WorldWideScience

Sample records for cooled slagging coal

  1. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  2. Coal Slag Attack-A Review

    Institute of Scientific and Technical Information of China (English)

    GUO Zongqi

    2004-01-01

    Although slagging coal gasifiers have served the commercial systems of electricity and chemical fertilizer productions for more than ten years, refractory service life still is a critical factor for gasifier availability. Some investigations were attracted, focusing on coal slag attack on high chromia refractories. A general introduction is made in order to have further understanding about slag corrosion in coal gasification environment. Microstructural deterioration and wear process of high chromia refractory in slagging gasifiers are discussed.

  3. Slagging in a pulverised-coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Devir, G.P.; Pohl, J.H.; Creelman, R.A. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Chemical Engineering

    2000-07-01

    This paper describes a technique to evaluate the severity of slagging of a coal in a pulverised-coal-fired boiler. There are few data in the literature on the nature of in-situ boiler slags, their rate of growth and/or their strength properties relevant to sootblowing. The latter is thought to be of more concern to boiler operators and gives rise to the significance of selecting suitable strength tests. As well as standardised methods for characterising pulverised coal performance in a boiler, several novel and less popular techniques are discussed in detail. A suite of three sub-bituminous coals from the Callide Coalfields, Biloela (600 km north of Brisbane), has been selected for slagging tests in the 350 MW{sub e} units of Callide 'B' power station. Disposable air-cooled mild steel slagging probes have been constructed to simulate the conditions for deposit formation in the boiler region. To date, tests for one of these coals has been completed and preliminary results are presented. Once testing for the remaining coals has been completed, it is anticipated that the differences exhibited in deposit growth and strength may be correlated with typical variations in physical and chemical properties of the pulverised coal.

  4. TRW Advanced Slagging Coal Combustor Utility Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The TRW Advanced Slagging Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/ou desip unit to fire 2.5 sulfur coal. The slogging combustor process will provide NO[sub x] and SO[sub x] emissions that meet NSPS and New York State Envirommental Standards. TRW-CBU scope of work includes the engineering, design and supply of the slogging combustors, coal and limestone feed systems and a control system for these components. During this report period, the design activities for all systems progressed to permit the release of specifications and requests for proposals. Award of contracts for long-delivery items and major equipment are being placed to meet the revised program schedule.

  5. Refractory Degradation by Slag Attack in Coal Gasification

    Science.gov (United States)

    2009-02-01

    REFRACTORY DEGRADATION BY SLAG ATTACK IN COAL GASIFICATION Jinichiro Nakano 1,2 , Sridhar Seetharaman 1,2 , James Bennett 3 , Kyei-Sing...00-2009 4. TITLE AND SUBTITLE Refractory Degradation by Slag Attack in Coal Gasification 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  6. Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review

    Energy Technology Data Exchange (ETDEWEB)

    Wang,Ping; Massoudi, Mehrdad

    2011-01-01

    Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and

  7. Treatment of LF slag to prevent powdering during cooling

    Directory of Open Access Journals (Sweden)

    Ghorai S.

    2017-01-01

    Full Text Available The polymorphic transformation of the monoclinic β-polymorph to the orthorhombic γ-polymorph of di-calcium silicate at around 500°C during cooling results in disintegration of slag. The slag generated, during the production of thermo mechanically treated steel in ladle furnace at M/s Tata Steel Limited, Jamshedpur, India, behaves in similar manner. An attempt has been made to prevent the crumbling of ladle furnace slag. The experiments were conducted in 10 kg air induction furnace. Various types of silica source were used to prevent the disintegration of ladle furnace slag by reducing the basicity and optimizing the additives amount. Apart from silica sources, other additives like borax and barium carbonate were also used to stabilize the β phase. Present investigation reveals that disintegration of ladle furnace slag can be prevented either by addition of 0.2% boarx or 2% barium carbonate. Dust formation can also be prevented by decreasing the ladle furnace slag basicity to about 1.7. Toxicity Characteristic Leaching Procedure test, of the borax and barium carbonate treated slag samples, indicates that barium carbonate treated slag cannot be used for the dusting prevention as it contains high level of barium.

  8. UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS

    Energy Technology Data Exchange (ETDEWEB)

    Vas Choudhry; Stephen Kwan; Steven R. Hadley

    2001-07-01

    The objective of the project entitled ''Utilization of Lightweight Materials Made from Coal Gasification Slags'' was to demonstrate the technical and economic viability of manufacturing low-unit-weight products from coal gasification slags which can be used as substitutes for conventional lightweight and ultra-lightweight aggregates. In Phase I, the technology developed by Praxis to produce lightweight aggregates from slag (termed SLA) was applied to produce a large batch (10 tons) of expanded slag using pilot direct-fired rotary kilns and a fluidized bed calciner. The expanded products were characterized using basic characterization and application-oriented tests. Phase II involved the demonstration and evaluation of the use of expanded slag aggregates to produce a number of end-use applications including lightweight roof tiles, lightweight precast products (e.g., masonry blocks), structural concrete, insulating concrete, loose fill insulation, and as a substitute for expanded perlite and vermiculite in horticultural applications. Prototypes of these end-use applications were made and tested with the assistance of commercial manufacturers. Finally, the economics of expanded slag production was determined and compared with the alternative of slag disposal. Production of value-added products from SLA has a significant potential to enhance the overall gasification process economics, especially when the avoided costs of disposal are considered.

  9. A Brief Review of Viscosity Models for Slag in Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad; Wang, Ping

    2011-11-01

    Many researchers have defined the phenomenon of 'slagging' as the deposition of ash in the radiative section of a boiler, while 'fouling' refers to the deposition of ash in the convective-pass region. Among the important parameters affecting ash deposition that need to be studied are ash chemistry, its transport, deposit growth, and strength development; removability of the ash deposit; heat transfer mechanisms; and the mode of operation for boilers. The heat transfer at the walls of a combustor depends on many parameters including ash deposition. This depends on the processes or parameters controlling the impact efficiency and the sticking efficiency. For a slagging combustor or furnace, however, the temperatures are so high that much of the coal particles are melted and the molten layer, in turn, captures more particles as it flows. The main problems with ash deposition are reduced heat transfer in the boiler and corrosion of the tubes. Common ways of dealing with these issues are soot blowing and wall blowing on a routine basis; however, unexpected or uncontrolled depositions can also complicate the situation, and there are always locations inaccessible to the use of such techniques. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1300 C and 1500 C, the viscosity is approximately 25 Pa {center_dot} s. As the operating temperature decreases, the slag cools and solid crystals begin to form. In such cases the slag should be regarded as a non-Newtonian suspension, consisting of liquid silicate and crystals. A better understanding of the rheological properties of the slag, such as yield stress and shear-thinning, are critical in determining the optimum operating conditions. To develop an accurate heat transfer model in any type of coal combustion or gasification process, the heat transfer and to some extent the rheological properties

  10. Optimization for blast furnace slag dry cooling granulation device

    Science.gov (United States)

    Dazhan, Sheng; Yali, Wang; Ruiyun, Wang; Suping, Cui; Xiaoyu, Ma

    2017-03-01

    Since the large accumulation amount of blast furnace slag (BFS) with recycling value, it has become a hot topic for recovery utilization. Compared with the existing various BFS granulation process, the dry granulation process can promote the use of blast furnace granulated slag as cement substitute and concrete admixtures. Our research group developed a novel dry cooling granulation experiment device to treat BFS. However, there are still some problems to be solved. The purpose of this research is to improve the cooling and granulation efficiency of the existing dry type cooling equipment. This topic uses the FLUENT simulation software to study the impact of the number of air inlet on the cooling effect of the device. The simulation result is that the device possessing eight air inlets can increase the number of hot and cold gas exchanged, resulting in a better cooling effect. According to the power consumption, LCA analysis was carried out on the cooling granulation process. The results show that the device equipped eight air inlets not only improved the original equipment cooling granulation effect, but also increased resource utilization ratio, realized energy-saving and emission reduction.

  11. The effect of primary copper slag cooling rate on the copper valorization in the flotation process

    Directory of Open Access Journals (Sweden)

    Aleksandar Mihajlović

    2015-06-01

    Full Text Available Technological procedure of slow cooling slag from primary copper production is applied in the purpose of copper recovery in the level of 98.5% to blister. This technological procedure is divided into two phases, first slow cooling of slag on the air for 24 hours, and then accelerated cooling with water for 48 hours. Within the research following methods were used: calculation of nonstationary slag cooling, verification of the calculation using computer simulation of slag cooling in the software package COMSOL Multiphysics and experimental verification of simulation results. After testing of the experimentally gained samples of slowly cooled slag it was found that this technological procedure gives the best results in promoting growth or coagulation of dispersed particles of copper sulfide and copper in the slag, thereby increasing the utilization of the flotation process with a decrease of copper losses through very fine particles.

  12. Replacement of Natural Fine Aggregate With Air Cooled Blast Furnace Slag An Industrial By Product

    Directory of Open Access Journals (Sweden)

    Dr. B. Krishna Rao

    2015-07-01

    Full Text Available The aim of the investigation is to replace natural fine aggregatewith Air Cooled Blast Furnace Slag in OPC concrete. At present, nearly million tons of slag is being produced in the steel plants, in India. The generation of slag would be dual problem in disposal difficulty and environmental pollution. Some strategies should be used to utilize the slag effectively. Considering physical properties of metallurgical slags and a series of possibilities for their use in the field of civil constructions, this report demonstrates the possibilities of using air cooled blast furnace slag as partial replacement of sand in concrete. A total of five concrete mixes, containing 0%, 12.5%, 25%, 37.5% and 50% partial replacement of regular sand with air cooled blast furnace slag are investigated in the laboratory. These mixes were tested to determine axial compressive strength, split tensile strength, and flexural strength for 7days, 28days, 56days and 90days.

  13. Thermal expansion of slag and fly ash from coal gasification in IGCC power plant

    Energy Technology Data Exchange (ETDEWEB)

    M. Aineto; A. Acosta; J.M.A. Rincon; M. Romero [University of Castilla La Mancha, Ciudad Real (Spain). Laboratory of Applied Mineralogy

    2006-11-15

    Integrated gasification in combined cycle (IGCC) is an electrical power generation system which is characterized to be a clean coal technology different than conventional process in combustible treatment. IGCC process gives rise to inorganic solid wastes in the form of vitreous slag and fly ashes with singular thermal properties. The gasification of the fuel takes place at high temperature and pressure in reducing atmosphere. Under that conditions, gases such as H{sub 2}, N{sub 2} or CO, which are the main components of the gas mixture in the gasifier, show a high solubility in the melt and during the cooling remain enclosed in the vitreous slag. When these wastes are afterward thermal treated in oxidizing conditions, two phenomena occur. The development of a crystalline phase by devitrification of the glassy matrix and the releasing of the enclosed gas, which starts at temperatures nearly to the softening point. At higher temperatures the bubbles with increasing kinetic energy tend to ascend with difficulty through the viscous liquid phase and promotes an expansive reaction, giving rise to a foam glass-ceramic product. This paper has been focused on the study of thermal expansion in slag and fly ash samples from the ELCOGAS IGCC power plant located in Puertollano (Spain). 18 refs., 11 figs., 1 tab.

  14. Converter slag-coal cinder columns for the removal of phosphorous and other pollutants.

    Science.gov (United States)

    Yang, Jian; Wang, Su; Lu, Zhibo; Yang, Jian; Lou, Shanjie

    2009-08-30

    A mixture of converter slag and coal cinder as adsorbent for the removal of phosphorous and other pollutants was studied in the paper. The maximum P adsorption capacity, pH of solution, contact time and initial phosphate concentration were evaluated in batch experiments for the two materials firstly. The data of P sorption were best fitted to Langumir equation, and the maximum adsorption capacities of converter slag and coal cinder were 2.417 and 0.398 mg P/g, respectively. The pH of solutions with converter slag and coal cinder changed dramatically with time and closed to 8 in 8h, and the influence of initial pH on phosphate removal by coal cinder was more significant than by converter slag. Phosphate removal rate by converter slag decreased with increase of initial phosphate concentrations. Subsequently, two flow-through columns (Column 1#, V(converter slag):V(coal cinder)=1:5; Column 2#, V(converter slag):V(coal cinder)=1:3) were operated for the removal of phosphorous and other pollutants from the effluents of a vermifilter for nearly eleven months. Results indicated the average removal efficiency of total phosphorus, dissolved phosphorus, COD and NH(4)(+)-N by Column 1# were 44%, 56%, 31% and 67%, and by Column 2# were 42%, 54%, 24% and 57%, respectively. Column 1# had higher removal efficiency for P and other pollutants.

  15. Effect of the cooling rate on the phase composition and structure of copper matte converting slags

    Science.gov (United States)

    Selivanov, E. N.; Gulyaeva, R. I.; Udoeva, L. Yu.; Belyaev, V. V.; Pankratov, A. A.

    2009-08-01

    The effect of the cooling rate on the phase composition and microstructure of copper matte converting slags is studied by X-ray diffraction, combined thermogravimetry and calorimetry, mineragraphy, and electron-probe microanalysis. The compositions of oxide and sulfide phases are determined, and the forms of nonferrous metals in slags cooled at a rate of 0.3 and 900°C/s are revealed. At high cooling rates of the slags, iron silicate glass is shown to form apart from sulfide phases. Repeated heating of the slags leads to the development of devitrification, “cold” crystallization, and melting. A decrease in the cooling rate favors an increase in the grain sizes in oxides (magnetite, iron silicates) and sulfides (bornite-, sphalerite, and galena-based solid solutions).

  16. Petrochemistry of coal ash slags. I. Formation of melilite and a high temperature glass from a calcium-rich, silica-deficient slag

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.; Barbie, D.L.; Christensen, O.D.; Kerner, F.R.

    1977-01-01

    Pilot plant studies are being conducted of a fixed-bed slagging coal gasification process. Lignite from the Indianhead mine is reacted with steam and oxygen in a gasifier at hearth zone temperatures over 1650/sup 0/C. Slag samples were subjected to chemical and petrographic analysis. Layers of layered slag modules were analyzed; the inner layers contain abundant melilite while the outer core is a glass. Results show that the characteristics of the coal ash slag can be affected by temperature fluctuations in the gasifier hearth, and that chemical, flow, and heat transfer behavior are all susceptible to change as a result. 8 figs., 3 tables. (DLC)

  17. Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2013-02-01

    Full Text Available In the entrained-flow gasifiers used in integrated gasification combined cycle (IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter is entrained (as fly ash with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. To improve gasification availability through better design and operation of the gasification process, a better understanding of slag behavior and the characteristics of the slagging process is needed. Char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio all affect slagging behavior. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. In Part I, we review the main types and the operating conditions of entrained-flow gasifiers and coal properties used in IGCC plants; we identify and discuss the key coal ash properties and the operating conditions impacting slag behavior; finally, we summarize the coal quality criteria and the operating conditions in entrained-flow gasifiers. In Part II, we discuss the constitutive modeling related to the rheological studies of slag flow.

  18. SLAG CHARACTERIZATION AND REMOVAL USING PULSE DETONATION TECHNOLOGY DURING COAL GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    DR. DANIEL MEI; DR. JIANREN ZHOU; DR. PAUL O. BINEY; DR. ZIAUL HUQUE

    1998-07-30

    Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. Conventional slag removal methods including soot blowers and water lances have great difficulties in removing slags especially from the down stream areas of utility power plant boilers. The detonation wave technique, based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. A slight increase in the boiler efficiency, due to more effective ash/deposit removal and corresponding reduction in plant maintenance downtime and increased heat transfer efficiency, will save millions of dollars in operational costs. Reductions in toxic emissions will also be accomplished due to reduction in coal usage. Detonation waves have been demonstrated experimentally to have exceptionally high shearing capability, important to the task of removing slag and fouling deposits. The experimental results describe the parametric study of the input parameters in removing the different types of slag and operating condition. The experimental results show that both the single and multi shot detonation waves have high potential in effectively removing slag deposit from boiler heat transfer surfaces. The results obtained are encouraging and satisfactory. A good indication has also been obtained from the agreement with the preliminary computational fluid dynamics analysis that the wave impacts are more effective in removing slag deposits from tube bundles rather than single tube. This report presents results obtained in effectively removing three different types of slag (economizer, reheater, and air-heater) t a distance of up to 20 cm from the exit of the detonation tube. The experimental results show that the softer slags can be removed more easily. Also closer the slag to the exit of

  19. Slagging characteristics of molten coal ash on silicon-aluminum combustion liners of boiler

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to study the slagging characteristics of boiler combustion liners during pulverized coal stream combustion,the slag samples on the surface of combustion liner were investigated by X-ray diffractometry,scan electron microscopy and energy dispersive X-ray analysis,and the transformation characteristics of the compositions and crystal phases were studied.The results show that the size of slag granules decreases as the slagging temperature increases;the crystallinity of coal ash I reduces to about 48.6% when the temperature is increased up to 1 350 ℃,and that of the coal ash Ⅱ reduces to about 65% when the temperature is increased up to 1 500 ℃;the encroachment of molten coal ash to the combustion liner is strengthened.At the same time,the diffusion and the segregation of the compositions in combustion liners have selectivity,which is in favor of enhancing the content of crystal phases,weakening the conglutination among molten slag compositions and combustion liner,and avoiding yielding big clinkers.But the diffusion of the compositions in combustion liners increases the porosity and decreases the mechanical intensity of combustion liner,and makes the slag encroachment to the liner become more serious.

  20. Effects of Design/Operating Parameters and Physical Properties on Slag Thickness and Heat Transfer during Coal Gasification

    Directory of Open Access Journals (Sweden)

    Insoo Ye

    2015-04-01

    Full Text Available The behaviors of the slag layers formed by the deposition of molten ash onto the wall are important for the operation of entrained coal gasifiers. In this study, the effects of design/operation parameters and slag properties on the slag behaviors were assessed in a commercial coal gasifier using numerical modeling. The parameters influenced the slag behaviors through mechanisms interrelated to the heat transfer, temperature, velocity, and viscosity of the slag layers. The velocity profile of the liquid slag was less sensitive to the variations in the parameters. Therefore, the change in the liquid slag thickness was typically smaller than that of the solid slag. The gas temperature was the most influential factor, because of its dominant effect on the radiative heat transfer to the slag layer. The solid slag thickness exponentially increased with higher gas temperatures. The influence of the ash deposition rate was diminished by the high-velocity region developed near the liquid slag surface. The slag viscosity significantly influenced the solid slag thickness through the corresponding changes in the critical temperature and the temperature gradient (heat flux. For the bottom cone of the gasifier, steeper angles were favorable in reducing the thickness of the slag layers.

  1. Precipitation of metallic chromium during rapid cooling of Cr2O3 slags

    Directory of Open Access Journals (Sweden)

    J. Burja

    2017-01-01

    Full Text Available The slag systems of CaO-SiO2- Cr2O3 and Al2O3-CaO-MgO-SiO2- Cr2O3 were analyzed. These slag systems occur in the production of stainless steel and are important from the process metallurgy point of view. Synthetic slag samples with different chromium oxide content were prepared and melted. The melted slag samples where then rapidly cooled on large steel plates, so that the high temperature microstructure was preserved. The samples were analyzed by scanning electron microscopy (SEM and X-ray diffraction (XRD. The precipitation of different chromium oxide phases was studied, but most importantly the precipitation of metallic chromium was observed. These findings help us interpret industrial slag samples.

  2. Slag characterization and removal using pulse detonation for coal gasification. Quarterly research report, July 1--September 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Z.; Mei, D.; Biney, P.O.; Zhou, J.; Ali, M.R.

    1996-10-25

    Boiler slagging and fouling as a result of inorganic impurities in combustion gases being deposited on heat transfer tubes have caused severe problems in coal-fired power plant operation. These problems are fuel, system design, and operating condition dependent. Conventional slag and ash removal methods include the use of in situ blowing or jet-type devices such as air or steam soot blowers and water lances. Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. The detonation wave technique based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. These detonation waves have been demonstrated experimentally to have exceptionally high shearing capability important to the task of removing slag and fouling deposits. Several tests have been performed with single shot detonation wave at University of Texas at Arlington to remove the slag deposit. To hold the slag deposit samples at the exit of detonation tube, two types of fixture was designed and fabricated. They are axial arrangement and triangular arrangement. The slag deposits from the utility boilers have been used to prepare the slag samples for the test. The experimental results show that the single shot detonation wave is capable of removing the entire slag (types of slag deposited on economizer, and air-heater, i.e., relatively softer slags) and 30% of the reheater slag (which is harder) even at a distance of 6 in. from the exit of a detonation engine tube. Wave strength and slag orientation also have different effects on the chipping off of the slag. The annual report discusses about the results obtained in effectively removing the slag.

  3. Radiological significance of coal, slag and fly ash samples from the Eastern Black Sea region

    Energy Technology Data Exchange (ETDEWEB)

    Damla, Nevzat [Batman Univ. (Turkey). Dept. of Physics; Cevik, Ugur [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Physics; Kara, Ayhan [Osmaniye Korkut Ata Univ. (Turkey). Dept. of Physics

    2012-11-15

    This work presents a study of natural radioactivity levels in coal and its combustion residues (fly ash and slag) used in the houses in Black Sea Region, Turkey. Coal, fly ash and slag samples were provided from different locations of the region and analyzed by gamma spectroscopy using a high-purity germanium detector (HPGe). Also, chemical analyses of these samples were carried out using energy dispersive X-ray fluorescence spectrometer. The mean {sup 226}Ra activity concentrations in coal, slag and fly ash were measured as 83, 99 and 38 Bq kg{sup -1}, respectively. The mean {sup 232}Th activity concentrations in coal, slag and fly ash were measured as 108, 113 and 50 Bq kg{sup -1}, respectively. The mean {sup 40}K activity concentrations in coal, slag and fly ash were found to be 366, 381 and 204 Bq kg{sup -1}, respectively. The potential radiological hazards associated to these materials were evaluated by calculating the radium equivalent activity (Ra{sub eq}), the air absorbed gamma dose rate (D), the annual effective dose rate (AED), the external hazard index (H{sub ex}) and internal hazard index (H{sub in}) and compared with the internationally accepted or reference values. The mean Ra{sub eq} values of the coal, fly ash and slag samples were lower than the recommended maximum values 370 Bq kg{sup -1} by the Organization for Economic Cooperation and Development (OECD). The overall mean outdoor terrestrial gamma air absorbed dose rate in coal, fly ash and slag samples are 119, 129 and 62 nGy h{sup -1} and the corresponding outdoor annual effective doses are 0.60, 0.32 and 0.64 mSv y{sup -1}, which is higher than the worldwide average (0.07 mSv y{sup -1}), respectively. Moreover, the enrichment factors relative to the input coal are calculated for the radionuclide contents observed. Calculated enrichment factor values for {sup 226}Ra and {sup 232}Th were found 1.14 and 1.01, respectively. (orig.)

  4. Performance study of vegetated sequencing batch coal slag bed treating domestic wastewater in suburban area

    Energy Technology Data Exchange (ETDEWEB)

    Chan, S.Y.; Tsang, Y.F.; Chua, H.; Sin, S.N.; Cui, L.H. [Hong Kong Polytechnic University, Hong Kong (China)

    2008-06-15

    A practical and affordable wastewater treatment system serving small community in suburban areas was studied. The system was a vegetated sequencing batch coal slag bed integrated with the rhythmical movement of wastewater and air like that of a sequencing batch reactor. The removal mechanisms capitalized on the pollutant removal process in conventional constructed wetland. Cyperus alternifolius was planted into the coal slag bed to form a novel plant-soil-microbial interactive system. Nutrients in the domestic wastewater, which cause environmental nuisance like eutrophication, were targeted to be eliminated by the process design. Operated with the contact time of 18 h, the treatment systems achieved around 60% removal efficiency for carbonaceous matters. The removals of ammonia nitrogen and phosphorus were about 50% and 40%, respectively, while the removal of total suspended solids was approaching 80%. From the current study.. the construction cost of the vegetated sequencing batch coal slag bed was 256 RMB/m{sup 3} and the operation cost was 0.13 RMB/m{sup 3}. With the advantages of ease of operation, low costs, desirable treatment efficiency and aesthetic value, the vegetated sequencing batch coal slag bed is proposed to be an alternative for onsite domestic wastewater treatment in suburban areas.

  5. Analysis of natural radionuclides in coal, slag and ash in coal-fired power plants in Serbia

    Directory of Open Access Journals (Sweden)

    Janković M.M.

    2011-01-01

    Full Text Available The radioactivity monitoring in the “Nikola Tesla”, “Kolubara”, “Morava” and “Kostolac” coal-fired power plants was performed by the Radiation and Environmental Protection Laboratory, Vinča Institute of nuclear sciences in the period 2003-2010. Monitoring included the analysis of soil, water, flying ash, slag, coal and plants. This paper presents the results of the radioactivity analysis of coal, ash and slag samples. Naturally occurring radionuclides 226Ra, 232Th, 40K, 235U, 238U, and 210Pb as well as the man-made radionuclide 137Cs were determined by gamma spectrometry using HPGe detector. The concentrations of pairs of radionuclides were statistically tested to determine the correlation between them. Based on the obtained results, health effect due to the activity of these radionuclides was estimated via radium equivalent (Raeq, external hazard index (Hex, external gamma absorbed dose rate ( and annual effective dose.

  6. Utilization of lightweight materials made from coal gasification slags. Quarterly report, March 1995--May 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Integrated-gasification combined-cycle (IGCC) technology is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, this process generates large amounts of solid waste, consisting of vitrified ash (slag) along with some unconverted carbon, which is disposed of as solid waste. In previous projects, Praxis investigated the utilization of {open_quotes}as-generated{close_quotes} slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for {open_quotes}as-generated{close_quotes} slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag could be made into a lightweight material by controlled heating in a kiln at temperatures between 1400 and 1700{degrees}F. These results indicated the potential for using such materials as substitutes for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project, funded by DOE`s Morgantown Energy Technology Center (METC), are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications.

  7. TRW Advanced Slagging Coal Combustor Utility Demonstration. Fourth Quarterly progress report, August 1989--October 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The TRW Advanced Slagging Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O&R) Utility Corporation`s Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/ou desip unit to fire 2.5 sulfur coal. The slogging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Envirommental Standards. TRW-CBU scope of work includes the engineering, design and supply of the slogging combustors, coal and limestone feed systems and a control system for these components. During this report period, the design activities for all systems progressed to permit the release of specifications and requests for proposals. Award of contracts for long-delivery items and major equipment are being placed to meet the revised program schedule.

  8. Thermodynamic Analysis of Blast Furnace Slag Waste Heat-Recovery System Integrated with Coal Gasification

    Science.gov (United States)

    Duan, W. J.; Li, P.; Lei, W.; Chen, W.; Yu, Q. B.; Wang, K.; Qin, Q.

    2015-05-01

    The blast furnace (BF) slag waste heat was recovered by an integrated system stage by stage, which combined a physical and chemical method. The water and coal gasification reactions were used to recover the heat in the system. Based on the first and second law of thermodynamics, the thermodynamic analysis of the system was carried out by the enthalpy-exergy diagram. The results showed that the concept of the "recovery-temperature countercurrent, energy cascade utilization" was realized by this system to recover and use the high-quality BF slag waste heat. In this system, the high-temperature waste heat was recovered by coal gasification and the relatively low-temperature waste heat was used to produce steam. The system's exergy and thermal recycling efficiency were 52.6% and 75.4%, respectively. The exergy loss of the integrated system was only 620.0 MJ/tslag. Compared with the traditional physical recycling method producing steam, the exergy and thermal efficiencies of the integrated system were improved significantly. Meanwhile, approximately 182.0 m3/tslag syngas was produced by coal gasification. The BF slag waste heat will be used integrally and efficiently by the integrated system. The results provide the theoretical reference for recycling and using the BF slag waste heat.

  9. Producing fired bricks using coal slag from a gasification plant in indiana

    Science.gov (United States)

    Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.

    2009-01-01

    Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.

  10. Prediction of coal slag foaming under gasification conditions by thermodynamic equilibrium calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S.; Oh, M. [Hongik University, Seoul (Republic of Korea). School of Chemical Engineering

    2007-09-15

    In slagging gasifiers, slag foaming can cause serious operational problems, so there is a need for investigation into the conditions causing slag foaming. Viscosity experiments were carried out examining viscosity, extent of swelling and Fe formation. Although extensive swelling was not observed, FeO reduction was observed under an N{sub 2}/CO gas atmosphere, but not under CO{sub 2}/CO. In order to predict FeO reduction conditions in the gasifier, a model for an adiabatic equilibrium gasifier was developed. The gas composition, the amount of gas to slag, and PO{sub 2} were calculated for a slurry-feed gasifier, and the results of the calculation were used to predict the reduction of FeO in slag by using FactSage. Under typical gasification conditions for Denisovsky coal, the predicted -O{sub 2} in the gasifier was not low enough to cause FeO reduction. The FactSage simulation for the viscometer conditions predicted no FeO reduction under a CO/CO{sub 2} atmosphere, but did predict Fe formation under CO/N{sub 2} conditions. At a 20% CO concentration, FeO reduction starts at temperatures above 1,600{sup o}C. Since the slag has a low viscosity at 1,600{sup o}C, the oxygen bubble may have escaped as it formed. Therefore, slag foaming, caused by FeO reduction in the slag, can only occur when the right conditions of viscosity and oxygen partial pressure are met.

  11. LWA demonstration applications using Illinois coal gasification slag: Phase II. Technical report, 1 March--31 May 1994

    Energy Technology Data Exchange (ETDEWEB)

    Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

    1994-09-01

    The major objective of this project is to demonstrate the suitability of using ultra-lightweight aggregates (ULWA) produced by thermal expansion of solid residues (slag) generated during the gasification of Illinois coals as substitutes for conventional aggregates, which are typically produced by pyroprocessing of perlite ores. To meet this objective, expanded slag aggregates produced from an Illinois coal slag feed in Phase I will be subjected to characterization and applications-oriented testing. Target applications include the following: aggregates in precast products (blocks and rooftiles); construction aggregates (loose fill insulation and insulating concrete); and other applications as identified from evaluation of expanded slag properties. The production of value-added products from slag is aimed at eliminating a solid waste and possibly enhancing the overall economics of the gasification process, especially when the avoided costs of disposal are taken into consideration.

  12. Recovery of Copper from Slow Cooled Ausmelt Furnace Slag by Floatation

    Science.gov (United States)

    Xue, Ping; Li, Guangqiang; Qin, Qingwei

    Ausmelt furnace slag contains about 0.9% Cu (mass %). With increasing the amount of Ausmelt furnace slag, the recovery of copper from it will produce an enormous economic yield. The recovery of copper by floatation from slow cooled Ausmelt furnace slag was studied in this paper. The phases and composition of the slow cooled slag were analyzed. The factors which affected the copper recovery efficiency such as grinding fineness, pH value of flotation medium, different collectors and floating process were investigated. It was shown that the size distribution of the primary grinding and secondary grinding of middling were 75% for particles less than 0.074mm and 82% for particles less than 0.043mm respectively. The closed-circuit experimental results with butyl xanthate as collector in laboratory showed that the copper grade reached 16.11% and the recovery rate of copper reached 69.90% and the copper grade of tailings was only 0.2%.

  13. Minerals in the Ash and Slag from Oxygen-Enriched Underground Coal Gasification

    Directory of Open Access Journals (Sweden)

    Shuqin Liu

    2016-03-01

    Full Text Available Underground coal gasification (UCG is a promising option for the recovery of low-rank and inaccessible coal resources. Detailed mineralogical information is essential to understand underground reaction conditions far from the surface and optimize the operation parameters during the UCG process. It is also significant in identifying the environmental effects of UCG residue. In this paper, with regard to the underground gasification of lignite, UCG slag was prepared through simulation tests of oxygen-enriched gasification under different atmospheric conditions, and the minerals were identified by X-Ray diffraction (XRD and a scanning electron microscope coupled to an energy-dispersive spectrometer (SEM-EDS. Thermodynamic calculations performed using FactSage 6.4 were used to help to understand the transformation of minerals. The results indicate that an increased oxygen concentration is beneficial to the reformation of mineral crystal after ash fusion and the resulting crystal structures of minerals also tend to be more orderly. The dominant minerals in 60%-O2 and 80%-O2 UCG slag include anorthite, pyroxene, and gehlenite, while amorphous substances almost disappear. In addition, with increasing oxygen content, mullite might react with the calcium oxide existed in the slag to generate anorthite, which could then serve as a calcium source for the formation of gehlenite. In 80%-O2 UCG slag, the iron-bearing mineral is transformed from sekaninaite to pyroxene.

  14. Resistance of Alkali Activated Water-Cooled Slag Geopolymer to Sulphate Attack

    Directory of Open Access Journals (Sweden)

    S. A. Hasanein

    2011-06-01

    Full Text Available Ground granulated blast furnace slag is a finely ground, rapidly chilled aluminosilicate melt material that is separated from molten iron in the blast furnace as a by-product. Rapid cooling results in an amorphous or a glassy phase known as GGBFS or water cooled slag (WCS. Alkaline activation of latent hydraulic WCS by sodium hydroxide and/or sodium silicate in different ratios was studied. Curing was performed under 100 % relative humidity and at a temperature of 38°C. The results showed that mixing of both sodium hydroxide and sodium silicate in ratio of 3:3 wt.,% is the optimum one giving better mechanical as well as microstructural characteristics as compared with cement mortar that has various cement content (cement : sand were 1:3 and 1:2. Durability of the water cooled slag in 5 % MgSO4 as revealed by better microstructure and high resistivity-clarifying that activation by 3:3 sodium hydroxide and sodium silicate, respectively is better than using 2 and 6 % of sodium hydroxide.

  15. Coal ash fusion temperatures - new characterization techniques and implications for slagging and fouling

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Creelman, R.A.; Gupta, R.P.; Gupta, S.K.; Coin, C.; Lowe, A. [University of Newcastle, Newcastle, NSW (Australia). CRC for Black Coal Utilisation

    1998-09-01

    The ash fusion test (AFT) is the accepted test for the propensity of coal ash to slag in the furnace. The well-documented shortcomings of this technique for estimating the fusion temperature of coal ash are its subjective nature and poor accuracy. Alternative measurements based on the shrinkage and electrical conductivity of heating samples are therefore examined here with laboratory ash prepared at about 800{degree}C in crucibles, as well as combustion ash samples from power stations. Sensitive shrinkage measurements indicate temperatures of rapid change which correspond to the formation of liquid phases that can be identified on ternary phase diagrams. The existence and extent of formation of these phases, as quantified by the magnitude of `peaks` in the test, provide alternative ash fusion temperatures. The peaks from laboratory ashes and corresponding combustion ashes derived from the same coals show clear differences which may be related to the evaporation of potassium during combustion and the reactions of the mineral residues to form combustion ash. A preliminary evaluation of data from nine power stations indicates that shrinkage measurements can provide an alternative approach to characterizing slagging. 15 refs., 9 figs., 2 tabs.

  16. Low-NO/SUB/x combustion of coal by vertical cyclone furnace (II): slag tap combustion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, M.; Kusakabe, T.; Matsumoto, T.; Miyajima, K.; Yamazaki, M.

    1983-01-01

    Slag tap combustion of coal was investigated in the hope of developing a method of low-NOx, low-dust combustion. Miike coal (heating value 7000 kcal/kg) was combusted with air preheated to approximately 650 C in the same experimental vertical cyclone furnace as that used in the previous study. The furnace temperature rose to 1510-1740 C and trouble-free slag tap combustion was achieved. The concentration of NO in the flue gas fell sharply with decreasing excess air ratio in the primary combustion chamber. 2 references.

  17. Optical Fiber Sensor Instrumentation for Slagging Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Anbo Wang; Kristie Cooper

    2008-07-19

    Coal gasifier is one of the most promising solutions for clean fossil energy. Refractory thickness monitoring and online real-time temperature measurement is needed for improved reliability and advanced process control for current and future generation power plants. The objective of this program is to design and implement an optical fiber based sensing system that could potentially be used to monitor refractory wall thickness and temperature inside a coal gasifier. For the thickness monitoring, the system should be able to operate at temperatures up to 1000 C. For this temperature range, silica fiber can still work so it is chosen for the sensor design. The measurement is based on a photon counting optical time domain reflectometer. A narrow light pulse is launched into a silica fiber which could be embedded into the gasifier refractory wall, and is partially reflected by the far end of the fiber. The time of flight of the light pulse in the fiber then gives an indication of the position of the fiber end, which is a function of the wall thickness when the fiber is embedded. Results obtained show a measurement accuracy of {+-}2cm in environment of 1000 C with a saw cut fiber end. When the fiber end is corroded by sodium carbide at 900 C, the accuracy is {+-}3cm. For the temperature measurement, a single crystal sapphire fiber sensor is designed. The sapphire fiber guides the broadband light from a light emitting diode to a sapphire wafer functioning as a Fabry-Perot interferometer and the wafer optical thickness is a function of temperature. The returned optical signal is then demodulated by multimode fiber based whitelight interferometry. The system was tested up to 1500 C with a measurement accuracy of {+-}10 C for the entire measurement range.

  18. Unexpected Dominance of Elusive Acidobacteria in Early Industrial Soft Coal Slags

    Directory of Open Access Journals (Sweden)

    Carl-Eric Wegner

    2017-06-01

    Full Text Available Acid mine drainage (AMD and mine tailing environments are well-characterized ecosystems known to be dominated by organisms involved in iron- and sulfur-cycling. Here we examined the microbiology of industrial soft coal slags that originate from alum leaching, an ecosystem distantly related to AMD environments. Our study involved geochemical analyses, bacterial community profiling, and shotgun metagenomics. The slags still contained high amounts of alum constituents (aluminum, sulfur, which mediated direct and indirect effects on bacterial community structure. Bacterial groups typically found in AMD systems and mine tailings were not present. Instead, the soft coal slags were dominated by uncharacterized groups of Acidobacteria (DA052 [subdivision 2], KF-JG30-18 [subdivision 13], Actinobacteria (TM214, Alphaproteobacteria (DA111, and Chloroflexi (JG37-AG-4, which have previously been detected primarily in peatlands and uranium waste piles. Shotgun metagenomics allowed us to reconstruct 13 high-quality Acidobacteria draft genomes, of which two genomes could be directly linked to dominating groups (DA052, KF-JG30-18 by recovered 16S rRNA gene sequences. Comparative genomics revealed broad carbon utilization capabilities for these two groups of elusive Acidobacteria, including polysaccharide breakdown (cellulose, xylan and the competence to metabolize C1 compounds (ribulose monophosphate pathway and lignin derivatives (dye-decolorizing peroxidases. Equipped with a broad range of efflux systems for metal cations and xenobiotics, DA052 and KF-JG30-18 may have a competitive advantage over other bacterial groups in this unique habitat.

  19. Ecological and economic solution for removing and dumping the slag and ash from coal-fired low capacity boilers

    Energy Technology Data Exchange (ETDEWEB)

    Dumitru Gardan; Laurentiu Maier; Nistor Bujdei; Maria Gardan [Institute of Power Studies and Design, Timisoara (Romania)

    2003-07-01

    The removal of ash and slags from fossil-fuel power plants and their transport to and storage on dumps are discussed. A new dense slurry ash removal process developed by IPSE and Termoelectrica is described. This was successfully tested at Timisoara coal-fired power plant, Romania. 2 figs., 1 tab.

  20. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad [National Energy Technology Laboratory; Wang, Ping

    2013-02-07

    The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.

  1. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag

    Directory of Open Access Journals (Sweden)

    Mehrdad Massoudi

    2013-02-01

    Full Text Available The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.

  2. Effect of cooling rate on the crystallization behavior of perovskite in high titanium-bearing blast furnace slag

    Institute of Scientific and Technical Information of China (English)

    Lu Liu; Mei-long Hu; Chen-guang Bai; Xue-weiLü; Yu-zhou Xu; Qing-yu Deng

    2014-01-01

    The effect of cooling rate on the crystallization of perovskite in high Ti-bearing blast furnace (BF) slag was studied using confocal scanning laser microscopy (CSLM). Results showed that perovskite was the primary phase formed during the cooling of slag. On the slag surface, the growth of perovskite proceeded via the successive production of quasi-particles along straight lines, which further extended in certain directions. The morphology and structure of perovskite was found to vary as a function of cooling rate. At cooling rates of 10 and 30 K/min, the dendritic arms of perovskite crossed obliquely, while they were orthogonal at a cooling rate of 20 K/min and hexagonal at cooling rates of 40 and 50 K/min. These three crystal morphologies thus obtained at different cooling rates respectively corresponded to the ortho-rhombic, cubic and hexagonal crystal structures of perovskite. The observed change in the structure of perovskite could probably be attrib-uted to the deficiency of O2-,when Ti2O3 was involved in the formation of perovskite.

  3. Survey and conceptual flow sheets for coal conversion plant handling-preparation and ash/slag removal operations

    Energy Technology Data Exchange (ETDEWEB)

    Zapp, F.C.; Thomas, O.W.; Silverman, M.D.; Dyslin, D.A.; Holmes, J.M.

    1980-03-01

    This study was undertaken at the request of the Fossil Fuel Processing Division of the Department of Energy. The report includes a compilation of conceptual flow sheets, including major equipment lists, and the results of an availability survey of potential suppliers of equipment associated with the coal and ash/slag operations that will be required by future large coal conversion plant complexes. Conversion plant flow sheet operations and related equipment requirements were based on two representative bituminous coals - Pittsburgh and Kentucky No. 9 - and on nine coal conversion processes. It appears that almost all coal handling and preparation and ash/slag removal equipment covered by this survey, with the exception of some coal comminution equipment, either is on hand or can readily be fabricated to meet coal conversion plant capacity requirements of up to 50,000 short tons per day. Equipment capable of handling even larger capacities can be developed. This approach appears to be unjustified, however, because in many cases a reasonable or optimum number of trains of equipment must be considered when designing a conversion plant complex. The actual number of trains of equipment selected will be influenced by the total requied capacity of the complex, the minimum on-line capacity that can be tolerated in case of equipment failure, reliability of specific equipment types, and the number of reactors and related feed injection stations needed for the specific conversion process.

  4. Going very cool on coal. [Tasmania

    Energy Technology Data Exchange (ETDEWEB)

    1985-07-01

    Tasmania's two-year long romance with coal seems to have come to a rather abrupt end. After the demise of the controversial Gordon-Below-Franklin hydroelectric power scheme in 1983, coal became a by-word as the next best option as a power source for the island State and there was a flourish of activity and exploration for coal. But the Tasmanian Liberal Government of Robin Gray late in June virtually ruled out a coal-fired thermal power station as its most preferred option for the State's next power scheme.

  5. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    Science.gov (United States)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-11-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society.

