeration in stripper ash cooler. Control of compact separator temperature, replacing 10-12 % of bed material and cleaning stripper ash cooler periodically will decrease agglomeration in stripper ash cooler of unit.

  16. Flexible Digital Control & Driving Electronics For Cryo-Coolers Application To Sentinel-3 SLSTR

    Science.gov (United States)

    Chico, J. C.; Caballero, G.; Gonzalez, D.; Fernandez, A.; Romero, V.; Bataller, E.

    2011-10-01

    The digital control as well as the power electronic implemented in the "Cryo-Cooler Driver Electronics" CDE units have evolved along these last years to new concepts allowing an easier management of the Cryo- coolers in flight programs, at the same time that the performances have been improved. A good example of this evolution in the CDE equipments is the one developed by Astrium Crisa for the Stirling Cooler of Astrium UK of the Sea & Land Surface Temperature Radiometer (SLSTR) instrument, which will be boarded in Sentinel-3. A new concept of CDE has been developed not only to satisfy the specific requirements of the SLSTR Stirling Cooler, but also to get a very modular and scalable architecture that can be adapted easily to different configurations of coolers. This paper describes the SLSTR CDE architecture, showing the problems found during the development of the unit as well as the latest performances achieved during the testing of the EM.

  17. Thermal electron-tunneling devices as coolers and amplifiers

    Science.gov (United States)

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-02-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices.

  18. Study of Voltage-Controlled Characteristics for Thermoelectric Coolers

    Science.gov (United States)

    Wang, Ning; Chen, Ming-Ming; Jia, Hong-Zhi; Jin, Tao; Xie, Ji-Long

    2017-01-01

    Based on the Peltier effect, thermoelectric coolers (TECs) have been widely used in solving thermal management issues for semiconductor devices such as semiconductor laser, charge-coupled devices and nanoelectronic circuits with hot-spots. However, performance control mechanisms especially voltage-controlled parameters for TEC still face challenges. In this paper, a standard mathematical model for multi-stage TECs is proposed with thermal resistances from both sides and performance parameters dependent on voltage. The proposed models agreed with experimental results. Compared with the available model, the relative standard deviations between the obtained equivalent thermal conductivity model and experimental results at 25°C and 50°C are decreased by 88.87% and 30.14%, respectively. Also, the relative standard deviations between the proposed thermoelectric figure of merits model and calculated results based on experiments at two different temperatures are decreased by 84.45% and 62.94%, respectively. The results provide a controllable method of thermoelectric characteristics with high accuracy, which can be employed for early thermometric performance estimation for TEC design.

  19. Life and Reliability Characteristics of TurboBrayton Coolers

    Science.gov (United States)

    Breedlove, Jeff J.; Zagarola, Mark; Nellis, Greg; Dolan, Frank; Swift, Walt; Gibbon, Judith; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    Wear and internal contaminants are two of the primary factors that influence reliable, long-life operation of turbo-Brayton cryocoolers. This paper describes tests that have been conducted and methods that have been developed for turbo-Brayton components and systems to assure reliable operation. The turbomachines used in these coolers employ self-acting gas bearings to support the miniature high-speed shafts, thus providing vibration-free operation. Because the bearings are self-acting, rubbing contact occurs during initial start-up and shutdown of the machines. Bearings and shafts are designed to endure multiple stop/start cycles without producing particles or surface features that would impair the proper operation of the machines. Test results are presented for a variety of turbomachines used in these systems. The tests document extended operating life and start/stop cycling behavior for machines over a range of time and temperature scales. Contaminants such as moisture and other residual gas impurities can be a source of degraded operation if they freeze out in sufficient quantities to block flow passages or if they mechanically affect the operation of the machines. A post-fabrication bakeout procedure has been successfully used to reduce residual internal contamination to acceptable levels in a closed cycle system. The process was developed during space qualification tests on the NICMOS cryocooler. Moisture levels were sampled over a six-month time interval confirming the effectiveness of the technique. A description of the bakeout procedure is presented.

  20. Boiling process in oil coolers on porous elements

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.

    2016-01-01

    Full Text Available Holography and high-speed filming were used to reveal movements and deformations of the capillary and porous material, allowing to calculate thermo-hydraulic characteristics of boiling liquid in the porous structures. These porous structures work at the joint action of capillary and mass forces, which are generalised in the form of dependences used in the calculation for oil coolers in thermal power plants (TPP. Furthermore, the mechanism of the boiling process in porous structures in the field of mass forces is explained. The development process of water steam formation in the mesh porous structures working at joint action of gravitational and capillary forces is investigated. Certain regularities pertained to the internal characteristics of boiling in cells of porous structure are revealed, by means of a holographic interferometry and high-speed filming. Formulas for calculation of specific thermal streams through thermo-hydraulic characteristics of water steam formation in mesh structures are obtained, in relation to heat engineering of thermal power plants. This is the first calculation of heat flow through the thermal-hydraulic characteristics of the boiling process in a reticulated porous structure obtained by a photo film and holographic observations.

  1. Cryogenic characterization of the Planck sorption cooler system flight model

    CERN Document Server

    Morgante, G; Melot, F; Stassi, P; Terenzi, L; Wilson, P; Hernandez, B; Wade, L; Gregorio, A; Bersanelli, M; Butler, C; Mandolesi, N; 10.1088/1748-0221/4/12/T12016

    2009-01-01

    This paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/1748-0221 Two continuous closed-cycle hydrogen Joule-Thomson (J-T) sorption coolers have been fabricated and assembled by the Jet Propulsion Laboratory (JPL) for the European Space Agency (ESA) Planck mission. Each refrigerator has been designed to provide a total of ~ 1W of cooling power at two instrument interfaces: they directly cool the Planck Low Frequency Instrument (LFI) around 20K while providing a pre-cooling stage for a 4 K J-T mechanical refrigerator for the High Frequency Instrument (HFI). After sub-system level validation at JPL, the cryocoolers have been delivered to ESA in 2005. In this paper we present the results of the cryogenic qualification and test campaigns of the Nominal Unit on the flight model spacecraft performed at the CSL (Centre Spatial de Liege) facilities in 2008. Test results in terms of input power, cooling power, temperature, and temperature fluctuations o...

  2. Cooler Storage Ring at China Institute of Modern Physics

    CERN Document Server

    Wen-Xia, Jia; Zhan, W

    2005-01-01

    CSR, a new ion cooler-storage-ring project in China IMP, is a double ring system, and consists of a main ring (CSRm) and an experimental ring (CSRe). The two existing cyclotrons SFC (K=69) and SSC (K=450) of the Heavy Ion Research Facility in Lanzhou (HIRFL) will be used as its injector system. The heavy ion beams with the energy range of 7-30 MeV/nucleus from the HIRFL will be accumulated, cooled and accelerated to the higher energy range of 100-500 MeV/ nucleus in CSRm, and then extracted fast to produce radioactive ion beams or highly charged heavy ions. Those secondary beams will be accepted and stored or decelerated by CSRe for many internal-target experiments or high precision spectroscopy with beam cooling. On the other hand, the beams with the energy range of 100-1000MeV/ nucleus will also be extracted from CSRm by using slow extraction or fast extraction for many external-target experiments. CSR project was started in the end of 1999 and will be finished in 2006. In this paper the outline and the act...

  3. Cryogenic characterization of the Planck sorption cooler system flight model

    Energy Technology Data Exchange (ETDEWEB)

    Morgante, G; Terenzi, L; Butler, C; Mandolesi, N [INAF - IASF Bologna, via P. Gobetti 101, 40129 Bologna (Italy); Pearson, D; Wilson, P; Hernandez, B; Wade, L [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena California 91109 (United States); Melot, F; Stassi, P [Laboratoire de Physique Subatomique et de Cosmologie 53 Avenue des Martyrs, 38026 Grenoble Cedex (France); Gregorio, A [Dipartimento di Fisica, Universita degli Studi di Trieste, via Valerio 2 - I-34127 Trieste (Italy); Bersanelli, M, E-mail: morgante@iasfbo.inaf.i [Dipartimento di Fisica, Universita degli Studi di Milano, via Celoria 16, - I20133 Milano (Italy)

    2009-12-15

    Two continuous closed-cycle hydrogen Joule-Thomson (J-T) sorption coolers have been fabricated and assembled by the Jet Propulsion Laboratory (JPL) for the European Space Agency (ESA) Planck mission. Each refrigerator has been designed to provide a total of {approx} 1W of cooling power at two instrument interfaces: they directly cool the Planck Low Frequency Instrument (LFI) around 20K while providing a pre-cooling stage for a 4 K J-T mechanical refrigerator for the High Frequency Instrument (HFI). After sub-system level validation at JPL, the cryocoolers have been delivered to ESA in 2005. In this paper we present the results of the cryogenic qualification and test campaigns of the Nominal Unit on the flight model spacecraft performed at the CSL (Centre Spatial de Liege) facilities in 2008. Test results in terms of input power, cooling power, temperature, and temperature fluctuations over the flight allowable ranges for these interfaces are reported and analyzed with respect to mission requirements.

  4. A novel coupling configuration for thermoacoustically-driven pulse tube coolers: Acoustic amplifier

    Institute of Scientific and Technical Information of China (English)

    DAI Wei; LUO Ercang; HU Jianying; CHEN Yanyan

    2005-01-01

    Thermoacoustically-driven pulse tube cooler can provide cryogenic cooling power with no moving components. Up to now, pulse tube cooler is directly coupled with the thermoacoustic engine and obtainable pressure ratio for the pulse tube cooler is limited by the capability of the thermoacoustic engine. The authors propose here the concept of acoustic amplifier, which is actually a long tube connecting the engine with the pulse tube cooler. Theoretical calculation shows that suitable length and diameter of the tube can lead to a pressure wave amplification effect which means that pressure wave amplitude coming from the thermoacoustic engine can be much amplified to drive the pulse tube cooler. Based on this, a 2.8 m long copper tube with 8 mm inner diameter is used as the acoustic amplifier in experiments. The experimental results show that due to the amplification effect, pressure wave amplitude at the inlet of the pulse tube cooler is over 2.5 times of that at the engine outlet. Typically, with 1.67 kW heating power, the pressure ratio provided by the engine is 1.11 while at the inlet of the pulse tube cooler the pressure ratio is 1.32, which leads to a lowest no-load temperature of 65.7 K.

  5. Evaluation of the Influence of Conventional Water Coolers on Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    M Nikaeen

    2010-02-01

    Full Text Available "n "nBackgrounds and Objectives: Drinking water quality after treatment and before reaching  the consumer could be affected by distribution pipes, service lines and Home devices. The structure of water coolers, a home device that are widely used in warm months of the year, could potentially affect the quality of drinking water. The aim of this study was to assess the microbial and chemical quality of water from conventional water coolers."nMaterials and Methods : Water samples were collected from 29 water cooler systems at the Isfahan  university of medical sciences. 29 control samples also obtained from the nearest drinking water taps. All samples were examined for total heterotrophic bacteria and physicochemical parameters including temperature, ph, turbidity and heavy metals."nResults: All samples from the water cooler systems complied with the EPA guidelines for total heterotrophic bacteria count. There were no significant differences between the levels of heavy metals in water samples from the water cooler systems and taps. There was only a significant difference between the level of Cu in the water samples from cooler systems and taps "nConclusion: The overall results of this study indicated that the use of water cooler systems from hygienic point of view could not cause any problems for consumers

  6. 40 CFR 63.2267 - Initial compliance demonstration for a reconstituted wood product press or board cooler.

    Science.gov (United States)

    2010-07-01

    ... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... for a reconstituted wood product press or board cooler. If you operate a reconstituted wood product press at a new or existing affected source or a reconstituted wood product board cooler at a...

  7. Fabrication of integrated planar gunn diode and\\ud micro-cooler on GaAs substrate

    OpenAIRE

    Khalid, Ata-ul-Habib; Glover, J.; Hopper, R; Papageorgiou, V.; M. Montes; Kuball, M.; Dunn, G.; Stephen, A.; Oxley, C.; D. R. S. Cumming

    2013-01-01

    We demonstrate fabrication of an integrated\\ud micro cooler with the planar Gunn diode and characterise\\ud its performance. First experimental results have shown a\\ud small cooling at the surface of the micro cooler. This is first\\ud demonstration of an integrated micro-cooler with a planar\\ud Gunn diode.

  8. High-T{sub c} DC SQUID system cooled by pulse-tube cooler

    Energy Technology Data Exchange (ETDEWEB)

    He, D.F.; Nakamura, M.; Yoshizawa, M

    2003-10-15

    We developed a high-T{sub c} DC SQUID system cooled by pulse-tube cooler. To avoid the influence of the wire resistance between SQUID and preamplifier, and to reduce the influence of the temperature fluctuation of pulse-tube cooler, DC coupling between SQUID chip and preamplifier was used and the flux locked loop worked in modulation mode. We also developed a temperature controller, using the DC SQUID as temperature sensor, to control and stabilize the operating temperature of the pulse-tube cooler. With the temperature controller, the DC SQUID system could remain locked for over 8 h.

  9. Verification of Methodology for Determination of Deposit Thickness on Heat Transfer Surface of Natural Gas Coolers

    Directory of Open Access Journals (Sweden)

    Miroslav PŘÍHODA

    2010-12-01

    Full Text Available The paper describes briefly an original methodology for the determination of the deposit thickness on the inside heat transfer surface of natural gas cooler and a procedure of its verification at the cooler CH_R of the booster station KS01 in Velké Kapušany. The methodology is based on the measurement of the degree of the gas cooling. It has the universal validity and can be used to determine the thickness of the deposits of all types of coolers working on any booster station.

  10. Low-energy run of Fermilab Electron Cooler's beam generation system

    Energy Technology Data Exchange (ETDEWEB)

    Prost, Lionel; Shemyakin, Alexander; /Fermilab; Fedotov, Alexei; Kewisch, Jorg; /Brookhaven

    2010-08-01

    As a part of a feasibility study of using the Fermilab Electron Cooler for a low-energy Relativistic Heavy Ion Collider (RHIC) run at Brookhaven National Laboratory (BNL), the cooler operation at 1.6 MeV electron beam energy was tested in a short beam line configuration. The main result of the study is that the cooler beam generation system is suitable for BNL needs. In a striking difference with running 4.3 MeV beam, no unprovoked beam recirculation interruptions were observed.

  11. Addressing Water Consumption of Evaporative Coolers with Greywater

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Rashmi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    Evaporative coolers (ECs) provide significant gains in energy efficiency compared to vapor compression air conditioners, but simultaneously have significant onsite water demand. This can be a major barrier to deployment in areas of the world with hot and arid climates. To address this concern, this study determined where in the world evaporative cooling is suitable, the water consumption of ECs in these cities, and the potential that greywater can be used reduce the consumption of potable water in ECs. ECs covered 69percent of the cities where room air conditioners are may be deployed, based on comfort conditions alone. The average water consumption due to ECs was found to be 400 L/household/day in the United States and Australia, with the potential for greywater to provide 50percent this amount. In the rest of the world, the average water consumption was 250 L/household/day, with the potential for greywater to supply 80percent of this amount. Home size was the main factor that contributed to this difference. In the Mediterranean, the Middle East, Northern India, and the Midwestern and Southwestern United States alkalinity levels are high and water used for bleeding will likely contribute significantly to EC water consumption. Although technically feasible, upfront costs for household GW systems are currently high. In both developed and developing parts of the world, however, a direct EC and GW system is cost competitive with conventional vapor compression air conditioners. Moreover, in regions of the world that face problems of water scarcity the benefits can substantially outweigh the costs.

  12. Numerical study on interaction of local air cooler with stratified hydrogen cloud in a large vessel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z. [Atomic Energy of Canada Limited, Chalk River Laboratories, ON K0J 1J0 (Canada); Andreani, M. [Laboratory for Thermal-Hydraulics, Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2012-07-01

    Within the framework of the ERCOSAM project, planning calculations are performed to examine sensitivity parameters that can affect the break-up (erosion) of a helium layer by mitigation devices (i.e., cooler, spray, or Passive Autocatalytic Recombiner - PAR). This paper reports the GOTHIC analysis results for the cooler tests to be performed in the PANDA facility. The cooler elevation and geometry, helium layer thickness, steam distribution in the vessel, and the vessel geometry (inter-connected multi-compartments versus a single volume) on the erosion process as well as the cooling capacity are studied. This analysis is valuable because only a limited number of conditions will be examined in the planned experiments. The study provides a useful understanding of the interaction of a cooler with a stratified atmosphere. (authors)

  13. Effects of temperature conditions in a gas collector on operation of primary and secondary gas coolers

    Energy Technology Data Exchange (ETDEWEB)

    Chuishchev, V.M.; Selivanova, Z.G.; Vasyuta, V.I.

    1988-04-01

    Discusses composition of coal gas leaving coke ovens and temperature effects on its composition in a gas collector and cooling systems. Effects of coal gas temperature ranging from 78 to 90 C on operation of cooling systems are analyzed: cooling intensity, naphthalene buildup, etc. Analyses show that coal gas temperature fluctuations from 80 to 90 C do not influence gas collector operation, whereas operation of primary gas coolers is influenced by gas collector operation. When coal gas temperature is reduced from 88 to 80 C intensity of coal tar accumulation increases 2 times and that of naphthalene increases 5 to 6 times. Temperature of coal gas leaving the primary coolers ranges from 35 to 40 C. Types of primary coal gas coolers, their operation and performance are comparatively evaluated. Effects of gas cooler design on efficiency of coal tar separation from coal gas are discussed. 5 refs.

  14. Modeling of a regenerative indirect evaporative cooler for a desiccant cooling system

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.;

    This paper presents a numerical study of a regenerative indirect evaporative cooler, the so-called Dew Point Cooler (DPC), which is part of a Desiccant Cooling system that may both dehumidify and cool humid air. The DPC model is based on first principles using a 1D finite volume scheme and determ......This paper presents a numerical study of a regenerative indirect evaporative cooler, the so-called Dew Point Cooler (DPC), which is part of a Desiccant Cooling system that may both dehumidify and cool humid air. The DPC model is based on first principles using a 1D finite volume scheme...... and determines the steady state working conditions for the component. A sensitivity analysis of the DPC performance is carried out based on the air inlet conditions, air flow rate and recirculation fraction. A recirculation fraction around 0.3 maximizes the DPC net cooling capacity. The supply temperature...

  15. Integrated testing of the Thales LPT9510 pulse tube cooler and the iris LCCE electronics

    Science.gov (United States)

    Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A.; Bustamante, John G.; Kirkconnell, Carl S.; Luong, Thomas T.; Murphy, J. B.; Haley, Michael F.

    2014-01-01

    The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to +40C during characterization testing. The cooler was placed on a force dynamometer to measure the selfgenerated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here.

  16. Re-Design Lube Oil Cooler pada Turbin Gas dengan Analisa Termodinamika dan Perpindahan Panas

    Directory of Open Access Journals (Sweden)

    Siti Duratun Nasiqiati Rosady

    2014-09-01

    Full Text Available Pada sebuah pembangkit listrik tenaga gas, sistem pelumasan turbin sangat diperlukan. Pelumas yang telah digunakan didinginkan kembali menggunakan lube oil cooler. Lube oil cooler merupakan compact heat exchanger tipe circular tubes, continuous fins yang berfungsi sebagai pendingin oli dengan udara sebagai fluida pendingin. Pada kondisi operasional didapatkan bahwa temperatur oli keluar lube oil cooler masih cukup tinggi. Hal ini dapat menyebabkan turbin gas shut down. Berdasarkan kondisi tersebut, maka dilakukan analisa performa lube oil cooler existing dan melakukan redesign untuk meningkatkan effectiveness dari lube oil cooler. Analisa performa lube oil cooler existing meliputi perpindahan panas actual dan effectiveness. Sedangkan redesign dilakukan dengan variasi laju aliran massa fluida dingin (udara dan surface designation berdasarkan standard Compact heat exchangers untuk tipe circular tubes, continuous fins. Dengan batasan yang digunakan dalam perancangan lube oil cooler adalah volume ruang penempatan heat exchanger. Perancangan menggunakan metode LMTD dan NTU meliputi perhitungan perpindahan panas pada sisi tubes dan fins, area perpindahan panas, heat transfer actual, overall heat transfer coefficient serta effectiveness. Dari perhitungan yang telah dilakukan didapatkan effectiveness dari lube oil cooler existing adalah sebesar 13.6%. Berdasarkan analisa redesign, hasil yang memiliki performa paling baik adalah surface designation 8.0-3/8 T dengan laju aliran massa udara 7.5 kg/s dengan temperatur keluar oli sebesar 342.14 K, effectiveness 29%. Adapun detail dimensi redesign adalah jumlah tubes 245, diameter tube 0.0102 m, jumlah fins/ meter 315, transverse pitch 0.022 m dan longitudinal pitch sebesar 0.0254 m.

  17. Integrated testing of the Thales LPT9510 pulse tube cooler and the iris LCCE electronics

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A. [The Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Bustamante, John G. [Georgia Institute of Technology, Atlanta, GA 30332 (United States); Kirkconnell, Carl S.; Luong, Thomas T.; Murphy, J. B.; Haley, Michael F. [Iris Technology, Irvine, CA 92616 (United States)

    2014-01-29

    The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to +40C during characterization testing. The cooler was placed on a force dynamometer to measure the selfgenerated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here.

  18. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  19. Frequency stability of a tunable diode laser mounted in a compact Stirling cycle cooler

    Science.gov (United States)

    Durso, Santo S.; May, R. D.; Tuchscherer, M. A.; Webster, C. R.

    1989-01-01

    A tunable diode laser (TDL) has been operated with a compact lightweight closed-cycle Stirling cooler. The laser linewidth has been measured near 80 K and found to be about half of that when using more massive closed-cycle coolers. Novel applications include balloon-borne and aircraft-adapted instruments, where size, weight, and power requirements place stringent demands on necessary TDL cooling systems.

  20. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  1. Development of Two-Stage Stirling Cooler for ASTRO-F

    Science.gov (United States)

    Narasaki, K.; Tsunematsu, S.; Ootsuka, K.; Kyoya, M.; Matsumoto, T.; Murakami, H.; Nakagawa, T.

    2004-06-01

    A two-stage small Stirling cooler has been developed and tested for the infrared astronomical satellite ASTRO-F that is planned to be launched by Japanese M-V rocket in 2005. ASTRO-F has a hybrid cryogenic system that is a combination of superfluid liquid helium (HeII) and two-stage Stirling coolers. The mechanical cooler has a two-stage displacer driven by a linear motor in a cold head and a new linear-ball-bearing system for the piston-supporting structure in a compressor. The linear-ball-bearing supporting system achieves the piston clearance seal, the long piston-stroke operation and the low frequency operation. The typical cooling power is 200 mW at 20 K and the total input power to the compressor and the cold head is below 90 W without driver electronics. The engineering, the prototype and the flight models of the cooler have been fabricated and evaluated to verify the capability for ASTRO-F. This paper describes the design of the cooler and the results from verification tests including cooler performance test, thermal vacuum test, vibration test and lifetime test.

  2. 150K - 200K miniature pulse tube cooler for micro satellites

    Energy Technology Data Exchange (ETDEWEB)

    Chassaing, Clément; Butterworth, James; Aigouy, Gérald [Air Liquide Advanced Technologies (AL-AT) - 38360 Sassenage (France); Daniel, Christophe [Centre National D' Etudes Spatiales (CNES) - 31401 Toulouse (France); Crespin, Maurice; Duvivier, Eric [STEEL électronique - 31220 Martres Tolosane (France)

    2014-01-29

    Air Liquide is working with the CNES and Steel électronique in 2013 to design, manufacture and test a Miniature Pulse Tube Cooler (MPTC) to cool infrared detectors for micro-satellite missions. The cooler will be particularly adapted to the needs of the CNES MICROCARB mission to study atmospheric Carbon Dioxide which presents absorption lines in the thermal near infrared, at 1.6 μm and 2.0 μm. The required cooler temperature is from 150 to 200K with cooling power between 1 and 3 watts. The overall electrical power budget including electronics is less than 20W with a 288-300K rejection temperature. Particular attention is therefore paid to optimizing overall system efficiency. The active micro vibration reduction system and thermal control systems already developed for the Air Liquide Large Pulse Tube Cooler (LPTC) are currently being implemented into a new high efficiency electronic architecture. The presented work concerns the new cold finger and electronic design. The cooler uses the compressor already developed for the 80K Miniature Pulse Tube Cryocooler. This Pulse Tube Cooler addresses the requirements of space missions where extended continuous operating life time (>5 years), low mass and low micro vibration levels are critical.

  3. CFD modeling of stripper ash cooler of circulating fluidized bed boiler

    Directory of Open Access Journals (Sweden)

    Ravi Inder Singh

    2016-09-01

    Full Text Available The stable operation of a bottom ash cooler is vital for the operation of the circulating fluidized bed boiler. To assess, the stability of the ash cooler, it is important to have a thorough understanding of the flow behaviour. Although, many experimental results been reported in literature, CFD modelling of the ash cooler has not been carried out. In this paper, the transient computational analysis of a novel stripper ash cooler has been carried out using the Eulerian–Eulerian multiphase approach. The phase coupled SIMPLE algorithm has been used to solve the multiphase equations and the Gidaspow drag model has been employed to model the interaction between the fluidized air and ash. Two cases have been analysed in this paper. In the first case, the filling of the ash in the cooler has been analysed and in the second case, the phenomenon of fluidized bed bubbling in the ash cooler has been simulated. The study the of flow characteristics of hot ash has been studied. The contours of temperature, phase volume and bubbling have been analyzed in this paper.

  4. Performance investigation of capillary tubes for machine tool coolers retrofitted with HFC-407C refrigerant

    Science.gov (United States)

    Wang, Fujen; Chang, Tongbou; Chiang, Weiming; Lee, Haochung

    2012-09-01

    The machine tool coolers are the best managers of coolant temperature in avoiding the deviation of spindle centerline for machine tools. However, the machine coolers are facing the compressed schedule to phase out the HCFC (hydro-chloro-floro-carbon) refrigerant and little attention has been paid to comparative study on sizing capillary tube for retrofitted HFC (hydro-floro-carbon) refrigerant. In this paper, the adiabatic flow in capillary tube is analyzed and modeled for retrofitting of HFC-407C refrigerant in a machine tool cooler system. A computer code including determining the length of sub-cooled flow region and the two phase region of capillary tube is developed. Comparative study of HCFC-22 and HFC-407C in a capillary tube is derived and conducted to simplify the traditional trial-and-error method of predicting the length of capillary tubes. Besides, experimental investigation is carried out by field tests to verify the simulation model and cooling performance of the machine tool cooler system. The results from the experiments reveal that the numerical model provides an effective approach to determine the performance data of capillary tube specific for retrofitting a HFC-407C machine tool cooler. The developed machine tool cooler system is not only directly compatible with new HFC-407C refrigerant, but can also perform a cost-effective temperature control specific for industrial machines.

  5. Performance improvement of double-tube gas cooler in CO2 refrigeration system using nanofluids

    Directory of Open Access Journals (Sweden)

    Sarkar Jahar

    2015-01-01

    Full Text Available The theoretical analyses of the double-tube gas cooler in transcritical carbon dioxide refrigeration cycle have been performed to study the performance improvement of gas cooler as well as CO2 cycle using Al2O3, TiO2, CuO and Cu nanofluids as coolants. Effects of various operating parameters (nanofluid inlet temperature and mass flow rate, CO2 pressure and particle volume fraction are studied as well. Use of nanofluid as coolant in double-tube gas cooler of CO2 cycle improves the gas cooler effectiveness, cooling capacity and COP without penalty of pumping power. The CO2 cycle yields best performance using Al2O3-H2O as a coolant in double-tube gas cooler followed by TiO2-H2O, CuO-H2O and Cu-H2O. The maximum cooling COP improvement of transcritical CO2 cycle for Al2O3-H2O is 25.4%, whereas that for TiO2-H2O is 23.8%, for CuO-H2O is 20.2% and for Cu-H2O is 16.2% for the given ranges of study. Study shows that the nanofluid may effectively use as coolant in double-tube gas cooler to improve the performance of transcritical CO2 refrigeration cycle.

  6. Effect of sinter layer porosity distribution on flow and temperature fields in a sinter cooler

    Institute of Scientific and Technical Information of China (English)

    Jik-chang Leong; Kai-wun Jin; Jia-shyan Shiau; Tzer-ming Jeng; Chang-hsien Tai

    2009-01-01

    When sinters are filled into the sinter cooler from the sintering machine, it is commonly seen that, due to segregation ef-fects, sinters of larger size usually accumulate closer to the inner wall of the sinter cooler, whereas those of smaller size are to the outer wall. This nonuniform distribution of sinters has led to uneven cooling effect throughout the cooler. This causes the sinters leaving the cooler at a large temperature difference. This undesired temperature difference leads to the deformation and even the de-struction of the conveyors. The computational fluid dynamics (CFD) technique was used in the present work to investigate the heat and fluid flow phenomena within the sinter cooler corresponding to the different distribution of sinter layer porosity, which was highly dependent on the arrangement and orientation of sinters within the sinter cooler. It is confirmed that a high mass flow rate within the sinter layer causes a low temperature region and vice versa. The flow fields for vertically reducing porosity distribution and random distribution are almost identical indicating the relative insignificance of convective heat transfer mechanism.

  7. Practical issues in adopting a traveling wave thermoacoustic cooler for use in a food storage refrigerator

    Science.gov (United States)

    Spoor, Philip S.

    2005-09-01

    CFIC/QDrive has developed a food storage refrigerator for the Army based on thermoacoustic technology. This ``Phase II'' SBIR project is a continuation of a ``Phase I'' effort that explored using a standing-wave thermoacoustic cooler for the refrigerator. The standing-wave cooler was found to be too inefficient with too low a power density to be practical, so it was switched to an acoustic Stirling, or traveling-wave thermoacoustic (regenerator based) cooler for Phase II. The major challenges of this project were adapting the Stirling-style cooler to a food storage application, and not the fundamentals of the cooler itself (the one exception being the issue of acoustic streaming). The challenges include: Running at 60 Hz (without frequency-shifting electronics), heat exchange without circulating fluids, dynamic balance, guarantee of long life, efficiency, and compactness (power density). How these challenges were met and how they drove the design, in most cases away from what would be ideal for the cycle itself, will be discussed. Time permitting, how the additional pressure of low unit cost would affect this type of product development will also be discussed. [Research supported by the U. S. Army through a Small Business Innovation Research (SBIR) grant.

  8. CFD analysis of turboprop engine oil cooler duct for best rate of climb condition

    Science.gov (United States)

    Kalia, Saurabh; CA, Vinay; Hegde, Suresh M.

    2016-09-01

    Turboprop engines are widely used in commuter category airplanes. Aircraft Design bureaus routinely conduct the flight tests to confirm the performance of the system. The lubrication system of the engine is designed to provide a constant supply of clean lubrication oil to the engine bearings, the reduction gears, the torque-meter, the propeller and the accessory gearbox. The oil lubricates, cools and also conducts foreign material to the oil filter where it is removed from further circulation. Thus a means of cooling the engine oil must be provided and a suitable oil cooler (OC) and ducting system was selected and designed for this purpose. In this context, it is relevant to study and analyse behaviour of the engine oil cooler system before commencing actual flight tests. In this paper, the performance of the oil cooler duct with twin flush NACA inlet housed inside the nacelle has been studied for aircraft best rate of climb (ROC) condition using RANS based SST K-omega model by commercial software ANSYS Fluent 13.0. From the CFD analysis results, it is found that the mass flow rate captured and pressure drop across the oil cooler for the best ROC condition is meeting the oil cooler manufacturer requirements thus, the engine oil temperature is maintained within prescribed limits.

  9. Thermal design of two-stage evaporative cooler based on thermal comfort criterion

    Science.gov (United States)

    Gilani, Neda; Poshtiri, Amin Haghighi

    2017-04-01

    Performance of two-stage evaporative coolers at various outdoor air conditions was numerically studied, and its geometric and physical characteristics were obtained based on thermal comfort criteria. For this purpose, a mathematical model was developed based on conservation equations of mass, momentum and energy to determine heat and mass transfer characteristics of the system. The results showed that two-stage indirect/direct cooler can provide the thermal comfort condition when outdoor air temperature and relative humidity are located in the range of 34-54 °C and 10-60 %, respectively. Moreover, as relative humidity of the ambient air rises, two-stage evaporative cooler with the smaller direct and larger indirect cooler will be needed. In building with high cooling demand, thermal comfort may be achieved at a greater air change per hour number, and thus an expensive two-stage evaporative cooler with a higher electricity consumption would be required. Finally, a design guideline was proposed to determine the size of required plate heat exchangers at various operating conditions.

  10. Reliability improvements on Thales RM2 rotary Stirling coolers: analysis and methodology

    Science.gov (United States)

    Cauquil, J. M.; Seguineau, C.; Martin, J.-Y.; Benschop, T.

    2016-05-01

    The cooled IR detectors are used in a wide range of applications. Most of the time, the cryocoolers are one of the components dimensioning the lifetime of the system. The cooler reliability is thus one of its most important parameters. This parameter has to increase to answer market needs. To do this, the data for identifying the weakest element determining cooler reliability has to be collected. Yet, data collection based on field are hardly usable due to lack of informations. A method for identifying the improvement in reliability has then to be set up which can be used even without field return. This paper will describe the method followed by Thales Cryogénie SAS to reach such a result. First, a database was built from extensive expertizes of RM2 failures occurring in accelerate ageing. Failure modes have then been identified and corrective actions achieved. Besides this, a hierarchical organization of the functions of the cooler has been done with regard to the potential increase of its efficiency. Specific changes have been introduced on the functions most likely to impact efficiency. The link between efficiency and reliability will be described in this paper. The work on the two axes - weak spots for cooler reliability and efficiency - permitted us to increase in a drastic way the MTTF of the RM2 cooler. Huge improvements in RM2 reliability are actually proven by both field return and reliability monitoring. These figures will be discussed in the paper.

  11. Thermal design of two-stage evaporative cooler based on thermal comfort criterion

    Science.gov (United States)

    Gilani, Neda; Poshtiri, Amin Haghighi

    2016-09-01

    Performance of two-stage evaporative coolers at various outdoor air conditions was numerically studied, and its geometric and physical characteristics were obtained based on thermal comfort criteria. For this purpose, a mathematical model was developed based on conservation equations of mass, momentum and energy to determine heat and mass transfer characteristics of the system. The results showed that two-stage indirect/direct cooler can provide the thermal comfort condition when outdoor air temperature and relative humidity are located in the range of 34-54 °C and 10-60 %, respectively. Moreover, as relative humidity of the ambient air rises, two-stage evaporative cooler with the smaller direct and larger indirect cooler will be needed. In building with high cooling demand, thermal comfort may be achieved at a greater air change per hour number, and thus an expensive two-stage evaporative cooler with a higher electricity consumption would be required. Finally, a design guideline was proposed to determine the size of required plate heat exchangers at various operating conditions.

  12. NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wong, W.A.; Cairelli, J.E.; Swec, D.M.; Doeberling, T.J.; Lakatos, T.F. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Madi, F.J. [Sverdrup Technology, Inc., Cleveland, OH (United States). Lewis Research Center Group

    1994-09-01

    Free-piston Stirling power converters are a candidate for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. This paper describes experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.

  13. NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes

    Science.gov (United States)

    Wong, Wayne A.; Cairelli, James E.; Swec, Diane M.; Doeberling, Thomas J.; Lakatos, Thomas F.; Madi, Frank J.

    1992-08-01

    Free-piston Stirling power converters are candidates for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve the converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. Experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics are described. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.

  14. Performance Analysis of Joule-Thomson Cooler Supplied with Gas Mixtures

    Science.gov (United States)

    Piotrowska, A.; Chorowski, M.; Dorosz, P.

    2017-02-01

    Joule-Thomson (J-T) cryo-coolers working in closed cycles and supplied with gas mixtures are the subject of intensive research in different laboratories. The replacement of pure nitrogen by nitrogen-hydrocarbon mixtures allows to improve both thermodynamic parameters and economy of the refrigerators. It is possible to avoid high pressures in the heat exchanger and to use standard refrigeration compressor instead of gas bottles or high-pressure oil free compressor. Closed cycle and mixture filled Joule-Thomson cryogenic refrigerator providing 10-20 W of cooling power at temperature range 90-100 K has been designed and manufactured. Thermodynamic analysis including the optimization of the cryo-cooler mixture has been performed with ASPEN HYSYS software. The paper describes the design of the cryo-cooler and provides thermodynamic analysis of the system. The test results are presented and discussed.

  15. Study of thermal-flow processes in ash cooler cooperating with CFB boiler

    Directory of Open Access Journals (Sweden)

    Paweł Regucki

    2016-03-01

    Full Text Available The article presents an example of thermal-flow analysis of the bottom ash cooler cooperating with the circulating fluidized bed boiler. There is presented a mathematical model of series-parallel hydraulic system supplying the ash cooler in cooling water. The numerical calculations indicate an influence of changes of the pipeline geometrical parameters on the cooling water flow rate in the system. Paper discusses the methodology of the studies and presents examples of the results of thermal balance calculations based on the results of measurements. The numerical results of the thermal-flow analysis in comparison with the measurements on the object indicate that the presented approach could be used as a diagnostic tool investigating the technical state of the bottom ash cooler.

  16. Influence of the outlet air temperature on the thermohydraulic behaviour of air coolers

    Directory of Open Access Journals (Sweden)

    Đorđević Emila M.

    2003-01-01

    Full Text Available The determination of the optimal process conditions for the operation of air coolers demands a detailed analysis of their thermohydraulic behaviour on the one hand, and the estimation of the operating costs, on the other. One of the main parameters of the thermohydraulic behaviour of this type of equipment, is the outlet air temperature. The influence of the outlet air temperature on the performance of air coolers (heat transfer coefficient overall heat transfer coefficient, required surface area for heat transfer air-side pressure drop, fan power consumption and sound pressure level was investigated in this study. All the computations, using AirCooler software [1], were applied to cooling of the process fluid and the condensation of a multicomponent vapour mixture on two industrial devices of known geometries.

  17. Numerical simulation and optimization design of the EGR cooler in vehicle

    Institute of Scientific and Technical Information of China (English)

    Yu-qi HUANG; Xiao-li Yu; Guo-dong Lu

    2008-01-01

    The EGR(exhaust gas reeirculation)technique can greatly reduce the Nox emission of diesel engines,especially when an EGR cooler iS employed.Numerical simulations are applied to study the flow field and tempemture distributions inside the EGR cooler.Three different models of EGR cooler are investigated,among which model A is a traditional one,and models B and C are improved by adding a helical bafile in the cooling area.In models B and C the elltry directions of cooling water are different,which mostly influences the flow resistance.The results show that the improved structures not only lengthen the flow path of the cooling water,but also enhante the heat exchange rate between the cool and hot media.In conclusion we suggest that the improved Structures are more powerful than the traditional one.

  18. Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kariya, Harumichi Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leick, Michael T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zimmerman, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Li, Manjie [Univ. of Maryland, College Park, MD (United States); Du, Yilin [Univ. of Maryland, College Park, MD (United States); Lee, Hoseong [Univ. of Maryland, College Park, MD (United States); Hwang, Yunho [Univ. of Maryland, College Park, MD (United States); Radermacher, Reinhard [Univ. of Maryland, College Park, MD (United States)

    2015-07-01

    This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air - bearing supported rotating heat - sink impeller. The project included ba seline performance testing of a residential refrigerator, analysis and design development of a Sandia Cooler condenser assembly including a spiral channel baseplate, and performance measurement and validation of this condenser system as incorporated into the residential refrigerator. Comparable performance was achieved in a 60% smaller volume package. The improved modeling parameters can now be used to guide more optimized designs and more accurately predict performance.

  19. A thermoacoustically driven cooler capable of reaching temperature below 77 K with no moving part

    Institute of Scientific and Technical Information of China (English)

    DAI Wei; LUO Ercang; LING Hong; HU Jianying

    2005-01-01

    @@ The pulse tube cooler has no cryogenic displacer and has attracted lots of attention in the field of cryocooler research. On the other hand, the thermoacoustic engine can generate self-oscillation and output work without moving components[1]. Combining both technologies leads to a cryogenic cooler system with no moving components at all, which has great advantages of high reliability, low manufacturing cost, etc. Limited by largest available pressure ratio of thermoacoustic engines, up to now the best results on such a combined system are 88.6K when standing-wave thermoacoustic engine[2] is used and 80.9K when traveling-wave thermoacoustic engine[3] is used.

  20. Experimental investigation of the influences of shape and surface area on the EGR cooler efficiency

    Science.gov (United States)

    Jang, Sanghoon; Park, Sangki; Choi, Kapseung; Kim, Hyungman

    2011-06-01

    The cooled EGR system is one of the most effective techniques currently available for reducing NOx emissions. In this study, engine dynamometer experiments were performed to investigate the efficiencies of the shell and tube-type and stack-type EGR coolers. The results show that the heat exchange of the stack-type EGR cooler is much more effective than that of the shell and tube type because of the increased surface area and better mixing of the coolant flow, and also more PM is produced at low exhaust gas temperature than at high temperature.

  1. Optimization of the working fluid for a sorption-based Joule-Thomson cooler

    NARCIS (Netherlands)

    Wu, Y.; Zalewski, D.R.; Vermeer, C.H.; Brake, ter H.J.M.

    2013-01-01

    Sorption-based Joule–Thomson coolers operate vibration-free, have a potentially long life time, and cause no electromagnetic interference. Therefore, they are appealing to a wide variety of applications, such as cooling of low-noise amplifiers, superconducting electronics, and optical detectors. The

  2. Topology optimisation of passive coolers for light-emitting diode lamps

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    2015-01-01

    This work applies topology optimisation to the design of passive coolers for light-emitting diode (LED) lamps. The heat sinks are cooled by the natural convection currents arising from the temperature difference between the LED lamp and the surrounding air. A large scale parallel computational...

  3. Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas; Zimmerman, Mark D.; Radermacher, Reinhard; Martin, Cara; Nasuta, Dennis; Kalinowski, Paul; Hoffman, William

    2014-12-01

    This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

  4. A separate two-stage pulse tube cooler working at liquid helium temperature

    Institute of Scientific and Technical Information of China (English)

    QIU Limin; HE Yonglin; GAN Zhihua; WAN Laihong; CHEN Guobang

    2005-01-01

    A novel 4 K separate two-stage pulse tube cooler (PTC) was designed and tested. The cooler consists of two separate pulse tube coolers, in which the cold end of the first stage regenerator is thermally connected with the middle part of the second regenerator. Compared to the traditional coupled multi-stage pulse tube cooler, the mutual interference between stages can be significantly eliminated. The lowest refrigeration temperature obtained at the first stage pulse tube was 13.8 K. This is a new record for single stage PTC. With two compressors and two rotary valves driving mode, the separate two-stage PTC obtained a refrigeration temperature of 2.5 K at the second stage. Cooling capacities of 508 mW at 4.2 K and 15 W at 37.5 K were achieved simultaneously. A one-compressor and one-rotary valve driving mode has been proposed to further simplify the structure of separate type PTC.

  5. AUTOMATIC CONTROL SYSTEM OF HEAT PUMP STATION GAS COOLER AT THE WIDE RANGE OF HEAT LOAD

    Directory of Open Access Journals (Sweden)

    Juravleov A.A.

    2008-08-01

    Full Text Available There is examined the structure the of control system of gas cooler of heat pump station, which uses the carbon dioxide as the working fluid in the transctitical thermodynamical cycle. It is analiyed the structure of the complex: heat pump station – district heating system.

  6. Long-life micro vacuum chamber for a micromachined cryogenic cooler

    NARCIS (Netherlands)

    Cao, H.; Vermeer, C.H.; Vanapalli, S.; Holland, H.J.; Brake, ter H.J.M.

    2015-01-01

    Micromachined cryogenic coolers can be used for cooling small electronic devices to improve their performance. However, for reaching cryogenic temperatures, they require a very good thermal insulation from the warm environment. This is established by a vacuum space that for adequate insulation has t

  7. Condensation-Fouling Interaction in Low-Temperature EGR-Coolers

    Directory of Open Access Journals (Sweden)

    Reißig Martin

    2014-01-01

    Full Text Available EGR cooling is a worthwhile technology capable of reducing NOx-emissions and increasing the efficiency of CI engines. Challenges arise when low-temperature cooling is applied with high fuel sulfur contents. The resulting sulfuric acid condenses in conjunction with the water of the exhaust gas and gives rise to corrosion of coolers and engine components. Additionally, fouling of the EGR cooler is exacerbated by the condensation of acidic components compromising EGR performance. In order to gain a better understanding of the underlying processes a combined experimental and model-based approach is presented. Tests of two different EGR-cooler concepts under various conditions showed a strong influence of the fuel sulfur content on fouling and condensation. The one-dimensional cooler model developed alongside these experiments consists of an activity coefficient model (NRTL of the binary system water - sulfuric acid and a condensation model that allows for simulating the coupled condensation of both vapor components. Comparison of experimental fouling and simulated condensation results show good agreement in interpreting critical fouling phenomena that occur at temperatures in between the acid-water dew point and the dew point of pure water.

  8. Improved Performance of an Indigenous Stirling Type Pulse Tube Cooler and Pressure Wave Generator

    Science.gov (United States)

    Kumar, J. Kranthi; Jacob, S.; Karunanithi, R.; Narasimham, G. S. V. L.; Damu, C.; Praveen, T.; Samir, M.

    Sustained efforts have been made in our laboratory to improve the performance of an indigenously developed pressure wave gen- erator by reducing the mechanical losses and the required input power. An acoustically matching pulse tube cooler, with a design target of 0.5 W at 80 K, was designed using Sage and experience gained from previous studies. The pulse tube cooler was fabri- cated and tested. The effect of regenerator stacking pattern on the cooler performance was studied by filling the regenerator with mesh of the same size #400 and with multi meshes #250, 325, 400. In present experiments, regenerator with #400 mesh at 30 bar filling pressure performed better with more energy efficiency. A no load temperature of 74 K was achieved with input power of 59 W corresponding to a cooling power of 0.22 W at 80 K. Parasitic heat load to the cooler was measured be 0.68 W. This heat load is primarily by heat conduction through the regenerator and pulse tube wall. By reducing the wall thickness from 0.30 mm to 0.15 mm, the parasitic loads can be reduced by 50%.

  9. Bacteriological Quality of Water Cooler Dispensers of Educational Settings in Zanjan University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Hassan Hassanzadazar

    2017-03-01

    Full Text Available Background: Safe drinking water is one of the main factors in improving health status of the population. The aim of this study was assessment of the microbiological quality, determination of pH and residual chlorine in water coolers’ drinking water in educational centers of Zanjan University of medical Sciences in 2015 and comparing the results with the Iranian national standards. Methods: In this cross-sectional study, water samples of all used water cooler apparatuses were sampled and transferred rapidly to the laboratory. pH and residual free chlorine were measured by pH meter and Chlorine Residual Testing kit, respectively. Total coliforms, Escherichia coli, Mold and yeasts count were enumerated according to the Iranian national standards No. 1011, 3759, 5271 and 10899-1, respectively. Data were analyzed through the statistical soft wares. Results: The obtained results indicated that 44.44% of the samples were non-standard because of low residual chlorine. 44.44% and 27.8% of the taken water samples of water cooler dispensers were contaminated with mold or yeast and Escherichia coli, respectively. Conclusion: According to some microbial contamination in water samples of water cooler devices to ensure availability clean water to consumers (students and hospital’s visitors continuous monitoring, proper maintenance and regular inspection of the water cooler dispensers seems necessary.

  10. Air cooler ducts. A simple kind of air conditioner; Luftkuehlschaechte. Eine einfache Teilklimaanlage

    Energy Technology Data Exchange (ETDEWEB)

    Glueck, B. [F und E TGA, Joessnitz (Germany); Westsaechsische Hochschule Zwickau (F.H.) (Germany)

    2005-07-01

    Air cooler duct cabinets are used increasingly for cooling and demoisturizing of room air and fresh air, sometimes also as auxiliary heating systems. They are more complex than conventional and have specific characteristics concerning construction, dimensioning, optimisation and control. A newly developed computer program enables pre-assessment of specific operational situations. (orig.)