  6. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    Science.gov (United States)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450–1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  7. LWA demonstration applications using Illinois coal gasification slag: Phase 2. Technical report, September 1--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

    1993-12-31

    The objectives of this program are to demonstrate the feasibility of producing ultra-lightweight aggregates (ULWA) from solid residues (slag) generated during the gasification of Illinois coals, and to test the products as substitutes for conventional aggregates produced by pyroprocessing of perlite ores. In Phase 1 of this project, Praxis developed a pilotscale production technique and produced a large batch of expanded aggregates from an Illinois coal slag feed. The Phase 2 work focuses on characterization and applications-oriented testing of the expanded slag products as substitutes for conventional ULWAs. Target applications include high-volume uses such as loose fill insulation, insulating concrete, lightweight precast products (blocks), waterproof wallboard, rooftiles, and filtration media. The precast products will be subjected to performance and characterization testing in conjunction with a commercial manufacturer of such products in order to obtain input from a potential user. The production of value-added products from slag will eliminate a solid waste and possibly enhance the overall gasification process economics, especially when the avoided costs of disposal are taken into consideration.

  8. An annular-furnace boiler for the 660-MW power unit for ultrasupercritical parameters intended for firing brown slagging coals

    Science.gov (United States)

    Serant, F. A.; Belorutskii, I. Yu.; Ershov, Yu. A.; Gordeev, V. V.; Stavskaya, O. I.; Katsel, T. V.

    2013-12-01

    We present the main technical solutions adopted in designing annular-furnace boilers intended for operation on brown coals of the prospective Maikubensk open-cast mine in Kazakhstan as part of 660-MW power units for ultrasupercritical steam conditions. Results from 3D modeling of combustion processes are presented, which clearly show the advantages furnaces of this kind have over a traditional furnace in burning heavily slagging brown coals. The layout of the main and boiler auxiliary equipment in the existing boiler cell of the 500-MW power unit at the Ekibastuz GRES-1 district power station is shown. Appropriate attention is paid to matters concerned with decreasing harmful emissions.

  9. Effect of Crushed Air-cooled Blast Furnace Slag on Mechanical Properties of Concrete

    Institute of Scientific and Technical Information of China (English)

    WANG Aiguo; DENG Min; SUN Daosheng; LI Bing; TANG Mingshu

    2012-01-01

    Morphology characteristics of mix aggregates with crushed air-cooled blast furnace slag (SCR) and crushed limestone (LCR) with 5-20 mm and 20-40 mm gradation were represented by numerical parameters including angularity number (AN) and index of aggregate particle shape and texture (IAPST).The effect of mix aggregates containing SCR on compressive strength and splitting tensile strength of concrete was investigated.Fracture characteristics of concrete,interfacial structure between aggregates and matrix were analyzed.The experimental results show that porous and rough SCR increases contact area with matrix in concrete,concave holes and micro-pores on the surface of SCR are filled by mortar and hydrated cement paste,which may increase interlocking and mechanical bond between aggregate and matrix in concrete.SCR can be used to produce a high-strength concrete with better mechanical properties than corresponding concrete made with LCR.The increase of AN and IAPST of aggregate may enhance mechanical properties of concrete.

  10. Cool oxygen plasma oxidation of the organic matter of coal

    Energy Technology Data Exchange (ETDEWEB)

    Korobetskii, I.A.; Nazimov, S.A.; Romanchuk, V.V. [COAL-C Ltd., Kemerovo (Russian Federation)

    1997-12-31

    Oxidation of the sapropelitic coals has been carried out by cool oxygen plasma. The changes in concentration of oxygen- and hydrogen-containing groups of organic matter were observed by photoacoustic FTIR-spectroscopy during the cool oxygen plasma oxidation (COPO). The accumulation of oxygen-containing bands, such as C-O and O-H, during COPO was shown. The complete elimination of aromatic and aliphatic structure occurred in first two hours of oxidation. (orig.)

  11. Strength properties of concrete incorporating coal bottom ash and granulated blast furnace slag.

    Science.gov (United States)

    Ozkan, Omer; Yüksel, Isa; Muratoğlu, Ozgür

    2007-01-01

    Coal bottom ash (CBA) and fly ash (FA) are by-products of thermal power plants. Granulated blast-furnace slag (GBFS) is developed during iron production in iron and steel plants. This research was conducted to evaluate the compressive strength property and some durability characteristics of concrete incorporating FA, CBA, and GBFS. FA is used as an effective partial cement replacement; CBA and GBFS are used as partial replacement for fine aggregate without grinding. Water absorption capacity, unit weight and compressive strengths in 7, 28, and 90-day ages were assessed experimentally. For these experiments, concrete specimens were produced in the laboratory in appropriate shapes. The samples are divided into two main categories: M1, which incorporated CBA and GBFS; and M2, which incorporated FA, CBA, and GBFS. Remarkable decreases are observed in compressive strength and water absorption capacity of the concrete; bulk density of the concrete is also decreased. It can be concluded that if the content of CBA and GBFS is limited to a reasonable amount, the small decreases in strength can be accepted for low strength concrete works.

  12. Ash fusion temperatures and their association with the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Gupta, R.P. [Cooperative Research Centre for Black Coal Utilisation, Newcastle, NSW (Australia); Creelman, R.A. [Creelman (R.A.) and Associates, Sydney, NSW (Australia)

    1997-04-01

    Ash deposition on furnace walls in PF (pulverized fuel) furnaces is called slagging when it occurs in the high temperature areas of furnaces directly exposed to flame radiation and fouling in other regions such as tubes in the convection section of the boiler. There are well documented shortcomings of certain approaches relating to their uncertainties as predictive tools for plant performance such as poor repeatability and re-producibility of ash fusion measurements. The nature of physical and chemical changes occurring during melting of coal ash has been investigated in the current study to provide an alternative procedure to the ash fusion test. Shrinkage measurements are frequently used in metallurgy and ceramic science to study the physical properties of materials at high temperatures. The output of this experiment provides three to four `peaks` (maximum rate of shrinkage with temperature) of different intensity and at different temperatures which are related to melting characteristics of the sample. It was concluded that shrinkage extents exceeding 50 percent indicated that the effect of the ash particle size is of secondary importance compared to ash chemistry in determining shrinkage levels, with fine particles giving rapid shrinkage events 10 degrees C lower in temperature. (author). 7 figs., refs.

  13. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Creelman, R.A.; Gupta, R.P. [University of Newcastle, Newcastle, NSW (Australia). CRC for Black Coal Utilisation

    1998-07-01

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degree}C. The temperature corresponding to the rapid rate of shrinkage correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined using a scanning electron microscope (SEM) to identify the associated chemical and physical changes. The progressive changes in the range of chemical composition (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenisation, viscosity and ash fusion mechanisms. Alternate ash fusion temperatures based on different levels of shrinkage have also been suggested to characterise the ash deposition tendency of the coals. 13 refs., 9 figs.

  14. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Creelman, R.A.; Gupta, R.; Gupta, S. [Univ. of Newcastle (Australia)

    1996-10-01

    A mechanistic study is detailed in which coal ash is heated with the shrinkage and electrical resistance measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to rapid rates of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples where therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity are then quantified and related to the shrinkage events and standard ash fusion temperatures.

  15. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.; Wall, T.F.; Creelman, R.A.; Gupta, R. [Univ. of Newcastle, Callaghan (Australia)

    1996-12-31

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to the rapid rate of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenization, viscosity and ash fusion mechanisms.

  16. Influence of a modification of the petcoke/coal ratio on the leachability of fly ash and slag produced from a large PCC power plant.

    Science.gov (United States)

    Izquierdo, Maria; Font, Oriol; Moreno, Natalia; Querol, Xavier; Huggins, Frank E; Alvarez, Esther; Diez, Sergi; Otero, Pedro; Ballesteros, Juan Carlos; Gimenez, Antonio

    2007-08-01

    Co-firing of coal with inexpensive secondary fuels such as petroleum coke is expected to increase in the near future in the EU given that it may provide certain economic and environmental benefits with respect to coal combustion. However, changes in the feed fuel composition of power plants may modify the bulk content and the speciation of a number of elements in fly ash and slag. Consequently, leachability of these byproducts also can be modified. This study is focused on identifying the changes in the environmental quality of co-fired fly ash and slag induced by a modification of the petcoke/coal ratio. Petcoke was found to increase the leachable content of V and Mo and to enhance the mobility of S and As. However, with the exception of these elements, the addition of this secondary fuel did not drastically modify the bulk composition or the overall leachability of the resulting fly ash and slag.

  17. Immobilization of lead by application of soil amendment produced from vinegar residue, stainless steel slag, and weathered coal.

    Science.gov (United States)

    Pei, Guangpeng; Li, Yuxin; Zhu, Yuen; Shi, Weiyu; Li, Hua

    2017-08-11

    This paper presents a new soil amendment used for immobilization of soil Pb, produced from vinegar residue, stainless steel slag, and weathered coal. The pH value measuring, granulation and adsorption experiments were carried out to determine the optimal composition of soil amendment. Optimizing soil amendment B2 was composed of vinegar residue, weathered coal (humic acid 61.53 wt%), and stainless steel slag with the ratio of 80∶16∶4, and particle size was in the range of 2-4 mm. In the leaching column experiment, B2 addition reduced the Pb release from the soil as well as increasing leachate pH and decreasing the bioavailable Pb concentration. The leachate Pb concentration decreased with lengthened leaching time under lower pH, but such a phenomenon disappeared in the rebounding period. Compared to control, the DTPA extractable Pb content in soil decreased by 12.41, 13.20, and 8.78% with the B2 addition amount of 1.00, 2.00, and 2.00 wt%, respectively. In addition, the total Pb content of each soil layer generally rose as B2 addition increased. It was concluded that application of B2 led to lower transport and transformation of Pb in soil. Based on the single chemical extraction, the environmental risk of Pb was decreased after application of B2. Meanwhile, soil amendment was also a new way to recycle vinegar residue, stainless steel slag, and weathered coal.

  18. Utilization of lightweight materials made from coal gasification slags. Quarterly report, September 1--November 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In previous projects, Praxis investigated the utilization of as-generated slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, the authors found that it would be extremely difficult for as-generated slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1,400 and 1,700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase 1, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase 2, which involves commercial evaluation of these aggregates in a number of applications. This document summarizes the Phase 2 accomplishments to date along with the major accomplishments from Phase 1.

  19. Refractories Utilizability for Slagging Gasifiers

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Slagging coal gasification process became a highlight of coal chemical industry in China during the last decade. Refractory lining's life of slagging gasifiers is one of the most critical factors for a cost -effective operation. The paper introduces current status of coal gasification in China, lining structure of slagging gasifiers and performance of refractory lining. It also summarizes the major factors impacting on refractory wear in slagging coal gasifiers in four Chinese chemical plants, based on ten years of industrial experience. The utilizability is discussed in terms of cost -effectiveness of high chromia refractories and possibility of the alternatives.

  20. Ensuring slagging-free operation of a boiler equipped with hammer mills in firing brown coal with low-melting ash

    Science.gov (United States)

    Arkhipov, A. M.; Dorogoi, G. A.

    2011-04-01

    The possibility of ensuring slagging-free operation of heating surfaces in firing Pereyaslov brown coal is considered taking the PK-38 boiler at the Krasnoyarsk GRES-2 district power station as an example. Retrofitting of burners and nozzles and setting up of a recirculation-vortex flame are recommended.

  1. Investigations of the surface tension of coal ash slags under gasification conditions; Untersuchungen zur Oberflaechenspannung von Kohleschlacken unter Vergasungsbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, Tobias

    2011-10-26

    In the context of CO{sub 2}-emission-induced global warming, greenhouse gases resulting from the production of electricity in coal-fired power plants gain increasing attention. One possible way to reduce such emissions is to gasify coal instead of burning it. The corresponding process is referred to as Integrated Gasification Combined Cycle and allows for the separation of CO{sub 2} before converting a synthesis gas into electrical energy. However, further improvements in efficiency and availability of this plant technology are needed to render the alternative generation of electricity sensible from an economic point of view. One corresponding approach introduces hot gas cleaning facilities to the gasification plant which guarantee a removal of slag particles from the synthesis gas at high temperatures. The development of such filters depends on the availability of data on the material properties of the coal ash slags to be withdrawn. In this respect, the surface tension is a relevant characteristic. Currently, the surface tension of real coal ash slags as well as of synthetic model systems was measured successfully by means of the sessile drop and the maximum bubble pressure method. With regard to the sessile drop technique, those experiments were conducted in a gasification-like atmosphere at temperatures of up to 1500 C. Furthermore, the pressure inside the experimental vessel was raised to 10 bar in order to allow for deriving the influence of this variable on the surface tension. In contrast, maximum bubble pressure trials were realised at atmospheric pressure while the gas atmosphere assured inert conditions. For performing sessile drop measurements, a corresponding apparatus was set up and is described in detail in this thesis. Three computer algorithms were employed to calculate surface tensions out of the photos of sessile drops and their individual performance was evaluated. A very good agreement between two of the codes was found while the third one

  2. Explore the Water-cooled Slag Cooler Drum Master Cylinder Structure%滚筒水冷式冷渣机主筒结构探讨

    Institute of Scientific and Technical Information of China (English)

    吴浪

    2014-01-01

    在锅炉系统中,冷渣机对高温炉渣的冷却起着重要的作用,而滚筒水冷式冷渣机因其自身所具有的一些优点得到了较为广泛的应用。在滚筒水冷式冷渣机中,其主筒结构对其性能和工作效率等都会产生直接的影响。针对生产的实际需求,对滚筒水冷式冷渣机进行改进和完善时,要充分考虑主筒结构设计和所要改善的问题,从而使其能够更好地发挥冷却作用。%In the boiler system, slag cooler for cooling high-temperature slag plays an important role, and the cold cylinder water-cooled slag machine has its own advantages has been more widely used. In the cylinder water-cooled slag cooler in the main tube structures have a direct impact on their performance and work efficiency will be. When the actual demand for the production of cylinder water-cooled slag cooler to improve and perfect, to fully consider the master cylinder and the structural design issues to be improved, making it better able to exert a cooling effect.

  3. Physical Properties of Crushed Air-cooled Blast Furnace Slag and Numerical Representation of Its Morphology Characteristics

    Institute of Scientific and Technical Information of China (English)

    WANG Aiguo; DENG Min; SUN Daosheng; LI Bing; TANG Mingshu

    2012-01-01

    Physical properties and geometrical morphologies of crushed air-cooled blast furnace slag (SCR) and crushed limestone (LCR) were comparatively investigated.The shape,angularity,surface texture and internal pore structure of aggregate particles for different size and gradation were numerically represented by sphericity (ψ) and shape index (SI),angularity number (AN),index of aggregate particle shape and texture (IAPST),porosity and pore size,respectively.The results show that SCR is a porous and rough aggregate.Apparent density,void,water absorption and smashing index of SCR are obviously higher than those of LCR with the same gradation,respectively.However,bulk density of SCR is lower than that of LCR with the same gradation.SI,AN,IAPST and porosity of SCR are obviously higher than those of LCR with the same gradation,respectively.The smaller particle size of SCR,the larger of its AN,IAPST and porosity.

  4. Utilization of Illinois coal gasification slags for production of ultra-lightweight aggregates. [Quarterly] technical report, March 1--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Zimmerle, T. [Silbrico Corp. (United States)

    1993-09-01

    This research is aimed at testing and developing the expansion potential of gasification solid residues (slag) to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are manufactured by pyroprocessing of perlite or vermiculite ores and have unit weights in the range of 5--15 lb/ ft3. These materials are sold for approximately $200/ton (or $1.00/ft3) and have numerous applications including loose fill insulation, insulating concrete, precast products, filtration media, and agricultural applications. In a previous project, Praxis Engineers demonstrated that lightweight aggregates (LWA) with unit weights of 25--55 lb/ ft3 can be produced from Illinois coal slags and used as substitutes for conventional LWAs. In this program, tests are being undertaken in a pilot-scale vertical shaft furnace to identify operating conditions for the expansion of Illinois slags such that the product can be substituted for ULWA. Upon completion of testing, a large batch of expanded slag will be produced for evaluation in various applications, both in this phase and in subsequent Phase II testing. During the initial pilot plant runs using two Illinois slags, expanded products with unit weights of 12.5--26.5 and 20--52 lb/ ft3, respectively, were produced. Efforts are under way to generate products with lower unit weights.

  5. Effects of coal gasification slag as a substrate for the plant Cyperus esculentus and the worm Eisenia fetida.

    Science.gov (United States)

    Jenner, H A; Janssen-Mommen, J P; Koeman, J H

    1992-08-01

    A further development of the coal gasification process will result in an increase of the amount of coal gasification slag (CGS). As yet little is known about the effects of storage in uncovered dumps. If there are any environmental effects, they are most likely caused by accumulation of metals from the CGS or by unacceptable physical properties of the CGS. Growth inhibition, mortality, and metal accumulation were analyzed for the plant Cyperus esculentus and the worm Eisenia fetida on CGS substrate. Pulverized fuel ash (PFA) was used as a reference. Both in the substrate and in tissues the concentrations of the cations Cu, Ni, Pb, and Zn and the anions As, B, Cr, Mo, Sb, and Se were determined. The availability of anions for C. esculentus and for E. fetida is greater in PFA than in CGS. The extent and rate of uptake of anionic metals by the plants is on the whole higher in the wetland situation. The availability of metals, expressed as the concentration factor (CF), in most cases appears to be smaller than 1 for nearly all elements. In E. fetida a CF greater than 1 was found only for the element As, in PFA substrate and 50% CGS. In C. esculentus a CF greater than 1 was found for B and Mo in the PFA substrate as well.

  6. Biological removal of organic constituents in quench water from a slagging, fixed-bed coal-gasification pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Stamoudis, V C; Luthy, R G

    1980-02-01

    This study is part of an effort to assess the efficiency of activated-sludge treatment for removal of organic constituents from high-Btu coal-gasification pilot-plant quench waters. A sample of raw-gas quench water was obtained from the Grand Forks Energy and Technology Center's pilot plant, which employs the slagging, fixed-bed gasification process. The quench water generated in the processing of Indian Head lignite was pretreated to reduce ammonia and alkalinity, and then diluted and subjected to long-term biological treatment, followed by detailed characterization and analysis of organic constituents. The pretreated (influent) and treated (effluent) samples were extracted using a methylene chloride, pH-fractionation method to obtain acid, base, and neutral fractions, which were analyzed by capillary-column gas chromatography/mass spectrometry (GC/MS). Over 99% of the total extractable and chromatographable organic material in the influent acid fraction was composed of phenol and alkylated phenols. Biological treatment removed these compounds almost completely. Major components of the influent base fraction were alkylated pyridines, anilines, aminopyrroles, imidazoles and/or pyrazoles, diazines, and quinolines. Removal efficiency of these compounds ranged between 90 and 100%. The influent neutral fraction was composed mainly of cycloalkanes, cycloalkenes, naphthalene, indole, acetophenone, and benzonitrile. Alkylated benzenes were generally absent. Removal efficiencies of these compounds were generally very good, except for certain alkylated cycloalkanes and cycloalkenes. Results are compared with those of a similar study on HYGAS coal-gasification quench water.

  7. Utilization of lightweight materials made from coal gasification slags. Quarterly report, December 1, 1995--February 28, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The project scope consists of collecting a 20-ton sample of slag (primary slag), processing it for chart removal, and subjecting it to pyroprocessing to produce expanded slag aggregates of various size gradations and unit weights, ranging from 12 to 50 lb/fg{sup 3}. A second smaller slag sample will be used for confirmatory testing. The expanded slag aggregates will then be tested for their suitability in manufacturing precast concrete products (e.g., masonry blocks and roof tiles) and insulating concrete, first at the laboratory scale and subsequently in commercial manufacturing plants. These products will be evaluated using ASTM and industry test methods. Technical data generated during production and testing of the products will be used to assess the overall technical viability of expanded slag production. In addition, a market assessment will be made based on an evaluation of both the expanded slag aggregates and the final products, and market prices for these products will be established in order to assess the economic viability of these utilization technologies. Relevant cost data for physical and pyroprocessing of slag to produce expanded slag aggregates will be gathered for comparison with (1) the management and disposal costs for slag or similar wastes and (2) production costs for conventional materials which the slag aggregates would replace. This will form the basis for an overall economic evaluation of expanded slag utilization technologies.

  8. 铜冶炼炉渣缓冷技术研究与生产实践%Copper Smelting Slag Slow Cooling Technology Research and Practice

    Institute of Scientific and Technical Information of China (English)

    王国红

    2014-01-01

    Slow cooling process is widely used to recycle copper from slag in domestic copper smelter, which can improve copper recovery rate and adaptability of smelting furnace to raw material. After slow cooling slag beneficiation, copper concentrates return to the smelting system, tailings is to be as the raw material for cement production. In this article, the slow cooling process of copper smel-ting slag and the main problem in production practice are described, s the reasons are analyzed and solutions are proposed.%国内铜冶炼厂广泛采用缓冷工艺回收炉渣中铜,该工艺可以提高冶炼厂铜回收率和冶炼炉对原料的适应性。缓冷炉渣经过选矿后,铜精矿返回冶炼系统,尾矿作为生产水泥的原料。介绍了铜冶炼炉渣缓冷工艺及生产实践中存在的主要问题,进行了原因分析并提出了解决措施。

  9. A numerical model for chemical reaction on slag layer surface and slag layer behavior in entrained-flow gasifier

    Directory of Open Access Journals (Sweden)

    Liu Sheng

    2013-01-01

    Full Text Available The paper concerns with slag layer accumulation, chemical reaction on slag layer surface, and slag layer flow, heat and mass transfer on the wall of entrained-flow coal gasifier. A slag layer model is developed to simulate slag layer behaviors in the coal gasifier. This 3-D model can predict temperature, slag particle disposition rate, disposition particle composition, and syngas distribution in the gasifier hearth. The model is used to evaluate the effects of O2/coal ratio on slag layer behaviors.

  10. Corrosion of different molten coal slags to high chrome bricks for coal water slurry gasifiers%不同煤熔渣对水煤浆加压气化炉用高铬砖的侵蚀

    Institute of Scientific and Technical Information of China (English)

    柯昌明; 李有奇; 赵继增; 李楠; 韩兵强

    2014-01-01

    为研究不同煤熔渣对高铬砖的侵蚀机制,选取4种物理化学性能差异较大的典型气化炉用后煤熔渣,采用化学分析、XRD、SEM及EDS等研究了不同煤熔渣的性能及其对w(Cr2 O3)≥90%的高铬砖的侵蚀、渗透情况。结果表明:气化炉中煤熔渣主要由SiO2、CaO、Al2 O3、Fe2 O3、MgO组成,但不同煤熔渣的化学组成差异较大,矿物组成及熔融特性温度也不同;在相同条件下,高铬砖侵蚀的主要影响因素是温度和熔渣的化学组成,随温度升高,煤熔渣对高铬砖的侵蚀急速加剧;煤渣中的熔融指数较低时,煤熔渣对高铬砖的侵蚀渗透较为严重;煤熔渣中低熔点相向材料内部渗透、渣中SiO2等对材料中ZrO2等的反应溶解是造成高铬砖失效的直接原因;高铬砖表面形成镁铝铬铁复合尖晶石致密层可以有效降低高铬砖的侵蚀程度。%Four used coal slags from a typical gasifier with different chemical compositions and physical properties were chosen,and their properties and the corrosion and penetration to high chrome bricks (Cr2 O3≥90 mass%)were studied by chemical analysis,XRD,SEM and EDS in order to research the cor-rosion mechanism of different coal slags to high chrome bricks.The results indicate that:(1)the four molten coal slags from gasifier are mainly composed of SiO2 ,CaO,Al2 O3 ,Fe2 O3 ,and MgO,and their contents vary with the coal kind obviously,which leads to the different mineral compositions and melting characteristic temperatures of coal slag;(2)under the same conditions,the main factors influencing the corrosion to high chrome bricks are temperature and chemical compositions;with the temperature rising,the corrosion to high chrome bricks aggravates markedly;(3)corrosion and penetration of coal slag to high chrome bricks are severe when the melting index R of coal slag is low;(4)penetration of low melting phases in coal slag to bricks,and reaction and

  11. Some prospects for the use of ash and slag wastes of coal power plants for production of building materials

    Directory of Open Access Journals (Sweden)

    Bryukhan Fedor

    2016-01-01

    Full Text Available Coal-fired thermal power plants (TPP generate large amounts of ash and slag wastes (ASW, therefore ecological problems related to ASW storage and disposal for such power plants come to the fore. To obtain new data on ASW properties analysis of a number of ASW samples from ash dump No. 4 of Cherepet’ TPP was carried out as part of engineering surveys. The purpose of this study included determiantion of the ASW granulometrical and mineralogical composition, as well as their physical and chemical properties. During field works 4 ASW samples were taken from the surface layer of the ash dump plus one sample of ash froth for further laboratory analysis. Laboratory analysis enabled determination of the granulometrical, mineralogical and chemical composition of ASW. Assessment of the ASW corrosiveness toward various materials determined necessary limitations in utilization of ASW-based bulding materiasls in contact with steel and aluminum. The content of natural radionuclides of K40, Ra226, Th232 and man-made Cs137 in ASW was determined. The detected increased activity of Ra226 and Th232 necessitates additional studies of radon and thoron emissions from ASW. Microspheres recovered from ash froth during ASW utilization have special usage value.

  12. Power plant ash and slag waste management technological direction when Kansk-Achinsk brown coal is burned

    Directory of Open Access Journals (Sweden)

    Lihach Snejana A.

    2017-01-01

    Full Text Available Today resource efficiency technology development in all industries where conventional raw material is being replaced by local natural resources and industrial waste is an essential matter. Along with that most producing operations are overload with wide range of waste produced during technological process. Thermal power stations are real world evidence. Their main waste is ash and slag which accumulated in great amounts in often overfull ash dumps. The goal of present work is to find perspective ash dump waste utilization methods. The study will be based on experimentally obtained data: elementary compound and properties of Kansk-Achinsk brown coal. Research methods: experimental, chemical silicate analysis, mineralogical forms identification within samples by using ASM X-ray diffraction analysis. Experiments resulted with the following conclusions: silica is ash main component, and ash has the form of ore concentrate analogy in a number of elements. We think that ASM main properties which make it useful for utilization are: high content of calcium oxide; high ash sorption properties; ASM radiation safety class which makes them safe to be used in materials, goods, and structures production for residence and public buildings construction and reconstruction; sufficiently high content of individual elements.

  13. Hydraulic properties of ladle slags

    Directory of Open Access Journals (Sweden)

    J. Vlček

    2016-07-01

    Full Text Available The article presents results of examining of hydraulic properties of ladle slags formed during production of steel. The studied ladle slags were subjected to different cooling mode from the molten state. Based on the ability of the slag react with the water was assessed their hydraulic activity. The hydraulic properties are caused by the presence of minerals dicalcium silicate, tricalcium aluminate, mayenite, brownmillerite and dicalcium ferite. The emergence of required hydrating phases in the ladle slags is conditioned by a sufficient CaO content and their cooling rate. The contact the slag with water during processing and their ageing has a negative effect. The experiment has shown that the phase transformation of the mineral dicalcium silicate which occurs during cooling of the ladle slags cause their volume instability.

  14. Cu-Zn slags from Røros (Norway): a case study of rapid cooling and crystal nucleation

    Science.gov (United States)

    Warchulski, Rafał; Szopa, Krzysztof

    2014-09-01

    The mining town of Røros located in central Norway was established in 1644 and it is known of historical mining industry related to copper. Røros was designated as an UNESCO World Heritage Site in 1980 on the base of mining culture represented by, e.g., unique wooden architecture. Slag pieces are composed of three parts differing in glass to crystallites ratio. Røros slags are composed of olivine- and pyroxene- group minerals accompanied by sulphides, with glass in the interstices. Temperature gradient and volatiles content were determined as the main factor influencing crystallization process in this material

  15. Cu-Zn Slags from R⊘ros (Norway): A Case Study of Rapid Cooling and Crystal Nucleation

    Science.gov (United States)

    Warchulski, Rafał; Szopa, Krzysztof

    2014-09-01

    The mining town of R⊘ros located in central Norway was established in 1644 and it is known of historical mining industry related to copper. R⊘ros was designated as an UNESCO World Heritage Site in 1980 on the base of mining culture represented by, e.g., unique wooden architecture. Slag pieces are composed of three parts differing in glass to crystallites ratio. R⊘ros slags are composed of olivine- and pyroxene- group minerals accompanied by sulphides, with glass in the interstices. Temperature gradient and volatiles content were determined as the main factor influencing crystallization process in this material.

  16. Permeability evolution model and numerical analysis of coupled coal deformation, failure and liquid nitrogen cooling

    Directory of Open Access Journals (Sweden)

    Chunhui ZHANG

    Full Text Available How to quantitatively evaluate the permeability change of coalbed subjected to liquid nitrogen cooling is a key issue of enhanced-permeability technology of coalbed. To analyze the evolution process of permeability of coupled coal deformation, failure and liquid introgen cooling, the coal is supposed as elastic, brittle and plastic material. Its deformation process includes elastic deformation stage, brittle strength degradation stage and residual plastic flow stage. Combined with strength degradation index, dilatancy index of the element and Mohr-Column strength criterion, the element scale constitutive model with the effects of confining pressure on peak-post mechanical behaviors is built. Based on the deformation process of coal rock, there exist two stages of permeability evolution of the element including decrease of permeability due to elastic contraction and increase due to coal rock element's failure. The relationships between the permeability and elastic deformation, shear failure and tension failure for coal are studied. The permeability will be influenced by the change of pore space due to elastic contraction or tension of element. Conjugate shear zones appear during the shear failure of the element, in which the flow follows so-called cubic law between smooth parallel plates. The calculation formulas of the permeability and the aperture of the fractures are given out based on the volumetric strain. When tension failure criterion is satisfied with the rock element fails and two orthogonal fractures appear. The calculation formulas of the permeability and the width of the fractures are given out based on the volumetric strain. Further, combined with the thermal conduction theory the permeability evolution model of coupled coal deformation, failure and liquid nitrogen cooling is presented. Then Fish function method in FLAC is employed to perform the model. The permeability's evolution process for coal bed cryogenically stimulated

  17. Mineral resource of the month: ferrous slag

    Science.gov (United States)

    ,

    2009-01-01

    The article offers information on mineral resource ferrous slag. Ferrous slag is produced through the addition of materials such as limestone and dolomite to blast and steel furnaces to remove impurities from iron ore and to lower the heat requirements for processes in iron and steel making. It is stated that the method of cooling is important for the market uses and value of ferrous slag. Some types of slag can be used in construction, glass manufacturing and thermal insulation.

  18. Study on Industrial Waste Materials as Coal Gangue Recycle Fe Deoxidized with High Grade from Steel Slag%利用工业废渣煤矸石高温还原回收钢渣中Fe的研究

    Institute of Scientific and Technical Information of China (English)

    杨曜; 殷素红; 徐创霞; 毛海勇

    2015-01-01

    The steel slag contains 4% ~35% FeOx , ap-proximately 3% ~10% about Fe. More than 100 million tons steel slag is discharged every year. A large amount of Fe within slag has been loosed and without recycled. If we can deoxidize the FeOx and recycle Fe from steel slag, a large number of iron resources will be recycled and it has more significance than only improve cementitious activity of steel slag. This paper utilizes waste materials as adjusting material of coal gangue with deoxidi-zing ability, and chose hot stuffy technology processed high al-kalinity and low aluminum steel slag from Shaoguan Iron. In the lab, we melt samples in 1 500 ℃, deoxidize the FeOx and recy-cle Fe, and simulate water quenching process form slag struc-ture. Recycle the Fe from steel slag. The results show that: u-sing coal gangue and low-quality fly ash smelting steel slag de-oxidizing the FeOx and recycle Fe in high temperature is practica-ble. The Fe content with recycled iron from the sample of steel slag of Shaoguan Iron mixed with 25. 7% coal gangue is 82. 45%.%钢渣中含有4%~35%的FeOx ,换算为金属铁含量为3%~10%。我国每年钢渣排放量超过1亿t,大量的Fe随着钢渣流失而未得到回收利用。若能将这部分铁元素还原回收,能够回收到大量的铁资源,且比仅考虑提高钢渣胶凝活性将其用于建材行业的低附加值利用具有更重要的意义。本文利用工业废渣煤矸石作为还原材料,选取热焖工艺高碱度低铝质韶钢钢渣,在试验室1500℃下高温熔融还原回收Fe。研究结果表明:利用煤矸石熔融还原回收钢渣中的Fe是可行的,掺25.7%煤矸石试样还原回收粗铁的品位高达82.45%。

  19. 火电厂燃煤和粉煤灰及炉渣中天然放射性水平分析%The Natural Radioactive Level of the Coal,Coal Cinder and Slag from Power Plants

    Institute of Scientific and Technical Information of China (English)

    谢贵英; 涂传火; 李艾尔肯·阿不列木

    2011-01-01

    The γ-ray spectrometer was used to analyze the natural radioactive level of the coal, coal cinder and slag from China power plant and state power plant in Urumqi. The average value of 226Ra 、232Th、and40K of coal is 5.54 、 3.51、 69.15Bq/Kg , the coal cinder is 26.99 、 15.89、 122.69Bq/Kg , the slag from China power plant is 28.79、15.98、 116.72Bq/Kg . The result reveals that the coal cinder's application range has no limit according to national standard.%本文采用低本底γ能谱仪对乌鲁木齐市华电和国电两个电厂的燃煤、粉煤灰和炉渣中的天然放射性核素含量进行了测量.测量结果:226Ra、232Th、40K含量的平均值,煤中分别为5.54、3.51、69.15Bq/Kg,粉煤灰中分别为26.99、15.89、122.69Bq/Kg,炉渣样中分别为28.79、15.98、116.72Bq/Kg.并依据国家标准对粉煤灰进行分类,结果表明,粉煤灰的使用不受限制.

  20. Analysis of the evaporative towers cooling system of a coal-fired power plant

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2012-01-01

    Full Text Available The paper presents a theoretical analysis of the cooling system of a 110 MW coal-fired power plant located in central Serbia, where eight evaporative towers cool down the plant. An updated research on the evaporative tower cooling system has been carried out to show the theoretical analysis of the tower heat and mass balance, taking into account the sensible and latent heat exchanged during the processes which occur inside these towers. Power plants which are using wet cooling towers for cooling condenser cooling water have higher design temperature of cooling water, thus the designed condensing pressure is higher compared to plants with a once-through cooling system. Daily and seasonal changes further deteriorate energy efficiency of these plants, so it can be concluded that these plants have up to 5% less efficiency compared to systems with once-through cooling. The whole analysis permitted to evaluate the optimal conditions, as far as the operation of the towers is concerned, and to suggest an improvement of the plant. Since plant energy efficiency improvement has become a quite common issue today, the evaluation of the cooling system operation was conducted under the hypothesis of an increase in the plant overall energy efficiency due to low cost improvement in cooling tower system.

  1. Effect of Fe2O3 on the crystallization behavior of glass-ceramics produced from naturally cooled yellow phosphorus furnace slag

    Science.gov (United States)

    Liu, Hong-pan; Huang, Xiao-feng; Ma, Li-ping; Chen, Dan-li; Shang, Zhi-biao; Jiang, Ming

    2017-03-01

    CaO-Al2O3-SiO2 (CAS) glass-ceramics were prepared via a melting method using naturally cooled yellow phosphorus furnace slag as the main raw material. The effects of the addition of Fe2O3 on the crystallization behavior and properties of the prepared glass-ceramics were studied by differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The crystallization activation energy was calculated using the modified Johnson-Mehl-Avrami equation. The results show that the intrinsic nucleating agent in the yellow phosphorus furnace slag could effectively promote the crystallization of CAS. The crystallization activation energy first increased and then decreased with increasing amount of added Fe2O3. At 4wt% of added Fe2O3, the crystallization activation energy reached a maximum of 676.374 kJ·mol-1. The type of the main crystalline phase did not change with the amount of added Fe2O3. The primary and secondary crystalline phases were identified as wollastonite (CaSiO3) and hedenbergite (CaFe(Si2O6)), respectively.

  2. Overview of Steel Slag Application and Utilization

    Directory of Open Access Journals (Sweden)

    Lim J.W.

    2016-01-01

    Full Text Available Significant quantities of steel slag are generated as waste material or byproduct every day from steel industries. Slag is produced from different types of furnaces with different operating conditions. Slag contains Ferrous Oxide, Calcium Oxide, Silica etc. Physical and chemical properties of slag are affected by different methods of slag solidification such as air cooled, steam, and injection of additives. Several material characterization methods, such as X-ray Diffraction (XRD, Scanned Electron Microscopy (SEM and Inductive Coupled Plasma (ICP-OES are used to determine elemental composition in the steel slag. Therefore, slags can become one of the promising materials in various applications such as in transportation industry, construction, cement production, waste water and water treatment. The various applications of steel slag indicate that it can be reused and utilized rather than being disposed to the landfill. This paper presents a review of its applications and utilization.

  3. Biotic and physico-chemical conditions in a cooling reservoir of a coal-fired power plant

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Cholla Lake is a cooling reservoir for the coal fired Cholla electrical generating plant. The lake provides recreational fishing and water contact recreation. The...

  4. Slags from steel production: Properties and their utilization

    Directory of Open Access Journals (Sweden)

    J. Vlcek

    2013-07-01

    Full Text Available During steel production a considerable amount of slags is produced. In addition to its usual processing, as recycling in device for steel production and preparation of aggregates, it is also possible to apply less common slag processing ways. Depending on cooling mode of the steel slags these may show some binding properties. Geopolymer type binders can be prepared from the slag using alkali activators or the hydraulic properties of the dicalciumsilicate present in the slag can be induced by water. The paper summarizes present state of material utilisation of the steel slags with focus on emphasize of the possible sources of the slag volume instability. The influence of process of slag cooling on its phase composition is documented. It was also found that slags from real sources show different parameters compared to samples obtained for laboratory examination.

  5. 新疆部分燃煤和电厂粉煤灰中天然放射性水平分析%The Natural Radioactive Level of the Coal, Coal Cinder and Slag from Power Plants

    Institute of Scientific and Technical Information of China (English)

    谢贵英; 艾尔肯·阿不列木; 艾克拜尔·吐合提

    2011-01-01

    采用低本底γ能谱仪对乌鲁木齐、伊犁和哈密地区的煤以及华电厂和国电厂的粉煤灰中的天然放射性核素含量进行了测量.测量结果:226Ra、232Th、40K含量按样品个数的加权平均值,乌鲁木齐煤为5.54、3.51、69.15 Bq/kg;伊犁煤为9.59、4.02、72.95 Bq/kg;哈密煤为7.42、4.87、88.32 Bq/kg;华电厂粉煤灰中为29.31、15.57、111.39 Bq/kg;国电厂粉煤灰中为24.67、16.22、133.98 Bq/kg.并依据国家标准对粉煤灰进行分类,结果表明,粉煤灰的使用不受限制.%The - ray spectrometer was used to analyze the natural radioactive level of the coal from Urumqi, Yi li and Ha mi areas; coal cinder and slag from China power plant and state power plant in Urumqi. The average value of ,,and of coal is 5. 54、 3. 51、69. 15 from Urumqi; 9. 59、4. 02,72. 95from Yi li;7. 42、4. 87、88. 32from Ha mi;the coal cinder is 29. 31、15. 57、111. 39 from China power plant; 24. 67、16. 22、133. 98 from state power plant, respectively. The result reveals that the coal cinder' s application range has no limit according to national standard.

  6. Heat Flux Through Slag Film and Its Crystallization Behavior

    Institute of Scientific and Technical Information of China (English)

    TANG Ping; XU Chu-shao; WEN Guang-hua; ZHAO Yan-hong; QI Xin

    2008-01-01

    An experimental apparatus for simulating copper mold is used to quantify the heat flux through the slag film and to obtain a solid slag for further determining its crystallization behavior.The result indicates that both the chemical composition of the mold powder and the cooling rate have an important influence on the heat flux through the slag film.With increasing the binary hasicity,the heat flux of slag film decreases at first,reaches the minimum at the basicity of 1.4,and then increases,indicating that the maximum binary basicity is about 1.4 for selecting"mild cooling"mold powder.The heat transfer through the slag film can be specified in terms of the crystalline ratio and the thickness of the slag film.Reerystallization of the solid slag occurs and must be considered as an important factor that may influence the heat transfer through the solid slag layer.

  7. TENORM: Coal Combustion Residuals

    Science.gov (United States)

    Burning coal in boilers to create steam for power generation and industrial applications produces a number of combustion residuals. Naturally radioactive materials that were in the coal mostly end up in fly ash, bottom ash and boiler slag.

  8. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    from converting plants with once-through cooling to wet towers or indirect-dry towers. Five locations--Delaware River Basin (Philadelphia), Michigan/Great Lakes (Detroit), Ohio River Valley (Indianapolis), South (Atlanta), and Southwest (Yuma)--were modeled using an ASPEN simulator model. The model evaluated the performance and energy penalty for hypothetical 400-MW coal-fired plants that were retrofitted from using once-through cooling systems to wet- and dry-recirculating systems. The modeling was initially done to simulate the hottest time of the year using temperature input values that are exceeded only 1 percent of the time between June through September at each modeled location. These are the same temperature inputs commonly used by cooling tower designers to ensure that towers perform properly under most climatic conditions.

  9. 糖蜜酒精废液焚烧炉水冷壁结渣原因探析%Mechanism of the slagging on water-cooled wall combusting the molasses alcohol waste

    Institute of Scientific and Technical Information of China (English)

    汪君; 金航; 张世红; 杨海平; 陈汉平; 王贤华

    2012-01-01

    焚烧法是糖蜜酒精废液减量化、资源化处理良好的技术路径之一,而由水冷壁挂渣的快速形成所导致的焚烧炉不能长时间运行是此技术存在的主要问题.文章研究了流化床焚烧炉的水冷壁挂渣的形成机制.使用X射线衍射法分析了挂渣的主要组分为KCl,并掺杂了少量K2SO4.通过电子显微镜扫描了挂渣横断面的微观形貌,研究表明,挂渣是由烟气中的气溶胶粒子冲刷水冷壁累积而成.使用HSC-Chemical软件对糖蜜酒精废液焚烧中K,Cl释放的热力学进行了模拟分析,模拟结果与试验分析非常匹配.%Incineration is one of good technical paths for realizing the reduction and recycling of molasses alcohol waste, however, the ash slag on water-cooled wall formed rapidly reduces the heat-transfer capability. As a result, the incinerator can not keep a long-running, which is the principal problem of the technique. In this paper, ash slag on water-cooled wall in a fluidized bed boiler is collected and analyzed to understand the formation mechanism. The main phase components are analyzed by the X-ray diffraction. KC1 is the main component of the slag, and there is a small amount of K2SO4. The scanning electron microscope is used to analyze the microstructure of the slag's cross-section. It is suggested that slag is accumulated by the aerosol particles (mainly KC1 and K2SO4) washing on the water-cooled wall. The HSC-Chemical software is used to simulation analyze the thermodynamics of K, Cl when combusting the molasses alcohol waste, and the simulation results match on the experimental analysis.

  10. Artificial neural network model to predict slag viscosity over a broad range of temperatures and slag compositions

    Energy Technology Data Exchange (ETDEWEB)

    Duchesne, Marc A. [Chemical and Biological Engineering Department, University of Ottawa, 161 Louis Pasteur, Ottawa, Ont. (Canada); CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario (Canada); Macchi, Arturo [Chemical and Biological Engineering Department, University of Ottawa, 161 Louis Pasteur, Ottawa, Ont. (Canada); Lu, Dennis Y.; Hughes, Robin W.; McCalden, David; Anthony, Edward J. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario (Canada)

    2010-08-15

    Threshold slag viscosity heuristics are often used for the initial assessment of coal gasification projects. Slag viscosity predictions are also required for advanced combustion and gasification models. Due to unsatisfactory performance of theoretical equations, an artificial neural network model was developed to predict slag viscosity over a broad range of temperatures and slag compositions. This model outperforms other slag viscosity models, resulting in an average error factor of 5.05 which is lower than the best obtained with other available models. Genesee coal ash viscosity predictions were made to investigate the effect of adding Canadian limestone and dolomite. The results indicate that magnesium in the fluxing agent provides a greater viscosity reduction than calcium for the threshold slag tapping temperature range. (author)

  11. 燃煤电站锅炉碳化硅质卫燃带表面结渣行为%Slagging Behavior on Surface of Carborundum-based Refractory Liner in a Coal-fired Boiler

    Institute of Scientific and Technical Information of China (English)

    何金桥; 鄢晓忠; 陈冬林

    2011-01-01

    采用扫描电镜、能谱分析仪和X射线衍射等方法对燃煤电站锅炉SiC质卫燃带上结渣的渣样进行了测试,并就渣样的形貌、结晶物相转化特性及其渣样成分分布进行了分析研究.结果表明:煤颗粒的不充分燃烧造成碱性金属阳离子向SiC耐火板侧发生扩散,但难以穿过耐火板表层的SiO2保护膜,从而与SiC质卫燃带通过机械结合的方式相互黏结在一起;方晶石和鳞石英易与耐火板发生熔融冶金结合,形成较强的黏结作用,但是耐火板处熔融的片状鳞石英和方晶石含量较少,因此渣、板之间总体的黏结作用较弱.%In order to study the coal ash slagging behavior on surface of carborundum-based refractory liner in a coal-fired boiler, slag samples taking from the liner were investigated by Scanning Electron Microscopy (SEM), Energy Dispersive Spectrometer (EDS) and X-ray diffraction(XRD), during which the specific morphology, phase transformation and component distribution were analyzed. Results show that the in- complete combustion of pulverized coal makes alkaline metal ion diffuse to the refractory liner, which then sticks on the liner mechanically, because it is hard to permeate through the SiO2 protective film covering the liner. Metallurgical bonding lies between the cristobalite/tridymite and the liner, and the bonding be- tween plate-like tridymite and the liner is very strong. Since the content of plate-like tridymite in the slag is very little, so the comprehesive bonding force is relatively weak between the slag and the liner.

  12. Slag wool manufacturing from blast furnace slag

    Directory of Open Access Journals (Sweden)

    Володимир Петрович Руських

    2016-11-01

    Full Text Available Slag wool is the most expensive and valuable product of blast furnace slag processing. Slag wool is in great demand nowadays. The article highlights the factors influencing the mineral wool quality: chemical composition that determines the acidity of the module, the temperature of the molten slag and the required slag jet thickness consistency. Mineral wool is produced by blowing air or steam into a jet of molten slag. As a result of it the slag crushes into droplets stretching. The resulting wool contains 5% slag and 95% air. The quality of the obtained slag wool depends on the module acidity of the slag. The blast furnace slags of «Ilyich iron and steel works of Mariupol» and «Azovstal iron & steel works» are the main (short slags – they give short fibers. To obtain high-quality long fiber wool it is necessary to add admixtures into basic blast furnace slag to reduce its basicity. As a result of the fuel and energy rising prices and the necessity to reduce the slag wool cost it is necessary to develop a new technology with fiery-liquid slag, with the removal of iron compounds and sulphur from the melts and the introduction of corrective additives to improve the quality of slag wool. Good thermal conductivity (about 0,03 kcal/m∙h∙°C and other indicators (resistance, volume weight make it possible to use the materials from slag wool (pads, rigid and semi-rigid plates as heat and sound insulating materials

  13. Low-Chrome/Chrome Free Refractories for Slagging Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, J.P.; Kwong, K.-S.; Powell, C.P.; Thomas, H.; Petty, A.V., Jr.

    2007-01-01

    Gasifiers are containment vessels used to react carbon-containing materials with oxygen and water, producing syngas (CO and H2) that is used in chemical and power production. It is also a potential source of H2 in a future hydrogen economy. Air cooled slagging gasifiers are one type of gasifier, operating at temperatures from 1275-1575º C and at pressures of 400 psi or higher. They typically use coal or petroleum coke as the carbon source, materials which contain ash impurities that liquefy at the gasification temperatures, producing liquid slag in quantities of 100 or more tons/day, depending on the carbon fed rate and the percent ash present in the feedstock. The molten slag is corrosive to refractory linings, causing chemical dissolution and spalling. The refractory lining is composed of chrome oxide, alumina, and zirconia; and is replaced every 3-24 months. Gasifier users would like greater on-line availability and reliability of gasifier liners, something that has impacted gasifier acceptance by industry. Research is underway at NETL to improve refractory service life and to develop a no-chrome or low-chrome oxide alternative refractory liner. Over 250 samples of no- or low-chrome oxide compositions have been evaluated for slag interactions by cup testing; with potential candidates for further studies including those with ZrO2, Al2O3, and MgO materials. The development of improved liner materials is necessary if technologies such as IGCC and DOE’s Near Zero Emissions Advanced Fossil Fuel Power Plant are to be successful and move forward in the marketplace.

  14. Crystallization of Synthetic Blast Furnace Slags Pertaining to Heat Recovery

    Science.gov (United States)

    Esfahani, Shaghayegh

    Heat recovery from blast furnace slags is often contradicted by another requirement, to generate amorphous slag for its use in cement production. As both the rate and extent of heat recovery and slag structure are determined by its cooling rate, a relation between the crystallization kinetics and the cooling conditions is highly desired. In this study, CaO-SiO2-Al2O3-MgO (CSAM) slags with different basicities were studied by Single Hot Thermocouple Technique (SHTT) during isothermal treatment and non-isothermal cooling. Their time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams were plotted and compared with each other. Furthermore, kinetic parameters such as the Avrami exponent (n), rate coefficient (K) and effective activation energy of crystallization (EA) were found by analysis of data obtained from in-situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In addition to the experimental work, a mathematical model was developed and validated that predicts the amount of crystallization during cooling. A second mathematical model that calculates temperature history of slag during its cooling was coupled with the above model, to allow studying the effect of parameters such as the slag/air ratio and granule size on the heat recovery and glass content of slag.

  15. Study on combustion characteristics of blended coals

    Energy Technology Data Exchange (ETDEWEB)

    Li Yonghua; Wang Chunbo; Chen Hongwei [North China Electric Power University, Baoding (China)

    2007-02-15

    Power plants in China have to burn blended coal instead of one specific coal for a variety of reasons. So it is of great necessity to investigate the combustion of blended coals. Using a test rig with a capacity of 640 MJ/h with an absolute milling system and flue gas online analysis system, characteristics such as burnout, slag, and pollution of some blended coals were investigated. The ratio of coke and slag as a method of distinguishing coal slagging characteristic was introduced. The results show that the blending of coal has some effect on NOx but there is no obvious rule. SOx emission can be reduced by blending low sulfur coal.

  16. Thermodynamic simulation of the effect of slag chemistry on the corrosion behavior of alumina-chromia refractory

    Institute of Scientific and Technical Information of China (English)

    Shi-xian Zhao; Bin-li Cai; Hong-gang Sun; Gang Wang; Hong-xia Li; and Xiao-yan Song

    2016-01-01

    The corrosion behavior of alumina–chromia refractory against two kinds of industrial slags (coal slag and iron smelting slag) at 1550°C was investigated via thermodynamic simulations. In the proposed simulation model, the initial slag first attacks the matrix and sur-face aggregates and subsequently attacks the inner aggregates. The simulation results indicate that the slag chemistry strongly affects the phase formation and corrosion behavior of the refractory brick. Greater amounts of alumina were dissolved and spinel solid phases formed when the brick interacted with iron smelting slag. These phenomena, as well as the calculated lower viscosity, may lead to much deeper penetration than that exhibited by coal slag and to more severe corrosion compared to that induced by coal slag. The thermodynamic calcula-tions well match the experimental observations, demonstrating the efficiency of the proposed simulation model for evaluating the corrosion behavior of alumina–chromia refractory.

  17. 不同碱酸比煤灰在刚玉质耐火材料上的结渣特性%Slagging Characteristics of Coal Ash with Different Alkali/Acid Ratios on Corundum-based Refractory Liner

    Institute of Scientific and Technical Information of China (English)

    陈冬林; 杜洋; 邹婵; 蔡洋

    2013-01-01

    Slagging characteristics of two kinds of coal ash with different alkali/acid ratios were studied on corundum-based refractory liner in Muffle furnace in air at 1 350 ℃ for 40 h, after which the slag morphology and composition were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). Results show that the coal ash with higher alkali metal content has lower viscosity, stronger liquidity and therefore may severely erode the refractory liner; elements in melting ash infiltrate into the liner, distributing in a reducing atomic percentage along the liner depth; the little Cr2O3 contained in refractory liner may penetrate into coal ash and subsequently form there (Al0.9Cr0.1 )2O3 with high melting point and high viscosity, which helps to prevent the liner from erosion by coal ash.%将2种不同碱酸比的煤灰均匀敷设在刚玉质耐火材料上,并将其置于高温马弗炉中在1 350℃空气气氛下煅烧40 h,煅烧完成后采用扫描电子显微镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)等方法对刚玉质耐火材料板上2种结渣倾向对比明显的灰渣形貌和成分进行分析,得到了灰渣的高温烧结特性.结果表明:碱金属含量较高的煤灰黏度较小,流动性较强,对刚玉质耐火材料板的侵蚀较严重;熔融灰渣向刚玉质耐火材料内部渗透侵蚀,各元素原子百分数沿材料板深度方向大致呈下降趋势;在刚玉质耐火材料中加入的少量Cr2O3在高温下会渗透到煤灰中,并生成高熔点、高黏度的铝氧化铬,从而减轻了煤灰对刚玉质耐火材料的侵蚀.

  18. Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore

    Science.gov (United States)

    Yang, Song-tao; Zhou, Mi; Jiang, Tao; Guan, Shan-fei; Zhang, Wei-jun; Xue, Xiang-xin

    2016-12-01

    A water cooling treatment was applied in the coal-based reduction of high-chromium vanadium and titanium (V-Ti-Cr) iron ore from the Hongge region of Panzhihua, China. Its effects on the metallization ratio ( η), S removal ratio ( R S), and P removal ratio ( R P) were studied and analyzed on the basis of chemical composition determined via inductively coupled plasma optical emission spectroscopy. The metallic iron particle size and the element distribution of Fe, V, Cr, and Ti in a reduced briquette after water cooling treatment at 1350°C were determined and observed via scanning electron microscopy. The results show that the water cooling treatment improved the η, R S, and R P in the coal-based reduction of V-Ti-Cr iron ore compared to those obtained with a furnace cooling treatment. Meanwhile, the particle size of metallic iron obtained via the water cooling treatment was smaller than that of metallic iron obtained via the furnace cooling treatment; however, the particle size reached 70 μm at 1350°C, which is substantially larger than the minimum particle size required (20 μm) for magnetic separation. Therefore, the water cooling treatment described in this work is a good method for improving the quality of metallic iron in coal-based reduction and it could be applied in the coal-based reduction of V-Ti-Cr iron ore followed by magnetic separation.

  19. Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore

    Institute of Scientific and Technical Information of China (English)

    Song-tao Yang; Mi Zhou; Tao Jiang; Shan-fei Guan; Wei-jun Zhang; and Xiang-xin Xue

    2016-01-01

    A water cooling treatment was applied in the coal-based reduction of high-chromium vanadium and titanium (V–Ti–Cr) iron ore from the Hongge region of Panzhihua, China. Its effects on the metallization ratio (η), S removal ratio (RS), and P removal ratio (RP) were studied and analyzed on the basis of chemical composition determined via inductively coupled plasma optical emission spectroscopy. The metallic iron particle size and the element distribution of Fe, V, Cr, and Ti in a reduced briquette after water cooling treatment at 1350°C were determined and observed via scanning electron microscopy. The results show that the water cooling treatment improved theη,RS, and RP in the coal-based reduction of V–Ti–Cr iron ore compared to those obtained with a furnace cooling treatment. Meanwhile, the particle size of metallic iron obtained via the water cooling treatment was smaller than that of metallic iron obtained via the furnace cooling treatment; however, the particle size reached 70μm at 1350°C, which is substantially larger than the minimum particle size required (20μm) for mag-netic separation. Therefore, the water cooling treatment described in this work is a good method for improving the quality of metallic iron in coal-based reduction and it could be applied in the coal-based reduction of V–Ti–Cr iron ore followed by magnetic separation.

  20. Characterization and Recovery of Valuables from Waste Copper Smelting Slag

    Science.gov (United States)

    Prince, Sarfo; Young, Jamie; Ma, Guojun; Young, Courtney

    Silicate slags produced from smelting copper concentrates contains valuables such as Cu and Fe as well as heavy metals such as Pb and As which are considered hazardous. In this paper, various slags were characterized with several techniques: SEM-MLA, XRD, TG-DTA and ICP-MS. A recovery process was developed to separate the valuables from the silicates thereby producing value-added products and simultaneously reducing environmental concerns. Results show that the major phases in air-cooled slag are fayalite and magnetite whereas the water-cooled slag is amorphous. Thermodynamic calculations and carbothermal reduction experiments indicate that most of Cu and Fe can be recovered from both types using minor amounts of lime and alumina and treating at 1350°C (1623K) or higher for 30 min. The secondary slag can be recycled to the glass and/or ceramic industries.

  1. 煤矸石酸浸渣-硫酸钠碳热法制备水玻璃的实验研究%Experimental Study on the Preparation Water Glass by Carbothermic Method Using Acid Leaching Slag of Coal Gangue and Sodium Sulfate

    Institute of Scientific and Technical Information of China (English)

    自桂芹; 夏举佩; 刘成龙

    2015-01-01

    In order to easily prepare sodium silicate by dry method using coal gangue and sodium sulfate, 98% sulfuric acid as acid medium, silica-rich acid leaching residue is obtained using microwave heating method to extract acid soluble substances from coal gangue. silicon dioxide of acid leaching slag with Sodium oxide of sodium sulfate are mixed according to the modulus of 1.0 to produce low modulus sodium silicate. Coke mass, the calcining temperature, calcining time, cooling method, melting temperature, dissolving time, liquid-solid ratio on the inlfuence of silica dissolution rate are studied. The results show that, under the optimal process conditions: Coke mass is 17.0% of the sodium sulfate, the calcining temperature of 1100℃, the melting time of 1 h, water quenching for cooling, liquid-solid ratio of 10∶1, dissolution temperature of 80℃, dissolution time of 90 min, dissolution rate of silica reaches 72.56%, modulus of liquid water glass is 1.24.%为了便于利用煤矸石酸浸渣-硫酸钠干法制备水玻璃,用98%硫酸作酸浸介质、微波进行辅助加热直接浸取煤矸石中酸溶物,制备富含硅的酸浸渣。按酸浸渣中二氧化硅与硫酸钠中氧化钠摩尔比1.0配料干法生产低模数水玻璃。研究了焦炭量、煅烧温度、煅烧时间、冷却方式、溶解温度、溶解时间、液固比对二氧化硅溶出率的影响。结果表明,最佳工艺条件为:焦炭量为硫酸钠质量的17.0%,煅烧温度1100℃,熔融时间1 h,冷却方式为水淬骤冷,液固质量比为10∶1,溶解温度80℃,溶解时间90 min,此条件下二氧化硅溶出率为72.56%,液体水玻璃模数为1.24。

  2. 壳牌煤气化装置氧气管道和渣水管道布置设计的优化%Optimizing for Arrangement Design of Shell Coal Gasification Plant Oxygen Gas Pipeline and Slag Water Pipeline

    Institute of Scientific and Technical Information of China (English)

    胡庆丽; 唐亮

    2014-01-01

    介绍了壳牌煤气化装置工艺中氧气系统和渣水系统的工艺流程;简述了其管道布置的优化方案。结果表明:①氧气管线布置方案可降低着火风险,旁路和放空管线的设置可最大限度地减少气流旋涡的产生,保证了氧气系统安全稳定运行;②渣水管线布置方案在满足工艺要求的前提下,最大程度地缩短了管路长度,减少了阀门数量,降低了装置投资成本。%Author has introduced the process flows for oxygen gas system and slag water system in Shell coal gasification plant;has briefly described the optimal scheme of its pipeline arrangement.Result indicates:①Arrangement scheme of oxygen gas pipeline can reduce the firing risk,arrangement of bypass and venting pipeline can furthest reduce formation of gas stream vortex ,and it has guaranteed safe and stable operation of oxygen gas system ;②Arrangement scheme of slag water pipeline can maximally shorten pipeline length ,reduce valve quantity and lower investment cost of plant under precondi-tion of satisfying process requirement.

  3. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ken Mortensen

    2010-12-31

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  4. Reduction and foaming of FeO containing slag

    Energy Technology Data Exchange (ETDEWEB)

    Galgali, R.K.; Datta, P.; Ray, A.K.; Prasad, K.K.; Ray, H.S. [Regional Research Lab., Orissa (India)

    2001-07-01

    Smelting reduction processes being developed for producing liquid iron using coal and oxygen are attractive because they allow the use of ore fines directly and do not depend on coke. This paper presents a brief review of some aspects of smelting reduction and some results of an experimental investigation carried out on the reduction of 5-20 wt-% FeO in a synthetically prepared slag by various reductants in a plasma reactor. Some results of a simulation of the smelting reduction process by carrying out post-combustion with oxygen lancing over the slag surface are also presented. It has been possible to achieve a steady state condition, namely, 1-2 wt-% FeO in the slag with a slag height of 4-5 cm during periodic addition of a charge consisting of iron ore, coal, and flux. A kinetic analysis of FeO reduction with various reductants is presented in detail.

  5. Microstructure characterisation of freeze linings formed in a copper slag cleaning slag

    Directory of Open Access Journals (Sweden)

    Jansson J.

    2015-01-01

    Full Text Available The initial growth rate of freeze linings on water-cooled elements submerged in molten iron silicate slag is fast. The freeze lining microstructure forming on water cooled steel surface in a high-silica, slag cleaning furnace slag of a direct-to-blister copper smelter is mostly glassy or amorphous. It contains 5-30 μm magnetite crystals, very small and larger copper droplets as well as small magnetite and silicate nuclei embedded in the glassy silica-rich matrix. Chemically the formed freeze linings are more silica-rich than the slag from which they were generated. Magnetite (spinel is the primary phase of the solidifying SCF slag but it does not form a continuous network through the freeze lining. Its strength is given by the intergranular silica-rich phase which initially is glassy or microcrystalline. Due to only partial slag reduction in the SCF process, large magnetite crystals are present in the freeze lining and seem to interact physically with copper droplets.

  6. Acidity of vapor plume from cooling tower mixed with flue gases emitted from coal-fired power plant.

    Science.gov (United States)

    Hlawiczka, Stanislaw; Korszun, Katarzyna; Fudala, Janina

    2016-06-01

    Acidity of products resulting from the reaction of flue gas components emitted from a coal-fired power plant with water contained in a vapor plume from a wet cooling tower was analyzed in a close vicinity of a power plant (710 m from the stack and 315 m from the cooling tower). Samples of this mixture were collected using a precipitation funnel where components of the mixed plumes were discharged from the atmosphere with the rainfall. To identify situations when the precipitation occurred at the same time as the wind directed the mixed vapor and flue gas plumes above the precipitation funnel, an ultrasound anemometer designed for 3D measurements of the wind field located near the funnel was used. Precipitation samples of extremely high acidity were identified - about 5% of samples collected during 12 months showed the acidity below pH=3 and the lowest recorded pH was 1.4. During the measurement period the value of pH characterizing the background acidity of the precipitation was about 6. The main outcome of this study was to demonstrate a very high, and so far completely underestimated, potential of occurrence of episodes of extremely acid depositions in the immediate vicinity of a coal-fired power plant.

  7. Valorization of BOF Steel Slag by Reduction and Phase Modification: Metal Recovery and Slag Valorization

    Science.gov (United States)

    Liu, Chunwei; Huang, Shuigen; Wollants, Patrick; Blanpain, Bart; Guo, Muxing

    2017-03-01

    Basic oxygen furnace (BOF) steel slag is a main byproduct in steelmaking, and its valorization is therefore of considerable interest, from a metal-recovery perspective and from a residue-utilization perspective. In the present study, the carbothermic reduction of BOF slag was investigated systematically. The reductions of Fe- and P-containing phases (i.e., oxide and compounds) are discussed. Effects of Al2O3 and SiO2 additions on the solidification microstructure and mineralogy associated with the reduction processes were also investigated. The formation and growth of the extracted metallic phase are discussed, and the mineralogy of the residue slag is determined. We conclude that by controlling the additions under a rapid cooling condition, it is possible to extract metallic iron as high-grade metal and simultaneously to utilize the remaining slag for construction applications.

  8. Composition and Microstructure of “Alkali-Slag-Coal Fly Ash-Metakaolin” Hydroceramics%"碱-矿渣-粉煤灰-偏高岭土"水合陶瓷产物组成和微观结构

    Institute of Scientific and Technical Information of China (English)

    王进; 韩朝江; 王军霞; 李玉香; 滕元成; 吴秀玲

    2011-01-01

    The composition and microstructure of hydration products of “alkali-slag-coal fly ash-metakaolin” hydroceramics based solidification materials for nuclear wastes were investigated by X-ray diffraction and scanning electron microscope. The hydration and forming mechanism of the hydroceramics were discussed. The results show that the composition of “alkali-slag-coal fly ashmetakaolin” hydroceramics is correlated to some factors such as synthesis temperature, hydrothermal reaction time, n(Si):n(Al):n(Na)and dosage of alkali activator agent. The increase of temperature and reaction time can favor the formation of zeolite crystal phase in a temperature range of 90-180 ℃. At 180 ℃, it can be more effective to form a stable analcite crystal phase at a higher n(Si):n(Al) and a lower sodium silicate modules, and the hydroceramics has a compact microstructure and a fine crystailinity of analcite phase at n(Si):n(Al) =2.0.%采用X射线衍射和扫描电子显微镜研究了"碱-矿渣-粉煤灰-偏高岭士"水合陶瓷核废料固化基材的产物组成和微观结构,分析探讨了该水合陶瓷体系的水化作用及产物形成机理.结果表明:"碱-矿渣-粉煤灰-偏高岭土"水合陶瓷体系水化产物的组成取决于合成温度、水热反应时间、n(Si):n(Al):n(Na)以及碱激发剂的用量.在90~180℃范围内,升高温度、延长反应时间都有利于沸石晶相的形成;180℃时,Si与Al的摩尔比越高、水玻璃模数越低时,越容易形成稳定的方沸石晶相,Si与Al的摩尔比为2.0时形成了微观结构致密、结晶程度高的方沸石相水合陶瓷.

  9. Processing of ash and slag waste of heating plants by arc plasma to produce construction materials and nanomodifiers

    Science.gov (United States)

    Buyantuev, S. L.; Urkhanova, L. A.; Kondratenko, A. S.; Shishulkin, S. Yu; Lkhasaranov, S. A.; Khmelev, A. B.

    2017-01-01

    The resultsare presented of plasma processing slag and ash waste from coal combustion in heating plants. Melting mechanism of ashand slagraw material is considered by an electromagnetic technological reactor. The analysis was conducted of temperature and phase transformations of raw material when it is heated up to the melting point, and also determination of specific energy consumption by using a generalized model of the thermodynamic analysis of TERRA. The study of materials melting temperature conditions and plum of melt was carried with high-temperature thermal imaging method, followed by mapping and 3D-modeling of the temperature fields. The investigations to establish the principal possibilities of using slag waste of local coal as raw material for the production of mineral (ash and slag) fibers found that by chemical composition there are oxides in the following ranges: 45-65% SiO2; 10-25% Al2O3; 10-45% CaO; 5-10% MgO; other minerals (less than 5%). Thus, these technological wastes are principally suitable for melts to produce mineral wool by the plasma method. An analysis of the results shows the melting point of ash and slag waste - 1800-2000 °C. In this case the specific energy consumption of these processes keeps within the limits of 1.1-1.3 kW*h/kg. For comparison it should be noted that the unit cost of electricity in the known high-melting industrial installations 5-6 kW*h/kg. Upon melting ash and slag waste, which contains up to 2-5% of unburned carbon, carbon nanomaterials were discovered.in the form of ultrafine soot accumulating as a plaque on the water-cooled surfaces in the gas cleaning chamber. The process of formation of soot consists in sublimation-desublimation of part of carbon which is in ash and slag, and graphite electrode. Thus, upon melting of ash and slag in the electromagnetic reactor it is possible to obtain melt, and in the subsequent mineral high quality fiber, which satisfies the requirements of normative documents, and

  10. Electric power and desalinated water co-production from Sulcis coal gasification project - Sardinia, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Manca, E.; Utzeri, B.; Figus, M. (IST Engineers and Contractors, Cagliari (Italy))

    1991-01-01

    Because of environmental constraints, coal gasification is the only process which can be used to process Sulcis coal. Pilot plant IGCC tests have shown that high carbon conversion rates are possible, minimum emissions are achievable, and chemically and physically inert slag can be produced. Studies have also been undertaken of a co-production plant with the capability of recovering the discharged thermal energy into water cooling condensers feeding a desalination plant for production of industrial water from sea water. 1 fig., 4 tabs.

  11. The hydraulic potential of high iron bearing steel slags

    Science.gov (United States)

    Ionescu, Denisa Virginia

    The incorporation of additives to the clinker or to the raw materials stream is a common practice in cement manufacture. However, steel slag, unlike its ironmaking parent the blast furnace slag, it is not a conventional admixture for cement. Currently most steel slags are slow cooled rendering stable crystalline compounds with minor hydraulic value. Nevertheless, if steel slags would be quenched and granulated, the resulting glassy product might display increased hydration and strength development potential. The use of steel slag in cement could contribute to important savings for both cement and steelmaking industries and provide a solution for the environmental problems linked to CO2 emissions and costs of transport and disposal. The purpose of this research is to explore the thermodynamics and kinetics of steel slag hydration in an effort to produce a cement additive, or a more promising material of near Portland cement composition. An important criteria used in the assessment of slags as potential cements is the presence of a glassy phase. At present, it is not very clear why glass enhances the hydration process. However, it is known that the free energy of formation for glasses is less than for crystals so that glasses are easier to hydrate compared to crystalline materials. In the particular case of steel slag, the glassy phase would have to contain high amounts of iron. Steel slags are known to display iron levels approximately 10 times higher than Portland cement and commonly used blast furnace slags. However, the effect of high Fe2O3 levels on the setting and strengthening of cement paste is not clearly understood due to the fact that most cement additives do not present this characteristic. The present work looks at the progress made in recycling steel slag as cement additive, the complexity of the hydration process in slags, the possibilities of improving the hydration potential of slags at laboratory and industrial level, and the problems that still

  12. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  13. Preparation of Slag Wool by Integrated Waste-Heat Recovery and Resource Recycling of Molten Blast Furnace Slags: From Fundamental to Industrial Application

    Directory of Open Access Journals (Sweden)

    Dawei Zhao

    2014-05-01

    Full Text Available The present paper investigated the process of the slag wool fabrication using high temperature blast furnace (BF slag modified by coal ash (CA. The liquidus temperature and viscosity of the slag system with different mass ratios of BF slag and CA were measured through an inner cylinder rotation method. The approximate mass ratio used to fabricate the slag wool was therefore determined and slag wool was then successfully prepared with a high-speed air injection method in the laboratory. The effect of mBF/m ratio, slag temperature for injection and air pressure on the preparation of slag wool was systematically investigated. The mechanical and thermal properties were also studied to confirm the long-term working conditions of the slag wool. An industry-scale slag wool production application was established. The energy consumption and the pollutant generation, were analyzed and compared with the traditional production method, which indicated a 70% reduction in energy consumption and a 90% pollution emission decrease.

  14. In situ observation of the role of alumina particles on the crystallization behavior of slags

    Energy Technology Data Exchange (ETDEWEB)

    Orrling, C.

    2000-09-01

    The confocal laser scanning microscope (CLSM) allows crystallization behavior in liquid slags to he observed in situ at high temperatures. Slags in the lime-silica-alumina-magnesia system are easily tinder cooled and it is possible to construct time temperature transformation (TTT) diagrams for this system. The presence of solid alumina particles its these liquid slags was studied to determine if these particles act as heterogeneous nucleation sites that cause she precipitation of solid material within slags. The introduction of alumina particles reduced the incubation time for the onset of crystallization and increased the temperature at which crystallization was observed in the slags to close to the liquidus temperature for the slag. Crystal growth rates are in a good agreement with Ivantsov's solution of the problem of diffusion controlled dendritic growth. Alumina appears to be a potent nucleating agent in the slag systems that were studied. (author)

  15. Behavior of slag foaming caused by blowing gas in molten slags

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.

    2000-10-01

    The relationship between the height of foaming slag and blowing gas flow rate has been investigated at different temperature and with additives such as coal, coke, graphite and CaO, in order to understand the foaming phenomenon in most metallurgical processes comprehensively. On the basis of experimental results, the regressed foam behavior equations ({delta}=b(center dot)V{sup m}) were obtained. Those correlation coefficients were in range from 0.995 to 0.999. It means that the foam behavior equation can be used to describe foaming ability of the slag foaming caused by blowing gas quantitatively. The foaming index {sigma} is only a limited case for of the foam behavior equation and can be used only at high temperature and without additives for the foaming phenomenon caused by blowing gas. It was found also that the large carbonaceous particles could decrease the height of foaming slag, however the fine carbonaceous and CaO powder could increase it. The basicity of the slag affects the height of foaming slag. (author)

  16. The Study on Beneficiability of a Copper Smelting Slag by Slow Cooling Treatment%某铜炉渣缓冷处理的浮选试验研究∗

    Institute of Scientific and Technical Information of China (English)

    赵春艳

    2015-01-01

    某铜冶炼炉渣含铜、铁、金、银等有益组分,综合回收价值较高。炉渣中铜矿物主要为辉铜矿、黄铜矿、斑铜矿和单质铜,其次为氧化亚铜;铁矿物主要为磁铁矿和硅酸铁;脉石矿物主要有硅酸铁和玻璃质。依据铜炉渣的矿物组成及矿物的嵌布特征,确定采用缓慢冷却—浮选工艺回收炉渣中的铜,采用一段粗选、三段扫选、一段精选的工艺流程,最终获得了铜品位18.81%、回收率92%的铜精矿,该工艺为铜炉渣的回收利用提供了有益的借鉴。%A copper smelting slag consisted of copper, iron and silver. The copper minerals are mainly chalcocite, chalcopyrite, bornite and elemental copper, followed by cuprous oxide;the iron minerals are magnetite and iron silicate;the gangue minerals are mainly iron and silicate vitreous. Based on the material composition and minerals properties, the slow cooling -flotation process was applied for copper recovery. By one roughing, three scavenging and one cleaning flotation, a cop-per concentrate with a grade of 18. 81% and a recovery of 92% was obtained.

  17. The estimation of the reaction stimulators influence into the extraction slag conditions

    Directory of Open Access Journals (Sweden)

    A. W. Bydałek

    2010-04-01

    Full Text Available Slag stimulators was analysed used the DTA methods. In the paper a method of determining the reduction capability of slag solutions wasused. The analysis of slag stimulators concertinaing of the chloride and fluoride compositions are showed. There are the oxides complexesused in to the slag composition for the purpose to establish two indicators in reduction processes: EW - indicator showing the direction and intensity of reaction in to the slag composition, and r - indicator of the rate of coal consumption. There are possible and purposeful the construction optimization programme engaging all of the phisics chemical influence the slags in processes of melting metals alloys. The proposed results, ranges of areas on graphs of phase equilibria's, demonstrative on the optimum values, will be verified in laboratory conditions and industrial. The initiation the new data the gathered base will be built in system of open base enabling.

  18. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    Science.gov (United States)

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  19. 采煤机用电动机冷却水路的探讨%Discussion of Cooling Waterway of the Coal-winning Machine Motor

    Institute of Scientific and Technical Information of China (English)

    景刚

    2014-01-01

    Taking the improved cooling waterway of the prototype of YBCS700 motor as example, some expe-rience to design the cooling waterway when increasing the coal-winning machine motor power grade and power densi-ty was introduced.%以试制的YBCS700电动机冷却水路的改进过程为例,介绍了采煤机用电动机在功率加大和功率密度增加时冷却水路设计的一些经验。

  20. Study on Microstructure and Slag Corrosion Mechanism of High Chrome Bricks for Gasifier

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Research was focused on slag corrosion mechanism of high chrome bricks used for different types of gasifier by comparing the structure of high chrome bricks for petroleum coke gasifier and water-coal slurry gasifier with slag corroded testing brick and water coal slurry gasifier through Scanning Electron Microscope (SEM) examination and X-ray diffraction. Results show that for high chrome brick used for petroleum coke gasifier, corrosion is mainly caused by Cr2O3 in the brick and V2O5 in molten slag and liquid phase generation at low temperature; for high chrome brick used for water-coal slurry gasifier, corrosion is caused by dissolution of Cr2O3 in molten slag and corrosion of ZrO2. For LIRR-HK95 brick, it performs better petroleum coke corrosion resistance than the others due to the optimal composition and structure.

  1. Study on combustion characteristics of blended coals

    Institute of Scientific and Technical Information of China (English)

    LI Yonghua; WANG Chunbo; CHEN Hongwei

    2007-01-01

    Power plants in China have to burn blended coal instead of one specific coal for a variety of reasons.So it is of great necessity to investigate the combustion of blended coals.Using a test rig with a capacity of 640 MJ/h with an absolute milling system and flue gas online analysis system,characteristics such as burnout,slag,and pollution of some blended coals were investigated.The ratio of coke and slag as a method of distinguishing coal slagging characteristic was introduced.The results show that the blending of coal has some effect on NOx but there is no obvious rule.SOx emission can be reduced by blending low sulfur coal.

  2. Physicochemical Properties of Coal Gasification Slag and Its Catalytic Effect on Gasification Reactivity of Petroleum Coke%气化灰渣的理化性质及其对石油焦/CO_2气化反应特性的影响

    Institute of Scientific and Technical Information of China (English)

    平雅敏; 黄胜; 吴诗勇; 吴幼青; 高晋生

    2012-01-01

    The physicochemical properties of Shenhua coal gasification slag were characterized with the aids of XRF,XRD and SEM/EDS,and the catalytic effect of gasification slag on petroleum coke/CO2 gasification reactivity was also investigated.The results showed that the ash contents of bottom slag and fly ash were 78.39% and 62.71%,respectively.Bottom slag contained higher contents of Ca and Fe,but lower contents of Si and Al than those of fly ash.Inorganic matters in gasification slag mainly existed in the form of inert materials with no gasification reactivity.Calcium sulfate,iron oxide and glaserite(K3Na(SO4)2) in bottom slag were main catalytic components,while there was only low content of calcium sulfate in fly ash with catalytic effect.With increasing addition of slag,carbon conversion versus maximum gasification reactivity decreased.Catalytic gasification reactivity of petroleum coke with 5%-30% addition of gasification slag was raised 2-7 times as compared with non-catalytic one,and bottom slag had higher catalytic activity than fly ash.%采用XRF、XRD和SEM/EDS等分析手段对神华煤气化灰渣的理化性质进行了表征,并考察了气化灰渣对金山石油焦/CO2气化反应活性的影响。结果表明:炉底灰渣和炉顶飞灰的灰分质量分数分别为78.39%和62.71%;炉底灰渣中Ca和Fe的质量分数较炉顶飞灰高,而炉顶飞灰中Si和Al的质量分数则比炉底灰渣高;气化灰渣中的矿物质主要以对气化反应无催化活性的惰性物质形态存在,炉底灰渣中对含碳物料气化反应有催化作用的主要是少量的硫酸钙、氧化铁和钾芒硝(K3Na(SO4)2),而炉顶飞灰中则是少量的硫酸钙;随着气化灰渣添加量的增加,石油焦催化气化反应速率达到最大值时所对应的转化率逐渐减小。当气化灰渣的添加量为5%~30%时,石油焦的气化活性提高了2~7倍,其中炉底灰渣的催化活性稍优于炉顶飞灰。

  3. performance of steel slag performance of steel slag as fine ...

    African Journals Online (AJOL)

    eobe

    reduced from 0.62 to 0.50 as slag proportion increased from 0% to 100% at slump. 0.62 to 0.50 as slag ... Nigerian Journal of Technology (NIJOTECH). Vol. 34 No. 3, July ... scrap metals and hundreds of tonnes of steel slag are produced every ...

  4. Heat Recovery from High Temperature Slags: A Review of Chemical Methods

    Directory of Open Access Journals (Sweden)

    Yongqi Sun

    2015-03-01

    Full Text Available Waste heat recovery from high temperature slags represents the latest potential way to remarkably reduce the energy consumption and CO2 emissions of the steel industry. The molten slags, in the temperature range of 1723–1923 K, carry large amounts of high quality energy. However, the heat recovery from slags faces several fundamental challenges, including their low thermal conductivity, inside crystallization, and discontinuous availability. During past decades, various chemical methods have been exploited and performed including methane reforming, coal and biomass gasification, and direct compositional modification and utilization of slags. These methods effectively meet the challenges mentioned before and help integrate the steel industry with other industrial sectors. During the heat recovery using chemical methods, slags can act as not only heat carriers but also as catalysts and reactants, which expands the field of utilization of slags. Fuel gas production using the waste heat accounts for the main R&D trend, through which the thermal heat in the slag could be transformed into high quality chemical energy in the fuel gas. Moreover, these chemical methods should be extended to an industrial scale to realize their commercial application, which is the only way by which the substantial energy in the slags could be extracted, i.e., amounting to 16 million tons of standard coal in China.

  5. Internet Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at America's Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    J. Daniel Arthur

    2011-09-30

    In recent years, rising populations and regional droughts have caused coal-fired power plants to temporarily curtail or cease production due to a lack of available water for cooling. In addition, concerns about the availability of adequate supplies of cooling water have resulted in cancellation of plans to build much-needed new power plants. These issues, coupled with concern over the possible impacts of global climate change, have caused industry and community planners to seek alternate sources of water to supplement or replace existing supplies. The Department of Energy, through the National Energy Technology Laboratory (NETL) is researching ways to reduce the water demands of coal-fired power plants. As part of the NETL Program, ALL Consulting developed an internet-based Catalog of potential alternative sources of cooling water. The Catalog identifies alternative sources of water, such as mine discharge water, oil and gas produced water, saline aquifers, and publicly owned treatment works (POTWs), which could be used to supplement or replace existing surface water sources. This report provides an overview of the Catalog, and examines the benefits and challenges of using these alternative water sources for cooling water.

  6. Estimation of slagging in furnaces; Kuonaavuuden ennustaminen kivihiilen poelypoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, T.; Jaeaeskelaeinen, K.; Oeini, J.; Koskiahde, A.; Jokiniemi, J.; Pyykkoenen, J. [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    Understanding and estimation of slagging in furnaces is essential in the design of new power plants with high steam values or in modifications like low-NO{sub x} retrofits in existing furnaces. Major slagging yields poor efficiency, difficult operation and high maintenance costs of the plant. The aim of the project is to develop a computational model for slagging in pulverized coal combustion. The model is based on Computer Controlled Scanning Electron Microscopy (CCSEM) analysis of mineral composition of the coal and physical models for behaviour of minerals inside a furnace. The analyzed mineral particles are classified to five composition classes and distributed to calculational coal particles if internal minerals of coal. The calculational coal particles and the external minerals are traced in the furnace to find out the behaviour of minerals inside the furnace. If the particle tracing indicates that the particle hits the heat transfer surface of the furnace the viscosity of the particle is determined to see if particle is sticky. The model will be implemented to 3D computational fluid dynamics based furnace simulation environment Ardemus which predicts the fluid dynamics, heat transfer and combustion in a furnace. (orig.)

  7. 孔庄煤矿集中降温方案的选择与优化%Optimization of centralized cooling schemes in Kongzhuang Coal Mine

    Institute of Scientific and Technical Information of China (English)

    吴继忠; 刘祥来; 姚向东; 王建军

    2011-01-01

    According to the cross-section layout of Kongzhuang Coal Mine shaft and mine production conditions, the paper summarized and analyzed the systems of slice ice cooling, the thermo-power glycol cooling, HEMS underground centralized cooling, and vacuum ice cooling. From the effect, investment, cooling system operating stability, thermal transportation pipe installation, quality of water, discharge of heat underground, and other comprehensive consideration of the centralized cooling plan, the suitable way of cooling the mine is only the vacuum ice cooling scheme. Meanwhile, through implementation of the project, it will fill a centralized cooling technology gap in ice making technology, ice transportation pipes, ice transportation process, pressurized air cooling, underground ice melting technology, and energy-saving technology in ice making, which is a great breakthrough in our coal mines.%从孔庄煤矿井筒布置和矿井生产条件出发,先后总结、分析了片冰降温系统、热-电-乙二醇降温系统、井下低温水排热的井下集中降温系统(HEMS)和真空制冰降温系统.从集中降温方案效果、投资、降温系统运行稳定性、井筒输冷管路安装、矿井制冷水质、井下制冷排热等方面综合考虑,适合孔庄煤矿特点的集中降温途径只能是真空制冰降温方案,为矿井三期改扩建工程按期投产、验收创造了条件.同时,该降温工程的实施必将填补我国在矿井集中降温领域的一项技术空白,并在制冰技术、输冰管道、输冰工艺、压风冷却、井下融冰工艺、制冰节能技术上取得突破,进而推动我国煤矿降温制冷工艺的创新和发展.

  8. Application of Pulsed Electrical Fields for Advanced Cooling and Water Recovery in Coal-Fired Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Young Cho; Alexander Fridman

    2009-04-02

    The overall objective of the present work was to develop technologies to reduce freshwater consumption in a cooling tower of coal-based power plant so that one could significantly reduce the need of make-up water. The specific goal was to develop a scale prevention technology based an integrated system of physical water treatment (PWT) and a novel filtration method so that one could reduce the need for the water blowdown, which accounts approximately 30% of water loss in a cooling tower. The present study investigated if a pulsed spark discharge in water could be used to remove deposits from the filter membrane. The test setup included a circulating water loop and a pulsed power system. The present experiments used artificially hardened water with hardness of 1,000 mg/L of CaCO{sub 3} made from a mixture of calcium chloride (CaCl{sub 2}) and sodium carbonate (Na{sub 2}CO{sub 3}) in order to produce calcium carbonate deposits on the filter membrane. Spark discharge in water was found to produce strong shockwaves in water, and the efficiency of the spark discharge in cleaning filter surface was evaluated by measuring the pressure drop across the filter over time. Results showed that the pressure drop could be reduced to the value corresponding to the initial clean state and after that the filter could be maintained at the initial state almost indefinitely, confirming the validity of the present concept of pulsed spark discharge in water to clean dirty filter. The present study also investigated the effect of a plasma-assisted self-cleaning filter on the performance of physical water treatment (PWT) solenoid coil for the mitigation of mineral fouling in a concentric counterflow heat exchanger. The self-cleaning filter utilized shockwaves produced by pulse-spark discharges in water to continuously remove scale deposits from the surface of the filter, thus keeping the pressure drop across the filter at a relatively low value. Artificial hard water was used in the

  9. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Peter Y. [National Energy Technology Lab. (NETL), Albany, OR (United States); Kwong, Kyei-Sing [National Energy Technology Lab. (NETL), Albany, OR (United States); Bennett, James [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2015-09-27

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. Here, we measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometer and their ash fusion temperatures through optical image analysis. We made all measurements in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. Finally, an understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.