  11. 50 mK cooling solution with an ADR precooled by a sorption cooler

    Science.gov (United States)

    Luchier, N.; Duval, J. M.; Duband, L.; Camus, P.; Donnier-Valentin, G.; Linder, M.

    2010-09-01

    CEA/SBT is currently developing a 2.5 K-50 mK cooling solution composed of a small demagnetization refrigerator (ADR) precooled by a sorption cooler, equivalent to the high temperature stage of a two-stage ADR system. Thanks to the use of this dual technology, a low weight cooler able to reach 50 mK with a heat sink up to 2.5 K can be designed. Because the sorption cooler is probably the lightest solution to produce sub-Kelvin temperatures, these developments allow us to propose a solution to face the drastic reduction in the mass budget of space missions like SPICA or IXO. The European Space Agency (ESA) is funding the development of an engineering model able to produce 1 μW net heat lift at 50 mK. It is sized so that the sorption cooler provides an additional 10 μW at 300 mK. The ESA main requirements are an autonomy of more than 24 h and a recycling time smaller than 8 h. We present the design of the system able to meet these requirements as well as the expected performances and preliminary measurements.

  12. 76 FR 31795 - Energy Conservation Program: Energy Conservation Standards for Walk-In Coolers and Freezers...

    Science.gov (United States)

    2011-06-02

    ... Part 431 RIN 1904-AB85 Energy Conservation Program: Energy Conservation Standards for Walk-In Coolers... . SUPPLEMENTARY INFORMATION: I. Background The Energy Policy and Conservation Act (EPCA), as amended by section... Subjects in 10 CFR Part 431 Administrative practice and procedure, Energy conservation, Reporting...

  13. Long-life micro vacuum chamber for a micromachined cryogenic cooler

    NARCIS (Netherlands)

    Cao, Haishan; Vermeer, Cristian Hendrik; Vanapalli, Srinivas; Holland, Herman J.; ter Brake, Hermanus J.M.

    2015-01-01

    Micromachined cryogenic coolers can be used for cooling small electronic devices to improve their performance. However, for reaching cryogenic temperatures, they require a very good thermal insulation from the warm environment. This is established by a vacuum space that for adequate insulation has

  14. Low specimen drift holder, cooler and heat flow reductor for use in microscopy

    NARCIS (Netherlands)

    Zandbergen, H.W.

    2015-01-01

    The present invention is in the field of a low specimen drift holder and cooler for use in microscopy, and a microscope comprising said holder. The present invention is in the field of microscopy, specifically in the field of electron and focused ion beam mi- croscopy (EM and FIB). However it applic

  15. Split Stirling linear cryogenic cooler for a new generation of high temperature infrared imagers

    Science.gov (United States)

    Veprik, A.; Zechtzer, S.; Pundak, N.

    2010-04-01

    Split linear cryocoolers find use in a variety of infrared equipment installed in airborne, heliborne, marine and vehicular platforms along with hand held and ground fixed applications. An upcoming generation of portable, high-definition night vision imagers will rely on the high-temperature infrared detectors, operating at elevated temperatures, ranging from 95K to 200K, while being able to show the performance indices comparable with these of their traditional 77K competitors. Recent technological advances in industrial development of such high-temperature detectors initialized attempts for developing compact split Stirling linear cryogenic coolers. Their known advantages, as compared to the rotary integral coolers, are superior flexibility in the system packaging, constant and relatively high driving frequency, lower wideband vibration export, unsurpassed reliability and aural stealth. Unfortunately, such off-the-shelf available linear cryogenic coolers still cannot compete with rotary integral rivals in terms of size, weight and power consumption. Ricor developed the smallest in the range, 1W@95K, linear split Stirling cryogenic cooler for demanding infrared applications, where power consumption, compactness, vibration, aural noise and ownership costs are of concern.

  16. Mechanical cooler system for the next-generation infrared space telescope SPICA

    Science.gov (United States)

    Shinozaki, Keisuke; Ogawa, Hiroyuki; Nakagawa, Takao; Sato, Yoichi; Sugita, Hiroyuki; Yamawaki, Toshihiko; Mizutani, Tadahito; Matsuhara, Hideo; Kawada, Mitsunobu; Okabayashi, Akinobu; Tsunematsu, Shoji; Narasaki, Katsuhiro; Shibai, Hiroshi

    2016-07-01

    The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) is a pre-project of JAXA in collaboration with ESA to be launched in the 2020s. The SPICA mission is to be launched into a halo orbit around the second Lagrangian point in the Sun-Earth system, which allows us to use effective radiant cooling in combination with a mechanical cooling system in order to cool a 2.5m-class large IR telescope below 8K. Recently, a new system design in particular thermal structure of the payload module has been studied by considering the technical feasibility of a cryogenic cooled telescope within current constraints of the mission in the CDF (Concurrent Design Facility) study of ESA/ESTEC. Then, the thermal design of the mechanical cooler system, for which the Japanese side is responsible, has been examined based on the CDF study and the feasible solution giving a proper margin has been obtained. As a baseline, 4K / 1K-class Joule-Thomson coolers are used to cool the telescope and thermal interface for Focal Plane Instruments (FPIs). Additionally, two sets of double stirling coolers (2STs) are used to cool the Telescope shield. In this design, nominal operation of FPIs can be kept when one mechanical cooler is in failure.

  17. The "ICE" study: feasibility of inexpensive commercial coolers on mobile EMS units.

    Science.gov (United States)

    Kane, Kathleen E; Tomsho, Robert J; Pheasant, Karen; Stauffer, Thomas; Schoenfeldt, Brent; Hamilton, Scott; Kain, Travis; Kane, Bryan G

    2014-06-01

    Prehospital postresuscitation induced hypothermia (IH) has been shown to reduce neurological complications in comatose cardiac-arrest survivors. Retrofitting ambulances to include equipment appropriate to initiate hypothermia, such as refrigeration units for cooled saline, is expensive. The objective of this nonhuman subject research study was to determine if inexpensive, commercially available coolers could, in conjunction with five reusable ice packs, keep two 1 L bags of precooled 0.9% normal saline solution (NSS) at or below 4°C for an average shift of eight to 12 hours in a real-world environment, on board in-service Emergency Medical Service (EMS) units, over varying weather conditions in all seasons. The coolers were chosen based on availability and affordability from two nationally available brands: The Igloo MaxxCold (Igloo Products Corp., Katy, Texas USA) and Coleman (The Coleman Company, Wichita, Kansas USA). Both are 8.5 liter (nine-quart) coolers that were chosen because they adequately held two 1 L bags of saline solution, along with the reusable ice packs designated in the study design, and were small enough for ease of placement on ambulances. Initial testing of the coolers was conducted in a controlled environment. Thereafter, each EMS unit was responsible to cool the saline to less than 4°C prior to shift. Data were collected by emergency medical technicians, paramedics, and resident physicians working in seven different ambulance squads. Data analysis was performed using repeated measurements recorded over a 12-hour period from 19 individual coolers and were summarized by individual time points using descriptive statistics. Initial testing determined that the coolers maintained temperatures of 4°C for 12 hours in a controlled environment. On the ambulances, results based on the repeated measurements over time revealed that the saline solution samples as defined in the protocol, remained consistently below 4°C for 12 hours. Utilizing the lower

  18. Low vibration microminiature split Stirling cryogenic cooler for infrared aerospace applications

    Science.gov (United States)

    Veprik, A.; Zechtzer, S.; Pundak, N.; Kirkconnel, C.; Freeman, J.; Riabzev, S.

    2011-06-01

    The operation of the thermo-mechanical unit of a cryogenic cooler may originate a resonant excitation of the spacecraft frame, optical bench or components of the optical train. This may result in degraded functionality of the inherently vibration sensitive space-borne infrared imager directly associated with the cooler or neighboring instrumentation typically requiring a quiet micro-g environment. The best practice for controlling cooler induced vibration relies on the principle of active momentum cancellation. In particular, the pressure wave generator typically contains two oppositely actuated piston compressors, while the single piston expander is counterbalanced by an auxiliary active counter-balancer. Active vibration cancellation is supervised by a dedicated DSP feed-forward controller, where the error signals are delivered by the vibration sensors (accelerometers or load cells). This can result in oversized, overweight and overpriced cryogenic coolers with degraded electromechanical performance and impaired reliability. The authors are advocating a reliable, compact, cost and power saving approach capitalizing on the combined application of a passive tuned dynamic absorber and a low frequency vibration isolator. This concept appears to be especially suitable for low budget missions involving mini and micro satellites, where price, size, weight and power consumption are of concern. The authors reveal the results of theoretical study and experimentation on the attainable performance using a fullscale technology demonstrator relying on a Ricor model K527 tactical split Stirling cryogenic cooler. The theoretical predictions are in fair agreement with the experimental data. From experimentation, the residual vibration export is quite suitable for demanding wide range of aerospace applications. The authors give practical recommendations on heatsinking and further maximizing performance.

  19. Cooler Rings and their Applications - Proceedings of the 19th Ins Symposium

    Science.gov (United States)

    Katayama, T.; Noda, A.

    1991-08-01

    The Table of Contents for the full book PDF is as follows: * Organizing Committee * Preface * Opening Address * I. STATUS REPORT * I-1 The IUCF Cooler after Three Years * I-2 The Heidelberg Heavy Ion Cooler Ring TSR * I-3 Storage and Cooling of Heavy Ions in the ESR up to 200 MeV/u * I-4 Present Status of CELSIUS * I-5 Cooler Synchrotron TARN II, Present and Future * I-6 SATURNE II and MIMAS Status Report * I-7 CRYRING - a Low Energy Heavy Ion Facility * I-8 The Ukrainian (INR, Kiev's) Storage Ring * I-9 Status of the COSY-Jülich Project * II. BEAM COOLING * II-1 In Memory of Dr. Helmut Poth * II-2 Performance of the IUCF Electron Cooling System * II-3 Electron Cooling at TARN II * II-4 Status of the ESR-Electron Cooler and First Results * II-5 Physics with Stored Lithium Ions: Intrabeam Relaxation, Laser Cooling, and Observation of a Cold and Long Lived Ion Beam * II-6 Laser Cooling and Beam Crystallization * II-7 Cyclotron Maser Cooling of Electron and Ion Beams * III. ION TRAP * III-1 Penning Trap Experiments at the University of Washington and at NIST in Boulder * III-2 The HITRAP Project at GSI * III-3 Electron Cooling of Trapped Antiprotons * III-4 Some Results of an RF Ion Trap at NRLM * III-5 Preliminary Results of Laser Cooling of Stored Be Ions in a Penning Trap * III-6 Construction of an RF Ion-Trap for Nuclear Laser Spectroscopy * IV. NUCLEAR AND PARTICLE PHYSICS * IV-1 High-Resolution Spectroscopy of Deeply-Bound Pionic Atoms in Heavy Nuclei by Pion-Transfer Reactions of Inverse Kinematics Using the GSI Cooler Ring ESR * IV-2 Study of Exotic Nuclei Using a Storage Ring * IV-3 Nuclear Physics with the Indiana Cooler * IV-4 The Anomalous Magnetic Moment of the Muon * IV-5 Particle Physics at CELSIUS * IV-6 ϕ0-Factory using TARN II Accelerator * IV-7 Measurement of Energy Dependent Phenomena with Intenal (Polarized) Targets in TARN II * V. ACCELERATOR * V-1 Advanced Stacking Methods Using Electron Cooling at the TSR Heidelberg * V-2 Ultra High Vacuum

  20. Influence of using plural household air coolers on the air cooling demand. Actual state survey of air coolers in use. Kateiyo eakon no fukusu hoyuka ga reibo juyo ni oyobosu eikyo. Eakon shiyo jittai chosa kara

    Energy Technology Data Exchange (ETDEWEB)

    Higashida, R. (The Institute of Energy Economics, Tokyo (Japan))

    1994-07-01

    The present rise in power peak is judged mainly attributable to the increase in household and business use energy demand particularly for air cooling. In the present investigation, the actual state of air coolers domestically used was surveyed in the afternoon (from 1200 to 1600 hours) during the last ten days of August, which survey was followed by a study of relation between the number of air coolers domestically installed and used, and their operational state. Explanation is made of the present status of household air cooling demand, questionnaire survey and sampling, actual state analysis of air coolers in use, and the trend of household air cooling demand. As a result of the survey, about 10% of the homes use simultaneously plural units of air cooler in the afternoon, while about 50% do only one unit. With an increase in number of air coolers installed, their operation rate rises. It is concluded that the room-by-room trend and potentiality of air coolers will depend upon the operation rate of household air coolers. In the long tern outlook, it is indispensable to uninterruptedly watch the future change in power peak due to that in life style such as the family composition and home structure in the society with ages advanced. 18 figs., 9 tabs.

  1. Thermal Assessment of Landsat-7 ETM+ Radiative Cooler in Instrument and Spacecraft Thermal Vacuum Tests and in Flight

    Science.gov (United States)

    Choi, Michael K.

    1999-01-01

    During the radiative cooler cool-down phase of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument thermal vacuum test #3, the coldest temperature that the Cold Focal Plane Array (CFPA) achieved was 89.5 K. The cold stage/CFPA temperature decreased from 315 K to 89.5 K in 80 hours. In the spacecraft and instrument integrated thermal vacuum test, the cold stage/CFPA temperature decreased from 315 K to 86.9 K in 80 hours, and was still decreasing at a rate of 0.08 K/hr when the cool-down was terminated. The cool-down was faster, and a colder CFPA temperature was obtained. In flight, the cooler cool- down was even faster, and colder. The cold stage/CFPA temperature decreased from 315 K to 89.7 K in 33 hours, and was still decreasing at a rate of 1 K/hr when cool- down was terminated at 89.7 K. The factors that affected the ETM+ cooler cool-down are the radiation heat sink temperature for the cold stage and intermediate stage, parasitic radiation heat load to the cooler, parasitic conduction heat load to the cooler, and cooler outgas time preceding cooler cool-down.

  2. Thermal Assessment of Landsat-7 ETM+ Radiative Cooler in Instrument and Spacecraft Thermal Vacuum Tests and in Flight

    Science.gov (United States)

    Choi, Michael K.

    1999-01-01

    During the radiative cooler cool-down phase of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument thermal vacuum test #3, the coldest temperature that the Cold Focal Plane Array (CFPA) achieved was 89.5 K. The cold stage/CFPA temperature decreased from 315 K to 89.5 K in 80 hours. In the spacecraft and instrument integrated thermal vacuum test, the cold stage/CFPA temperature decreased from 315 K to 86.9 K in 80 hours, and was still decreasing at a rate of 0.08 K/hr when the cool-down was terminated. The cool-down was faster, and a colder CFPA temperature was obtained. In flight, the cooler cool- down was even faster, and colder. The cold stage/CFPA temperature decreased from 315 K to 89.7 K in 33 hours, and was still decreasing at a rate of 1 K/hr when cool- down was terminated at 89.7 K. The factors that affected the ETM+ cooler cool-down are the radiation heat sink temperature for the cold stage and intermediate stage, parasitic radiation heat load to the cooler, parasitic conduction heat load to the cooler, and cooler outgas time preceding cooler cool-down.

  3. 蛇管与夹套冷却CSTR温度双重控制%Temperature dual control of CSTR with coil cooler and jacket cooler

    Institute of Scientific and Technical Information of China (English)

    王再英; 王正宇

    2012-01-01

    The CSTR is important chemical industrys. The temperature dual temperature control system solution is proposed for CSTR with coil cooling and jacket cooling after researching the insufficiency the single loop control using only one manipulating variable and to be incapable satisfy the dynamic and static performance simultaneity. Under the dual control system, the coil cooler eliminates quickly the error and the temperature returns to set value as soon as the CSTR temperature error appear, then the coil cooler load variety for the CSTR cooling is replaced gradually by the more efficient jacket cooler, namely, CSTR temperature is controlled by the manipulating variable possessing finer dynamic property (coil cooler) in dynamic process, transition shorter and dynamic error smaller; and in the stable process, the main cooling load in the CSTR is shouldered by the jacket cooler, more cooling efficient and lower consumption of cooling water. The dual control solution takes advantage of coil cooling and jacket cooling respectively, so that both dynamic and static characteristic of the CSTR temperature control get more ideal. Finally, the advantage of the CSTR temperature dual control is verified for control precision and dynamic response, and energy-saving and consumption reducing by the semi-physical simulation. The dual control systems solution can also be applied to other production equipment or system with the similar structure features.%连续搅拌釜式化学反应器(CSTR)是重要的化工设备.对蛇管与夹套双冷却CSTR单回路温度控制方案只利用一种操纵变量,无法兼顾动态性能与静态性能的不足进行了深入分析后,提出了CSTR温度双重控制系统方案.通过双重系统的协调控制,在温度出现偏差时由蛇管冷却器快速消除温度偏差,使温度迅速返回设定值;然后由冷却效率高的夹套冷却器逐步取代蛇管冷却器所承担的冷却负荷变化——即在动态过程,由动态性

  4. Numerical analysis of thermal effects in semiconductor disk laser with TEC cooler

    Science.gov (United States)

    Zhu, Renjiang; Zhang, Peng; Jiang, Maohua

    2016-11-01

    Based on generalized heat transfer model of thermoelectric cooler(TEC), the heat management model of semiconductor disk laser with TEC cooler has been built. With finite element method, this article has calculated the temperature distribution characteristics, and studied the effects of TEC current, heat exchange coefficient, the heatsink and the pump laser for the maximum temperature of quantum wells. Calculations show that the heat transfer coefficient significantly affects the ability of the TEC temperature shift, cooling system performance which is nearly inversely proportional to the heatsink thermal conductivity is not sensitive to its the thickness variation, and the performance of oxygen-free copper with optimization of the area is close to diamond. Meanwhile the maximum temperature of the quantum well has a linear relationship with the pump power, and increasing the pump spot size is an effective way to increase the optical power output

  5. Pulse tube cooler having 1/4 wavelength resonator tube instead of reservoir

    Science.gov (United States)

    Gedeon, David R. (Inventor)

    2008-01-01

    An improved pulse tube cooler having a resonator tube connected in place of a compliance volume or reservoir. The resonator tube has a length substantially equal to an integer multiple of 1/4 wavelength of an acoustic wave in the working gas within the resonator tube at its operating frequency, temperature and pressure. Preferably, the resonator tube is formed integrally with the inertance tube as a single, integral tube with a length approximately 1/2 of that wavelength. Also preferably, the integral tube is spaced outwardly from and coiled around the connection of the regenerator to the pulse tube at a cold region of the cooler and the turns of the coil are thermally bonded together to improve heat conduction through the coil.

  6. RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes

    Science.gov (United States)

    Barquest, B. R.; Bollen, G.; Mantica, P. F.; Minamisono, K.; Ringle, R.; Schwarz, S.; Sumithrarachchi, C. S.

    2017-09-01

    A radiofrequency quadrupole (RFQ) ion beam cooler and buncher has been developed to deliver bunched beams with low transverse emittance, energy spread, and time spread to the BECOLA collinear laser spectroscopy system at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The beam cooler and buncher contains new features which enhance performance, especially for high count rate beams, as well as simplifying construction, maintenance, and operation. The transverse emittance, energy spread, and time spread of the bunched beam, as well as buncher efficiency are reported, showcasing the capabilities of the BECOLA facility to perform collinear laser spectroscopy measurements with bunched rare isotope beams at NSCL and at the future Facility for Rare Isotope Beams (FRIB).

  7. Parametric System Identification of Thermoelectric Cooler for Single Photon Avalanche Diode Application

    Directory of Open Access Journals (Sweden)

    Nurul Izzati Samsuddin

    2013-06-01

    Full Text Available The purpose of this study is to model the Thermoelectric Coolers (TEC by means of computational intelligence system identification. Thermoelectric coolers are widely used in cooling, maintaining and stabilizing the temperature of the Single Photon Avalanche Diode (SPAD. SPAD is a temperature sensitive optoelectronic device, where even a slight variation in temperature can cause unstable performance in quantum efficiency, responsibility and dark counts. However, it is not a simple task to derive a mathematical model for TEC since it varies with the operating condition. In this study, Particle Swarm Optimization (PSO was used to identify the mathematical model of the multistage TEC (1639733 from Element 14, which encapsulates dynamics of the SPAD, heat sink and components of the cooling heat exchanger. The model was validated by correlation tests, percentage accuracy and also by comparing its time and frequency responses against that of the TEC. It was found that the obtained model has a good representation of the actual system.

  8. Heat Transfer Research of Gas-solid-liquid Three Phase Coupling of EGR Cooler

    Directory of Open Access Journals (Sweden)

    Fu-Wu Yan

    2014-05-01

    Full Text Available The main aim of the study is to get the temperature and backpressure of a car engine exhaust gas which goes through the EGR-cooler. So the internal fluid flow and heat transfer process of the EGR cooler must be studied more clearly, numerical simulations are applied. Based on the strong coupling method, gas-solid-liquid three phases coupling model of the typical heat transfer unit is established. According to the coupling result, the heat flux of the tube’s outside surface is gained and then mapped to the inner surface of the cooler’s water. The water model is set up based on the separation coupling method. According to the analysis of the calculation, the detailed pressure and temperature distribution of the gas, water and solid are obtained. From the distribution cloud, we know the changes of the parameters along the fluid flows streamline.

  9. Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators

    Science.gov (United States)

    Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan

    2010-01-01

    The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.

  10. Optimization of a Localized Air Conditioning System Using Thermoelectric Coolers for Commercial Vehicles

    Science.gov (United States)

    Wan, Qiushi; Deng, Yadong; Su, Chuqi; Wang, Yiping

    2016-11-01

    To improve the thermal comfort and energy saving of commercial vehicles, an auxiliary air conditioning (AC) system has been constructed. Several distributed components using thermoelectric coolers were applied in a localized AC system to adjust the microclimate around the driver only. A computational fluid dynamics model of a commercial vehicle cabin with a driver was built, the temperature field of the cabin investigated, and the thermal comfort analyzed. Based on the results of the simulations, the temperature around the cold side of the thermoelectric coolers is discussed and optimized by means of the response surface methodology and a multiobjective genetic algorithm. To validate the simulation and optimization results, a bench test was carried out; the results obtained from the simulation showed good agreement with the experimental results.

  11. Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Eric Joseph

    2016-12-13

    An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.

  12. DC FLOW SUPPRESSION IN A SINGLE-STAGE G-M TYPE PULSE TUBE COOLER

    Institute of Scientific and Technical Information of China (English)

    JIANGYan-long; CHENGuo-bang; THUMMESGuenter

    2004-01-01

    An experimental investigation on DC flow suppression in a single-stage G-M type pulse tube cooler is made. The influence of DC flow induced by the introduction of the double-inlet on the refrigeration performance of the cooler is experimentally examined. Two parallelplaced needle valves with an opposite flow direction called as double-valved configuration, instead of conventional single-valved configuration as the double-inlet is used to reduce the DC flow. With the double-valved configuration, the minimum temperatures of 18.4 K and 14.7 K, and the cooling powers of 11.5 W and 29.5 W are also obtained by RW2 and CP4000, respectively.

  13. Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators

    Science.gov (United States)

    Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan

    2010-01-01

    The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.

  14. Studies on an improved indigenous pressure wave generator and its testing with a pulse tube cooler

    Science.gov (United States)

    Jacob, S.; Karunanithi, R.; Narsimham, G. S. V. L.; Kranthi, J. Kumar; Damu, C.; Praveen, T.; Samir, M.; Mallappa, A.

    2014-01-01

    Earlier version of an indigenously developed Pressure Wave Generator (PWG) could not develop the necessary pressure ratio to satisfactorily operate a pulse tube cooler, largely due to high blow by losses in the piston cylinder seal gap and due to a few design deficiencies. Effect of different parameters like seal gap, piston diameter, piston stroke, moving mass and the piston back volume on the performance is studied analytically. Modifications were done to the PWG based on analysis and the performance is experimentally measured. A significant improvement in PWG performance is seen as a result of the modifications. The improved PWG is tested with the same pulse tube cooler but with different inertance tube configurations. A no load temperature of 130 K is achieved with an inertance tube configuration designed using Sage software. The delivered PV power is estimated to be 28.4 W which can produce a refrigeration of about 1 W at 80 K.

  15. Thermochemistry and Photochemistry in Cooler Hydrogen Dominated Extrasolar Planets: The Case of GJ436b

    CERN Document Server

    Line, Michael R; Chen, Pin; Angerhausen, D; Yung, Yuk L

    2011-01-01

    We introduce a new thermochemical kinetics and photochemical model. We use high-temperature bidirectional reaction rates for important H, C, O and N reactions (most importantly for CH$_4$ to CO interconversion), allowing us to attain thermochemical equilibrium, deep in an atmosphere, purely kinetically. This allows ab initio chemical modeling of an entire atmosphere, from deep-atmosphere thermochemical equilibrium to the photochemically dominated regime. We use our model to explore the atmospheric chemistry of cooler ($T_{eff} < 10^3$ K) extrasolar giant planets. In particular, we choose to model the nearby hot Neptune GJ436b, the only planet in this temperature regime for which spectroscopic measurements and estimates of chemical abundances now exist. Recent {\\it Spitzer} measurements with retrieval have shown that methane is driven strongly out of equilibrium and is deeply depleted on the dayside of GJ 436b, whereas quenched carbon monoxide is abundant. This is surprising because GJ 436b is cooler than m...

  16. The influence of the Thomson effect on the performance of a thermoelectric cooler

    Energy Technology Data Exchange (ETDEWEB)

    Mei Jiau Huang; Ruey Hor Yen [National Taiwan Univ. (China). Dept. of Mechanical Engineering; An Bang Wang [National Taiwan Univ. (China). Dept. of Applied Mathematics

    2005-01-01

    The temperature distribution of a thermoelectric cooler under the influence of the Thomson effect, the Joule heating, the Fourier's heat conduction, and the radiation and convection heat transfer is derived. The influence of the Thomson effect on the temperature profiles, on the fraction of the Joule's heat that flows back to the low-temperature side, and consequently on the maximum attainable temperature difference and the maximum allowable heat load are emphasized and explored. The results suggest that the cooling efficiency of a thermoelectric cooler can be improved not only by increasing the figure-of-merit of the thermoelectric materials but also by taking advantage of the Thomson effect. A possible development direction for the thermoelectric materials is thus given. (author)

  17. Development of a 6-W high-reliability cryogenic cooler at Thales Cryogenics

    Science.gov (United States)

    Benschop, Tonny; Mullie, Jeroen C.; Bruins, Peter; Martin, Jean-Yves

    2003-01-01

    The demand for more cooling power for infrared imagers, which may require up to 3 W of cooling power at 77 K, is nowadays surpassed as other industries are getting interested in cryogenic cooling as well. These potential markets require robust, efficient and affordable coolers with cooling capacities in excess of 6 W. As announced at the previous SPIE conference in 2000, Thales Cryogenics has been working on the development of a cryocooler based on the LSF 918x series consisting of a flexure bearing compressor in combination with a 20 mm Stirling cold finger in order to meet the demands of this emerging markets. Based on the proven principles of Thales LSF 91xx flexure bearing compressors, a moving magnet compressor was designed that delivers the required pressure wave for this larger cold finger. The compressor has been successfully tested in combination with the 20 mm cold finger resulting in the LSF 93xx cooler. For the second half of 2002, tests are planned for the combination of a version of this compressor with a 5 W pulse tube cold finger. At present, the European Space Agency is funding the space qualification of a modification the LSF 93xx cooler, in order to use it to provide the cryogenic cooling required for future manned missions. A test program for the specific requirements for the CRYOSYSTEM program is under progress. This paper describes the trade-offs that have been considered in the design phase, and gives a detailed overview of the test results and the resulting specification of the LSF 93xx coolers.

  18. Cooler reflective pavements give benefits beyond energy savings: durability and illumination

    Energy Technology Data Exchange (ETDEWEB)

    Pomerantz, Melvin; Akbari, Hashem; Harvey, John T.

    2000-06-01

    City streets are usually paved with asphalt concrete because this material gives good service and is relatively inexpensive to construct and maintain. We show that making asphalt pavements cooler, by increasing their reflection of sunlight, may lead to longer lifetime of the pavement, lower initial costs of the asphalt binder, and savings on street lighting and signs. Excessive glare due to the whiter surface is not likely to be a problem.

  19. Energy analysis of the cryogenic CO2 capture process based on Stirling coolers

    OpenAIRE

    Song, Chunfeng; Kitamura, Yutaka; Li, Shuhong

    2014-01-01

    In the existing coal-fired power plants, the energy penalty associated with CO2 capture process is an important challenge. For this reason, energy analysis has been widely used as a powerful tool to optimize the capture efficiency and reduce energy consumption. In our previous work, a Stirling cooler based cryogenic CO2 capture system was outlined. Process simulation and energy analysis of the system were undertaken in this research. The whole CO2 capture process is composed of three sections...

  20. Vibration Control of Linear Split Stirling Cryogenic Cooler for Airborne Infrared Application

    OpenAIRE

    A.M. Veprik; V.I. Babitsky; N. Pundak; S.V. Riabzev

    2000-01-01

    Modern infrared imagers often rely on the split Stirling cryogenic coolers the linear compressors of which are the well-known sources of harmonic disturbance. The traditional method of their passive isolation fails to meet the restraints on the static and dynamic deflections which are originated by the combined action of the airborne g-loading and harsh random vibration.The vibration protection system, which combines a stiff and heavily damped vibration isolator with tuned dynamic absorber, i...

  1. FPGA-BASED CONTROL OF THERMOELECTRIC COOLERS FOR LASER DIODE TEMPERATURE REGULATION

    Directory of Open Access Journals (Sweden)

    AHTESHAM ALI

    2012-04-01

    Full Text Available The proportional-integral-derivative (PID controller is the most used controller in the industry. Field programmable gate arrays (FPGAs allow efficient implementation of PID controllers. This paper presents the temperature regulation of a 48W laser diode through thermoelectric coolers (TECs. The temperature regulation system is designed and tested. The results demonstrate the feasibility and applicability of PID control through FPGA.

  2. Sorption-based vibration-free cooler for the METIS instrument on E-ELT

    Science.gov (United States)

    ter Brake, H. J. M.; Wu, Y.; Zalewski, D. R.; Vermeer, C. H.; Holland, H. J.; Doornink, J.; Benthem, B.; Boom, E.

    2012-09-01

    METIS is the 'Mid-infrared ELT Imager and Spectrograph' for the European Extremely Large Telescope. This E-ELT instrument will cover the thermal/mid-infrared wavelength range from 3 to 14 μm and will require cryogenic cooling of detectors and optics. We present a vibration-free cooling technology for this instrument based on sorption coolers developed at the University of Twente in collaboration with Dutch Space. In the baseline design, the instrument has four temperature levels: N-band: detector at 8 K and optics at 25 K; L/M-band: detector at 40K and optics at 77 K. The latter temperature is established by a liquid nitrogen supply with adequate cooling power. The cooling powers required at the lower three levels are 0.4 W, 1.1 W, and 1.4 W, respectively. The cryogenic cooling technology that we propose uses a compressor based on the cyclic adsorption and desorption of a working gas on a sorber material such as activated carbon. Under desorption, a high pressure can be established. When expanding the high-pressure fluid over a flow restriction, cooling is obtained. The big advantage of this cooling technology is that, apart from passive valves, it contains no moving parts and, therefore, generates no vibrations. This, obviously, is highly attractive in sensitive, high-performance optical systems. A further advantage is the high temperature stability down to the mK level. In a Dutch national research program we aim to develop a cooler demonstrator for METIS. In the paper we will describe our cooler technology and discuss the developments towards the METIS cooler demonstrator.

  3. Design of an electron cooling device for the accumulator cooler ring in MUSES project

    CERN Document Server

    Tanabé, T; Ohtomo, K; Katayama, T; Yamashita, A; Syresin, E M; Meshkov, I N

    2000-01-01

    As a part of new experimental facility in the Radio Isotope Beam Factory (RIBF) project at RIKEN, the Multi-Use Experimental Storage rings (MUSES) have an Accumulator Cooler Ring (ACR) which is used for both the accumulation and cooling of RI beams and various experiments. Besides a stochastic cooler, an electron cooler (EC) is presently under development. The ion energy in the ACR ranges from 60 to 400 MeV/u which corresponds to the electron beam (e-beam) energy for the EC from 30 to 250 kV. The maximum current from a 12.7 mm cathode is 4.1 A with a gun perveance of 0.79 mu P. A superconducting solenoid in the gun section generates a magnetic field of 4 T which corresponds to a factor of 20 in adiabatic expansion. The design issues of the gun section, collector, toroidal magnets and compensation solenoids are discussed in detail with some retrospection of the development.

  4. Interfacial Engineering of Semiconductor-Superconductor Junctions for High Performance Micro-Coolers

    Science.gov (United States)

    Gunnarsson, D.; Richardson-Bullock, J. S.; Prest, M. J.; Nguyen, H. Q.; Timofeev, A. V.; Shah, V. A.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R.; Myronov, M.; Prunnila, M.

    2015-12-01

    The control of electronic and thermal transport through material interfaces is crucial for numerous micro and nanoelectronics applications and quantum devices. Here we report on the engineering of the electro-thermal properties of semiconductor-superconductor (Sm-S) electronic cooler junctions by a nanoscale insulating tunnel barrier introduced between the Sm and S electrodes. Unexpectedly, such an interface barrier does not increase the junction resistance but strongly reduces the detrimental sub-gap leakage current. These features are key to achieving high cooling power tunnel junction refrigerators, and we demonstrate unparalleled performance in silicon-based Sm-S electron cooler devices with orders of magnitudes improvement in the cooling power in comparison to previous works. By adapting the junctions in strain-engineered silicon coolers we also demonstrate efficient electron temperature reduction from 300 mK to below 100 mK. Investigations on junctions with different interface quality indicate that the previously unexplained sub-gap leakage current is strongly influenced by the Sm-S interface states. These states often dictate the junction electrical resistance through the well-known Fermi level pinning effect and, therefore, superconductivity could be generally used to probe and optimize metal-semiconductor contact behaviour.

  5. Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps

    Science.gov (United States)

    Fang, En; Wu, Xiaojie; Yu, Yuesen; Xiu, Junrui

    2017-03-01

    In this paper, a numerical model is developed by combining thermodynamics with heat transfer theory. Taking inner and external multi-irreversibility into account, it is with a complementary equation for heat circulation in air gaps of a steady cooling system with commercial thermoelectric modules operating in refrigeration mode. With two modes concerned, the equation presents the heat flowing through air gaps which forms heat circulations between both sides of thermoelectric coolers (TECs). In numerical modelling, a TEC is separated as two temperature controlled constant heat flux reservoirs in a thermal resistance network. In order to obtain the parameter values, an experimental apparatus with a commercial thermoelectric cooler was built to characterize the performance of a TEC with heat source and sink assembly. At constant power dissipation, steady temperatures of heat source and both sides of the thermoelectric cooler were compared with those in a standard numerical model. The method displayed that the relationship between Φf and the ratio Φ_{c}'/Φ_{c} was linear as expected. Then, for verifying the accuracy of proposed numerical model, the data in another system were recorded. It is evident that the experimental results are in good agreement with simulation(proposed model) data at different heat transfer rates. The error is small and mainly results from the instabilities of thermal resistances with temperature change and heat flux, heat loss of the device vertical surfaces and measurements.

  6. Experimental Investigation of Using Evaporative Air Cooler for Winter Air-Conditioning in Baghdad

    Directory of Open Access Journals (Sweden)

    Zainab Hasson Hassan

    2012-01-01

    Full Text Available This paper presents an efficient methodology to design modified evaporative air-cooler for winter air-conditioning in Baghdad city as well as using it for summer air-conditioning by adding a heating process after the humidification process. Laboratory tests were performed on a direct evaporative cooler (DEC followed by passing the air on hot water through heat exchanger placed in the coolers air duct exit. The tests were conducted on the 2nd of December /2011 when the ambient temperature was 8.1°C and the relative humidity was (68%. The air flow rate is assumed to vary between 0.069 to 0.209 kg/s with constant water flow rate of 0.03 kg/s in the heat exchanger. The performance is reported in terms of effectiveness of DEC, saturation efficiency of DEC, outlet temperature of air and cooling capacity. Heat transfer rate in heat exchanger mode is also estimated. The paper presents the mathematical development of the equations of thermal exchanges through DEC and HE. Prediction of air condition that exits o this system show that the present system could bring the air stream to a comfortable winter zone .

  7. Optimisation of a desiccant cooling system design with indirect evaporative cooler

    Energy Technology Data Exchange (ETDEWEB)

    Goldsworthy, M.; White, S. [CSIRO Energy Technology, 10 Murray Dwyer Cr., Mayfield, 2300 Newcastle (Australia)

    2011-01-15

    Solar desiccant-based air-conditioning has the potential to significantly reduce cost and/or greenhouse gas emissions associated with cooling of buildings. Parasitic energy consumption for the operation of supply fans has been identified as a major hindrance to achieving these savings. The cooling performance is governed by the trade-off between supplying larger flow-rates of cool air or lower flow-rates of cold air. The performance of a combined solid desiccant-indirect evaporative cooler system is analysed by solving the heat and mass transfer equations for both components simultaneously. Focus is placed on varying the desiccant wheel supply/regeneration and indirect cooler secondary/primary air-flow ratios. Results show that for an ambient reference condition, and 70 C regeneration temperature, a supply/regeneration flow ratio of 0.67 and an indirect cooler secondary/primary flow ratio of 0.3 gives the best performance with COP{sub e} > 20. The proposed cooling system thus has potential to achieve substantial energy and greenhouse gas emission savings. (author)

  8. Effects of polyethylene film wrap on cooler shrink and the microbial status of beef carcasses.

    Science.gov (United States)

    Sampaio, Guilherme S L; Pflanzer-Júnior, Sérgio B; Roça, Roberto de O; Casagrande, Leandro; Bedeschi, Elaine A; Padovani, Carlos R; Miguel, Giulianna Z; Santos, Carolina T; Girão, Lucio V C; Miranda, Zander B; Franco, Robson M

    2015-02-01

    The present study evaluated the use of polyethylene film wrapping of beef half carcasses and its effects on cooler shrink, cooling characteristics and microbial status of the half carcasses. Film wrapping reduced cooler shrink by 55.2%, 43.1%, 36.0% and 30% after 24, 48, 72 and 96 h of cooling, respectively, compared to the unwrapped half carcasses, whereas the surface water activity showed no significant differences among the time periods. The wrapped half carcasses had a lower cooling rate and higher surface and internal temperatures. The highest values of the aerobic mesophiles, Staphylococcus aureus and Enterobacteriaceae were found in the half carcasses wrapped in film. No significant differences were found in the values of Escherichia coli. The polyethylene film was effective in reducing cooler shrink; however, it caused a delay in cooling, thereby enabling greater microbial occurrences and counts and impairing the hygienic and sanitary conditions of the carcasses, which may be an impediment to the practical application of this technology.

  9. Performance of four-stage thermoelectric cooler for extended wavelength InGaAs detectors

    Science.gov (United States)

    Mo, De-feng; Yang, Li-yi; Liu, Da-fu; Xu, Qin-fei; Li, Tao; Li, Xue

    2015-04-01

    Experimental setup for evaluating four-stage thermoelectric cooler's performance was designed. Effects of input power, heat dissipation condition and heat load on the temperature difference (ΔT) of four-stage thermoelectric coolers' hot and cold faces were obtained experimentally. The result shows that, the ΔT increases as the input power increases. A linear relationship exists between input current and feedback voltage. In different cooling conditions, the ΔT of thermoelectric cooler (TEC) increases with the temperature of hot face. As the temperature increasing on hot face is 1K, the ΔT increasing of TEC can be about 0.5K. Meanwhile, the power consumption of TEC also increases slightly. Water condensation can be prevented in either dry nitrogen environment or vacuum environment, but the vacuum level has great influence to the ΔT, especially in low operation temperature. The better the vacuum level is, the smaller the convection heat loss has. When the operation temperature of focal plane array (FPA) is lower than 220K, it is prior to use vacuum packaging. Considering the Joule-heat of readout circuit and the heat loss of wire conduction, the minimum working temperature of FPA can reach below 200 K when the temperature of the hot face is 285K. And the coefficient of performance (COP) of TEC can increase sharply from 0.8% to 4% when the controlled operation temperature is 220K rather than 200K.

  10. Status of the JWST/MIRI Focal Plane System and Cooler

    Science.gov (United States)

    Ressler, Michael E.; Goodson, G. B.; Khorrami, M. A.; Larson, M. E.; Mahoney, J. C.; Sukhatme, K. G.

    2009-01-01

    The Mid-Infrared Instrument (MIRI) is a multipurpose imager, coronagraph, and spectrometer for the James Webb Space Telescope. It provides wavelength coverage from 5 through 28 microns and is an integral contributor to all four of JWST's primary science themes. MIRI is being developed as a partnership between NASA and ESA, with JPL providing the Focal Plane System (FPS, consisting of the detectors, control electronics, and flight software) and the cooler, and a consortium of European astronomical institutes providing the optical bench and structure. The flight FPS is being prepared for delivery to the European Consortium for its integration into the optical bench, while the cooler is nearing its Critical Design Review. We describe the capabilities of the FPS and cooler, present test results and the predicted sensitivity performance of the FPS, and update the current status of each these systems. The research described in this poster was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  11. EVALUATION OF DYNAMIC CARACTERISTICS OF GAS COOLER OF THE CARBON DIOXIDE HEAT PUMP ÎN THE TRANSCRITICAL CYCLE

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2008-12-01

    Full Text Available Dynamic characteristics of heat pump gas cooler obtained by means of the solution of the dynamics equations in partial derivatives are examined. Control system of the heat pump used for the heating of the heating–system water, supplied from CHP to the district heating system is examined. Possibility of PID-controller with gain scheduling utilization with the coefficients changing depending on gas cooler mode of operation for temperature disturbances compensation of direct heating–system water is shown.

  12. Study on the COP of free piston Stirling cooler (FPSC) in the anti-sublimation CO2 capture process

    OpenAIRE

    Song, Chunfeng; Lu, Jingwen; Kitamura, Yutaka

    2015-01-01

    Free piston Stirling cooler (FPSC) is a promising alternative for the conventional coolers and has been applied to various fields. In the previous research, a novel cryogenic CO2 capture system based on FPSCs has been exploited. In order to enhance the cryogenic CO2 capture efficiency, the investigation on the coefficient of performance (COP) of the FPSC is carried out in this work. In detail, the influence of different materials (aluminium and copper), size of cold head (length and diameter)...

  13. Process Calculation for Reciprocating Compressor Cooler%往复压缩机冷却器的工艺计算

    Institute of Scientific and Technical Information of China (English)

    李首霖; 姜晓川; 郭淑英

    2015-01-01

    Set the process calculation for reciprocating compressor cooler as an example, this paper briefly specified the process cal-culation method for cooler applying HTRI software and the practical meanings.%以往复压缩机用的冷却器工艺计算为例,简述了应用HTRI软件对冷却器进行工艺计算的方法以及实用意义。

  14. Asymmetric effects of cooler and warmer winters on beech phenology last beyond spring

    Science.gov (United States)

    Signarbieux, Constant; Toledano, Ester; Sangines, Paula; Fu, Yongshuo; Schlaepfer, Rodolphe; Buttler, Alexandre; Vitasse, Yann

    2017-04-01

    In temperate trees, the timing of plant growth onset and cessation affect biogeochemical cycles, water and energy balance. Currently, phenological studies largely focus on specific phenophases and on their responses to warming. How differently spring phenology responds to the warming and cooling, and affects the subsequent phases, has not been well investigated. Here, we exposed saplings of Fagus sylvatica L. to warmer and cooler climate during the winter 2013-2014 by conducting a reciprocal transplant experiment between two elevations (1340 vs. 371 m.a.s.l., ca. 6°C difference) in the Swiss Jura mountains. To test the legacy effects of earlier or later budburst on the budset timing, saplings were moved back to their original elevation shortly after the occurrence of budburst in spring 2014. One degree decrease of air temperature resulted in a delay of 10.9 days in budburst dates, whereas one degree of warming advanced the date by 8.8 days. Interestingly, we found an asymmetric effect of the warmer winter vs. cooler winter on the budset timing in autumn: saplings experiencing a cooler winter showed a delay of 31 days in their budset timing compared to the control, whereas saplings experiencing a warmer winter showed 10 days earlier budset. The dependency of spring over autumn phenophases might be partly explained by the building up of the non-structural carbohydrate storage and suggests that the potential delay in growth cessation due to global warming might be smaller than expected. We did not find a significant correlation in budburst dates between 2014 and 2015, indicating that the legacy effects of the different phenophases might be reset during each winter. Adapting phenological models to the whole annual phenological cycle, and considering the different response to cooling and warming, would improve predictions of tree phenology under future climate warming conditions.

  15. Operation of a pond-cooler: the case of Berezovskaya GRES-1

    Science.gov (United States)

    Morozova, O. G.; Kamoza, T. L.; Koyupchenko, I. N.; Savelyev, A. S.; Pen, R. Z.; Veselkova, N. S.; Kudryavtsev, M. D.

    2017-08-01

    Pond-coolers at heat and nuclear power stations are natural-technological systems, so the program of their monitoring should include the effect made by the SRPS (state regional power station) on the pond ecosystem, including thermal discharge of cooling water. The objectives of this study were development and implementation of a monitoring program for the cooling pond of Berezovskaya SRPS-1 on the chemical and biological water quality indicators and identification of patterns of the thermal and hydrochemical regime when operating the progressive power plant (from 1996 to 2015). The quality of the cooling water of the pond-cooler BGRES-1 was studied under full-scale conditions by selecting and analyzing the water samples of the pond in accordance with the principles of complexity, systematic observation, and consistency of timing their conduct with the characteristic hydrological phases. Processing of the obtained array of monitoring data by methods of mathematical statistics makes it possible to identify the main factors affecting the water quality of the pond. The data on water quality obtained during their monitoring and mathematical processing over a long time interval are the scientific basis for forecasting the ecological state of the pond, which is necessary to economically ensure the efficient energy production and safety of water use. Recommendations proposed by these authors, including those partially already implemented, have been to prevent the development of eutrophication processes in the pond-cooler: the construction of a dam that cuts off the main peat massif and cleaning the river banks forming the cooling pond.

  16. Exo-reversible staging of coolers in series and in parallel

    Science.gov (United States)

    Maytal, Ben-Zion

    2017-10-01

    Serial and parallel staging of exo-reversible coolers are formulated, analyzed and compared. The parallel staging includes an extensive parameter which is the proportion of combined stages. This extensive free parameter affects the intensive factors of specific power and figure of merit. Serial staging reduces the 1st Law efficiency and parallel staging improves the 2nd Law efficiency. Comparison of a parallel with a serial staging under common cooling capacity and cooling range, shows that it is always possible to find a parallel arrangement of lower specific power and more compact. Some results are demonstrated on staging of Joule-Thomson cryocoolers (below and above the Joule-Thomson inversion temperature).

  17. Laboratory Performance Of Evaporative Cooler Using Jute Fiber Ropes As Cooling Media

    OpenAIRE

    Kulkarni, R K; S.P.S. Rajput

    2014-01-01

    Evaporative coolers use a variety of cooling media like wood wool, cellulose, aspen. This paper analyses the performance of jute fiber ropes as alternative cooling media. They are capable of retaining high moisture and have a large wetted surface area. Hot and dry air is allowed to flow over the wet jute rope bank tightly held between two plates which are integral part of two tanks. The inlet conditions of air varied from 30.5 0C dry bulb temperature and 52 % relative humidity to ...

  18. Specification of a new electron cooler for the low energy ion accumulator ring, LEIR

    CERN Document Server

    Tranquille, Gerard

    2004-01-01

    For the cooling of Pb**5**4**+ ions in the future low-energy ion ring machine a new electron cooling device needs to be constructed. This new cooler will take advantage of all the recent developments in electron cooling in order to balance efficient and fast cooling with a sufficiently long ion beam lifetime for beam accumulation. This paper will present the special features of the device and how their combination will be used to obtain low emittance beams for transfer to the LHC.