  10. Analyzing the Technology of Using Ash and Slag Waste from Thermal Power Plants in the Production of Building Ceramics

    Science.gov (United States)

    Malchik, A. G.; Litovkin, S. V.; Rodionov, P. V.; Kozik, V. V.; Gaydamak, M. A.

    2016-04-01

    The work describes the problem of impounding and storing ash and slag waste at coal thermal power plants in Russia. Recovery and recycling of ash and slag waste are analyzed. Activity of radionuclides, the chemical composition and particle sizes of ash and slag waste were determined; the acidity index, the basicity and the class of material were defined. The technology for making ceramic products with the addition of ash and slag waste was proposed. The dependencies relative to the percentage of ash and slag waste and the optimal parameters for baking were established. The obtained materials were tested for physical and mechanical properties, namely for water absorption, thermal conductivity and compression strength. Based on the findings, future prospects for use of ash and slag waste were identified.

  11. Full-scale and bench-scale testing of a coal-fueled gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, P.B.; LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1992-01-01

    Components for a coal-fueled industrial gas turbine were developed and tested at both benchscale and full-scale. The components included a two stage slagging combustor, a particulate rejection impact separator (PRIS), and a secondary particulate filter. The Integrated Bench Scale Test Facility (IBSTF) was used for the filter tests ana some of the PRIS testing. Full-scale combustor testing has been carried-out both with and without the PRIS. Bench-scale testing has included evaluating the feasibility of on-site CWM preparation, developing a water-cooled impactor and an extended run with new secondary candle filters.

  12. Full-scale and bench-scale testing of a coal-fueled gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, P.B.; LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1992-12-31

    Components for a coal-fueled industrial gas turbine were developed and tested at both benchscale and full-scale. The components included a two stage slagging combustor, a particulate rejection impact separator (PRIS), and a secondary particulate filter. The Integrated Bench Scale Test Facility (IBSTF) was used for the filter tests ana some of the PRIS testing. Full-scale combustor testing has been carried-out both with and without the PRIS. Bench-scale testing has included evaluating the feasibility of on-site CWM preparation, developing a water-cooled impactor and an extended run with new secondary candle filters.

  13. Small, modular, low-cost coal-fired power plants for the international market

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Frain, B.; Borck, B. [Coal Tech Corp., Merion Station, PA (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

    1997-12-31

    This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermal rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.

  14. A Blended Cement Containing Blast Furnace Slag and Phosphorous Slag

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Blended cement containing blast furnace slag(BFS) and phosphorous slag(PS) is a new kind of cement.The total content of blended materials could increase if two additives were used. Using the same admixtures, the properties of the blended cement with 70% additives could reach the standard of 525-grade slag cement according to GB.The strength of cement with 80% additives could reach the standard of 425-grade slag cement.The tests of strength, pore structure,hydration products,inhibiting alkali-aggregate reaction, resistance to sulfate corrosion of BFS-PSC were performed.

  15. PHOSPHORUS REMOVAL USING STEEL SLAG

    Institute of Scientific and Technical Information of China (English)

    Y.Z. Lan; S. Zhang; J.K. Wang; R. W. Smith

    2006-01-01

    Steel slag is a byproduct produced in large amounts in the steel-making process. It is an important resource that can be effectively utilized. An experiment was described in which steel slag was tested as an adsorbent for the removal of phosphorus from waste water. Phosphorus removal depended on the amount of steel slag added, the pH value, the contact time, and the initial concentration. Under laboratory conditions when the added slag was 7.5g/L, the contact time 2h, and the pH value was equivalent to 6.5, over 99% of the phosphorus was removed; the experimental data on steel slag adsorption of phosphorus in the water fitted the Freundlich isotherm model. Steel slag was found to be very effective in adsorbing phosphorus.

  16. Preparation and combustion of coal-water fuel from the Sin Pun coal deposit, southern Thailand

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    In response to an inquiry by the Department of Mineral Resources in Thailand, the Energy & Environmental Research Center (EERC) prepared a program to assess the responsiveness of Sin Pun lignite to the temperature and pressure conditions of hot-water drying. The results indicate that drying made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 27 wt% for the raw coal to about 15 wt% for the hot-water-dried (HWD) coals. The energy density for a pumpable coal-water fuel (CWF) indicates an increase from 4500 to 6100 Btu/lb by hot-water drying. Approximately 650 lb of HWD Sin Pun CWF were fired in the EERC`s combustion test facility. The fuel burned extremely well, with no feed problems noted during the course of the test. Fouling and slagging deposits each indicated a very low rate of ash deposition, with only a dusty layer formed on the cooled metal surfaces. The combustor was operated at between 20% and 25% excess air, resulting in a flue gas SO{sub 2} concentration averaging approximately 6500 parts per million.

  17. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    Science.gov (United States)

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  18. Superconducting magnetic separation of ground steel slag powder for recovery of resources

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. W.; Kim, J. J.; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, D. W. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of); Choi, J. H. [Dept. of Environmental Engineering, Catholic University of Pusan, Pusan (Korea, Republic of)

    2017-03-15

    Steel slag has been considered as an industrial waste. A huge amount of slag is produced as a byproduct and the steel slag usually has been dumped in a landfill site. However the steel slag contains valuable resources such as iron, copper, manganese, and magnesium. Superconducting magnetic separation has been applied on recovery of the valuable resources from the steel slag and this process also has intended to reduce the waste to be dumped. Cryo-cooled Nb-Ti superconducting magnet with 100 mm bore and 600 mm of height was used as the magnetic separator. The separating efficiency was evaluated in the function of magnetic field. A steel slag was ground and analyzed for the composition. Iron containing minerals were successfully concentrated from less iron containing portion. The separation efficiency was highly dependent on the particle size giving higher separating efficiency with finer particle. The magnetic field also effects on the separation ratio. Current study showed that an appropriate grinding of slag and magnetic separation lead to the recovery of metal resources from steel slag waste rather than dumping all of the volume.

  19. Slagging and fouling characteristics of seam 32/33, Panian coalfield, Semirara Island, Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Stella Marris Limos-Martinez; Koichiro Watanabe [Kyushu University, Fukuoka (Japan). Department of Earth Resources Engineering, Graduate School of Engineering

    2006-02-01

    Twenty samples of seam 32/33, the main seam of Panian coalfield in Semirara Island, Antique Province, Philippines, were collected from a borehole drilled at the northeastern edge of the coalfield. The samples were analyzed to characterize the coal geochemistry of the seam and understand why the coals of Semirara Island exhibit a high tendency for slagging and fouling despite its low average ash content. Analysis of the slagging and fouling characteristics of this seam is important because it supplies five electric power utilities and several cement plants in the Philippines. Proximate analyses and vitrinite reflectance measurements designate the rank of the seam as sub-bituminous C, based on ASTM coal classification. H/C versus O/C ratios indicate that the seam is made up largely of huminite, denoting early stages of coalification. Chemical analysis of the ash reveals high contents of Na, Mg, Fe, Ca, Ba and Sr. The strongly negative correlation of these elements with the ash content indicates an organic affinity of the chemical elements of the seam. Owing to enrichment in alkali and alkali-earth elements, slagging and fouling indices indicate that the seam has medium to high propensity for slagging and a severe tendency for fouling. The detrimental characteristics of coal feedstock from Panian mine is mitigated by modifications to the boiler design and operational conditions and by blending with coals imported from Indonesia, China and Australia. 31 refs., 6 figs., 3 tabs.

  20. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  1. (Coal utilization in India)

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, R.P.

    1991-01-15

    Under the Phase II, Alternative Energy Resources Development (AERD) project of the United States Agency for International Development (USAID) and the Government of India (GOI), five collaborative coal projects have been initiated in the areas of: (1) NO{sub x}/SO{sub x} control from coal-fired power plants, (2) slagging combustor development for high-ash Indian coals, (3) characterization of Indian coals for combustion and gasification, (4) diagnostic studies for prediction of power plant life expectancy, and (5) environmental and natural resource analysis of coal cycle. The Pittsburgh Energy Technology Center (PETC) has the implementation responsibility for these projects. The Indian collaborative institutions identified for these projects are the Bharat Heavy Electricals Ltd. (BHEL), Trichy, (Projects 1--4), and the Tata Energy Research Institute (TERI) for Project 5. The Oak Ridge National Laboratory (ORNL) is providing cross-cut technical coordination and support for these five projects.

  2. ECOLOGICAL AND TECHNOLOGYCAL ASPECTS OF ASH AND SLAG WASTES UTILIZATION

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrova

    2017-07-01

    Full Text Available The article presents the results of investigation focused on the utilization of ash and slag wastes (ASW in Russia including investigation of chemical and physical properties of ASW and processing products. Many factors influence the technological properties of ash and slag materials: naturals, processes and environments. The integrated treatment of ash and slag wastes of both stored and re-formed types will allow obtaining the following commercial products: coal concentrate, iron concentrate, aluminosilicate cenospheres, aluminosilicate product. In this study we have analyzed the methods for separation of ASW iron-containing part using the different types of the magnetic separation from the ash and slag material from one of the combined heat and power plant (CHPP in the Russian Far East Federal District. The greatest interest is the dry magnetic separation with travelling electromagnetic field. The subject of research was a sample taken from one of ash dump of CHPP in the Far East. In the study iron concentrate containing Fetotal = 64% was obtained recovery 68% in the low intensity (up to 5 kOe travelling magnetic field.

  3. Reuse of Treated Internal or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Radisav Vidic; David Dzombak; Ming-Kai Hsieh; Heng Li; Shih-Hsiang Chien; Yinghua Feng; Indranil Chowdhury; Jason Monnell

    2009-06-30

    This study evaluated the feasibility of using three impaired waters - secondary treated municipal wastewater, passively treated abandoned mine drainage (AMD), and effluent from ash sedimentation ponds at power plants - for use as makeup water in recirculating cooling water systems at thermoelectric power plants. The evaluation included assessment of water availability based on proximity and relevant regulations as well as feasibility of managing cooling water quality with traditional chemical management schemes. Options for chemical treatment to prevent corrosion, scaling, and biofouling were identified through review of current practices, and were tested at bench and pilot-scale. Secondary treated wastewater is the most widely available impaired water that can serve as a reliable source of cooling water makeup. There are no federal regulations specifically related to impaired water reuse but a number of states have introduced regulations with primary focus on water aerosol 'drift' emitted from cooling towers, which has the potential to contain elevated concentrations of chemicals and microorganisms and may pose health risk to the public. It was determined that corrosion, scaling, and biofouling can be controlled adequately in cooling systems using secondary treated municipal wastewater at 4-6 cycles of concentration. The high concentration of dissolved solids in treated AMD rendered difficulties in scaling inhibition and requires more comprehensive pretreatment and scaling controls. Addition of appropriate chemicals can adequately control corrosion, scaling and biological growth in ash transport water, which typically has the best water quality among the three waters evaluated in this study. The high TDS in the blowdown from pilot-scale testing units with both passively treated mine drainage and secondary treated municipal wastewater and the high sulfate concentration in the mine drainage blowdown water were identified as the main challenges for blowdown

  4. Study of the leaching behaviour of ladle slags by means of leaching tests combined with geochemical modelling and mineralogical investigations.

    Science.gov (United States)

    Loncnar, Mojca; van der Sloot, Hans A; Mladenovič, Ana; Zupančič, Marija; Kobal, Lara; Bukovec, Peter

    2016-11-05

    In this study, the leachability of freshly produced ladle slag derived from both austenitic and ferritic stainless steel production, and from electrical and structural steel production, was investigated, in order to determine whether variations in the chemical and mineralogical composition of these slags affect their leaching behaviour. The effect of the method used for slag cooling was also studied. The results obtained by using the single batch test were combined with those obtained by means of more sophisticated characterisation leaching tests, which, in combination with geochemical speciation modelling, helped to better identify the release mechanisms and phases that control the release of individual elements. It was found that, although variations in the chemical composition of the slag can affect the slag's minerology, neither such variations, nor the choice of the slag cooling treatment, have a significant effect on the leachability of individual elements, since the leaching is governed by surface phenomena. In fact, the mineral transformations on the slag surface, rather than the bulk mineral composition, dictate the release of these elements from the ladle slag. The solubility-controlling phases were predicted by multi-element modelling, and verified to the extent made possible by the performed mineralogical investigations.

  5. Effects of a reducer type on copper flash smelting slag decopperisation

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2015-01-01

    Full Text Available In the paper, results of investigations on coke dust, anthracite dust and coal flotation concentrate application in the technology of copper flash smelting slag processing are presented. The results show that the selected reducers can be used as substitutes for the conventional coke.

  6. Coal Extraction - Environmental Prediction

    Science.gov (United States)

    Cecil, C. Blaine; Tewalt, Susan J.

    2002-01-01

    Coal from the Appalachian region has supplied energy to the Nation for more than 200 years. Appalachian coal fueled America through a civil war and helped win two world wars. Appalachian coal has also provided fuel for keeping America warm in the winter and cool in the summer and has served as the basis for the steel, automobile, organic chemicals, chlorine, and aluminum industries. These benefits have not come without environmental costs, however. Coal extraction and utilization have had significant environmental impacts.

  7. Understanding Slag Freeze Linings

    Science.gov (United States)

    Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2014-09-01

    Slag freeze linings, the formation of protective deposit layers on the inner walls of furnaces and reactors, are increasingly used in industrial pyrometallurgical processes to ensure that furnace integrity is maintained in these aggressive, high-temperature environments. Most previous studies of freeze-linings have analyzed the formation of slag deposits based solely on heat transfer considerations. These thermal models have assumed that the interface between the stationary frozen layer and the agitated molten bath at steady-state deposit thickness consists of the primary phase, which stays in contact with the bulk liquid at the liquidus temperature. Recent experimental studies, however, have clearly demonstrated that the temperature of the deposit/liquid bath interface can be lower than the liquidus temperature of the bulk liquid. A conceptual framework has been proposed to explain the observations and the factors influencing the microstructure and the temperature of the interface at steady-state conditions. The observations are consistent with a dynamic steady state that is a balance between (I) the rate of nucleation and growth of solids on detached crystals in a subliquidus layer as this fluid material moves toward the stagnant deposit interface and (II) the dissolution of these detached crystals as they are transported away from the interface by turbulent eddies. It is argued that the assumption that the interface temperature is the liquidus of the bulk material represents only a limiting condition, and that the interface temperature can be between T liquidus and T solidus depending on the process conditions and bath chemistry. These findings have implications for the modeling approach and boundary conditions required to accurately describe these systems. They also indicate the opportunity to integrate considerations of heat and mass flows with the selection of melt chemistries in the design of future high temperature industrial reactors.

  8. Alkali based slagging: a case study from Leigh Creek

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Creelman; J. Bamberry; L.A. Juniper; C. Ward [University of Western Sydney, Penrith South, NSW (Australia)

    2003-07-01

    A systematic study was undertaken at NRG Port Augusta Power station in South Australia to determine the cause of ash deposition (slagging) in the boilers. Conventional wisdom suggests that iron in the ash is generally a major player in furnace ash deposition; however, mineralogical and chemical analyses of the deposits showed that the binding phase was plagioclase feldspar, dominated by the sodic feldspar albite. The study resulted in recognition that the cause of the formation of ash deposits in the North Flinders furnaces was the result of the ingestion of sodium and calcium into the melt that bound the deposits. This finding was a breakthrough in understanding the deposition process within these furnaces, and emphasises that not all slagging is iron related and that systematic studies of deposits, coal and ash make fundamental contributions to understanding the ash deposition mechanisms. 9 refs., 5 figs., 2 tabs.

  9. Characterization of basic oxygen furnace slag and granite waste mixtures to Portland cement production

    Directory of Open Access Journals (Sweden)

    Luiz Alberto Baptista Pinto Junior

    Full Text Available Abstract The aim of this paper is to analyze mixtures of basic oxygen furnace slag and granite waste in order to produce Portland cement. X-ray patterns were carried out in both the basic oxygen furnace slag and granite waste. Then, mixtures were prepared to obtain the binary basicity of 0.5, 0.9 and 1.2. The mixtures were melted at 1500ºC. Two cooling steps were performed. The first cooling step was accomplished inside the furnace in order to determine the phases formed during the melting step. The second cooling process was carried out in water in order to obtain an amorphous structure. Images via scanning electrons microscopy and EDS spectrum were obtained for the mixtures cooling in water. The results showed that basic oxygen furnace slag contains a higher percent of CaO. A binary basicity of 4.6 was determined. The granite waste appeared as mainly a quartz phase. During the slow cooling step, silicates (akermanite and gehlenite were formed. On the fast cooling step, amorphous structures were obtained. In addition, images obtained via scanning electrons microscopy showed glass structures. EDS spectrum indicated that the glass structures were composed for calcium silicates. Thus, the results suggest that mixtures using basic oxygen furnace slag and granite waste presented characteristics desirable for Portland cement production.

  10. Smelting reduction process with a thick layer of slag for producing ferroalloys and iron

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, H. (Nippon Steel Corp., Tokyo (Japan))

    1992-06-01

    Smelting reduction process with a thick layer of slag is one of the potential technologies of a flexible manufacturing system desired for the production iron and steel. Its feature is that an oxygen jet is separated from the molten metal by a thick layer of slag, and it is realized by the coexistence of carbonaceous material for controlling slag foaming and allows high post combustion operation without disturbing the reducing reaction. Experimental furnaces of 100kg, 600kg, 3t and 100t were built for the production Cr-Fe-C, Mn-Fe-C and Fe-C and the experimental production was performed successfully. The procedure of the experiments is reviewed and slag foaming and its control, the properties of the slag layer, the reducing reaction, direct supply of fine ore, the mechanism of heat transfer, post combustion and coal consumption are discussed. Though there are some problems in the decrease of post combustion in the use of coal with high volatile content, this process has no problem in enlargement of the scale, and it is promising for the flexible production of iron. It also can be applied for scrap melting. 67 refs., 15 figs., 3 tabs.

  11. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica

  12. Disposal of High-Temperature Slags: A Review of Integration of Heat Recovery and Material Recycling

    Science.gov (United States)

    Sun, Yongqi; Zhang, Zuotai

    2016-09-01

    Nowadays with the continuous urbanization in China, the carbon emission and resource shortage have been serious issues, for which the disposal of blast furnace slags (BFS) and steel slags (SS) discharged from the metallurgical industry make up a significant strategy. The output of crude steel reached 823 Mt in China in 2014 and the thermal heat in these slags was equivalent to ~18 Mt of standard coal. Herein, the recent advances were systemically reviewed and analyzed, mainly from two respects, i.e., integration of heat recovery and material recycling and crystallization control of the slags. It was first found that for the heat recovery from BFS, the most intensively investigated physical method and chemical method were centrifugal granulation and gasification reaction, respectively. Furthermore, a two-step approach could contribute to a promising strategy for the treatment of slags, i.e., the liquid slags were first granulated into small particles, and then other further treatment was performed such as gasification reaction. With regard to SS, the effective disposal could be achieved using a selective crystallization and phase separation (SCPS) method, and moreover, the solid solution of 2CaO·SiO2 and the target phases could act as a promising enriched phase to extract the valuable elements.

  13. Two-dimensional coupled fluid and electrodynamic calculations for a MHD DCW channel with slag layers

    Science.gov (United States)

    Liu, B. L.

    1982-01-01

    A fully coupled, two dimensional numerical method of modeling linear, coal-fired MHD generators is developed for the case of a plasma flow bounded by a slag layer on the channel walls. The governing partial differential equations for the plasma flow, slag layer and electrodynamics are presented and their coupling discussed. An iterative, numerical procedure employing non-uniform computational meshes and appropriate tridiagonal matrix solution schemes for the equations is presented. The method permits the investigation of the mutual plasma flow-slag layer development for prescribed wall temperatures, electrode geometry, slag properties and channel loading. In particular, the slag layer-plasma interface properties which require prior specification in an uncoupled analysis comprise part of the solution in the present approach. Results are presented for a short diagonally connected generator channel and include contour plots of the electric potential and current stream function as well as transverse and axial profiles of pertinent plasma properties. The results indicate that a thin electrode slag layer can be maintained in the presence of reasonable current density levels.

  14. Viscosity estimation for slags containing calcium fluoride

    Institute of Scientific and Technical Information of China (English)

    Qifeng Shu; Jiayun Zhang

    2005-01-01

    Based on recently published experimental data, the Riboud model was modified for viscosity estimation of the slags containing calcium fluoride. The estimated values were in good agreement with measured data. Reasonable estimation can be achieved using the modified Riboud model for mould fluxes and ESR (eletro slag remelting) slags. Especially for ESR slags, the modified Riboud model can provide much more precise values than the original Riboud model.

  15. Melting Behaviour of Ferronickel Slags

    Science.gov (United States)

    Sagadin, Christoph; Luidold, Stefan; Wagner, Christoph; Wenzl, Christine

    2016-12-01

    The industrial manufacturing of ferronickel in electric furnaces produces large amounts of slag with strong acidic character and high melting points, which seriously stresses the furnace refractory lining. In this study, the melting behavior of synthetically produced ferronickel slags on magnesia as refractory material was determined by means of a hot stage microscope. Therefore, slags comprising the main oxides SiO2 (35-70 wt.%), MgO (15-45 wt.%) and Fe2O3 (5-35 wt.%) were melted in a graphite crucible and afterwards analyzed by a hot stage microscope. The design of experiments, which was created by the statistic software MODDE®, included 20 experiments with varying slag compositions as well as atmospheres. The evaluation of the test results occurred at three different characteristic states of the samples like the softening point according to DIN 51730 and the temperatures at which the area of residual cross-section of the samples amounted to 30% and 40%, respectively, of the original value depending of their SiO2/MgO ratio and iron oxide content. Additionally, the thickness of the zone influenced by the slag was measured and evaluated.

  16. Smelting Oxidation Desulfurization of Copper Slags

    Institute of Scientific and Technical Information of China (English)

    LI Lei; HU Jian-hang; WANG Hua

    2012-01-01

    According to the mechanism of sulfur removal easily through oxidation, the process of smelting oxidation desulfurization of copper slags is studied, which supplies a new thinking for obtaining the molten iron of lower sulfur content by smelting reduction of copper slags. Special attention is given to the effects of the holding temperature, the holding time and CaF2, CaO addition amounts on the desulfurization rate of copper slags. The results indicate that the rate of copper slags smelting oxidation desulfurization depends on the matte mass transfer rate through the slag phase. After the oxidation treatment, sulfur of copper slags can be removed as SO2 efficiently. Amount of Ca2+ of copper slags affects the desulfurization rate greatly, and the slag desulfurization rate is reduced by adding a certain amount of CaF2 and CaO. Compared with CaF2, CaO is negative to slags sulfur removal with equal Ca2+ addition. Under the air flow of 0.3 U/min, the sulfur content of copper slags can be reduced to 0. 004 67% in the condition of the holding time of 3 min and the holding temperature of 1 500 ℃. The sulfur content of molten iron is reduced to 0. 000 8 % in the smelting reduction of treated slags, and the problem of high sulfur content of molten iron obtained by smelting reduction with copper slag has been successively solved.

  17. PERFORMANCE OF PULVERIZED SLAG-SUBSTITUTED CEMENT

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The Portland cement is equivalently substituted by slag micropowders with various specific areas. The workability,activity and acid-corrosion resistance of the slag-substituted cements are investigated,the activation of gypsum is discussed,also the porosity and pore distribution of mortars of the slag micropowders cement are determined by mercury intrusion porosimetry.

  18. Effects of Temperature, Oxygen Partial Pressure, and Materials Selection on Slag Infiltration into Porous Refractories for Entrained-Flow Gasifiers

    Science.gov (United States)

    Kaneko, Tetsuya Kenneth

    partial pressure of the operating atmosphere regulates the penetration of slag into refractory. The viscosity of the slag, which dictates its penetration rate, is influenced by the oxidation state of the Fe cation. Slag penetrations are shallower in oxidizing conditions than they are in reducing conditions because the iron-oxide from the slag solutions into the corundum-structured refractory and the slag is depleted of iron-oxide, increasing the viscosity of slags. Equally, the chemistries of both the refractory and slag materials dictate the course of penetration. Cr2O3-Al2O3 refractory limits mixed feedstock slag penetration through formation of a chromium spinel layer that functions as a physical obstacle against fluid flow. Al2O 3-SiO2 refractory limits eastern coal feedstock slag penetration as a result of refractory dissolution of SiO2, which increases the viscosity of slags. A physical model, which considers unidirectional fluid flow of slag through each pore of the porous microstructure of the refractory, sufficiently approximates the penetration depth of the slag into the refractory. Agreement between experiments and the physical model demonstrates that the slag is driven into the refractory by capillary pressure. Since the viscosity of the slag continuously changes as the slag travels through the inherent temperature gradient of the refractory lining, the model incorporates dynamic viscosities that are dependent on both temperature and composition to project depths that are unique to the experimental parameters. The significantly different length scales of the radial and penetration directions of the pores allows for the application of a lubrication approximation onto the momentum equation. This process produces an analytical solution that effectively envelopes the variable viscosity into a single term.

  19. Utilization options for fly ash, bottom ash, and slag in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Manz, O.E.

    1995-12-01

    Since 1967, at least six ash utilization symposiums have been held in the United States, with papers presented by several European authors on the utilization of coal by-products in Eastern Europe. There is currently over 80,000 megawatts of installed coal-fired capacity available in that region. Unfortunately, of the 117,778,000 tonnes of fly ash, bottom ash, and slag produced in Eastern Europe in 1989, only 13% was utilized. This paper outlines the research and levels and kinds of coal by-product utilization taking place in Eastern Europe since the late 1960s.

  20. Slags in steel making; Kuonat teraeksen valmistuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Paeaetalo, M.; Karhu, P.; Jauhiainen, A.; Alamaeki, P.; Koski-Laine, S.; Ollila, J. [Oulu Univ. (Finland). Dept. of Process Engineering

    1996-12-31

    At the first step of the project all stages of the steelmaking processes were viewed from the blast furnace to the continuous casting. Slag knowledge of each processes were collected into a guide, which is meant to help both production and research. At the same time the essential problems caused by slags in steelmaking were focused. At the second step the focus of this slag-project were transferred into the desulphurization, converter, ladle and tundish slags. Wide slag knowledge has been divided into smaller parts and applied versatile into the steelmaking process taking into account the metallurgical, economical and qualitative aspects. (orig.) SULA 2 Research Programme; 13 refs.

  1. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task 1

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal fired, closed cycle, magnetohydrodynamic power generation are detailed. These accomplishments relate to all system aspects of a CCMHD power generation system including coal combustion, heat transfer to the MHD working fluid, MHD power generation, heat and cesium seed recovery and overall systems analysis. Direct coal firing of the combined cycle has been under laboratory development in the form of a high slag rejection, regeneratively air cooled cyclone coal combustor concept, originated within this program. A hot bottom ceramic regenerative heat exchanger system was assembled and test fired with coal for the purposes of evaluating the catalytic effect of alumina on NO/sub x/ emission reduction and operability of the refractory dome support system. Design, procurement, fabrication and partial installation of a heat and seed recovery flow apparatus was accomplished and was based on a stream tube model of the full scale system using full scale temperatures, tube sizes, rates of temperature change and tube geometry. Systems analysis capability was substantially upgraded by the incorporation of a revised systems code, with emphasis on ease of operator interaction as well as separability of component subroutines. The updated code was used in the development of a new plant configuration, the Feedwater Cooled (FCB) Brayton Cycle, which is superior to the CCMHD/Steam cycle both in performance and cost. (WHK)

  2. Study on cementitious properties of steel slag

    Directory of Open Access Journals (Sweden)

    Zhu G.

    2013-01-01

    Full Text Available The converter steel slag chemical and mineral components in China’s main steel plants have been analysed in the present paper. The electronic microscope, energy spectrum analysis, X-ray diffraction analysis confirmed the main mineral compositions in the converter slag. Converter slag of different components were grounded to obtain a powder with specific surface area over 400m2/kg, making them to take place some part of the cement in the concrete as the admixture and carry out the standard tests. The results indicate that the converter slag can be used as cementitious materials for construction. Furthermore, physical mechanic and durability tests on the concrete that certain amount of cement be substituted by converter steel slag powder from different steel plants are carried out, the results show that the concrete with partial substitution of steel slag powder has the advantages of higher later period strength, better frost resistance, good wear resistance and lower hydration heat, etc. This study can be used as the technical basis for “Steel Slag Powder Used For Cement And Concrete”, “Steel Slag Portland Cement”, “Low Heat Portland Steel Slag Cement”, “Steel Slag Road Cement” in China, as well as a driving force to the works of steel slag utilization with high-value addition, circular economy, energy conservation and discharge reduction in the iron and steel industry.

  3. Maximum availability and mineralogical control of chromium released from AOD slag.

    Science.gov (United States)

    Li, Junguo; Liu, Bao; Zeng, Yanan; Wang, Ziming; Gao, Zhiyuan

    2017-03-01

    AOD (argon oxygen decarburization) slag is the by-product in the stainless steel refining process. Chromium existing in AOD slag can leach out and probably poses a serious threat to the environment. To assess the leaching toxicity of chromium released from AOD slag, the temperature-dependent maximum availability leaching test was performed. To determine the controlling mineralogical phases of chromium released from AOD slag, a Visual MINTEQ simulation was established based on Vminteq30 and the FactSage 7.0 database. The leaching tests indicated that the leaching availability of chromium was slight and mainly consisted of trivalent chromium. Aging of AOD slag under the atmosphere can oxidize trivalent chromium to hexavalent chromium, which could be leached out by rainwater. According to the simulation, the chromium concentration in leachates was controlled by the freely soluble pseudo-binary phases in the pH = 7.0 leaching process and controlled by the Cr2O3 phase in the pH = 4.0 leaching process. Chromium concentrations were underestimated when the controlling phases were determined to be FeCr2O4 and MgCr2O4. Facilitating the generation of the insoluble spinel-like phases during the cooling and disposal process of the molten slag could be an effective approach to decreasing the leaching concentration of chromium and its environmental risk.

  4. Experiment research of slag renovation in the corner-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Zhijun; Wu, Wenfei [Inner Mongolia Univ. of Science and Technology, Baotou (China). School of Energy and Environment

    2013-07-01

    Aiming at serious slag on the water wall around the burner of corner-fired boiler with low-ash-fusion-point coal, cold experimental model has been established. In this experiment, particle image velocimetry (PIV) has been employed to accurately measure aerodynamic field of burner region, and the experimental research of furnace slag renovation has been conducted through changing the burner jet arrangement. The experiment results show that it has significantly effect on aerodynamic field in the furnace by changing burner jet deflection angle. A reasonable actual tangential circle diameter can be formed through adjusting the burner jet deflection angle, to prevent primary air attacking the wall, and further more, to effectively prevent serious slag on the water wall around the burner.

  5. Mechanism of Mineral Phase Reconstruction for Improving the Beneficiation of Copper and Iron from Copper Slag

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jan; Zhang, Feng

    2016-09-01

    To maximize the recovery of iron and copper from copper slag, the modification process by adding a compound additive (a mixture of hematite, pyrite and manganous oxide) and optimizing the cooling of the slag was studied. The phase reconstruction mechanism of the slag modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that the synergy between the burnt lime and the compound additive promotes the generation of target minerals, such as magnetite and copper matte. In addition, the multifunctional compound additive is able to improve the fluidity of the molten slag, which facilitates the coalescence and growth of fine particles of the target minerals. As a result, the percentage of iron distributed in the form of magnetite increased from 32.9% to 65.1%, and that of the copper exiting in the form of metallic copper and copper sulfide simultaneously increased from 80.0% to 90.3%. Meanwhile, the grains of the target minerals in the modified slag grew markedly to a mean size of over 50 μm after slow cooling. Ultimately, the beneficiation efficiency of copper and iron was improved because of the ease with which the target minerals could be liberated.

  6. 实施降温措施的采掘工作面空气处理过程分析%Analysis of the air handling processin extracting coal face with cooling system

    Institute of Scientific and Technical Information of China (English)

    杨威; 刘何清; 熊慧灵; 李伊洁

    2014-01-01

    针对高温矿井采掘工作面空冷器常见安装位置和冷风输送方式,分析了冷风流自空冷器出口后沿途发生的变化及其对应的冷风流状态参数变化过程;分析了各空冷器安装位置、送风方式下引起冷风流状态变化的原因;提出了各空冷器安装位置、送风方式下确保工作面设计状态的空冷器出口冷风参数确定路径及装机冷量的构成;定性得出将空冷器距工作面一定距离安装、采用隔湿风筒输送冷风的方式较优。得出的结论对指导高温矿井降温系统设计有一定的指导意义。%According to the common installation position and the cold air conveying mode in the extracting coal face of high temperature mine,this paper analyzes the cold air changing process when it is translated to extracting coal face.It also analyzes the changing process of colder airflow status parameters.Then,the reason of change in cold airflow status with different installation position and cold air conveying mode is analyzed in detail.In order to achieve the optimal cooling solution in different installation positions of air cooler and air supply mode,the paper has taken the following steps:firt of all,it proposes the calculation method of air cooler exit parameter under different conditions.Calculation result must ensure the temperature of extracting coal face to meet the design requirement.Secondly,every part which constitutes the cooling capacity of air cooler is introduced under different cooling schemes.Thirdly,it qualitatively analyzes the size of cooling capacity needed. Results show that it is the optimum cooling solution when air cooler is far from extracting coal face and colder air is translated by saliva isolation.It can say that the above researches help to provide a guide for high temperature mine cooling system design.

  7. Difference in BOF Slag Splashing in US and China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Some differences in slag splashing between BOF steel works in USand China were investigated. The slag composition, melting point, and mineralogical phases of final slags from both countries were studied. The control of slag superheat is important to an effective slag coating.

  8. Effect of MgO and MnO on Phosphorus Utilization in P-Bearing Steelmaking Slag

    Science.gov (United States)

    Lin, Lu; Bao, Yan-Ping; Wang, Min; Li, Xiang

    2016-04-01

    In order to recycle the phosphorus in P-bearing converter slag and make it used as slag phosphate fertilizer, the effect of MgO and MnO in P-bearing steelmaking slag on phosphorus existence form, P2O5 solubility and magnetic separation behavior were researched systematically. The results show that the phosphorus in slag is mainly in the form of n2CaO · SiO2-3CaO · P2O5 (for short nC2S-C3P) solid solution in the P-rich phase for CaO-SiO2-FetO-P2O5-X (X stands for MgO and MnO, respectively). And the increasing of MgO and MnO content has no influence on precipitation of nC2S-C3P solid solution in slag, MnO and MgO mainly enter into RO phase and base phase to form MnFe2O4 and MgFe2O4, which has little effect on the P2O5 content of P-rich phase, so which has little effect on the degree of phosphorus enrichment and phosphorus occurrence form of the P-bearing slag. And adding MgO and MnO into CaO-SiO2-P2O5-Fe2O3 slag system can break the complex net structure formed by Si-O on certain degree, and also hinder the precipitation of β-Ca3(PO4)2 crystal with low citric acid solubility during the melting-cooling process. Therefore, adding appropriate MgO and MnO content into slag can improve the slag P2O5 solubility, but the effect of different amounts of MgO and MnO on the P2O5 solubility has little difference. Meanwhile, adding MgO and MnO into slag can improve the metallization of slag and magnetism of iron-rich phase, make the magnetic substances content increase and separation of phosphorus and iron incomplete, so it is adverse to phosphorus resources recovery from P-bearing slag by magnetic separation method. In order to recycle the phosphorus in P-bearing converter slag, the MgO and MnO content in the P-bearing slag should be controlled in the steelmaking process.

  9. Room temperature zeolitization of boiler slag from a Bulgarian thermal power plant

    Directory of Open Access Journals (Sweden)

    Pascova Radost D.

    2017-01-01

    Full Text Available A simple and cost-effective method was applied for the synthesis of zeolite composites utilising wet bottom boiler slag from the Bulgarian coal-fired thermal power plant “Sviloza”, near the town of Svishtov. The method consisted of a prolonged alkali treatment at room temperature of this waste. Experimental techniques, such as scanning electron microscopy, energy-dispersive X-ray and X-ray diffraction analyses, are employed to characterize the initial slag and the final products with respect to their morphology, and elemental and mineral compositions. The composites synthesized in this way contained two Na-type zeolite phases: zeolite X (type FAU and zeolite Linde F (type EDI. The zeolited products and the starting slag were tested as adsorbents for a textile dye (Malachite Green from aqueous solutions. In comparison with the initial slag, the zeolite composite possessed substantially better adsorption properties: it almost completely adsorbs the dye in much shorter times. The results of this investigations revealed a new, easy and low cost route for recycling boiler slag into a material with good adsorption characteristics, which could find different applications, e.g., for purifying polluted waters, including those from the textile industry.

  10. Coal combustion aerothermochemistry research. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Witte, A.B.; Gat, N.; Denison, M.R.; Cohen, L.M.

    1980-12-15

    On the basis of extensive aerothermochemistry analyses, laboratory investigations, and combustor tests, significant headway has been made toward improving the understanding of combustion phenomena and scaling of high swirl pulverized coal combustors. A special attempt has been made to address the gap between scientific data available on combustion and hardware design and scaling needs. Both experimental and theoretical investigations were conducted to improve the predictive capability of combustor scaling laws. The scaling laws derived apply to volume and wall burning of pulverized coal in a slagging high-swirl combustor. They incorporate the findings of this investigation as follows: laser pyrolysis of coal at 10/sup 6/ K/sec and 2500K; effect of coal particle shape on aerodynamic drag and combustion; effect of swirl on heat transfer; coal burnout and slag capture for 20 MW/sub T/ combustor tests for fine and coarse coals; burning particle trajectories and slag capture; particle size and aerodynamic size; volatilization extent and burnout fraction; and preheat level. As a result of this work, the following has been gained: an increased understanding of basic burning mechanisms in high-swirl combustors and an improved model for predicting combustor performance which is intended to impact hardware design and scaling in the near term.

  11. Mineralogical analysis of metallurgical slags - an approach about its application in electric arc furnace slags; Analise mineral de escorias siderurgicas - uma abordagem sobre sua aplicabilidade em escorias de aciaria eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Lenzi, Joao Cassio Romero; Vilela, Antonio Cezar Faria; Strohaecker, Telmo Roberto [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Metalurgica e dos Materiais

    1996-12-31

    There are many factors to be considered for the consolidation of the study about slags by structural and microstructural analysis techniques of theirs mineral components. Besides the lack of some basic understanding of slags, factors as the cooling rate, the chemical composition, the crystallinity and porosity degrees, taking samples and preparing specimens procedures, among others can be listed. This work presents the development of a procedure for taking samples and preparing specimens of electric arc furnace slags for optical microscopy, and some results obtained by X-ray powder diffraction and electron probe micro analyzer (WDS and EDS) analysis techniques. among the obtained results, are the identification of the superiority of the dry grinding technique used in this study over the wet grinding procedures as well as that the sequence optical microscopy -> X-ray powder diffraction -> electron probe micro analyzer presents good results on the mineral identification of electric arc furnace slags. (author) 11 refs., 20 figs., 7 tabs.

  12. The Sulfide Capacity of Iron Oxide-Rich Slags

    Science.gov (United States)

    Motlagh, M.

    1988-03-01

    The relationship between the sulfide capacity of slags rich in iron oxide and the sulfur partition ratio between the metal and slag is strongly related to the slag's iron oxide concentration. For slags containing little or no lime, this relationship is linear for a constant concentration of iron oxide in the slag. The effect of silica on changes in the sulfide capacity of slags rich in iron oxide is similar to that of basic steel-making slags, particularly at low activity of silica in slag.

  13. MHD coal combustor technology. Final report, phase II

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The design, performance, and testing of a 20-MW coal combustor for scaleup to 50 MW for use in an MHD generator are described. The design incorporates the following key features: (1) a two-stage combustor with an intermediate slag separator to remove slag at a low temperture, thus minimizing enthalpy losses required for heating and vaporizing the slag; (2) a first-stage pentad (four air streams impinging on one coal stream) injector design with demonstrated efficient mixing, promoting high carbon burnout; (3) a two-section first-stage combustion chamber; the first stage using a thin slag-protected refractory layer and the second section using a thick refractory layer, both to minimize heat losses; (4) a refractory lining in the slag separator to minimize heat losses; (5) a second-stage combustor, which provided both de-swirl of the combustion products exiting from the slag separator and simple mixing of the vitiated secondary air and seed; (6) a dense-phase coal feed system to minimize cold carrier gas entering the first-stage combustors; (7) a dry seed injection system using pulverized K/sub 2/CO/sub 3/ with a 1% amorphous, fumed silicon dioxide additive to enhance flowability, resulting in rapid vaporization and ionization and ensuring maximum performance; and (8) a performance evaluation module (PEM) of rugged design based on an existing, successfully-fired unit. (WHK)

  14. Autoclaved Brick from Volume-Stability-Modified Steel Slag and Low Silicon Tailings

    Directory of Open Access Journals (Sweden)

    Li Peng-guan

    2016-01-01

    Full Text Available Steel slag is a major industrial waste. Because of poor volume stability, its utilization was limited. We adopted polyphosphate modified steel slag and tailings to produce the autoclaved brick. The effects of various factors influencing the performance of brick were investigated, and the results were obtained: forming water 9%, forming pressure 20MPa, curing regime 4(temperature rising, hr-4(temperature holding at 180°C, hr-natural cooling (temperature dropping. With the content of modified steel slag in brick increased from 11% to 25%, the content of cement reduced from 7% to 5%, the compressive strength value increased from 11.6MPa to 22.1MPa.

  15. Crystallization Behavior and Growing Process of Rutile Crystals in Ti-Bearing Blast Furnace Slag

    Science.gov (United States)

    Zhang, Wu; Zhang, Li; Li, Yuhai; Li, Xin

    2016-09-01

    The aim of the present work is to elucidate crystallization and growing process of rutile crystals in Ti-bearing blast furnace slag. The samples were taken from the liquid slag and quenched at once at elevated temperatures in order to analyze phase transaction of titanium and grain size of rutile crystals. Crystallization and growing kinetics of rutile crystals under elevated temperature conditions were calculated, and the crystallization process of rutile crystals under isothermal conditions was expressed by Avrami equation. The effects of experimental parameters, such as experimental temperatures, SiO2 addition, cooling rate, crystal seed addition and oxygen flow, were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), the optimal conditions for rutile crystals to grow up were obtained. Distribution and movement state of rutile crystals in the slag were analyzed.

  16. Valorization of electric arc furnace primary steelmaking slags for cement applications.

    Science.gov (United States)

    Kim, Hyung-Seok; Kim, Kee-Seok; Jung, Sung Suk; Hwang, Jin Ill; Choi, Jae-Seok; Sohn, Il

    2015-07-01

    To produce supplementary cementitious materials from electric arc furnace (EAF) slags, FeO was reduced using a two-stage reduction process that included an Al-dross reduction reaction followed by direct carbon reduction. A decrease in FeO was observed on tapping after the first-stage reduction, and further reduction with a stirred carbon rod in the second-stage reduction resulted in final FeO content below 5wt%, which is compatible with cement clinker applications. The reduced electric arc furnace slags (REAFS) mixed with cement at a unit ratio exhibited physical properties comparable to those of commercialized ground granulated blast furnace slags (GGBFS). Confocal laser scanning microscopy (CLSM) was used to obtain fundamental information on the cooling characteristics and conditions required to obtain amorphous REAFS. REAFS can be applied in cement mixtures to achieve the hydraulic properties needed for commercial use. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Steel desulphurization with synthetic slag

    Directory of Open Access Journals (Sweden)

    Heput, T.

    2007-02-01

    Full Text Available Generally speaking, sulphur is considered a harmful element for steel quality, reason why all the technological steps are being taken in order to eliminate it from the metal bath. This paper deals with the influence of the chemical composition, on the slag quantity and of the bath stirring condition upon the desulphurization process in the casting ladle by treatment with synthetic slag. The experiments were made at an open-hearth plant with the steel tapping in two ladles (the desulphurization was made with synthetic slag at one ladle while the other one was considered standard and at the electric steel plant and for the synthetic slag formation a mix was used, made, according to several receipts, of: lime (50-75%, fluorine (0-17%, bauxite (0-32% and aluminous slag (8-22%. The data were processed in the calculation programs EXCEL and MATLAB, which resulted in a series of correlations between the desulphurization degree and the chemical composition of the slag, respectively the slag quantity both for the charges bubbled with Argon and the unbubbled ones.

    En general, el azufre es considerado un elemento nocivo para la calidad del acero y, por eso, en la práctica, se toman todas las medidas de orden tecnológico para su eliminación del baño metálico. En este trabajo se analiza la influencia de la composición química, de la cantidad de escoria y del estado de agitación del baño sobre el proceso de desulfuración en la cuchara para fundir por tratamiento con escoria sintética. Los experimentos se han realizado en una acería evacuando el acero en dos ollas (en una cuchara se efectuó la desulfuración con escoria sintética y a la otra se consideró como patrón y en un acería eléctrica y para la formación de la escoria sintética se utilizó una mezcla producida según muchas recetas, formada por: cal (50-75%, fluorina (0-17%, bauxita (0-32% y escoria aluminosa (8-22%. Los datos han sido procesados en los programas de c

  18. Reduction smelting on bismuth oxide residue in FeO-SiO2-CaO ternary slag system

    Institute of Scientific and Technical Information of China (English)

    张杜超; 张新望; 杨天足; 剑锋; 刘伟锋; 陈霖; 饶帅; 肖庆凯; 郝占东

    2016-01-01

    Reduction smelting of the bismuth oxide residue from pressure leaching of bismuth sulfide was investigated in the FeO−SiO2−CaO ternary slag system. The results show that all the recovery ratios of Bi, Ag, Cu and Pb increase with the increase of reductive coal proportion, reaction temperature and time, while too much reductive coal would help Fe enter metal phase;CaO/SiO2 and FeO/SiO2 of the chosen slag system should be 0.5−0.75 and 1.25−1.75, respectively, for the reason that the slag system has the optimum mobility and is beneficial for the recovery of metals. The corresponding optimum conditions are determined as follows:the added coal proportion is 7%of the leaching residue, CaO/SiO2 mass ratio in the chosen slag system is 0.5 and FeO/SiO2 is 1.5, the reaction temperature is 1300 °C and the reaction time is 40 min. Under the above conditions, the recovery ratios of Bi, Ag, Cu and Pb are 99.6%, 99.8%, 97.0%and 97.3%, respectively.

  19. Evaluation of ash deposits during experimental investigation of co-firing of Bosnian coal with wooden biomass

    Energy Technology Data Exchange (ETDEWEB)

    Smajevic, Izet; Kazagic, Anes [JP Elektroprivreda BiH d.d., Sarajevo (Bosnia and Herzegovina); Sarajevo Univ. (Bosnia and Herzegovina). Faculty of Mechanical Engineering

    2008-07-01

    The paper is addressed to the development and use different criteria for evaluation of ash deposits collected during experimental co-firing of Bosnian coals with wooden biomass. Spruce saw dust was used for the co-firing tests with the Kakanj brown coal and with a lignite blend consisted of the Dubrave lignite and the Sikulje lignite. The coal/biomass mixtures at 93:7 %w and at 80:20 %w were tested. Experimental lab-scale facility PF entrained flow reactor is used for the co-firing tests. The reactor allows examination of fouling/slagging behaviors and emissions at various and infinitely variable process temperature which can be set at will in the range from ambient to 1560 C. Ash deposits are collected on two non-cooled ceramic probes and one water-cooled metal surface. Six different criteria are developed and used to evaluate behavior of the ash deposits on the probes: ash deposit shape, state and structure, which are analyzed visually - photographically and optically by a microscope, rate of adhesion and ash deposit strength, analyzed by physic acting to the ash deposits, and finally deposition rate, determined as a mass of the deposit divided by the collecting area and the time of collecting. Furthermore, chemical composition analysis and AFT of the ash deposits were also done to provide additional information on the deposits. (orig.)

  20. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  1. The use of blast furnace slag

    OpenAIRE

    V. Václavík; V. Dirner; T. Dvorský; J. Daxner

    2012-01-01

    The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  2. Picture analysing method of slag foaming behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Juhart, M.; Peter, M.; Koch, K. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Metallurgy; Lamut, J. [Faculty of Natural Science and Technology, Univ. Ljubljana, Ljubljana (Slovenia)

    2001-03-01

    Hot tests of foaming behaviour of steelmaking slags were conducted on a laboratory scale up to 1760 C using a Tammann furnace. The foaming behaviour of the slags was quantified on the basis of a new measuring method. The volume increase and the progress of the foaming process can be continuously observed and calculated by means of picture analysis. The gas content of foaming slags was compared with the results of the measurements performed in steel plants. The influence of the magnesia content on the foaming behaviour is investigated. The chemical composition of the slag is beside the CO evolution the decisive factor influencing slag foaming behaviour. The highest volume increase values observed lie in the region of 2500% in relation to the initial volume. (orig.)

  3. Leaching of heavy metals from steelmaking slags

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, J. F. P.; Pino, C. G.

    2006-07-01

    Leaching tests with EAF and Ladle slags were performed, using a flow through tests and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. the chemical analysis of the leachates during this period shows, in general, for both types of slag, and increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slang samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-though test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5% (Ca) and 1% (other elements). (Author) 12 refs.

  4. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  5. The Discussion about Closed Circulating Cooling Water System in Coal Chemical Industry%煤化工项目中闭式循环水系统探讨

    Institute of Scientific and Technical Information of China (English)

    安显威

    2015-01-01

    The characteristic of closed circulating cooling water system and the water-saving reason of closed cooling water were discussed. The process of closed cooling water system and some problem for closed cooling water system were introduced.%探讨了煤化工项目中循环水系统的特点和闭式冷却塔的节水原因,介绍了闭式循环水系统的流程及闭式循环水系统中可能面临的一些问题。

  6. Gravitational segregation of liquid slag in large ladle

    Directory of Open Access Journals (Sweden)

    J. Chen

    2012-04-01

    Full Text Available The process of gravitational segregation makes liquid steel slag components occur differentiation. And it shows that the upper part slag in the slag ladle contains higher CaO; and the lower part slag contains higher SiO2. The content of MgO (5,48 % in the upper part slag is higher than that of the lower part (2,50 %, and only Al2O3 content of the upper and the lower part slag is close to each other. The difference of chemical compositions in the slag ladle shows that there is gravitational segregation during slow solidification of liquid steel slag, which will has some impact of the steel slag processing on the large slag ladle.

  7. The Effect of Slag on the Effectiveness of Phosphorus Removal from Ferrous Alloys Containing Carbon, Chromium and Nickel

    Directory of Open Access Journals (Sweden)

    Kawecka-Cebula E.

    2016-03-01

    Full Text Available The aim of this study was to determine the impact of slag composition on phosphorus removal from ferrous solutions containing carbon, chromium and nickel. Additions of cryolite, Na3AlF6, were applied for better fluxing and higher phosphate capacity of the slag. An X-ray analysis of final slags formed during dephosphorization of ferrous solutions containing chromium and nickel with CaO-CaF2 or CaO-CaF2-Na3AlF6 mixtures of different chemical compositions was carried out. The equilibrium composition of the liquid and the solid phase while cooling the slags from 1673K to 298K was computed using FactSage 6.2 software. The performed equilibrium computations indicated that the slags were not entirely liquid at those temperatures. The addition of cryolite causes a substantial increase of the liquid phase of the slag. It also has a favourable effect on the dephosphorization grade of hot metal. The obtained results were statistically processed and presented in the form of regression equations.

  8. Study of decomposing carbonyl slag

    Institute of Scientific and Technical Information of China (English)

    CHEN Ai-liang; SUN Pei-mei; ZHAO Zhong-wei; LI Hong-gui; CHEN Xing-yu

    2006-01-01

    A new technology was put forward to deal with the carbonyl slag at low acidity and low oxygen pressure in the kettle.With the orthogonal experiments for analyzing the sequence of four factors and some single factor experiments for the best conditions. The best conditions are used for extracting nickel, cobalt and copper and enriching precious metals: the cupric ion concentration is 5 g/L; and pH=6; the sulfur coefficient is 1.4; the oxygen pressure is 0.08 MPa; the time bubbling oxygen is 20 min;the ratio of liquid to solid is 8:1; the leaching time is 2 h; the heating time is 2.5 h. The leaching rates of nickel and cobalt are more than 98% and that of copper is above 97%. Nickel and cobalt can be separated efficiently from copper and precious metals from the carbonyl slag. Moreover, its leaching liquor has less copper. Nickel and cobalt can be reclaimed only once. During the whole process,the leaching rates of Au and Ag are more than 99.9%, while other precious metals are still in the residue without any loss.

  9. Recent advances in the use of synchrotron radiation for the analysis of coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    Two major coal combustion problems are the formation and build-up of slag deposits on heat transfer surfaces and the production and control of toxic species in coal combustion emissions. The use of synchrotron radiation for the analysis of coal combustion products can play a role in the better understanding of both these phenomena. An understanding of the chemical composition of such slags under boiler operating conditions and as a function of the mineral composition of various coals is one ultimate goal of this program. The principal constituents in the ash of many coals are the oxides of Si, Al, Fe, Ca, K, S, and Na. The analytical method required must be able to determine the functional forms of all these elements both in coal and in coal ash at elevated temperatures. One unique way of conducting these analyses is by x-ray spectroscopy.

  10. Hydrothermal synthesis of xonotlite from carbide slag

    Institute of Scientific and Technical Information of China (English)

    Jianxin Cao; Fei Liu; Qian Lin; Yu Zhang

    2008-01-01

    Carbide slag was used as the calcareous materials for the first time to prepare xonotlite via dynamic hydrothermal synthesis.The effects of influential factors including different calcination temperatures,pretreatment methods of the carbide slag and process param-eters of hydrothermal synthesis on the microstructure and morphology of xonotlite were explored using XRD and SEM techniques.The results indicate that the carbide slag after proper calcination could be used to prepare pure xonotlite;and different calcination tern-peratures have little effect on the crystallinity of synthesized xonotlitc,but have great impact on the morphology of secondary particles.The different pretreatment methods of the carbide slag pose great impact on the crystallinity and morphology of secondary particles of xonotlite.Xonotlite was also synthesized from pure CaO under the salne experimental conditions as that prepared from calcined carbide slag for comparison.Little amount of impurities in carbide slag has no effect on the mechanism of hydrothermal synthesizing xonotlite from carbide slag.

  11. Measurement and Analysis on COP of Pre-cooling Units of Ice-cooling System for Coal Mine%矿井冰制冷降温系统预冷机组能效测试与分析

    Institute of Scientific and Technical Information of China (English)

    亓玉栋; 程卫民; 潘刚; 于岩斌

    2014-01-01

    Ice-cooling system has been successfully applied in many high temperature mines in our country, its cooling system mainly includes chilled water pre-cooling system and ice-making system. The COP ( Coefficient of Performance) and outlet water temperature of the pre-cooling system have an important influence on the whole cooling system. On the basis of the test and analysis of the cooling capacity and COP of two-stage pre-cooling units of the ice-cooling system in Tangkou Mine. the mean cooling capacity, outlet water temperature and the COP of the two-stage pre-cooling units were respectively 435 kW, 13. 6 ℃,4. 34 and 605 kW,8. 9 ℃,3. 8, and the actual COP of the two-stage pre-cooling units was much lower than their design conditions. The diagnosis and analysis on the COP should be carried out so as to improve the COP of the whole cooling system.%冰制冷降温系统已在我国多个高温矿井获得成功应用,其制冷系统主要包括冷水预冷系统和制冰系统,预冷系统制冷能效的高低及出水水温对整个制冷系统能效高低具有重要影响。通过对唐口煤矿冰制冷降温系统两级预冷机组制冷量及制冷能效( COP)的测试和分析,得出两预冷机组平均制冷量、出口水温、制冷能效分别为435 kW、13.6℃、4.34和605 kW、8.9℃、3.8,指出两预冷机组实际运行能效远低于其设计工况。为提高制冷能效,建议对机组进行能效的诊断分析。

  12. Coexistence Theory of Slag Structure and Its Application to Calculation of Oxidizing Capability of Slag Melts

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The coexistence theory of slag structure and it's application to calculation of the oxidizing capabilities of slag melts is described. It is shown that the law of mass action can be widely applied to the calculation of oxidizing capabilities of slag melts in combination with the coexistence theory of slag structure.For slag melts containing basic oxides FeO and MnO, their oxidizing capabilities can be expressed by NFetO=NFeO+6NFe2O3, while for slag melts containing basic oxides CaO, MgO, etc., in addition to FeO and MnO, their oxidizing capabilities can be given as NFetO=NFeO+6NFe2O3+8NFe3O4.

  13. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  14. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing

    Energy Technology Data Exchange (ETDEWEB)

    Liapis, Ioannis, E-mail: iliapis@sidenor.vionet.gr [AEIFOROS SA, 12th km Thessaloniki-Veroia Rd, PO Box 59, 57008 Ionia, Thessaloniki (Greece); Papayianni, Ioanna [Laboratory of Building Materials, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2015-02-11

    Highlights: • Addition of 10% perlite decreases specific weight of the slag by approx. 7.5%. • Slag-crucible interaction and thin coating layer result in variations in XRF. • XRD shows high glass content and smaller crystalline sizes due to rapid cooling. • SEM shows higher homogeneity and lower crystallisation for SiO{sub 2}/CaO-rich samples. • Physical properties (LA, PSV, AAV) of modified slag show limited deterioration. - Abstract: Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector.

  15. Mechanisms of pyrite oxidation to non-slagging species. Quarterly report, April 1, 1995--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.E.J.; Mitchell, R.E.

    1995-12-01

    This document is the fourth quarterly status report on a project that is conducted at the High Temperature Gasdynamics Laboratory at Stanford University, Stanford, California and is concerned with enhancing the transformation of iron pyrite to non-slagging species during staged, low-NO{sub x} pulverized coal (P.C.) combustion. The research project is intended to advance PETC`s efforts to improve our technical understanding of the high-temperature chemical and physical processes involved in the utilization of coal. The work focuses on the mechanistic description and rate quantification of the effects of fuel properties and combustion environment on the oxidation of iron pyrite to form the non-slagging species magnetite. The knowledge gained from this work is intended to be incorporated into numerical codes that can be used to formulate anti-slagging strategies involving minimal disturbance of coal combustor performance. This project is to be performed over the three-year period from September 1994 to August 1997. The project aims to identify the mechanisms of pyrite combustion and to quantify their effects, in order to formulate a general rate expression for the combustion of pyrite that accounts for coal properties as well as furnace conditions.

  16. Development & testing of industrial scale, coal fired combustion system, phase 3. Eighth quarterly technical progress report, 1 October, 1993--31 December, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.

    1994-01-31

    The primary objective of the present Phase 3 effort is to perform the final testing at a 20 MMBtu/hr commercial scale of an air cooled, slagging coal combustor for application to industrial steam boilers and power plants. The focus of the test effort will be on combustor durability, automatic control of the combustor`s operation, and optimum environmental control of emissions inside the combustor. In connection with the latter, the goal is to achieve 0.4 lb/MMBtu of SO{sub 2} emissions, 0.2 lb/MMBtu of NO{sub x} emissions, and 0.02 lb particulates/MMBtu. Meeting the particulate goal will require the use of a baghouse or electrostatic precipitator to augment the nominal slag retention in the combustor. The NO{sub x} emission goal will require a modest improvement over maximum reduction achieved to date in the combustor to a level of 0.26 lb/MMBtu. To reach the SO{sub 2} emissions goal may require a combination of sorbent injection inside the combustor and sorbent injection inside the boiler, especially in high (>3.5%) sulfur coals. Prior to the initiation of the project, SO{sub 2} levels as low as 0.6 lb/MMBtu, equal to 81% reduction in 2% sulfur coals, were measured with boiler injection of calcium hydrate. The final objective is to define suitable commercial power or steam generating systems to which the use of the air cooled combustor offers significant technical and economic benefits. In implementing this objective both simple steam generation and combined gas turbine-steam generation systems will be considered.

  17. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  18. Novel Sessile Drop Software for Quantitative Estimation of Slag Foaming in Carbon/Slag Interactions

    Science.gov (United States)

    Khanna, Rita; Rahman, Mahfuzur; Leow, Richard; Sahajwalla, Veena

    2007-08-01

    Novel video-processing software has been developed for the sessile drop technique for a rapid and quantitative estimation of slag foaming. The data processing was carried out in two stages: the first stage involved the initial transformation of digital video/audio signals into a format compatible with computing software, and the second stage involved the computation of slag droplet volume and area of contact in a chosen video frame. Experimental results are presented on slag foaming from synthetic graphite/slag system at 1550 °C. This technique can be used for determining the extent and stability of foam as a function of time.

  19. Leaching of aluminum and iron from boiler slag generated from a typical Chinese Steel Plant.

    Science.gov (United States)

    Li, Jinping; Gan, Jinhua; Li, Xianwang

    2009-07-30

    This paper presents a new way of recycling aluminum and iron in boiler slag derived from coal combustion plants, which integrates efficient extraction and reuse of the leached pellets together. The boiler slag was pelletized together with washed coal and lime prior to sintering and then was sintered at 800-1200 degrees C for different periods to produce sintered pellets for the leaching test. An elemental analysis of aqueous solutions leached by sulfuric acid was determined by EDTA-Na(2)-ZnCl(2) titration method. The components and microstructures of the samples, sintered pellets and leached residue were examined by means of XRF, XRD and SEM. XRD analysis indicates that predominate minerals such as kaolinite, quartz, calcium silicide, hematate and metakoalin exist in the boiler slag. An aluminum extraction efficiency of 86.50% was achieved. The maximum extraction efficiency of Fe was 94.60% in the same conditions of that for the maximum extraction efficiency of Al. The extraction efficiencies of Al and Fe increased with an increase in temperature, leaching time and acidity. High Al extraction efficiency was obtained for pellets with high CaO content. The final product of alumina would be used directly for the production of metallic aluminum.

  20. Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.

    Science.gov (United States)

    de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson

    2015-04-01

    The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness.

  1. Rate of coal devolatilization in iron and steelmaking processes

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio, R.S.; Rio Doce, C.V. do; Fruehan, R.J.; Ozturk, B. (Carnegie Mellon Univ., Pittsburgh, PA (United States). Center for Iron and Steel Making Research)

    1991-01-01

    The devolatilization of coal particles under ironmaking and steelmaking conditions was studied. A new experimental technique was developed to measure the rates of devolatilization. A unique method was used to prepare coal particles based on thick coal bands rich in a given maceral group. Experiments with these single particles gave good reproducibility. The rates of devolatilization for all coal types from low to high rank coals were measured in the gaseous atmosphere and within the slag phase. Real time x-ray images were taken for high volatile, low volatile and anthracite coals devolatilizing in a molten smelting slag. The rate in terms of percentage devolatilization were relatively independent of coal type and a small function of furnace temperature at high heating rates and temperatures studied. The rates depended on particle size and heating rates. The results were consistent with internal transport controlled processes primarily heat transfer. Furthermore the rates were the same in the gas and slag phase which is consistent with heat transfer control.

  2. Blast furnace slags as sorbents of phosphate from water solutions.

    Science.gov (United States)

    Kostura, Bruno; Kulveitová, Hana; Lesko, Juraj

    2005-05-01

    The paper is focused on the sorption of phosphorus from aqueous solutions by crystalline and amorphous blast furnace slags. Slag sorption kinetics were measured, adsorption tests were carried out and the effect of acidification on the sorption properties of slags was studied. The kinetic measurements confirmed that the sorption of phosphorus on crystalline as well as amorphous slags can be described by a model involving pseudo-second-order reactions. For all slag types, phosphorus sorption follows the Langmuir adsorption isotherm. The acid neutralizing capacities of crystalline and amorphous slags were determined. In the case of the crystalline slags, buffering intervals were found to exist during which the slag minerals dissolve in the sequence bredigite-gehlenite-diaspor. There is a high correlation (R2=0.9989) between ANC3.8 and the saturation capacities of crystalline and amorphous slags.

  3. Reduction Kinetics of MnO from High-Carbon Ferromanganese Slags by Carbonaceous Materials in Ar and CO Atmospheres

    Science.gov (United States)

    Safarian, J.; Tranell, G.; Kolbeinsen, L.; Tangstad, M.; Gaal, S.; Kaczorowski, J.

    2008-10-01

    The kinetics of MnO reduction from synthetic and industrial high-carbon ferromanganese slags were investigated using a sessile drop technique at 1600 °C. The effects of the reductant type, ambient atmosphere, and slag composition on the MnO reduction were illuminated. Six different types of carbonaceous reductants were used as substrates for small slag droplets, which were reacted in a CO or Ar atmosphere, with the reaction studied in situ. The cross sections of the reacted slag-carbon samples were subsequently studied by electron-probe microanalysis (EPMA), to find the extent of the MnO reduction as a function of the reaction time. It was found that the rate of the MnO reduction is affected by both the type of reductant and the ambient atmosphere. It was observed that the MnO reduction rate from synthetic slag by cokes produced from single coals is lower than that from industrial cokes. Reduction rates obtained when charcoal was used as the reductant were higher than when coke was used, while the CO atmosphere yielded a faster initial MnO reduction than did the Ar atmosphere. It was found that the faster reduction rates in the CO atmosphere are related to the MnO reduction by CO gas. A newly developed kinetic method was applied, to calculate the rate constants for the MnO reduction by carbon and CO that considered the reaction interfaces. It was indicated that the rate of the MnO reduction by CO is less than that by carbon; however, the contribution of these reductants to slag reduction is very dependent on their contact with the slag.

  4. Settling of copper drops in molten slags

    Science.gov (United States)

    Warczok, A.; Utigard, T. A.

    1995-02-01

    The settling of suspended metal and sulfide droplets in liquid metallurgical, slags can be affected by electric fields. The migration of droplets due to electrocapillary motion phenomena may be used to enhance the recovery of suspended matte/metal droplets and thereby to increase the recovery of pay metals. An experimental technique was developed for the purpose of measuring the effect of electric fields on the settling rate of metallic drops in liquid slags. Copper drops suspended in CaO-SiO2-Al2O3-Cu2O slags were found to migrate toward the cathode. Electric fields can increase the settling rate of 5-mm-diameter copper drops 3 times or decrease the settling until levitation by reversal of the electric field. The enhanced settling due to electric fields decreases with increasing Cu2O contents in the slag.

  5. Electroreduction Kinetics for Molten Oxide Slags

    Institute of Scientific and Technical Information of China (English)

    GAO Yun-ming; CHOU Kuo-chih; GUO Xing-min; WANG Wei

    2007-01-01

    The oxygen-ion conductor, the reducing agent, and the molten oxide slag containing electroactive matter were used as constituent of a galvanic cell. Metal was directly electroreduced from molten slag using a short-circuit galvanic cell. The following galvanic cell was assembled in the present experiment: graphite rod, [O]Fe-C saturated|ZrO2(MgO)|Cu(l)+(FeO)(slag), and molybdenum wire. The FeO electroreduction reaction was studied through measuring short circuit current by controlling factors such as temperature, the FeO content in molten slags, and the external circuit resistance. An overall kinetics model was developed to describe the process of FeO electroreduction. It was found that the modeled curves were in good agreement with the experimental values. The new oxide reduction method in the metallurgy with controlled oxygen flow was proposed and the metallurgical theory with controlled oxygen flow was developed.

  6. Research and Industrial Application of a Process for Direct Reduction of Molten High-Lead Smelting Slag

    Science.gov (United States)

    Li, Weifeng; Zhan, Jing; Fan, Yanqing; Wei, Chang; Zhang, Chuanfu; Hwang, Jiann-Yang

    2017-01-01

    A pyrometallurgical process for the direct reduction of molten high-lead smelting slag obtained by the Shuikoushan (SKS) method was reported in this article using solid anthracite as the fuel and reductant. The chemical composition, the lead phase composition, and the physical properties of the molten high-lead slag were examined. The effects of the process parameters on the recovery rate of valued metals were investigated in the laboratory. According to the experimental results, a new efficient bottom blow reduction furnace was employed in the pilot-scale test for high-lead slag reduction. The results showed the average recovery rate of lead was more than 96.0% with lower Pb and high Zn content of the reducing slag under the condition of reduction temperature 1100-1200°C, coal ratio 5.5-7.5%, reduction time 90-150 min, CaO/SiO2 ratio 0.35-0.45, and FeO/SiO2 ratio 1.4-1.55. Moreover, nearly 250 kg of standard coal per ton of crude Pb output was reduced compared with the blast furnace reduction process.

  7. Soil Stabilisation Using Ground Granulated Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Pathak

    2014-05-01

    Full Text Available Stabilisation is a broad sense for the various methods employed and modifying the properties of a soil to improve its engineering performance and used for a variety of engineering works. In today‟s day soil stabilisation is the major problem for civil engineers, either for construction of road and also for increasing the strength or stability of soil and reduces the construction cost. In this thesis the soil are stabilised by ground granulated blast furnace slag (GGBS and this material is obtained from the blast furnace of cement plant, which is the byproduct of iron (from ACC plant, sindri. It is generally obtained in three shaped one is air cooled, foamed shaped and another is in granulated shaped. The use of by-product materials for stabilisation has environmental and economic benefits. Ground granulated blast furnace slag (GGBS material is used in the current work to stabilise soil (clay. The main objectives of this research were to investigate the effect of GGBS on the engineering property (optimum moisture content and maximum dry density, plastic limit, liquid limit, compaction, unconfined compressive strength, triaxial and California bearing ratio test of the soil and determine the engineering properties of the stabilised.

  8. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Tervola, K. [Oulu Univ. (Finland). Dept. of Process Engineering

    1996-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquidus temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) SULA 2 Research Programme; 2 refs.

  9. Sulfide capacities of fayalite-base slags

    Science.gov (United States)

    Simeonov, S. R.; Sridhar, R.; Toguri, J. M.

    1995-04-01

    The sulfide capacities of fayalite-base slags were measured by a gas-slag equilibration technique under controlled oxygen and sulfur potentials similar to those encountered in the pyrometallurgical processing of nonferrous metals. The oxygen pressure range was from 10-9.5 to 10-11 MPa and the sulfur pressure range from 10-3 to 10-4.5 MPa, over a temperature range of 1473 to 1623 K. The slags studied were FeO-SiO2 at silica saturation and those with addition of CaO, MgO, and Al2O3 to determine their effect on sulfide capacities. For these slags, the sulfide capacities were found to vary from 10-3.3 to 10-5. The sulfide capacities increased with increasing temperature from 1473 to 1623 K. A comparison of the reported plant data on sulfur content of industrial slags shows good agreement with the present experimental results. The present data will be useful in estimating metal losses in slag due to metal sulfide entrainment in nonferrous smelters.

  10. Calculation of sulfide capacities of multicomponent slags

    Science.gov (United States)

    Pelton, Arthur D.; Eriksson, Gunnar; Romero-Serrano, Antonio

    1993-10-01

    The Reddy-Blander model for the sulfide capacities of slags has been modified for the case of acid slags and to include A12O3 and TiO2 as components. The model has been extended to calculate a priori sulfide capacities of multicomponent slags, from a knowledge of the thermodynamic activities of the component oxides, with no adjustable parameters. Agreement with measurements is obtained within experimental uncertainty for binary, ternary, and quinary slags involving the components SiO2-Al2O3-TiO2-CaO-MgO-FeO-MnO over wide ranges of composition. The oxide activities used in the computations are calculated from a database of model parameters obtained by optimizing thermodynamic and phase equilibrium data for oxide systems. Sulfur has now been included in this database. A computing system with automatic access to this and other databases has been developed to permit the calculation of the sulfur content of slags in multicomponent slag/metal/gas/solid equilibria.

  11. Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    1998-09-30

    Coal Tech Corp's mission is to develop, license & sell innovative, lowest cost, solid fuel fired power systems & total emission control processes using proprietary and patented technology for domestic and international markets. The present project 'DEVELOPMENT & TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3' on DOE Contract DE-AC22-91PC91162 was a key element in achieving this objective. The project consisted of five tasks that were divided into three phases. The first phase, 'Optimization of First Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor', consisted of three tasks, which are detailed in Appendix 'A' of this report. They were implemented in 1992 and 1993 at the first generation, 20 MMBtu/hour, combustor-boiler test site in Williamsport, PA. It consisted of substantial combustor modifications and coal-fired tests designed to improve the combustor's wall cooling, slag and ash management, automating of its operation, and correcting severe deficiencies in the coal feeding to the combustor. The need for these changes was indicated during the prior 900-hour test effort on this combustor that was conducted as part of the DOE Clean Coal Program. A combination of combustor changes, auxiliary equipment changes, sophisticated multi-dimensional combustion analysis, computer controlled automation, and series of single and double day shift tests totaling about 300 hours, either resolved these operational issues or indicated that further corrective changes were needed in the combustor design. The key result from both analyses and tests was that the combustor must be substantially lengthened to maximize combustion efficiency and sharply increase slag retention in the combustor. A measure of the success of these modifications was realized in the third phase of this project, consisting of task 5 entitled: 'Site Demonstration with the Second Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech

  12. Optimization of Blast Furnace Slag Flushing Water System%莱钢高炉水冲渣系统优化改造

    Institute of Scientific and Technical Information of China (English)

    蒋彦刚; 王晔霞; 殷煜伟

    2012-01-01

      针对莱钢股份炼铁厂4座1080 m3高炉渣处理系统存在水泵振动,渣沟跑水、跑汽等问题,采取消除水泵振动,冷却塔升级改造,提高渣池循环水自然降温能力,优化改造渣沟系统,应用“管改沟”等措施,对高炉水冲渣系统进行优化改造,提高了设备运行稳定性,消除了渣沟区域的安全隐患,减少了渣沟跑蒸汽对金属结构的腐蚀,高炉渣沟区域跑水、跑蒸汽现象显著减少。%  Aiming at water pump vibration, slag spout running water, running steam and other problems in Laiwu Steel’s slag treatment system of 1 080 m3 BF, through eliminating pump vibration, cooling tower upgrade, increasing natural cooling capacity of slag pool circulation water, optimizing slag spout system and using“replaced pipe by slag spout”, the system is optimized. The measures improved the stability of equipment operation, eliminated the security risk of slag spout area, decreased metal corrosion caused by running steam.

  13. Studying the melting behavior of coal, biomass, and coal/biomass ash using viscosity and heated stage XRD data

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Folkedahl, B.; Dam-Johansen, Kim

    2006-01-01

    a high-temperature rotational viscometer and a hot stage XRD. The produced data were used to calculate the operating temperature of a pilot-scale entrained flow reactor during the cocombustion of biomass/ coal samples in order to ensure the slag flow and to avoid corrosion of the walls due to liquid slag......The use of biomass for power generation can result in significant economical and environmental benefits. The greenhouse emissions can be reduced as well as the cost of the produced electricity. However, ash-related problems, including slagging, agglomeration, and corrosion, can cause frequent...... unscheduled shutdowns, decreasing the availability and increasing the cost of the produced power. In addition, the fouling of the heat exchange surfaces reduces the system efficiency. In this work the melting and rheological properties of various biomass and biomass/ coal ash samples were studied by using...

  14. Investigation of Freeze-Linings in Copper-Containing Slag Systems: Part I. Preliminary Experiments

    Science.gov (United States)

    Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2013-06-01

    Slag freeze-linings are increasingly used in industrial pyrometallurgical processes to insure that furnace integrity is maintained in aggressive high-temperature environments. Most previous studies of freeze-linings have analyzed the formation of slag deposits based solely on heat-transfer models. The focus of the present research is to determine the impact of slag chemistry and local process conditions on the microstructures, thickness, stability, and heat-transfer characteristics of the frozen deposit at steady-state conditions. The formation of the freeze-linings is studied under controlled laboratory conditions using an air-cooled "cold-finger" technique for Cu-Fe-Si-Al-O slag at equilibrium with metallic copper relevant to the industrial copper smelting processes. The phase assemblages and microstructures of the deposits formed in the cold-finger experiments differ significantly from those expected from phase equilibrium considerations. The freeze-lining deposits have been found, in general, to consist of several layers. Starting from the cold finger, these layers consist of glass; glass with microcrystalline precipitates; closed crystalline layer; and open crystalline layer. Even at steady-state conditions, there was no primary phase sealing layer of delafossite [Cu2O · (Al, Fe)2O3] present at the deposit/liquid interface—these observations differ markedly from those expected from phase equilibrium considerations. The findings have significant practical implications, and potential for the improved design and operation of industrial metallurgical furnaces.

  15. A burner for plasma-coal starting of a boiler

    Science.gov (United States)

    Peregudov, V. S.

    2008-04-01

    Advanced schemes of a plasma-coal burner with single-and two-stage chambers for thermochemical preparation of fuel are described. The factors causing it becoming contaminated with slag during oil-free starting of a boiler are considered, and methods for preventing this phenomenon are pointed out.

  16. A burner for plasma-coal starting of a boiler

    Energy Technology Data Exchange (ETDEWEB)

    V.S. Peregudov [Kutateladze Institute of Thermal Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2008-04-15

    Advanced schemes of a plasma-coal burner with single-and two-stage chambers for thermochemical preparation of fuel are described. The factors causing it becoming contaminated with slag during oil-free starting of a boiler are considered, and methods for preventing this phenomenon are pointed out.

  17. Coal blend combustion: fusibility ranking from mineral matter composition

    Energy Technology Data Exchange (ETDEWEB)

    C. Goni; S. Helle; X. Garcia; A. Gordon; R. Parra; U. Kelm; R. Jimenez; G. Alfaro [Universidad de Concepcion, Concepcion (Chile). Departamento de Ingenieria Metalurgica, Instituto de Geologia Economica Aplicada (GEA)

    2003-10-01

    Although coal blends are increasingly utilized at power plants, ash slagging propensity is a non-additive property of the pure coals and hence difficult to predict. Coal ash tendency to slag is related to its bulk chemistry and ash fusion temperatures, and the present study aims to compare the results obtained from thermodynamic simulation with characterization of samples obtained as outcomes of plant-based coal-blend combustion trials at three utilities located in the Centre and North of Chile. Pulverized coal and plant residues samples from five families of binary blends tested in an experimental program were characterized for chemistry, mineralogy and maceral composition. The slagging was evaluated by determination of fusion curves using the MTDATA software and NPLOX3 database for the main coal ash oxides. The ranking obtained was approximately the same as obtained from carbon in the fly ashes and from plant residues observations. The thermodynamic modeling was a valid option to predict the fusibility during the combustion of blends. 16 refs., 7 figs., 1 tab.

  18. Osmundiron, cleaved iron bars and slags (Osmundjern, kloder og kalotslagger)

    DEFF Research Database (Denmark)

    Buchwald, Vagn Fabritius

    1996-01-01

    Investigation of so-called Osmund iron, iron bars and slags from iron production in the medieval ages.......Investigation of so-called Osmund iron, iron bars and slags from iron production in the medieval ages....

  19. Keeping Warm Without Coal

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Heat-pump technology offers a clean heating alternative to coal With no air conditioning or indoor heating, families in southeast Beijing’s Fangzhuang neighbor-hood still enjoy refreshing warm air all year round. The secret is in the pump technology. Heat pumps cool the homes in summer and warm them in winter just like a central air-conditioning system.

  20. Experimental determination and numerical simulation of viscositites in slag-systems under gasification conditions; Experimentelle Bestimmung und numerische Simulation von Viskositaeten in Schlackesystemen unter Vergasungsbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Nentwig, Thomas

    2011-07-01

    Silica melts are reflected in many different industrial and natural processes such as slags in steel production and gasification of coal, glass in the glass making industry, lava in the volcanology and in lots of other fields. Rheological properties like the viscosity of this silica melts are really important in all of these processes. A general and good working viscosity model would help all scientists and engineers, who have to simulate and optimise these processes. First, it is important to have the possibility to measure viscosities of slags. As part of this PhD thesis a new high-temperature high-pressure rotational viscosimeter is developed for measurements up to {>=}1600 C and 20 bar. Particularly in relation to the coal gasification process this two parameters are really important, because coal gasification occurs under high temperatures and high pressures. With this new viscosimeter it is possible to measure slag viscosities under realistic gasification conditions. To show that the new viscosimeter works quite good viscosity measurements of four real slags have been done. The influence of pressure and atmosphere on viscosity have been examined. The measurements are also compared with different viscosity models. The Arrhenius- and Weymann-Equation have been determined and the correlation between viscosity and basicity of the slag has been evaluated. In the second part of the Phd thesis a new viscosity model is developed. The model is based on the structure inside the slag and consists in existing thermodynamic models. After a detailed literature research the model is developed for the SiO{sub 2}-Al{sub 2}O{sub 3}-Na{sub 2}O-K{sub 2}O system. The quality of this new model is estimated by comparing calculated viscosity values with measurements found during the literature research. The new model is also compared with other existing models for viscosity calculation.

  1. Recycling and valorisation of stainless steel slags

    Energy Technology Data Exchange (ETDEWEB)

    Van Dessel, J. [Belgian Building Research Institute, Brussels (Belgium)

    2001-07-01

    The project described in this paper involves the collaboration of eleven partners. The project aims to create a value-added product by recovering usable non-ferrous metals from the production of stainless steel and use the recycled slag as a secondary material for road construction and concrete applications. The objective of the project is to return the metal contained in the slag to stainless steel production, and to treat the non-metallic slag, perhaps by a metallurgical process based upon direct plasma technology, prior to use in a variety of processes. The project also aims to investigate the environmental characteristics of the slag, which is essential for it to be used as secondary material. The major challenge appears to be the development of an improved process for separating the slag from the metallic particles in order to avoid the frequent breakdowns and significant repairs associated with use of the material. It is expected that using magnetic and density-based separation processes will reduce the cost of maintenance by about 20 per cent. Results achieved to date, and economic factors impacting on feasibility, are also discussed. 2 tabs., 3 figs.

  2. Process-integrated slag treatment; Prozessintegrierte Schlackebehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Koralewska, R.; Faulstich, M. [Technische Univ., Garching (Germany). Lehrstuhl fuer Wasserguete- und Abfallwirtschaft

    1998-09-01

    The present study compares two methods of washing waste incineration slag, one with water only, and one which uses additives during wet deslagging. The presented aggregate offers ideal conditions for process-integrated slag treatment. The paper gives a schematic description of the integrated slag washing process. The washing liquid serves to wash out the readily soluble constituents and remove the fines, while the additives are for immobilising heavy metals in the slag material. The study is based on laboratory and semi-technical trials on the wet chemical treatment of grate slag with addition of carbon dioxide and phosphoric acid. [Deutsch] Die dargestellten Untersuchungen beziehen sich auf den Vergleich zwischen einer Waesche der Muellverbrennungsschlacke mit Wasser und unter Zugabe von Additiven im Nassentschlacker. In diesem Aggregat bieten sich optimale Voraussetzungen fuer eine prozessintegrierte Schlackebehandlung. Die Durchfuehrung der integrierten Schlackewaesche wird schematisch gezeigt. Durch die Waschfluessigkeit sollen die leichtloeslichen Bestandteile ausgewaschen und die Feinanteile ausgetragen sowie durch die Additive zusaetzlich die Schwermetalle im Schlackematerial immobilisiert werden. Dazu erfolgten Labor- und halbtechnische Versuche zur nasschemischen Behandlung der Rostschlacken unter Zugabe von Kohlendioxid und Phosphorsaeure. (orig./SR)

  3. Use of slag for dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishna, K.R.; Viraraghavan, T. [Univ. of Regina, Saskatchewan (Canada). Faculty of Engineering

    1998-09-01

    Adsorption techniques employing activated carbon have been found to be reasonably effective in the removal of some of the ionic impurities in water. However, economic considerations may require the use of inexpensive sorbents which are either naturally available or available as waste products from manufacturing processes. Slag is one such waste product obtained during the manufacture of steel, and the present study investigates dye removal characteristics of slag from colored waters. Aqueous solutions prepared from commercial grade acid, basic, and disperse dyes were used in this study, and batch pH, kinetic, and isotherm studies were undertaken on a laboratory scale. The data were evaluated for applicability to the Langmuir, Freundlich, and BET isotherm models, and the removal capacity of slag was compared with that of granular activated carbon. Results indicated approximately 94% removal of the disperse dye by slag, compared with a removal of approximately 49% achieved by activated carbon. Removal of acid dyes (dyes containing anionic groups) was reasonably good (approximately 47 and 74%), though not as good as obtained using activated carbon (approximately 100%). Column studies were conducted with a disperse dye (nonionic, slightly soluble in water), and analysis of data showed a sorption capacity of 1.3 mg of disperse dye per gram of slag. However, effluent dye concentrations were found to be higher than the permissible levels for discharge to receiving waters.