  19. The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou

    CERN Document Server

    Xia, J W; Wei, B W; Yuan, Y J; Song, M T; Zhang, W Z; Yang, X D; Yuan Ping; Gao, D Q; Zhao, H W; Yang, X T; Xiao, G Q; Man, K T; Dang, J R; Cai, X H; Wang, Y F; Tang, J Y; Qiao, W M; Rao, Y N; He, Y; Mao, L Z; Zhou, Z Z

    2002-01-01

    HIRFL-CSR, a new ion Cooler-Storage-Ring (CSR) project, is the post-acceleration system of the Heavy Ion Research Facility in Lanzhou (HIRFL). It consists of a main ring (CSRm) and an experimental ring (CSRe). From the HIRFL cyclotron system the heavy ions will be accumulated, cooled and accelerated in the CSRm, then extracted fast to produce radioactive ion beams (RIB) or highly charged heavy ions. Those secondary beams will be accepted and stored by the CSRe for many internal-target experiments with electron cooling.

  20. A radio frequency ring electrode cooler for low-energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, S. [Sekt. Phys., Ludwig-Maximilians-Universitaet, Am Coulombwall 1, Muenchen, D-85748 Garching (Germany)]. E-mail: sophie.heinz@physik.uni-muenchen.de; Aeystoe, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (Y5), FIN-40351 Jyvaeskylae (Finland); Habs, D. [Sekt. Phys., Ludwig-Maximilians-Universitaet, Am Coulombwall 1, Muenchen, D-85748 Garching (Germany); Hegewisch, S. [Sekt. Phys., Ludwig-Maximilians-Universitaet, Am Coulombwall 1, Muenchen, D-85748 Garching (Germany); Huikari, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (Y5), FIN-40351 Jyvaeskylae (Finland); Nieminen, A. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (Y5), FIN-40351 Jyvaeskylae (Finland); Rinta-Antila, S. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (Y5), FIN-40351 Jyvaeskylae (Finland); Schumann, M. [Sekt. Phys., Ludwig-Maximilians-Universitaet, Am Coulombwall 1, Muenchen, D-85748 Garching (Germany); Szerypo, J. [Sekt. Phys., Ludwig-Maximilians-Universitaet, Am Coulombwall 1, Muenchen, D-85748 Garching (Germany)

    2004-11-11

    We are investigating a new concept for ion confinement while buffer-gas-cooling low-energy ion beams. Instead of applying the well-established technique of Radio Frequency Quadrupoles (RFQs) where the ions are transversely confined by a quadratic-pseudo potential we are using a stack of thin ring electrodes supplied by an RF field (RF funnel) which creates a box-shaped potential well. In Monte Carlo simulations we have investigated the transmission behavior and cooling performance of the RF funnel. First experimental investigations with ion currents up to 20 nA revealed a promising transmission characteristic which qualifies the RF funnel as high-current cooler.

  1. Theoretical Performance Analysis of Indirect-Direct Evaporative Cooler in Hot and Dry Climates

    Directory of Open Access Journals (Sweden)

    R.K.KULKARNI,

    2011-02-01

    Full Text Available This paper theoretically analyses the performance of indirect-direct two stage cooler in hot and dry climate of Bhopal, India. Indirect cooling stage consisting of plate type wet surface heat exchangerfollowed by direct cooling stage consisting of rigid cellulose and aspen fiber in rectangular, semicylindrical and semi-hexagonal shapes as cooling media is considered. Based on summer weather data ofBhopal, most frequently occurring condition of 39.9 0C DBT and 32.8 % RH is selected for the analysis. Indirect evaporative cooler effectiveness is estimated in the range of 0.95 to 0.82 for primary air flow rate of 0.3 to 1.25 kg/s. Saturation efficiency in the direct cooling mode is obtained in the range of 89.1 to 63.4 % and cooling capacity from 11472 to 52576 kJ/h for different combinations. In combined mode saturation efficiency is obtained between 121.5 and 106.7 % and cooling capacity between 18244 to 73809 kJ/h. The final outlet temperature of air in combined mode ranges between 22.5 0C and 24.6 0C.

  2. Study on turbulent flow and heat transfer performance of tubes with internal fins in EGR cooler

    Science.gov (United States)

    Liu, Lin; Ling, Xiang; Peng, Hao

    2015-01-01

    In this paper, flow and heat transfer performances of the tubes with internal longitudinal fins in Exhaust Gas Recirculation (EGR ) cooler were investigated by three-dimension computation and experiment . Each test tube was a single-pipe structure, without inner tube. Three-dimension computation was performed to determine the thermal characteristics difference between the two kinds of tubes, that is, the tube with an inner solid staff as a blocked structure and the tube without the blocked structure. The effects of fin width and fin height on heat transfer and flow are examined. For proving the validity of numerical method, the calculated results were compared with corresponding experimental data. The tube-side friction factor and heat transfer coefficient were examined. As a result, the maximum deviations between the numerical results and the experimental data are approximately 5.4 % for friction factor and 8.6 % for heat transfer coefficient, respectively. It is found that two types of internally finned tubes enhance significantly heat transfer. The heat transfer of the tube with blocked structure is better, while the pressure drop of the tube without blocked structure is lower. The comprehensive performance of the unblocked tube is better to applied in EGR cooler.

  3. The low-energy electron cooler for the Cryogenic Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Stephen; Blaum, Klaus; Krantz, Claude; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany)

    2014-07-01

    The Cryogenic Storage Ring (CSR) at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany, is being commissioned. CSR will be an ideal tool for preparing and studying cold atomic and molecular ions using ion beams of 20-300 keV kinetic energy (per ion charge unit). As a first important upgrade CSR will be equipped with an electron cooler. Latter is designed for cooling beams with a charge-to-mass ratio q/m of 1 to 1/160 e/aμ. This corresponds to an electron beam energy range of 1 to 163 eV. The beam will be produced by a cryogenic photocathode and electron temperatures in the co-moving frame reach down to 10 K. The cooler can also be used as an electron target by detuning the electrons' kinetic energy. This allows precision experiments on low-energy collisions between cold electrons and stored atomic and molecular ions using counting and imaging detectors. The design and the status of the setup are presented.

  4. Development of a new RFQ beam cooler and buncher for the CANREB project at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Barquest, B.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Bale, J.C.; Dilling, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); UBC Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Gwinner, G. [University of Manitoba, Department of Physics and Astronomy, Allen Building, Winnipeg, MB R3T 2N2 (Canada); Kanungo, R. [Saint Mary’s University, Astronomy and Physics Department, 923 Robie Street, Halifax, NS B3H 3C3 (Canada); Krücken, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); UBC Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Pearson, M.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada)

    2016-06-01

    A new radiofrequency quadrupole (RFQ) based ion beam cooler and buncher is under development for the CANadian Rare-isotope facility with Electron Beam ion source (CANREB) project at TRIUMF. The CANREB project requires an RFQ buncher that will efficiently accept continuous beams of rare isotopes from either the Advanced Rare IsotopE Laboratory (ARIEL) or Isotope Separator and ACcelerator (ISAC) target by way of a high resolution magnetic spectrometer, with energies up to 60 keV and deliver bunched beams to an electron beam ion source (EBIS) for charge breeding. The energy of the bunched beam delivered to the EBIS will be adjustable to match the requirements of the existing post acceleration infrastructure. The CANREB RFQ incorporates design considerations to facilitate ease of use over a wide range of ion masses, and is intended to accommodate incident beam rates as high as 10{sup 8} pps, delivering beam bunches at 100 Hz. An overview of the CANREB RFQ design concept will be presented, informed by results from both ion optical simulations as well as commissioning efforts with other beam cooler and buncher devices. Simulation results indicate that the design is well suited to deliver high quality bunched beams with high efficiency with as many as 10{sup 6} ions per bunch.

  5. HEAT PUMP GAS COOLER CONTROL USING CRITERION OF MINIMUM OF EXERGY LOSSSES

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2014-08-01

    Full Text Available This paper focuses on the development of the criterion of optimality of transients of the control system, based on the minimum of exergy losses in the gas cooler of carbon dioxide heat pump. It is noted that the exergy quality criterion has a clear physical meaning, as compared with the integral quadratic criterion in which the choice of the coefficients in the integrand is not justified. Mathematic model of heat exchanger is obtained using the method of solving differential equations, without going to the irrational transfer functions. The model is reduced to transfer functions of the first and second order with the delay. The continuous temperature control system of heat pump gas cooler is considered. It is shown, that one of the versions of the control system for the minimization of the proposed criterion can be a combined control system using both the principle of the negative feedback and the principle of the invariance related to a number of disturbances affecting the processes of heat transfer in the heat exchanger.

  6. Laboratory Performance Of Evaporative Cooler Using Jute Fiber Ropes As Cooling Media

    Directory of Open Access Journals (Sweden)

    R.K.Kulkarni

    2014-12-01

    Full Text Available Evaporative coolers use a variety of cooling media like wood wool, cellulose, aspen. This paper analyses the performance of jute fiber ropes as alternative cooling media. They are capable of retaining high moisture and have a large wetted surface area. Hot and dry air is allowed to flow over the wet jute rope bank tightly held between two plates which are integral part of two tanks. The inlet conditions of air varied from 30.5 0C dry bulb temperature and 52 % relative humidity to 34.5 0C dry bulb temperature and 32 % relative humidity. Outlet temperature of air is measured and saturation efficiency and cooling capacity are calculated. The outlet dry bulb temperature is obtained between 25.8 0C and 26.2 0C.The saturation efficiencies range from 69 % to 59 % and the cooling capacity is obtained between 6173 kJ/h and 11979 kJ/h. Thus jute fiber ropes prove to be a good alternative cooling media in evaporative cooler

  7. P-type InGaAsP coolers for integrated optic devices

    Science.gov (United States)

    Vashaee, Daryoosh; LaBounty, Christopher J.; Fang, Xiaofeng; Zeng, Gehong; Abraham, Patrick; Bowers, John E.; Shakouri, Ali

    2001-05-01

    Single stage thin film coolers based on thermoelectric and thermionic cooling in p-type InGaAsP superlattice structures have been fabricated. Devices with different sizes and at various ambient temperatures have been characterized. Experimental results showed 0.5 degree centigrade cooling below the ambient temperature at 25C. This cooling over 1 4mu2m thick superlattice barrier corresponds to cooling power densities on the order of 200 W/cm2. The device cools by a factor of two better at higher temperatures (70C). This is due to the reduction of the superlattice thermal conductivity and the broadening of the electronic distribution function at higher temperatures. 150x150 micrometers 2 devices provide largest cooling at room temperature while the optimum device size shrinks as the temperature increases. Simulations results that take into account finite thermal resistance of the InP substrate, the effect of the contact resistance, heat generation in the wire-bonds and metallic pads on top of the device predict accurately the optimum cooling of these micro refrigerators. By eliminating the major parasitic sources of heating (Joule heating in the substrate, heat conduction through the side contact and reducing the contact resistance to 5x7-7 ohm-cm2) simulations show that, ultimately, one can achieve 15 degree(s)C cooling (10's of kW/cm2 cooling power) with single stage p-InGaAsP thin film coolers.

  8. Improving the Efficiency of the Heat Pump Control System of Carbon Dioxide Heat Pump with Several Evaporators and Gas Coolers

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2016-12-01

    Full Text Available The problem of coordination of the values of the refrigerant flow through the evaporators and gas coolers of the heat pump for the simultaneous production of heat and cold is studied. The compensation of the variations of the total flow through the evaporators is implemented using the variation of the capacity of the compressor and a corresponding change in flow through the auxiliary gas cooler of the heat pump. Control system of this gas cooler is constructed using the invariance principle of the output value (outlet temperature of the heated agent with respect to perturbations on the control channel (the refrigerant flow through the gas cooler. Principle of dual-channel compensation of the disturbance and advancing signal on input of control valve of the refrigerant through the gas cooler is ensured. Due to proposed solution, the intensity of the disturbances on the flow of refrigerant is reduced. Due to proposed technical solution power consumed by the heat pump compressor drive under transients is decreased.

  9. Studi Numerik Peningkatan Cooling Performance pada Lube Oil Cooler Gas Turbine yang Disusun Secara Seri dan Paralel dengan Variasi Kapasitas Aliran Lube Oil

    Directory of Open Access Journals (Sweden)

    Annis Khoiri Wibowo

    2014-09-01

    Full Text Available Salah satu komponen pada gas turbine adalah lube oil cooler yang berfungsi sebagai heat exchanger untuk mendinginkan temperatur lube oil. Pemasangan tiga lube oil cooler type-Z compact heat exchanger pada susunan seri dan paralel berdampak pada cooling capacity lube oil cooler. Uniformity flow rate pada masing-masing tube merupakan salah satu faktor yang mempengaruhi cooling capacity dari lube oil coole. Oleh karena itu dilakukan simulasi Computational Fluid Dynamic (CFD untuk mengkaji pengaruh pemasangan susunan tiga lube oil cooler secara seri dan paralel dengan variasi kapasitas lube oil terhadap performance lube oil cooler. Pemodelan domain dilakukan dengan 3 dimensi pada sisi eksternal dan internal. Simulasi pada sisi eksternal dilakukan untuk memperoleh nilai koefisien heat transfer pada masing-masing baris tube. Selanjutnya, nilai koefisien heat transfer yang didapat pada sisi eksternal digunakan sebagai kondisi batas wall convection pada masing-masing baris tube untuk simulasi internal flow dengan variasi flow rate lube oil 30 gpm, 50 gpm, 74 gpm. Dari hasil simulasi, susunan cooler seri menghasilkan cooling capacity yang lebih baik dari pada susunan cooler paralel pada kapasitas lube oil yang sama. Hal tersebut terjadi karena flow ratio lube oil untuk masing-masing tube pada susunan cooler seri lebih seragam dari pada susunan cooler paralel. Keseragaman flow rate pada masing-masing tube ditunjukkan dengan kecilnya standard deviasi flow ratio. Kapasitas 50 gpm memiliki standard deviasi flow ratio sebesar 0,46 untuk susunan seri dan 0,75 untuk susunan paralel. Semakin besar kapasitas lube oil maka distribusi flow rate pada masing-masing tube semakin tidak seragam. Selain itu susunan cooler seri memiliki pressure drop yang lebih besar dari pada susunan cooler paralel. Pemasangan susunan cooler dengan kapasitas 30 gpm memiliki tingkat keseragaman yang paling tinggi ditunjukkan dengan standard deviasi flow ratio pada masing-masing tube yang

  10. Analyses of large scale tests addressing the performance of a containment cooler and its effect on gas distribution

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, M.; Mignot, G. [Paul Scherrer Inst., Villigen (Switzerland)

    2011-07-01

    The performance of containment coolers and their effect on the hydrogen risk in the case of an accident with core overheat is an issue that needs to be addressed by means of simulation tools. Four tests performed in the PANDA facility within the OECD SETH 2 project provide a new database to evaluate the capability of the codes to predict the cooling effectiveness of a cooler and its effect on flow patterns and light gas distribution. All tests have been simulated with the GOTHIC code using a three-dimensional mesh and a rather detailed model for the cooler tube bundle. In general, the results obtained are in reasonable agreement with the data, although some major discrepancies have also been observed, which are mostly due to the limited detail permitted by the relatively coarse mesh adopted for all tests of the SETH 2 project. (author)

  11. 电机空冷器制造工艺改进%Manufacturing Process Improvements of Motor Air Cooler

    Institute of Scientific and Technical Information of China (English)

    谢常春; 苏启明; 梁子慧

    2013-01-01

    通过对空冷器制造工艺的改进,解决了空冷器因易变形而装配困难的问题.设计的钻模工装结构简单、定位准确,缩短了产品制造周期.与传统工艺相比优越性显著,对同类空冷器的加工制造,在工艺方法上值得借鉴和推广.%Through the improvement of motor air cooler manufacturing process,the air cooler assembly problem because of easy deformation was solved.The design of jig fixture structure was simple,accurate,and the product manufacturing cycle was shorted.Compared with the traditional process,the process method is worth reference and promotion similar to the processing and manufacturing of air cooler.

  12. On the Use of Thermoelectric (TE) Applications Based on Commercial Modules: The Case of TE Generator and TE Cooler

    Science.gov (United States)

    Zorbas, K.; Hatzikraniotis, E.; Paraskevopoulos, K. M.; Kyratsi, Th.

    2010-01-01

    In recent years, thermoelectricity sees rapidly increasing usages in applications like portable refrigerators, beverage coolers, electronic component coolers etc. when used as Thermoelectric Cooler (TEC), and Thermoelectric Generators (TEG) which make use of the Seebeck effect in semiconductors for the direct conversion of heat into electrical energy and is of particular interest for systems of highest reliability or for waste heat recovery. In this work, we examine the performance of commercially available TEC and TEG. A prototype TEC-refrigerator has been designed, modeled and constructed for in-car applications. Additionally, a TEG was made, in order to measure the gained power and efficiency. Furthermore, a TEG module was tested on a small size car (Toyota Starlet, 1300 cc), in order to measure the gained power and efficiency for various engine loads. With the use of a modeling approach, we evaluated the thermal contact resistances and their influence on the final device efficiency.

  13. Numerical Simulation on Flow and Heat Transfer Performance of Air-cooler for a Natural Gas Storage Compressor Unit

    Science.gov (United States)

    Liu, Biyuan; Zhang, Feng; Ma, Zenghui; Zheng, Zilong; Feng, Jianmei

    2017-08-01

    Heat transfer efficiency has been a key issue for large size air coolers with the noise reducers used in natural gas storage compressor unit, especially operated in summer with cooling air at a high temperature. The 3-D numerical simulation model of the whole air cooler was established to study the flow field characteristic with different inlet and outlet structures by CFD software. The system pressure loss distributions were calculated. The relationship was obtained among heat exchange efficiency, resistance loss, and the structure of air cooler, the results presented some methods to improve cooling air flow rate and heat exchange efficiency. Based on the results, some effective measures were proposed to improve heat exchanger efficiency and were implemented in the actual operation unit.

  14. Novel concept for driving the linear compressor of a micro-miniature split Stirling cryogenic cooler

    Science.gov (United States)

    Maron, V.; Veprik, A.; Finkelstein, L.; Vilenchik, H.; Ziv, I.; Pundak, N.

    2009-05-01

    New methods of carrying out homeland security and antiterrorist operations call for the development of a new generation of mechanically cooled, portable, battery powered infrared imagers, relying on micro-miniature Stirling cryogenic coolers of rotary or linear types. Since split Stirling linearly driven micro-miniature cryogenic coolers have inherently longer life spans, low vibration export and better aural stealth as compared to their rotary driven rivals, they are more suitable for the above applications. The performance of such cryogenic coolers depends strongly on the efficacy of their electronic drivers. In a traditional approach, the PWM power electronics produce the fixed frequency tonal driving voltage/current, the magnitude of which is modulated via a PID control law so as to maintain the desired focal plane array temperature. The disadvantage of such drivers is that they draw high ripple current from the system's power bus. This results in the need for an oversized DC power supply (battery packs) and power electronic components, low efficiency due to excessive conductive losses and high residual electromagnetic interference which in turn degrades the performance of other systems connected to the same power bus. Without either an active line filter or large and heavy passive filtering, other electronics can not be powered from the same power bus, unless they incorporate heavy filtering at their inputs. The authors present the results of a feasibility study towards developing a novel "pumping" driver consuming essentially constant instant battery power/current without making use of an active or passive filter. In the tested setup, the driver relies on a bidirectional controllable bridge, invertible with the driving frequency, and a fast regulated DC/DC converter which maintains a constant level of current consumed from the DC power supply and thus operates in input current control mode. From the experimental results, the steady-state power consumed by the

  15. Finned tubes decide performance. A closer look at water coolers. Wasserkuehlsaetze unter der Lupe: Auf die Rippenrohre kommt es an

    Energy Technology Data Exchange (ETDEWEB)

    Menze, K.W.; Webb, R.L.; Apparao, T. (Pennsylvania State Univ., University Park (USA))

    1989-05-01

    The performance of standard and high-efficiency finned tubes in 800 kW water coolers was compared experimentally. Details are given of the dual-flow evaporators of the two R11 water coolers with 170 tubes each, the corrugated inner surface of the finned tube, the experimental facility, and the data acquisition system. After three years (9000 hours) of trial operation, it can be stated that the heat transfer was raised by an average 60% inside the condenser and by 40% inside the evaporator. Electricity savings amounted to about 13%. The amortisation period (replacement of standard tubes by high-efficiency tubes) is about 2 years. (HWJ).

  16. Numerical study on transverse asymmetry in the temperature profile of a regenerator in a pulse tube cooler

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Dietrich, M.; Carlsen, Henrik

    2007-01-01

    Transverse asymmetry in the temperature profile of the regenerator in a Stirling-type pulse tube cooler as observed in experiments was analysed in a numerical study. The asymmetry was reproduced using a one-dimensional model of the cooler where the regenerator was modelled using two identical...... parallel regenerator channels. The asymmetry was caused by a circulating flow that was superimposed on the oscillating flow. The primary mechanism driving the circulating flow was due to the wave form of the pressure difference between the ends of the regenerator and the dependence of the instantaneous...

  17. Numerical study on transverse asymmetry in the temperature profile of a regenerator in a pulse tube cooler

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Stig Kildegaard; Carlsen, Henrik [Department of Mechanical Engineering, Energy Engineering Section, Technical University of Denmark, Kgs. Lyngby (Denmark); Dietrich, Marc; Thummes, Guenter [Institute of Applied Physics, University of Giessen, D-35392 Giessen (Germany)

    2007-07-15

    Transverse asymmetry in the temperature profile of the regenerator in a Stirling-type pulse tube cooler as observed in experiments was analysed in a numerical study. The asymmetry was reproduced using a one-dimensional model of the cooler where the regenerator was modelled using two identical parallel regenerator channels. The asymmetry was caused by a circulating flow that was superimposed on the oscillating flow. The primary mechanism driving the circulating flow was due to the wave form of the pressure difference between the ends of the regenerator and the dependence of the instantaneous mass flow rate on the pressure difference and temperature. (author)

  18. Effect of transverse electron velocities on the longitudinal cooling force in the Fermilab electron cooler

    CERN Document Server

    Khilkevich, Andrei; Shemyakin, Alexander V

    2012-01-01

    In Fermilab's electron cooler, a 0.1A, 4.3MeV DC electron beam propagates through the 20 m cooling section, which is immersed in a weak longitudinal magnetic field. A proper adjustment of 200 dipole coils, installed in the cooling section for correction of the magnetic field imperfections, can create a helix-like trajectory with the wavelength of 1-10 m. The longitudinal cooling force is measured in the presence of such helixes at different wavelengths and amplitudes. The results are compared with a model calculating the cooling force as a sum of collisions with small impact parameters, where the helical nature of the coherent angle is ignored, and far collisions, where the effect of the coherent motion is neglected. A qualitative agreement is found.

  19. Forced circulation air coolers with internally finned tubes; Ventilator-Luftkuehler mit innenberippten Rohren

    Energy Technology Data Exchange (ETDEWEB)

    Arnemann, M. [Forschungszentrum fuer Kaelte- und Umwelttechnik GmbH (FKU), Berlin (Germany)

    1998-04-01

    Tubes with internal fins have a much higher heat transfer during evaporation as compared with unfinned tubes. The findings served as a basis for the new development of the ``FHV high-performance forced circulation air cooler`` by Walter Roller GmbH and Co. The new evaporator type was designed on the basis of DIN 8955 and ENV 328 for evaporation temperatures of 0 C to -31 C. (orig.) [Deutsch] Im Vergleich zu glatten Rohren laesst sich durch den Einsatz von innenberippten Rohren der innere Waermeuebergang bei der Verdampfung nachweislich deutlich verbessern. Die Ergebnisse bildeten die Grundlage fuer die Neuentwicklung `FHV Hochleistungs-Luftkuehler` im Hause Walter Roller GmbH and Co. Die energetische Bewertung des neuen Verdampfertyps erfolgte in Anlehnung an die Normen DIN 8955 bzw. ENV 328 fuer Verdampfungstemperaturen zwischen 0 C und -31 C. (orig.)

  20. Predicting the nonsteady-state temperature conditions in water reservoirs/coolers

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, I.K.; Domanov, V.N.; Kostin, A.G.; Zhadan, V.I.

    1981-01-01

    A method is proposed for computing the cooling capacity of water reservoirs/coolers operating in non-steady-state weather conditions and thermal loads. The method is based on solving, in finite differences, nonsteady-state thermal balance equations written for the water reservoir as a whole. The influence of the wind velocity over the water reservoir and a number of other factors are accounted for in the computations on the thermal heat exchange from the surface of the water reservoirs. The reliability of the method is confirmed by comparing the computations to data from full-scale observations. Computations of the nonsteady state conditions in extremum periods make it possible to determine the maximum peak values for the temperature of the cooling water.

  1. Study on a cascade pulse tube cooler with energy recovery: new method for approaching Carnot

    Science.gov (United States)

    Wang, L. Y.; Wu, M.; Zhu, J. K.; Jin, Z. Y.; Sun, X.; Gan, Z. H.

    2015-12-01

    A pulse tube cryocooler (PTC) can not achieve Carnot efficiency because the expansion work must be dissipated at the warm end of the pulse tube. How to recover this amount of dissipated work is a key for improving the PTC efficiency. A cascade PTC consists of PTCs those are staged by transmission tubes in between, these can be a two-stage or even more stages, each stage is driven by the recovered work from the last stage by a well-designed long transmission tube. It is shown that the more stages it has, the closer the efficiency will approach the Carnot efficiency. A two-stage cascade pulse tube cooler consisted of a primary and a secondary stage working at 233 K is designed, fabricated and tested in our lab. Experimental results show that the efficiency is improved by 33% compared with the single stage PTC.

  2. Transverse Feedback System For The Cooler Synchrotron COSY-Jülich - First Results

    CERN Document Server

    Kamerdzhiev, V; Mohos, I

    2003-01-01

    The cooler synchrotron COSY delivers unpolarized and polarized protons and deuterons in the momentum range 300 MeV/c up to 3.65 GeV/c. Electron cooling at injection level and stochastic cooling covering the range from 1.5 GeV/c up to maximum momentum are available to prepare high precision beams for internal as well as for external experiments in hadron physics. In case of electron cooled beam the intensity is limited by transverse instabilities. The major losses are due to the vertical coherent beam oscillations. To damp these instabilities a transverse feedback system is under construction. First results with a simple feedback system are presented. Due to the feedback system operation the intensity and lifetime of the electron cooled proton beam at injection energy could be significantly increased. Measurements in frequency and time domain illustrate the performance of the system.

  3. Causes and prevention of corrosion in carbon steel natural gas coolers

    Energy Technology Data Exchange (ETDEWEB)

    Kotwica, D.J.; Minevski, L. [BetzDearborn, The Woodlands, TX (United States)

    1998-12-31

    Two case histories in which high pressure natural gas coolers had failed due to the presence of carbon dioxide are reviewed. CO{sub 2} along with CO and H{sub 2}S are acid gases usually present in natural gas feeds. Carbonic acid can form in aqueous condensate, lowering the pH and locally corroding mild steel tube metal. Stress corrosion cracking (SCC) can occur in tubing containing residual tensile stresses from welding or manufacturing. Bicarbonates and carbonates concentrated in condensate from CO{sub 2} and CO present in natural gas are required to produce SCC. Cathodic depolarizers such as oxygen in conjunction with the presence of carbonic acid will increase the corrosion rate of mild steel. Oxygen also increases the susceptibility of mild steel to carbonate SCC.

  4. Toward a cold electron beam in the Fermilab's Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Vitali S. Tupikov et al.

    2004-05-12

    Fermilab is developing a high-energy electron cooling system to cool 8.9-GeV/c antiprotons in the Recycler ring [1]. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through 20-m long cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 0.1 mrad, the cooling section will be immersed into a solenoidal field of 50-150G. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of beam quality measurements in the cooler prototype.

  5. Upgrade of the radio frequency quadrupole cooler and buncher for the HIE-ISOLDE project

    CERN Document Server

    Babcock, Carla

    2013-01-01

    The upgrade to the ISOLDE facility, HIE-ISOLDE, will include an upgrade to the RFQCB (radio frequency quadrupole cooler and buncher), the focus of which will be fixing the problems of alignment with the current machine, improving the integrity of the vacuum system, stabilizing the internal gas pressure, and the changes associated with a new position. The beam passage inside the RFQCB has been simulated with an independent code to highlight the importance of the internal gas pressure, to motivate design changes in the new RFQCB and to explain ways to improve the performance of the current machine. The suspected misalignment of ISCOOL has been quantified, and, using a simulation of ions passing through the external injection electrodes, the effect of the misalignment on machine acceptance has been detailed. Plans for the future RFQCB test stand and HIE-ISOLDE installation have been outlined. (C) 2013 Elsevier B.V. All rights reserved.

  6. BEAM DYNAMICS ANALYSIS FOR THE ULTRA-FAST KICKER IN CIRCULAR COOLER RING OF JLEIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yulu [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Inst. Modern Phys., Chinese Academy of Sciences, Lanzhou, China; Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    An ultra-fast kicker system consisting of four quarter wavelength resonator based deflecting cavities was developed that simultaneously resonates at 10 subharmonic modes of the 476.3MHz bunch repetition frequency. Thus every 10th bunch in the bunch train will experience a transverse kick while all the other bunches are undisturbed. This fast kicker is being developed for the Energy Recovery Linac (ERL) based electron Circular Cooler Ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously MEIC). The electron bunches can be reused 10-30 turns thus the beam current in the ERL can be reduced to 1/10 - 1/30 (150mA - 50mA) of the cooling bunch current (1.5A). In this paper, several methods to synthesize such a kicker waveform and the comparison made by the beam dynamics tracking in Elegant will be discussed.

  7. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  8. Making Maps from Planck LFI 30GHz Data with Asymmetric Beams and Cooler Noise

    Energy Technology Data Exchange (ETDEWEB)

    The Planck CTP Working Group; Ashdown, M.A.J.; Baccigalupi, C.; Bartlett, J.G.; Borrill, J.; Cantalupo, C.; de Gasperis, G.; Gorski, K.M.; Hivon, E.; Huffenberger, K.; Keihanen, E.; Keskitalo, R.; Kisner, T.; Hurki-Suonio, H.; Lawrence, C.R.; Natoli, P.; Poutanen, T.; Prezeau, G.; Reinecke, M.; Rocha, G.; Sandri, M.; Stompor, R..; Villa, F.; Wandelt, B.; de Troia, G.

    2008-06-19

    The Planck satellite will observe the full sky at nine frequencies from 30 to 857 GHz. Temperature and polarization frequency maps made from these observations are prime deliverables of the Planck mission. The goal of this paper is to examine the effects of four realistic instrument systematics in the 30 GHz frequency maps: non-axially-symmetric beams, sample integration, sorption cooler noise, and pointing errors. They simulated one year long observations of four 30 GHz detectors. The simulated timestreams contained CMB, foreground component (both galactic and extra-galactic), instrument nolise (correlated and white), and the four instrument systematic effects. They made maps from the timelines and examined the magnitudes of the systematics effects in the maps and their angular power spectra. They also compared the maps of different mapmaking codes to see how they performed. They used five mapmaking codes (two destripers and three optimal codes). None of their mapmaking codes makes an attempt to deconvolve the beam from its output map. Therefore all our maps had similar smoothing due to beams and sample integration. This is a complicated smoothing, because every map pixel has its own effective beam. Temperature to polarization cross-coupling due to beam mismatch causes a detectable bias in the TE spectrum of the CMB map. The effects of cooler noise and pointing errors did not appear to be major concerns for the 30 GHz channel. The only essential difference found so far between mapmaking codes that affects accuracy (in terms of residual RMS) is baseline length. All optimal codes give essentially indistiguishable results. A destriper gives the same result as the optimal codes when the baseline is set short enough (Madam). For longer baselines destripers (Springtide and Madam) require less computing resources but deliver a noisier map.

  9. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection.

    Directory of Open Access Journals (Sweden)

    Zach N Adelman

    Full Text Available BACKGROUND: The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus, exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery. METHODOLOGY/PRINCIPAL FINDINGS: We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2 or Argonaute-2 (AGO-2. We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses. CONCLUSIONS/SIGNIFICANCE: This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting

  10. Nanoscale coatings for erosion and corrosion protection of copper microchannel coolers for high powered laser diodes

    Science.gov (United States)

    Flannery, Matthew; Fan, Angie; Desai, Tapan G.

    2014-03-01

    High powered laser diodes are used in a wide variety of applications ranging from telecommunications to industrial applications. Copper microchannel coolers (MCCs) utilizing high velocity, de-ionized water coolant are used to maintain diode temperatures in the recommended range to produce stable optical power output and control output wavelength. However, aggressive erosion and corrosion attack from the coolant limits the lifetime of the cooler to only 6 months of operation. Currently, gold plating is the industry standard for corrosion and erosion protection in MCCs. However, this technique cannot perform a pin-hole free coating and furthermore cannot uniformly cover the complex geometries of current MCCs involving small diameter primary and secondary channels. Advanced Cooling Technologies, Inc., presents a corrosion and erosion resistant coating (ANCERTM) applied by a vapor phase deposition process for enhanced protection of MCCs. To optimize the coating formation and thickness, coated copper samples were tested in 0.125% NaCl solution and high purity de-ionized (DIW) flow loop. The effects of DIW flow rates and qualities on erosion and corrosion of the ANCERTM coated samples were evaluated in long-term erosion and corrosion testing. The robustness of the coating was also evaluated in thermal cycles between 30°C - 75°C. After 1000 hours flow testing and 30 thermal cycles, the ANCERTM coated copper MCCs showed a corrosion rate 100 times lower than the gold plated ones and furthermore were barely affected by flow rates or temperatures thus demonstrating superior corrosion and erosion protection and long term reliability.

  11. Making maps from Planck LFI 30 GHz data with asymmetric beams and cooler noise

    Science.gov (United States)

    Ashdown, M. A. J.; Baccigalupi, C.; Bartlett, J. G.; Borrill, J.; Cantalupo, C.; de Gasperis, G.; de Troia, G.; Górski, K. M.; Hivon, E.; Huffenberger, K.; Keihänen, E.; Keskitalo, R.; Kisner, T.; Kurki-Suonio, H.; Lawrence, C. R.; Natoli, P.; Poutanen, T.; Prézeau, G.; Reinecke, M.; Rocha, G.; Sandri, M.; Stompor, R.; Villa, F.; Wandelt, B.; Planck Ctp Working Group

    2009-01-01

    The Planck satellite will observe the full sky at nine frequencies from 30 to 857 GHz. Temperature and polarization frequency maps made from these observations are prime deliverables of the Planck mission. The goal of this paper is to examine the effects of four realistic instrument systematics in the 30 GHz frequency maps: non-axially-symmetric beams, sample integration, sorption cooler noise, and pointing errors. We simulated one-year long observations of four 30 GHz detectors. The simulated timestreams contained cosmic microwave background (CMB) signal, foreground components (both galactic and extra-galactic), instrument noise (correlated and white), and the four instrument systematic effects. We made maps from the timelines and examined the magnitudes of the systematics effects in the maps and their angular power spectra. We also compared the maps of different mapmaking codes to see how they performed. We used five mapmaking codes (two destripers and three optimal codes). None of our mapmaking codes makes any attempt to deconvolve the beam from its output map. Therefore all our maps had similar smoothing due to beams and sample integration. This is a complicated smoothing, because each map pixel has its own effective beam. Temperature to polarization cross-coupling due to beam mismatch causes a detectable bias in the TE spectrum of the CMB map. The effects of cooler noise and pointing errors did not appear to be major concerns for the 30 GHz channel. The only essential difference found so far between mapmaking codes that affects accuracy (in terms of residual root-mean-square) is baseline length. All optimal codes give essentially indistinguishable results. A destriper gives the same result as the optimal codes when the baseline is set short enough (Madam). For longer baselines destripers (Springtide and Madam) require less computing resources but deliver a noisier map.

  12. Adaptation of the low-cost and low-power tactical split Stirling cryogenic cooler for aerospace applications

    Science.gov (United States)

    Veprik, A.; Zechtzer, S.; Pundak, N.; Kirkconnell, C.; Freeman, J.; Riabzev, S.

    2011-06-01

    Cryogenic coolers are often used in modern spacecraft in conjunction with sensitive electronics and sensors of military, commercial and scientific instrumentation. The typical space requirements are: power efficiency, low vibration export, proven reliability, ability to survive launch vibration/shock and long-term exposure to space radiation. A long-standing paradigm of exclusively using "space heritage" equipment has become the standard practice for delivering high reliability components. Unfortunately, this conservative "space heritage" practice can result in using outdated, oversized, overweight and overpriced cryogenic coolers and is becoming increasingly unacceptable for space agencies now operating within tough monetary and time constraints. The recent trend in developing mini and micro satellites for relatively inexpensive missions has prompted attempts to adapt leading-edge tactical cryogenic coolers for suitability in the space environment. The primary emphasis has been on reducing cost, weight and size. The authors are disclosing theoretical and practical aspects of a collaborative effort to develop a space qualified cryogenic refrigerator system based on the tactical cooler model Ricor K527 and the Iris Technology radiation hardened Low Cost Cryocooler Electronics (LCCE). The K27/LCCE solution is ideal for applications where cost, size, weight, power consumption, vibration export, reliability and time to spacecraft integration are of concern.

  13. 75 FR 55067 - Energy Conservation Program: Test Procedures for Walk-In Coolers and Walk-In Freezers

    Science.gov (United States)

    2010-09-09

    ... Concrete a. Floorless Coolers b. Pre-Installed Freezer Floor c. Insulated Floor Shipped by Manufacturer 7... structural members. (7) Alternatives to ASTM C1303. (8) Heat transfer through concrete. (9) U-factor of glass..., ``Standard Test Method for Predicting Long-Term Thermal Resistance of Closed-Cell Foam Insulation.''...

  14. 76 FR 33631 - Energy Conservation Program: Test Procedures for Walk-In Coolers and Walk-In Freezers

    Science.gov (United States)

    2011-06-09

    ... regulatory text should read as set forth below: PART 431--ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL... measure the energy consumption of the components that make up the envelope of a walk-in cooler or walk-in... ``external conditions'' of the shared surface(s) must reflect the internal conditions of the adjacent walk-in...

  15. Re-Design dan Modifikasi Generator Cooler Heat Exchanger Pembangkit Listrik Tenaga Panas Bumi (PLTP untuk Meningkatkan Performasi

    Directory of Open Access Journals (Sweden)

    Ria Mahmudah

    2013-12-01

    Full Text Available Cooler Generator adalah alat yang berfungsi untuk menjaga temperature udara yang ada di dalam generator akibat kenaikan beban pada generator. Dan apabila kerja dari generator cooler tidak maksimal dalam menjaga temperatur di dalam generator maka akan terjadi overheating dan kerusakan pada generator, yang akan menyebabkan generator akan shutdown. Hal tersebut akan mengganggu proses produksi pada pembangkit listrik. Hal ini sering terjadi pada pembangkit listrik, salah satunya adalah PLTP dimana desain generator cooler sudah tidak dapat lagi menjaga temperatur didalam generator karena kenaikan beban. Sehingga perlu dilakukan desain ulang generator cooler untuk mendapatkan hasil yang maksimal yang dapat menjaga temperatur didalam generator agar generator tidak cepat mengalami overheating dan kerusakan. Penelitian ini dilakukan dengan menggunakan analisa perhitungan termodinamika dan perpindahan panas. Dilakukan trial error konfigurasi geometri heat exchanger berupa diameter tube dan P/Do yang didapat dari standart TEMA untuk mendapatkan UA yang maksimal dan mendapatkan nilai effectiveness tinggi. Dimana dalam re-desain ini menggunkan volume heat exchanger yang tetap dan jumlah dan jenis fin yang digunakan juga tetap. Dari analisa perhitungan, bahwa semakin besar nilai P/Do maka nilai effectiveness, NTU dan Pressure drop akan semakin kecil, begitu juga sebaliknya. Dari analisa didapatkan  konfigurasi geometri generator cooler yang menghasilkan performa yang maksimal yaitu  P/Do = 1,42 dengan  Do = 19,05 mm ; Di = 16,3 mm ; ST = 28,6 mm; SL= 24,7 mm ; Nt = 420. Dari perhitungan didapatkan bahwa geometri desain baru memiliki effektiveness 0,91 dan menghasilkan Th,o = 40,8 oC pada beban Th,I = 74,11 oC.

  16. Lonely drinking fountains and comforting coolers: paradoxes of water value and ironies of water use.

    Science.gov (United States)

    Kaplan, Martha

    2011-01-01

    This article focuses ethnographically on Americans and technologies of drinking water, as tokens of and vehicles for health, agency, and surprising kinds of community. Journalists and water scholars have argued that bottled water is a material concomitant of privatization and alienation in U.S. society. But, engaging Latour, this research shows that water technologies and the groups they assemble, are plural. Attention to everyday entwining of workplace lives with drinking fountains, single-serve bottles, and spring water coolers shows us several different quests, some individualized, some alienated, but some seeking health via public, collective care, acknowledgment of stakeholding, and community organizing. Focused on water practices on a college campus, in the roaring 1990s and increasingly sober 2000s in the context of earlier U.S. water histories of inclusion and exclusion, I draw on ethnographic research from the two years that led up to the recession and the presidential election of 2008. I argue for understanding of water value through attention to water use, focusing both on the social construction of water and the use of water for social construction.

  17. Drought and Cooler Temperatures Are Associated with Higher Nest Survival in Mountain Plovers

    Directory of Open Access Journals (Sweden)

    Victoria J Dreitz

    2012-06-01

    Full Text Available Native grasslands have been altered to a greater extent than any other biome in North America. The habitats and resources needed to support breeding performance of grassland birds endemic to prairie ecosystems are currently threatened by land management practices and impending climate change. Climate models for the Great Plains prairie region predict a future of hotter and drier summers with strong multiyear droughts and more frequent and severe precipitation events. We examined how fluctuations in weather conditions in eastern Colorado influenced nest survival of an avian species that has experienced recent population declines, the Mountain Plover (Charadrius montanus. Nest survival averaged 27.2% over a 7-yr period (n = 936 nests and declined as the breeding season progressed. Nest survival was favored by dry conditions and cooler temperatures. Projected changes in regional precipitation patterns will likely influence nest survival, with positive influences of predicted declines in summer rainfall yet negative effects of more intense rain events. The interplay of climate change and land use practices within prairie ecosystems may result in Mountain Plovers shifting their distribution, changing local abundance, and adjusting fecundity to adapt to their changing environment.

  18. Optimization Of Thermo-Electric Coolers Using Hybrid Genetic Algorithm And Simulated Annealing

    Directory of Open Access Journals (Sweden)

    Khanh Doan V.K.

    2014-06-01

    Full Text Available Thermo-electric Coolers (TECs nowadays are applied in a wide range of thermal energy systems. This is due to their superior features where no refrigerant and dynamic parts are needed. TECs generate no electrical or acoustical noise and are environmentally friendly. Over the past decades, many researches were employed to improve the efficiency of TECs by enhancing the material parameters and design parameters. The material parameters are restricted by currently available materials and module fabricating technologies. Therefore, the main objective of TECs design is to determine a set of design parameters such as leg area, leg length and the number of legs. Two elements that play an important role when considering the suitability of TECs in applications are rated of refrigeration (ROR and coefficient of performance (COP. In this paper, the review of some previous researches will be conducted to see the diversity of optimization in the design of TECs in enhancing the performance and efficiency. After that, single-objective optimization problems (SOP will be tested first by using Genetic Algorithm (GA and Simulated Annealing (SA to optimize geometry properties so that TECs will operate at near optimal conditions. Equality constraint and inequality constraint were taken into consideration.

  19. Parametric analysis of a novel cryogenic CO2 capture system based on Stirling coolers.

    Science.gov (United States)

    Song, Chun Feng; Kitamura, Yutaka; Li, Shu Hong; Jiang, Wei Zhong

    2012-11-20

    CO(2) capture and storage (CCS) is an important alternative to control greenhouse gas (GHG) effects. In previous work, a novel desublimation CO(2) capture process has been exploited making use of three free piston Stirling coolers (namely, SC-1, SC-2, and SC-3, respectively). Based on the developed system, moisture and CO(2) in the flue gas can condense and desublimate in the prefreezing and main-freezing towers, respectively. Meanwhile, the storage column is chilled by SC-3 to preserve the frosted CO(2), and permanent gas (such as N(2)) passes through the system without phase change. The whole process can be implemented at atmospheric pressure and reduce the energy penalty (e.g., solvent regeneration and pressure drop) in other technologies. In this work, the influence of process parameters has been investigated in detail. The optimal conditions for the system are as follows: idle operating time is 240 min, flow rate is 5 L/min, vacuum degree of the interlayer is 2.2 × 10(3) Pa, and temperatures of SC-1, -2, and -3 are -30, -120, and -120 °C, respectively. Under these conditions, the energy consumption of the system is around 0.5 MJ(electrical)/kg CO(2) with above 90% CO(2) recovery.

  20. Dewar cooler integrated MWIR spectrometer for high rates and high dynamic range measurements

    Science.gov (United States)

    Guérineau, N.; Rommeluère, S.; Ferrec, Y.; Druart, G.; Lasfargues, G.; de Borniol, E.; Magli, S.

    2015-06-01

    There is a need for compact, hand-held, spectrometers for the measurement of spectral signatures of chemicals or objects. To achieve this goal, a new concept of Fourier-transform interferometer (FTIR) directly integrated on the infrared focal plane array (FPA) has been developed at ONERA. The fundamental properties of this key element called MICROSPOC will be recalled and we will see how those properties can be exploited to get a snapshot, compact and cryogenic MWIR spectrometer. These design rules have been applied to develop a very compact device that combines the metrological properties of a FTIR-FPA of quantum HgCdTe technology with the radiometric performances of a last generation Sofradir detection block (Infrared Detector Dewar Cooler Assembly - IDDCA). The experimental performances of the prototype will be presented, in terms of spectral resolution, acquisition rate, dynamic range and noise equivalent spectral radiance. We will discuss at the end the potential of this technology to meet the requirements of different applications.

  1. Feasibility of a solar-assisted winter air-conditioning system using evaporative air-coolers

    Directory of Open Access Journals (Sweden)

    Mohamed M. El-Awad

    2011-03-01

    Full Text Available The paper presents a winter air-conditioning system which is suitable for regions with mildly cold but dry winters. The system modifies the evaporative air-cooler that is commonly used for summer air-conditioning in such regions by adding a heating process after the humidification process. The paper describes a theoretical model that is used to estimate the system's water and energy consumption. It is shown that a 150-LPD solar heater is adequate for air-conditioning a 500 ft3/min (14.4 m3/min air flow rate for four hours of operation. The maximum air-flow rate that can be heated by a single solar water-heater for four hours of operation is about 900-cfm, unless a solar water heater large than a 250-LPD heater is used. For the 500 ft3/min air flow rate the paper shows that the 150, 200, 250 and 300 LPD solar water-heaters can provide air-conditioning for 4, 6, 8 and 10 hours, respectively, while consuming less energy than the equivalent refrigerated-type air-conditioner.

  2. Feasibility of a solar-assisted winter air-conditioning system using evaporative air-coolers

    Energy Technology Data Exchange (ETDEWEB)

    El-Awad, Mohamed M. [Mechanical Engineering Department, the University of Khartoum, P.O. Box 321 Khartoum (Sudan)

    2011-07-01

    The paper presents a winter air-conditioning system which is suitable for regions with mildly cold but dry winters. The system modifies the evaporative air-cooler that is commonly used for summer air-conditioning in such regions by adding a heating process after the humidification process. The paper describes a theoretical model that is used to estimate the system's water and energy consumption. It is shown that a 150-LPD solar heater is adequate for air-conditioning a 500 ft3/min (14.4 m3/min) air flow rate for four hours of operation. The maximum air-flow rate that can be heated by a single solar water-heater for four hours of operation is about 900-cfm, unless a solar water heater large than a 250-LPD heater is used. For the 500 ft3/min air flow rate the paper shows that the 150, 200, 250 and 300 LPD solar water-heaters can provide air-conditioning for 4, 6, 8 and 10 hours, respectively, while consuming less energy than the equivalent refrigerated-type air-conditioner.

  3. Development of the RFQ Cooler SHIRaC: beam transport and nuclearization

    CERN Document Server

    Boussaid, Ramzi

    2016-01-01

    The development of the new RFQ Cooler, called SHIRaC, was carried out. As a part of SPIRAL 2 facility, SHIRaC aims to handle and cool typical SPIRAL 2 beams with large emittances (up to 80 pi.mm.mrad) and high currents (up to 1 uA). Its purposes are to enhance as much as possible the beam quality (transverse geometric emittance of less than 3 pi.mm.mrad and longitudinal energy spread close to 1 eV) and to transmit more than 60 % of ions. Numerical simulations and experimental studies have shown that the required beam quality can be reached only in term of the emittance. The energy spread is very far from expected values. It is sensitive to the space charge and the buffer gas diffusion and more importantly to the RF field derivative effect. The latter arises at the RFQ exit and increases with the RF parameters (the frequency and the amplitude of the RF voltage). Studies allowing to enhance the cooled beam quality, mainly the energy spread reduction, are presented and discussed along this paper. They consist in...

  4. RICOR's new development of a highly reliable integral rotary cooler: engineering and reliability aspects

    Science.gov (United States)

    Filis, Avishai; Pundak, Nachman; Barak, Moshe; Porat, Ze'ev; Jaeger, Mordechai

    2011-06-01

    The growing demand for EO applications that work around the clock 24hr/7days a week, such as in border surveillance systems, emphasizes the need for a highly reliable cryocooler having increased operational availability and decreased integrated system Life Cycle (ILS) cost. In order to meet this need RICOR has developed a new rotary Stirling cryocooler, model K508N, intended to double the K508's operating MTTF achieving 20,000 operating MTTF hours. The K508N employs RICOR's latest mechanical design technologies such as optimized bearings and greases, bearings preloading, advanced seals, laser welded cold finger and robust design structure with increased natural frequency compared to the K508 model. The cooler enhanced MTTF was demonstrated by a Validation and Verification (V&V) plan comprising analytical means and a comparative accelerated life test between the standard K508 and the K508N models. Particularly, point estimate and confidence interval for the MTTF improvement factor where calculated periodically during and after the test. The (V&V) effort revealed that the K508N meets its MTTF design goal. The paper will focus on the technical and engineering aspects of the new design. In addition it will discuss the market needs and expectations, investigate the reliability data of the present reference K508 model; and report the accelerate life test data and the statistical analysis methodology as well as its underlying assumptions and results.

  5. Beam diagnostic developments at the cooler synchrotron COSY-Jülich

    Indian Academy of Sciences (India)

    J Dietrich; I Mohos

    2002-12-01

    New developments of beam diagnostic devices and methods at the cooler synchrotron and storage ring COSY at the Forschungszentrum J¨ulich are described. A Schottky-pickup was tested and installed. The new pickup consists of four diagonally arranged plates which can be combined by means of relays to measure either in the horizontal or in the vertical plane. A new method for resonant tuning of the Schottky-pickup for transversal measurements was realized. A tune meter was developed for real-time tune measurements in the acceleration ramp and is used as routine diagnostic tool. Based on the developed bunch synchronous tracking generator an on-line phase space measurement was realized. For beam profile measurements a residual-gas ionization beam profile monitor was installed in the COSY-ring and tested. To measure the beam quality in case of fast and slow extraction a universal spill detector was developed and tested in the extraction beam line.

  6. Blower/air cooler with internally finned tubes; Ventilator-Luftkuehler mit innenberippten Rohren

    Energy Technology Data Exchange (ETDEWEB)

    Arnemann, M. [FKU - Forschungszentrum fuer Kaelte- und Umwelttechnik, Berlin (Germany)

    1997-12-31

    Heat transfer is higher in finned tubes than in smooth tubes. In order to assess the extent of improvement, internal heat tranfer coefficients and pressure losses of smooth and finned tubes were investigated on behalf of Walter Roller GmbH and Co. Two blower-type air coolers of identical design (except for the tubes) were investigated in a calorimeter using R22 and different refrigerant mass flows, evaporation temperatures and air temperatures. The results are the basis for new develoments by Walter Roller. Energetic assessment of the new type of evaporator was made on the basis of the DIN 8955 and ENV 328 standards. The results and findings are presented. (orig.) [Deutsch] Der Einsatz von innenberippten Rohren laesst im Vergleich mit glatten Rohren einen deutlich verbesserten inneren Waermeuebergang erwarten. Zur Abschaetzung der Groessenordnung dieser Verbesserungen wurden im Auftrag der Firma Walter Roller GmbH and Co. die inneren Waermeuebergangskoeffizienten und die Druckverluste von glatten und innenberippten Rohren experimentell bestimmt. Dazu wurden zwei bis auf die Rohre baugleiche Ventilator-Luftkuehler ineinem Kalorimeter untersucht. Mit dem Kaeltemittel R22 wurden fuer verschiedene Kaeltemittelmassenstroeme, Verdampfungstemperaturen und Lufttemperaturen die Kennzahlen bestimmt, die zur Charakterisierung der Rohre dienlich sind. Die Ergebnisse bildeten die Grundlage fuer eine Neuentwicklung im Hause Walter Roller. Die energetische Bewertung des neuen Verdampfertyps erfolgte in Anlehnung an die Normen DIN 8955 bzw. ENV 328. Die Untersuchungen und die Ergebnisse werden praesentiert. (orig.)

  7. Making Maps from Planck LFI 30GHz Data with Asymmetric Beams and Cooler Noise

    CERN Document Server

    Ashdown, M A J; Bartlett, J G; Borrill, J; Cantalupo, C; De Gasperis, G; de Troia, G; Górski, K M; Hivon, E; Huffenberger, Kevin M; Keihanen, E; Keskitalo, R; Kisner, T; Kurki-Suonio, H; Lawrence, C R; Natoli, P; Poutanen, T; Prezeau, G; Reinecke, M; Rocha, G; Sandri, M; Stompor, R; Villa, F; Wandelt, B

    2008-01-01

    The Planck satellite will observe the full sky at nine frequencies from 30 to 857 GHz. The goal of this paper is to examine the effects of four realistic instrument systematics in the 30 GHz frequency maps: non-axially-symmetric beams, sample integration, sorption cooler noise, and pointing errors. We simulated one year long observations of four 30 GHz detectors. The simulated timestreams contained CMB, foreground components (both galactic and extra-galactic), instrument noise (correlated and white), and the four instrument systematic effects. We made maps from the timelines and examined the magnitudes of the systematics effects in the maps and their angular power spectra. We also compared the maps of different mapmaking codes to see how they performed. We used five mapmaking codes (two destripers and three optimal codes). None of our mapmaking codes makes an attempt to deconvolve the beam from its output map. Therefore all our maps had similar smoothing due to beams and sample integration. Temperature to pol...

  8. Unified theory for inhomogeneous thermoelectric generators and coolers including multistage devices

    Science.gov (United States)

    Gerstenmaier, York Christian; Wachutka, Gerhard

    2012-11-01

    A novel generalized Lagrange multiplier method for functional optimization with inclusion of subsidiary conditions is presented and applied to the optimization of material distributions in thermoelectric converters. Multistaged devices are considered within the same formalism by inclusion of position-dependent electric current in the legs leading to a modified thermoelectric equation. Previous analytical solutions for maximized efficiencies for generators and coolers obtained by Sherman [J. Appl. Phys.JAPIAU0021-897910.1063/1.1735380 31, 1 (1960)], Snyder [Phys. Rev. B1098-012110.1103/PhysRevB.86.045202 86, 045202 (2012)], and Seifert [Phys. Status Solidi APSSABA0031-896510.1002/pssa.200925460 207, 760 (2010)] by a method of local optimization of reduced efficiencies are recovered by independent proof. The outstanding maximization problems for generated electric power and cooling power can be solved swiftly numerically by solution of a differential equation-system obtained within the new formalism. As far as suitable materials are available, the inhomogeneous TE converters can have increased performance by use of purely temperature-dependent material properties in the thermoelectric legs or by use of purely spatial variation of material properties or by a combination of both. It turns out that the optimization domain is larger for the second kind of device which can, thus, outperform the first kind of device.

  9. Long-life micro vacuum chamber for a micromachined cryogenic cooler

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Haishan, E-mail: H.Cao@utwente.nl, E-mail: HaishanCao@gmail.com; Vermeer, Cristian H.; Vanapalli, Srinivas; Holland, Harry J.; Brake, H. J. Marcel ter [Energy, Materials and Systems, Faculty of Science and Technology, University of Twente, 7500 AE Enschede (Netherlands)

    2015-11-15

    Micromachined cryogenic coolers can be used for cooling small electronic devices to improve their performance. However, for reaching cryogenic temperatures, they require a very good thermal insulation from the warm environment. This is established by a vacuum space that for adequate insulation has to be maintained at a pressure of 0.01 Pa or lower. In this paper, the challenge of maintaining a vacuum chamber with a volume of 3.6 × 10{sup −5} m{sup 3} and an inner wall area of 8.1 × 10{sup −3} m{sup 2} at a pressure no higher than 0.01 Pa for five years is theoretically analyzed. The possible sources of gas, the mechanisms by which these gases enter the vacuum space and their effects on the pressure in the vacuum chamber are discussed. In a long-duration experiment with four stainless steel chambers of the above dimensions and equipped with a chemical getter, the vacuum pressures were monitored for a period of two years. In that period, the measured pressure increase stayed within 0.01 Pa. This study can be used to guide the design of long-lifetime micro vacuum chambers that operate without continuous mechanical pumping.

  10. A genetic algorithm optimization technique for compact high intensity cooler design

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, T.S.; Dhingra, A.K.; Landis, F.; Kojasoy, G. [Univ. of Wisconsin, Milwaukee, WI (United States). Dept. of Mechanical Engineering

    1995-12-31

    This paper initially reviews the operation and design criteria for a compact high intensity cooler (CHIC) unit as used in avionic equipment. Here high heat loads are dissipated via multiple impinging jets fed sequentially through a series of fins connected with a bus bar to the heat source. The analytical basis for the heat transfer design, most of which has been published previously, is shown to predict the performance of CHIC units to a high degree of accuracy. This then permits an approach at optimizing the design. Most optimization techniques depend on continuous variables, while in the design of a CHIC unit many of the critical geometrical variables must assume discrete values. A genetic algorithm, generally not well known in engineering circles, that looks for an optimum by simulating an evolutionary process was found to be satisfactory for this problem with its mixture of discrete and continuous variables. It is also shown that in an actual optimization problem, where the fluid pressure drop across the unit has to be balanced against a low overall thermal resistance, an optimum geometrical design can be determined. This design is an improvement over the empirical best design previously reported the literature.

  11. Upgrade of the radio frequency quadrupole cooler and buncher for the HIE-ISOLDE project

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, Carla, E-mail: cbabcock@cern.ch; Giles, Tim, E-mail: tgiles@cern.ch

    2013-12-15

    Highlights: • Simulations show pressure inside trap needs to be near 0.1 mbar for optimal emittance. • Misalignment of 0.75 mm measured and corrected for. • Installation in HIE-ISOLDE will require design changes associated with new position -- Abstract: The upgrade to the ISOLDE facility, HIE-ISOLDE, will include an upgrade to the RFQCB (radio frequency quadrupole cooler and buncher), the focus of which will be fixing the problems of alignment with the current machine, improving the integrity of the vacuum system, stabilizing the internal gas pressure, and the changes associated with a new position. The beam passage inside the RFQCB has been simulated with an independent code to highlight the importance of the internal gas pressure, to motivate design changes in the new RFQCB and to explain ways to improve the performance of the current machine. The suspected misalignment of ISCOOL has been quantified, and, using a simulation of ions passing through the external injection electrodes, the effect of the misalignment on machine acceptance has been detailed. Plans for the future RFQCB test stand and HIE-ISOLDE installation have been outlined.

  12. Improving eco-sustainable characteristics and energy efficiency of evaporative fluid cooler via experimental and numerical study

    Directory of Open Access Journals (Sweden)

    Rašković Predrag O.

    2008-01-01

    Full Text Available This paper presents an on-going research project that aims to identify possibilities for wider use of evaporative cooling in process industry, especially the use of evaporative fluid cooler units. Experimental study is performed on small scale evaporative fluid cooler, while the correlation based model has been carried out to explore the detailed heat and mass transfer processes inside this unit. Numerical integration of mathematical model is executed by new approach, based on differential, collocation Simpson method. Proposed models have been verified by comparing the computed results with those obtained by the experimental measurements. The results of research will enable the creation of more comprehensive simulation software, with wider range of operating and construction parameters.

  13. Side-effects of the space charge field introduced by a hollow electron beam in the electron cooler of CSRm

    Science.gov (United States)

    Tang, Mei-Tang; Yang, Xiao-Dong; Mao, Li-Jun; Li, Jie; Ma, Xiao-Ming; Yan, Tai-Lai; Zheng, Wen-Heng; Zhao, He; Wu, Bo; Wang, Geng; Ruan, Shuang; Sha, Xiao-Ping

    2015-12-01

    An electron cooler is used to improve the quality of the ion beam in a synchrotron; however it also introduces a nonlinear electromagnetic field to the accelerator, which causes tune shift, tune spread and may drive resonances leading to ion beam loss. In this paper the tune shift and the tune spread caused by the nonlinear electromagnetic field of a hollow electron beam is investigated, and the resonance driving terms of the nonlinear electromagnetic field are analysed. The differences are presented compared with a solid electron beam. Calculations are performed for 238U32+ ions of energy 1.272 MeV stored in the main Cooler Storage Ring (CSRm) at the Institute of Modern Physics, Lanzhou. It is found that in this situation the nonlinear field caused by the hollow electron beam does not lead to serious resonances. Supported by National Natural Science Foundation of China (11375245)

  14. Micro-jitter attenuation of spaceborne cooler by using a blade-type hyperelastic shape memory alloy passive isolator

    Science.gov (United States)

    Kwon, Seong-Cheol; Jeon, Young-Hyeon; Oh, Hyun-Ung

    2017-10-01

    In this study, the primary design objective is to develop a passive isolator that can guarantee structural safety of the cooler assembly in a launch vibration environment without a launch locking mechanism, while effectively isolating the cooler-induced micro-jitter during the on-orbit operation of the cooler. To achieve the design objective, we focused on the utilization of characteristics of the hyperelastic shape memory effects. The major advantage of the isolator is that the micro-jitter isolation performance is much less sensitive to the aligned position of the isolator in comparison with the conventional isolator. Moreover, implementation of an additional 0g compensation device during a satellite level on-ground test, such as a jitter measurement test, is not required. In this study, the basic characteristics of the isolator were measured using the torque test and free vibration test. The micro-jitter attenuation capability and position sensitivity of the proposed isolator design were validated by the micro-jitter measurement test.

  15. Vacuum packaging of InGaAs focal plane array with four-stage thermoelectric cooler

    Science.gov (United States)

    Mo, De-feng; Liu, Da-fu; Yang, Li-yi; Xu, Qin-fei; Li, Xue

    2013-09-01

    The InGaAs focal plane array (FPA) detectors, covering the near-infrared 1~2.4 μm wavelength range, have been developed for application in space-based spectroscopy of the Earth atmosphere. This paper shows an all-metal vacuum package design for area array InGaAs detector of 1024×64 pixels, and its architecture will be given. Four-stage thermoelectric cooler (TEC) is used to cool down the FPA chip. To acquire high heat dissipation for TEC's Joule-heat, tungsten copper (CuW80) and kovar (4J29) is used as motherboard and cavity material respectively which joined by brazing. The heat loss including conduction, convection and radiation is analyzed. Finite element model is established to analyze the temperature uniformity of the chip substrate which is made of aluminum nitride (AlN). The performance of The TEC with and without heat load in vacuum condition is tested. The results show that the heat load has little influence to current-voltage relationship of TEC. The temperature difference (ΔT) increases as the input current increases. A linear relationship exists between heat load and ΔT of the TEC. Theoretical analysis and calculation show that the heat loss of radiation and conduction is about 187 mW and 82 mW respectively. Considering the Joule-heat of readout circuit and the heat loss of radiation and conduction, the FPA for a 220 K operation at room temperature can be achieved. As the thickness of AlN chip substrate is thicker than 1 millimeter, the temperature difference can be less than 0.3 K.

  16. The influence of Thomson effect in the performance optimization of a two stage thermoelectric cooler

    Science.gov (United States)

    Kaushik, S. C.; Manikandan, S.

    2015-12-01

    The exoreversible and irreversible thermodynamic models of a two stage thermoelectric cooler (TTEC) considering Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction effects have been investigated using exergy analysis. New expressions for the interstage temperature, optimum current for the maximum cooling power, energy and exergy efficiency conditions, energy efficiency and exergy efficiency of a TTEC are derived as well. The number of thermocouples in the first and second stages of a TTEC for the maximum cooling power, energy and exergy efficiency conditions are optimized. The results show that the exergy efficiency is lower than the energy efficiency e.g., in an irreversible TTEC with total 30 thermocouples, heat sink temperature (TH) of 300 K and heat source temperature (TC) of 280 K, the obtained maximum cooling power, maximum energy and exergy efficiency are 20.37 W, 0.7147 and 5.10% respectively. It has been found that the Thomson effect increases the cooling power and energy efficiency of the TTEC system e.g., in the exoreversible TTEC the cooling power and energy efficiency increased from 14.87 W to 16.36 W and from 0.4079 to 0.4998 respectively for ΔTC of 40 K when Thomson effect is considered. It has also been found that the heat transfer area at the hot side of an irreversible TTEC should be higher than the cold side for maximum performance operation. This study will help in the designing of the actual multistage thermoelectric cooling systems.

  17. Developments for the HITRAP cooler trap and mass measurements around A = 96 at SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Koszudowski, Stephen

    2009-07-08

    The HITRAP (Highly charged Ions Trap) facility is currently being set up and commissioned at GSI in Darmstadt. It will provide bunches of 10{sup 5} heavy highly-charged ions, for example hydrogen-like uranium (U{sup 91+}), to high-precision atomic physics experiments. The ions are produced by the GSI accelerator complex and decelerated to 4 MeV/u in the Experimental Storage Ring. Then the ions are decelerated by a two-step linear decelerator down to 6 keV/u. The first deceleration step down to 500 keV/u was successfully commissioned. The decelerated ions are injected into a Penning trap (the Cooler Trap), where they are cooled to 4 K by electron and resistive cooling. Resonant circuits for non-destructive detection and the resistive cooling of the trapped particles were designed and tested. The time control of the trap-cycle (trapping, cooling, extraction) with a time resolution of 25 ns was implemented into the control system CS. CS is also used at the mass measurement Penning trap SHIPTRAP, where the new time control is successfully operated. SHIPTRAP measures radioactive ions stemming from fusion evaporation reactions at the velocity filter SHIP. The masses of 9 nuclides ({sup 93,94,95}Technetium, {sup 94,96}Ruthenium, {sup 95,96,97,98}Rhodium) near the line of stability were precisely measured and compared with the Atomic Mass Evaluation. The detection of isomeric states with the present SHIPTRAP set-up was studied. (orig.)

  18. Study on a Miniature Mixed-gases Joule-Thomson Cooler Driven by an Oil-lubricated Mini-compressor for 120 K Temperature Ranges

    Science.gov (United States)

    Gong, M. Q.; Wu, J. F.; Yan, B.; Zou, X.; Zhuang, X. R.; Hu, Q. G.

    In this paper, a miniature J-T cooler using multicomponent mixtures was developed and tested, in which an oil-lubricated mini-compressor was used. Experimental tests on the performance of the miniature J-T cooler were carried out with two kinds of recuperative heat exchangers. One is a shell-and-tube heat exchanger, and the other is a plate-fin type recuperative heat exchanger with whereas a micro-channel configuration fabricated by the wire-electrode cutting method. The former one gave a no-load minimum temperature of 140 K, while the later one showsbetter performance. No-load minimum temperature of 110 K and about 4 W cooling capacity at 118 K were achieved with the plate-fin micro J-T cooler. Such miniature J-T coolers driven by oil-lubricated mini-compressors show good prospects in many applications.

  19. Tubular Ridge Surfaces with Intensified Heat Exchange and Technology of Their Manufacturing for Air Coolers of Fuel and Energy Complex

    Directory of Open Access Journals (Sweden)

    V. Кuntysh

    2013-01-01

    Full Text Available The paper presents designs of bimetallic ridge pipes (BRP with spirally-wound aluminium KLM-edges for heat exchange air coolers. Heat exchange BRP differ from the applied ones in heat-transfer coefficient which is higher by 10–15 %, extended temperature of applicability up to 320 °С for a cooled heat carrier at the pipe input, higher thermal reliability at alternating thermal burdens, current consumption for their manufacturing which is less by 1.8–2.5-fold, aluminium consumption which is less up to 1.8-fold, manufacturability in batch production,  availability high-production equipment.

  20. Investigation of the composition of emissions from the vent of a carbon disulfide column condenser-cooler

    Energy Technology Data Exchange (ETDEWEB)

    Lisina, L.A.; Yaroslavskaya, T.A.; Ivanova, V.V.

    1983-01-01

    The gas-vapor mixture entering the atmosphere from the condenser-cooler vent consists not only of hydrocarbon vapors, but also noncondensing gases. On an increase in the temperature of the gas-vapor mixture there is an increase in the quantity of emissions, as well as an increase in the volatility of the hydrocarbons, with a decrease in the solubility of the gases. The noncondensing gases present in the crude benzol are apparently absorbed by the wash oil from the coke oven gas.

  1. Containment fan cooler heat transfer calculation during main steam line break for Maanshan PWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw; Kao, Lain-Su, E-mail: lskao@iner.gov.tw

    2013-10-15

    Highlights: • Evaluate component cooling water (CCW) thermal response during MSLB for Maanshan. • Using GOTHIC to calculate CCW temperature and determine time required to boil CCW. • Both convective and condensation heat transfer from the air side are considered. • Boiling will not occur since T{sub B} is sufficiently longer than CCW pump restart time. -- Abstract: A thermal analysis has been performed for the Containment Fan Cooler Unit (FCU) during Main Steam Line Break (MSLB) accident, concurrent with loss of offsite power, for Maanshan PWR plant. The analysis is performed in order to address the waterhammer and two-phase flow issues discussed in USNRC's Generic Letter 96-06 (GL 96-06). Maanshan plant is a twin-unit Westinghouse 3-loop PWR currently operated at rated core thermal power of 2822 MWt for each unit. The design basis for containment temperature is Main Steam Line Break (MSLB) accident at power of 2830.5 MWt, which results in peak vapor temperature of 387.6 °F. The design is such that when MSLB occurs concurrent with loss of offsite power (MSLB/LOOP), both the coolant pump on the secondary side and the fan on the air side of the FCU loose power and coast down. The pump has little inertia and coasts down in 2–3 s, while the FCU fan coasts down over much longer period. Before the pump is restored through emergency diesel generator, there is potential for boiling the coolant in the cooling coils by the high-temperature air/steam mixture entering the FCU. The time to boiling depends on the operating pressure of the coolant before the pump is restored. The prediction of the time to boiling is important because it determines whether there is potential for waterhammer or two-phase flow to occur before the pump is restored. If boiling occurs then there exists steam region in the pipe, which may cause the so called condensation induced waterhammer or column closure waterhammer. In either case, a great amount of effort has to be spent to

  2. A Harmonic Kicker Scheme for the Circulator Cooler Ring in the Proposed Medium Energy Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, Edward W.; Hutton, Andrew M.; Kimber, Andrew J.

    2013-06-01

    The current electron cooler design for the proposed Medium Energy Electron-Ion collider (MEIC) at Jefferson Lab utilizes a circulator ring for reuse of the cooling electron bunch up to 100 times to cool the ion beams. This cooler requires a fast kicker system for injecting and extracting individual bunches in the circulator ring. Such a kicker must work at a high repetition rate, up to 7.5 to 75 MHz depending on the number of turns in the recirculator ring. It also must have a very short rise and fall time (of order of 1 ns) such that it will kick an individual bunch without disturbing the others in the ring. Both requirements are orders of magnitude beyond the present state-of-the-art as well as the goals of other on-going kicker R&D programs such as that for the ILC damping rings. In this paper we report a scheme of creating this fast, high repetition rate kicker by combining RF waveforms at multiple frequencies to create a kicker waveform that will, for example, kick every eleventh bunch while leaving the other ten unperturbed. We also present a possible implementation of this scheme as well as discuss its limitations.

  3. Performance Analysis of a Fiber Reinforced Plastic Oil Cooler Cover Considering the Anisotropic Behavior of the Fiber Reinforced PA66

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-09-01

    Full Text Available In this paper, a simulation method based on an orthogonal anisotropic material is proposed. A numerical example using a simple plate is presented to show the difference in the static performance between the orthogonal anisotropic and the isotropic models. Comparing with the tested modal data of a diesel engine oil cooler cover made by glass fiber reinforced polyamide 66 (PA66, the proposed simulation method was confirmed to be much closer to reality than the general isotropic model. After that, a comprehensive performance comparison between the plastic oil cooler covers with the orthogonal anisotropic and the isotropic fiber orientations was carried out including a static deformation and stress analysis under a pressure-temperature coupled load, a forced response analysis, and an acoustic analysis under real operating conditions. The results show that the stress, the deformation, the peak vibration velocity, and the overall sound power level of the orthogonal anisotropic model are different from that obtained with the isotropic model. More importantly, the proposed method can provide a much more detailed frequency content compared to the isotropic model.

  4. Development of the performance of an alpha-type heat engine by using elbow-bend transposed-fluids heat exchanger as a heater and a cooler

    Energy Technology Data Exchange (ETDEWEB)

    El-Ehwany, A.A.; Hennes, G.M. [Mechanical Power Department, Faculty of Engineering, Ain Shams University, 11566 Cairo (Egypt); Eid, E.I. [Mechanical Department, Faculty of Industrial Education, Suez Canal University, 43515 Suez (Egypt); El-Kenany, E.A. [Technological Development Department, Technological Studies Academy, Workers University, Tanta (Egypt)

    2011-02-15

    In this work, elbow-bend heat exchangers were suggested to be used as a heater and a cooler in an alpha-type Stirling engine. Elbow-bend heat exchanger is a bank of tubes arranged in a quadrant either in line or staggered with different normal and parallel pitches. Eight of such heat exchangers having different dimensions were tested experimentally for steady flow (in a previous work by the same authors). The experimental results were correlated for heat transfer and pressure drop. In the present work, an alpha-Stirling engine with twin parallel cylinders on a common crankcase was suggested to use elbow-bend heat exchangers as a heater and a cooler. In the heater, the flue gases flow inside the tubes and the working gas fluctuates about the heater tubes. In the cooler, the coolant flows inside the cooler tubes and the gas flows about the cooler tubes. A computer program in the form of a spread sheet was prepared to solve numerically the engine cycle in the vision of Schmidt theory. Upon calculations, the most suitable stroke/bore ratio, phase angle and speed were found out for nitrogen as a working gas. In a comparison among the proposed engine and practical ones by the literature, it was found that; the proposed engine delivers about 13% more power per cc per {delta}T than those by the literature at high thermal efficiency level. (author)

  5. Effect of cooler electrons on a compressive ion acoustic solitary wave in a warm ion plasma — Forbidden regions, double layers, and supersolitons

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S. S., E-mail: sukti@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410218 (India); Sekar Iyengar, A. N. [Plasma Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2014-08-15

    It is observed that the presence of a minority component of cooler electrons in a three component plasma plays a deterministic role in the evolution of solitary waves, double layers, or the newly discovered structures called supersolitons. The inclusion of the cooler component of electrons in a single electron plasma produces sharp increase in nonlinearity in spite of a decrease in the overall energy of the system. The effect maximizes at certain critical value of the number density of the cooler component (typically 15%–20%) giving rise to a hump in the amplitude variation profile. For larger amplitudes, the hump leads to a forbidden region in the ambient cooler electron concentration which dissociates the overall existence domain of solitary wave solutions in two distinct parameter regime. It is observed that an inclusion of the cooler component of electrons as low as < 1% affects the plasma system significantly resulting in compressive double layers. The solution is further affected by the cold to hot electron temperature ratio. In an adequately hotter bulk plasma (i.e., moderately low cold to hot electron temperature ratio), the parameter domain of compressive double layers is bounded by a sharp discontinuity in the corresponding amplitude variation profile which may lead to supersolitons.

  6. Investigations for low noise cooling by means of a pulse tube cooler for highly sensitive SQUID magnetometers from high temperature superconductors

    CERN Document Server

    Lienerth, C

    2000-01-01

    110fT/[Root]Hz at 10 Hz. For the discret peaks at the working frequency the vibration compensation is capable of reducing the cooler-generated peaks in the field noise spectrum by a factor of the order of 4. This noise level is low enough for applications such as nondestructive evaluation of materials. For identifying the origin of the remaining disturbances, one has to consider in addition to the residual vibrations also temperature oscillations and oscillating fields from eddy current at the SQUID location. The commercial acceptance of superconducting applications is closely associated with the availability of appropriate cryocoolers that enable continuous operation without the need to re-fill liquid cryogens. For cooling of highly-sensitive HT-SQUID sensors the cryocooler has to meet rather severe demands concerning interference from the cooler itself. In particular, cooler-generated noise from electromagnetic interference (EMI), mechanical vibrations and temperature fluctuations should be below the intrin...

  7. Evaporative Cooler Use Influences Temporal Indoor Relative Humidity but Not Dust Mite Allergen Levels in Homes in a Semi-Arid Climate.

    Directory of Open Access Journals (Sweden)

    James D Johnston

    Full Text Available Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan-Apr and summer (July-Sept, 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction.

  8. The Side-Effects of the Space Charge Field Introduced by Hollow Electron Beam in the Electron Cooler of CSRm

    CERN Document Server

    Tang, Mei-Tang; Mao, Li-Jun; Li, Jie; Ma, Xiao-Ming; Yan, Tai-Lai; Zheng, Wen-Heng; Zhao, He; Wu, Bo; Wang, Geng; Ruan, Shuang; Sha, Xiao-Ping

    2015-01-01

    Electron cooler is used to improve the quality of the beam in synchrotron, however it also introduces nonlinear electromagnetic field, which cause tuneshift, tunespread and may drive resonances leading to beam loss. In this paper the tuneshift and the tunespread caused by nonlinear electromagnetic field of the hollow electron beam was investigated, and the resonance driving terms of the nonlinear electromagnetic field was analysed. The differences were presented comparing with the solid electron beam. The calculations were performed for $^{238}U^{32+}$ ions of energy 1.272MeV stored in CSRm, using the parameters given in table1. The conclusion is that in this situation nonlinear field caused by the hollow electron beam do not lead to serious resonances.

  9. Multi Channels PWM Controller for Thermoelectric Cooler Using a Programmable Logic Device and Lab-Windows CVI

    Directory of Open Access Journals (Sweden)

    Eli FLAXER

    2008-09-01

    Full Text Available We present a complete design of a multi channels PID controller for Thermoelectric Cooler (TEC using a pulse width modulation (PWM technique implemented by a dedicated programmable logic device (PLD programmed by VHDL. The PID control loop is implemented by software written by National Instrument Lab-Windows CVI. Due to the fact that the implementation is by a VHDL and PLD the design is modular, as a result, the circuit is very compact in size and very low cost as compared to any commercial product. In addition, since the control loop is implemented by software running on a personal computer (PC using a C language, it is easy to adjust the controller to various environmental conditions and for a width range of sensors like: a thermo couple (TC, thermistor, resistance temperature detectors (RTD etc. We demonstrate the performance of this circuit as a controller for a small incubator using thermistor as the temperature sensor.

  10. Experimental study on the optimization of general conditions for a free-flow electrophoresis device with a thermoelectric cooler.

    Science.gov (United States)

    Yan, Jian; Yang, Cheng-Zhang; Zhang, Qiang; Liu, Xiao-Ping; Kong, Fan-Zhi; Cao, Cheng-Xi; Jin, Xin-Qiao

    2014-12-01

    With a given free-flow electrophoresis device, reasonable conditions (electric field strength, carrier buffer conductivity, and flow rate) are crucial for an optimized separation. However, there has been no experimental study on how to choose reasonable general conditions for a free-flow electrophoresis device with a thermoelectric cooler in view of Joule heat generation. Herein, comparative experiments were carried out to propose the selection procedure of general conditions in this study. The experimental results demonstrated that appropriate conditions were (i) electrophoresis separation would be destroyed by bubbles caused by more Joule heating. Additionally, a series of applications under the appropriate conditions were performed with samples of model dyes, proteins (bovine serum albumin, myoglobin, and cytochrome c), and cells (Escherichia coli, Streptococcus thermophilus, and Saccharomyces cerevisiae). The separation results showed that under the appropriate conditions, separation efficiency was obviously better than that in the previous experiments with randomly or empirically selected conditions.

  11. Experimental study of the influence of cold heat exchanger geometry on the performance of a co-axial pulse tube cooler

    NARCIS (Netherlands)

    Pang, Xiaomin; Dai, Wei; Wang, Xiaotao; Vanapalli, S.; Luo, Ercang

    2016-01-01

    Improving the performance of the pulse tube cooler is one of the important objectives of the current studies. Besides the phase shifters and regenerators, heat exchangers also play an important role in determining the system efficiency and cooling capacity. A series of experiments on a 10 W @ 77 K c

  12. 10 CFR 431.304 - Uniform test method for the measurement of energy consumption of walk-in coolers and walk-in...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy consumption of walk-in coolers and walk-in freezers. 431.304 Section 431.304 Energy DEPARTMENT OF ENERGY... measuring, pursuant to EPCA, the energy consumption of refrigerated bottled or canned beverage vending...

  13. New technology of waste heat recovery from gas primary cooler%煤气初冷器余热回收新技术

    Institute of Scientific and Technical Information of China (English)

    祝仰勇; 宁述芹; 王健; 梁荣华

    2014-01-01

    开发了初冷器余热回收利用新技术。通过热泵机组,夏季回收初冷器上段循环水余热制取低温水,冬季回收初冷器中段循环水余热加热采暖水,实现了初冷器余热的综合利用,降低了能耗,改善了环境。%This paper introduced a new technology of waste heat recovery from gas primary cooler,by which chilled water can be prepared by recovering the waste heat from the upper stage circulating water of the primary cooler in summer and heating water can be heated up by recovering the waste heat from the medium stage circulating water of the primary cooler in winter so that the waste heat from the gas primary cooler can be fully utilized,energy consumption can be saved and environment can be improved.

  14. Thermosyphon Cooler Hybrid System for Water Savings in an Energy-Efficient HPC Data Center: Modeling and Installation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Thomas; Liu, Zan; Sickinger, David; Regimbal, Kevin; Martinez, David

    2017-02-01

    The Thermosyphon Cooler Hybrid System (TCHS) integrates the control of a dry heat rejection device, the thermosyphon cooler (TSC), with an open cooling tower. A combination of equipment and controls, this new heat rejection system embraces the 'smart use of water,' using evaporative cooling when it is most advantageous and then saving water and modulating toward increased dry sensible cooling as system operations and ambient weather conditions permit. Innovative fan control strategies ensure the most economical balance between water savings and parasitic fan energy. The unique low-pressure-drop design of the TSC allows water to be cooled directly by the TSC evaporator without risk of bursting tubes in subfreezing ambient conditions. Johnson Controls partnered with the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories to deploy the TSC as a test bed at NREL's high-performance computing (HPC) data center in the first half of 2016. Located in NREL's Energy Systems Integration Facility (ESIF), this HPC data center has achieved an annualized average power usage effectiveness rating of 1.06 or better since 2012. Warm-water liquid cooling is used to capture heat generated by computer systems direct to water; that waste heat is either reused as the primary heat source in the ESIF building or rejected using evaporative cooling. This data center is the single largest source of water and power demand on the NREL campus, using about 7,600 m3 (2.0 million gal) of water during the past year with an hourly average IT load of nearly 1 MW (3.4 million Btu/h) -- so dramatically reducing water use while continuing efficient data center operations is of significant interest. Because Sandia's climate is similar to NREL's, this new heat rejection system being deployed at NREL has gained interest at Sandia. Sandia's data centers utilize an hourly average of 8.5 MW (29 million Btu/h) and are also one of the largest consumers of

  15. Comparative study in LTC Combustion between a short HP EGR loop without cooler and a variable lift and duration system

    Energy Technology Data Exchange (ETDEWEB)

    Bression, Guillaume; Pacaud, Pierre; Soleri, Dominique; Cessou, Jerome [IFP (France); Azoulay, David [Renault Powertrain Div. (France); Lawrence, David [Mechadyne (United Kingdom); Doradoux, Laurent; Guerrassi, Noureddine [Delphi Diesel Systems (France)

    2008-07-01

    In order to reach future Diesel emission standards such as Euro 6 or Tier 2 Bin 5, NO{sub x} emissions need to be dramatically reduced. Advanced technologies and engine settings such as higher EGR rates, reduced compression ratio, EGR cooler and low-pressure EGR loop - depending on vehicle application - may help to reach this target whilst maintaining low CO{sub 2} emissions and fuel consumption. However, the resulting low combustion temperatures and the low air-fuel ratios lead to a significant increase in HC and CO emissions, especially during the start-up phase prior to catalyst light-off. Moreover, high levels of EGR make transient operation even more difficult. So HC-CO emissions and EGR transient operation represent two key issues that could limit the extension of this alternative combustion mode. Consequently, an in-depth investigation of a variable lift and duration (VLD) system was performed to overcome these problems on a 4-cylinder engine, which was also equipped with a dual HP-LP EGR loop. The VLD system tested in this paper produces a variable camshaft-operated exhaust valve re-opening, which is controlled by a hydraulic rotary actuator, ensuring quick and accurate regulation of the internal gas recirculation (IGR). By increasing gas temperature in the combustion chamber, this advanced technology allows us to reduce HC-CO emissions by 50% under 3 bar BMEP. Although efficient, this technology has to be compared with other solutions from a cost-to-value point of view. The aim of this paper is firstly to compare the double lift exhaust system with a short route high-performance EGR loop without cooler by quantifying their respective gains on steady state points of the NEDC cycle, then by evaluating their potential performances during transient conditions. With the short-route EGR, the potential in HC-CO emission reduction remains significant on a large scale of engine temperatures representative of engine warm up. However, the VLD system allows us to

  16. Shaping of nested potentials for electron cooling of highly-charged ions in a cooler Penning trap

    Science.gov (United States)

    Paul, Stefan; Kootte, Brian; Lascar, Daniel; Gwinner, Gerald; Dilling, Jens; Titan Collaboration

    2016-09-01

    TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) is dedicated to mass spectrometry and decay spectroscopy of short-lived radioactive nuclides in a series of ion traps including a precision Penning trap. In order to boost the achievable precision of mass measurements TITAN deploys an Electron Beam Ion Trap (EBIT) providing Highly-Charged Ions (HCI). However, the charge breeding process in the EBIT leads to an increase in the ion bunch's energy spread which is detrimental to the overall precision gain. To reduce this effect a new cylindrical Cooler PEnning Trap (CPET) is being commissioned to sympathetically cool the HCI via a simultaneously trapped electron plasma. Simultaneous trapping of ions and electrons requires a high level of control over the nested potential landscape and sophisticated switching schemes for the voltages on CPET's multiple ring electrodes. For this purpose, we are currently setting up a new experimental control system for multi-channel voltage switching. The control system employs a Raspberry Pi communicating with a digital-to-analog board via a serial peripheral interface. We report on the implementation of the voltage control system and its performance with respect to electron and ion manipulation in CPET. University of British Columbia, Vancouver, BC, Canada.

  17. Application Effect of Dual-disk Cooler%双盘冷却器的使用效果

    Institute of Scientific and Technical Information of China (English)

    吴毅

    2012-01-01

    分析了不同砂冷却设备的原理、结构及使用情况,对比了采用双盘冷却器替换沸腾冷却床的效果,指出对于结构比较复杂且表面积大,浇注温度较高,砂芯用量较多和铁砂比较高的铸件,尤其是汽车缸体类铸件的生产,必须根据实际的生产状况选择合适的设备才能保证型砂质量。%The principle, structure and service condition of different sand cooling equipments was analyzed. The effects of fluidized cooling bed and dual-disk cooler were compared. It's pointed out that the appropriate equipments should be selected to ensure molding sand quality in production of castings with complex structure, and large superficial area, higher pouring temperature and more sand core, especially for automobile cylinders.

  18. Optimal design of an atmospheric water generator (AWG) based on thermo-electric cooler (TEC) for drought in rural area

    Science.gov (United States)

    Suryaningsih, Sri; Nurhilal, Otong

    2016-02-01

    Drinking water availability is a major issue in some rural area in Indonesia during the summer season due to lack of rainfall, which peoples in this area have to fetch the water a few kilometers away from home. The Atmospheric Water Generator (AWG) is one of the alternative solution for fresh water recovery from atmosphere which is directly condensed the moisture content of water vapor from the air. This paper presents the method to develop a prototype of an AWG based on Thermo-electric cooler (TEC) that used 12 Volt DC, hence its suitability for using renewable energy resource. Computational Fluid Dynamics (CFD) is utilized to optimize the design process in the flow region only, it's not suitable for recent CFD software to use in Multi physics, because inaccuracy, cost and time saving. Some parameters such as temperature, moisture content, air flow, pressure, form of air flow channel and the water productivity per unit input of energy are to be considered. The result is presented as an experimental prototype of an AWG based on TEC and compared with other conventional commercial products.

  19. Examples of cooler reflective streets for urban heat-island mitigation : Portland cement concrete and chip seals

    Energy Technology Data Exchange (ETDEWEB)

    Pomerantz, M.; Akbari, H.; Chang, S.-C.; Levinson, R.; Pon, B.

    2003-04-30

    Part of the urban heat island effect can be attributed to dark pavements that are commonly used on streets and parking lots. In this paper we consider two light colored, hence cooler, alternative paving materials that are in actual use in cities today. These are Portland cement concrete (PCC) pavements and chip seals. We report measurements of the albedos of some PCC and chip sealed pavements in the San Francisco Bay Area. The albedos of the PCC pavements ranged from about 0.18 to 0.35. The temperatures of some PCC pavements are also measured and calculated. We then consider how the albedos of the constituent materials of the PCC (stone, sand and cement) contribute to the albedos of the resulting finished concrete. The albedos of a set of chip sealed pavements in San Jose, CA, were measured and correlated with the times of their placement. It is found that the albedos decrease with age (and use) but remain higher than that of standard asphalt concrete (AC) for about five years. After t hat, the albedos of the chip seals are about 0.12, similar to aged AC. The fact that many PCC pavements have albedos at least twice as high as aged AC suggests that it is possible to have pavement albedos that remain high for many years.

  20. Design instructions for condensers and recirculation coolers with axial blowers; Auslegungshinweis fuer Verfluessiger und Rueckkuehler mit Axialventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Handschuh, R. [Hans Guentner GmbH, Fuerstenfeldbruck (Germany)

    2003-07-01

    Apart from an explanation of the selectrion criteria for condensers and recirculation coolers with axial blowers for outside installation, information is presented on sound propagation. Selection according to the condensing capacity O{sub c}, the recooling rate Q{sub H} and the available floor space can be made with the aid of the Guentner Product Calculator GPC. Permissible noise emissions and adjacent installation of condensers and recoolers are gone into as well as noise propagation as a function of external noise, noise direction, noise reflection, the number of noise sources, the distance of the noise source from the emission point, and possible noise abatement factors are gone into as well. (orig.) [German] Neben der Erlaeuterung der Auswahlkriterien fuer Verfluessiger und Rueckkuehler mit Axialventilatoren zur Aufstellung im Freien werden Hinweise fuer die Schallausbreitung gegeben. Die Auswahl nach der Verfluessigungsleistung Q{sub c} bzw. der Rueckkuehlleistung Q{sub H} und der vorhandenen Aufstellflaeche kann mit dem Guentner Product Calculator GPC geschehen. Es wird auf die zulaessige Geraeuschimmission auf die Nachbarschaft von Verfluessigern und Rueckkuehlern eingegangen und deren Schallausbreitung in Abhaengigkeit von Fremdgeraeuscheinwirkungen, Schallrichtwirkung, der Schallreflexion, der Anzahl der Schallquellen, der Entfernung der Schallquelle zur Emissionsstelle und moegliche Daempfungen betrachtet. (orig.)

  1. 两种新型油冷却器传热性能对比实验研究%Two Kinds of New Type of High-efficiency Oil Cooler Heat Transfer Performance Contrast Experimental Research

    Institute of Scientific and Technical Information of China (English)

    梁建活; 江楠; 曾纪成

    2014-01-01

    The experimental validation is used to study the heat transfer performance of two kinds of high-efficiency oil cooler.A fin tube type oil cooler with aluminum fin tubes supported by segmental baffles and an oil cooler with spiral tubes supported by helical baffles are explored in the research respectively.The test results show that the fin tube type oil cooler get a better com-prehensive performance.The heat flow rate of fin tube type oil cooler is larger and the pressure drop through the shell pass is smaller than the values of the helical baffle oil cooler under the same condition of low to moderate oil flow rate.The heat transfer capacity of unit pressure drop in the fin tube type oil cooler is 1 .5 times as that of the helical baffle oil cooler.Furthermore,the compact structure of the fin tube type oil cooler is good enough to meet the development trend of miniaturization equipment and high efficiency.%对采用铝翅片扩展表面与弓形折流板支撑结构相结合的新型叠片式油冷却器和采用螺纹强化管的螺旋折流板油冷却器分别进行实验测试研究。结果表明,叠片式油冷却器具有更优良的综合性能;在中、小油流量时,其热交换量大、壳程压降较小,单位压降下的换热量要比螺旋折流板油冷却器约高50%,结构的紧凑性能够较好地满足设备小型及高效的发展趋势。

  2. A Computational Model for Two-stage 4K-Pulse Tube Cooler: Part I.Theoretical Model and Numerical Method

    Institute of Scientific and Technical Information of China (English)

    Y.L. Ju; A.T.A.M. de Waele

    2001-01-01

    A new mixed Eulerian-Lagrangian computational model for simulating and visualizing the internal processes and the variations of dynamic parameters of a two-stage pulse tube cooler (PTC) operating at 4 K-temperature region has been developed. We use the Lagrangian method, a set of moving grids, to follow the exact tracks of gas particles as they move with pressure oscillation in the pulse tube to avoid any numerical false diffusion. The Eulerian approach, a set of fixed computational grids, is used to simulate the variations of dynamic parameters in the regenerator. A variety of physical factors, such as real thermal properties of helium, multi-layered magnetic regenerative materials, pressure drop and heat transfer in the regenerator, and heat exchangers, are taken into account in this model. The present modeling is very effective for visualizing the internal physical processes in 4 K-pulse tube coolers.

  3. Capability of 19-L polycarbonate plastic water cooler containers for efficient solar water disinfection (SODIS): Field case studies in India, Bahrain and Spain

    OpenAIRE

    Mathur, Chandana

    2015-01-01

    The small treated volume (typically ~2 L) associated with polyethylene terephthalate (PET) bottles that are most frequently used in solar water disinfection (SODIS), is a major obstacle to uptake of this water treatment technology in resource-poor environments. In order to address this problem we have conducted a series of experiments in Spain, Bahrain and India, to assess the efficacy of large volume (19 L) transparent plastic (polycarbonate) water cooler/dispenser containers (WDCs)...

  4. Capability of 19-litre polycarbonate plastic water cooler containers for efficient solar water disinfection (SODIS): field case studies in India, Bahrain and Spain.

    OpenAIRE

    Keogh, Michael B; Castro-Alférez, M; Polo-López, M I; Calderero, I Fernández; Al-Eryani, Y A; Joseph-Titus, C; Sawant, B; R Dhodapkar; Mathur, C; McGuigan, Kevin G; Fernández-Ibáñez, P.

    2015-01-01

    The small treated volume (typically ~2 litres) associated with polyethylene terephthalate (PET) bottles that are most frequently used in solar water disinfection (SODIS), is a major obstacle to uptake of this water treatment technology in the developing world. In order to address this problem we have conducted a series of experiments in Spain, Bahrain and India, to assess the efficacy of large volume (19 litres) transparent plastic (polycarbonate) water cooler/dispenser containers (WDCs) as S...

  5. Were the tropics significantly cooler during the last glacial maximum?; Des tropiques plus frais qu`aujourd`hui au dernier maximum glaciaire?