  4. X-ray fluoroscopic observation of slag foaming; Slag no awadachi gensho no x sen toshi kansatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y.; Tokumitsu, N. [Nippon Steel Corp., Tokyo (Japan)

    2001-01-01

    Slag foaming caused by slag/metal reaction in a graphite crucible was observed with X-ray fluoroscopic apparatus in order to make clear the effect of bubble size on the foam height and the distribution of bubbles in slag. It was observed that the foam layer was formed when CO bubbles evolved at slag/metal interface became less than approximately 2mm in diameter. The foam height increased with the decrease of bubble size even in case of almost the same gas evolution rate. The size of bubbles decreased with the increase of iron oxide Content in slag and the decrease of sulphur content. It is considered that the bubbles become smaller when slag is wettable with metal. Therefore, the physical properties of slag/metal interface also affect the foam height besides the surface tension or viscosity of slag because they change the bubble size. (author)

  5. Non-isothermal Crystallization Kinetics of Spinels in Vanadium Slag with High CaO Content

    Science.gov (United States)

    Zhou, Wang; Xie, Bing; Tan, Wen-Feng; Diao, Jiang; Zhang, Xie; Li, Hong-Yi

    2016-09-01

    This paper investigated the non-isothermal crystallization kinetics of the spinel crystals in vanadium slags containing high CaO content. Experiments were performed in combination with theoretical calculation to address this issue, and statistical analyses based on the Crystal Size Distribution theory. The results indicate that low cooling rate and high CaO content benefit the growth of spinel crystals. The growth mechanism is revealed to be controlled by interface reactions and diffusion at the cooling rates of 5 K/min and 15 K/min, respectively. However, at higher temperatures (>1673 K), the growth of spinel crystals is controlled by nucleation. While the temperature is decreased to 1523 K at the cooling rate of 5 K/min, the mean diameter of spinel crystals could reach 36.44 μm. Experimental results combining with theoretical reveal that low cooling rate benefits spinels growth, especially for the interval of 1523 K-1200 K.

  6. Studying properties of carbonaceous reducers and process of forming primary titanium slags

    Directory of Open Access Journals (Sweden)

    T. K. Balgabekov

    2014-10-01

    Full Text Available When smelting a rich titanium slag the most suitable are low-ash reducers, and the studies revealed the suitability for this purpose of special coke and coal. An important property of a reducer is its specific resistance. Therefore there were carried out studies for measuring electric resistance of briquettes consisting of ilmenite concentrate and different carbonaceous reducers. It is recommended to jointly smelt the briquetted and powdered burden (the amount of the powdered burden varies form 20 tо 50 %, this leads to the increase of technical-economic indicators of the process.

  7. Investigation of the Freeze-Lining Formed in an Industrial Copper Converting Calcium Ferrite Slag

    Science.gov (United States)

    Fallah-Mehrjardi, Ata; Jansson, Jani; Taskinen, Pekka; Hayes, Peter C.; Jak, Evgueni

    2014-06-01

    Pyrometallurgical coppermaking processes are operated under intensive reaction conditions; high process temperatures and vigorous bath agitation is used to increase the kinetics of reactions and to achieve high smelter throughput. Slag freeze-lining reactor wall protection is a widely used technology in coppermaking processes, such as flash smelting and converting reactors. Freeze-linings mitigate and resist the effects of thermal and chemical attack by aggressive slags. In this laboratory-based study, a water-cooled probe "cold finger" technique has been used to investigate freeze-lining formation with calcium ferrite slags in equilibrium with metallic copper; the slag composition reflects that used in the industrial copper flash converting furnace of Rio Tinto—Kennecott Utah Copper. The effects of probe immersion times on the thickness and microstructures in the freeze-lining deposits have been investigated. A range of complex oxide solutions and copper-containing phases have been found in the deposits. The phase assemblages formed from the industrial calcium ferrite slag in the steady-state deposit are very complex and information on the phase equilibria of the multi-component systems with addition of minor elements may not be available. Subsolidus and subliquidus phase equilibria in the Cu-Ca-Fe-O system at metallic copper saturation along with interpolated temperature across the deposit, microstructural changes and compositional trends in the phases in the deposit have been used to understand the formation and characteristics of the phases in the steady-state freeze-lining. Also, it has been shown that under steady-state conditions a dense sealing layer consisting primarily of the spinel primary phase is formed at the deposit/liquid interface; however, the interface temperature is below the liquidus temperature. The findings of the study have potentially important implications for the operation of the converting furnace and the design of freeze linings in

  8. ADVANCED HETEROGENEOUS REBURN FUEL FROM COAL AND HOG MANURE

    Energy Technology Data Exchange (ETDEWEB)

    Melanie D. Jensen; Ronald C. Timpe; Jason D. Laumb

    2003-09-01

    This study was performed to investigate whether the nitrogen content inherent in hog manure and alkali used as a catalyst during processing could be combined with coal to produce a reburn fuel that would result in advanced reburning NO{sub x} control without the addition of either alkali or ammonia/urea. Fresh hog manure was processed in a cold-charge, 1-gal, batch autoclave system at 275 C under a reducing atmosphere in the presence of an alkali catalyst. Instead of the expected organic liquid, the resulting product was a waxy solid material. The waxy nature of the material made size reduction and feeding difficult as the material agglomerated and tended to melt, plugging the feeder. The material was eventually broken up and sized manually and a water-cooled feeder was designed and fabricated. Two reburn tests were performed in a pilot-scale combustor. The first test evaluated a reburn fuel mixture comprising lignite and air-dried, raw hog manure. The second test evaluated a reburn fuel mixture made of lignite and the processed hog manure. Neither reburn fuel reduced NO{sub x} levels in the combustor flue gas. Increased slagging and ash deposition were observed during both reburn tests. The material-handling and ash-fouling issues encountered during this study indicate that the use of waste-based reburn fuels could pose practical difficulties in implementation on a larger scale.

  9. Low-rank coal research. Quarterly report, January--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  10. Electrochemistry of oxygen ion transport in slag

    Institute of Scientific and Technical Information of China (English)

    鲁雄刚; 丁伟中; 李福燊; 李丽芬; 周国治

    2002-01-01

    A systematic experiment relating to the electrochemistry of oxygen ion transport in slag has been studied in lab.An equivalent circuit has been used to describe ion transfer between metal and slag in this paper and a kinetic model with electrochemical characteristic representing oxygen ion immigration has been worked out.The different experimental phenomena can be explained generally by this model.It can be seen that the theoretical results are in good agreement with experiments.The comparison of experimental data with model calculation proved that the electrochemical model is right.

  11. Limitation of Sulfide Capacity Concept for Molten Slags

    Science.gov (United States)

    Jung, In-Ho; Moosavi-Khoonsari, Elmira

    2016-04-01

    The sulfide capacity concept has been widely used in pyrometallurgy to define sulfur removal capacities of slags. Typically, the sulfide capacity is considered to be a unique slag property depending only on temperature regardless of partial pressures of oxygen and sulfur. In the present study, it is demonstrated that sulfide capacities of slags in particular those of Na2O-containing slags can vary with partial pressures of oxygen and sulfur due to large solubility of sulfide in Na2O-containing slag systems.

  12. Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass

    Directory of Open Access Journals (Sweden)

    Mangutova Bianka V.

    2004-01-01

    Full Text Available Glass-ceramics composites were produced based on fly-ash obtained from coal power stations, metallurgical slag from ferronickel industry and waste glass from TV monitors, windows and flasks. Using 50% waste flask glass in combination with fly ash and 20% waste glass from TV screens in combination with slag, E-modulus and bending strength values of the designed systems are increased (system based on fly ash: E-modulus from 6 to 29 GPa, and bending strength from 9 to 75 MPa. The polyurethane foam was used as a pore creator which gave the material porosity of 70(5% (fly ash-glass composite and a porosity of 65( 5% (slag-glass composite. E-modulus values of the designed porous systems were 3.5(1.2 GPa and 8.1(3 GPa, while the bending strength values were 6.0(2 MPa and 13.2(3.5 MPa, respectively. These materials could be used for the production of tiles, wall bricks, as well as for the construction of air diffusers for waste water aeration.

  13. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production

    Science.gov (United States)

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-06-01

    To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400-800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively.

  14. Achieving waste to energy through sewage sludge gasification using hot slags: syngas production

    Science.gov (United States)

    Sun, Yongqi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    To relieve the environmental issues of sewage sludge (SS) disposal and greenhouse gas (GHG) emission in China, we proposed an integrated method for the first time to simultaneously deal with these two problems. The hot slags below 920 °C could act as a good heat carrier for sludge gasification and the increasing CO2 concentration in CO2/O2 atmospheres enhanced the production of CO and H2 at 400–800 °C. Three stages of syngas release were clearly identified by Gaussian fittings, i.e., volatile release, char transformation and fixed carbon reaction. Additionally, the effect of sulfur retention of slags and the synergy effect of the stabilization of toxic elements in the solid residuals were discovered in this study. Furthermore, a novel prototype of multiple industrial and urban systems was put forward, in which the produced CO + H2 could be utilized for direct reduced iron (DRI) production and the solid residuals of sludge ash and glassy slags would be applied as cementitious materials. For a steel plant with an annual production of crude steel of 10 million tons in China, the total annual energy saving and GHG emission reduction achieved are 3.31*105 tons of standard coal and 1.74*106 tons of CO2, respectively. PMID:26074060

  15. Impact of electro slag remelting on 14 109 steel properties

    Directory of Open Access Journals (Sweden)

    Pribulová A.

    2017-03-01

    Full Text Available The Electro Slag Remelting (ESR is one of the remelting processes in the field of metal refinery. In this process, the slag plays various roles, such as heat generation, protection of melt, and chemical refining. The main objective of the experiments described in this article was to identify the most appropriate slag composition for the electro slag remelting of the steel in order to achieve the chemical composition compliant with the standard applicable to the given steel, minimum sulphur content, minimum contents of oxide and sulphide inclusions, as well as mechanical properties corresponding to the standard applicable to the steel STN 14 109. Ten electrodes were remelted, whereas the remelting was carried out under 8 slags. The used slags containing 70% of CaF2 and 30% of Al2O3 with different addition of CaO, the slags consisted of the same components as previous slags, whereas the ratio of individual components was 1:1:1, and with SiO2 and MgO and slag without Al2O3. With regard to all the above mentioned facts, the slag types which may be regarded as the most appropriate for the STN 14 109 steel remelting are the basic slags containing 70% of CaF2 - 30% of Al2O3 with added 30 and 45 weight % of CaO.

  16. Research and development of blasting abrasive made of steelmaking slag

    Institute of Scientific and Technical Information of China (English)

    TANG Oujing

    2015-01-01

    This study focuses on the development of a new type of nonmetallic steelmaking slag abrasive.The performance,processing,and application of steelmaking slag as a nonmetallic abrasive are introduced.The chemical composition,hardness,crushing value,and particle gradation of steelmaking slag are analyzed.A processing method for steelmaking slag as a blasting abrasive is suggested and evaluated.Compared with conventional abrasives such as copper ore sand and cast iron shot,processed steelmaking slag exhibits similar performance and can satisfy abrasive technical requirements.The derusting effect provided by steelmaking slag for a ship deck can reach the Sa2.0 level,and its recyclability is higher than that of copper ore sand.The derusting performance of steelmaking slag is similar to that of copper ore,and it can thus be used in repairing ship decks.

  17. Separation of Iron Droplets From Titania Bearing Slag

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-yu; LOU Tai-ping; ZHANG Li; SUI Zhi-tong

    2008-01-01

    Owing to smelting vanadium-titanium magnetite ore, the amount of iron entrainment in slag as droplets is far higher than that in conventional BF slag. However, the iron droplets can be easily settled by blowing air into the molten slag. The results show that more than 80% of iron droplets in titania bearing slag can be settled and separated after treatment. The temperature rise of molten slag during the oxidizing process and the decreased viscosity caused by the component change of slag as well as air stirring in slag both accelerate the iron droplets settling. The vanadium content in the settled iron droplets and the original iron droplets was obtained by chemical analysis. The possible reason for the increased vanadium in the settled iron droplets was discussed by thermodynamic principles.

  18. Characteristics and environmental aspects of slag: a review

    Science.gov (United States)

    Piatak, Nadine M.; Parsons, Michael B.; Seal, Robert R., II

    2015-01-01

    Slag is a waste product from the pyrometallurgical processing of various ores. Based on over 150 published studies, this paper provides an overview of mineralogical and geochemical characteristics of different types of slag and their environmental consequences, particularly from the release of potentially toxic elements to water. This chapter reviews the characteristics of both ferrous (steel and blast furnace Fe) and non-ferrous (Ag, Cu, Ni, Pb, Sn, Zn) slag. Interest in slag has been increasing steadily as large volumes, on the order of hundreds of millions of tonnes, are produced annually worldwide. Research on slag generally focuses on potential environmental issues related to the weathering of slag dumps or on its utility as a construction material or reprocessing for secondary metal recovery. The chemistry and mineralogy of slag depend on the metallurgical processes that create the material and will influence its fate as waste or as a reusable product.

  19. Transformation of Scraper Slag Salvaging Machine without Overflow for 1 000 MW Units%1000 MW机组刮板捞渣机的无溢流改造

    Institute of Scientific and Technical Information of China (English)

    任健

    2014-01-01

    某1000 MW机组锅炉渣水循环系统长期运行后,高效浓缩机、集水池及相关坑泵严重积渣堵塞,影响捞渣机正常补水降温。在充分调研及系统试验的基础上,对捞渣机进行无溢流改造,取消渣水循环系统,强化捞渣机补水。捞渣机无溢流改造后,系统运行稳定,缺陷率明显降低,且节能效果显著。%Due to long-time operation of slag water circulating system of 1 000 MW boiler units , high-effi-ciency thickener, collecting basin and pit pump are blocked by deposited slag, which has great impact on water supply for cooling of slag salvaging machine. On the basis of investigation and system test , the slag salvaging machine is transformed without overflow: eliminating slag water circulating system , strengthening water supply of slag salvaging machine. After the transformation , the system operates stably , the defects are obviously reduced and the energy saving effect is significant.

  20. Mechanisms of phosphate removal from aqueous solution by blast furnace slag and steel furnace slag

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We report the adsorption of phosphate and discuss the mechanisms of phosphate removal from aqueous solution by burst furnace slag (BFS) and steel furnace slag (SFS). The results show that the adsorption of phosphate on the slag was rapid and the majority of adsorption was completed in 5~10 min. The adsorption capacity of phosphate by the slag was reduced dramatically by acid treatment. The relative contribution of adsorption to the total removal of phosphate was 26%~28%. Phosphate adsorption on BFS and SFS follows the Freundlich isotherm, with the related constants ofk 6.372 and 1/n 1.739 for BFS, and ofk 1.705 and 1/n 1.718 for SFS. The pH and Ca2+ concentration were decreased with the addition of phosphate, suggesting the formation of calcium phosphate precipitation. At pH 2.93 and 6.93, phosphate was desorbed by about 36%~43% and 9%~11%, respectively.These results indicate that the P adsorption on the slag is not completely reversible and that the bond between the slag particles and adsorbed phosphate is strong. The X-ray diffraction (XRD) patterns of BFS and SFS before and after phosphate adsorption verify SFS is related to the formation of phosphate calcium precipitation and the adsorption on hydroxylated oxides. The results show that BFS and SFS removed phosphate nearly 100%, indicating they are promising adsorbents for the phosphate removal in wastewater treatment and pollution control.

  1. Investigation of polycyclic aromatic hydrocarbons from coal gasification.

    Science.gov (United States)

    Zhou, Hong-cang; Jin, Bao-sheng; Zhong, Zhao-ping; Huang, Ya-ji; Xiao, Rui; Li, Da-ji

    2005-01-01

    The hazardous organic pollutants generated from coal gasification, such as polycyclic aromatic hydrocarbons(PAHs), are highly mutagenic and carcinogenic. More researchers have paid particular attention to them. Using air and steam as gasification medium, the experiments of three kinds of coals were carried out in a bench-scale atmospheric fluidized bed gasifier. The contents of the 16 PAHs specified by US EPA in raw coal, slag, bag house coke, cyclone coke and gas were measured by HPLC to study the contents of PAHs in raw coal and the effects of the inherent characters of coals on the formation and release of PAHs in coal gasification. The experimental results showed that the distributions of PAHs in the gasified products are similar to raw coals and the total-PAHs content in coal gasification is higher than in raw coal(except Coal C). The total-PAHs contents increase and then decrease with the rise of fixed carbon and sulfur of coal while there has an opposite variation when volatile matters content increase. The quantities of PAHs reduce with the increase of ash content or the drop of heating value during coal gasification.

  2. Investigation of polycyclic aromatic hydrocarbons from coal gasification

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong-cang; JIN Bao-sheng; ZHONG Zhao-ping; HUANG Ya-ji; XIAO Rui; LI Da-ji

    2005-01-01

    The hazardous organic pollutants generated from coal gasification, such as polycyclic aromatic hydrocarbons(PAHs), are highly mutagenic and carcinogenic. More researchers have paid particular attention to them. Using air and steam as gasification medium, the experiments of three kinds of coals were carried out in a bench-scale atmospheric fluidized bed gasifier. The contents of the 16 PAHs specified by US EPA in raw coal, slag, bag house coke, cyclone coke and gas were measured by HPLC to study the contents of PAHs in raw coal and the effects of the inherent characters of coals on the formation and release of PAHs in coal gasification. The experimental results showed that the distributions of PAHs in the gasified products are similar to raw coals and the total-PAHs content in coal gasification is higher than in raw coal(except Coal C). The total-PAHs contents increase and then decrease with the rise of fixed carbon and sulfur of coal while there has an opposite variation when volatile matters content increase. The quantities of PAHs reduce with the increase of ash content or the drop of heating value during coal gasification.

  3. Nieuwe wapens in de slag om groen

    NARCIS (Netherlands)

    Vreke, J.

    2010-01-01

    Groen verliest in en rond steden vaak de slag. Burgers vinden groene gebieden belangrijk, ze stimuleren beweging, bevorderen de integratie en maken huizen meer waard. Toch kiezen bestuurders uiteindelijk vaak toch voor ‘rood’ omdat dat geld en prestige oplevert. In deze bijdrage wordt verslag gedaan

  4. Suitability of leaching test methods for fly ash and slag: A review

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Tiwari

    2015-10-01

    Full Text Available Fly ash and slag leachate pollution can be of great environmental concern due to generation of these wastes in huge quantities from their respective industrial units, mainly coal-based thermal power plants and iron and steel plants. For simulation of natural leaching in laboratory, various leaching methods are available, but selection of a method that can exactly simulate the real-life scenario for accurate estimation of various pollutants is challenging; particularly, the heavy metals present and impact due to reuse or disposal of these wastes. For choosing the most suitable leaching method according to specific situation, one must primarily consider the chemical and physical properties of wastes, the composition of the source, age of waste disposal, and the climatic conditions of the disposal area. Since these factors may not be specified, a variety of leaching methods with relevant equipment have been proposed by researchers; that are based on their required information to particular conditions in absence of a prescribed protocol and non standardization of equipment. The present review is an attempt to investigate the suitable leaching method for coal fly ash and slag.

  5. 600 MW燃煤空冷机组特殊材料的焊接工艺%Special material welding process of 600 MW coal-fired air cooling unit

    Institute of Scientific and Technical Information of China (English)

    杨德云; 石南辉

    2013-01-01

    In order to of air cooling unit welding construction can have a better understanding, through their participation in the installation of the observation of shanxi mountain power plant phase ii 2×600 MW coal-fired empty cold engineering #3 unit project construction management experience was summarized, with emphasis on the special materials of the main parts of welding process (such as: SA335 - P91 joint of hot,WB36 steel welding,TP347H welding) were introduced,the hope can give similar unit installation construction and provide some reference,this project won the "2009 annual national excellent welding engineering award".%为更好地了解空冷机组焊接施工,通过对某发电厂二期2×600 MW燃煤空冷工程#3机组工程的施工管理经验进行总结,重点对特殊材料主要部件的焊接工艺(如:SA335-P91焊口的后热、WB36钢焊接、TP347H的焊接)加以介绍,希望能给类似机组的安装施工提供一些借鉴.

  6. Recent advances in understanding physical properties of metallurgical slags

    Science.gov (United States)

    Min, Dong Joon; Tsukihashi, Fumitaka

    2017-01-01

    Present-day knowledge of the structure and physical properties of metallurgical slags is summarized to address structure-property and inter-property relationships. Physical properties of slags including viscosity, electrical conductivity, and surface tension is reviewed focusing on the effect of slag structure, which is comprehensively evaluated using FT-IT, Raman, and MAS-NMR spectroscopy. The effect of the slag composition on slag structure and property is reviewed in detail: Compositional effect encompasses traditional concepts of basicity, network-forming behaviors of anions, and secondary impact of network-modifying cations. Secondary objective of this review is elucidating the mutual relationship between physical properties of slags. For instance, the relationship between slag viscosity and electrical conductivity is suggested by Walden's rule and discussed based on the experimental results. Slag foaming index is also introduced as a comprehensive understanding method of physical properties of slags. The dimensional analysis was made to address the effect of viscosity, density, and surface tension on the foaming index of slags.

  7. Synthesis and heavy metal immobilization behaviors of slag based geopolymer.

    Science.gov (United States)

    Yunsheng, Zhang; Wei, Sun; Qianli, Chen; Lin, Chen

    2007-05-08

    In this paper, two aspects of studies are carried out: (1) synthesis of geopolymer by using slag and metakaolin; (2) immobilization behaviors of slag based geopolymer in a presence of Pb and Cu ions. As for the synthesis of slag based geopolymer, four different slag content (10%, 30%, 50%, 70%) and three types of curing regimes (standard curing, steam curing and autoclave curing) are investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The testing results showed that geopolymer mortar containing 50% slag that is synthesized at steam curing (80 degrees C for 8h), exhibits higher mechanical strengths. The compressive and flexural strengths of slag based geopolymer mortar are 75.2 MPa and 10.1 MPa, respectively. Additionally, Infrared (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques are used to characterize the microstructure of the slag based geopolymer paste. IR spectra show that the absorptive band at 1086 cm(-1) shifts to lower wave number around 1007 cm(-1), and some six-coordinated Als transforms into four-coordination during the synthesis of slag based geopolymer paste. The resulting slag based geopolymeric products are X-ray amorphous materials. SEM observation shows that it is possible to have geopolymeric gel and calcium silicate hydrate (C-S-H) gel forming simultaneously within slag based geopolymer paste. As for immobilization of heavy metals, the leaching tests are employed to investigate the immobilization behaviors of the slag based geopolymer mortar synthesized under the above optimum condition. The leaching tests show that slag based geopolymer mortar can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reach 98.5% greater when heavy metals are incorporated in the slag geopolymeric matrix in the range of 0.1-0.3%. The Pb exhibits better immobilization efficiency than the Cu in the case of large dosages of heavy metals.

  8. Assessment of Advanced Coal Gasification Processes

    Science.gov (United States)

    McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John

    1981-01-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.

  9. Electron cooling

    Science.gov (United States)

    Meshkov, I.; Sidorin, A.

    2004-10-01

    The brief review of the most significant and interesting achievements in electron cooling method, which took place during last two years, is presented. The description of the electron cooling facilities-storage rings and traps being in operation or under development-is given. The applications of the electron cooling method are considered. The following modern fields of the method development are discussed: crystalline beam formation, expansion into middle and high energy electron cooling (the Fermilab Recycler Electron Cooler, the BNL cooler-recuperator, cooling with circulating electron beam, the GSI project), electron cooling in traps, antihydrogen generation, electron cooling of positrons (the LEPTA project).

  10. Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  11. Studying the effect of thermal and acid exposure on alkali activated slag Geopolymer

    Directory of Open Access Journals (Sweden)

    Khater H.M.

    2014-04-01

    Full Text Available This article reports a study about thermal stability as well as acid resistance of geopolymer materials prepared from Ground Granulated Blast Furnace Slag (GGBFS, Air Cooled Slag (ACS, Silica fume (SF and cement kiln dust (CKD using 6% (weight of equal mix from alkaline sodium hydroxide and sodium silicate activators. Study of addition of ACS, SF and CKD as partial replacement of GGBFS is investigated so as to improve the mechanical and microstructural properties of geopolymer mixes. Compressive strength and SEM were utilized in these studies. Materials were prepared using water/binder of 0.30 at 38°C and 100% RH. Results showed that geopolymer materials prepared using alkali activated slag exhibit large changes in compressive strength with increasing the firing temperature from 300 to 1000°C and exhibit an enhancement in thermal stability as compared to concrete specimens. Materials prepared by replacing GGBFS by 15% ACS resist thermal deterioration up to 1000°C. It was suggested to be suitable for refractory insulation applications as well as for production of nuclear concrete reactors. On the other hand, geopolymer mixes exhibit low stability upon subjecting to different concentration from the mix of nitric and hydrochloric acid in equal ratio (1:1. Current studies of geopolymer microstructure were focused on the morphology as well as the relationship between compositions and mechanical properties.

  12. Spontaneous Emulsification of a Metal Drop Immersed in Slag Due to Dephosphorization: Surface Area Quantification

    Science.gov (United States)

    Assis, Andre N.; Warnett, Jason; Spooner, Stephen; Fruehan, Richard J.; Williams, Mark A.; Sridhar, Seetharaman

    2015-04-01

    When a chemical reaction occurs between two immiscible liquids, mass transfer is continuously taking place at the liquid-liquid interface. Several studies have shown that if the species being exchanged between the two liquids are surface-active, a very pronounced decrease in interfacial tension can occur which can lead to a phenomenon called spontaneous emulsification. In steelmaking, this behavior has been observed for several reactions that involve the transfer of impurities from molten steel to a molten-oxide slag but little quantification has been made. This work focuses on spontaneous emulsification due to the dephosphorization of a Fe-P drop immersed in a basic oxygen furnace type slag. An Au-image furnace attached to a confocal scanning laser microscope was used to rapidly heat and cool the samples at different times, and X-ray computerized tomography was used to perform the surface area calculations of the samples where the slag/steel reaction was allowed to occur for distinct times. The results show that the surface area of the metal drop rapidly increases by over one order of magnitude during the first 60 seconds of the reaction while the chemical reaction is occurring at a fast rate. Once the reaction slows down, approximately after 60 seconds, the droplets start to coalesce back together minimizing the surface area and returning to a geometry close to its equilibrium shape.

  13. Kinetics and physico-chemical properties of alkali activated blast-furnace slag/basalt pastes

    Directory of Open Access Journals (Sweden)

    H. El Didamony

    2012-12-01

    Full Text Available Granulated blast-furnace slag (GBFS is a by-product of the metallurgical industry and consists mainly of lime and calcium–magnesium aluminosilicates that defined as the glassy granular material formed by rapid cooling of molten slag with excess water resulting in an amorphous structure. Alkali-activated slag (AAS binders have taken a great interest from researchers due to its manufacturing process which has important benefits from the point of view of the lower energy requirements and lower emission of greenhouse gases with respect to the manufacturing of Portland cement. In this study, GBFS was replaced by 20, 40 and 60 wt.% of basalt activated by 6 wt.% of alkali mixture composed of 1:1 sodium hydroxide (SH and liquid sodium silicate (LSS mixed with sea water and cured in 100% relative humidity up to 90 days. The physic-chemical parameters were studied by determination of setting time, combined water content, bulk density and compressive strength. As the amount of basalt increases the setting time as well as compressive strength decreases while the bulk density increases. The compressive strength values of dried pastes are greater than those of saturated pastes. The hydrated products are identified by TGA/DTG analysis, IR spectroscopy and scanning electron microscopy (SEM.

  14. Coal water slurry in 0.25 MW furnace

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F.; Cao, X.; Zhou, Z. (and others) [CUMT, Beijing (China). School of Chemical and Environmental Engineering

    2004-07-01

    Thermal state comparative test between the normal coal water slurry (CWS)and black liquor CWS from Xinwen was performed in 0.25 MW furnace for the purpose of investigating the industrial application feasibility of black liquor CWS. Performances of flow, atomization, kindling, burning, fouling, slagging, and pollutant emission were studied. The fouling and slagging tendency for two CWSs were analyzed using a self-made heat flux meter. The results show that the black liquor CWS is a fuel with good flowability and atomization, easy firing, stable burning, low pollutant emission, low ash fusion point, and strong slagging tendency, in contrast with the normal CWS. So it is feasible for the black liquor CWS to be used in industrial boilers. 7 refs., 8 figs.

  15. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  16. Reduction Kinetics of Electric Arc Furnace Oxidizing Slag by Al-Fe Alloy

    Science.gov (United States)

    Lee, Jaehong; Oh, Joon Seok; Lee, Joonho

    2016-09-01

    Effects of temperature and slag basicity on the reduction rate of iron oxide in molten synthetic electric arc furnace oxidizing slag by Al-40 wt.%Fe alloy was investigated. An alloy sample was dropped into molten slag in an MgO crucible. When the initial slag temperature was 1723 K, there was no reduction. However, when the initial slag temperature was 1773 K and the slag basicity was 1.1, the reduction was initiated and the temperature of the slag rapidly increased. When the slag basicity was 1.1, increasing the initial slag temperature from 1773 K to 1823 K increases the reaction rate. As the slag basicity increased from 1.1 to 1.4 at 1773 K, the reaction rate increased. From SEM analysis, it was found that an Al2O3 or a spinel phase at the slag-metal interface inhibited the reaction at a lower temperature and a lower slag basicity.

  17. Leaching of heavy metals from steelmaking slags

    Directory of Open Access Journals (Sweden)

    Gomes, J. F. P

    2006-12-01

    Full Text Available Leaching tests with EAF and Ladle slags were performed, using a flow through test and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. The chemical analysis of the leachates during this period shows, in general, for both types of slag, an increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slag samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-through test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5 % (Ca and 1% (other elements.

    Este articulo contiene los resultados obtenidos en ensayos de lixiviación de escorias de acero (horno electrico y cuchara ejecutados siguiendo la metodologia de flujo dinámico así como el ensayo normalizado DIN 38414-S4. El primer ensayo intenta simular el comportamiento de lixiviación de las escorias en vertedero. Para las escorias ensayadas se han complementado los ensayos con el análisis químico de los lixiviados y se ha verificado un aumento de la liberación de metales pesados. El ensayo DIN 38414-S4 se ha utilizado para evaluar la lixiviación por agua de metales pesados, en muestras de escorias originales. Despues de un año de ensayos, se han observado niveles muy bajos de lixiviación. Los elementos mas lixiviados han sido calcio y magnesio. No obstante, en los ensayos de flujo dinámico, el calcio y el magnesio lixiviados de las escorias sólidas era menor de 0,5% y el resto de los otros metales era inferior a 0,1%. Los lixiviados obtenidos con el ensayo DIN 38414-S4 presentan, como era de esperar, valores

  18. Investigation on the Potentials of Cupola Furnace Slag in Concrete

    Directory of Open Access Journals (Sweden)

    Stephen Adeyemi Alabi

    2013-12-01

    Full Text Available The compressive strength of the concrete designed using blast cupola furnace slag and granulated cupola slag as a coarse aggregate and partial replacement for cement was investigated. A series of experimental studies were conducted involve concrete production in two stages. The first stage comprised of normal aggregate concrete (NAC produced with normal aggregates and 100% ordinary Portland cement (OPC. Meanwhile, the second stage involved production of concrete comprising of cupola furnace slag an aggregates with 100% ordinary Portland cement (OPC and subsequently with 2%, 4%, 6%, 8% and 10% cementitious replacement with granulated cupola furnace slag that had been grounded and milled to less than 75 µm diameter. The outcomes of compressive strength test conducted on the slag aggregate concrete (SAC with and without granulated slag cementitious replacement were satisfactory compared to normal aggregate concretes (NAC.

  19. Optimization of Blended Mortars Using Steel Slag Sand

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new kind of mortar made of ground granulated blast-furnace slag (GGBFS), gypsum,clinker and steel slag sand (<4.75 mm) was developed. The ratio of steel slag sand to GGBFS was 1:1 and the amount of gypsum was 4% by weight while the dosage of clinker ranged from 0% to 24%. The optimization formulation of such mortar was studied. The content of steel slag sand should be less than 50% according to the volume stability of blended mortar, and the dosage of clinker is about 10% based on the strength development.Besides strength, the hydration heat, pore structure and micro pattern of blended mortar were also determined.The experimental results show the application of steel slag sand may reduce the dosage of cement clinker and increase the content of industrial waste product such as GGBFS, and the clinker is also a better admixture for blended mortar using steel slag sand.

  20. Electrochemical Method to Accelerate Metal-Slag Reaction

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The electrochemical nature of reaction between melt and slag in a closed system was worked out. Experimental results demonstrated that both the rate and reaction extent increase when the electronic conductor or voltage was applied between melt and slag. The bigger the contact area of the conductor with melts is, the faster the reaction rate is. With the increase of applied voltage which is beneficial for electron's migration between metal and slags, the rate and extent of reaction increase.

  1. Reduction of chromium oxide from slags

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Paredes, J.

    2005-12-01

    Full Text Available Experimental and theoretical work were performed to estimate the effect of slag basicity and amount of reducing agents on the reduction of chromium oxide from the slag which interacted with molten steel at 1,600 °C. The slag system contained CaO, MgO, SiO2, CaF2 and Cr2O3 together with Fe-alloys (Fe-Si and Fe-Si-Mg. The CaF2 and MgO contents in the slags were 10 mass % each; Cr2O3 was 25%. The amount of the ferroalloys ranged from 12.5 to 50 g per 100 g of slag. The (CaO+MgO/SiO2 ratio was held at 1 and 2. The Cr yield was determined using both Fe-alloys as reducing agents. Some estimations were made to determine the theoretical effect of temperature, slag basicity, (CaO+MgO/SiO2, and amount of reducing agents in the slag on the chromium recovery. The FACT (Facility for the Analysis of Chemical Thermodynamics computational package is used to determine the equilibrium between the slag and molten steel.

    En el presente trabajo se realiza un estudio teórico y experimental para determinar el efecto de la basicidad de la escoria y la cantidad de agentes reductores sobre la reducción de óxidos de cromo contenidos en la escoria, la cual está en contacto con acero líquido a 1.600 °C. La escoria se prepara con los reactivos CaO, MgO, SiO2, CaF2 y ferroaleaciones (Fe-Si y Fe-Si-Mg. Los contenidos de CaF2 y MgO en la escoria son de 10 %, cada uno, y el de Cr2O3 es 25 %. La cantidad de la ferroaleación varía de 12,5 a 50 g por cada 100 g de escoria. La relación (CaO+MgO/SiO2 tiene los valores de 1 y 2. Se determina la eficiencia de recuperación de cromo empleando los dos tipos de ferroaleaciones. Se realizaron cálculos para determinar el efecto teórico de la temperatura, la basicidad de la escoria, (CaO+MgO/SiO2, y la cantidad de agentes reductores sobre la reducci

  2. (Collaborative coal project between the USA and India)

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, R.P.

    1990-10-05

    Under the Phase II, Alternative Energy Resources Development (AERD) project of the United States Agency for International Development (USAID) and the Government of India (GOI), five collaborative coal projects have been initiated in the areas of: (1) NO{sub x}/SO{sub x} control from coal-fired power plants, (2) slagging combustor development for high-ash Indian coals, (3) characterization of Indian coals for combustion and gasification. (4) diagnostic studies for prediction of power plant life expectancy, and (5) environmental and natural resource analysis of coal cycle. The Pittsburgh Energy Technology Center (PETC) has the implementation responsibility for these projects. The Indian collaborative institutions identified for these projects are the Bharat Heavy Electricals Ltd. (BHEL), Trichy, (projects 1--4), and the Tata Energy Research Institute (TERI) for project 5. The Oak Ridge National Laboratory (ORNL) is providing cross-cut technical coordination and support for these five projects.

  3. Thermochemistry of calcium oxide and calcium hydroxide in fluoride slags

    Science.gov (United States)

    Chattopadhyay, S.; Mitchell, A.

    1990-08-01

    Calcium oxide activity in binary CaF2-CaO and ternary CaF2-CaO-Al2O3 and CaF2-CaO-SiO2 slags has been determined by CO2-slag equilibrium experiments at 1400 °C. The carbonate ca-pacity of these slags has also been computed and compared with sulfide capacity data available in the literature. The similarity in trends suggests the possibility of characterizing carbonate capacity as an alternative basicity index for fluoride-base slags. Slag-D2O equilibrium experi-ments are performed at 1400°C with different fluoride-base slags to determine water solubility at two different partial pressures of D2O, employing a new slag sampling technique. A novel isotope tracer detection technique is employed to analyze water in the slags. The water solubility data found show higher values than the previous literature data by an order of magnitude but show a linear relationship with the square root of water vapor partial pressure. The activity of hydroxide computed from the data is shown to be helpful in estimating water solubility in in-dustrial electroslag remelting (ESR) slags.

  4. Chemical, Mineralogical, and Morphological Properties of Steel Slag

    Directory of Open Access Journals (Sweden)

    Irem Zeynep Yildirim

    2011-01-01

    Full Text Available Steel slag is a byproduct of the steelmaking and steel refining processes. This paper provides an overview of the different types of steel slag that are generated from basic-oxygen-furnace (BOF steelmaking, electric-arc-furnace (EAF steelmaking, and ladle-furnace steel refining processes. The mineralogical and morphological properties of BOF and electric-arc-furnace-ladle [EAF(L] slag samples generated from two steel plants in Indiana were determined through X-Ray Diffraction (XRD analyses and Scanning Electron Microscopy (SEM studies. The XRD patterns of both BOF and EAF(L slag samples were very complex, with several overlapping peaks resulting from the many minerals present in these samples. The XRD analyses indicated the presence of free MgO and CaO in both the BOF and EAF(L slag samples. SEM micrographs showed that the majority of the sand-size steel slag particles had subangular to angular shapes. Very rough surface textures with distinct crystal structures were observed on the sand-size particles of BOF and EAF(L slag samples under SEM. The characteristics of the steel slag samples considered in this study are discussed in the context of a detailed review of steel slag properties.

  5. Evaluation of copper slag blast media for railcar maintenance

    Science.gov (United States)

    Sagers, N. W.; Finlayson, Mack H.

    1989-01-01

    Copper slag was tested as a blasting substitute for zirconium silicate which is used to remove paint from railroad cars. The copper slag tested is less costly, strips paint faster, is produced near the point of need, provides a good bonding surface for paint, and permits the operator to work in a more comfortable position, i.e., standing nearly erect instead of having to crouch. Outdoor blasting with the tested Blackhawk (20 to 40 mesh) copper slag is also environmentally acceptable to the State of Utah. Results of tests for the surface erosion rate with copper slag blasting are included.

  6. Evaluation of copper slag blast media for railcar maintenance

    Science.gov (United States)

    Sagers, N. W.; Finlayson, Mack H.

    1989-06-01

    Copper slag was tested as a blasting substitute for zirconium silicate which is used to remove paint from railroad cars. The copper slag tested is less costly, strips paint faster, is produced near the point of need, provides a good bonding surface for paint, and permits the operator to work in a more comfortable position, i.e., standing nearly erect instead of having to crouch. Outdoor blasting with the tested Blackhawk (20 to 40 mesh) copper slag is also environmentally acceptable to the State of Utah. Results of tests for the surface erosion rate with copper slag blasting are included.

  7. Hydration kinetics of cementitious materials composed of red mud and coal gangue

    Science.gov (United States)

    Zhang, Na; Li, Hong-xu; Liu, Xiao-ming

    2016-10-01

    To elucidate the intrinsic reaction mechanism of cementitious materials composed of red mud and coal gangue (RGC), the hydration kinetics of these cementitious materials at 20°C was investigated on the basis of the Krstulović-Dabić model. An isothermal calorimeter was used to characterize the hydration heat evolution. The results show that the hydration of RGC is controlled by the processes of nucleation and crystal growth (NG), interaction at phase boundaries (I), and diffusion (D) in order, and the pozzolanic reactions of slag and compound-activated red mud-coal gangue are mainly controlled by the I process. Slag accelerates the clinker hydration during NG process, whereas the compound-activated red mud-coal gangue retards the hydration of RGC and the time required for I process increases with increasing dosage of red mud-coal gangue in RGC.

  8. Durability of Alkali Activated Blast Furnace Slag

    Science.gov (United States)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  9. Improved Refractories for Slagging Gasifiers in IGCC Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.

    2003-04-24

    The gasification of coal and other carbon-containing fuels provides the opportunity to produce energy more efficiently, and with significantly less environmental impact, than more-conventional combustion-based processes. In addition, the synthesis gas that is the product of the gasification process offers the option of ''polygeneration,'' i.e., the production of alternative products instead of power should it be economically favorable to do so. Because of these advantages, gasification is viewed as one of the key processes in the U.S. Department of Energy's Vision 21 power system. However, issues with both the reliability and the economics of gasifier operation will have to be resolved before gasification will be widely adopted by the power industry. Central to both enhanced reliability and economics is the development of materials with longer service lives in gasifier systems that can provide extended periods of continuous, trouble-free gasifier operation. The focus of the Advanced Refractories for Gasification project at the Albany Research Center is to develop improved refractory materials capable of withstanding the harsh, high-temperature environment created by the gasification reaction, and includes both the refractory lining that protects and insulates the slagging gasifier, as well as the thermocouple assemblies that are utilized to monitor gasifier operating temperatures. Current generation refractory liners in slagging gasifiers are typically replaced every four to 18 months, at costs ranging up to $2,000,000, depending upon the size of the gasification vessel. Compounding materials and installation costs are the lost-opportunity costs for the time that the gasifier is off-line for the refractory exchange. Current generation thermocouple devices rarely survive the gasifier start-up process, leaving the operator with no real means of temperature measurement during routine operation. Reliable, efficient, and economical gasifier

  10. Comparative results of copper flotation from smelter slag and granulated smelter slag

    OpenAIRE

    Milanović, Dragan; Stanujkić, Dragiša; Ignjatović, Miroslav R.

    2013-01-01

    Smelter slag is obtained in the process of metallurgical converting of copper concentrate in the Smelter Plant in Bor, Serbia. Today, the reserves of this material are evaluated at about more of a year, with the average copper content of 0.6-0.9%. Production of copper concentrate by flotation of smelter slag has started in 2001. Flotation concentrate goes to the Copper Smelter once more for production of copper cathodes and the rough flotation tailings go to the flotation tailing dump. Copper...

  11. Evaluation of the slag regime and desulphurization of steel with synthetic slag containing Cr2O3

    OpenAIRE

    Socha, Ladislav; Bažan, Jiří; Morávka, Jan; Styrnal, Petr; Machovčák, Pavel; Opler, Aleš; Trefil, Antonín

    2014-01-01

    The paper focuses on an evaluation of the slag regime and steel desulphurisation in a ladle with the help of synthetic slags based on Al2O3 containing various mass amounts of Cr2O3 varying from 0.3 % to 3.0 %. The aim of the plant experiments was to assess the achieved results when using two types of synthetic slag focusing on the course of desulphurisation, an analysis of the achieved chemical composition of the slag and an evaluation of the influence of oxide Cr2O3 on the increase ...

  12. Byproduct aggregate. Copper slag aggregate, ferronickel slag aggregate; Fukusan kotsuzai. Do suragu kotsuzai, fuero nikkeru suragu kotsuzai

    Energy Technology Data Exchange (ETDEWEB)

    Kajiwara, Toshitaka

    1998-08-10

    Copper slag aggregate and ferronickel slag aggregate has not only usual substitute of sand or crushed sand but many features unlike sand or unlike crushed sand. It has many features unlike sand or crushed sand. It seems that especially, behavior of the particulates minute is features of deserving in addition, the examination in future. Of course, one feature also consists on the merit on the demerit by the use. And, copper slag aggregate, ferronickel slag aggregate have also limited the production place at the output of about 2 million annual production tons. These features are utilized, and in addition, wants to teach and want to receive the wider usage. (NEDO)

  13. Beneficiation of Titanium Oxides From Ilmenite by Self-Reduction of Coal Bearing Pellets

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The study on the beneficiation of titanium oxides from Panzhihua ilmenites by reduction of coal bearing pellets was carried out. The iron oxides in pellets were efficiently reduced to metal iron, and titanium oxide slag beneficiated was separated from metal iron. The effect of temperature, flux and coal blending ratio on the reduction and separation was investigated, and rational parameters were determined. A new process for the beneficiation of titanium oxides by rotary hearth furnace (RHF) was proposed.