    Energy Technology Data Exchange (ETDEWEB)

    Stute, M. [Lamont-Doherty Earth Observatory, New York (United States)

    1998-12-31

    A paleo-temperature record derived from noble gases dissolved in groundwater indicates that lowland equatorial Brazil has been about 5 deg C cooler during the glacial maximum that today. This new evidence contradicts the long-held belief that the tropical regions maintained their warm climate during the last glacial maximum. It appears now that the tropical Americas are characterized by a temperature sensitivity comparable to that in higher latitudes. (author) 14 refs.

  6. Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, R. N. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076, India and Government Engineering College Bharuch, Gujarat - 392002 (India); Bapat, S. L.; Atrey, M. D. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076 (India)

    2014-01-29

    The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.

  7. Research of Heat Transfer Model in Rotary Ash Coolers%滚筒冷渣器传热模型的研究

    Institute of Scientific and Technical Information of China (English)

    司小东; 吕俊复; 王巍; 李金晶

    2011-01-01

    分析了携带翅片滚筒冷渣器内灰渣颗粒的流动过程和传热过程,提出了滚筒冷渣器一维轴向传热模型,模型中考虑了渣中未燃尽碳的残余燃烧,模型参数根据文献和实验室实验确定.利用该模型对一台300MW循环流化床锅炉上滚筒冷渣器的温度进行了预测,并与实际运行参数进行了比较.结果表明:该模型可以很好地预测滚筒冷渣器出口灰渣的温度和冷却水温度.%By analyzing the flow and heat transfer process of ash particles in a rotary ash cooler with fins, a one-dimensional heat transfer model was proposed, in which the reburning of residual carbon in bottom ash was considered while the model parameters determined in accordance with relevant reference materials and experimental results. Using the model, temperatures of rotary ash cooler for a 300 MW circulating fluidized bed boiler were predicted, which were then compared with actual operation parameters. Comparison results prove the model to be accurate in predicting ash discharge and cooling water temperatures of rotary ash coolers.

  8. Performance of compact liquid helium free {sup 3}He-{sup 4}He dilution refrigerator directly coupled with GM cooler in TES microcalorimeter operation

    Energy Technology Data Exchange (ETDEWEB)

    Umeno, T; Kamioka, Y; Yoshida, S [Taiyo Nippon Sanso Corporation, 1-3-26 Koyama, Shinagawa-ku, 142-8558 (Japan); Maehata, K; Ishibashi, K [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka-shi, 819-0395 (Japan); Takasaki, K [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1194 (Japan); Tanaka, K [SII NanoTechnology Inc., 36-1 Takenoshita, Oyama-cho, Suntou-gun, Shizuoka-ken, 410-1393 (Japan)], E-mail: Takahiro.Umeno@tn-sanso.co.jp

    2009-02-01

    A superconducting transition edge thermosensor (TES) microcalorimeter was cooled by a compact liquid-helium-free {sup 3}He-{sup 4}He dilution refrigerator with loading a Gifford-McMahon (GM) cooler for detection of LX-ray photons emitted from an {sup 241}Am source. The first and second stages of the GM cooler are directly coupled with the first and the second precool heat exchangers of a stick shaped dilution unit through copper plates in the vacuum chamber, respectively. The circulating {sup 3}He-{sup 4}He gas through the precooled heat exchangers is condensed into a liquid of condense mixture by the isoenthalpic expansion through the Joule-Thomson impedance. A cascade of two mixing chambers are employed for achieving sufficient cooling power. The helium-free dilution refrigerator performs the cooling power of 20 {mu}W at 100 mK. The TES and SQUID chips suffered from mechanical vibrations induced by a reciprocating motion of the displacer of the GM cooler. Detection signals of LX-ray photons emitted from {sup 241}Am source were observed by operating the TES microcalorimeter in severe noise environment induced by mechanical vibrations.

  9. Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid

    Science.gov (United States)

    Mehta, R. N.; Bapat, S. L.; Atrey, M. D.

    2014-01-01

    The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.

  10. Experimental study of the influence of cold heat exchanger geometry on the performance of a co-axial pulse tube cooler

    Science.gov (United States)

    Pang, Xiaomin; Dai, Wei; Wang, Xiaotao; Vanapalli, S.; Luo, Ercang

    2016-09-01

    Improving the performance of the pulse tube cooler is one of the important objectives of the current studies. Besides the phase shifters and regenerators, heat exchangers also play an important role in determining the system efficiency and cooling capacity. A series of experiments on a 10 W @ 77 K class co-axial type pulse tube cooler with different cold heat exchanger geometries are presented in this paper. The cold heat exchangers are made from a copper block with radial slots, cut through using electrical discharge machining. Different slot widths varying from 0.12 mm to 0.4 mm and different slot numbers varying from around 20-60 are investigated, while the length of cold heat exchangers are kept the same. The cold heat exchanger geometry is classified into three groups, namely, constant heat transfer area, constant porosity and constant slot width. The study reveals that a large channel width of 0.4 mm (about ten times the thermal penetration depth of helium gas at 77 K, 100 Hz and 3.5 MPa) shows poor performance, the other results show complicated interaction effects between slot width and slot number. These systematic comparison experiments provide a useful reference for selecting a cold heat exchanger geometry in a practical cooler.

  11. Neotropical eocene coastal floras and [sup 18]O/[sup 16]O-estimated warmer vs. cooler equatorial waters

    Energy Technology Data Exchange (ETDEWEB)

    Graham, A. (Kent State Univ., OH (United States))

    1994-03-01

    The history of the earth's sea-surface temperature (SST) in equatorial regions during the Tertiary is unsettled because of uncertainty as to the presence and extent of glaciers during the Paleogene. The [sup 16]O trapped in glaciers and subsequently released back to the ocean basins as meltwater during interglacials affects the [sup 18]O/[sup 16]O ratio of sea water, one of the variables that must be known for oxygen isotope paleotemperature analysis of calcareous fossils. Estimates of SST range from [approximately]18 to 20 C, assuming an ice-free earth, to [approximately]28 C assuming glaciers were present in the Paleogene. Low latitude SST presently averages 28C, so the former estimate gives a value 8 to 10 C cooler than present, while the latter gives a value as warm or slightly warmer than present. The figures are important for interpreting terrestrial vegetational history because the temperature differential between low and high latitudes is a major factor in determining global climates through the control of poleward transfer of heat. The middle( ) to late Eocene Gatuncillo Formation palynoflora of Panama was deposited at the ocean-continental interface at [approximately]9[degrees]N latitude. The individual components and paleocommunities are distinctly tropical and similar to the present vegetation along the Atlantic coast of southern Central America. This is consistent with data emerging from other recently studied tropical coastal biotas and represents a contribution from paleobiology toward eventually resolving the problem of Eocene equatorial marine environments. Collectively, the evidence is beginning to favor a model of Eocene SST near present values. 50 refs., 1 fig., 2 tabs.

  12. Carbon Nanotube Thermoelectric Coolers

    Science.gov (United States)

    2015-02-06

    conductance. Inside thecentral section of the carbon nanotube, we obtained an impressive Peltier cooling 57 K down from the liquid nitrogentemperature. 15... trapped charges or dipoles) that occur either at the interface between the CNT and the gate dielectric (interface defects) or at some position within... liquid nitrogen temperature 77T  K up to hot 134 8T  K, or decreases from 77T  K down to about cold 20 6T  K, thus evidencing a strong

  13. Can Cooler Heads Prevail?

    Science.gov (United States)

    Rice, A. R.

    2015-12-01

    The significant correlation between dropping temperatures throughout the Pliocene and the concomitant explosive expansion of the Hominid brain has led a number of workers to postulate climate change drove human evolution. Our brain (that of Homo sapiens), comprises 1-2 percent of our body weight but consumes 20 -25 percent of the body's caloric intake. We are "hotheads". Brains are extremely sensitive to overheating but we are endowed with unparalleled thermal regulation, much of it given over to protecting the Central Nervous System (CNS). Will there be reversed trends with global warming? The human brain has been shrinking since the end of the Ice Ages, losing about 150cc over the past 10,000 years. Polar bear skulls have been downsizing as well. Almost all mass extinctions or evolutionary upheavals are attributed to global warming: e.g. the Permian/Triassic (P/T) event, i.e., "The Great Dying", 250 million years ago (~90% of all life forms wiped out); the Paleocene/ Eocene Thermal Maximum (PETM) 55 million years ago. They may be analogs for what might await us. Large creatures, whose body size inhibits cooling, melted away during the PETM. Horses, initially the size of dogs then, reduced to the size of cats. An unanticipated hazard for humans that may attend extreme global warming is dumbing down or needing to retreat to the Poles as did those creatures that survived the P/T event (some references: http://johnhawks.net/research/hawks-2011-brain-size-selection-holocene; Kandel, E. et al Principles of Neural Science 4th ed. New York (US): McGraw-Hill, 2000; Selective Brain Cooling in Early Hominids:phylogenetic and evolutionary implications, Reeser, H., reeser@flmnh.ufl.edu; How the body controls brain temperature; the temperature shielding effect of cerebral blood flow, Mingming Z. et al. J Appl Physiol. 2006 November; 101(5): 1481-1488; news.nationalgeographic.com/ news/2014/03/140327-climate-change-shrinks-salamanders-global-warming-science/; Heat illness and heat stroke, www.ozemedicine.com/wiki/doku.php?id=heat illness 7/3/2010)

  14. Thermoelectric Cooler Design

    Science.gov (United States)

    1992-12-01

    coefficient of performance which is the term to the left of the brackets in equation (36) Egli (Ref. 4: p. 31] and Tipler [Ref. 5:pp 575-576]. H. CASCADED...Thermoelectricity, John Wiley and Sons Inc., 1960. 5. Tipler , P. A., Physics for Scientists and Engineers, 3rd ed., Worth Publishers, 1991. 70 BIBLIOGRAPHY 1

  15. Linear Resonance Cooler.

    Science.gov (United States)

    1985-04-01

    7.0 % % o the testing of an experimental linear motor driven expander using a standard production 1/4W split Stirling Common Module compressor. . - o...3 2.2 Expander Design CTI-CRYOGENICS has long recognized the potential of employing a linear drive motor to assist regenerator displacement and...assessment of the expander’s performance with lip seals and clearance seals for a regenerator comprised of nickel balls. Further comparison of a stainless

  16. RFQ Cooler and Buncher

    Institute of Scientific and Technical Information of China (English)

    HuangWenxue; WangYue; XuHushan; XiaoGuoqing; ZhanWenlong

    2003-01-01

    The study of nuclides far from the valley of stability in recent years, with various spectroscopic methods, sets new demands for the handling of the ion beams. A relative old technique that was first proved to be feasible by Paul and his coworkers has been revived by using electromagnetic fields to prevent the low energy ions from losing in the gas. In the past few years, emittance improvement of low-energy radioactive ion beams has gained a lot of interest and several devices for an emittance improver and buncher have been constructed.

  17. Sound propagation in narrow tubes including effects of viscothermal and turbulent damping with application to charge air coolers

    Science.gov (United States)

    Knutsson, Magnus; Åbom, Mats

    2009-02-01

    Charge air coolers (CACs) are used on turbocharged internal combustion engines to enhance the overall gas-exchange performance. The cooling of the charged air results in higher density and thus volumetric efficiency. It is also important for petrol engines that the knock margin increases with reduced charge air temperature. A property that is still not very well investigated is the sound transmission through a CAC. The losses, due to viscous and thermal boundary layers as well as turbulence, in the narrow cooling tubes result in frequency dependent attenuation of the transmitted sound that is significant and dependent on the flow conditions. Normally, the cross-sections of the cooling tubes are neither circular nor rectangular, which is why no analytical solution accounting for a superimposed mean flow exists. The cross-dimensions of the connecting tanks, located on each side of the cooling tubes, are large compared to the diameters of the inlet and outlet ducts. Three-dimensional effects will therefore be important at frequencies significantly lower than the cut-on frequencies of the inlet/outlet ducts. In this study the two-dimensional finite element solution scheme for sound propagation in narrow tubes, including the effect of viscous and thermal boundary layers, originally derived by Astley and Cummings [Wave propagation in catalytic converters: Formulation of the problem and finite element scheme, Journal of Sound and Vibration 188 (5) (1995) 635-657] is used to extract two-ports to represent the cooling tubes. The approximate solutions for sound propagation, accounting for viscothermal and turbulent boundary layers derived by Dokumaci [Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modelling of automobile catalytic converters, Journal of Sound and Vibration 182 (5) (1995) 799-808] and Howe [The damping of sound by wall turbulent shear layers, Journal of the Acoustical Society of America 98 (3) (1995) 1723-1730], are

  18. Explore the Water-cooled Slag Cooler Drum Master Cylinder Structure%滚筒水冷式冷渣机主筒结构探讨

    Institute of Scientific and Technical Information of China (English)

    吴浪

    2014-01-01

    在锅炉系统中,冷渣机对高温炉渣的冷却起着重要的作用,而滚筒水冷式冷渣机因其自身所具有的一些优点得到了较为广泛的应用。在滚筒水冷式冷渣机中,其主筒结构对其性能和工作效率等都会产生直接的影响。针对生产的实际需求,对滚筒水冷式冷渣机进行改进和完善时,要充分考虑主筒结构设计和所要改善的问题,从而使其能够更好地发挥冷却作用。%In the boiler system, slag cooler for cooling high-temperature slag plays an important role, and the cold cylinder water-cooled slag machine has its own advantages has been more widely used. In the cylinder water-cooled slag cooler in the main tube structures have a direct impact on their performance and work efficiency will be. When the actual demand for the production of cylinder water-cooled slag cooler to improve and perfect, to fully consider the master cylinder and the structural design issues to be improved, making it better able to exert a cooling effect.

  19. Air Coolers and Fin Tubes for Heat Transfer Enhancement%空气冷却器及其强化传热翅片管型

    Institute of Scientific and Technical Information of China (English)

    曲燕; 仇性启; 王丽飞

    2012-01-01

    对干式、湿式以及干湿联合式空气冷却器的换热特点、常用的翅片管结构、三维翅片等强化传热翅型以及空气冷却器翅片管的加工工艺、选材等方面进行了综述研究.采用套片式加工工艺的条缝型错置带状三维翅片和采用无屑加工方法成形的锯齿翅片,在较低空气流速下具有较高的传热因子和摩擦因子比,是提高空气冷却器空气侧换热的高效翅片管型,为石化行业空气冷却器翅片管的改造提供参考.%The heat transfer characteristics of dry-type, wet-type and combined type air coolers, and the commonly-used fin-tube structures, the 3D enhanced heat transfer fins and the fin-tube processing as well as the material selection of air coolers were studied, the results show that the slotted 3D fin-tube which boasting of continuous integral technology and the serrated fin-tube which boasting of chipless machining method can enhance the air-side heat transfer efficiency because of their higher heat transfer factor and friction factor at lower air velocity. This provides the reference for upgrading of air cooler' s fin-tube in petrochemical industry.

  20. A Cold Model Experimental Study on the Flow Characterisitcs of Bed Baterial in A Fluidized ed Bottom Ash Cooler in a CFB Boiler

    Institute of Scientific and Technical Information of China (English)

    LuXiaofeng; LiYourong

    2000-01-01

    A cold model experimental study on the flowing characteristics of bed meterial between a fluidized bed ash cooler and a furnace of CFB boiler were discussed in this paper.The research results showed that flowing status of the bed material in a bubbling bed,which was run with a circulating fluidized bed together in parallel operation,was influenced by the pressure difference between the CFB and the bubbling bed,the switch status of unlocking air ,and the structure of the exit of the bubbling bed.There was a circulating flow of bed material between CFB and bubbling bed.

  1. Cryopreservation of encapsulated liver spheroids using a cryogen-free cooler: high functional recovery using a multi-step cooling profile.

    Science.gov (United States)

    Massie, I; Selden, C; Morris, J; Hodgson, H; Fuller, B

    2011-01-01

    Acute liver failure has high mortality with unpredictable onset. A bioartificial liver, comprising alginate-encapsulated HepG2 spheroids, could temporarily replace liver function but must be cryopreservable. For clinical use, contamination risks from liquid coolants for cryopreservation and storage should be minimized. A cryogen-free cooler was compared to nitrogen vapour-controlled cryopreservation of alginate-encapsulated liver cell spheroids (AELS). AELS were cooled using a multi-step, slow-cooling profile in 12 percent v/v Me2SO Celsior and stored in liquid nitrogen; temperatures were recorded throughout, and the AELS were assayed at 24, 48 and 72 hours post-warming and results compared to unfrozen control values. Viability was assessed by fluorescent staining and quantified using image analysis; cell numbers were quantified using nuclear counts, and cell function using albumin synthesis. The cryogen-free cooler performed the cooling profile as desired, apart from one step requiring a rapid cool ramp. Viability, cell numbers and function were similarly decreased in both cryopreserved groups to about 90 percent, 70 percent and 65 percent of the controls respectively. This technology offers a clinic alternative to liquid nitrogen-coolant cryopreservation.

  2. 环冷机密封对烧结余热回收效率影响的研究%Research on Annular Cooler Sealing Influence to Sinter Waste Heat Recovery Efficiency

    Institute of Scientific and Technical Information of China (English)

    徐启明; 兰军鹏; 石伟丽; 高慧文; 顾铮

    2014-01-01

    Take two completely identical sintering machine waste heat recovery systems as testing platform to research the annular cooler sealing influence on sintering waste heat recovery system .The testing result shows that the annular cooler sealing improvement can reduce annular cooler air leakage rate and increase fume volume as well as reducing the fume temperature .However , when the annular cooler blast volume reach certain level , the improve-ment of annular cooler sealing will decrease the waste heat recovery efficiency .The reason is that when the annular cooler blast volume increase , the heat taken from the sinter ore by air will reach limit value and become stable , but the boiler flue gas loss will keep increasing , finally the waste heat recovery system recovery efficiency will decrease .%以两套完全相同的烧结机余热回收系统为测试平台,研究了环冷机密封对烧结余热回收系统的影响。测试结果表明,环冷机密封的改善降低了环冷机漏风率,提高烟气量、同时降低烟气温度。在环冷机鼓风量达到某一特定值时,通过改善环冷机密封反而降低了余热回收效率。这主要是因为环冷机鼓风量增加时,空气从烧结矿中带走的热量会达到一个极限值并趋于稳定,而锅炉的排烟损失始终增加,最终导致余热回收系统的回收效率降低。

  3. 加气母站压缩机冷却器水垢的酸洗清除%Pickling for scale of compressor cooler in primary filling station

    Institute of Scientific and Technical Information of China (English)

    王少杰; 宋玉红

    2013-01-01

    管壳式冷却器是往复式压缩机的重要部件,冷却管附着水垢会降低冷却效率和供气量,影响压缩机性能.以某加气母站压缩机冷却器为例,采取以氨基磺酸、柠檬酸为主的有机酸混合溶液对冷却器进行清洗,有效清除水垢的同时,减少了对冷却系统部件材质的腐蚀.对于气缸、润滑油冷却管等部件的清洗,提出逆流向、分段式清洗方法,解决了因冷却管路复杂而清洗困难的问题.为了降低故障发生率,总结了压缩机日常保养注意事项,对其冷却系统的运行管理具有借鉴意义.%Tubular cooler is an important part of reciprocating compressor. Scale on the cooling pipes will reduce the cooling efficiency and gas supply so as to affect performance of the compressor. Taking compressor coolers in some primary filling station as an example, sulfamic acid and citric acid-based organic acid mixed solutions are used to clean coolers, which can reduce material corrosion of cooling system components in addition to effectively removing the scale. For cleaning of the cylinder, lubricating oil cooling pipe and other parts, the reverse and sectional cleaning method is proposed to solve the problem of difficult cleaning due to the complexity of cooling lines. In order to reduce failure rate, routine maintenance considerations of cooling systems are summarized, which can provide references to the operation and management of compressor cooling systems.

  4. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

  5. 一种安全快捷的空冷器管束现场堵漏技术%Safe and Quick Technology of Air Cooler Plugging

    Institute of Scientific and Technical Information of China (English)

    王明礼

    2011-01-01

    通过对天然气压缩机组空冷器的结构与制造工艺的研究分析,对翅片管泄漏采用了具有安全、快捷、在线显著特点的堵漏新方法,由此达到了不动火封堵泄漏翅片管的目的.%Based on natural gas compressor air cooler structure and manufacture process of research and analysis, new plugging technology of sealing leakage of finned tube was successfully a-dopted, with safe, efficient, on-site plugging. The result showed that the new method achieve not-hot sealing leakage finned tube purpose.

  6. Comparative study between a ceramic evaporative cooler (CEC) and an air-source heat pump applied to a dwelling in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Francisco Javier Rey; Gomez, Eloy Velasco; Gonzalez, Ana Tejero [University of Valladolid, Dept. of Energy and Fluidmechanics, School of Engineering, Paseo del Cauce s/n, C. P. 47011, Valladolid (Spain); Murrieta, Fernando Enrique Flores [University of Quintana Roo, Science and Engineering Division, Blvd. Bahia s/n esq. I. Comonfort. Col. Del Bosque. 77019, Chetumal, Quintana Roo (Mexico)

    2010-10-15

    The study described in this paper aims to evaluate comparatively the interest of an implementation of a ceramic evaporative cooler (CEC) compared to the use of a conventional device such as an air-source heat pump. This comparison is presented in three closely related ways: energy consumption, environmental impact and economic costs. This analysis is based on the hypothetical cooling of a specific room in a dwelling in six Spanish cities, each characterised by a different climate. The behaviour of the CEC in each climate is determined experimentally, reproducing the typical air conditions by an air-treatment unit. The total cooling demand in each city during the summer months is obtained from the data of the thermal load evolution in the room, provided by thermal load calculation software. (author)

  7. Simulations of the HIE-ISOLDE radio frequency quadrupole cooler and buncher vacuum using the Monte Carlo test particle code Molflow

    CERN Document Server

    Hermann, M; Vandoni, G; Kersevan, R

    2013-01-01

    The existing ISOLDE radio frequency quadrupole cooler and buncher (RFQCB) will be upgraded in the framework of the HIE-ISOLDE design study. In order to improve beam properties, the upgrade includes vacuum optimization with the aim of tayloring the overall pressure profile: increasing gas pressure at the injection to enhance cooling and reducing it at the extraction to avoid emittance blow up while the beam is being bunched. This paper describes the vacuum modelling of the present RFQCB using Test Particle Monte Carlo (Molflow+). In order to benchmark the simulation results, real pressure profiles along the existing RFQCB are measured using variable helium flux in the cooling section and compared with the pressure profiles obtained with Molflow+. Vacuum conditions of the improved future RFQCB can then be simulated to validate its design. (C) 2013 Elsevier B.V. All rights reserved.

  8. What do we do, if some of the MICE magnets can't be kept cold using the two-stage coolers?

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-01-26

    Tests of the spectrometer solenoids have not been encouraging in terms of keeping the magnets cold using three 1.5 W (at 4.2 K) coolers. The spectrometer solenoids are being rebuilt with additional cooling capacity at 4.2 K. It is hoped that there will be sufficient 4.2 K cooling to keep the magnets cold. The spectrometer solenoids can be kept cold using liquid helium (up to a boil-off of 20 liters per day). This option does not apply for the other magnets in the MICE cooling channel, because there is not enough liquid helium storage within the magnet cold mass. It is important that the MICE collaboration ask the question, “How do we keep the MICE cooling channel magnets cold, if there isn’t sufficient cooling from the 4.2 K coolers?” This report discusses the cooling requirements at both 40 K and 4.2 K for all three types of MICE cooling channel magnets. This report discusses the steps that must be taken in the magnet fabrication to permit the magnets to be cooled using a small (20 to 40 W) external 4.2 K Claude cycle refrigerator. One must also ask the question as to whether there is enough excess capacity in the decay solenoid refrigerator to cool some of the MICE magnets. A plan for cooling the magnets using a Linde 1400 series refrigerator is presented. A plan for increasing the 4.4 K refrigeration from the existing decay solenoid refrigerator is also presented.

  9. 氨冷凝器漏氨对水冷器设备影响状况及分析%EFFECT ON WATER COOLER BY AMMONIA-LEAK FROM AMMONIA CONDENSER AND ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    高万飞; 唐丛林

    2012-01-01

    The ammonia level in circulation water once ammonia is leaked irom the condenser, me cor- rosion and fouling inside the water-cooler and under-ground piping network are introduced as well as the corrosion on monitoring test-blocks, test-tube of monitoring heat-exchanger and data of fouling sample in wa- ter-cooler are analyzed;all those show that a long-term ammonia-leak from the condenser may cause the wa- ter-cooler to have a fouling deposits and this may directly or in-directly lead to a corrosion increase in the water-cooler.%介绍氨冷凝器氨泄漏后循环水中氨的状况,根据水冷器设备及地下管网腐蚀和结垢的检查情况,以及对监测试片、监测换热器试管的腐蚀情况和水冷器垢样数据的分析情况,表明氨冷凝器长期漏氨对水冷器设备有结垢沉积,并直接和间接引起水冷器设备腐蚀增加。

  10. 蒸发式空冷器强化传热性能%Enhanced heat transfer performance of evaporative air coolers

    Institute of Scientific and Technical Information of China (English)

    朱康玲; 于飞; 戴建军; 赵福臣; 秦国民; 范敦贵

    2014-01-01

    The evaporative air cooler is a complex system whose essential components comprise heat exchanger pipe coil,circulation water pump and fan.As these essential components interact within the system,the optimal combination of which is significant for heat transfer enhancement.The effects of circulation water pump frequency, fan frequency,inlet temperature and fluid rate of the process fluid on the heat transfer performance of evaporative air coolers were experimentally studied.The results show that the heat transfer rate and united heat transfer coefficient outside the tubes all increase continuously with the inlet temperature of the process fluid rising.When the hot water pump frequency increases,the united heat transfer coefficient outside the tubes is unchanged,but the heat transfer rate accordingly increases to a certain extent,then remains stable.The effects of circulation water pump and fan frequencies on the heat transfer performance are not a simple positive correlation,and there exists an optimal coupling.When the inlet temperature of the process fluid is 50 ℃,the optimum heat transfer performance can be obtained as the circulation water pump frequency,the fan frequency and the hot water pump frequency are 30,45,42 Hz respectively.The concept of united heat transfer coefficient outside the tubes was presented and researched,which simplified the process calculation.The results provide the basis for the optimal design and operation of evaporative air coolers.%蒸发式空冷器是由换热盘管、循环水泵和风机等组成的一个复杂系统,系统内部各部件相互影响,优化组合对强化传热至关重要。实验研究了循环水泵频率、风机频率、管内流体进口温度和热水泵频率等因素对蒸发式空冷器传热性能的影响。结果表明:管内流体进口温度增加时,传热速率和管外联合传热系数均呈现持续增加的趋势;热水泵频率增加时,管外联合传热系数基本没有变

  11. The Energy -saving Effect Evaluation of Fuel Gas Cooler%烟气冷却器的节能效果评价

    Institute of Scientific and Technical Information of China (English)

    段立强; 李冉; 杨勇平

    2012-01-01

    By taking full advantage of the waste heat from the flue gas of power plant to heat the condensate by the flue gas cooler can replace part of heat of feeding water heating, thus reducing the steam extraction of the low -pressure (LP) cylinder, which will increase the output power of LP turbine and decrease the unit energy consumption of system. With the reduction of the unit load, the differences of the energy saving effect brought about by the different integration ways of linking gas cooler and the regenerative heater system gradually increases. Meanwhile, the effects of different integration methods on the additional unit consumption of heaters are different. In addition, the corrosion problem is still the bottleneck that will limit the deep use of low - temperature flue gas heat. The breakthrough in material technology will make it possible to further lower the temperature of fuel gas, which will further improve the thermal performance of power plant.%通过烟气冷却器充分利用电站锅炉的排烟余热加热凝结水能够替代部分回热抽汽,减少了回热系统对低压缸的抽汽,使汽轮机做功量增加,机组煤耗降低.烟气冷却器按照不同的联结方式与回热系统的加热器集成后,随着机组负荷的降低,所带来的节煤效果的差别逐渐变大.并且,不同的集成方式对加热器内部附加单耗的影响差异较大.另外,腐蚀问题仍然是限制低温烟气余热深度利用的瓶颈.若能在材料上有所突破,就能得到更低的排烟温度,使机组的热经济性进一步提高.

  12. Compound Evaporative Air Cooler and Its Equipment and Piping Layout%复合型蒸发式空冷器及其设备和管道布置

    Institute of Scientific and Technical Information of China (English)

    郑志伟; 朱大亮; 王浩; 臧红斌

    2016-01-01

    Compound evaporative air cooler is a new kind of effective heat exchange equipment developed in recent years. It has many advantages, such as compact construction, low investment, scale prevention, 'white mist' prevention and high heat transfer efficiency. The equipment layout and piping arrangement of compound evaporative air cooler has its own requirements apart from meeting the general provisions of air cooler. Compared to ordinary air cooler, and with the respect of occupying area, the equipment layout of 'back to back, side by side' was proposed. The piping arrangement was then introduced from respects of the two-phase flow, support of inlet pipe and pipe stress calculation. It was conclude that there is no additional displacement existed in the nozzles in compound evaporative air cooler, and the nozzle stress can be reduced from self-compensation of pipe. What presented herein can be referenced in equipment layout and piping arrangement for compound evaporative air cooler.%复合型蒸发式空冷器是近几年研发的新型高效冷换设备,具有结构紧凑、投资低、防垢防"白雾"、传热效率高等诸多优点.复合空冷的设备及管道布置除要满足空冷器的一般规定外,有其自身特点.通过与普通空冷对比,从占地面积角度介绍其平面布置,提出了"背靠背、面靠面"的设备布置形式;从两相流管道布置、入口管道支撑及管道应力计算方面介绍其管道布置,提出了复合空冷管嘴处不存在附加位移,可通过自然补偿来降低管嘴受力,为复合型蒸发式空冷器的设备及管道布置提供参考.

  13. Entropy Minimum Generation Analysis Of Circular Fin for Air Cooler%空冷器环肋的熵最小化原理分析

    Institute of Scientific and Technical Information of China (English)

    詹福才; 王立新; 荣丁石; 张志荣

    2011-01-01

    Circular fin parameters for regular triangle arrangement tubes of air cooler are analyzed by EMG (entropy minimum generation) principle. The impact of face velocity,bundle width,tube length, tube rows, fin height, fin thickness, fin density and horizontal tube pitch on heat exchange performance and motor power are studied. The results show that lower face velocity,higher and thinner fin, higher fin density, more tube rows and smaller tube pitch can lead to less irreversible loss. The presentations of this paper is applicable for other type of fins optimization design.%运用熵最小化原理对空冷器正三角形排列换热管的环肋进行了优化,分析了迎面风速、管束宽度、换热管长度、管排数、翅片高度、翅片厚度、翅片密度以及管间距对其换热性能和电机功率消耗的影响.结果表明,低迎面风速、高薄翅片、高翅片密度、多管排数和较小的管间距造成的不可逆损失较小.这一分析结果也适用于其它类型翅片的优化设计.

  14. Quadrupole Moments of odd-A 53-63Mn: First use of optical pumping in the ISOLDE cooler/buncher

    Science.gov (United States)

    Babcock, Carla; Collaps Collaboration

    2016-09-01

    The technique of optical pumping has been used in the ISOLDE (CERN) cooler/buncher ion trap in order to study the previously inaccessible quadrupole moments of neutron-rich manganese ions via collinear laser spectroscopy. Previously, the insensitivity of the ground state atomic transitions to the quadrupole interaction prevented the determination of the electric quadrupole moment with any reasonable accuracy. Instead, a transition from an ionic metastable state was used and this state was populated via optical pumping. This was done in the bunching region of the ion trap, to allow multiple laser-ion interactions. Spectroscopic quadrupole moments were measured for the odd-even isotopes in the range 53-63Mn. They were compared to the predictions of three modern shell model effective interactions. The inclusion of both the 1 νg9 / 2 and 2 νd5 / 2 orbitals in the model space was thus shown to be necessary to reproduce the observed increase in the quadrupole deformation from N = 36 onwards. Specifically, the inclusion of the 2 νd5 / 2 orbital induces an increase in neutron and proton excitations across the proposed gaps at N = 40 and Z = 28 , leading to an increase in deformation in the more neutron-rich isotopes.

  15. Phased array ultrasonic technology (PAUT) contribution to detection and sizing of microbially influenced corrosion (MIC) of service water systems and shutdown coolers heat exchangers in OPG CANDU stations

    Energy Technology Data Exchange (ETDEWEB)

    Ciorau, P.; Pullia, L.; Hazelton, T., E-mail: peter.ciorau@opg.com, E-mail: lou.pullia@opg.com, E-mail: trek.hazelton@opg.com [Ontario Power Generation, Toronto, Ontario (Canada); Daks, W. [CAD WIRE, Markham, Ontario (Canada)

    2008-07-01

    Three PAUT techniques [linear scan - longitudinal waves, sector scan -longitudinal waves and sector scan-transverse waves] were developed and validated to assess the MIC attack in service water systems (SWS) and shutdown coolers heat-exchangers (SDC-HX) of Darlington and Pickering CANDU stations. PAUT employs linear array probes with a frequency between 4-12 MHz, depending on surface conditions, component geometry and MIC size/category to be detected. Examples from lab validation and field trials are presented. Based on field trials results, the techniques were optimized and new cal blocks were manufactured. It was demonstrated for mid-length pipes and for SDC-HX, the PAUT is the best technique compared with D-meter conventional UT and with guided waves. The expected field accuracy is about 0.5 mm (0.020{sup )} for large MIC attack. The ligament evaluation is technically achievable for colonies / pin holes located 2 mm under the outer surface. Improvements were identified and implemented for the next outages. (author)

  16. 新型叠片式油冷却器传热及综合性能的研究%Study on Heat Transfer and Comprehensive Performance of a New Laminated Oil Cooler

    Institute of Scientific and Technical Information of China (English)

    魏小兵; 江楠; 梁帅

    2012-01-01

    探讨一种铝叠片和弓形折流板相结合的新型叠片式油冷却器,对其传热及综合性能进行了研究,并与螺纹管弓形折流板油冷却器进行了对比.试验结果表明,新型叠片式油冷却器热交换量较螺纹管弓形折流板油冷却器平均提高52.5%,单位压降热交换量较螺纹管弓形折流板油冷却器平均提高24.1%.在整体结构方面,其单位体积换热面积为螺纹管弓形折流板油冷却器的2.84倍,而材料总重量仅为螺纹管弓形折流板油冷却器的60.7%,说明新型叠片式油冷却器具有体积小、换热面积大、重量轻的优点;从经济效益角度看,新型叠片式油冷却器相比螺纹管弓形折流板油冷却器更加节省耗材成本,体现了新型换热器的高效性、紧凑性和节能性.%The heat transfer and comprehensive performance of a new laminated oil cooler which is combined aluminum plates with segmental baffle in shell side was studied and compared with spiral tube and segmental baffle oil cooler. Experimental results indicated that the heat quantity of new laminated oil cooler improves about 52. 5% than the spiral tube and segmental baffle oil cooler,and the heat quantity unit pressure drop increases about 24.1%. At the aspect of integral structure, its heat transfer area unit volume is 2.84 times as much as the spiral tube and segmental baffle oil cooler,and the total material weight is only 60.1% of the spiral tube and segmental baffle oil cooler, which shows the advantages of small volume, large heat transfer area and light weight;From an economic point view,the new laminated oil cooler saves more material cost than the spiral tube and segmental baffle oil cooler which embodies the high - efficiency , compactness and energy conservation of new type of heat exchanger.

  17. Analysis and Improvement of Problems in Operation of Bottom Ash Cooler of Wind and Water Union%风水联合冷渣器在运行中的问题分析及改进

    Institute of Scientific and Technical Information of China (English)

    王凯; 胡娜娜

    2013-01-01

      风水联合冷渣器广泛应用于大型循环流化床锅炉,但在运行中出现了诸多问题。针对某电厂风水联合冷渣器在运行中出现的问题,提出了改进措施与建议。%Bottom ash cooler of wind and water union was widely used in large-scale circulating fluidized bed boiler. Howev-er, there were many problems in operation. Aiming at problems in operation of bottom ash cooler of wind and water union, the paper was put forward improving measures and suggestions.

  18. 环冷机余热回收与利用系统的能量分析%Energy analysis of waste heat recovery and utilization system for ring cooler

    Institute of Scientific and Technical Information of China (English)

    刘传鹏; 李国俊; 林文佺; 李明浩; 许渡姜; 郁鸿凌

    2015-01-01

    Based on the process of waste heat recovery from sintering and utilization system for ring cooler,the energy flow diagram and the energy flow diagram were draw,the relevant energy evaluation was established. The thermal bal-ance method and exergy analysis were applied to study waste heat utilization in a ring cooler,such as heat loss,energy loss,thermal efficiency and energy efficiency during the process of the conversion and utilization for waste heat resourc-es. The results show that,the thermal efficiency of ring cooler and waste heat boiler were 26.78%and 45.60%,respective-ly,the corresponding energy efficiencies were 22.88%and 45.08%,respectively,hence,ring cooler was the weak link during the recovery and utilization of waste heat system. The main factors affecting the recovery and utilization of waste heat were the air leakage of ring cooler,Un-utilization of sensible heat of the third cooling gas and the process of gas-sol-id heat transfer in sintering bed.%根据某钢厂的环冷机系统回收与利用烧结矿显热的工艺流程,绘制了能流图、(火用)流图,并建立相关能量评价指标,采用热平衡方法和(火用)分析方法对环冷机的余热回收利用状况进行研究,分析了余热资源在回收与利用过程中的热量损失、(火用)量损失、热效率与(火用)效率.结果表明:环冷机、余热锅炉2个环节的热效率分别为26.78%和45.60%,(火用)利用效率分别为22.88%和45.08%,环冷机是余热回收与利用的薄弱环节;目前影响余热回收与利用的主要因素是环冷机取热段的漏风问题、第三段冷却废气所携带的显热尚未被利用以及烧结矿层的气固换热过程.

  19. 平行轴布置的斯特林制冷机设计原理与应用分析%THE PRINCIPLE AND APPLICATIONS OF PARALLEL-AXIS LAYOUT STIRLING COOLER

    Institute of Scientific and Technical Information of China (English)

    孙皓; 陈晓屏

    2015-01-01

    IR imaging system on stabilized platform with gimbals is usually designed employing the linear cryocooler for small vibration. These systems trade off weight,size,and input power. Common rotary Stirling coolers take on bigger vibration than that of linear cooler though more efficient. The rotary cooler possessing parallel-axis layout could have a small effect on platform with high efficiency. This paper depicts the sources of self induced vibration and the characteristic of the stabilized platform. The rotary Stirling cooler is designed according to gimbals. Overturning moment can be coun-tered by the bearings in platform,and then the payload jitter smaller. The new rotary Stirling cooler is compatible with the stabilized platform.%稳定平台光电系统设计常用线性斯特林制冷机以达到振动小的要求,但以牺牲重量、尺寸、功耗为代价。旋转式制冷机功耗低、尺寸小却振动大;设计平行轴布置斯特林制冷机以减小旋转制冷机对稳定平台的振动影响。分析了旋转制冷机振动源与稳定平台框架的系统刚性特点;从系统耦合的角度,通过力学模型分析平行轴布置斯特林制冷机振动源叠加的情况,根据分析结果提出利用稳定平台刚度高的方向吸收制冷机翻倒力矩的激励,降低平台的抖动程度。最后指出平行轴布置斯特林制冷机与框架结合应用的合理性与可行性。

  20. Efficiency Analysis of Ejector Cooler

    Directory of Open Access Journals (Sweden)

    Vytautas Ališauskas

    2017-01-01

    Full Text Available In this article the review of ejection coolers’ constructions and operation principles is presented. The ejection cooler’s with diffe-rent separators work efficiency reates’ dependence from confusor inlet opening’s angle and the cooled water’s temperature is exa-mined.

  1. Integrated Sensing and Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier and Syngas Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Aditya Kumar

    2010-12-30

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a comprehensive systems approach to integrated design of sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant, using advanced model-based techniques. In particular, this program is focused on the model-based sensing and control system design for the core gasification section of an IGCC plant. The overall approach consists of (i) developing a first-principles physics-based dynamic model of the gasification section, (ii) performing model-reduction where needed to derive low-order models suitable for controls analysis and design, (iii) developing a sensing system solution combining online sensors with model-based estimation for important process variables not measured directly, and (iv) optimizing the steady-state and transient operation of the plant for normal operation as well as for startup using model predictive controls (MPC). Initially, available process unit models were implemented in a common platform using Matlab/Simulink{reg_sign}, and appropriate model reduction and model updates were performed to obtain the overall gasification section dynamic model. Also, a set of sensor packages were developed through extensive lab testing and implemented in the Tampa Electric Company IGCC plant at Polk power station in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant operation data was also used to validate the overall gasification section model. The overall dynamic model was then used to develop a sensing solution including a set of online sensors coupled with model-based estimation using nonlinear extended Kalman filter (EKF). Its performance in terms of estimating key unmeasured variables like gasifier temperature, carbon conversion, etc., was studied through extensive simulations in the presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier kinetics, RSC

  2. LOREF: Air cooler optimisation with reduction of ice and frost formation - Optimisation of lamella air-coolers/evaporators of air/water heat pumps - Part 1: theoretical and experimental research; LOREF: Luftkuehler-Optimierung mit Reduktion von Eis- und Frostbildung - Optimierung des Lamellenluftkuehlers/Verdampfers von Luft/Wasser-Waermepumpen - Teil 1: theoretische und experimentelle Untersuchungen

    Energy Technology Data Exchange (ETDEWEB)

    Berlinger, L.; Imholz, M.; Albert, M.; Wellig, B.; Hilfiker, K.

    2008-04-15

    The use of air/water heat pumps for heating of houses is progressively increasing. It is to be expected that the average coefficient of performance (COP) can be improved substantially over the next decade. Its success will depend on controlling and reducing the formation of frost and ice which reduce the air flow and the heat and mass transfer in the fin tube evaporator. In the LOREF research project a mathematical-physical simulation program has been developed which permits to calculate the formation of condensate, ice and frost and also the pressure loss of the air as a function of space and time at any condition of the ambient air. The theoretical results have been validated by numerous experiments in which the air temperature and humidity, the temperature difference and the air velocity have been systematically varied. Particular emphasis has been given to the geometries of the fin tube evaporator. Several fin partitions along the cooler have been investigated. Using the simulation program the evaporator of a commercial heat pump was optimized and experimentally compared to the original evaporator. The resulting seasonal performance factors were nearly equal what confirms the small differences obtained by simulations. Nevertheless, the optimized evaporator features advantages in respect of the defrosting with ambient air because of its bigger fin spacing and the resulting decrease in pressure drop. The results of the LOREF research project are now the basis for the overall optimization of air/water heat pumps. (author)

  3. 铝制冷却器真空钎焊接头界面结构及断口分析%Interface Structure and Fracture Analysis of Aluminum Cooler Vacuum Brazing Joint

    Institute of Scientific and Technical Information of China (English)

    许敬年; 曹秀丽; 冯涛

    2012-01-01

    采用真空钎焊技术研制了一种用于高级轿车的铝制冷却器.采用LT-3铝复合板材进行了焊接试验,分析了钎焊接头的组织,并对所试制的铝制板翅式冷却器进行了水压试验及其断口分析.结果表明,钎焊接头中生成了网状共晶组织,接头中生成了金属间化合物.焊接完成的板翅式冷却器水压试验压力可达到15 kg/cm2以上,钎焊接头断口属于混合断裂,断口表面分布有二次裂纹、韧窝、解理面、沿晶断裂等断裂特征.%A kind of aluminum cooler used for advanced car by adopting vacuum brazing technology was developed. Welding test was conducted by Utilizing LT-3 aluminum composite plate. The structure of brazing joint was analyzed, and hydrostatic test and fracture analysis on fin type cooler of trial produced aluminum composite plate were carried out. The results showed that there are some reticular eutectic structures and intermetallic compound in the brazing joint. The hydrostatic test pressure of fine type cooler can reach more than 15 kg/cm2, the fracture type of the brazing joint is mixed fracture, and secondary cracks, dimples, cleavage planes and intergranular fracture etc. distribute on the surface of the fracture.

  4. 压缩机背腔作为脉冲管制冷机气库的研究%Characterization of a Pulse Tube Cooler With the Compressor Backside as the Reservoir

    Institute of Scientific and Technical Information of China (English)

    王晓涛; 罗二仓; 戴巍; 周远

    2011-01-01

    As one important cryocooler,the pulse tube cooler usually use inertance-tube plus reservoir as the phase shifter.However,this relatively large volume reservoir makes the cooler not to be as compact as the Stirling cryocoolers.The backside of linear compressor also has a large volume. To improve the compactness,the inertance-tube is connected to the backside of compressor.The theoretical model is present to compare the system performance with the reservoir.The simulation results show that this cooler is able to work properly and can achieve a similar cooling performance after optimizing the size of inertance-tube.%脉冲管制冷机是一种重要的小型低温制冷机,通常高频脉冲管制冷机采用惯性管加气库的调相方式,然而较大的气库降低了系统的紧凑性。对于直线压缩机,其背腔也具有较大的体积,为提高系统的紧凑性,本文进行了使用压缩机背腔作为气库用于调相脉冲管制冷机的研究工作。研究结果表明采用这种方案的制冷机是可行的,当背腔体积足够大时,通过调整惯性管尺寸,其性能接近使用独立气库的脉冲管制冷机的性能。

  5. Structural engineering developments in power plant cooling tower construction. 100 years of natural draught cooling towers - from tower cooler to cooling tower. Bautechnische Entwicklungen im Kraftwerkskuehlturmbau. 100 Jahre Naturzugkuehltuerme - vom Kaminkuehler zum Kuehlkamin

    Energy Technology Data Exchange (ETDEWEB)

    Damjakob, H.; Depe, T.; Vrangos, V. (Balcke-Duerr AG, Ratingen (Germany))

    1992-06-01

    Almost exactly 100 years ago, tower-type structures were first used for the production of artificial ventilation for cooling purposes. The shell of these so-called tower coolers, today known as 'natural draught cooling towers', was, from the outset, the subject of multiple structural engineering develepments in respect of design, material, construction and statistical calculation. These developments have been stimulated especially by the spasmodic increase in dimensions in the application of power plant cooling towers and, more recently, in connection with ecological requirements. (orig.).