  14. Moving Bed Gasification of Low Rank Alaska Coal

    Directory of Open Access Journals (Sweden)

    Mandar Kulkarni

    2012-01-01

    Full Text Available This paper presents process simulation of moving bed gasifier using low rank, subbituminous Usibelli coal from Alaska. All the processes occurring in a moving bed gasifier, drying, devolatilization, gasification, and combustion, are included in this model. The model, developed in Aspen Plus, is used to predict the effect of various operating parameters including pressure, oxygen to coal, and steam to coal ratio on the product gas composition. The results obtained from the simulation were compared with experimental data in the literature. The predicted composition of the product gas was in general agreement with the established results. Carbon conversion increased with increasing oxygen-coal ratio and decreased with increasing steam-coal ratio. Steam to coal ratio and oxygen to coal ratios impacted produced syngas composition, while pressure did not have a large impact on the product syngas composition. A nonslagging moving bed gasifier would have to be limited to an oxygen-coal ratio of 0.26 to operate below the ash softening temperature. Slagging moving bed gasifiers, not limited by operating temperature, could achieve carbon conversion efficiency of 99.5% at oxygen-coal ratio of 0.33. The model is useful for predicting performance of the Usibelli coal in a moving bed gasifier using different operating parameters.

  15. Full Scale Deposition Trials at 150 MWe PF-boiler Co-firing COal and Straw: Summary of Results

    DEFF Research Database (Denmark)

    Andersen, Karin Hedebo; Frandsen, Flemming; Hansen, Peter Farkas Binderup

    1999-01-01

    . In the visual analysis, a significant increase in amount and tenacity of primarily the upstream deposit was observed as a function of increased straw share, exposure time and/or boiler load.The chemical analysis of the deposits suggest an increased participation of K and S in the formation of the deposits...... for the coal types utilised in the tests.The deposit formation observed during co-firing with up to 20% straw (energy basis), does not lead to fouling and slagging problems which cannot be overcome by increased sootblowing when firing the two coals used in the demonstration programme. However, slagging...

  16. Development of a Coal Quality Expert

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-20

    Task 3 provides detailed characterization of fuel properties of the test coals and in-depth evaluation of their performance characteristics under controlled pilot-scale combustion testing. Results from this task provide fundamental information required to develop some of the improved algorithms for the CQE. Both bench-scale fuel characterization and test furnace performance evaluations are being performed under this task. All pilot-scale combustion tests under this task have been completed. Topical reports for the coals evaluated under the Public Service Oklahoma's Northeastern Unit 4 and Northern States Power's King Unit 1 test series have been issued. Work continued during the past quarter on preparation of the final report for the Mississippi Power Company's Watson Unit 4 tests (to be completed first quarter 1993) and analyzing pilot-scale combustion data from the Alabama Power Company's Gaston tests; a topical report for the Gaston study will also be issued in 1993. Bench-scale testing and data analyses continued in support of the development of the slagging and fouling models. Data obtained from the analysis of samples of deposits, inflame solids, fly ash, and coal from CQE pilot-scale and drop tube combustion tests were evaluated for use in devising and verifying the slagging and fouling algorithms.

  17. China Customs Removed the Import Tax on Titanium Slag

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>The long waited solution to the problem relating to the import of titanium slag has finally resolved. According to China Customs report, the import of titanium slag no longer requires tax payment as from January 1, 2007. This decision will help with the healthy development of China’s titanium industry and increase China’s competitiveness in the international marketplace.

  18. Sulfide capacity of high alumina blast furnace slags

    Science.gov (United States)

    Shankar, Amitabh; Görnerup, Märten; Seetharaman, S.; Lahiri, A. K.

    2006-12-01

    Sulfide capacities of high alumina blast furnace slags were experimentally determined using the gas-slag equilibration technique. Two different slag systems were considered for the current study, namely, CaO-SiO2-MgO-Al2O3 quaternary and CaO-SiO2-MgO-Al2O3-TiO2 quinary system. The liquid slag was equilibrated with the Ar-CO-CO2-SO2 gas mixture. Experiments were conducted in the temperature range of 1773 to 1873 K. The effects of temperature, basicity, and the MgO and TiO2 contents of slags on sulfide capacity were studied. As expected, sulfide capacity was found to increase with the increase in temperature and basicity. At the higher experimental temperature, titania decreases the sulfide capacity of slag. However, at the lower temperature, there was no significant effect of titania on the sulfide capacity of slag. Sulfide capacity increases with the increase in MgO content of slag if the MgO content is more than 5 pct.

  19. Study of Reaction Between Slag and Carbonaceous Materials

    Science.gov (United States)

    Maroufi, Samane; Mayyas, Mohannad; Mansuri, Irshad; O'Kane, Paul; Skidmore, Catherine; Jin, Zheshi; Fontana, Andrea; Sahajwalla, Veena

    2017-10-01

    The chemical interaction of a typical slag of EAF with three different carbon sources, coke, rubber-derived carbon (RDC), coke-RDC blend, was studied in atmospheric pressure at 1823 K (1550 °C). Using an IR-gas analyzer, off-gases evolved from the sample were monitored. While the coke-RDC blend exhibited the best reducing performance in reaction with molten slag, the RDC sample showed poor interaction with the molten slag. The gasification of the coke, RDC, and coke-RDC blend was also carried out under oxidizing conditions using a gas mixture of CO2 (4 wt pct) and Ar (96 wt pct) and it was shown that the RDC sample had the highest rate of gasification step C0 \\mathop{\\longrightarrow}\\limits{{k3 }}{CO} + nCf (11.6 site/g s (×6.023 × 1023/2.24 × 104)). This may be attributed to its disordered structure confirmed by Raman spectra and its nano-particle morphology observed by FE-SEM. The high reactivity of RDC with CO2 provided evidence that the Boudouard reaction was fast during the interaction with molten slag. However, low reduction rate of iron oxide from slag with RDC can be attributed to the initial weak contact between RDC and molten slag implying that the contact between carbonaceous matter and slag plays significant roles in the reduction of iron oxide from slag.

  20. Micronutrient availability from steel slag amendment in pine bark substrates

    Science.gov (United States)

    Steel slag is a byproduct of the steel industry that can be used as a liming agent, but also has a high mineral nutrient content. While micronutrients are present in steel slag, it is not known if the mineral form of the micronutrients would render them available for plant uptake. The objective of...

  1. Effect of TiO2 Content on the Crystallization Behavior of Titanium-Bearing Blast Furnace Slag

    Science.gov (United States)

    Hu, Meilong; Wei, Ruirui; Yin, Fangqing; Liu, Lu; Deng, Qingyu

    2016-09-01

    The content of TiO2 has an important influence on both the basic structure and the crystallization behavior of titanium-bearing blast furnace (BF) slag. The results of thermodynamic calculations show that, when the mass content of TiO2 is smaller than 25%, CaTiO3 increases as the content of TiO2 increases. However, when the TiO2 content is more than 25%, the CaTiO3 content decreases and TiO2 gradually increases. The results of a confocal laser scanning microscopy (CLSM) experiment show that, when the TiO2 mass content is 10%, Ca2MgSi2O7 and Ca2Al2SiO7 are the main crystallized phases resulting from the molten slag. Furthermore, when the TiO2 mass content is 20%, CaMgSi2O6, Ca(Ti,Mg,Al)(Si,Al)2O7 and dendrite CaTiO3 are the crystallized phases, while when the TiO2 mass content increases to 30%, CaTiO3 is the sole phase. The discrepancy between the CLSM results and the thermodynamic calculations occurs mainly due to the high melting point of the titanium-bearing BF slag. During the cooling process for the molten slag, CaTiO3 is crystallized first, due to its high crystallization temperature. Furthermore, the molten slag is solidified in its entirety before the other phases crystallize.

  2. Phase analytical studies of industrial copper smelting slags. Part I: Silicate slags

    Science.gov (United States)

    Rüffler, R.; Dávalos, J.

    1998-12-01

    The pyrometallurgical extraction of copper from sulfide ore concentrates is determined by the behaviour of the associated iron during smelting. Hence, 57Fe Mössbauer spectroscopy is an attractive tool for studying the phases in silicate slags from German and Chilean smelting plants. Other methods used were ore microscopy, electron microprobe analysis, and X-ray powder diffraction.

  3. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  4. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  5. Slag-Resistance of MgAlON Spinel

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The slag-resistance and microstructural changes after the slag tests of MgAlON spinel containing different amount of nitrogen were studied by means of crucible slag-resistant experiment, SEM and EDS in the work. The results show that the slag-resistance of MgAlON is dependent on the nitrogen content, and the optimum amount is 2.88%. The structure is not changed although the grains have been permeated by some silicon, calcium and iron. A glass phase which contained nitrogen formed in the metamorphic layer. The glass can improve the ability of the slag-resistance of MgAlON because of its higher viscosity.

  6. Chemical and mineralogical characterizations of a copper converter slag

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A copper converter slag was examined chemically and mineralogically to determine its existing phases, in particular those containing Co and Cu. The slag consists predominantly of fayalite and magnetite, together with some glass,chalcocite, and metallic copper. Copper is entrapped in the slag mostly as chalcocite and metallic copper, as well as trace copper oxide. There was no indication of any independent Co mineral in the slag, but Co was found to be enriched in fayalite and megnetite as solid solution, although Co was detected in all the phases of the slag by SEM-EDX (scanning electron microscopy equipped with model EDAX-9100 energy dispersive spectrometer) and WDS (model WDX-2A X-ray wave-length dispersive spectrometer).

  7. Roles of Mineralogical Phases in Aqueous Carbonation of Steelmaking Slag

    Directory of Open Access Journals (Sweden)

    Huining Zhang

    2016-05-01

    Full Text Available Mineralogical phases of steelmaking slags have significant influences on the carbonation of the slags. In this paper, the effects of temperature and reaction time on the conversion of calcium-related phases and the carbonation degree of a slag sample were studied. The experimental conditions were a liquid-to-solid ratio of 20 mL/g, a carbon dioxide flow rate of 1 L/min and a slag particle size of 38–75 μm. The results show that the optimum carbonation temperature and reaction time are 60 °C and 90 min, respectively, and calcite phase content is about 26.78% while the conversion rates of Ca3Al2O6, CaSiO3, Ca2SiO4 and free CaO are about 40%, 42.46%, 51% and 100%, respectively, and the carbon dioxide sequestration efficiency is about 170 g/kg slag.

  8. Modeling and control of copper loss in smelting slag

    Science.gov (United States)

    Tan, Pengfu

    2011-12-01

    A series of technical improvements have been implemented to address the issue of high copper losses in rotary holding furnace (RHF) slag, which were experienced at the Xstrata Copper Smelter at Mount Isa in 2007 and 2008. The copper losses in smelting slag in the RHF were more than 3% in 2006 and 2007. Thermodynamic models and viscosity models have been applied in the operation of Xstrata Copper Smelter in Australia. The theory of RHF key performance indicators has also been developed to reduce the copper losses in RHF slag. The RHF KPIs Theory has been applied in Mount Isa Copper Smelter. The copper losses in RHF slag dropped from 3.1% in 2007 to 0.76% in April 2009. The average copper loss in RHF slag in 2009 and 2010 was about 0.9%.

  9. Method for producing catalysis from coal

    Science.gov (United States)

    Farcasiu, Malvina; Derbyshire, Frank; Kaufman, Phillip B.; Jagtoyen, Marit

    1998-01-01

    A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere.

  10. Characterization of copper slag from impoverishment%贫化铜渣的特性分析

    Institute of Scientific and Technical Information of China (English)

    胡建杭; 王华; 赵鲁梅; 李磊; 刘慧利

    2011-01-01

    铜渣是有色金属火法炼铜过程中产出的固体废弃物.通过化学分析、XRD衍射、SEM-EDS和热重等分析铜渣的特性.铜渣主要成分是赤铁矿(α-Fe203)、铁橄榄石(Fe2SiO4)、磁铁矿(Fe3O4)和非晶态硅石,并含有铜及少量镍、钴等有价组分.铁橄榄石和磁铁矿约占总渣量的90%.冷却方式影响渣中铁橄榄石的形成,空冷渣中铁橄榄石的比例明显高于水淬铜渣中的铁橄榄石含量.磁铁矿以多边状、树枝状、放射状结构存在于硅酸盐基体中;铁橄榄石呈柱状、板状、树突状颗粒存在于炉渣基体中;铜矿物或被硅铁氧化物所包裹,或与铜铁矿物共同形成斑状结构及多矿物共生嵌于铁橄榄石基体中.铜渣中铁橄榄石组分首先在491~1 173℃之间氧化转变为赤铁矿和非晶态硅石,其次是磁铁矿发生Fe3O4→γ-Fe2O3→α-Fe2O3的晶型转变过程.加热可以使铁橄榄石、铜和铁的硫化物及磷化物发生氧化反应.%Copper slag is a type of solid waste that generated during pyrometallurgical production of copper. In this study, the quality of copper slag was characterized by chemical analysis, X-ray diffraction (XRD), SEM-EDS and thermogravimetric analysis. The results showed that copper slag has a amorphous structure and contained large amounts of magnetism ferric oxide( Fe2O3 ), fayalite( Fe2SiO4),magnetite(Fe3O4)and some trace elements like Cu, Ni and Co. The major constituents were magnetism ferric oxide and fayalite which comprised more than 90% of the mass. The fayalite content was varied under different cooling techniques. The compositional ratio of fayalite in the air-cooled slag was greater than water-cooled slag. Ferroferric oxide presented as arborized and radicalized shapes in the silicate body. Meanwhile, the shapes of fayalite were observed as column, wattle and dendritic granule in copper slag. Copper mineral was wrapped in silicon-ferric oxide or formed copper-iron ore in the

  11. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, Jr., G. A.

    1983-01-01

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  12. Reducing Coal Dust With Water Jets

    Science.gov (United States)

    Gangal, M. D.; Lewis, E. V.

    1985-01-01

    Jets also cool and clean cutting equipment. Modular pick-and-bucket miner suffers from disadvantage: Creates large quantities of potentially explosive coal dust. Dust clogs drive chain and other parts and must be removed by hand. Picks and bucket lips become overheated by friction and be resharpened or replaced frequently. Addition of oscillating and rotating water jets to pick-and-bucket machine keeps down dust, cools cutting edges, and flushes machine. Rotating jets wash dust away from drive chain. Oscillating jets cool cutting surfaces. Both types of jet wet airborne coal dust; it precipitates.

  13. Catalysts derived from waste slag for transesterification

    Institute of Scientific and Technical Information of China (English)

    Xiaowei Zhang; Wei Huang

    2011-01-01

    MgO-CaO/SiO2 solid catalysts derived from waste slag (WS) of metal magnesium plant were prepared.The catalytic performances were evaluated in the transesterification of rapeseed oil with methanol to biodiesel in a 500 mL three-necked reactor under atmospheric pressure.The basic strengh of the catalyst reached 22.0 measured by indicators accroding to Hammett scale.The results show that the MgO-CaO/SiO2 is an excellent catalyst for transesterification, and the conversion of rapeseed oil reach 98% under the optimum condition.

  14. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2005-10-01

    Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits

  15. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Partnership, Billings, MT (United States)

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stages are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.

  16. The release of iron during coal combustion. Milestone report

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

    1995-06-01

    Iron plays an important role in the formation of both fly ash and deposits in many pulverized-coal-fired boilers. Several authors indicate that iron content is a significant indicator of the slagging propensity of a majority of US bituminous coals, in particular eastern bituminous coals. The pyritic iron content of these coals is shown to be a particularly relevant consideration. A series of investigations of iron release during combustion is reported for a suite of coals ranging in rank from lignite to low-volatile bituminous coal under combustion conditions ranging from oxidizing to inert. Experimental measurements are described in which, under selected conditions, major fractions of the iron in the coal are released within a 25 ms period immediately following coal devolatilization. Mechanistic interpretation of the data suggest that the iron is released as a consequence of oxygen attack on porous pyrrhotite particles. Experimental testing of the proposed mechanism reveals that the release is dependent on the presence of both pyrite in the raw coal and oxygen in the gas phase, that slow preoxidation (weathering) of the pyrite significantly inhibits the iron release, and that iron loss increases as oxygen penetration of the particle increases. Each observation is consistent with the postulated mechanism.

  17. Remediation of Acid Generating Colliery Spoil Using Steel Slag - Case Studies

    Science.gov (United States)

    Ghataora, Gurmel S.; Ghazireh, Nizar; Hall, Nigel

    2015-06-01

    One of the legacies of the coal mining industry is the existence of numerous colliery spoil mounds. Run-off waters from some of these mounds result in oxidation of sulphur compounds causing pH to drop to perhaps as low as 2.5. At this pH, mobility for metals increases and it results in destruction of both flora and fauna. In order to reduce acidity, a number of solutions have been investigated with varying degree of success. A recent study to reduce acidity in spoil run-off water included the use of Basic Oxygen Steel slag. Its slow release of lime resulted in longer term remediation compared with other techniques. In addition to this, steel slag contains elements which are essential for plant growth and can be regarded as a weak fertiliser. This was substantiated in two field trials, which had the aim of not only remediating acidity from two different types of colliery spoils, but also to develop a composition that supports grass growth. The objectives were achieved at both sites and some of the results of over 5000 chemical tests conducted during these studies are reported in this paper.

  18. Remediation of Acid Generating Colliery Spoil Using Steel Slag – Case Studies

    Directory of Open Access Journals (Sweden)

    Ghataora Gurmel S.

    2015-06-01

    Full Text Available One of the legacies of the coal mining industry is the existence of numerous colliery spoil mounds. Run-off waters from some of these mounds result in oxidation of sulphur compounds causing pH to drop to perhaps as low as 2.5. At this pH, mobility for metals increases and it results in destruction of both flora and fauna. In order to reduce acidity, a number of solutions have been investigated with varying degree of success. A recent study to reduce acidity in spoil run-off water included the use of Basic Oxygen Steel slag. Its slow release of lime resulted in longer term remediation compared with other techniques. In addition to this, steel slag contains elements which are essential for plant growth and can be regarded as a weak fertiliser. This was substantiated in two field trials, which had the aim of not only remediating acidity from two different types of colliery spoils, but also to develop a composition that supports grass growth. The objectives were achieved at both sites and some of the results of over 5000 chemical tests conducted during these studies are reported in this paper.

  19. Immobilisation of lead smelting slag within spent aluminate-fly ash based geopolymers.

    Science.gov (United States)

    Ogundiran, M B; Nugteren, H W; Witkamp, G J

    2013-03-15

    This study presents the solidification/stabilisation and immobilisation of lead smelting slag (LSS) by its incorporation in coal fly ash - blast furnace slag based geopolymers. It also explores the use of a spent aluminium etching solution (AES) as geopolymer activator instead of the commonly used silicate solutions. The compressive strength of the geopolymers produced with the AES was lower than when applying a K-silicate solution as activator (100MPa versus 80MPa after 28 days). Compressive strength was not affected when up to 10% of the FA was replaced by LSS. NEN 12457-4, TCLP, SPLP and NEN 7375 leaching tests indicated that mobile Pb from LSS was highly immobilised. The diffusion leaching test NEN 7375 revealed exceeding of the Dutch Soil Quality Regulation threshold limits only for Se and Sb. On the condition that the remaining excess leaching can be reduced by further refinement of the mixture recipes, the proposed process will have the potential of producing waste-based construction materials that may be applied under controlled conditions in specific situations.

  20. Recovery of calcium carbonate from steelmaking slag and utilization for acid mine drainage pre-treatment.

    Science.gov (United States)

    Mulopo, J; Mashego, M; Zvimba, J N

    2012-01-01

    The conversion of steelmaking slag (a waste product of the steelmaking process) to calcium carbonate (CaCO(3)) was tested using hydrochloric acid, ammonium hydroxide and carbon dioxide via a pH-swing process. Batch reactors were used to assess the technical feasibility of calcium carbonate recovery and its use for pre-treatment of acid mine drainage (AMD) from coal mines. The effects of key process parameters, such as the amount of acid (HCl/calcium molar ratio), the pH and the CO(2) flow rate were considered. It was observed that calcium extraction from steelmaking slag significantly increased with an increase in the amount of hydrochloric acid. The CO(2) flow rate also had a positive effect on the carbonation reaction rate but did not affect the morphology of the calcium carbonate produced for values less than 2 L/min. The CaCO(3) recovered from the bench scale batch reactor demonstrated effective neutralization ability during AMD pre-treatment compared with the commercial laboratory grade CaCO(3).

  1. Research results from a high pressure/temperature dry-feeding coal gasifier for IGCC systems

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Y.S.; Lee, K.B.; Lee, H.G.; Chung, S.W.; Park, S.K. [Institute for Advanced Engineering, Yongin (Korea, Republic of)

    1998-05-01

    Research results obtained from a 3 ton/day-class coal gasifier were illustrated. Among many things, the shape and inner structure of slags that were obtained from a 3 ton/day-class gasifier and from a commercial-scale gasifier for the identical coal were compared to identify any gasifier-size effect. Slags from both gasifiers exhibited a similar size and also the same indication of forming vesiculation inside the structure. Slags possessed normally less than 0.3% carbon content while showing no elutriation of heavy metals by water. Inner structure of slags produced by gasification shows an amorphous characteristics whereas combusted ash exhibits a clear indication of crystal nature by minerals, explaining that high temperature gasifier conditions of above 1400 deg. C melt minerals to form interwined slag structure with heavy metals. Another area of the study was on simulation of the gasifier and the IGCC plant. The 3 ton/day-class plant was simulated 3-dimensionally, allowing walk-through of the plant via a software. Detailed static and dynamic process simulations were also performed. Some of these results were illustrated. (author). 7 figs.

  2. MHD Coal Fired Flow Facility. Quarterly technical progress report, July-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Altstatt, M. C.; Attig, R. C.; Brosnan, D. A.

    1980-11-01

    Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF) are described. On Task 1, the first phase of the downstream quench system was completed. On Task 2, all three combustor sections were completed, hydrotested, ASME code stamped, and delivered to UTSI. The nozzle was also delivered. Fabrication of support stands and cooling water manifolds for the combustor and vitiation heater were completed, heat transfer and thermal stress analysis, along with design development, were conducted on the generator and radiant furnace and secondary combustor installation progressed as planned. Under Task 3 an Elemental Analyzer and Atomic Absorption Spectrophotometer/Graphite Furnace were received and installed, sites were prepared for two air monitoring stations, phytoplankton analysis began, and foliage and soil sampling was conducted using all study plots. Some 288 soil samples were combined to make 72 samples which were analyzed. Also, approval was granted to dispose of MHD flyash and slag at the Franklin County landfill. Task 4 effort consisted of completing all component test plans, and establishing the capability of displaying experimental data in graphical format. Under Task 7, a preliminary testing program for critical monitoring of the local current and voltage non-uniformities in the generator electrodes was outlined, electrode metal wear characteristics were documented, boron nitride/refrasil composite interelectrode sealing was improved, and several refractories for downstream MHD applications were evaluated with promising results.

  3. Corrosion of ceramics for slag removal in IGCC-power plants; Korrosion von Keramiken fuer die Fluessigascheabscheidung in IGCC-Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Fuerst, Denny

    2012-06-12

    Coal gasification and the subsequent production of electricity from syngas in combined-cycle powerplants allows plant efficiencies of up to 43% (LHV). Existing technologies allow up to 50% in the short term. Efficiencies beyond 50% however, require concepts and technologies that still need a certain amount of research and development. One such method to raise plant efficiencies would be a high temperature (at temperatures above the melting point of the ash) syngas cleaning. To effectively utilize the heat from the syngas and enable high turbine inlet temperatures, it is necessary to remove slag particles from the hot gas. The feasibility of such a hot syngas cleaning has been successfully demonstrated for the Pressurized Pulverized Coal Combustion (PPCC) by passing the hot gas through a bed of ceramic balls for slag removal. In order to apply this concept to IGCC powerplants the slag resistance of various ceramic materials had to be investigated under gasifying conditions. Therefore, lab-made ceramics and commercially available refractory materials where treated with liquid slag at 1600 C in a number of reducing atmospheres. At first, three synthetic slags with different basicity were used and after evaluating the results, selected materials were treated with a gasifier slag under continuous conditions. It was shown that both slag and ceramic have to be adjusted to ensure a sufficient corrosion resistance of the ceramic bed for slag removal. Furthermore, the impact of the porosity of the utilized ceramic on the corrosion resistance was shown. The composition of the reducing atmosphere (mainly the partial pressure of Oxygen) affected both physical and chemical properties of the slag via slag components that could easily be reduced or oxidized. The materials most suitable for use in slag separation were found to be dense chromium oxide and other ceramics containing a high amount of chromium oxide. [German] Mit Kohlevergasung und der anschliessenden Stromerzeugung in

  4. Corrosion of ceramics for slag removal in IGCC-power plants; Korrosion von Keramiken fuer die Fluessigascheabscheidung in IGCC-Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Fuerst, Denny

    2012-06-12

    Coal gasification and the subsequent production of electricity from syngas in combined-cycle powerplants allows plant efficiencies of up to 43% (LHV). Existing technologies allow up to 50% in the short term. Efficiencies beyond 50% however, require concepts and technologies that still need a certain amount of research and development. One such method to raise plant efficiencies would be a high temperature (at temperatures above the melting point of the ash) syngas cleaning. To effectively utilize the heat from the syngas and enable high turbine inlet temperatures, it is necessary to remove slag particles from the hot gas. The feasibility of such a hot syngas cleaning has been successfully demonstrated for the Pressurized Pulverized Coal Combustion (PPCC) by passing the hot gas through a bed of ceramic balls for slag removal. In order to apply this concept to IGCC powerplants the slag resistance of various ceramic materials had to be investigated under gasifying conditions. Therefore, lab-made ceramics and commercially available refractory materials where treated with liquid slag at 1600 C in a number of reducing atmospheres. At first, three synthetic slags with different basicity were used and after evaluating the results, selected materials were treated with a gasifier slag under continuous conditions. It was shown that both slag and ceramic have to be adjusted to ensure a sufficient corrosion resistance of the ceramic bed for slag removal. Furthermore, the impact of the porosity of the utilized ceramic on the corrosion resistance was shown. The composition of the reducing atmosphere (mainly the partial pressure of Oxygen) affected both physical and chemical properties of the slag via slag components that could easily be reduced or oxidized. The materials most suitable for use in slag separation were found to be dense chromium oxide and other ceramics containing a high amount of chromium oxide. [German] Mit Kohlevergasung und der anschliessenden Stromerzeugung in

  5. Capital cost: low and high sulfur coal plants; 800 MWe

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This Commercial Electric Power Cost Study for 800-MWe (Nominal) low- and high-sulfur coal plants consists of three volumes. (This is the fourth subject in a series of eight performed in the Commercial Electric Power Cost Studies by the US NRC). The low-sulfur coal plant is described in Volumes I and II, while Volume III (this volume) describes the high sulfur coal plant. The design basis, drawings, and summary cost estimate for a 794-MWe high-sulfur coal plant are presented in this volume. This information was developed by redesigning the low-sulfur sub-bituminous coal plant for burning high-sulfur bituminous coal. The reference design includes a lime flue-gas-desulfurization system. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  6. On the Dissolution Behavior of Sulfur in Ternary Silicate Slags

    Science.gov (United States)

    Kang, Youn-Bae; Park, Joo Hyun

    2011-12-01

    Sulfur dissolution behavior, in terms of sulfide capacity ( C S), in ternary silicate slags (molten oxide slags composed of MO - NO - SiO2, where M and N are Ca, Mn, Fe, and Mg), is discussed based on available experimental data. Composition dependence of the sulfur dissolution, at least in the dilute region of sulfur, may be explained by taking into account the cation-anion first-nearest-neighbor (FNN) interaction (stability of sulfide) and the cation-cation second-nearest-neighbor (SNN) interaction over O anion (oxygen proportions in silicate slags). When the Gibbs energy of a reciprocal reaction MO + NS = MS + NO is positive, the sulfide capacity of slags with virtually no SiO2 or low SiO2 concentration decreases as the concentration of MO increases. However, in some slags, as SiO2 concentration increases, replacing NO by MO at a constant SiO2 concentration may increase sulfide capacity when the basicity of NO is less than that of MO. This phenomenon is observed as rotation of iso- C S lines in ternary silicate slags, and it is explained by simultaneous consideration of the stability of sulfide and oxygen proportions in the silicate slags. It is suggested that a solution model for the prediction of sulfide capacity should be based on the actual dissolution mechanism of sulfur rather than on the simple empirical correlation.

  7. Characterization and recovery of copper values from discarded slag.

    Science.gov (United States)

    Das, Bisweswar; Mishra, Barada Kanta; Angadi, Shivakumar; Pradhan, Siddharth Kumar; Prakash, Sandur; Mohanty, Jayakrushna

    2010-06-01

    In any copper smelter large quantities of copper slag are discarded as waste material causing space and environmental problems. This discarded slag contains important amounts of metallic values such as copper and iron. The recovery of copper values from an Indian smelter slag that contains 1.53% Cu, 39.8% Fe and 34.65% SiO(2) was the focus of the present study. A complete investigation of the different phases present in the slag has been carried out by means of optical microscopy, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. It is observed that iron and silica are mostly associated with the fayalite phase whereas copper is present in both oxide and sulfide phases. These oxide and sulfide phases of copper are mostly present within the slag phase and to some extent the slag is also embedded inside the oxide and sulfide phases. The recovery of copper values from the discarded slag has been explored by applying a flotation technique using conventional sodium isopropyl xanthate (SIX) as the collector. The effects of flotation parameters such as pH and collector concentration are investigated. Under optimum flotation conditions, it is possible to achieve 21% Cu with more than 80% recovery.

  8. Vanadium bioavailability in soils amended with blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Maja A., E-mail: maja.larsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Baken, Stijn, E-mail: stijn.baken@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Smolders, Erik, E-mail: erik.smolders@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Cubadda, Francesco, E-mail: francesco.cubadda@iss.it [Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161 (Italy); Gustafsson, Jon Petter, E-mail: jon-petter.gustafsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Division of Land and Water Resources Engineering, KTH Royal Institute of Technology, Brinellvägen 28, 100 44 Stockholm (Sweden)

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg{sup −1}) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  9. Characterization of chilean copper slag smelting nineteenth century

    Directory of Open Access Journals (Sweden)

    Amin Nazer

    2016-12-01

    Full Text Available The aim of this work is to characterize four copper smelters slag nineteenth century, from abandoned landfills in Atacama Region - Chile, using the techniques of X-ray fluorescence (XRF, X-ray diffraction (XRD, scanning electron microscopy (SEM, particle analysis by laser diffraction (ADL, Fourier Transform Infrared Spectroscopy (FTIR and thermogravimetric analysis (TGA. Copper slags studied were chemically classified as acidic slags, this slags presented higher SiO2 content (38–49% than Fe2O3 (18–37% and a significant amount of CaO (8–26% and Al2O3 (8.5%. Mineralogy and structure was varied, presenting one of them an amorphous structure and the remaining three, a crystalline structure with partially amorphous character. The majority mineral phases presented in the copper slag were diopside, fayalite, magnetite, cristobalite and clinoferrosilita. Calcium levels indicate that the slags could have cementitious properties for use as a binder in construction materials. Moreover, the significant amount of slag available and CuO content (0.6–1.2% show that may be of interest as raw material for metal recovery.

  10. Vanadium bioavailability in soils amended with blast furnace slag.

    Science.gov (United States)

    Larsson, Maja A; Baken, Stijn; Smolders, Erik; Cubadda, Francesco; Gustafsson, Jon Petter

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg(-1)) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  11. Utilizing steel slag in environmental application - An overview

    Science.gov (United States)

    Lim, J. W.; Chew, L. H.; Choong, T. S. Y.; Tezara, C.; Yazdi, M. H.

    2016-06-01

    Steel slags are generated as waste material or byproduct every day from steel making industries.The potential environmental issues which are related with the slag dump or reprocessing for metal recovery are generally being focused in the research. However the chemistry and mineralogy of slag depends on metallurgical process which is able to determine whether the steel slag can be the reusable products or not. Nowadays, steel slag are well characterized by using several methods, such as X-ray Diffraction, ICP-OES, leaching test and many more. About the industrial application, it is mainly reused as aggregate for road construction, as armour stones for hydraulic engineering constructions and as fertilizers for agricultural purposes. To ensure the quality of steel slag for the end usage, several test methods are developed for evaluating the technical properties of steel slag, especially volume stability and environmental behaviour. In order to determine its environmental behaviour, leaching tests have been developed. The focus of this paper however is on those applications that directly affect environmental issues including remediation, and mitigation of activities that negatively impact the environment.

  12. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141574 Chen Hao(Exploration and Development Research Institute,Daqing Oilfield Company,Daqing 163712,China)High-Resolution Sequences and Coal Accumulating Laws in Nantun Formation of Huhe Lake Sag(Petroleum Geology&Oilfield Development in Daqing,ISSN1000-3754,CN23-1286/TQ,32(4),2013,p.15-19,5 illus.,15 refs.)Key words:coal accumulation regularity,coal

  13. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091159 Gao Yan(No.3 Prospecting Team of Anhui Bureau of Coal Geology,Suzhou 234000,China) Effect of Depositional Environment of Coal-Bearing Stratum on Major Coal Seams in Suntan Coalmine,Anhui Province(Geology of Anhui,ISSN 1005- 6157,CN34-1111/P,18(2),2008,p.114 -117,5 illus.,1 ref.,with English abstract)

  14. Danish Cool

    DEFF Research Database (Denmark)

    Toft, Anne Elisabeth

    2016-01-01

    Danish Cool. Keld Helmer-Petersen, Photography and the Photobook Handout exhibition text in English and Chinese by Anne Elisabeth Toft, Curator The exhibition Danish Cool. Keld Helmer-Petersen, Photography and the Photobook presents the ground-breaking work of late Danish photographer Keld Helmer...

  15. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  16. Formation Mechanism of 2CaO·SiO2 and 3CaO·P2O5 Solid Solution in CaO-SiO2-FetO-P2O5 Slags

    Science.gov (United States)

    Dou, Xiaofei; Zhu, Mingmei; Lin, Tiancheng; Wang, Yu; Xie, Bin; Zhu, Bin; Zhou, Hong

    In this study, the formation of 2CaO·SiO2 and 3CaO·P2O5 solid solution (nC2S-C3P) in hot metal dephosphorization process is discussed. The variations of CaO and SiO2 mass, both in nC2S-C3P solid solution phase and liquid slag phase with increasing P2O5 mass in CaO-SiO2-FetO-P2O5 slags were calculated using Factsage software. CaO-SiO2-FeOt-P2O5 slag containing up to 18 % P2O5 was melted at 1823 K then cooled to 1673 K. The contents of CaO and SiO2 both in the solid solution phase and liquid slag phase of quenched samples were observed and analyzed by SEM/EDS. Both the calculated and experimental results show that the contents of CaO and SiO2 in the solid solution phase decreased, just opposite in the liquid slag phase, with increasing P2O5 content in the slags. Formation mechanism of nC2S-C3P solid solution in the slags was derived based on the ionic structure theory of molten slag. The SiO44- in the nC2S-C3P solid solution can be replaced by PO43- in the liquid phase resulting in the increasing of free Ca2+ and SiO44- in liquid phase.

  17. Boron removal from molten silicon using sodium-based slags

    Institute of Scientific and Technical Information of China (English)

    Yin Changhao; Hu Bingfeng; Huang Xinming

    2011-01-01

    Slag refining,as an important option for boron removal to produce solar grade silicon (SOG-Si) from metallurgical grade silicon (MG-Si),has attracted increasing attention.In this paper,Na2CO3-SiO2 systems were chosen as the sodium-based refining slag materials for boron removal from molten silicon.Furthermore,the effect of Al2O3 addition for boron removal was studied in detail,which showed that an appropriate amount of Al2O3 can help retention of the basicity of the slags,hence improving the boron removal rate.

  18. Study on Apparent Viscosity and Structure of Foaming Slag

    Science.gov (United States)

    Martinsson, Johan; Glaser, Björn; Sichen, Du

    2016-10-01

    Foaming slag was generated using induction heating. The foam was found non-Newtonian having much higher apparent viscosity compared to the dynamic viscosity of pure slag. Quenched foam was examined. The appearance of the foaming slag was very different from silicone oil-gas foam. The size of gas bubbles ranged from 0.1 to 4 mm (while in the case of silicone oil, 1 to 2 mm). The gas fraction in the foam was considerably lower than in the case of silicone oil.

  19. Optimizing of Work Arc Furnace to Decopperisation of Flash Slag

    Directory of Open Access Journals (Sweden)

    Bydałek A.W.

    2015-09-01

    Full Text Available Discusses an attempt to optimize the operation of an electric furnace slag to be decopperisation suspension of the internal recycling process for the production of copper. The paper presents a new method to recover copper from metallurgical slags in arc-resistance electric furnace. It involves the use of alternating current for a first period reduction, constant or pulsed DC in the final stage of processing. Even distribution of the electric field density in the final phase of melting caused to achieve an extremely low content of metallic copper in the slag phase. They achieved by including the economic effects by reducing the time reduction.

  20. An approach for phosphate removal with quartz sand, ceramsite, blast furnace slag and steel slag as seed crystal.

    Science.gov (United States)

    Qiu, Liping; Wang, Guangwei; Zhang, Shoubin; Yang, Zhongxi; Li, Yanbo

    2012-01-01

    The phosphate removal abilities and crystallization performance of quartz sand, ceramsite, blast furnace slag and steel slag were investigated. The residual phosphate concentrations in the reaction solutions were not changed by addition of the ceramsite, quartz sand and blast furnace slag. The steel slag could provide alkalinity and Ca(2+) to the reaction solution due to its hydration activity, and performed a better phosphate removal performance than the other three. Under the conditions of Ca/P 2.0, pH 8.5 and 10 mg P/L, the phosphate crystallization occurred during 12 h. The quartz sand and ceramsite did not improve the phosphate crystallization, but steel slag was an effective seed crystal. The phosphate concentration decreased drastically after 12 h after addition of steel slag, and near complete removal was achieved after 48 h. The XRD analysis showed that the main crystallization products were hydroxyapatite (HAP) and the crystallinity increased with the reaction time. Phosphate was successfully recovered from low phosphate concentration wastewater using steel slag as seed material.

  1. Effect of P2O5 and FetO on the Viscosity and Slag Structure in Steelmaking Slags

    Science.gov (United States)

    Wang, Z. J.; Shu, Q. F.; Sridhar, S.; Zhang, M.; Guo, M.; Zhang, Z. T.

    2015-04-01

    The present paper investigates the influence of P2O5 and FetO on the viscosity and structure of steelmaking slags. An understanding of the viscous behavior and structure of FetO-bearing smelting slags is essential to control the dephosphorization in steelmaking process and to efficiently recycle the phosphorus from steelmaking slags. It is found that the viscosity of CaO-SiO2-Al2O3-MgO-FetO-P2O5 slags slightly increases with increasing P2O5 content, while the viscosity decreases with increasing FetO content. The degree of the polymerization of quenched slags, determined from Raman spectra, is found to increase with increasing P2O5 content and decrease with increasing FetO content. It is also noted that the peaks of Raman spectra between 800 and 1200 cm-1 were nearly absent at the FetO content of 22.46 wt pct; whereas according to 29Si MAS-NMR and FTIR analysis, it is clearly seen that the [SiO4]-tetrahedra-related peaks existed even for the same slag. This may confirm that small quantities of extra-framework iron species can absorb the Raman scattering and damp the Raman signal intensity and the presence of FetO in the slag does not necessarily eliminate [SiO4]-tetrahedra.

  2. Coal log pipeline research at the University of Missouri. 1st Quarterly report for 1995, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.

    1995-08-01

    Work continued on the study of coal log pipeline research. Individual projects described include fast compaction of coal logs; effect of cooling on coal log quality; coal log capping; effectiveness of adding fiber to enhance coal log quality; fabrication using hydrophobic binders; cost estimation of different lubricants; automatic control of coal log pipeline system; CLP design; coal log train transport; economics of coal log pipeline; legal aspects; heating, cooling, and drying of logs; vacuum systems to enhance production; design; and effect of piston modification on capping.

  3. Characterization and Recovery of Rare Earths from Coal and By-Products

    Energy Technology Data Exchange (ETDEWEB)

    Granite, Evan J. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Roth, Elliot [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Alvin, Mary Anne [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2016-03-25

    Coal is a precious resource, both in the United States and around the world. The United States has a 250-year supply of coal, and generates between 30 - 40% of its electricity through coal combustion. Approximately 1 Gt of coal has been mined annually in the US, although the 2015 total will likely be closer to 900 Mt (http://www.eia.gov/coal/production/quarterly/). Most of the coal is burned for power generation, but substantial quantities are also employed in the manufacture of steel, chemicals, and activated carbons. Coal has a positive impact upon many industries, including mining, power, rail transportation, manufacturing, chemical, steel, activated carbon, and fuels. Everything that is in the earth’s crust is also present within coal to some extent, and the challenge is always to utilize abundant domestic coal in clean and environmentally friendly manners. In the case of the rare earths, these valuable and extraordinarily useful elements are present within the abundant coal and coal by-products produced domestically and world-wide. These materials include the coals, as well as the combustion by-products such as ashes, coal preparation wastes, gasification slags, and mining by-products. All of these materials can be viewed as potential sources of rare earth elements. Most of the common inorganic lanthanide compounds, such as the phosphates found in coal, have very high melting, boiling, and thermal decomposition temperatures, allowing them to concentrate in combustion and gasification by-products. Furthermore, rare earths have been found in interesting concentrations in the strata above and below certain coal seams. Much of the recent research on coal utilization in the United States has focused upon the capture of pollutants such as acid gases, particulates, and mercury, and the greenhouse gas carbon dioxide. The possible recovery of rare earth and other critical elements from abundant coal and by-products is an exciting new research area, representing a

  4. Strength and corrosion behavior of SiC - based ceramics in hot coal combustion environments

    Energy Technology Data Exchange (ETDEWEB)

    Breder, K.; Parten, R.J. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    As part of an effort to evaluate the use of advanced ceramics in a new generation of coal-fired power plants, four SiC-based ceramics have been exposed to corrosive coal slag in a laboratory furnace and two pilot scale combustors. Initial results indicate that the laboratory experiments are valuable additions to more expensive pilot plant experiments. The results show increased corrosive attack with increased temperature, and that only slight changes in temperature may significantly alter the degree of strength degradation due to corrosive attack. The present results are part of a larger experimental matrix evaluating the behavior of ceramics in the coal combustion environment.

  5. Coal-fired open cycle MHD combustion plasmas - Chemical equilibrium and transport properties workshop results

    Science.gov (United States)

    Sullivan, L. D.; Klepeis, J. E.; Coderre, W. J.; Fischer, W. H.