  6. Experimental Studies and Application of a Composite Fluidized Bed Bottom Ash Cooler%复合式流化床冷渣器的试验研究及工业应用

    Institute of Scientific and Technical Information of China (English)

    曾兵; 卢啸风; 赵鹏; 甘露; 舒茂龙

    2011-01-01

    A novel fluidized bed bottom ash cooler and the main technical characteristics are introduced. Experiments about gas-solid flow characteristics were conducted in a cold test bed. The experiment results show that the separation chamber has a good separation effect on the boiler bottom ash, and the ash flow characteristic is also good. The separation effect has a direct influence on the operation results of the new ash cooler and can be regulated by adjusting the operation and structure parameters. According to the experiment results, the composite fluidized bed bottom ash cooler (CFBAC) has been industrially applied in a 300MW circulating fluidized bed (CFB) unitl The application results show that the CFBAC has a good cooling effect of bottom ash, a well separation effect, an excellent adaptability on particle size and a large discharge capacity over 30 t/h. The CFBAC could be one direction of the future CFB boiler bottom ash cooler.%提出一种新型流化床冷渣器,介绍了其主要技术特点,并对其气固流动特性进行冷态试验研究。试验结果表明,分选仓喷动床结构对锅炉底渣的粗细颗粒分选作用相当明显,灰渣颗粒整体呈“溢流一底流一溢流”方式有较好的流动特性。分选仓分选效果直接决定着该冷渣器的运行效果,可以通过调节运行参数和结构参数来控制。根据试验结果设计的复合式流化床冷渣器已成功应用于某300Mw循环流化床机组冷渣器改造中。工业应用结果表明,该冷渣器具有较好的底渣冷却效果和粗细颗粒分选效果,底渣粒度适应性强,最大出力超过30讹。复合式流化床冷渣器可作为未来大型循环流化床锅炉冷渣器的发展方向之一。

  7. Application of "front-loose back compact" slotted fin in air compressor interstage cooler%“前疏后密”开缝翅片在空压机级间冷却器上的应用

    Institute of Scientific and Technical Information of China (English)

    杨挺; 冯苗根

    2012-01-01

    通过对“前疏后密”开缝翅片和平面翅片的传热、阻力特性的试验结果分析,并结合实际工程的计算分析比较,揭示了开缝翅片的优越性,提出采用“前疏后密“开缝翅片取代平面翅片作为空压机级间冷却器的换热元件,是提高冷却器的换热效率,使产品更新换代的主要发展方向。%The analysis of test results of heat transmission and resistance characteristics of the "front-loose back compact" slotted fin and the plane fin, as well as the calculation analysis in combination with actual project show the advantages of the slotted fin and it is pointed that substitution of the "front-loose back compact " slotted fin for the plane fin as the heat exchanging element of air compressor interstage cooler is the main development trend to improve heat exchange efficiency of cooler and upgrade products

  8. 废液处理系统冷却器热工水力计算研究%The Research of Thermal-hydraulic Calculation for Waste Processing System Cooler

    Institute of Scientific and Technical Information of China (English)

    孙圣权; 刘宇昊; 高峰; 马贞钦; 陈先林; 徐江

    2016-01-01

    As one of the key equipment is cooler radioactive in waste processing system,which will determine whether the system is capable of stable operation. In this paper, a mathematical model based on thermal-hydraulic calculation,by calculation and verification,to ensure that the system can meet the key equipment cooler design and use requirements,this method is similar to the equipment design and testing provided useful experience.%冷却器作为放射性废液处理系统中的关键设备之一,直接决定了系统是否能够稳定运行,本文建立基于热工水力计算的数学模型,通过计算与校核,确保系统关键设备冷却器能够满足设计和使用要求,该方法为类似设备的设计和试验提供了可借鉴的经验。

  9. Examples of cost reduction and energy saving by thermal storage heat pump system. Part 5. Control of the flowering season of alstroemeria by using 'ice storage ground cooler'. Chikunetsushiki heat pump system katsuyo ni yoru costdown sho energy jirei no shokai. 5. 'Kori chikunetsushiki chichu reikyaku sochi' ni yori arusutoromeria no kaika jiki wo chosetsu

    Energy Technology Data Exchange (ETDEWEB)

    1999-07-01

    Alstroemeria has a habit to flower by sensing temperature through an organ in rhizome. Since its market price is higher in late fall and early winter, a culture method cooling the ground in summer is in wide use. Although the ground is cooled with an equipment composed of a chiller, ground piping for heat exchange and cold water pump during the whole day, cost reduction is a major problem. To study a heat storage ground cooler, its culture test was made by using a prototype ice storage ground cooler. The test result showed that ground temperature of both test zone and reference zone was constantly 18-20 degrees C during the test period, and both the whole yield and that every class were nearly equivalent between the test and reference zones. The estimation result on the profitability of a full-scale ice storage ground cooler based on the above result showed that this ground cooler probably can reduce annual electric charge by nearly 200,000 yen as compared with a cooler without heat storage. (NEDO)

  10. Examples of cost reduction and energy saving by thermal storage heat pump system. Part 5. Control of the flowering season of alstroemeria by using `ice storage ground cooler`; Chikunetsushiki heat pump system katsuyo ni yoru costdown sho energy jirei no shokai. 5. `Kori chikunetsushiki chichu reikyaku sochi` ni yori arusutoromeria no kaika jiki wo chosetsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Alstroemeria has a habit to flower by sensing temperature through an organ in rhizome. Since its market price is higher in late fall and early winter, a culture method cooling the ground in summer is in wide use. Although the ground is cooled with an equipment composed of a chiller, ground piping for heat exchange and cold water pump during the whole day, cost reduction is a major problem. To study a heat storage ground cooler, its culture test was made by using a prototype ice storage ground cooler. The test result showed that ground temperature of both test zone and reference zone was constantly 18-20 degrees C during the test period, and both the whole yield and that every class were nearly equivalent between the test and reference zones. The estimation result on the profitability of a full-scale ice storage ground cooler based on the above result showed that this ground cooler probably can reduce annual electric charge by nearly 200,000 yen as compared with a cooler without heat storage. (NEDO)

  11. High-power stirling-type pulse tube cooler for power engineering applications of high temperature superconductivity; Hochleistungspulsrohrkuehler vom Stirling-Typ fuer energietechnische Anwendungen der Hochtemperatursupraleitung

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Marc

    2015-12-15

    For the cooling of high temperature superconducting 4 MVA machines (motors or generators), a single-stage Stirling-type pulse-tube cryocooler was built. The cooling power, which the cryocooler was aimed for, is 80 - 100 W at 30 K with an electrical input power of 10 kW (8 kW pV-power). The advantages of this cooler type compared to traditional cooling concepts are an increased reliability and long maintenance intervals. While single-stage Stirling-type pulse-tube cryocoolers for the temperature range of liquid nitrogen (77 K) are already commercially available, there exist currently no commercial systems for the temperature range near 30 K, which is the important range for applications of high-temperature superconductivity. The experimental setup consisted of a 10 kW linear compressor, type 2S297W, from CFIC Inc. which was used as the pressure wave generator. The compressor was operated by a Micromaster 440 frequency inverter from Siemens, which was controlled by a custom-made computer program. The cold head was made in inline configuration, in order to avoid deflection losses. During the first cool-downs tests a temperature inhomogeneity occurred in the regenerator at low temperature and high pV-power, which was attributed to a constant mass flow (circular dc-flow) within the regenerator. This firstly observed dc-flow, generates a net energy flow from the hot end to the cold end of the regenerator, which reduces the cooling capacity considerably and hence the minimum attainable temperature is severely increased. For the design and optimization of the cold-head, a cryocooler model was initially created using the commercial simulation software Sage, which did not include the regenerator inhomogeneity seen in the experiment. For the modeling of the observed streaming inhomogeneity caused by the dc-flow, the regenerator was replaced by two identical parallel regenerators with variable transverse thermal coupling. In the inhomogeneous case (without dc-flow) the

  12. 低温油封冷却器的结构优化及数值模拟%Structure Optimization and Numerical Simulation of Low-Temperature Oil Seal Cooler

    Institute of Scientific and Technical Information of China (English)

    高海; 喻九阳; 徐建民; 郑小涛; 林纬

    2016-01-01

    Aiming at the shell-and-tube heat transfer existing stagnant zones at the back of baffle,we optimized the structure of the baffle in shell-side of the heat exchanger,and studied the effects of the baffle with round and taper hole on the performance of heat transfer and pressure-drop of the low-temperature oil seal cooler by numeri⁃cal simulation respectively. Result shows that the baffle with round hole is more conductive to reduce stagnant zones at the back of baffle and improve the performance of heat transfer of the cooler when the velocity of shell-side entrance is less than 1.3 m/s;and the baffle with taper hole is more advantageous to enhance the heat transfer of the cooler when the velocity of shell-side entrance is more than 2 m/s. Moreover,the baffles with round and taper hole are beneficial to reduce the pressure-drop of shell-side with almost the same effects.%针对管壳式换热器折流板背部存在流动死区的问题,对换热器壳程折流板的结构进行优化,并且通过数值模拟分别研究了折流板开圆孔和锥形孔对低温油封冷却器换热性能和压降的影响.数值模拟结果表明,当壳程入口速度低于1.3 m/s,折流板开圆孔更有利于减小折流板背部流动死区,改善冷却器壳程的强化传热性能;当壳程入口流速大于2m/s时,折流板开锥形孔更有利于冷却器壳程的强化传热.折流板开圆孔和锥形孔均有利于减小冷却器壳程压降,两者对压降的影响无明显差别.

  13. EBZ-220型掘进机回油冷却器的改造设计%Retrofit Design of Oil Return Cooler in EBZ-220 Tunnel-Boring Machines

    Institute of Scientific and Technical Information of China (English)

    闫品

    2015-01-01

    Through the transformation design of the cooler of EBZ-220 type tunnel-boring machines, the cooling effect of the tunnel-boring machines is greatly improved, the efficiency of boring machine is increased, the failure rate of the tunnel-boring machines is reduced, longer service life is obtained.%通过对EBZ-220型掘进机冷却器的改造设计,大大改善了掘进机的冷却效果,提高了掘进机的使用效率,降低了掘进机故障率,使其效率更高,寿命更长。

  14. The theoretical research on pneumatic defrosting of t'late-fin air COoler%板翅式空气冷却器气动除霜的理论探析

    Institute of Scientific and Technical Information of China (English)

    毛业斌; 费千

    2001-01-01

    在气动除霜实验的基础之上,运用气体动力学理论、边界层理论,对气动除霜的机理进行了探析,指出当气流动力作用大于霜层与翅片的粘附功时,霜层被吹离翅片表面.%The method of pneumatic defrosting breaks through the traditional meaning of “melting”, and it is a newly developed defrosting method. In this paper, based on experiments and with the application of the theory on gas dynamics、 boundary-layer theory, the mechanism of pneumatic defrosting on plate-fin air cooler is studied theoretically. And it is pointed out that when the drive of airflow is greater than the adhesion work of frost, frost will be eliminated.

  15. Status and potential of waste heat recovery from sinter cooler exhaust in Baosteel%宝钢烧结冷却废气余热回收现状与潜力

    Institute of Scientific and Technical Information of China (English)

    周茂军; 鲁健; 应风晔; 张代华

    2011-01-01

    阐述了宝钢股份烧结工序冷却废气余热回收的发展和现状,介绍了宝钢烧结实行废气余热回收的有效措施.为最大限度回收废气余热,降低烧结工序能耗,分析了进一步提高烧结废气余热回收水平的潜力,提出了相应技术思路.%Describes the status and potential of sinter cooler exhaust waste heat recovery, as well as the effective measures that have already taken for that purpose in Baosteel.To maximize the recovery of waste heat and reduce the energy consumption in sintering process, the potential for a further heat recovery form sintering exhaust was analyzed and the corresponding technical strategies were presented.

  16. Syngas Cooler Characteristic in Integrated Gasification Combined Cycle System%整体煤气化联合循环系统中废热锅炉特性研究

    Institute of Scientific and Technical Information of China (English)

    王颖; 邱朋华; 吴少华; 李振中; 王阳; 庞克亮; 陈雷; 陈晓利

    2010-01-01

    废热锅炉包括辐射废热锅炉(radiant syngas cooler,RSC)和对流废热锅炉(convective syngas cooler,CSC),它是整体煤气化联合循环(integrated gasification combined Cycle,IGCC)系统中的高温冷却单元,可回收气化炉出口粗合成气热能,以提高系统的效率,所以研究IGCC系统中废热锅炉的特性是很有意义的.该文利用ThermoFlex软件建立200 MW级IGCC系统模型,从系统效率角度出发,首先研究对流废热锅炉出口合成气温度对IGCC系统性能的影响,然后研究废热锅炉产生不同蒸汽参数对IGCC系统性能的影响.结果表明:随着对流废热锅炉出口合成气温度的提高,系统的发电功率和效率下降;废热锅炉产生过热蒸汽的系统效率优于产生饱和蒸汽的系统效率,废热锅炉产生高压蒸汽的系统效率优于产生中压蒸汽的系统效率;综合考虑造价及其系统效率的影响,推荐最佳的蒸汽参数方案为辐射废热锅炉和对流废热锅炉均产生高压饱和蒸汽的系统.

  17. Seismic performance analysis for an air cooler in Guangdong Taishan nuclear power station%广东台山核电一期1,2号机组空气冷却器的抗震性能计算分析

    Institute of Scientific and Technical Information of China (English)

    胡少卿; 张永利

    2011-01-01

    According to the characteristics of a cooler, the finite element model of an air cooler is established using ANSYS software. The force and moment are acted on nozzles using MPC184 element. The natural frequencies and vibration modes of the air cooler are given. Then the stresses of the air cooler under normal operating load case and of accidental load case are calculated. The stresses of nozzles, foot and bolts are checked according to RCC-M specification and meet the requirements.%根据空冷器的特点,利用ANSYS有限元软件建立了空冷器的有限元模型.用MPC184单元实现了力和力矩的加载,得到了空冷器的固有频率和振型.对空冷器在正常运行工况和地震荷载工况下进行了抗震性能计算分析,并根据RCC-M规范对空冷器在地震工况下的结构完整性进行了应力评定.结果表明在上述载荷作用下,空冷器和地脚螺栓的应力状况满足RCC-M规范的要求.

  18. Factors affecting heat transfer performance of subway indirect evaporative cooler%地铁用间接蒸发冷却器换热性能影响因素

    Institute of Scientific and Technical Information of China (English)

    石沛; 何叶从; 傅俊萍; 刘珊

    2015-01-01

    An indirect evaporative cooler installed with a rotary water distribution device which is driven by a low-speed motor,was proposed to solve the installation location problem of cooling tower in subway station.Single factor experimental method was used to investigate the heat transfer performance of indirect evaporative cooler under two types of arrangement.And under the optimal arrangement,the factors that affected the heat transfer performance were analyzed by orthogonal experimental method.The experimental results showed that the distance between nozzle and evaporative cooler and the distance between two sets of heat exchange coil under two types of arrangement both had optimal values.Rotating water on both sides was superior to rotating water on the one side.Heat exchanger arranged parallel to the air flow with nozzles rotating water on both sides was the better arrangement.And under this arrangement,heat exchange increased with the increase of spray water quantity,rotational speed,air velocity,cooling water flow rate and cooling water inlet temperature,and the decrease of spray temperature and air temperature. The cooling water inlet temperature had the most significant effect on heat transfer performance and other factors that affected the heat transfer performance from main to secondary were spray water quantity,air temperature,air velocity,spray temperature,rotational speed and cooling water flow rate.%为解决地铁站冷却塔设置难题,提出了一种采用低速电机驱动旋转布水装置的间接蒸发冷却器,在两种布置方式下,对其换热性能进行了单因素实验,并运用正交实验法对较优布置方式下影响换热器换热的因素进行了分析。结果表明:两种布置方式下,喷嘴与蒸发冷却器的间距、两组换热管束间距均存在最佳值,喷嘴双侧旋转布水优于单侧旋转布水;换热器平行气流布置且喷嘴双侧旋转布水为较优布置方式,此时,换热器换

  19. 微型节流制冷器在低温医疗中的发展与应用%DEVELOPMENT AND APPLICATION OF A MINIATURE JOULE-THOMSON COOLER IN CRYOSURGICAL

    Institute of Scientific and Technical Information of China (English)

    李家鹏; 陈晓屏; 陈军; 周建; 陶星临

    2014-01-01

    Miniature Joule-Thomson cooler is widely applied for cooling infrared detector,it is a mature technology. The American company of ENDOCARE has invented the first generation of cryocare(Ar-He knife)systems in the 1990s. The cryocare(Ar-He knife)systems utilizes the Joule-Thomson effect. Its temperature will be rapidly cooled down by the high pressure argon expand from high pressure to low pressure at room temperature,and its temperature will be rapidly warmed up by the high pressure He expand from high pressure to low pressure at room temperature. Cancerous cells will be killed by the temperature exchange of cryocare (Ar-He knife) systems. The technology has been widely applied on cryosurgical and has achieved good therapeutic effect in the treatment of various cancers. Domestic miniature Joule Thom-son cooler technology has been carried out for many years and has accumulated a wealth of technical basis,but cryosurgi-cal is still in its initial stage. This paper presents low temperature medical has a broad development prospects in the future and gives an advocation to domestic companies to do more research on miniature Joule-Thomson cooler to promote the ap-plication of the cryosurgical technology in medical field.%微型节流制冷器广泛用于冷却红外探测器,是一种比较成熟的技术。20世纪90年代,美国ENDOCARE公司利用微型节流制冷器技术发明第一代CRYOCARE(氩氦刀)系统。氩氦刀系统原理是利用焦耳-汤姆逊效应,在常温下高压氩气节流快速降温,高压氦气节流快速制热,高低温快速交替杀死癌变细胞。该技术在低温医疗中已快速推广应用,并在各种癌症治疗中取得了比较好的治疗效果。国内在微型节流制冷器技术上已开展了多年研究,积累了丰富的技术基础,但在低温医疗上的应用还处于起步阶段。文章提出低温医疗在未来有广阔的发展前景,倡议国内相关微型节流制冷器的研制单

  20. Numerical Study on Comprehensive Performance of New Laminated Oil Cooler%新型叠片式油冷却器综合性能的数值研究

    Institute of Scientific and Technical Information of China (English)

    涂盛辉; 冯毅; 刘敏

    2015-01-01

    A three-dimensional model of new laminated oil cooler was established.And using FLUENT to analyze its heat transfer and pressure drop characteristics under different baffle spacing and gap height conditions.An experiment was carried out to demonstrate the accuracy of the simulation results.Using comprehensive factor(α/Δp) to evaluate heat transfer performance.The results showed that the shell side heat transfer coefficient and pressure drop became higher with the decreasing of baffle spacing and baffles gap height had little effect on the shell side pressure drop.Shell heat transfer coefficient increased slightly with gap height decreased.When the baffle plate spacing is 90 mm and gap height is 0.2D,laminated oil cooler had better comprehensive heat transfer performance.The results of simulation and experiment agree well,so conclusions have certain reference value.%对新型叠片式油冷却器进行整体三维建模,并使用FLUENT对其在不同折流板间距和缺口高度条件下进行换热与阻力性能数值分析,对模拟结果准确性进行试验论证,采用综合因子α/Δp对传热性能进行综合评价. 结果表明:折流板间距越小,壳程传热系数和压降越大,折流板缺口高度对壳程压降影响不大,壳程传热系数随缺口高度减小增幅较小;折流板间距为90 mm,缺口高度为0.2D时,有较好的综合传热性能. 模拟结果和试验吻合度良好,因此研究结论具有一定参考意义.

  1. Stimulation and experimental research on a 20K single stage Stirling-type pulse tube cooler%20K温区单级斯特林型脉管制冷机研究

    Institute of Scientific and Technical Information of China (English)

    王海敏; 戴巍; 王晓涛; 罗二仓

    2013-01-01

    为进一步研究降低20 K温区单级斯特林型脉管制冷机关键部件中损失的方法,提高整机性能,采用计算软件Sage对制冷机进行模拟.通过实验结果与Sage计算的对比对模拟程序的有效性进行了考察,并从调相系统结构及水冷器结构方面寻找优化途径.结果表明,在单纯使用惯性管气库调相时,计算最低制冷温度比实验值低9K左右;当采用双向进气与惯性管调相组合时,计算同实验结果基本一致.最后引入虚拟的振子阻尼调相机构对制冷机的最佳性能进行研究,计算表明在这种调相结构下,制冷机的无负荷制冷温度及30 K时的制冷量均可以得到比双向进气加惯性管组合调相更优的结果.%A 20 K Stirling-type pulse tube cooler system was developed, whose lowest cold head temperature was 22.7 K. To optimize the system performance further more, Sage software was used to do the simulation and introduce the results. This passage shows the effectiveness of Sage by comparing experimental and results computation. Results show that with inertance-reservoir as the phase shifter, the computational result is 9 K lower than that of the experiment. In case of using double-inlet, all results match well. Finally, a virtual phase shifter was introduced to optimize the system. Computation indicates that under this mode of phase shifter, both the no-load cryogenic temperature and cryogenic power at 30 K can get better performance than when the cooler is under inertance tube and double inlet phase shifters.

  2. Experimental investigation of the performance of an elbow-bend type heat exchanger with a water tube bank used as a heater or cooler in alpha-type Stirling machines

    Energy Technology Data Exchange (ETDEWEB)

    El-Ehwany, A.A.; Hennes, G.M. [Mech. Power Dept., Faculty of Eng., Ain Shams University, Cairo (Egypt); Eid, E.I. [Mech. Dept., Faculty of Ind. Education, Suez Canal University, Suez 43515 (Egypt); El-Kenany, E. [The Specialized Studies Academy, Workers University, Tech. Dept., Mansura (Egypt)

    2011-02-15

    In this work the effect of the elbow-bend geometry and the effect of the tube arrangement on the performance of air-to-water heat exchanger is studied experimentally. In elbow-bend heat exchanger, the direction of the working fluid is bended at 90 degrees to its inlet direction. The heating or cooling fluid flows inside straight tubes while the working fluid flows past the tubes along an elbow pass. Three different types of the geometry of the elbow with three different tube bank arrangements were studied. The results were plotted and analyzed to clarify the effects of the elbow-bend geometry, the tube bank arrangements and the dead volume in the heat exchanger on the heat transfer and pressure drop. Two empirical correlations were deduced for each design, one to predict the relation between Nusselt and Reynolds numbers, while the other relation is between the friction factor and Reynolds number. This work was done to select the more suitable design to be used as a heater or a cooler in Stirling machines. (author)

  3. Contamination during production of heater-cooler units by Mycobacterium chimaera potential cause for invasive cardiovascular infections: results of an outbreak investigation in Germany, April 2015 to February 2016.

    Science.gov (United States)

    Haller, Sebastian; Höller, Christiane; Jacobshagen, Anja; Hamouda, Osamah; Abu Sin, Muna; Monnet, Dominique L; Plachouras, Diamantis; Eckmanns, Tim

    2016-04-28

    Invasive infections with Mycobacterium chimaera were reported in patients with previous open chest surgery and exposure to contaminated heater-cooler units (HCUs). We present results of the surveillance of clinical cases and of contaminated HCUs as well as environmental investigations in Germany up until February 2016. Clinical infections occurred in five male German cases over 50 years of age (range 53-80). Cases had been exposed to HCUs from one single manufacturer during open chest surgery up to five years prior to onset of symptoms. During environmental investigations, M. chimaera was detected in samples from used HCUs from three different countries and samples from new HCUs as well as in the environment at the manufacturing site of one manufacturer in Germany. Our investigation suggests that at least some of the M. chimaera infections may have been caused by contamination of HCUs at manufacturing site. We recommend that until sustainable measures for safe use of HCUs in operation theatres are implemented, users continue to adhere to instructions for use of HCUs and Field Safety Notices issued by the manufacturer, implement local monitoring for bacterial contamination and continuously check the websites of national and European authorities for current recommendations for the safe operation of HCUs.

  4. Experimental Study of Heat Transfer and Pressure Drop Characteristics on Shell-side of Pin-fin Tube Oil Cooler%针翅管滑油冷却器壳侧传热与阻力性能实验研究

    Institute of Scientific and Technical Information of China (English)

    石帅; 阎昌琪; 丁铭

    2013-01-01

    The comparative experimental study for one smooth tube oil cooler and three pin-fin tube oil coolers was performed by using lubricating oil as heat transfer medium . The experimental results indicate that in the range of experimental study ,total heat transfer coefficient of pin-fin tube oil coolers is about 1.4-2 times higher than that of the smooth tube oil cooler .The heat transfer and pressure drop characteristics are greatly different for different structures of pin-fin tube oil coolers .T he effects of the structure of pin-fin tube and shell-side flow path number are dominant to influence heat transfer and pressure drop characteristics of oil coolers . In the range of experimental study , large pin-fin height is conducive to the oil flow disturbance ,but not conducive to the heat transfer on the tube-base heat transfer surface of pin-fin tube;single-pass pin-fin tube oil cooler offers high total heat transfer coefficient and volumetric heat transfer capacity ,the global heat transfer performance and the friction characteristics are better than that of two-pass pin-fin tube oil cooler .%以润滑油为换热介质,对1个光管滑油冷却器和3个采用了针翅管的滑油冷却器实验体进行了对比实验研究。结果表明:在本实验范围内,针翅管滑油冷却器的总传热系数较高,是相同条件下光管滑油冷却器总传热系数的1.4~2倍;不同结构针翅管滑油冷却器的传热与阻力性能差别较大,针翅管结构参数和壳侧流程数目是影响滑油冷却器壳程传热与阻力性能的主要因素。实验范围内,较大的针翅高度有利于油流体的扰动,但不利于针翅管一次传热面处的换热;单流程结构的针翅管滑油冷却器具有较高的传热系数和单位体积换热量,其总体换热性能与阻力性能优于双流程结构的针翅管滑油冷却器。

  5. Treatment of exceedances of oil content in cooling water resulted from inner leakage of oil cooler of oxygen compressor%氧压机油冷却器内漏使冷却水中油含量超标的处理

    Institute of Scientific and Technical Information of China (English)

    汪雁; 史浪涛

    2011-01-01

    The inner leakage of oil cooler of oxygen compressor would result in exceedances of oil content in cooling water. Once oil enters the air separation system, it will result in blocking of main heat exchanger. The trouble of inner leakage of oil cooler during run of Model 2TYS100 + 2TYS76 oxygen compressor is outlined, the causes for the trouble are analyzed, and the troubleshooting process of oil cooler and the correction method of residual oil in the circulation cooling water system are described.%氧压机油冷却器内漏将导致冷却水中油含量超标,一旦油进入空分系统,将引起主换热器堵塞故障。介绍2TYS100+2TYS76型氧压机在运行过程中油冷却器发生内漏的故障现象,分析故障原因,阐述对油冷却器的故障处理过程及循环冷却水系统残油的处理方法。

  6. Research on Structural Optimi zation fo Flat-tube Fins of an Ai r-cooler%扁管空冷器翅片结构优化研究

    Institute of Scientific and Technical Information of China (English)

    杜弘; 杨鹏; 张升平

    2013-01-01

    基于带翅片的扁管空冷器的传热过程,对带翅片的扁管建立模型,并利用该模型在不同的翅片长度及不同风速下进行数值模拟,分析了翅片长度的选择与迎面风速的关系。分析结果表明,当翅片长度增加到一定值后,通过增加翅片长度的手段来强化换热性能收效很小;在低迎面风速下,翅片长度不要过长;在高迎面风速下,仍存在较大的传热温差,空气出口温度的增加只能通过增加翅片长度来完成。%The relationship between the length of the fin and the windward velocity is analyzed , the model of the flat tube with fins is established and a numeric simulation study is made under the condition of different fin lengths and different wind speeds according to the heat transfer of theair -cooler with finned flat-tubes.Results show that, to strengthen heat transfer perform-ance by increasing the fin length can only lead to alittle benefit when the fin length increases to a certain value.The fin length shouldn′t be too long under lower wind speed.Under higher windspeed , there is still a heat ransfer temperature difference, however , the outlet air temperature rises only by increasing the finlength .

  7. Simulation of New Laminated Oil Cooler Heat Transfer and Flow Resistance Performance%新型叠片式油冷却器传热与流动阻力性能模拟试验研究

    Institute of Scientific and Technical Information of China (English)

    尹益欣; 冯毅; 刘颂

    2013-01-01

    采用Fluent软件对一种新型叠片式油冷却器进行数值模拟研究。选取代表性的结构进行建模,针对翅片间距、油流速及油种类进行分组模拟。从模拟结果中得到各参数对对流换热系数和压降Δp的影响情况。用传热综合因子η来评估传热效果的好坏,确定最佳的参数匹配。研究结果表明,进口速度为0.4 m/s,翅片间距b=2 mm时,选择DTE24型冷却油可以达到最佳的传热效果。研究结果对工程设计以及试验研究都具有一定参考价值。%Using Fluent to do the numerical study of a new type of laminate d oil cooler.Selecting typical structure modeling,then choosing different fin pitch,oil flow and oil type to group simulation.Through the study of heat transfer and comprehensive performance under different working conditions,to determine the best matching parameters.Studying on how each parameter effect on the heat transfer coefficient and pres-sure drop.Using heat transfer factor to evaluate the heat transfer effect is better or not,to determine the optimal parameters match.The results indicates that v=0.4 m/s,b=2 mm,DTE24 are the best parame-ters combination.Results have a certain reference value on the engineering design and experimental re-search.

  8. Design of miniature liquid cooler for LED

    DEFF Research Database (Denmark)

    Sørensen, H.; Bertel, S.N.

    2011-01-01

    An investigation of the average heat transfer coefficient in a heat exchanger for cooling of light-emitting diodes has been carried out by using CFD. The numerical calculations show good agreements with experimentally obtained data on a full scale model. Both CFD and experiments are carried out f...

  9. Cooler temperatures inductive to locust outbreaks

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ A joint study by Prof. ZHANG Zhibin from the CAS Institute of Zoology and his co-workers from Norway, US and Swiss have indicated that historical outbreaks of migratory locusts in China were associated with cold spells, suggesting that China's projected climate warming could decrease the pest's numbers. The study was published in Proceedings of the National Academy of Sciences on 17 September, 2007.

  10. Testing and Validation of Thermoelectric Coolers

    Directory of Open Access Journals (Sweden)

    D. K. Chavhan

    2015-08-01

    Full Text Available The first Air conditioners and refrigerators employed toxic or flammable gases such as Chloro Fluoro Carbons (CFC’s, Hydro Chloro Fluorocarbons (HCFC’s, Hydro Fluoro Carbons (HFC’s and ammonia that could result in fatal accidents when they leaked into the atmosphere. In an automobile, the AC system increases fuel consumption of the vehicle, which uses around 4HP (i.e. 3 kW of the engine's power. Most refrigerants used for AC system contribute to global warming, and may also destroy the ozone layer. CFC’s, HCFC’s, and HFC’s are poisonous greenhouse gases when they are leaked to the atmosphere and 100 gm of HFC’s destroy 0.5 tons of O3 molecules. In recent years, demand for small size active cooling equipment has increased which includes TEC and water cooled heat sink. While on the other hand the passive cooling system includes heat sink and fan which is not effective enough to cope with task of cooling various electronic components. The active cooling system using TEC can be used where precise control of temperature is required. The energy conversion process which is carried out by active cooling system to absorb the heat from the surface to be cooled and reject that heat to the surrounding. Our project objective is testing and validation of TEC1-12706 and evaluating its capacity, limitations and performance to be used to produce cooling effect in R&AC system. Authors are presenting performance curve enabling the user to design the optimum number of thermoelectric module (TEM for any required cooling system. In order to find out the capacity of single TEC we have made a prototype in which the existing refrigerants are replaced by newly emerging TEC which works on Peltier effect in AC system. TEC can be used as a generator to generate electricity by applying reverse engineering.

  11. Design of miniature liquid cooler for LED

    DEFF Research Database (Denmark)

    Sørensen, H.; Bertel, S.N.

    2011-01-01

    An investigation of the average heat transfer coefficient in a heat exchanger for cooling of light-emitting diodes has been carried out by using CFD. The numerical calculations show good agreements with experimentally obtained data on a full scale model. Both CFD and experiments are carried out...

  12. 带斜截半椭圆柱面空冷器的传热和流阻特性数值模拟%Numerical simulations on characteristics of heat transfer and flow resistance in air cooler with oblique-cut semi-elliptic cylinder shell

    Institute of Scientific and Technical Information of China (English)

    高猛; 周国兵

    2011-01-01

    在Re=400~2200范围内,对管后分别布置一对斜截半椭圆柱面和三角形小翼涡流发生器的顺排和叉排翅片圆管空冷器气侧传热和流阻性能进行数值模拟.结果表明两涡流发生器强化传热效果相当.由于流线型设计,斜截半椭圆柱面在顺排管和叉排管空冷器中产生的流阻分别比三角形小翼低0.07%~2.53%和1.51%~5.31%,在叉排管空冷器中,两涡流发生器在较高Re下均具有流动减阻效果,斜截半椭圆柱面最多可减阻6.40%,三角形小翼最多可减阻4.39%.顺排管空冷器中斜截半椭圆柱面综合性能R=(j/j)/(f/f)值在Re>700时比三角形小翼高0.68%~4.36%,叉排管空冷器中斜截半椭圆柱面综合性能R值比三角形小翼高0.79%~4.78%;斜截半椭圆柱面在叉排管空冷器中的综合性能R值比其在顺排管空冷器中高3.11%~28.38%.%The characteristics of heat transfer and flow resistance on the air side in a finned circular-tube air-cooler with a pair of oblique-cut semi-elliptic cylinder shells or delta winglets behind circular-tubes were investigated numerically. In-line and staggered arrangements of two rows of circular-tubes in the air cooler were considered, separately. The Reynolds number of the air flow ranged from 400 to 2200. The heat transfer enhancement and flow resistance of these two vortex generators were compared by using the comprehensive performance factor R = (j/j0) / (f/f0). The results show that the two vortex generators have almost the same heat transfer enhancement performance. However, due to the streamlined design of oblique-cut semi-elliptic cylinder shells, the corresponding flow resistances in the air coolers with in-line and staggered tubes are 0.07%-2.53% and 1.51%-5.31% lower than those of delta winglets,respectively. The two vortex generators have better effect on flow resistance reduction in the air cooler with staggered tubes at higher Reynolds numbers. The reduction of oblique

  13. 基于太阳能辐射技术的热能转换空调制冷技术研究%Research on Cooler Air conditioner Based on Thermal Conversion of Solar Radiation Technology

    Institute of Scientific and Technical Information of China (English)

    李裕斌

    2016-01-01

    This paper presents technical approach on cooler air conditioner based on thermal conver-sion of solar radiation technology,i.e.transforming solar energy to heat energy,and use the heat energy to achieve refrigeration.We developed a new solar absorption air conditioning system based on the thermal conversion of solar radiation technology.Through verification studies,the operating characteristics of so-lar collector and heat storage system of air conditioning systems,and operating characteristics of the re-frigeration unit are verified.The experiment shows:the air conditioning system can operate continuously and stably for 8 hours.The average cooling capacity is 4 kW,and the maximum cooling capacity is 4.7 kW.The system COP average is 0.3.Therefore,this new solar absorption air conditioning system based on thermal conversion of solar radiation technology provides a feasible method to realize large scale,low cost application of solar energy.%给出了以太阳能辐射技术为基础的热能转换空调制冷技术的技术方法,即将太阳能转变成热能,使用热能进行制冷。以太阳能辐射技术的热能转换为基础,研制了新型的太阳能吸收式空调系统,并且通过实验研究,验证了该系统的集热、蓄热特性以及制冷机组的运行热性。实验表明,该空调系统可连续8 h 稳定地工作,最大制冷量可达到4.7 kW,平均值也可达到4 kW,该空调系统性能参数 COP,平均可达到0.3。因此,基于太阳能辐射技术的热能转换空调制冷技术为太阳能规模化、低成本应用提供了行之有效的新方法。

  14. 空气冷却器系统铵盐沉积及影响因素研究%STUDY ON THE AMMONIUM SALT DEPOSITION IN AIR COOLER SYSTEM AND INFLUENCING FACTOR ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    偶国富; 王宽心; 刘慧慧; 詹剑良

    2012-01-01

    采用流程模拟软件HYSYS,运用物料守恒原理建立闪蒸过程模型,得到加氢裂化反应流出物的油气-水三相平衡体系.利用闪蒸过程模型计算得到原料硫、氮、氯含量,注水量,压力等因素对加氢反应流出物空气冷却器(REAC)系统中NH4Cl、NH4HS沉积温度的影响情况.结果表明:NH4Cl沉积主要发生在REAC系统入口位置,NH4 HS沉积主要发生在REAC系统出口位置;NH4Cl的沉积温度受原料氯含量的影响较大,强化原油的脱氯过程、将注水点设置在NH4Cl的沉积位置以前并保持有25%(ψ)的液态水是降低NH4Cl沉积风险的有效方法;硫含量及注水量是影响NH4HS沉积温度的主要因素,加强循环氢脱硫并适当提高系统注水量,使NH4HS的沉积温度低于系统的操作温度可有效避免NH4 HS沉积.%In order to get the oil-gas-water equilibrium system of hydrocracking reaction effluent, a three-phase flash distillation module was established by HYSYS process simulation software combined with mass conservation principle. The impact of sulfur, nitrogen and chlorine contents in feed, amount of water injection and pressure on the deposition temperatures of NH4Cl and NH4HS in air cooler of reaction effluent (REAC) system were analyzed through the flash distillation module calculation. Results showed that the deposition of NH4Cl and NH4HS occurred mainly at the inlet and outlet of REAC system, respectively. The NH4Cl deposition temperature was greatly affected by the chlorine content of feed, thus, strengthening the dechlorination process of crude oil, setting the water injection point above the site of NH4Cl deposition and keeping 25% of liquid water in effluent could effectively reduce the risk of forming NH4Cl deposit. Sulfur content in the system and the amount of water injection were the main causes affecting the deposition temperature of NH4HS, enhancing desulfurization of recycle hydrogen and increase water injection to keep NH4HS

  15. 辐射废锅内气固两相流场的冷态测试与数值模拟%Cold-Model Experiment and Numerical Simulation of Gas-Particle Flow Field in Radiant Syngas Cooler

    Institute of Scientific and Technical Information of China (English)

    于广锁; 倪建军; 郭庆华; 李贤斌; 梁钦锋

    2012-01-01

    采用冷态实验测量和数值模拟相结合的方法,对辐射废锅内的冷态气固两相流场进行了研究.搭建了辐射废锅冷模装置,利用恒温热线风速仪和皮托管对辐射废锅内的气相冷态流场进行测量.利用马尔文激光粒度分析仪对辐射废锅出口、底部渣池以及附壁颗粒的粒径进行了采样分析.运用Realizable k-ε湍流模型和随机轨道模型分别对气相流场和颗粒运动轨迹进行了数值模拟.研究发现:Realizable k-ε湍流模型计算得到的气相流场结果与实验值吻合较好,辐射废锅内筒顶部存在一入口射流,射流沿流向逐渐衰减,气相流场在内筒底部趋于稳定;大部分颗粒直接被辐射废锅渣池捕集,少量细小颗粒被气流携带进入辐射废锅环隙或从出口逃逸;颗粒粒径越大、密度越高,颗粒的跟随性越差,出口颗粒的停留时间越长.%Cold-model experimental measurement and numerical simulation were combined to study the gas-particle flow field in Radiant Syngas Cooler (RSC). A cold-model of RSC was set up. The Dantec hot-wire anemometry system and pitot tube were used to measure the gas flow field in the RSC, and the particle size distributions collected from different sections of RSC were analyzed by Malvern laser particle size analyzer. The Realizable k-e turbulent model and Discrete Random Walk (DRW) were applied to simulate the gas phase flow field and particle moving trajectories, respectively. The results indicate that the gas flow field simulated by Realizable k-e turbulent model agrees well with the experimental data. An inlet jet flow is formed in inlet region of inner cylinder of RSC, and the jet tends to be steady along the flow direction. Most particles are captured by slag pool, and only a little amount of small particles entrained by gas flow will flow into annular of RSC or escape from outlet. The larger size and higher density the particle has, the worse its following behavior

  16. 采用不同二次空气时转轮式间接蒸发冷却器的性能试验研究%Experimental Study on the Performance of Rotary Wheel Indirect Evaporative Cooler using Different Secondary Air

    Institute of Scientific and Technical Information of China (English)

    孙铁柱; 黄翔; 罗绒

    2015-01-01

    In order to get the running effect of rotary wheel indirect evaporative cooler in summer ,making a series of tests in the rotary wheel heat recovery type indirect-direct evaporative cooling air conditioning prototype ,characterized by its efficiency ,cool-ing capacity ,heat transfer coefficient;At the secondary air side of rotary wheel ,two measures were taken to eliminate heat ,namely (1)Traditional sensible heat elimination;(2)Exhaust air is handled by wet film,then passes through secondary air side .Compre-hensive test results show that:the cooling capacity and efficiency of heat exchanger increase under mode 2,compared to the first mode.Within the scope of the testing the temperature drop maximum is 13℃.%在夏季,对转轮式热回收型间接-直接蒸发冷却空调样机中的转轮式间接蒸发冷却器性能进行了测试。测试中转轮式间接蒸发冷却器的二次空气采用了2种情况:一种是直接采用室内排风;另一种是经过填料式直接蒸发冷却器降温后的室内排风。对其效率、制冷量、被处理空气的温降进行了试验研究;综合测试结果表明:相比于第一种情况,转轮式热交换器在第二种情况下的制冷量和效率均有所增加;在测试的范围内温降最高可达13℃。

  17. Thermal electron-tunneling devices as coolers and amplifiers

    OpenAIRE

    Shanhe Su; Yanchao Zhang; Jincan Chen; Tien-Mo Shih

    2016-01-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by...

  18. External Peltier Cooler For Low-Noise Amplifier

    Science.gov (United States)

    Soper, Terry A.

    1990-01-01

    Inexpensive Peltier-effect cooling module made of few commercially available parts used to reduce thermal noise in microwave amplifier. Retrofitted to almost any microwave low-noise amplifier or receiver preamplifier used in communication, telemetry, or radar. Includes copper or aluminum cold plate held tightly against unit to be cooled by strap-type worm-gear clamps.

  19. High efficiency digital cooler electronics for aerospace applications

    Science.gov (United States)

    Kirkconnell, C. S.; Luong, T. T.; Shaw, L. S.; Murphy, J. B.; Moody, E. A.; Lisiecki, A. L.; Ellis, M. J.

    2014-06-01

    Closed-cycle cryogenic refrigerators, or cryocoolers, are an enabling technology for a wide range of aerospace applications, mostly related to infrared (IR) sensors. While the industry focus has tended to be on the mechanical cryocooler thermo mechanical unit (TMU) alone, implementation on a platform necessarily consists of the combination of the TMU and a mating set of command and control electronics. For some applications the cryocooler electronics (CCE) are technologically simple and low cost relative to the TMU, but this is not always the case. The relative cost and complexity of the CCE for a space-borne application can easily exceed that of the TMU, primarily due to the technical constraints and cost impacts introduced by the typical space radiation hardness and reliability requirements. High end tactical IR sensor applications also challenge the state of the art in cryocooler electronics, such as those for which temperature setpoint and frequency must be adjustable, or those where an informative telemetry set must be supported, etc. Generally speaking for both space and tactical applications, it is often the CCE that limits the rated lifetime and reliability of the cryocooler system. A family of high end digital cryocooler electronics has been developed to address these needs. These electronics are readily scalable from 10W to 500W output capacity; experimental performance data for nominally 25W and 100W variants are presented. The combination of a FPGA-based controller and dual H-bridge motor drive architectures yields high efficiency (>92% typical) and precision temperature control (+/- 30 mK typical) for a wide range of Stirling-class mechanical cryocooler types and vendors. This paper focuses on recent testing with the AIM INFRAROT-MODULE GmbH (AIM) SX030 and AIM SF100 cryocoolers.

  20. A thermosyphon heat pipe cooler for high power LEDs cooling

    Science.gov (United States)

    Li, Ji; Tian, Wenkai; Lv, Lucang

    2016-08-01

    Light emitting diode (LED) cooling is facing the challenge of high heat flux more seriously with the increase of input power and diode density. The proposed unique thermosyphon heat pipe heat sink is particularly suitable for cooling of high power density LED chips and other electronics, which has a heat dissipation potential of up to 280 W within an area of 20 mm × 22 mm (>60 W/cm2) under natural air convection. Meanwhile, a thorough visualization investigation was carried out to explore the two phase flow characteristics in the proposed thermosyphon heat pipe. Implementing this novel thermosyphon heat pipe heat sink in the cooling of a commercial 100 W LED integrated chip, a very low apparent thermal resistance of 0.34 K/W was obtained under natural air convection with the aid of the enhanced boiling heat transfer at the evaporation side and the enhanced natural air convection at the condensation side.

  1. Stability of electron energy in the Fermilab electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A.; Carlson, K.; Prost, L.R.; Saewert, G.; /Fermilab

    2009-02-01

    A powerful electron beam (4.3 MeV, 0.1 A DC) generated by an electrostatic accelerator has been used at Fermilab for three years to cool antiprotons in the Recycler ring. For electron cooling to be effective, the electron energy should not deviate from its optimum value by more than 500V. The main tool for studying the energy stability is the electron beam position in a high-dispersion area. The energy ripple (frequencies above 0.2 Hz) was found to be less than 150 eV rms; the main cause of the ripple is the fluctuations of the chain current. In addition, the energy can drift to up to several keV that is traced to two main sources. One of them is a drift of the charging current, and another is a temperature dependence of generating voltmeter readings. The paper describes the efforts to reach the required level of stability as well as the setup, diagnostics, results of measurements, and operational experience.

  2. Impact Seeded Fault Data of Helicopter Oil Cooler Fan Bearings

    Science.gov (United States)

    2011-11-01

    and a tachometer signal to provide a measure of the shaft speed. Data were acquired using a National Instruments-based PXI system; the vibration data...approximately 40–45 min in duration) of the bearings to measure stable vibration signals—the ―baseline test‖ for the different fault conditions tested...5. Examples of Axial and Radial Vibration Data 13 6. Conclusion 15 7. References 16 Distribution List 17 iv List of Figures Figure 1. Oil

  3. Water Cooler Ostracism: Social Exclusion as a Punishment Mechanism

    OpenAIRE

    David Johnson; Brent Davis

    2013-01-01

    Within social situations free-riding individuals can be informally punished through social ostracism; ostracized group members are removed from the social aspect of the group but are still formally members. In this study we examine the effectiveness of non-monetary social ostracism as a punishment for low contributions to a public account. Social ostracism may occur in the workplace where workers produce a public good amongst their inputs. Since these workers are all of the same rank, no work...

  4. Centrifugal atomization of lanthanide materials for cryogenic coolers

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, M.G.

    1994-01-04

    Until recently, Pb was the preferred heat exchanger matrix material used in low temperature cryocoolers; however, the heat capacity of Pb drops drastically below {approximately}15K and new matrix materials based on the lanthanide elements have been developed. These materials magnetically order at low temperatures and the entropy change associated with ordering contributes to the materials` heat capacities. The drawback to widespread use of lanthanide intermetallic compounds in cryocoolers has been the difficulty in manufacturing high-quality particulates. The purpose of this project was to develop a technique for producing high-quality powders of lanthanide metals and lanthanide intermetallic compounds for use in cryocooler heat exchangers. A series of atomization experiments was performed using Er{sub 3}Ni, Nd, Nd{sub 3}Ni, and (Er{sub 0.5}Nd{sub 0.5}){sub 3}Ni. Atomization of these materials resulted in particles ranging from mostly spherical to extremely flattened. Analyses of size distributions for the experiments indicate that increased atomization disk speed and superheat result in smaller mean particle diameters and narrower size distributions. Chemical analyses of the atomized powders indicate that the CA/RQB technique produces particulate with much lower interstitial contamination than other techniques. The Er{sub 3}Ni and Nd{sub 3}Ni powders were predominantly of the desired phase and the (Er{sub 0.5}Nd{sub 0.5}){sub 3}Ni powder had one major and possibly three minor phases. The solidification morphology is typically fine dendritic or cellular with finer microstructure spacings near the particle surfaces. The Er{sub 3}Ni powders have higher heat capacities than gas atomized powders reported in literature. The heat capacity of Nd{sub 3}Ni has a peak which does not degrade dramatically with processing. The (Er{sub 0.5}Nd{sub 0.5}){sub 3}Ni material has a higher heat capacity compared to Er{sub 3}Ni, Nd{sub 3}Ni, and Nd at temperatures above 10K.

  5. Micromachined 30 K Joule-Thomson cryogenic cooler

    NARCIS (Netherlands)

    Cao, H.

    2013-01-01

    For many electronic devices, colder is better. At lower temperatures, electronic devices such as infrared detectors and low-noise amplifiers operate with a higher signal-to-noise ratio and better overall performance than they do at room temperature. Superconducting devices such as superconducting qu

  6. Electronic coolers based on superconducting tunnel junctions: fundamentals and applications

    OpenAIRE

    2014-01-01

    International audience; Thermo-electric transport at the nano-scale is a rapidly developing topic, in particular in superconductor-based hybrid devices. In this review paper, we first discuss the fundamental principles of electronic cooling in mesoscopic superconducting hybrid structures, the related limitations and applications. We review recent work performed in Grenoble on the effects of Andreev reflection, photonic heat transport, phonon cooling, as well as on an innovative fabrication te...

  7. Integrated hydraulic cooler and return rail in camless cylinder head

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig D [Clawson, MI; Neal, Timothy L [Ortonville, MI; Swain, Jeff L [Flushing, MI; Raimao, Miguel A [Colorado Springs, CO

    2011-12-13

    An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

  8. When cooler heads prevail: peacemakers in a sports riot.

    Science.gov (United States)

    Russell, G W; Arms, R L; Mustonen, A

    1999-09-01

    Male sports fans (N = 74) were asked to estimate the likelihood that they would intervene in a crowd disturbance in an attempt to stop the fighting. They also completed a battery of measures that included their attitude toward law and order, fight history, the false consensus effect, impulsivity, psychopathy, sensation seeking, anger, physical aggression and identification with their favorite team. Law and order, body mass, anger and the false consensus effect were positively related to peacemaking whereas sensation seeking was negatively related. A multiple regression analysis yielded a solution that accounted for 32.3% of the variance with anger and attitude toward law and order emerging as the best predictors.

  9. Experimental investigation of a liquid-flooded Ericsson cycle cooler

    Energy Technology Data Exchange (ETDEWEB)

    Hugenroth, Jason; Braun, James; Groll, Eckhard; King, Galen [Purdue University, School of Mechanical Engineering, Ray W. Herrick Laboratories, 140 South Intramural Drive, West Lafayette, IN 47907 (United States)

    2008-11-15

    An experimental test program was conducted on a novel Ericsson cycle heat pump. The concept uses liquid flooding of the compressor and expander to approach isothermal compression and expansion processes. Open drive automotive scrolls were used in the experimental system. Numerous experiments were run at various conditions using nitrogen as the refrigerant and alkyl-benzene oil as the flooding liquid. Cooling capacities of over 670 W and volumetric cooling capacities of more than 110 kJ/m{sup 3} were measured. Second law efficiencies of approximately 3% were achieved. Similar to other gas cycles, the cycle performance is very sensitive to the adiabatic efficiencies of the rotating equipment and the performance of the off-the-shelf equipment was not sufficient to achieve high cycle efficiency. In addition, large pressure drops occurred in the system due to the instrumentation used and the long and arduous flow paths. The scroll compressor and expander were found to perform well considering that they were not designed for the operating conditions encountered. (author)

  10. Temperature Control of Evaporative Cooler (EC for Converter Dry Dedusting

    Directory of Open Access Journals (Sweden)

    Li Fangwei

    2013-09-01

    Full Text Available The converter dry dedusting is more complicated with higher requirements in automatic control than the wet dust extraction. The key difficult point is the EC temperature control. This paper puts forth a method to effectively deal with the fluctuated-drastically temperature caused by control lagging at the EC outlet in the traditional converter dry dedusting. The EC outlet temperature can be under control of technological requirement by combining controls of proportion, empirical value, fuzziness and PID. The intelligent system is available with parameter auto tuning, which facilitates the on-site debugging greatly for operators. The result of the on-site application suggests that this method can be used to well handle some technological difficulties in the EC temperature control.    

  11. The Transient Supercooling Enhancement For A Pulsed Thermoelectric Cooler (TEC)

    OpenAIRE

    Mao, Jia-ni; Du, Jun-yan; Wang, Shi-fei; Zhou, Jing-wei; Wang, Yu-Gang

    2016-01-01

    Once TEC excitated by a high-voltage pulse, there exists a transient thermoelectric supercooling effect, which can be enhanced by keeping on increasing the Peltier cooling effect to compensate for the negative self-heating from the Joule heating effect and Fourier heat conduction effect. After superimposing an additional voltage pulse over a steady-state reference value in a short time scale, abrupt temperature drop will be produc...

  12. A liquid cooler dedicated to R 407C

    Energy Technology Data Exchange (ETDEWEB)

    Rigot, G.

    1994-12-01

    Technical results of a refrigerating machinery loaded with a low charge of R 407c (zeotrope mixture: 52% R 134a, 25% R125, 23% R 32) using a screw compressor, brazed sheet heat exchangers, a compact circuit, and a compressor power reduction with an electronic pressure reducer and an electronic regulation are presented with R 407c physical properties. (A.B.). 4 refs., 17 figs.

  13. Applying Neural Network in Evaporative Cooler Performance Prediction

    Institute of Scientific and Technical Information of China (English)

    QIANG Tian-wei; SHEN Heng-gen; HUANG Xiang; XUAN Yong-mei

    2007-01-01

    The back-propagation (BP) neural network is created to predict the performance of a direct evaporative cooling (DEC) air conditioner with GLASdek pads. The experiment data about the performance of the DEC air conditioner are obtained. Some experiment data are used to train the network until these data can approximate a function, then, simulate the network with the remanent data. The predicted result shows satisfying effects.

  14. The Transient Supercooling Enhancement For A Pulsed Thermoelectric Cooler (TEC)

    OpenAIRE

    Mao, Jia-ni; Du, Jun-yan; Wang, Shi-fei; Zhou, Jing-wei; Wang, Yu-Gang

    2016-01-01

    Once TEC excitated by a high-voltage pulse, there exists a transient thermoelectric supercooling effect, which can be enhanced by keeping on increasing the Peltier cooling effect to compensate for the negative self-heating from the Joule heating effect and Fourier heat conduction effect. After superimposing an additional voltage pulse over a steady-state reference value in a short time scale, abrupt temperature drop will be produc...

  15. COOLING DYNAMICS STUDIES AND SCENARIOS FOR THE RHIC COOLER.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.V.; BEN-ZVI,I.; LITVINENKO, V.

    2005-05-16

    In this paper, we discuss various electron cooling dynamics studies for RHIC. We also present simulations [1] of various possibilities of using electron cooling at RHIC, which includes cooling at the top energy, pre-cooling at low energy, aspects of transverse and longitudinal cooling and their impact on the luminosity. Electron cooling at various collision energies both for heavy ions and protons is also discussed.

  16. Feasibility of beam crystallization in a cooler storage ring

    Directory of Open Access Journals (Sweden)

    Yosuke Yuri

    2005-11-01

    Full Text Available It has been known theoretically that a charged-particle beam circulating in a storage ring exhibits an “ordered” configuration at the space-charge limit. Such an ultimate state of matter is called a crystalline beam whose emittance is ideally equal to zero except for quantum noise. This paper discusses how close one can come to various ordered states by employing currently available accelerator technologies. The dynamic nature of ultracold beams and conditions required for crystallization are briefly reviewed. Molecular dynamics simulations are performed to study the feasibility of this unique phenomenon, considering practical situations in general cooling experiments. It is pointed out that several essential obstacles must be overcome to reach a three-dimensional crystalline state in a storage ring. Doppler laser cooling of ion beams is also numerically simulated to explore the possibility of beam crystallization in an existing machine.

  17. Numerical Examination of the Performance of a Thermoelectric Cooler with Peltier Heating and Cooling

    Science.gov (United States)

    Kim, Chang Nyung; Kim, Jeongho

    2015-10-01

    There has recently been much progress in the development of materials with higher thermoelectric performance, leading to the design of thermoelectric devices for generation of electricity and for heating or cooling. Local heating can be achieved by current flow through an electric resistance, and local heating and cooling can be performed by Peltier heating and cooling. In this study, we developed computer software that can be used to predict the Seebeck and Peltier effects for thermoelectric devices. The temperature, electric potential, heat flow, electric current, and coefficient of performance were determined, with the objective of investigating the Peltier effect in a thermoelectric device. In addition to Peltier heating and cooling, Joule and Thomson heating were quantitatively evaluated for the thermoelectric device.

  18. Thermal emissions and climate change: Cooler options for future energy technology

    OpenAIRE

    Cowern, Nick E. B.; Ahn, Chihak

    2008-01-01

    Global warming arises from 'temperature forcing', a net imbalance between energy fluxes entering and leaving the climate system and arising within it. Humanity introduces temperature forcing through greenhouse gas emissions, agriculture, and thermal emissions from fuel burning. Up to now climate projections, neglecting thermal emissions, typically foresee maximum forcing around the year 2050, followed by a decline. In this paper we show that, if humanity's energy use grows at 1%/year, slower ...

  19. Apodization in high-contrast long-slit spectroscopy. Closer, deeper, fainter, cooler

    Science.gov (United States)

    Vigan, A.; N'Diaye, M.; Dohlen, K.

    2013-07-01

    The spectroscopy of faint planetary-mass companions to nearby stars is one of the main challenges that new-generation high-contrast spectro-imagers are going to face. However, the high contrast ratio between main-sequence stars and young planets makes it difficult to extract a companion spectrum that is not biased by the signal from the star. In a previous work we demonstrated that coupling long-slit spectroscopy (LSS) and classical Lyot coronagraphy (CLC) to form a long-slit coronagraph (LSC) allows low-mass companions to be properly characterized when combined with an innovative a posteriori data analysis methods based on the spectral deconvolution (SD). However, the presence of a slit in the coronagraphic focal plane induces a complex distribution of energy in the Lyot pupil plane that cannot be easily masked with a binary Lyot stop, creating strong diffraction residuals at close angular separation. To alleviate this concern, we propose to use a pupil apodization to suppress diffraction, creating an apodized long-slit coronagraph (ALSC). We show that this concept allows looking at a closer separation from the star, at deeper contrast, which enables the characterization of fainter substellar companions. After describing how the apodization was optimized, we demonstrate its advantages with respect to the CLC in the context of SPHERE/IRDIS LSS mode at low resolution with a 0.12'' slit and 0.18'' coronagraphic mask. We performed different sets of simulations with and without aberrations, and with and without a slit to demonstrate that the apodization is a more appropriate concept for LSS, at the expense of a significantly reduced throughput (37%) compared to the LSC. Then we performed detailed end-to-end simulations of the LSC and the ALSC that include realistic levels of aberrations to obtain several datasets representing 1 h of integration time on stars of spectral type A0 to M0 located at 10 pc. We inserted the spectra of planetary companions at different effective temperatures (Teff) and surface gravities (log g) into the data at angular separations of 0.3'' to 1.5'' and with contrast ratios from 6 to 18 mag. Using the SD method to subtract the speckles, we show that the ALSC brings a gain in sensitivity of up to ~3 mag at 0.3'' over the LSC and that both concepts are essentially equivalent for separations larger than 0.5''. The gain at small separation is the result of suppressing of the bright Airy rings that are difficult to estimate at very small angular separations because of the point spread function chromaticity. The improved sensitivity is confirmed by extracting the simulated companions spectra from the data and comparing them to libraries of models to determine their Teff and log g. Using a restoration factor that quantitatively compares the input and output spectra, we show that the ALSC data systematically leads to better quality spectra below 0.5''. In terms of Teff, we demonstrate that at small angular separations the limit with the ALSC is always lower by at least 100 K, inducing an increase in sensitivity of a factor up to 1.8 in objects' masses at young ages. Finally, for the determination of log g, we show that the ALSC provides a less biased estimation than the LSC.

  20. Harmonic Resonant Kicker Design for the MEIC Electron Circular Cooler Ring

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yulu [Institute of Modern Physics, CAS, Lanzhou (China); UCAS, Beijing (China); Wang, Haipeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    Bunched-beam electron cooling of the high-energy ion beam emittance may be a crucial technology for the proposed Medium energy Electron Ion Collider (MEIC) to achieve its design luminosity. A critical component is a fast kicker system in the Circular Ring (CR) that periodically switches electron bunches in and out of the ring from and to the driver Energy Recovery Linac (ERL). Compared to a conventional strip-line type kicker, a quarter-wave resonator (QWR)-based deflecting structure has a much higher shunt impedance and so requires much less RF power. The cavity has been designed to resonate simultaneously at many harmonic modes that are integer multiples of the fundamental mode. In this way the resulting waveform will kick only a subset of the circulating bunches. In this paper, analytical shunt impedance optimization, the electromagnetic simulations of this type of cavity, as well as tuner and coupler concept designs to produce 5 odd and 5 even harmonics of 47.63MHz will be presented, in order to kick every 10th bunch in a 476.3 MHz bunch train.

  1. Atomic Tailoring of the Solid State Materials for Laser Cryogenic Coolers

    Science.gov (United States)

    2010-04-01

    Graduate Students Mr. Joseph Palma Mr. Zhengle Qiu Mr. Jonathan Lynch Dr. Francisco Bezares Dr. Aras Konjhodzic Dr. Mohamed Aly Mr. David...polishing were performed using mineral oil as a coolant as well the medium for the lapping paste. Polishing invariably used either diamond or

  2. Why is MP2-Water "Cooler" and "Denser" than DFT-Water?

    Energy Technology Data Exchange (ETDEWEB)

    Willow, Soohaeng Y.; Zeng, Xiao Cheng; Xantheas, Sotiris S.; Kim, Kwang S.; Hirata, So

    2016-02-18

    To maintain water in the liquid phase at the correct (1 g/cm3) density during first-principles simulations, density-functional theory (DFT) with a dispersionless generalized-gradient-approximation (GGA) functional requires a much higher temperature and pressure than the ambient conditions. Conversely, ab initio second-order many-body perturbation (MP2) calculations of liquid water performed by Del Ben et al. [J. Chem. Phys. Lett. 4, 3753 (2013); J. Chem. Phys. 143, 054506 (2015)] and by us [Willow et al., Sci. Rep. 5, 14358 (2015)] required a lower temperature and a negative pressure than DFT to keep water liquid. Here, we present a unifying explanation of these trends derived from classical water simulations using a polarizable force field with different sets of parameters. We show that the calculated temperature and pressure of the liquid phase are strongly correlated with the polarizability of water and the dispersion interaction, respectively. In DFT/GGA, the polarizability and thus the induced dipole moments and the hydrogen-bond strength are all overestimated. This hinders the rotational motion of molecules and requires a higher temperature for water to be liquid. In MP2 and DFT/GGA, the dispersion interaction is stronger and weaker (or lacking), respectively. This explains why liquid water contracts uniformly and becomes too dense in MP2, whereas the opposite is the case for dispersionless DFT/GGA.

  3. Vibration-free Cooler for the METIS Instrument Using Sorption Compressors

    NARCIS (Netherlands)

    Wu, Y.; Mulder, T.; Vermeer, C.H.; Holland, H.J.; Benthem, B.; Brake, ter H.J.M.

    2015-01-01

    METIS is the “Mid-infrared ELT Imager and Spectrograph” for the European Extremely Large Telescope (E-ELT) that will cover the thermal/mid-infrared wavelength range from 3-14 micron. Starting from a pumped nitrogen line at 70K, it requires cryogenic cooling of detectors and optics at 40 K (1.4 W), 2

  4. Sorption-based vibration-free cooler for the METIS instrument on E-ELT

    NARCIS (Netherlands)

    Brake, ter H.J.M.; Wu, Y.; Zalewski, D.R.; Vermeer, C.H.; Holland, H.J.; Doornink, J.; Benthem, B.; Boom, E.; McLean, I.S.; Ramsay, S.K.; Takam, H.

    2012-01-01

    METIS is the 'Mid-infrared ELT Imager and Spectrograph' for the European Extremely Large Telescope. This E-ELT instrument will cover the thermal/mid-infrared wavelength range from 3 to 14 μm and will require cryogenic cooling of detectors and optics. We present a vibration-free cooling technolo

  5. Thermal emissions and climate change: Cooler options for future energy technology

    OpenAIRE

    Cowern, Nick E.B.; Ahn, Chihak

    2008-01-01

    Global warming arises from 'temperature forcing', a net imbalance between energy fluxes entering and leaving the climate system and arising within it. Humanity introduces temperature forcing through greenhouse gas emissions, agriculture, and thermal emissions from fuel burning. Up to now climate projections, neglecting thermal emissions, typically foresee maximum forcing around the year 2050, followed by a decline. In this paper we show that, if humanity's energy use grows at 1%/year, slower ...

  6. A Liquid Hydrogen Cooler with a Cooling Capacity of 20 Watts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For the future spaceport and long-term storage of liquid hydrogen NASA requires cryocoolers that can provide cooling power in the range of 20 watts at 20 K. The...

  7. Potential job facilitation benefits of "water cooler" conversations: the importance of social interactions in the workplace.

    Science.gov (United States)

    Lin, Iris Y; Kwantes, Catherine T

    2015-01-01

    This study looked at the extent to which personality and cultural factors predicted participants' perceptions of the importance private interactions played in the workplace. The 134 participants read a vignette (where a new employee socially interacted at low or high levels with co-workers) and completed the Big Five Inventory, Social Axioms Survey, and questions concerning expected workplace experiences. Results indicated employees who engaged in high levels of private interaction with co-workers were expected to be better liked, to receive better performance evaluations, were more likely to receive co-worker assistance, and were thought to be more likely chosen for future projects. However, the personality and social axiom variables studied did not significantly interact with social interaction to influence expectations of workplace outcomes.

  8. When cooler is not better: Stochastic Resonance Phenomena in Quantum Many-Body Systems

    CERN Document Server

    Huelga, S; Huelga, Susana; Plenio, Martin

    2006-01-01

    We discuss stochastic resonance (SR) effects in weakly driven coupled quantum systems. We show that both dynamical and information theoretic measures of the system's response can be introduced that exhibit a non-monotonic behaviour as a function of the noise strength. We analyze the relation between lack of monotonicity in the response and the presence of quantum correlations, showing that there are parameter regimes where the breakdown of a linear response can be associated to the presence of entanglement. We also show that a chain of coupled spin systems can exhibit an array-enhanced response, where the sensitivity of a single resonator to a weak driving signal is enhanced as a result of the nearest-neighbour coupling. These results enlarge the domain where SR effects exist and should be observable in state-of-the-art arrays of superconducting qubits.

  9. Strategies for cooler cities? Ecophysiological responses of semi-arid street trees to storm water harvesting

    Science.gov (United States)

    DeMets, C. M.; Pavao-zuckerman, M.; Barron-Gafford, G.

    2013-12-01

    As the southwestern U.S. moves into an uncertain future in terms of water supply and climate, communities are seeking creative ways to harvest urban runoff. One such solution is to implement water-sensitive urban design features such as rain basins, which are designed to capture and facilitate infiltration of precipitation and storm water as it runs off impermeable surfaces like streets and sidewalks. Rain basins essentially act as temporary cisterns, allowing a given rain event to have a much larger impact in recharging soil water profiles. In this sense, even a 'small' rain may yield a more saturated soil profile and stimulate plant physiological activity well beyond plants that lack this additional moisture input. However, the impacts of rain basins on plant function remain unquantified. Therefore, the purpose of our research is to characterize the performance of native mesquite trees in basins relative to non-basin native mesquites. To answer our question, we randomly sampled basin and non-basin native mesquites in two different neighborhoods in Tucson, AZ, and characterized their response to precipitation events. We measured stomatal conductance, a proxy for transpiration, on the first and third days following rain events in 2013. Numerous environmental factors, such as photosynthetically available radiation (PAR), temperature, relative humidity, and soil moisture, were also measured in order to explore relationships with conductance. These measurements were conducted before and during monsoon season in order to determine the significance of water in basin performance, enabling us to better characterize plant response to medium (6 to 12 mm) rain events. Findings from this study indicate that basin and non-basin mesquites have similar pre-monsoon conductance rates, with a mean basin value of 70 +/-10 mmol/(m2*s) and a mean non-basin value of 57 +/-6 mmol/(m2*s) at peak conductance. In contrast, during the monsoon, basin mesquites showed significantly higher peak conductance rates (179 +/-22 mmol/(m2*s)) than non-basin trees (126 +/-9 mmol/(m2*s)). Perhaps more importantly, basin mesquite conductance remained elevated for an extended period of time into the afternoon as compared to non-basin mesquites. While this difference was negligible before the monsoon, it was significant during the monsoon. The day immediately after a medium rainfall event, non-basin mesquites shut down around 13:00, while basin mesquites never shut down completely before the end of the measurement period around 17:30. Soil moisture levels were elevated in the rain basins relative to the non-basin soils, suggesting that basins impact plant functioning through enhanced soil water availability. These preliminary results demonstrate that basins are an effective means of capturing water and irrigating plants. Here we have demonstrated how an appreciation of wildland plant ecophysiology can be applied to an urban setting in support of a suite of ecosystem services. Notably, there is a potential for enhanced urban heat island mitigation in semi-arid cities through the application of water-sensitive urban design features such as rain basins, due to their supporting a longer duration of latent heat flux cooling (i.e., transpiration) into the afternoon.

  10. Oscillating heat pipe cooler for heat-generating elements of electronics

    Directory of Open Access Journals (Sweden)

    Alekseik E. S.

    2013-02-01

    Full Text Available The article presents a newly-developed compact heat removal system (HRS with water used for coolant, operable in any position in space. In conditions of forced convection at output power of 120 Wt (160 Wt input power thermal resistance of the HRS is 0.1 K/Wt and the system provides the average temperature of the cooled object over the range of 58 to 60°C. Heat transfer characteristics of the HRS can be improved, as there is potential for its modification.

  11. Energy conservation by means of a closed hybrid medium cooler; Gesloten hybride mediumkoeler spaart veel energie

    Energy Technology Data Exchange (ETDEWEB)

    Huizinga, H.T. [Heat Transfer Holland, Zuidwolde (Netherlands)

    2009-02-15

    Closed hybrid cooling systems that are integrated into the overall system can, by evaporation of water reduce the condensation temperature and undercooling of the refrigerant. This results in a significant energy saving because of recycled compressor capacity and a reduction of CO2 emissions from the electric power plant. [Dutch] Gesloten hybride koelsystemen die zijn geintegreerd in de totale installatie zorgen door verdamping van water voor een verlaging van de condensatietemperatuur en onderkoeling van de koudemiddelvloeistof. Daardoor ontstaat een aanmerkelijke energiebesparing van her opgenomen compressorvermogen en een reductie van CO2-emissie bij de elektriciteitscentrale.

  12. Collinear Laser Spectroscopy of Manganese Isotopes using the Radio Frequency Quadrupole Cooler and Buncher at ISOLDE

    CERN Document Server

    AUTHOR|(CDS)2083426

    The hyperfine structure of the odd-even $^{51−63}$Mn isotopes (N = 26 − 38) were measured using bunched beam collinear laser spectroscopy with the COLLAPS experimental setup at ISOLDE, CERN. The properties of these nuclei were investigated over the course of two experiments. During the first experiment, nuclear spins and magnetic dipole moments were extracted from spectroscopy on manganese atoms. These nuclear properties were then compared to the predictions of two large-scale shell model effective interactions (GXPF1A [1, 2] and LNPS [3]) which use different model spaces. In the case of $^{61,63}$Mn, these results show the increasing importance of neutron excitations across the proposed N = 40 subshell closure, and of proton excitations across the Z = 28 shell gap. These measurements provide the first direct proof that proton and neutron excitations across shell gaps are playing an important role in the ground state wave functions of the neutron-rich Mn isotopes. The electric quadrupole moment provides c...

  13. Thermodynamic Analysis of a Gas Turbine Power Plant Modelled with an Evaporative Cooler

    OpenAIRE

    2014-01-01

    Performance of a gas turbine is mainly depends on the inlet air temperature. The power output of a gas turbine depends on the flow of mass through it. Inlet air cooling increases the power output by taking advantage of the gas turbine’s feature of higher mass flow rate when the compressor inlet temperature decreases. This is precisely the reason why on hot days, when air is less dense, power output falls off. A rise of 1°C temperature of inlet air decreases the power output by 1%. In this pap...

  14. 78 FR 55781 - Energy Conservation Program: Energy Conservation Standards for Walk-In Coolers and Freezers

    Science.gov (United States)

    2013-09-11

    ... Owens Corning Foam Insulation, LLC... Owens Corning Material Supplier...... 0034.1 Southern California... Chemistry Council ACC Material Supplier...... 0062.1 American Chemistry Council Center for CPI Material Supplier...... 0052.1 the Polyurethanes Industry. American Council for an Energy Joint Advocates...

  15. High pressure check valve for application in a miniature cryogenic scorption cooler

    NARCIS (Netherlands)

    Burger, J.F.; Wekken, van der M.C.; Berenschot, E.; Holland, H.J.; Brake, ter H.J.M.; Rogalla, H.; Gardeniers, J.G.E.; Elwenspoek, M.

    1999-01-01

    This paper presents a check valve with integrated filter that can stand gas pressures of more than 100 bar in the closed direction and which has a very low pressure drop at low absolute gas pressures in the forward direction. The check valve is designed as a part of a check valve unit for applicatio

  16. Potential Use of Thermoelectric Modules for a Small Quantity Thermoelectric Beverage Cooler

    Science.gov (United States)

    1999-11-01

    volts) (°C) (W) (mm) (mm) (mm) Melcor CP 1.4-17-045L 8.5 9.2 2.06 67 17.51 15 15 3.3 Melcor CP1.4-31-045L 8.5 16.8 3.75 67 31.875 20 20 3.3 Melcor ...CP2-17-10L 9 10.3 2.06 70 18.54 22 22 5.6 Melcor CP2-17-06L 14 16 2.06 67 28.84 22 22 4.6 Americool TM-71-1.0-3.0M 3 14.9 8.6 71 25.8 22.4 22.4 4...Volume Red. «max Increase (W) (W) % % (W) (W) % % Melcor CP 1.4-17-045L 105.06 55.2 90.0 -29.2 140.08 73.6 79.5 -5.6 Melcor CP 1.4-31-045L

  17. Exergetic analysis of the transcritical cycle of an bottle cooler operating with CO2

    Directory of Open Access Journals (Sweden)

    Igor Marcel Gomes Almeida

    2009-10-01

    Full Text Available The second law of thermodynamics deals with the quality of energy. More specifically, it is concerned with the degradation of energy during a process, the entropy generation, and the lost opportunities to do work; and it offers plenty of room for improvement. This paper aims to identify key factors that affect refrigeration system performance with CO2. Due to the impact of global warming of CFC´s and HFC's, the use of natural refrigerants has received worldwide attention. The natural refrigerant, carbon dioxide (CO2/R744 is promising for use in cooling systems, especially in the transcritical cycle. An exergetic analysis through the cycle of a bottle cooller (exposer adapted for commercial use with carbon dioxide was carried out so that the effectiveness of the system components can be estimated and classified, allowing direct efforts to improve performance of components to the transcritical cycle. The analysis revealed that the compressor and expansion valve are the largest sources of losses in the system, and therefore, efforts should focus on improving these components.

  18. Development of a Low Heat Leak CFRP Stand for Miri Cooler jt Heat Exchanger Stage

    Science.gov (United States)

    Makowski, K. P.; Larson, M. E.; Loc, A. S.; Zhang, B. X.; Leland, R. S.; Hayashi1, B.

    2010-04-01

    A low heat leak stand is being developed for the Heat exchanger Stage Assembly (HSA) of the cryocooler subsystem for the Mid Infra-Red Instrument (MIRI) of the James Webb Space Telescope (JWST). The HSA stand is a hexapod structure supporting the 18 K HSA in a nominal 40 K background environment. Carbon fiber reinforced plastic (CFRP) has been selected for this application to meet the stringent design requirements of a low parasitic heat leak (less than 3.8 mW including both conductive and radiative heat loads for the thermal environment defined above) and a resonance frequency above 120 Hz. A directional lay-up of T300/polycyanate has been chosen for the construction of the hexapod struts. End fittings made of Invar 36 are bonded to the struts to provide structural interfaces. The development effort includes fabricating and testing (including cryogenic thermal cycling) six types of coupons for material characterization, determination of structural degradation due to thermal cycling, and selection of the joint bonding epoxy. Consequently, strut samples are used for final material characterization, performance assessment, and bond joint design evaluation. This paper describes the development process and addresses the challenges in meeting the design requirements. Results of finite element analysis (FEA) for the composite structure and experimental data collected through structural and thermal testing are also presented.

  19. Systems Design, Fabrication, and Testing of a High-Speed Miniature Motor for Cryogenic Cooler

    Directory of Open Access Journals (Sweden)

    Dipjyoti Acharya

    2009-01-01

    Full Text Available The long-term storage of liquid hydrogen for space missions is of considerable interest to NASA. To this end, the Reverse Turbo-Brayton Cryocooler (RTBC is considerably lighter than conventional designs and a potentially viable and attractive solution for NASA's long-term Zero-Boil-off (ZBO hydrogen storage system for future space missions. We present the systems design, fabrication, and performance evaluation of the Permanent Magnet Synchronous Motor (PMSM powering a cryocooler capable of removing 20 W of heat at 18 K with a COP of 0.005 and driven by two 2-kW permanent magnet synchronous motors operating at 200 000 rpm and at room temperature and 77 K. Structural, thermal, and rotordynamic aspects of system design are considered.

  20. Two-stage high frequency pulse tube cooler for refrigeration at 25 K

    CERN Document Server

    Dietrich, M

    2009-01-01

    A two-stage Stirling-type U-shape pulse tube cryocooler driven by a 10 kW-class linear compressor was designed, built and tested. A special feature of the cold head is the absence of a heat exchanger at the cold end of the first stage, since the intended application requires no cooling power at an intermediate temperature. Simulations where done using Sage-software to find optimum operating conditions and cold head geometry. Flow-impedance matching was required to connect the compressor designed for 60 Hz operation to the 40 Hz cold head. A cooling power of 12.9 W at 25 K with an electrical input power of 4.6 kW has been achieved up to now. The lowest temperature reached is 13.7 K.

  1. Vibration-free 5 K sorption cooler for ESA's Darwin mission

    NARCIS (Netherlands)

    Burger, J.F.; Brake, ter H.J.M.; Rogalla, H.; Linder, M.

    2002-01-01

    ESA's Darwin mission is an Infrared Space Interferometer that will search for terrestrial planets in orbit around other stars. It uses six free-flying telescopes that are stabilized with respect to each other to less than 10 nm by utilizing micro-Newton ion thrusters. As a consequence, hardly any vi

  2. Attainment of an MeV-range, DC electron beam for the Fermilab cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. E-mail: shemyakin@fnal.gov; Burov, A.; Carlson, K.; Dudnikov, V.; Kramper, B.; Kroc, T.; Leibfritz, J.; McGee, M.; Nagaitsev, S.; Saewert, G.; Schmidt, C.W.; Warner, A.; Seletskiy, S.; Tupikov, V

    2004-10-11

    To prepare a beam generation device for Fermilab's future Recycler Electron Cooling system, an experimental set-up with a simplified beam line has been commissioned at Fermilab. Stable operation was achieved at an electron energy of 3.5 MeV and a DC beam current of up to 0.5 A. The main reason for interruptions of the operation was found to be microsecond long bursts of the cathode current. While the frequency of the interruptions is determined primarily by a flow of secondary ions, the resulting reduction in the duty factor depends on the beam optics, the protection systems, and the tube electric field strength.

  3. Potential benefits of solar reflective car shells: cooler cabins, fuel savings and emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Pan, Heng; Ban-Weiss, George; Rosado, Pablo; Paolini, Riccardo; Akbari, Hashem

    2011-05-11

    Abstract: Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the ?soak? temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle?s ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (?) of the car?s shell by about 0.5 lowered the soak temperature of breath-level air by about 5?6?C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25?C within 30min is 13percent less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (?=0.35) for a black shell (?=0.05) would reduce fuel consumption by 0.12L per 100km (1.1percent), increasing fuel economy by 0.10kmL?1 [0.24mpg] (1.1percent). It would also decrease carbon dioxide (CO2) emissions by 2.7gkm?1 (1.1percent), nitrogen oxide (NOx) emissions by 5.4mgkm?1 (0.44percent), carbon monoxide (CO) emissions by 17mgkm?1 (0.43percent), and hydrocarbon (HC) emissions by 4.1mgkm?1 (0.37percent). Selecting a typical white or silver shell (?=0.60) instead of a black shell would lower fuel consumption by 0.21L per 100km (1.9percent), raising fuel economy by 0.19kmL?1 [0.44mpg] (2.0percent). It would also decrease CO2 emissions by 4.9gkm?1 (1.9percent), NOx emissions by 9.9mgkm?1 (0.80percent), CO emissions by 31mgkm?1 (0.79percent), and HC emissions by 7.4mgkm?1 (0.67percent). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are typically lower than those in real-world driving.

  4. Why Is MP2-Water "Cooler" and "Denser" than DFT-Water?

    Science.gov (United States)

    Willow, Soohaeng Yoo; Zeng, Xiao Cheng; Xantheas, Sotiris S; Kim, Kwang S; Hirata, So

    2016-02-18

    Density functional theory (DFT) with a dispersionless generalized gradient approximation (GGA) needs much higher temperature and pressure than the ambient conditions to maintain water in the liquid phase at the correct (1 g/cm(3)) density during first-principles simulations. Conversely, ab initio second-order many-body perturbation (MP2) calculations of liquid water require lower temperature and pressure than DFT/GGA to keep water liquid. Here we present a unifying explanation of these trends derived from classical water simulations using a polarizable force field with different sets of parameters. We show that the different temperatures and pressures between DFT/GGA and MP2 at which the simulated water displays the experimentally observed liquid structure under the ambient conditions can be largely explained by their differences in polarizability and dispersion interaction, respectively. In DFT/GGA, the polarizability and thus the induced dipole moments and the hydrogen-bond strength are all overestimated. This hinders the rotational motion of molecules and requires a higher temperature for DFT-water to be liquid. MP2 gives a stronger dispersion interaction and thus shorter intermolecular distances than dispersionless DFT/GGA, which is why MP2-water is denser than DFT-water under the same external pressure.

  5. Vibration-free Cooler for the METIS Instrument Using Sorption Compressors

    NARCIS (Netherlands)

    Wu, Roger; Mulder, Tim; Vermeer, Cristian Hendrik; Holland, Herman J.; Benthem, B.; ter Brake, Hermanus J.M.

    2015-01-01

    METIS is the “Mid-infrared ELT Imager and Spectrograph” for the European Extremely Large Telescope (E-ELT) that will cover the thermal/mid-infrared wavelength range from 3-14 micron. Starting from a pumped nitrogen line at 70K, it requires cryogenic cooling of detectors and optics at 40 K (1.4 W), 2

  6. Determining magnetic phase transitions temperatures in working magnetocaloric coolers bodies and gas cryorefrigerators regenerators

    Science.gov (United States)

    Karagusov, V. I.; Mayankov, I. V.

    2017-08-01

    Due to magnetic phase transitions rare-earth materials possess unique properties near the Curie and Neel temperatures, such as the magneto-caloric effect, the abnormally high heat capacity, the magnetic susceptibility and permeability extremes. Using rare earth materials in gas cryogenic refrigerators regenerators increases the efficiency, reduces the power consumption and allows reaching helium temperatures. The magneto-caloric effect has also extreme values near the Curie and Neel temperatures. The paper presents theoretical and experimental methods allowing to determine magnetic phase transitions temperatures in a wide range of low temperature materials with a various rare-earth components content and expected thermophysical properties of a certain rare-earth materials composition at the temperatures based on starting pure metals characteristics. The results analysis has shown that magnetic phase transitions temperatures are a linear function of the components concentration. Moreover, heat capacity values and MCE also depend linearly on the starting components concentration, which simplifies calculations significantly.

  7. Cooling of highly charged ions—the HITRAP facility and Cooler trap

    Science.gov (United States)

    Fedotova, S.; Boulton, E.; Brantjes, N. P. M.; Herfurth, F.; Kotovskiy, N.; Krantz, C.; Neidherr, D.; Steinmann, J.; Vorobjev, G.; HITRAP Collaboration

    2013-09-01

    HITRAP is a facility at GSI in Darmstadt for decelerating, cooling and storing heavy, highly charged ions. It is designed to decelerate a beam of A/q cold ions to the experiments. The linac has shown to decelerate ions down to 500 keV per nucleon on-line and to 6 keV per nucleon off-line. Recent tests with electrons and ions injected into the trap showed the necessity of a more careful electric and magnetic field alignment. An installed test ion source as well as a system of apertures and position sensitive diagnostics will be used to align the fields. A highly charged ion beam from a small room temperature electron beam ion trap was used for commissioning the VBL.

  8. AGN are cooler than you think: the intrinsic far-IR emission from QSOs

    CERN Document Server

    Symeonidis, M; Page, M J; Pearson, C; Bendo, G; Seymour, N; Oliver, S J

    2016-01-01

    We present an intrinsic AGN SED extending from the optical to the submm, derived with a sample of unobscured, optically luminous (vLv(5100)>10^43.5 erg/s) QSOs at z 10^43.5 erg/s). We note that for our sample of luminous QSOs, the average AGN emission is at least as high as, and mostly higher than, the total stellar powered emission at all wavelengths from the optical to the submm. This implies that in many galaxies hosting powerful AGN, there is no `safe' broadband photometric observation (at lambda<1000um) which can be used in calculating star-formation rates without subtracting the AGN contribution. Roughly, the AGN contribution may be ignored only if the intrinsic AGN luminosity at 5100 Ang is at least a factor of 4 smaller than the total infrared luminosity (L_IR; 8-1000um) of the galaxy. Finally, we examine the implication of our work in statistical studies of star-formation in AGN host galaxies.

  9. Frequent floods in the European Alps coincide with cooler periods of the past 2500 years.

    Science.gov (United States)

    Glur, Lukas; Wirth, Stefanie B; Büntgen, Ulf; Gilli, Adrian; Haug, Gerald H; Schär, Christoph; Beer, Jürg; Anselmetti, Flavio S

    2013-09-26

    Severe floods triggered by intense precipitation are among the most destructive natural hazards in Alpine environments, frequently causing large financial and societal damage. Potential enhanced flood occurrence due to global climate change would thus increase threat to settlements, infrastructure, and human lives in the affected regions. Yet, projections of intense precipitation exhibit major uncertainties and robust reconstructions of Alpine floods are limited to the instrumental and historical period. Here we present a 2500-year long flood reconstruction for the European Alps, based on dated sedimentary flood deposits from ten lakes in Switzerland. We show that periods with high flood frequency coincide with cool summer temperatures. This wet-cold synchronism suggests enhanced flood occurrence to be triggered by latitudinal shifts of Atlantic and Mediterranean storm tracks. This paleoclimatic perspective reveals natural analogues for varying climate conditions, and thus can contribute to a better understanding and improved projections of weather extremes under climate change.

  10. Wetter and cooler: pronounced temperate climate conditions in western Anatolia during the Middle Miocene Climatic Optimum

    Science.gov (United States)

    Güner, Tuncay H.; Bouchal, Johannes M.; Köse, Nesibe; Denk, Thomas

    2017-04-01

    During the course of an ongoing palaeobotanical investigation of the lignite mines of the Yataǧan Basin, Muǧla province, Turkey, the fossil leaves of the Eskihisar lignite mine were analysed using the Climate Leaf Analysis Multivariate Program (CLAMP). The investigated fossil leaves derive from the marls and clayey limestones (Sekköy Member) overlying the exploited lignite seam (uppermost Turgut Member). The age of the studied sedimentary rocks is well constrained by vertebrate fossils occuring in the main lignite seam (MN6 → Gomphoterium angustidens Cuvier, 1817; Percrocuta miocenica Pavlov & Thenius, 1965) and at the Yenieskihisar Mammal locality (MN7/8, uppermost Sekköy Member). 719 specimens were measured and assigned to 65 leaf morphotypes. Using this data, CLAMP reconstructed the following climate parameters: mean annual temperature (MAT) 12.58 (+/-1.5)°C, warm month mean temperature (WMMT) 23.72 (+/-2.5)°C, cold month mean temperature (WMMT) 2.29 (+/-2)°C, length of growing season (LGS) 7.52 (+/-0.75) month, mean growing season precipitation (GSP) 130.1 (+/-40) cm, precipitation during the three wettest months (3-WET) 67 (+/-25) cm, precipitation during the three driest months (3-DRY) 20.4 (+/-7.5) cm. The reconstructed parameters are too cool for tropical climates (the 18˚ C winter isotherm being a threshold for tropical climates) and indicate temperate conditions; climates fitting these parameters (Cfb according to the Köppen-Geiger climate classification) can be found today in regions known as "Tertiary relict areas" (e.g. Black sea coast of Northeast Turkey, eastern China, Japan). Based on a substantial amount of rainfall during the three driest months, it is further possible to exclude markedly seasonal climates such as a summer-dry and winter-wet Mediterranean climate and a summer-wet and winter-dry monsoon climate as commonly found along the southern foothills of the Himalayas and in southwestern China. Instead, a fully humid Cf climate is proposed that has only a weak seasonality in precipitation (lower precipitation in winter). The findings of our study provide valuable information for inferring palaeoenvironments of middle Miocene rich ungulate faunas in western Turkey (e.g. Paşalar), for which seasonal tropical and subtropical forest communities have been proposed (Andrews, 1990). The fossil floras of the Tınaz and Salihpaşalar lignite mines, representing the Tınaz sub-basin and the main basin of the wider Yataǧan Basin, are investigated at the moment, and a synthesis paper combining and comparing evidence from the macro floral and palynological data is soon to be submitted. Andrews. (1990) Palaeoecology of the Miocene fauna from Paşalar, Turkey. Journal of Human evolution 19:569-582.

  11. The Planck Sorption Cooler: Using Metal Hydrides to Produce 20 K

    Science.gov (United States)

    Pearson, David P.; Bowman, R.; Prina, M.; Wilson, P.

    2006-01-01

    The Jet Propulsion Laboratory has built and delivered two continuous closed cycle hydrogen Joule-Thomson (JT) cryocoolers for the ESA Planck mission, which will measure the anisotropy in the cosmic microwave background. The metal hydride compressor consists of six sorbent beds containing LaNi4.78Sn0.22 alloy and a low pressure storage bed of the same material. Each sorbent bed contains a separate gas-gap heat switch that couples or isolates the bed with radiators during the compressor operating cycle. ZrNiHx hydride is used in this heat switch. The Planck compressor produces hydrogen gas at a pressure of 48 Bar by heating the hydride to approx.450 K. This gas passes through a cryogenic cold end consisting of a tube-in-tube heat exchanger, three pre-cooling stages to bring the gas to nominally 52 K, a JT value to expand the gas into the two-phase regime at approx.20 K, and two liquid - vapor heat exchangers that must remove 190 and 646 mW of heat respectively.

  12. Rotation-Activity-Age Relations For Solar-Type And Cooler Stars

    Science.gov (United States)

    Basri, Gibor

    2016-08-01

    The fact that stellar rotation and chromospheric emission are correlated with age was explicitly noted by Wilson (1963) and reinforced by Kraft (1967). Wilson knew that Ca II emission was correlated with surface magnetic field in the Sun. Skumanich (1972) suggested a simple functional for the age-activity relation, and suggested that magnetic braking was the likely reason for the decline in activity. A theory for the rotation-activity connection was elucidated by Noyes et al. (1984), who invoked the Rossby number as important to the stellar dynamo. This calibrated the relation by convection zone depth and turnover time, although it was noted early and recently confirmed that it is not clear whether Rossby number is empirically superior to the rotation period itself in producing a clear rotation-activity relation. In fact, turnover times are hard to properly define, and the Rossby number is itself calibrated to tighten the relations. The number of stars in samples used to study this has increased dramatically, as have the diagnostics available to assess magnetic activity. It remains clear is that there is a strong relationship between magnetic activity and stellar rotation, and that magnetic braking forces both activity and rotation to decrease with age. These relations are also subject to modification as a function of stellar mass. There has recently been a great increase in the number of measured stellar rotation periods, and in the calibration of these relations using star clusters (whose ages can be independently assessed). I will summarize some of the ongoing progress on this topic.

  13. A simple tool for estimating city-wide annual electrical energy savings from cooler surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pomerantz, Melvin; Rosado, Pablo J.; Levinson, Ronnen

    2015-12-01

    We present a simple method to estimate the maximum possible electrical energy saving that might be achieved by increasing the albedo of surfaces in a large city. We restrict this to the “indirect effect”, the cooling of outside air that lessens the demand for air conditioning (AC). Given the power demand of the electric utilities and data about the city, we can use a single linear equation to estimate the maximum savings. For example, the result for an albedo change of 0.2 of pavements in a typical warm city in California, such as Sacramento, is that the saving is less than about 2 kWh per m2 per year. This may help decision makers choose which heat island mitigation techniques are economical from an energy-saving perspective.

  14. Li-ion battery thermal runaway suppression system using microchannel coolers and refrigerant injections

    Science.gov (United States)

    Bandhauer, Todd M.; Farmer, Joseph C.

    2016-11-08

    A battery management system with thermally integrated fire suppression includes a multiplicity of individual battery cells in a housing; a multiplicity of cooling passages in the housing within or between the multiplicity of individual battery cells; a multiplicity of sensors operably connected to the individual battery cells, the sensors adapted to detect a thermal runaway event related to one or more of the multiplicity of individual battery cells; and a management system adapted to inject coolant into at least one of the multiplicity of cooling passages upon the detection of the thermal runaway event by the any one of the multiplicity of sensors, so that the thermal runaway event is rapidly quenched.

  15. Li-ion battery thermal runaway suppression system using microchannel coolers and refrigerant injections

    Energy Technology Data Exchange (ETDEWEB)

    Bandhauer, Todd M.; Farmer, Joseph C.

    2016-11-08

    A battery management system with thermally integrated fire suppression includes a multiplicity of individual battery cells in a housing; a multiplicity of cooling passages in the housing within or between the multiplicity of individual battery cells; a multiplicity of sensors operably connected to the individual battery cells, the sensors adapted to detect a thermal runaway event related to one or more of the multiplicity of individual battery cells; and a management system adapted to inject coolant into at least one of the multiplicity of cooling passages upon the detection of the thermal runaway event by the any one of the multiplicity of sensors, so that the thermal runaway event is rapidly quenched.

  16. Development of a Sorption-based Joule-Thomson Cooler for the METIS Instrument on E-ELT

    NARCIS (Netherlands)

    Wu, Yingzhe

    2015-01-01

    METIS, the Mid-infrared E-ELT Imager and Spectrograph, is one of instruments in the European Extremely Large Telescope. Its detectors require cryogenic cooling at three temperature levels below that of liquid nitrogen, 8 K, 25 K, and 40 K. Vibration-free cooling is one of the technologies that were

  17. Numerical heat and mass transfer analysis of a cross-flow indirect evaporative cooler with plates and flat tubes

    Science.gov (United States)

    Chua, K. J.; Xu, J.; Cui, X.; Ng, K. C.; Islam, M. R.

    2016-09-01

    In this study the performance of an indirect evaporative cooling system (IECS) of cross-flow configuration is numerically investigated. Considering the variation of water film temperature along the flowing path and the wettability of the wet channel, a two-dimensional theoretical model is developed to comprehensively describe the heat and mass transfer process involved in the system. After comparing the simulation results with available experimental data from literature, the deviation within ±5 % proves the accuracy and reliability of the proposed mathematical model. The simulation results of the plate type IECS indicate that the important parameters, such as dimension of plates, air properties, and surface wettability play a great effect on the cooling performance. The investigation of flow pattern shows that cross-flow configuration of primary air with counter-flow of secondary air and water film has a better cooling performance than that of the parallel-flow pattern. Furthermore, the performance of a novel flat tube working as the separating medium is numerically investigated. Simulation results for this novel geometry indicate that the tube number, tube long axis and short axis length as well as tube length remarkably affect its cooling performance.

  18. 76 FR 21579 - Energy Conservation Program: Test Procedures for Walk-In Coolers and Walk-In Freezers

    Science.gov (United States)

    2011-04-15

    ..., ``Thermal insulation products for buildings--Factory made rigid polyurethane foam (PUR) products... 13165:2009-02, ``Thermal insulation products for buildings--Factory made rigid polyurethane foam (PUR... polyurethane foam (PUR) products--Specification,'' as applicable. These tests were proposed in the SNOPR. 75...

  19. Investigation of heat transfer characteristics of finned tubes in an air cooler; Kuki reikyakuki no dennetsu tokusei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Akiyoshi, R.; Hori, M.; Ishida, H.; Hagiwara, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1997-03-01

    Heat transfer characteristics of a multitubular heat exchanger are investigated for the purpose of continuously cooling air below 0{degree}C. The air duct used in the test is rectangular, 302mm in width and 322mm in height, made of an acrylic resin so that the frosted part may be seen by the eyes and that transmission of heat from the duct into the air may be suppressed. The heat transfer tube is a horizontal tube provided with fins. The refrigerant is a brine kept at a specified temperature, supplied to the most downstream row of the heat transfer tube to run in series so that it will flow contrary to the air. Under the conditions where the steam in the air does not condense, the heat transmission rate increases along with the air speed, quantatively agreeing with what has been obtained in the past. Under the conditions where the steam in the air condenses, the heat transmission rate is two times higher than the rate in the case of no condensation when the air speed is low and, when the air speed is high, approximately equal to the rate in the case of no condensation. Between the two, there is a domain where the heat transmission rate decreases with an increase in the air speed. Spraying the brine on the heat transfer tube prevents frosting even when the heat transfer surface temperature is 0{degree}C or lower, letting heat through. 9 refs., 6 figs.

  20. INFLUENCE FISH FARMING IN TANKS ON STRUCTURAL AND FUNCTIONAL CHARACTERISTICS AND ACCUMULATION OF SEDIMENTS IN THE BASIN-COOLER

    OpenAIRE

    N. Starkо

    2013-01-01

    Purpose. Establishing change the basic structural and functional characteristics of the sediments under the influence of waste going fish farming in tanks. Methodology. Bottom sediment samples were collected using a 1 m of dirt tube (SOI-1), according to the standard requirements. Water-physical properties of sediments were investigated in accordance the recommendations of B. Novikov (1985) and A. Denisova et al. (1987). Determination of the gross content of organic matter carried by loss...

  1. Ultra-dense Multistage Thin Film Thermoelectric Cooler enabled by Massive Filo-Layer Technology (MFT) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future instruments and platforms for NASA's Earth Science Enterprises will require increasingly sophisticated thermal control technology. Temperature control for...

  2. Cooler than air. Evaporative cooling makes it possible; Kuehler als die Luft erlaubt.. Verdunstungskuehlung macht's moeglich

    Energy Technology Data Exchange (ETDEWEB)

    Sturies, Hubert [EVAPCO Europe GmbH, Meerbusch (Germany)

    2009-09-15

    The contribution outlines the variants of evaporation cooling aggregates that are commercially available. It should be mentioned that cooling towers of 200 kW to 20 MW can be constructed in serial production. Over 20 MW, modular cooling towers comprised of cooling cells are used that can be assembled on site. (orig.)

  3. 76 FR 48745 - Energy Conservation Program: Compliance Date Regarding the Test Procedures for Walk-In Coolers...

    Science.gov (United States)

    2011-08-09

    ... Parts 429 and 431 RIN 1904-AC58 Energy Conservation Program: Compliance Date Regarding the Test... INFORMATION: I. Background The Energy Policy and Conservation Act (EPCA), as amended by section 312(c) of the... compliance with the energy conservation standards currently under development. DOE plans to issue the...

  4. 76 FR 65362 - Energy Conservation Program: Compliance Date Regarding the Test Procedures for Walk-In Coolers...

    Science.gov (United States)

    2011-10-21

    ... Parts 429 and 431 RIN 1904-AC58 Energy Conservation Program: Compliance Date Regarding the Test... Conservation Act (EPCA), as amended by section 312(c) of the Energy Independence and Security Act (EISA 2007... compliance date for the performance-based energy conservation standards currently under development. 76...

  5. 75 FR 17080 - Energy Conservation Standards for Walk-in Coolers and Walk-in Freezers: Public Meeting and...

    Science.gov (United States)

    2010-04-05

    ... envelope and the refrigeration system--as two separate pieces of equipment, and proposed separate test... separate standards for the envelope and the refrigeration system. Thus, the preliminary analyses reflect... would conduct, such as the engineering analysis, the life-cycle cost (LCC) and payback period...

  6. Evaluation of a natural gas compressor building with switch-back air inlet entrances and ventilated by compressor package coolers

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Timothy G. [HFP Acoustical Consultants Inc. (United States)], email: tim.simmons@hfpacoustical.com

    2011-07-01

    The booming natural gas market in the Marcellus shale region has seen the appearance of many oil and gas processing stations, the latter generating a great deal of noise, which disturbs local residents. The oil and gas companies have therefore developed a patchwork of noise reduction techniques, from basic mufflers to engineered, sound-proof buildings. This paper focuses on a compromise: a gas compressor station, located in Lycoming County, Pennsylvania, encased in a light-weight, metal building with switch-back air inlet openings for cooling and noise reduction. This case study aims to measure the noise emissions of the compressor, and possibly propose solutions for its mitigation. Since Lycoming County has a fairly stringent policy on noise disturbance, especially for low-frequency sounds, noise emission results showed that switch-back openings and the walls of the compressor building must be mitigated and that action must be taken by the gas company to meet the noise ordinance requirements.

  7. A revisit to Peking Man——An older and cooler Peking Man refuels a debate lasting for decades

    Institute of Scientific and Technical Information of China (English)

    SONG Jianlan

    2009-01-01

    @@ Peking Man, whose emergence from suburban Beijing in the 1920s and 1930s first revealed the existence of early humans in northeastern Asia, has remained at the center of a hot debate for decades. The mysterious absence of the fossil skulls of this Homo erectus (H. erectus) during the World War II added to the complexity of the story and, the difficulty of unraveling the enigma of its age. Because of the lack of an accurate dating technique suitable for the sediments at this site, the chronological niche for the Peking Man has long been obscured with the sands in the cave.

  8. Autostructurizing solid phase of a refrigerant as a multi-functional low-temperature unit of a cooler

    Energy Technology Data Exchange (ETDEWEB)

    Dvornitsyn, A. [NITKriogenmash, Odessa (Ukraine). Technology Research Institute; Naer, V.; Rozhentsev, A. [Odessa State Academy of Refrigeration (Ukraine)

    2004-08-01

    It has been shown that under certain conditions the solid phase of a refrigerant with a peculiar internal capillary-porous structure can be formed in the working circuit of a refrigerating machine. That solid porous phase does not cease circulation of the refrigerant and possess a unique ability to bring its dimensions and internal structure in correspondence with internal and external heat flows that turns it at once into an auto-adjusted combined 'throttling-heat exchanging' unit of the refrigerating machine. The discovered effect opens a prospect of new advanced technologies developing in the field of refrigeration engineering and cryogenics. (author)

  9. INFLUENCE FISH FARMING IN TANKS ON STRUCTURAL AND FUNCTIONAL CHARACTERISTICS AND ACCUMULATION OF SEDIMENTS IN THE BASIN-COOLER

    Directory of Open Access Journals (Sweden)

    N. Starkо

    2013-09-01

    Full Text Available Purpose. Establishing change the basic structural and functional characteristics of the sediments under the influence of waste going fish farming in tanks. Methodology. Bottom sediment samples were collected using a 1 m of dirt tube (SOI-1, according to the standard requirements. Water-physical properties of sediments were investigated in accordance the recommendations of B. Novikov (1985 and A. Denisova et al. (1987. Determination of the gross content of organic matter carried by loss after calcining. Oxygen consumption in sediments was studied by the method V. І. Romanenko and V. A. Romanenko (1969. Determination of the amount of sediments, which are formed from waste fish farming, carried out in two different ways: by calculating the income from tanks suspended solids and by direct determination of the sediment under the tanks. Findings. Was established that intensive fish farming waste flow predetermines a significant (up to 4 increase the organic matter content. Thus, even 2 years after the reduction of volumes of fish farming tanks and even remove volumetric mass of the skeleton to the initial values of deposits are not refundable. The concentration of organic substances in the zone of the tanks lines causes increased intake of dissolved oxygen, which leads to deterioration in gas mode, especially in the bottom layers of water and may cause suffocation situations. According to our research, the role of tanks lines in shaping total volume of sediment rather low (up to 2%, but their effect on the structural characteristics of sediments allows to evaluate the role of this activity in the overall balance of production-destruction processes as significant. Originality. Was first quantified the role of fish farming in tanks on the quantitative and qualitative characteristics of sediments cooling ponds Zmievsk TPР and Kursk NPP. Practical value. The results will be used in the development of water conservation measures in the integrated use of cooling ponds TPР and NPP.

  10. 15-25K Static-Helium Regenerator/Double Pulse Tube Cooler for Receiving Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs a cryogenic refrigerator for the 15-25K range for receiving arrays of ground-based antennas that will serve the telecommunications needs of future space...

  11. 75 FR 186 - Energy Conservation Program: Test Procedures for Walk-In Coolers and Walk-In Freezers

    Science.gov (United States)

    2010-01-04

    ... propose and offer the public an opportunity to present oral and written comments on them. Consistent with... could not provide feedback on how accurate the AEDM should be because DOE had not yet determined...

  12. LOREF: Air cooler optimisation with reduction of ice and frost formation - Optimisation of lamella air-coolers/evaporators of air/water heat pumps - Part 2: mathematical-physical simulation of the lamella air-coolers with condensate and frost formation; LOREF: Luftkuehler-Optimierung mit Reduktion von Eis- und Frostbildung - Optimierung des Lamellenluftkuehlers/Verdampfers von Luft/Wasser-Waermepumpen - Teil 2: mathematisch-physikalische Simulation des Lamellenluftkuehlers mit Kondensat- und Frostbildung

    Energy Technology Data Exchange (ETDEWEB)

    Sahinagic, R.; Gasser, L.; Wellig, B.; Hilfiker, K.

    2008-04-15

    The average coefficient of performance (COP) of air/water heat pumps shall be further improved over the next decade. Its success will strongly depend on two measures: by altering the characteristic of the heat pump through continuous operation instead of on/off operation, and further, by reducing the formation of frost and ice. Frost significantly reduces the air flow, and consequently also the heat and mass transfer in the fin tube evaporator. The formation of frost and ice is influenced by a complex interaction between the fin tube evaporator, the characteristic of the fan and of the heat pump itself. An accurate prediction of these processes is required to optimize the design of the fin tube evaporator in combination with fan and heat pump to further improve the overall efficiency. Based on the theory of simultaneous heat and mass transfer combined with partial condensation and desublimation, a simulation program for the prediction of frost and ice formation has been developed, being valid over the wide range of the ambient air (from -10 {sup o}C to 15 {sup o}C and dry to saturated air). The humidity is deposited either as condensate, frost, ice or as a combination of them on the fins and tubes of the evaporator. It was a major challenge to create a correlation for the physical properties of the frost and ice layer in the unsteady processes. By numerous experiments, four regions of physical properties are distinguished, depending on the temperature at the boundary layer between air and frost or ice: condensate above -2.7 {sup o}C, condensate and ice between -3.5 {sup o}C to -2.7 {sup o}C, ice and frost between -5.2 {sup o}C to -3.5 {sup o}C and frost formed directly by desublimation below -5.2 {sup o}C. A high reliability has been obtained with the mathematical-physical simulation program proven over the entire applicable range of air temperature and humidity, temperature difference for heat transfer, air velocity and geometry of the fin tube evaporator. (author)

  13. Thermoelectric-Cooler Unipolar Drive Achieves Stable Temperatures%用单极驱动实现稳定温度的热电制冷器

    Institute of Scientific and Technical Information of China (English)

    W Stephen Woodward; Chapel Hill

    2008-01-01

    大多数工程师都知道使用名为Peltier器件的固态冰箱.或更常见的名字是TEC(热电致冷器),以及它们如何主动降低温度敏感电子元件(如光电探测器与固态激光器)的温度。另外,TEC是双向热泵,因此可以根据驱动电流的流向,同时加热与制冷,这是一个不算太普及的常识。所以.TEC可以用于精密微型恒温器中.能对抗环境温度的波动,在设定值的上下区间维持一个预定的温度。

  14. APPLIED CALCULATION OF PELTIER COOLER IN ONE NEW LHP%半导体制冷在新型环路热管的应用计算

    Institute of Scientific and Technical Information of China (English)

    裴念强; 郭开华; 刘杰

    2007-01-01

    本文介绍了一种新型的主动式环路热管(ALHP).该环路热管系统采用泵代替了传统的毛细力驱动,通过控制储液罐的温度调节整个系统的压力.系统的压力决定了工作于气液两相区的蒸发器的工作温度.储液罐温度控制采用半导体冷却装置.为了使半导体冷却器能够更好的工作,文章提出了两种半导体冷却器的布置方式并对两种方案制冷能力进行比较,最后综合考虑各个因素提出了优选方案.

  15. A Case Study of MgB2 and HTS Magnets Being Cooled and Cooled Down using a Hydrogen Thermal-siphon Cooling-loop with Coolers

    Science.gov (United States)

    Green, Michael A.

    When one fabricates a magnet using MgB2 or HTS conductors, the operating temperature of the magnet can be increased into the temperature range from about 15 to 30 K. This temperature range is between the triple-point (13.8 K) and the critical point of para-hydrogen (32.3 K). Hydrogen has excellent heat transfer properties both as a liquid and as a gas at low temperature. The heat of vaporization of hydrogen is larger than any cryogenic fluid. In addition, the specific heat of the liquid and the gas is higher than any cryogenic fluid. Hydrogen may be the best fluid to use to connect a magnet operating between 15 and 30 K with a source of refrigeration. This paper compares magnet cooling at 20 K using helium and hydrogen. A safe completely passive cooling loop is discussed in this paper.

  16. 穿片式气体冷却器研究进展%Advances in the research of plate-fin-tube gas coolers

    Institute of Scientific and Technical Information of China (English)

    干保良

    2009-01-01

    气体冷却器是汽轮发电机通风冷却系统的重要设备.其性能直接影响汽轮发电机的通风冷却效果及设备的运行可靠性.介绍了几种不同翅片形式(平直片、波纹片、条缝片、百叶窗片、穿孔片)的穿片式气体冷却器的换热和阻力特性的研究进展.通过对前人研究成果的归纳和总结,指出了以往研究的一些不足.

  17. Application of automatic inspection system to nondestructive test of heat transfer tubes of primary pressurized water cooler in the high temperature engineering test reactor. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Takeshi; Furusawa, Takayuki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Miyamoto, Satoshi [Japan Atomic Power Company, Tokyo (Japan)

    2001-07-01

    Heat transfer tubes of a primary pressurized water cooled (PPWC) in the high temperature engineering test reactor (HTTR) form the reactor pressure boundary of the primary coolant, therefore are important from the viewpoint of safety. To establish inspection techniques for the heat transfer tubes of the PPWC, an automatic inspection system was developed. The system employs a bobbin coil probe, a rotating probe for eddy current testing (ECT) and a rotating probe for ultrasonic testing (UT). Nondestructive test of a half of the heat transfer tubes of the PPWC was carried out by the automatic inspection system during reactor shutdown period of the HTTR (about 55% in the maximum reactor power in this paper). The nondestructive test results showed that the maximum signal-to-noise ratio was 1.8 in ECT. Pattern and phase of Lissajous wave, which were obtained for the heat transfer tube of the PPWC, were different from those obtained for the artificially defected tube. In UT echo amplitude of the PPWC tubes inspected was lower than 20% of distance-amplitude calibration curve. Thus, it was confirmed that there was no defect in depth, which was more than the detecting standard of the probes, on the outer surface of the heat transfer tubes of the PPWC inspected. (author)

  18. Thermal Test Study on FAC Fluidized Bed Slag Cooler%FAC型流化床式冷渣器热态试验研究

    Institute of Scientific and Technical Information of China (English)

    郭涛; 杜诚; 张志强; 李强; 吕海生

    2012-01-01

    介绍了FAC型流化床式冷渣器的特点及其在燃用劣质煤300 MW CFB锅炉的应用情况,实炉进行了布风板阻力特性及流化风量、床压等参数对其运行影响的试验研究,并对该冷渣器的出力进行了热态测定.

  19. Comparison between high-efficiency closed hybrid medium re-coolers and open wet cooling towers; Vergelijk tussen hoogrendement gesloten hybride-mediumterugkoelers en open natte-koeltorens

    Energy Technology Data Exchange (ETDEWEB)

    Huizinga, H.T. [Heat Transfer Holland, Zuidwolde (Netherlands)

    2007-12-15

    A brief overview is given of the principles in and differences of the cooling systems in the title. [Dutch] Een kort overzicht wordt gegeven van de werking van en de verschillen tussen de in de titel genoemde koelsystemen.

  20. Mass measurement of 56Sc reveals a small A=56 odd-even mass staggering, implying a cooler accreted neutron star crust

    CERN Document Server

    Meisel, Z; Ahn, S; Bazin, D; Brown, B A; Browne, J; Carpino, J F; Chung, H; Cole, A L; Cyburt, R H; Estradé, A; Famiano, M; Gade, A; Langer, C; Matoš, M; Mittig, W; Montes, F; Morrissey, D J; Pereira, J; Schatz, H; Schatz, J; Scott, M; Shapira, D; Smith, K; Stevens, J; Tan, W; Tarasov, O; Towers, S; Wimmer, K; Winkelbauer, J R; Yurkon, J; Zegers, R G T

    2015-01-01

    We present the mass excesses of 52-57Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time with atomic mass excesses of -24.85(59)(+0 -54) MeV and -21.0(1.3) MeV, respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A = 56 mass-chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted by the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We found that, in contrast to prev...

  1. 75 FR 41103 - Energy Conservation Program: Re-Opening of the Public Comment Period for Walk-In Coolers and Walk...

    Science.gov (United States)

    2010-07-15

    ... submitted using any of the following methods: Federal eRulemaking Portal: http://www.regulations.gov... or any form of encryption. Postal Mail: Ms. Brenda Edwards, U.S. Department of Energy, Building... and a public meeting on May 14, 2010. 75 FR 17080. On April 14, 2010, DOE published a...

  2. How much cooler would it be with some more neutrons? Exploring the asymmetry dependence of the nuclear caloric curve and the liquid-gas phase transition

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, A.B.; Mabiala, J.; Hagel, K. [Texas A and M University, Cyclotron Institute, College Station, Texas (United States); Bonasera, A. [Texas A and M University, Cyclotron Institute, College Station, Texas (United States); INFN, Laboratori Nazionali del Sud, Catania (Italy); Cammarata, P.; Heilborn, L.; May, L.W.; Raphelt, A.; Wuenschel, S.; Zarrella, A.; Yennello, S.J. [Texas A and M University, Cyclotron Institute, College Station, Texas (United States); Texas A and M University, Chemistry Department, College Station, Texas (United States); Kohley, Z. [Texas A and M University, Cyclotron Institute, College Station, Texas (United States); Texas A and M University, Chemistry Department, College Station, Texas (United States); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Chemistry, East Lansing, Michigan (United States); Marini, P. [Texas A and M University, Cyclotron Institute, College Station, Texas (United States); GANIL, Bd Henri Becquerel, BP 55027-14076, CAEN Cedex 05 (France); Souliotis, G.A. [Texas A and M University, Cyclotron Institute, College Station, Texas (United States); National and Kapodistrian University of Athens, Laboratory of Physical Chemistry, Department of Chemistry, Athens (Greece); Zheng, H. [Texas A and M University, Cyclotron Institute, College Station, Texas (United States); Texas A and M University, Physics Department, College Station, Texas (United States)

    2014-02-15

    Despite the long-standing interest in the symmetry energy by the nuclear physics community, much work remains to characterize the equation of state away from the valley of stability and normal density. Although the correlations between the thermodynamic properties (temperature, density, pressure) has been explored, the dependence of these correlations on the neutron-proton asymmetry has only recently been probed experimentally. In this work, we provide evidence for the asymmetry dependence of the nuclear caloric curve using multiple independent probes. Correlations between the temperature, density and pressure when normalized to their critical values exhibit scaling, allowing extraction of the critical point. The location of the critical point shows a dependence on the neutron-proton asymmetry. (orig.)

  3. Modelling and simulation of a solar cooler based on physical adsorption; Modelagem e simulacao de um refrigerador solar por adsorcao fisica

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Gerson

    1993-12-31

    This study describes the construction of a simple mathematical model its validation through the simulation in transient state of a real cycle performed by a solar refrigerator based on physical adsorption using an activated carbon/methanol pair. The deviation from experimental results was 4% for the cycled mass of methanol, 2.2 % for maximum collector average temperature, and 3 x 10{sup -3} for the theoretical cycle coefficient of performance. Additional simulations of the same cycle inputting values representing different types and larger amounts of activated carbon showed the possibility of increasing the cycled methanol mass up to about 150%. (author) 26 refs., 16 figs., 9 tabs.

  4. Elimination of Acid Cleaning of High Temperature Salt Water Heat Exchangers: Redesigned Pre-Production Full-Scale Heat Pipe Bleed Air Cooler for Shipboard Evaluation

    Science.gov (United States)

    2011-11-01

    relatively easy shape to generate in a solid modeling program, and proved possible to form in a mockup duct made from relatively thin, flexible...accomplished, as well as, cost controls for the ever shrinking ships maintenance budgets. This process is identified in the NDE/NM web site and is achieved

  5. Perancangan Heat Exchanger Type Shell And Tube Untuk After Cooler Kompressor Dengan Kapasitas 8000 m3/hr Pada Tekanan 26,5 Bar

    OpenAIRE

    Siregar, Franky S.

    2011-01-01

    Dalam kehidupan sehari-hari banyak terlihat fenomena perpindahan panas dari material atau fluida yang mempunyai temperatur lebih tinggi ke material atau fluida yang mempunyai temperatur lebih rendah. Dalam dunia industri fenomena perpindahan panas tersebut dimanfaatkan untuk keperluan proses dengan menggunakan suatu alat yang biasa disebut sebagai penukar panas atau heat exchanger. Heat exchanger merupakan alat yang digunakan sebagai media untuk memindahkan panas dari fluida yang bertemperatu...

  6. Detailed noise propagation of blower-ventilated liquefiers/recirculation coolers installed outside; Detaillierte Schallausbreitung von ventilatorbeluefteten Verfluessigern / Rueckkuehlern bei Aussenaufstellung

    Energy Technology Data Exchange (ETDEWEB)

    Roth, P. [Guentner AG und Co. KG, Fuerstenfeldbruck (Germany). Abt. Versuch

    2006-07-01

    Experimentally identified and parametrized noise pressure level distributions (Goldemund (1)) of outdoor heat exchangers with blowers provide a new and detailed basis for nose emissions planning. Inhomogeneous noise emission characteristics were not known before; they often caused noise emissions exceeding limiting values even though the noise calculations for the plants had been correct. Using selected examples, it is shown how spatially resolved noise pressure level distributions can help optimize both the type and number of units and their site and positioning. (orig.)

  7. Integrated Sensing & Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier & Syngas Cooler. Topical Rerport for Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Aditya

    2011-02-17

    This Topical Report for the final Phase III of the program summarizes the results from the Task 3 of the program. In this task, the separately designed extended Kalman Filter (EKF) and model predictive controls (MPC) with ideal sensing, developed in Phase II, were integrated to achieve the overall sensing and control system for the gasification section of an IGCC plant. The EKF and MPC algorithms were updated and re-tuned to achieve closed-loop system stability as well as good steady-state and transient control response. In particular, the performance of the integrated EKF and MPC solution was tested extensively through multiple simulation studies to achieve improved steady-state as well as transient performance, with coal as well as coal-petcoke blended fuel, in the presence of unknown modeling errors as well as sensor errors (noise and bias). The simulation studies demonstrated significant improvements in steady state and transient operation performance, similar to that achieved by MPC with ideal sensors in Phase II of the program.

  8. System applications of high-Tc superconductor sampler cooled y a cryo-cooler; Reitoki reikyaku koon chodendo sanpura no shisutemu oyo

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, M.; Sato, T.; Tahara, S. [NEC Corp., Tokyo (Japan). Fundamental Research Laboratories

    1999-11-10

    It is possible to require these currents from the voltage measurement using the semiconductor sampler, if the impedance is known. However, the measurement was not possible for the current in LSI with the complicated layer structure, since the impedance is generally unknown. We develop 'the current measurement system' using characteristics of the high-temperature superconductivity sampler in order to solve this. In this system, the sampler chip is cooled to near 40K using the refrigerating machine. (NEDO)

  9. Advanced cooler and dough kneader for the baking industry%面团和混合料的连续生产

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    典型面团制品和混合料生产工艺中所涉及的冷却和揉搓程序,一般是独立进行的,生产过程繁复费时一人力资源需求量高。鉴于此,Schr6der公司升发了Schrooder Kombinator冷却器和揉面团机,使附有结晶油脂的面团和混合料的加工程序,可在单次操作中连续进行。

  10. 煤气冷却器列管泄漏原因及处理方法%The Divulging Reason & Processing Method of Coal Gas Cooler Tubulation

    Institute of Scientific and Technical Information of China (English)

    王红杰; 陈星辉; 李来义; 康昀

    2010-01-01

    煤气冷却器是净化工序的主要设备,属Ⅱ类压力容器.该设备在制作焊接过程中,管板与换热管采用帖胀+焊接结构,换热管的材质为20#钢.在近一年的使用过程中,发现煤气冷却器列管与管板焊缝出现裂纹,列管出现腐蚀穿孔,造成泄漏,严重影响了安全生产.对该设备的泄漏原因进行分析,并针对不同泄漏原因采取不同的处理方法,取得了较好的效果.

  11. Installation and operation of a radio-frequency quadrupole cooler and buncher and offline commissioning of the TRIGA-SPEC ion beam preparation transfer line

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Thomas

    2014-11-26

    The dominant fraction of elements heavier than iron was created in stellar nucleosynthesis by neutron-capture reactions. The isotopic compositions of these elements are the fingerprints of the involved processes, and a huge amount of experimental data on these isotopes is required to support corresponding astrophysical calculations and models. The TRIGA-SPEC experiment aims to contribute to these data by the measurement of ground-state properties of neutron-rich heavy nuclides. It consists of the Penning-trap mass spectrometer TRIGA-TRAP for the determination of masses, Q-values and binding energies, and the collinear laser spectroscopy setup TRIGALASER for the determination of charge radii, nuclear spins, and moments. The nuclides of interest are produced by neutron-induced fission of an actinide target inside the research reactor TRIGA Mainz and ionized in an online ion source. In the context of this thesis, the two experiments were coupled to the reactor, completing the ion beam preparation transfer line. This included the implementation and commissioning of a radio-frequency quadrupole for the emittance reduction and accumulation of the ions. The functionality of the ion beam preparation was verified by successful test measurements of stable nuclides produced in the online ion source.

  12. One Type of Oxide Cathode for HIRFL-CSR Electron Cooler%一种用于重离子加速器电子冷却装置阴极的研制

    Institute of Scientific and Technical Information of China (English)

    王小霞; 赵青兰; 廖显恒; 孟鸣凤; 李云

    2010-01-01

    该文主要研制一种用于HIRFL-CSR电子冷却装置的氧化物阴极,测试了该阴极在普通试验二极管中的发射性能及寿命,研究了成型阴极表面温度均匀性及其分解激活过程.结果表明,阴极支取直流发射电流密度0.5 A/cm2,工作温度750℃~800℃时具有很好的发射均匀性,电流加速寿命结果表明,该阴极在800℃,寿命超过18000 h.

  13. Study on Clinker Heat Transfer Model of Cement Cooler Based on Operator Splitting Method%基于剖开算子法的水泥篦冷机熟料换热模型研究

    Institute of Scientific and Technical Information of China (English)

    郝晓辰; 范新丰; 刘彬

    2013-01-01

    In this article the high-temperature cement clinker physical model and mathematical model are built up based on the porous media seepage heat transfer theory. According to the character of the mathematical model, this article brings forth using the operator splitting method to solve the mathematical model. The correctness of the heat transfer model is proved through the simulation experiment and the temperature variation regular pattern is given. The simulation results can accurately reflect the physical truth. Based on the above, this article analyses the clinker' s cooling effect of the fluid air speed and provides the theoretic guidance for the optimization design of the air feeding.%本文根据多孔介质渗流换热理论建立了高温水泥熟料的物理换热模型和数学换热模型,并针对高温水泥熟料数学换热模型的特点,提出采用剖开算子法对其进行求解.并通过仿真实验验证了该换热模型的正确性,给出了换热过程中熟料和气体的温度变化规律,仿真实验结果显示该数学换热模型能比较准确的反映实际情况,在此基础上分析了篦下风速对熟料冷却效果的影响,为篦冷机优化配风设计提供了理论指导.

  14. GM制冷机预冷的氦节流制冷机流程研究%Investigation on scheme of helium J-T cryocooler pre-cooled by GM cooler

    Institute of Scientific and Technical Information of China (English)

    周振君; 雷刚; 刘彦杰

    2015-01-01

    对采用GM制冷机作为预冷级的小型4He节流制冷机进行了设计及数值分析,对气体质量流量与节流孔径,节流制冷能力与高压侧压力、预冷机二级温度之间的关系进行了计算和分析.对节流压缩机的功率随排气压力,预冷机所需冷量随制冷剂质量流量变化的趋势进行了研究.通过以上分析和研究,给出了小型氦气节流制冷系统设计流程及主要部件的参数.

  15. Improving anti-fouling performance of cooling water stabilizer to decrease fouling rate of water cooler%提高水稳药剂阻垢性能降低水冷器结垢速率

    Institute of Scientific and Technical Information of China (English)

    邹余敏; 王红

    2003-01-01

    考察了茂名石化乙烯工业公司循环水系统水冷器结垢的原因,从分析结果表明,水稳药剂的阻垢分散性能对冷却器的结垢有一定的影响.通过提高水稳药剂的阻垢分散性能来降低水冷器的结垢速率.

  16. The Economic Analysis about the Bottom Ash Cooler Waste heat of 200 MW CFB Air Cooling Crew%200 MW CFB空冷机组冷渣器余热利用经济性分析

    Institute of Scientific and Technical Information of China (English)

    王林虎

    2015-01-01

    针对山西耀光煤电有限责任公司200 MW CFB空冷机组冷渣器改后的热量回收的现有系统,提出了2个新的方案.通过等效焓降法对不同负荷下的3个方案进行经济性分析,得出冷渣器与稻低加并联为最佳热量回收方案.

  17. Reply to “Comment on ‘Spin manipulation of 1.94  GeV/c polarized protons stored in the COSY cooler synchrotron’ ”

    Directory of Open Access Journals (Sweden)

    V. S. Morozov

    2005-09-01

    Full Text Available It seems improper to publish a theoretical Comment about an experimental Article without mentioning the Article’s referenced theoretical paper, which derived the equation that the Comment claims is incorrect. Our experimental collaboration declines to offer any opinion about which factor of 2 is correct.

  18. The Analysis and Design of stirling Cooler controler Measurement System%军用斯特林制冷机驱控器测试系统的分析与设计

    Institute of Scientific and Technical Information of China (English)

    江学军; 彭晓刚

    2005-01-01

    由于对军用斯特林制冷器的使用环境要求越来越高,所以其驱动控制器已显得特别重要。控制器性能的好坏将直接影响制冷机的工作状态,驱动控制器已成为制冷机系统的神经中枢,它控制着制冷器的工作,对整个武器系统也是至关重要的,所以对其性能参数的测试是非常关键的,有必要开发自动测试系统。

  19. Design of Automatic Performance Test System for Stirling Cooler%一种军用微型斯特林制冷机性能自动测试系统

    Institute of Scientific and Technical Information of China (English)

    唐天敏; 陈晓屏; 赵玉琼; 姚菡婷; 李飞艳; 陈军; 黄伟; 李海英

    2010-01-01

    斯特林制冷机的性能测试结果是判定制冷机是否合格的重要依据.建立由软件和硬件相结合的自动测试系统,可实现多通道同时测试,实现数据的采集、存储和计算.自动测试系统的应用将极大的提高测试工作效率,实现测试数据的完整性和连续性.

  20. Comparative investigation of power control of axial blowers for liquefiers and recirculation coolers: Phase controller, frequency converter, transformers, EC technology; Vergleich der Leistungsregelung von Axialventilatoren fuer Verfluessiger und Rueckkuehler: Phasenanschnittregler, Frequenzumformer, Transformatoren, EC Technik

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, G. [Hans Guentner GmbH, Fuerstenfeldbruck (Germany)

    2003-07-01

    Phase controllers are well suited for liquefaction pressure control, and energy savings are higher than with blower shut-off. They emit noise in the 300 Hz range and need an additional acoustic filter if noise reduction in part-load operation is required. Frequency controllers with all-terminal sinusoid filters have a higher saving potential at 40-80 percent of the volume flow as compared to phase controllers. Noise is significantly lower than in phase controllers, even with acoustic filters. The best performance was obtained with EC technology, which had the highest energy savings and noise levels similar to transformer control, which was hitherto considered to be the best option. (orig.) [German] Phasenanschnittregler sind zur Verfluessigungsdruckregelung gut geeignet und bieten ein groesseres Energieeinsparpotential als die Methode der Ventilatorabschaltung. Wenn die Schallreduzierung im Teillastbereich wichtig ist, sind sie wegen der stoerend wirkenden 300 Hz Tonanteilen nicht geeignet. Hier kann ein zusaetzlicher Geraeuschfilter groesstenteils Abhilfe schaffen. Frequenzregler mit allpoligem Sinusfilter haben deutliche Einsparpotentiale im Bereich von 40% bis 80% des Volumenstroms gegenueber den Phasenanschnittreglern. Die Schallreduzierung wirkt bis in die unteren Drehzahlbereiche und liegt deutlich unter den Werten der Phasenanschnittsteuerung mit Geraeuschfilter. Den hoechsten Gesamtwirkungsgrad ueber den ganzen Luftfoerderbereich liefert die getestete EC-Technik. In allen Betriebspunkten ist somit die hoechste Energieersparnis gegeben. Die Schallreduzierung ist gleichwertig mit den Ergebnissen der Transformatorregelung, die bisher als geraeuschlos bestes Verfahren eingesetzt wurde. (orig.)

  1. Optimisation of acoustics and efficiency of axial blowers, e.g. in liquefiers or recirculation coolers; Optimierung der Akustik und der Effizienz von Axialventilatoren, die beispielsweise auf Verfluessigern und Rueckkuehlern eingesetzt werden

    Energy Technology Data Exchange (ETDEWEB)

    Dietle, J.; Neumeier, R. [Ziehl-Abegg AG, Kuenzelsau (Germany)

    2006-07-01

    Blowers are the main source of noise in air-cooled refrigerator components. The noise development mechanisms can be characterized as flow noise, mechanical noise and electrical noise, which are differentiated depending on the type of application. The optimisation of the blower and overall system is illustrated for different influencing factors. (orig.)

  2. Comparative assessment of power control of axial blowers for condensers and recirculation coolers: Phase control, frequency control, transformers, EC; Vergleich der Leistungsregelung von Axialventilatoren fuer Verfluessiger und Rueckkuehler: Phasenanschnittregler, Frequenzumformer, Transformatoren, EC Technik

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, G. [Hans Guentner GmbH, Fuerstenfeldbruck (Germany)

    2003-07-01

    The currently available control technologies were compared. Power consumption and sound emission were measured and evaluated. The blower with asynchronous motor was operated with and without noise filter, transformer and electronic frequency inverter with sinus filter. The blower with electronically commuted d.c. motor had an integrated power electronics for direct variable-speed operation connected to the three-phase current network. The electric power consumption was measured at 7-100 percent of the air volume flow pumped by the condenser. This provides reliable data not only for rated operation but also across the whole range of air flow rates and enables a better comparison. The sound measurements also cover the whole range of air volume flow and comprise both the air and the controller noise. The summed-up sound pressure levels are compared. The results give planners and constructors valuable information for selecting the appropriate power control system. (orig.) [German] Die Vielfalt der eingesetzten Geraete fuer die Stetigregelung von Verfluessiger mit Axialventilatoren ist gross. Um klare Aussagen zu den jeweiligen Regelprinzipien zu gewinnen wurden die zur Zeit technisch verfuegbaren Loesungen im Versuch gegenuebergestellt. Die relevanten Groessen Leistungsaufnahme und Schallemission wurden messtechnisch ermittelt und ausgewertet. Der Ventilator mit Asynchron-Motor wurde vergleichsweise mit Phasenausschnitt ohne und mit Geraeuschfilter, Transformator und elektronischem Frequenzumformer mit Sinusfilter betrieben. Der Ventilator mit elektronisch kommutiertem Gleichstrommotor hatte eine integrierte Leistungselektronik, die den direkten Betrieb mit variabler Drehzahl am Drehstromnetz ermoeglicht. Gemessen wurden die elektrischen Aufnahmeleistungen im Bereich von 7 bis 100% des durch den Verfluessiger gefoerderten Luftvolumenstromes. So hat man fundierte Werte nicht nur im Nennbetriebspunkt sondern auch ueber den gesamten Luftfoerderbereich und kann sie miteinander vergleichen. Die Schallmessungen am Verfluessiger in der Schallmesskammer decken auch die Messung des gesamten Bereiches des Volumenstromes ab und beinhalten das Luft- und Regelgeraeusch. Es werden die Summenschalldruckpegel vergleichend gegenuebergestellt. Die Ergebnisse bieten den Planer und Anlagenbauer wertvolle Informationen fuer die Auswahl der Leistungsregelung. (orig.)

  3. Numericalanlysis of Single-stage Thermoelectric Cooler Performance by Changing Structure and Performance Parameters%结构与性能参数对单级半导体制冷器性能影响的数值分析

    Institute of Scientific and Technical Information of China (English)

    李爱博; 陈焕新; 申利梅; 梅佩佩

    2011-01-01

    According to the basic equations used in thermoelectire refrigeration and convective heat transfer,the expressions of Qc, COP including varuious parameters are established.Influenee on the cooling capacity and performance by changing the parameters is simulated.These parameters are the hot-side thermal resistance Rha ,the temperature difference between refrigeration cabinet and external environment ΔT,G factor and the number of thermocouples per one thermoelectric module N.The result shows that the proper selection of these paremeters will help improving the system performance and reducing energy consumption.%根据半导体制冷中常用制冷量和散热量表达式和对流换热基本公式,建立起包含系统各个参数的制冷量Qc和效率COP的表达式,根据Qc和COP表达式模拟各参数变化对制冷量和COP的影响,讨论的参数包含散热端热阻Rha,制冷空间与环境的温差△T,尺寸因子G(单个热电臂横截面积与长度的比值S/L)和热电模块的对数N,结论指出在半导体制冷器设计过程中对各参数的合理选用有助于提高系统运行效率,降低能耗.

  4. Heat Transfer Characteristics of Different Heat Transfer Structures in Gasification Convective Syngas Cooler%煤粉加压气化炉膜式螺旋管和蛇形管对流传热特性研究

    Institute of Scientific and Technical Information of China (English)

    赵振兴; 杨震; 刘宏; 常勇强; 曹子栋

    2011-01-01

    对煤粉加压气化炉对流段的不同换热结构进行了换热特性的实验研究,其中换热结构包括膜式螺旋管环形通道换热器和膜式蛇形管平行通道换热器,实验气体为单质气体N、He及其混合气,实验压力为0.5~3.5 MPa.为此,针对不同冲刷形式、不同气体和压力提出了换热器换热系数及其扩展的计算方法,同时给出了典型冲刷形式的对流换热的关联式和适用条件.实验研究表明:冲刷形式对换热系数有很大影响,单通道和多通道换热系数与换热面积之间呈加权平均的关系;在相同换热条件下,膜式螺旋管环形通道换热器的换热系数高于膜式蛇形管平行通道换热器.%An experiment was conducted to study the heat transfer characteristics for a convection cooling section with the different heat transfer structures at high temperature and pressure in a coal pressurized gasifier. The heat transfer structures included an annular channel heat exchanger with membrane spiral tubes and a parallel channel heat exchanger with membrane serpentine tubes. In this study, the high pressure single gas (He or N2) and mixture gas (He+N2) were used to replace the high pressure syngas, and the test pressure for each gas was from 0.5 MPa to 3MPa. The heat transfer coefficients and extension method under different working pressure, gas composition and flow forms were presented. The correlations of the typical flow forms and their applicable condition were obtained. The results show that flow form greatly influenced the heat transfer coefficient of the high pressure gas convection. The heat transfer coefficients of the single annular channel heat exchanger and multi-annular channel heat exchanger displayed the areaweighted average relation. In addition, the heat transfer capacity of the annular channel heat exchanger with membrane spiral tubes was higher than that of the parallel channel under the same heat transfer conditions.

  5. 甲醇水冷器噪声振动计算分析及防声振动设计%Calculation and Analysis of the Sound-Vibration of Methanol Cooler and its Sound-Vibration Resistant Design

    Institute of Scientific and Technical Information of China (English)

    田静; 莫春萍; 张秀芳; 王万林; 岳涛; 郑建国

    2014-01-01

    利用换热器计算软件Aspen HTFS+对甲醇水冷器进行了声振动计算和预测,计算结果表明:在运行过程中设备会产生强烈的噪声振动,与生产现场情况完全吻合,同时针对消除声振动提出了改进措施,并对设备结构进行合理优化.

  6. Construction and Tests of a High-Tc SQUID-Based Heart Scanner Cooled by Small Stirling Cryocoolers

    NARCIS (Netherlands)

    Blom, C.J.H.A.; Brake, ter H.J.M.; Holland, H.J.; Rijpma, A.P.; Rogalla, H.; Ross, R.G.

    1999-01-01

    A heart scanner that can be equipped with up to 25 high-Tc SQUID magnetometers was designed at the University of Twente. In this design the mechanical cooler interference is reduced by operating two coolers in counterphase. The magnetic cooler interference diminished by positioning the coolers and t

  7. Construction and tests of a high-Tc SQUID-based heart scanner cooled by small Stirling cryocoolers

    NARCIS (Netherlands)

    Blom, C.J.H.A.; ter Brake, Hermanus J.M.; Holland, Herman J.; Rijpma, A.P.; Rogalla, Horst; Ross, R.G.

    1999-01-01

    A heart scanner that can be equipped with up to 25 high-Tc SQUID magnetometers was designed at the University of Twente. In this design the mechanical cooler interference is reduced by operating two coolers in counterphase. The magnetic cooler interference diminished by positioning the coolers and

  8. Potentialities of HTS Superconductor Technology in Telecommunication Satellites

    Science.gov (United States)

    2005-07-13

    temperature area with the LNA (3). Figure 3 : Global view The temperature in the three areas is controlled by two autonomous Stirling cryo- coolers in...the worse case of complete breakdown. We suppose that the life time of two coolers operating at 50 % is longer than a system of two coolers one...performed on existing Stirling cooler production, as it is done for the high capacity Stirling cooler developed and produced for the CRYOSYSTEM

  9. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring

    Science.gov (United States)

    2008-09-01

    cm3, ~ 3 kg, ~ 140 %, or larger). Maintenance-free Stirling -cycle mechanical coolers are being used. These coolers have operating lifetimes...photograph of the complete RASA 1 detector system is shown in Figure 1. The detector is cooled to temperatures below 50 K when the cooler is...cryostat- cooler combination can ultimately serve as a viable detector unit for RASA detector systems . During the pursuit of the microphonic noise

  10. Nonlinear Thermal Effects in Ballistic Electron Devices

    Science.gov (United States)

    2013-03-01

    Example 1: Rectified heat flow in Peltier coolers, or in thermal management. In Peltier coolers, an applied electric current removes heat from a...material, such that it can be cooled below ambient temperature. The performance of Peltier coolers is limited by the backflow of heat, in a direction

  11. Cooling of suspended nanostructures with tunnel junctions

    OpenAIRE

    Koppinen, P. J.; Maasilta, I. J.

    2009-01-01

    We have investigated electronic cooling of suspended nanowires with SINIS tunnel junction coolers. The suspended samples consist of a free standing nanowire suspended by four narrow ($\\sim$ 200 nm) bridges. We have compared two different cooler designs for cooling the suspended nanowire. We demonstrate that cooling of the nanowire is possible with a proper SINIS cooler design.

  12. Cryocoolers for Space

    Science.gov (United States)

    Kittel, Peter; Feller, Jeff; Roach, Pat; Kashani, Ali; Helvensteijn, Ben

    2004-01-01

    Many planetary and Earth science missions require cooling to increase sensitivity and reduce thermal noise of detectors, for preserving high Isp propellants, or for protecting instruments from hostile environments. For space applications, such cooling requires reliable, efficient, long-life coolers that are relatively compact, lightweight, and have low vibration. We have developed and are developing coolers that meet these requirements over a wide range of temperatures. These include pulse tube coolers cooling from 300 K to below 6 K, a magnetic cooler cooling from 10 K to 2 K, a 3He sorption cooler cooling from 2 K to 0.3 K and a helium dilution cooler cooling from 0.3 K to 0.05 K. Details of these coolers and their advantages are presented.

  13. Optimum design and layout of the cooling apparatus for long compaignship blast furnace

    Institute of Scientific and Technical Information of China (English)

    Shusen Cheng; Tianjun Yang; Qingguo Xue; Haibin Zuo; Xiaowu Gao; Weiguo Yang

    2003-01-01

    Generally, the cooler life can determine the blast furnace life. The slag-metal skull frozen on the cooler can separate the cooler from the hot gas flow in blast furnace. The key problem is how to freeze liquid slag-metal on the cooler, and the main measure is to decrease the hot surface temperature of the cooler. The computational technology of heat transfer was practically used for long campaign blast furnace design. The optimum design of the cast iron stave, copper stave, plate-stave combined system and flangestave was given by the computing results. According to the results, the optimum arrangement of different coolers (cast iron or copper stave, flange stave and plate-stave combined system) on different height of blast furnace wall can be found through all these temperature fields.

  14. Split-Stirling, linear-resonant, cryogenic refrigerators for detector cooling

    Science.gov (United States)

    Lehrfeld, D.

    1983-01-01

    For the past decade, military IR systems have preferred to see cryogenic coolers provided as split units; separating the functions of compressor and cold-end for system packaging and vibration isolation reasons. A family of split-cycle coolers designed for long MTBF and in the final stages of development is the focus of the discussion. Their technological evolution, from multi-year-MTBF satellite system Stirling coolers developed in the U.S., and the UA 7011 cooler (the first all-linear, military, production cooler) developed in Holland, is explained. Two new split-cycle machines are discussed. They provided 1/4 watt and 1 watt (nominal capacity) at 80 K and 85 K respectively. These linear-resonant, free-displacer Stirling coolers are designed for thousands of hours of service-free operation. They are designed to be compatible with standard U.S. 60 element and 120/180 element detector/dewars, respectively.

  15. Numerical Modeling of the Vertical Heat Transport Through the Diffusive Layer of the Arctic Ocean

    Science.gov (United States)

    2013-03-01

    9 Figure 6. Salt fingers. Warm, salty layer atop a cool, fresh layer results in fingers of salty , cooler water extending downwards...combination of evaporation and radiative heating at the ocean surface results in a layer of warm, salty water overlying a comparatively cooler, 10...layer atop a cool, fresh layer results in fingers of salty , cooler water extending downwards from the layer interface (Image from Garaud Research

  16. Electromagnetic compatibility characterization of a BAe Stirling-cycle cryocooler for space application

    Science.gov (United States)

    Johnson, Dean L.; Ross, Ronald G., Jr.

    1991-01-01

    This paper describes the electromagnetic compatibility (EMC) measurements of an 80-K Stirling-cycle cooler. The measurements, performed in the JPL EMC test facility, include dc magnetic field characterization, radiated magnetic and electric field emissions, and conducted emissions on the internal lines between the cooler electronics and the cooler. The measurements conform to both the MILSTD-461C specifications as well as to the specifications for the NASA Earth Observing System.

  17. Improvement in Ge Detector Cooling

    Science.gov (United States)

    2008-09-01

    linear Stirling cooler manufactured by SunPower, Inc., Athens, Ohio. This hybrid system has the same footprint as a standard 30-liter LN2 Dewar and...are two such HPGe detector cooler /cryostat systems that we are modifying and evaluating for use in the RASA. The modifications will enhance vacuum... system incorporating a 4-watt pulse-tube cooler manufactured by Thales Cryogenics, Eindhoven, Netherlands, is being modified to incorporate ultra

  18. TeraHertz Nanodevices for Communiction, Imaging, Sensing and Ranging

    Science.gov (United States)

    2006-12-01

    with the Army Night Vision Lab to develop components and techniques for THz imaging systems using Stirling cycle coolers , and bolometer detector array...at the Army Night Vision Lab, who loaned us a Stirling cooler and a bolometer focal plane array. With Irina Yassievich and Miron Kagan in Russia, we...of about 120 K below room temperature, or about 180 K absolute. To reach even lower temperatures near 77 K, we have borrowed a Stirling cycle cooler

  19. Cryogenic Eyesafer Laser Optimization for Use Without Liquid Nitrogen

    Science.gov (United States)

    2014-02-01

    state laser system with an optimum operating temperature somewhat higher—ideally 125–150 K—can be identified, then a Stirling cooler can be used to...liquid cryogens. This calls for optimal performance around 125–150 K—high enough for reasonably efficient operation of a Stirling cooler . We...needed to optimize laser performance in the desired temperature range. This did not include actual use of Stirling coolers , but rather involved both

  20. Multi-stage circulating fluidized bed syngas cooling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang

    2016-10-11

    A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.