    1980-01-01

    For electrical power generation utilizing a high temperature alkali-seeded coal combustion plasma, the certainty of high electrical conductivity in the presence of coal ash and trace impurities is vitally important, especially for use in extrapolation of existing designs to higher power levels, as envisioned for commercial applications. The paper surveys the results of the workshop which provides an industry wide overview of the computational methods and analyses that are currently in use. Attention is given to uncertainty bands for plasma electrical conductivity. Also discussed are other issues such as coal, slag, seed, and conductivity. Finally, the paper gives suggested areas for further work.

  6. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  7. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131668 Chang Huizhen(Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process,CUMT,Ministry of Edu-cation,School of Resource and Earth Science,China University of Mining and Technology,Xuzhou 221008,China);Qin Yong Differences in of Pore Structure of Coals and Their Impact on the Permeability of Coals from the

  8. SELECTION OF SUSTAINABLE TECHNOLOGIES FOR COMBUSTION OF BOSNIAN COALS

    Directory of Open Access Journals (Sweden)

    Anes Kazagić

    2010-01-01

    Full Text Available This paper deals with optimization of coal combustion conditions to support selection a sustainable combustion technology and an optimal furnace and boiler design. A methodology for optimization of coal combustion conditions is proposed and demonstrated on the example of Bosnian coals. The properties of Bosnian coals vary widely from one coal basin to the next, even between coal mines within the same basin. Very high percentage of ash (particularly in Bosnian brown coal makes clear certain differences between Bosnian coal types and other world coal types, providing a strong argument for investigating specific problems related to the combustion of Bosnian coals, as well as ways to improve their combustion behaviour. In this work, options of the referent energy system (boiler with different process temperatures, corresponding to the different combustion technologies; pulverised fuel combustion (slag tap or dry bottom furnace and fluidized bed combustion, are under consideration for the coals tested. Sustainability assessment, based on calculation economic and environment indicators, in combination with common low cost planning method, is used for the optimization. The total costs in the lifetime are presented by General index of total costs, calculated on the base of agglomeration of basic economic indicators and the economic indicators derived from environmental indicators. So, proposed methodology is based on identification of those combustion technologies and combustion conditions for coals tested for which the total costs in lifetime of the system under consideration are lowest, provided that all environmental issues of the energy system is fulfilled during the lifetime. Inputs for calculation of the sustainability indicators are provided by the measurements on an experimental furnace with possibility of infinite variation of process temperature, supported by good praxis from the power plants which use the fuels tested and by thermal

  9. Role of sodium ions in the vitrification process: glass matrix modification, slag structure depolymerization, and influence of metal immobilization.

    Science.gov (United States)

    Kuo, Yi-Ming

    2014-07-01

    This study investigates the role of Na ions, a common flux, in the vitrification process. Artificial glass systems composed of Al2O3, CaO, and SiO2 with various Na concentrations were melted at 1450 degrees C. The specimens were cooled by air cooling and water quenching and the metal mobility was evaluated using a sequential extraction procedure. The X-ray diffraction analysis and scanning electron microscopy observations showed that Na ions governed the air-cooled slag's structure. Na ions initially depolymerized CaSiO3-linked chains into CaSiO3 chains, and further cut them into shorter and nonuniform ones, making the slag structure amorphous. With even more Na ions, CaSiO3 chains were divided into single SiO4 tetrahedrons and formed Na-related crystals (Na2Ca3Si2O8 and NaAlSiO4). The phase distributions of Al, Cr, Cu Mn, and Ni showed that Na has a positive effect on the immobilization of heavy metals at suitable concentrations, but a negative effect when in excess amounts. Implications: Vitrification has been widely used to treat hazardous materials. The Na-bearing additives were often used as a flux to improve the melting process. This study described the role of Na played in the vitrification process. The Na ions acted as glass modifier and depolymerize the chain structure of slag. With adequate addition amount of Na ions, the immobilization of heavy metals was improved. The results provided much information about the crystalline phase variation, metal mobility, and surface characteristics while Na serves as a flux.

  10. The behavior of sulfur in industrial pyrometallurgical slags

    Science.gov (United States)

    Nagamori, Meguru

    1994-08-01

    Dissolution of sulfur in industrial slags, even at such a low level as 1 mass% S or so, increases the solubility of certain valuable metals by an order of magnitude. The phenomenon is accounted for in terms of Flood-Førland-Grjotheim's model for dianionic salt solutions, whereas its rigorous analysis requires the digaseous Gibbs-Duhem integration. In the research described here, the distribution of sulfur among gas, slag, and metallic iron phases in the bath smelting of iron ore was computer-simulated based on a two-sites model coupled with sulfide capacity data. The solubilities of Ag, Cu, Co, and Ni in industrial slags are reviewed by applying the sulfidic-oxidic dissolution model to copper-matte smelting, nickel-slag cleaning (Falconbridge, Canada), and the imperial smelting process for zinc and lead (Hachinohe, Japan).

  11. Removal of phosphate from aqueous solution with blast furnace slag.

    Science.gov (United States)

    Oguz, Ensar

    2004-10-18

    Blast furnace slag was used to remove phosphate from aqueous solutions. The influence of pH, temperature, agitation rate, and blast furnace slag dosage on phosphate removal was investigated by conducting a series of batch adsorption experiments. In addition, the yield and mechanisms of phosphate removal were explained on the basis of the results of X-ray spectroscopy, measurements of zeta potential of particles, specific surface area, and images of scanning electron microscopy (SEM) of the particles before and after adsorption. The specific surface area of the blast furnace slag was 0.4m(2)g(-1). The removal of phosphate predominantly has taken place by a precipitation mechanism and weak physical interactions between the surface of adsorbent and the metallic salts of phosphate. In this study, phosphate removal in excess of 99% was obtained, and it was concluded that blast furnace slag is an efficient adsorbent for the removal of phosphate from solution.

  12. Vaporization Studies from Slag Surfaces Using a Thin Film Technique

    Science.gov (United States)

    Seetharaman, Seshadri; Shyrokykh, Tetiana; Schröder, Christina; Scheller, Piotr R.

    2013-08-01

    The investigations of vanadium vaporization from CaO-SiO2-FeO-V2O5 thin film slags were conducted using the single hot thermocouple technique (SHTT) with air as the oxidizing atmosphere. The slag samples were analyzed after the experiments by SEM/EDX. The vanadium content was found to decrease as a function of time. The loss of vanadium from the slag film after 30 minutes of oxidation was approximately 18 pct and after 50 minutes, it was nearly 56 pct. The possible mechanism of vanadium loss would be the surface oxidation of vanadium oxide in the slag, VO x to V5+, followed by surface evaporation of V2O5, which has a high vapor pressure at the experimental temperature.

  13. Properties of Industrial Slag as Fine Aggregate in Concrete

    Directory of Open Access Journals (Sweden)

    A. Ananthi

    2015-04-01

    Full Text Available The main objective of this paper is to use the industrial waste such as bottom ash and Weld Slag (WS as the partial replacement for fine aggregates in concrete. This paper presents the chemical analysis and strength properties of industrial solid waste such as bottom ash, weld slag 1 (WS 1 and weld slag 2 (WS 2. Their chemical compositions were identified by X-ray powder diffraction (XRD analysis. The qualitative and quantitative elemental analysis of the bottom ash and weld slag was recognized by energy dispersive X-ray analysis and their morphology were studied by Scanning Electron Microscope (SEM. The compressive strength of concrete with 10% replacement of fine aggregate to the industrial waste shows higher strength than the normal concrete and hence this industrial waste can be used as fine aggregate in concrete.

  14. Activity of Reducing Steel Slag of EAF

    Institute of Scientific and Technical Information of China (English)

    GUO Chinhsiang; HWANG Chaolung; LIN Tingyi

    2011-01-01

    Reducing steel slag (RSS) was mainly acquired from five electric-arc furnace (EAF)steelmaking plants (among them, the products of two plants were carbon steel and those of other plants were stainless steel) for research tests. The chemical properties, compound compositions, activities and contents of main expansive compounds were tested. The results showed that the field sampled RSS had a very high crystallinity and hydraulicity with main chemical compositions close to those of Portland cement. It can be known from the study that in case of C/S ratio higher than 2.0, the main compound compositions are C2S, C3S, C2F and f-CaO. However, after the RSS was stored for six months, an obvious variation occurred with potential pre-hydration in RSS, where the SO3 content was slightly reduced and the compressive activity index was obviously higher than that at the 28th day.

  15. Experimental Investigation and Modeling of Copper Smelting Slags

    Science.gov (United States)

    Starodub, Konstantin; Kuminova, Yaroslava; Dinsdale, Alan; Cheverikin, Vladimir; Filichkina, Vera; Saynazarov, Abdukahhar; Khvan, Alexandra; Kondratiev, Alex

    2016-10-01

    Effective extraction of copper from sulfide ores requires careful operation of a copper smelter, which in turn depends very much on chemistry of the feed and resulted slag and matte. For example, chemical composition of copper smelting slags has to be in a certain range to ensure that their properties are within specific limits. Disobeying these rules may lead to complications in smelting operation, poor quality of the copper products, and premature shutdown of the copper smelter. In the present paper the microstructure and phase composition of slags from the Almalyk copper flash smelter were investigated experimentally and then modeled thermodynamically to evaluate potential ways of improvement and optimization of the copper smelting process and its products. The slag samples were taken at different stages of the copper smelting process: on slag tapping, after slag transportation to a deposition site, and at the site. Experimental investigation included the XRD, XRF, and SEM techniques, which were also confirmed by the traditional wet chemistry analysis. Thermodynamic modeling was carried out using thermochemical software package MTDATA, which enables thermodynamic and physical properties of the matte, slag, and gas phases to be calculated in a wide range of temperatures, pressures, and chemical compositions. In addition, slag viscosities and corresponding matte settling rates were estimated using the modified Urbain and Utigard-Warczok models, and the Hadamard-Rybczynski equation, respectively. It was found that the copper content in the slags may vary significantly depending on the location of slag sampling. Cu was found to be present as sulfide particles, almost no Cu was found to be dissolved in the slag. Analysis of microstructure and phase composition showed that major phase found in the samples is fayalite, while other phases are complex spinels (based on magnetite), different sulfides, and a glass-like phase. Thermodynamic calculations demonstrated the

  16. Balance of natural radionuclides in the brown coal based power generation and harmlessness of the residues and side product utilization; Bilanz natuerlicher Radionuklide in der Braunkohleverstromung und Unbedenklichkeit bei der Verwendung von Rueckstaenden und Nebenprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Hartmut; Kunze, Christian; Hummrich, Holger [IAF-Radiooekologie GmbH, Radeberg (Germany)

    2017-04-01

    During brown coal combustion a partial enrichment of natural radionuclides occurs in different residues. Residues and side product from brown coal based power generation are used in different ways, for example filter ashes and gypsum from flue gas desulfurization facilities are used in the construction materials fabrication and slags for road construction. Detailed measurement and accounting of radionuclides in the mass throughputs in coal combustion power plants have shown that the utilized gypsum and filter ashes are harmless in radiologic aspects.

  17. Desulfurization ability of refining slag with medium basicity

    Science.gov (United States)

    Yu, Hui-xiang; Wang, Xin-hua; Wang, Mao; Wang, Wan-jun

    2014-12-01

    The desulfurization ability of refining slag with relative lower basicity ( B) and Al2O3 content ( B = 3.5-5.0; 20wt%-25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity ( C S) of the slag were calculated. Then slag-metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution ( L S). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO-Al2O3-SiO2-MgO system with the basicity of about 3.5-5.0 and the Al2O3 content in the range of 20wt%-25wt% has high activity of CaO ( a CaO), with no deterioration of C S compared with conventional desulfurization slag. The measured L S between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt% and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt% is 350 and 275, respectively. The new slag with a basicity of about 3.5-5.0 and an Al2O3 content of about 20wt% has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.

  18. Slagging and Fouling Characteristics of HRSG for Ferrosilicon Electric Furnaces

    OpenAIRE

    2015-01-01

    The slagging and fouling characteristics of the heat recovery steam generator (HRSG) for ferrosilicon electric furnaces are discussed in this paper. Three ash samples were taken from the HRSG of a ferrosilicon furnace in Ningxia Province, China, which suffered from serious slagging and fouling. X-ray fluorescence (XRF), X-ray powder diffraction (XRD) and scanning electron microscope (SEM) were used to analyze the ash samples. The results show that low melting point salt Na 2 SO 4 and composit...

  19. Preparation of Glass Ceramic Based on Granulated Slag and Cullet

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The glass-ceramic was prepared on the basis of materials of granulated slag containing high-calcium oxide and cullet.The content of granulated slag ranges from 50%-60%wt in the glass compositions. The samples were analyzed by DTA, SEM and XRD.The results show that the main crystal phase of the glass-ceramic is β-CaSiO3,Which is in scattering fiber or column form.The applying properties have also been measured.

  20. Evaluation of blast furnace slag as basal media for eelgrass bed.

    Science.gov (United States)

    Hizon-Fradejas, Amelia B; Nakano, Yoichi; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa

    2009-07-30

    Two types of blast furnace slag (BFS), granulated (GS) and air-cooled slag (ACS), were evaluated as basal media for eelgrass bed. Evaluation was done by comparing BFS samples with natural eelgrass sediment (NES) in terms of some physico-chemical characteristics and then, investigating growth of eelgrass both in BFS and NES. In terms of particle size, both BFS samples were within the range acceptable for growing eelgrass. However, compared with NES, low silt-clay content for ACS and lack of organic matter content for both BFS samples were found. Growth experiment showed that eelgrass can grow in both types of BFS, although growth rates in BFS samples shown by leaf elongation were slower than that in NES. The possible reasons for stunted growth in BFS were assumed to be lack of organic matter and release of some possible toxins from BFS. Reduction of sulfide content of BFS samples did not result to enhanced growth; though sulfide release was eliminated, release of Zn was greater than before treatment and concentration of that reached to alarming amounts.

  1. System Anti Slagging Transformation of 460 t/h Boiler Combustion%460 t/h锅炉燃烧系统防结渣改造

    Institute of Scientific and Technical Information of China (English)

    王晨

    2013-01-01

    This paper through the analysis and the experiment of 460 t/h pulverized coal boiler slagging, puts forward the re-trofit scheme, through the transformation, the boiler ef iciency and anti slagging performance are significantly improved, ens-ured the capacity of the boiler safe and economic operation for a long time.%本文通过对460 t/h 煤粉炉结焦原因的分析及实验,提出了锅炉燃烧器改造方案。通过改造,锅炉效率和防结渣性能显著提升,确保了锅炉满负荷长期安全、经济的运行。

  2. Chloride ion transport performance in slag mortar under fatigue loading

    Institute of Scientific and Technical Information of China (English)

    WANG CaiHui; SUN Wei; JIANG JinYang; HAN JianDe; YE BangTu

    2012-01-01

    The transport performance of chloride ion in slag cement mortar was investigated experimentally.In the self-designed experiment,fatigue loading was coupled simultaneously with ion transportation process,the diffusion law of chloride ion was obtained by titration and the AE (acoustic emission) technique was employed to detect the real-time damage distribution in the mortar specimen.The results for fatigue stress levels of 0.3,0.4 and 0.5 and slag contents of 0,10%,30% and 50% showed that fatigue loading accelerated the diffusion of chloride ion in mortar and the acceleration effect increased with the increase in stress levels.Slag addition was found to improve anti-chloride ion erosion performance effectively with the best substitution level at 30%,because the inhibition effect of slag on chloride ion diffusion diminished when the slag content exceeded 30%.The comparative experiments indicated that dynamic load has a significant effect on the transport performance of chloride ion in slag cement mortar.

  3. Stabilization of Black Cotton Soil Using Micro-fine Slag

    Science.gov (United States)

    Shukla, Rajesh Prasad; Parihar, Niraj Singh

    2016-09-01

    This work presents the results of laboratory tests conducted on black cotton soil mixed with micro-fine slag. Different proportions of micro-fine slag, i.e., 3, 6, 9, 12 and 15 % were mixed with the black cotton soil to improve soil characteristics. The improvement in the characteristics of stabilized soil was assessed by evaluating the changes in the physical and strength parameters of the soil, namely, the Atterberg limits, free swell, the California Bearing Ratio (CBR), compaction parameters and Unconfined Compressive Strength (UCS). The mixing of micro-fine slag decreases the liquid limit, plasticity index and Optimum Moisture Contents (OMC) of the soil. Micro-fine slag significantly increases the plastic limit, UCS and CBR of the soil up to 6-7 % mixing, but mixing of more slag led to decrease in the UCS and CBR of the soil. The unsoaked CBR increased by a substantial amount unlike soaked CBR value. The swell potential of the soil is reduced from medium to very low. The optimum amount of micro-fine slag is found to be approximately 6-7 % by the weight of the soil.

  4. Growth promotion effect of steelmaking slag on Spirulina platensis

    Science.gov (United States)

    Nogami, R.; Tam, L. T.; Anh, H. T. L.; Quynh, H. T. H.; Thom, L. T.; Nhat, P. V.; Thu, N. T. H.; Hong, D. D.; Wakisaka, M.

    2016-04-01

    A growth promotion effect of steelmaking slag on Spirulina platensis M135 was investigated. The growth promotion effect was obtained that was 1.27 times greater than that obtained by the control by adding 500 mg L-1 of steelmaking slag and culturing for 60 days. The lipid content decreased in a concentration-dependent manner with steelmaking slag, whereas the carbohydrate content remained constant. The protein content of S. platensis M135 increased in a concentration-dependent manner with steelmaking slag when cultured at day 45. The superoxide dismutase activity of S. platensis M135 exhibited a decreasing trend in a time-dependent manner and an increasing trend in the control. The superoxide dismutase activity was lower than that of the control at day 1 but was higher at day 30. No genetic damage was observed up to 500 mg L-1 of steelmaking slag at 30 days of culture. Recovery from genetic damage was observed at 1,000 mg L-1 of steelmaking slag but not at higher concentrations.

  5. Recovery of copper and cobalt from ancient slag.

    Science.gov (United States)

    Bulut, Gülay

    2006-04-01

    About 2.5 million tonnes of copper smelter slag are available in Küre, northern part of Turkey. This slag contains large amounts of metallic values such as copper and cobalt. A representative slag sample containing 0.98% Cu, 0.49% Co and 51.47% Fe was used in the experimental studies. Two different methods, direct acid leaching and acid baking followed by hot water leaching were used for recovering Cu and Co from the slag. The effects of leaching time, temperature and acid concentration on Cu- and Co-dissolving efficiencies were investigated in the direct acid leaching tests. The optimum leaching conditions were found to be a leaching time of 2 h, acid concentration of 120 g L(-1), and temperature of 60 degrees C. Under these conditions, 78% Cu and 90% Co were extracted. In the acid baking + hot water leaching tests, 74% Co was dissolved after 1 h of roasting at 200 degrees C using a 3:1 acid:slag ratio, whereas the Cu-dissolving efficiency was 79% and the total slag weight loss was approximately 50%.

  6. Effect of factors on the extraction of boron from slags

    Science.gov (United States)

    Zhang, Peixin; Sui, Zhitong

    1995-04-01

    The effects of slag composition, additive agent, and heat treatment on the crystal morphologies, the crystallization behavior, and the efficiency of extraction of boron (EEB) from slags were investigated by chemical analysis, polarization microscope, and X-ray diffraction (XRD) as well as differential thermal analysis (DTA). The EEB varied with the slag composition. The farther the slag composition deviated from the line between 2MgO · B2O3 and 2MgO · SiO2 in the MgO-B2O3-SiO2 system, the lower the EEB. The EEB was directly related to the precipitating characteristics of the boron component in the slags. The EEB was high if the boron component existed in the form of a crystalline phase, otherwise the EEB was low when boron was in the form of an amorphous phase. The EEB from MgO-Al2O3-CaO-B2O3-SiO2 slag varied with the temperature of heat treatment; the highest EEB appeared at 1100 °C. The EEB and the crystallinities were increased by addition of TiO2 and MOx (M = Mg, Ca, Fe, Si). The effect of MOx was more notable than that of TiO2.

  7. Power Generation from Coal 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Coal is the biggest single source of energy for electricity production and its share is growing. The efficiency of converting coal into electricity matters: more efficient power plants use less fuel and emit less climate-damaging carbon dioxide. This book explores how efficiency is measured and reported at coal-fired power plants. With many different methods used to express efficiency performance, it is often difficult to compare plants, even before accounting for any fixed constraints such as coal quality and cooling-water temperature. Practical guidelines are presented that allow the efficiency and emissions of any plant to be reported on a common basis and compared against best practice. A global database of plant performance is proposed that would allow under-performing plants to be identified for improvement. Armed with this information, policy makers would be in a better position to monitor and, if necessary, regulate how coal is used for power generation. The tools and techniques described will be of value to anyone with an interest in the more sustainable use of coal.

  8. Portland cement-blast furnace slag blends in oilwell cementing applications

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D.T.; DiLullo, G.; Hibbeler, J. [and others

    1995-12-31

    Recent investigations of blast furnace slag cementing technologies. have been expanded to include Portland cement/blast furnace slag blends. Mixtures of Portland cement and blast furnace slag, while having a long history of use in the construction industry, have not been used extensively in oilwell cementing applications. Test results indicate that blending blast furnace slag with Portland cement produces a high quality well cementing material. Presented are the design guidelines and laboratory test data relative to mixtures of blast furnace slag and Portland cements. Case histories delineating the use of blast furnace slag - Portland cement blends infield applications are also included.

  9. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111053 Chen Jian(School of Earth and Environment,Anhui University of Science and Technology,Huainan 232001,China);Liu Wenzhong Organic Affinity of Trace Elements in Coal from No.10 Coal-Bed at Western Huagou,Guoyang(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,38(4),2010,p.16-20,24,3 illus.,3 tables,19 refs.)Key words:coal,minor elements,Anhui Province In order to study the organic affinity of trace elements in coal from No.10 coal-bed at western Huagou,Guoyang,10 borehole samples were collected at exploration area of Huaibei mining area.The contents of 12 kinds of trace elements were determined by the inductively coupled plasma mass spectrometry(ICP-MS),the total organic carbon(TOC)of coal was determined by LECO carbon and sulfur analyzer,and the organic affinity of trace elements were deduced from the correlations between contents and TOCs.The results showed that the contents of V,Cr,Co,Ni,Mo,Cd,Sb,Pb and Zn were lower than

  10. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  11. Coal gasification for electric power generation.

    Science.gov (United States)

    Spencer, D F; Gluckman, M J; Alpert, S B

    1982-03-26

    The electric utility industry is being severely affected by rapidly escalating gas and oil prices, restrictive environmental and licensing regulations, and an extremely tight money market. Integrated coal gasification combined cycle (IGCC) power plants have the potential to be economically competitive with present commercial coal-fired power plants while satisfying stringent emission control requirements. The current status of gasification technology is discussed and the critical importance of the 100-megawatt Cool Water IGCC demonstration program is emphasized.

  12. Thermotechnical performance of an air-cooled tuyere with air cooling channels in series

    Science.gov (United States)

    Shen, Yuansheng; Zhou, Yuanyuan; Zhu, Tao; Duan, Guangbin

    2017-01-01

    To reduce the cooling air consumption for an air-cooled tuyere, an air-cooled tuyere with air cooling channels in series is developed based on several hypotheses, i.e., a transparent medium in the blast furnace, among others, and the related mathematical models are introduced and developed. Referring to the data from a BF site, the thermotechnical computation for the air-cooled tuyere was performed, and the results show that when the temperature of the inlet cooling air increases, the temperatures for the outlet cooling air, the outer surface of the tuyere, the walls of the air cooling channels and the center channel as well as the heat going into the center channel increase, but the heat absorbed by the cooling air flowing through the air cooling channels decreases. When the cooling air flow rate under the standard state increases, the physical parameters mentioned above change in an opposite directions. Compared to a water-cooled tuyere, the energy savings for an air-cooled tuyere are more than 0.23 kg/min standard coal.

  13. Carbothermic Reduction Reactions at the Metal-Slag Interface in Ti-Bearing Slag from a Blast Furnace

    Science.gov (United States)

    Wang, Yao-Zu; Zhang, Jian-Liang; Liu, Zheng-Jian; Du, Cheng-Bo

    2017-08-01

    Carbothermic reduction reactions at the metal-slag interface and the mechanisms of iron loss during the smelting of vanadium-bearing titanomagnetite in a blast furnace are still not clear as a result of the limited ability to observe the high-temperature zone of a blast furnace. The chemical composition of a Ti-bearing slag was determined by x-ray fluorescence and x-ray diffraction. The interfaces were characterized by scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy. The interfacial chemical reactions were deduced based on the characterization results and on the thermodynamic calculations performed using Factsage 6.4. The results indicated that the forms of iron in the slag were iron droplets wetted by Ti(C x , N1-x ), mechanically separated by iron and iron oxide. The different forms possessed unique characteristics and were formed by different mechanisms. Iron droplets wetted by Ti(C x , N1-x ) were generated through a series of interfacial reactions between TiO2 in the slag and [C] and [N] in the metal. Iron droplets without attached Ti(C x , N1-x ) were mainly located on the edges of pores and were attributed to the reduction of Fe x O in the slag. Insufficient reduction of iron-bearing minerals made it difficult for iron droplets to aggregate and separate from the slag, which created an Fe x O-enriched zone.

  14. Molybdate adsorption from steel slag eluates by subsoils.

    Science.gov (United States)

    Matern, K; Rennert, T; Mansfeldt, T

    2013-11-01

    Steel slags are industrial by-products which are generated in large amounts worldwide, e.g. 150-230×10(6) Mg in 2012, and which are partly used for construction. Molybdenum (Mo) can be added during steel processing in order to harden the steel. The objective of this study was to evaluate the adsorption behaviour of molybdate (MoO4(2-)) from slag eluates in subsoils. Molybdate batch adsorption experiments were carried out with eluates obtained from two different kinds of steel slags (i) LD slag (Linz-Donawitz operation, LDS) and (ii) electric arc furnace slag (EAF) to assess the risk that may arise from the contamination of groundwater by the leaching of molybdate. Six different subsoils were chosen in order to provide a wide range of chemical properties (pH 4.0-7.6; dithionite-extractable Fe 0.73-14.7 g kg(-1)). Molybdate adsorption experiments were carried out at the pH of the steel slag eluates (pH 11-12) as well as at pH values adjusted to the soil pH. The data were evaluated with the Freundlich equation. Molybdate adsorption exhibited a maximum near pH 4 for steel slag eluates adjusted to the soil pH, and decreased rapidly with increasing pH until adsorption was virtually zero at pH>11. Adsorption was greater for soils with high amounts of dithionite-extractable Fe oxides. The extent and behaviour of molybdate adsorption from both eluates was similar. After a reaction time of 24h, the pH of the EAF slag eluate was lower than that of the LD steel slag eluate, which was caused by different acid buffer capacities. Some soils were able to decrease the pH of the EAF slag eluates by about 4 pH units, enhancing the adsorption of molybdate. Transport simulations indicated that molybdate discharge is low in acidic soils.

  15. Mineral precipitation and dissolution at two slag-disposal sites in northwestern Indiana, USA

    Science.gov (United States)

    Bayless, E.R.; Schulz, M.S.

    2003-01-01

    Slag is a ubiquitous byproduct of the iron- and steel-refining industries. In northwestern Indiana and northeastern Illinois, slag has been deposited over more than 52 km2 of land surface. Despite the widespread use of slag for fill and construction purposes, little is known about its chemical effects on the environment. Two slagdisposal sites were examined in northwestern Indiana where slag was deposited over the native glacial deposits. At a third site, where slag was not present, background conditions were defined. Samples were collected from cores and drill cuttings and described with scanning electron microscopy and electron microprobe analysis. Ground-water samples were collected and used to assess thermodynamic equilibria between authigenic minerals and existing conditions. Differences in the mineralogy at background and slag-affected sites were apparent. Calcite, dolomite, gypsum, iron oxides, and clay minerals were abundant in native sediments immediately beneath the slag. Mineral features indicated that these minerals precipitated rapidly from slag drainage and co-precipitated minor amounts of non-calcium metals and trace elements. Quartz fragments immediately beneath the slag showed extensive pitting that was not apparent in sediments from the background site, indicating chemical weathering by the hyperalkaline slag drainage. The environmental impacts of slag-related mineral precipitation include disruption of natural ground-water flow patterns and bed-sediment armoring in adjacent surface-water systems. Dissolution of native quartz by the hyperalkaline drainage may cause instability in structures situated over slag fill or in roadways comprised of slag aggregates.

  16. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    Science.gov (United States)

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  17. Characterization of Ladle Furnace Slag from Carbon Steel Production as a Potential Adsorbent

    Directory of Open Access Journals (Sweden)

    Ankica Rađenović

    2013-01-01

    Full Text Available A promising type of steel slag for applications is the ladle furnace (LF slag, which is also known as the basic slag, the reducing slag, the white slag, and the secondary refining slag. The LF slag is a byproduct from further refining molten steel after coming out of a basic oxygen furnace (BOF or an electric arc furnace (EAF. The use of the LF slag in further applications requires knowledge of its characteristics. The LF slag characterization in this paper has been performed using the following analytical methods: chemical analysis by energy dispersive spectrometry (EDS, mineralogical composition by X-ray diffraction (XRD, surface area properties by the Brunauer-Emmett-Teller (BET and the Barrett-Joyner-Halenda (BJH methods, surface chemistry by infrared absorption (FTIR spectroscopy, and morphological analysis by scanning electron microscopy (SEM. The results showed that the main compounds are calcium, silicon, magnesium, and aluminium oxides, and calcium silicates under their various allotropic forms are the major compounds in the LF slag. Surface area properties have shown that the LF slag is a mesoporous material with relatively great BET surface area. The ladle furnace slag is a nonhazardous industrial waste because the ecotoxicity evaluation by its eluate has shown that the LF slag does not contain constituents which might in any way affect the environment harmfully.

  18. Distribution of Clay Minerals in Light Coal Fractions and the Thermal Reaction Products of These Clay Minerals during Combustion in a Drop Tube Furnace

    Directory of Open Access Journals (Sweden)

    Sida Tian

    2016-06-01

    Full Text Available To estimate the contribution of clay minerals in light coal fractions to ash deposition in furnaces, we investigated their distribution and thermal reaction products. The light fractions of two Chinese coals were prepared using a 1.5 g·cm−3 ZnCl2 solution as a density separation medium and were burned in a drop-tube furnace (DTF. The mineral matter in each of the light coal fractions was compared to that of the relevant raw coal. The DTF ash from light coal fractions was analysed using hydrochloric acid separation. The acid-soluble aluminium fractions of DTF ash samples were used to determine changes in the amorphous aluminosilicate products with increasing combustion temperature. The results show that the clay mineral contents in the mineral matter of both light coal fractions were higher than those in the respective raw coals. For the coal with a high ash melting point, clay minerals in the light coal fraction thermally transformed more dehydroxylation products compared with those in the raw coal, possibly contributing to solid-state reactions of ash particles. For the coal with a low ash melting point, clay minerals in the light coal fraction produced more easily-slagging material compared with those in the raw coal, playing an important role in the occurrence of slagging. Additionally, ferrous oxide often produces low-melting substances in coal ash. Due to the similarities of zinc oxide and ferrous oxide in silicate reactions, we also investigated the interactions of clay minerals in light coal fractions with zinc oxide introduced by a zinc chloride solution. The extraneous zinc oxide could react, to a small extent, with clay minerals in the coal during DTF combustion.

  19. British coal

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, M.

    2009-03-15

    The paper describes a visit to UK's Daw Mill in north Warwickshire to find out about a planned expansion of the coal mine. Daw Mill, 10 km west of Coventry is the UK's largest underground coal mine. The coal is extracted by an Eckhoff Sl500 coal shearer that traverses the coalface. Overarching the shearer is a series of electro-hydraulically operated powered roof supports (PRS) over the roof and coalface that are advanced forward after each pass of the shearer. The void behind the PRS is then allowed to collapse. The coalface is currently 295 m long, but there are plans to extend the replacement coalface to 357 m. Under the shearer is an armored face conveyor (AFC) that receives and transports the coal along the coalface and deposits it onto the beam stage loader, which sits at 90{sup o} to the AFC. The coal is turned by a deflector plough on the AFC headframe and is transferred to the belt conveyor to begin its journey out of the mine. Last year two significant records were broken at Daw Mill - the fastest million tonnes achieved and the European record for a single face of 3.2 Mt. The 300s area of the mine has already been mapped out and development teams are constructing roadways to facilitate more mining. To maintain annual production in excess of three million tonnes will require at least 5,000 m of roadways to access the coal, and install equipment. These investments are supported by proven reserves. Seismic surveys and borehole drilling has shown approximately 20 Mt of extractable coal in the 300s area which extends over 15 km{sup 2}. These panels will be the next to be mined in a sequence that extends to 2014. 2 photos.

  20. Coal mining: coal in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Arguelles Martinez, A.; Lugue Cabal, V.

    1984-01-01

    The Survey of Spanish Coal Resources published by the Centre for Energy Studies in 1979 is without doubt the most serious and full study on this subject. The coal boom of the last few years and the important role it will play in the future, as well as the wealth of new information which has come to light in the research carried out in Spanish coalfields by both the public and private sector, prompted the General Mine Management of the Ministry of Industry and Energy to commission IGME to review and update the previous Survey of Spanish Coal Resources of November 1981.

  1. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state...

  2. Slagging and Fouling Characteristics of HRSG for Ferrosilicon Electric Furnaces

    Directory of Open Access Journals (Sweden)

    Yungang Wang

    2015-02-01

    Full Text Available The slagging and fouling characteristics of the heat recovery steam generator (HRSG for ferrosilicon electric furnaces are discussed in this paper. Three ash samples were taken from the HRSG of a ferrosilicon furnace in Ningxia Province, China, which suffered from serious slagging and fouling. X-ray fluorescence (XRF, X-ray powder diffraction (XRD and scanning electron microscope (SEM were used to analyze the ash samples. The results show that low melting point salt Na2SO4 and composite salts Na (AlSi3O8 and 3K2SO4·CaSO4 deposit on the superheater tube walls in aerosol form and solidify to form the initial slag layer. With the continuous deposition of the low melting point compounds, more and more ash particles in the flue gas adhere to the slag surface to form a thicker slag. Low melting point composite salt NaO·Al2O3·SiO2 is absorbed on the evaporator tube walls in aerosol form. With the deposition of NaO·Al2O3·SiO2, more and more ash particles are absorbed to form the fouling. Since there is less space between pin-finned tubes, the large iron-rich slag particles are easily deposited on tube walls and fin surfaces, which is advantageous to the fouling process. There are large quantities of superfine ash particles in the flue gas that easily adhere to other particles or tube walls, which facilitates the slagging and fouling process.

  3. Desulfurization ability of refining slag with medium basicity

    Institute of Scientific and Technical Information of China (English)

    Hui-xiang Yu; Xin-hua Wang; Mao Wang; Wan-jun Wang

    2014-01-01

    The desulfurization ability of refining slag with relative lower basicity (B) and Al2O3 content (B=3.5−5.0;20wt%−25wt%Al2O3) was studied. Firstly, the component activities and sulfide capacity (CS) of the slag were calculated. Then slag−metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution (LS). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO−Al2O3−SiO2−MgO system with the basicity of about 3.5−5.0 and the Al2O3 content in the range of 20wt%−25wt%has high activity of CaO (aCaO), with no deterioration of CS compared with conventional desulfurization slag. The measured LS between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt%and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt%is 350 and 275, respectively. The new slag with a basicity of about 3.5−5.0 and an Al2O3 content of about 20wt%has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.

  4. Gasification Studies Task 4 Topical Report, Utah Clean Coal Program

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States); Fletcher, Thomas [Univ. of Utah, Salt Lake City, UT (United States); Pugmire, Ronald [Univ. of Utah, Salt Lake City, UT (United States); Smith, Philip [Univ. of Utah, Salt Lake City, UT (United States); Sutherland, James [Univ. of Utah, Salt Lake City, UT (United States); Thornock, Jeremy [Univ. of Utah, Salt Lake City, UT (United States); Hunsacker, Isaac [Univ. of Utah, Salt Lake City, UT (United States); Li, Suhui [Univ. of Utah, Salt Lake City, UT (United States); Kelly, Kerry [Univ. of Utah, Salt Lake City, UT (United States); Puntai, Naveen [Univ. of Utah, Salt Lake City, UT (United States); Reid, Charles [Univ. of Utah, Salt Lake City, UT (United States); Schurtz, Randy [Univ. of Utah, Salt Lake City, UT (United States)

    2011-10-01

    A key objective of the Task 4 activities has been to develop simulation tools to support development, troubleshooting and optimization of pressurized entrained-flow coal gasifiers. The overall gasifier models (Subtask 4.1) combine submodels for fluid flow (Subtask 4.2) and heat transfer (Subtask 4.3) with fundamental understanding of the chemical (Subtask 4.4) and physical (Subtask 4.5) processes that take place as coal particles are converted to synthesis gas and slag. However, it is important to be able to compare predictions from the models against data obtained from actual operating coal gasifiers, and Subtask 4.6 aims to provide an accessible, non-proprietary system, which can be operated over a wide range of conditions to provide well-characterized data for model validation.

  5. Catalysis and ecological problems in salty coals thermodestruction processes

    Energy Technology Data Exchange (ETDEWEB)

    Shendrik, T.G.; Simonova, V.V.; Galushko, L.Y.; Afanasenko, L.Y.; Saranchuk, V.I. [National Academy of Sciences of Ukraine, Donetsk (Ukraine). L.M. Litvinenko Inst. of Physical, Organic and Coal Chemistry

    1996-12-31

    Coals with high content of sodium and chlorine are very interesting natural object for studying, which have been formed in special natural conditions. Ukraine has large resources of salty coals (SC) (about 20 bill.t), which cannot be used in combustion because of their high slag ability and corrosion activity. Our institutes during 10 years are studying the possibilities for SC using in other processes: pyrolysis, hydrogenation, gasification and humic acids (HA) extraction. Catalytic influence of NaCl on thermodestruction of coal organic mass (COM) has been established. The forms and behaviour of chlorine at SC processing have taken to investigation in recent time actively in connection with environmental and technological problems. The goal of our investigations was the study of natural halite role in SC thermoprocessing, the Na and Cl distribution in ones, an estimation of probability for toxic compounds formation and determination rational ways for SC processing. 10 refs., 1 fig., 1 tab.

  6. Blended coals for improved coal water slurries

    Institute of Scientific and Technical Information of China (English)

    GU Tian-ye; WU Guo-guang; LI Qi-hui; SUN Zhi-qiang; ZENG Fang; WANG Guang-you; MENG Xian-liang

    2008-01-01

    Three coal samples of different ranks were used to study the effect of coal blending on the preparation of Coal Water Slurry (CWS). The results show that by taking advantage of two kinds of coal, the coal concentration in slurry made from hard-to-pulp coal can be effectively improved and increased by 3%-5% generally. DLT coal (DaLiuTa coal mine) is very poor in slurryability and the stability and rheology of the resulting slurry are not very good. When the amount of easily slurried coal is more than 30%, all properties of the CWS improve and the CWS meets the requirements for use as fuel. Coalification, porosity, surface oxygenic functional groups, zeta potential and grindability have a great effect on the performance of blended coal CWS. This leads to some differences in performance between the slurry made from a single coal and slurry made from blended coal.

  7. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.

    Science.gov (United States)

    Kehagia, Fotini

    2009-05-01

    Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented.

  8. Influence of Basicity and MgO on Fluidity and Desulfurization Ability of High Aluminum Slag

    Science.gov (United States)

    Wang, Ping; Meng, Qing-min; Long, Hong-ming; Li, Jia-xin

    2016-08-01

    The viscosity of experimental slag, which was mixed based on the composition of a practical blast furnace slag, was measured in this paper. The influence of Al2O3 and MgO content, basicity R2 = w(CaO)/w(SiO2) on the fluidity of slag was studied. The stepwise regression analysis in SPSS was used to reveal the relationship between sulfur distribution coefficient LS and slag composition as well as furnace temperature. The results show that increasing of MgO up to 12% can decrease the slag viscosity. The w(MgO) should be controlled below 8% when there is 20% Al2O3 in the slag. Temperature of hot metal and content of CaO in slag are the two dominant factors on the desulfurization capacity of slag.

  9. Steel Slag as an Iron Fertilizer for Corn Growth and Soil Improvement in a Pot Experiment

    Institute of Scientific and Technical Information of China (English)

    WANG Xian; CAI Qing-Sheng

    2006-01-01

    The feasibility of steel slag used as an iron fertilizer was studied in a pot experiment with corn. Slag alone or acidified slag was added to two Fe-deficient calcareous soils at different rates. Results showed that moderate rates (10 and 20 g kg-1)of slag or acidified slag substantially increased corn dry matter yield and Fe uptake. Application of steel slag increased the residual concentration of ammonium bicarbonate-diethylenetriamine pentaacetic acid (AB-DTPA) extractable Fe in the soils. The increase of extractable Fe was usually proportional to the application rate, and enhanced by the acidification of slag. Steel slag appeared to be a promising and inexpensive source of Fe to alleviate crop Fe chlorosis in Fe-deficient calcareous soils.

  10. Reactions Between MgO-C Refractory, Molten Slag and Metal

    National Research Council Canada - National Science Library

    Li, Zushu; Mukai, Kusuhiro; Tao, Zainan

    2000-01-01

    The behavior of MgO-C refractory-slag-metal system, which is caused by the reactions such as the dissolution of MgO and graphite in the refractory into slag and metal respectively and the generation...

  11. HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

    1999-12-01

    The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an

  12. Cool snacks

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Brock, Steen; Brunsø, Karen

    2016-01-01

    such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...

  13. The chemical composition of tertiary Indian coal ash and its combustion behaviour – a statistical approach: Part 2

    Indian Academy of Sciences (India)

    Arpita Sharma; Ananya Saikia; Puja Khare; D K Dutta; B P Baruah

    2014-08-01

    In Part 1 of the present investigation, 37 representative Eocene coal samples of Meghalaya, India were analyzed and their physico-chemical characteristics and the major oxides and minerals present in ash samples were studied for assessing the genesis of these coals. Various statistical tools were also applied to study their genesis. The datasets from Part 1 used in this investigation (Part 2) show the contribution of major oxides towards ash fusion temperatures (AFTs). The regression analysis of high temperature ash (HTA) composition and initial deformation temperature (IDT) show a definite increasing or decreasing trend, which has been used to determine the predictive indices for slagging, fouling, and abrasion propensities during combustion practices. The increase or decrease of IDT is influenced by the increase of Fe2O3, Al2O3, SiO2, and CaO, respectively. Detrital-authigenic index (DAI) calculated from the ash composition and its relation with AFT indicates Sialoferric nature of these coals. The correlation analysis, Principal Component Analysis (PCA), and Hierarchical Cluster Analysis (HCA) were used to study the possible fouling, slagging, and abrasion potentials in boilers during the coal combustion processes. A positive relationship between slagging and heating values of the coal has been found in this study.

  14. Capital cost: high and low sulfur coal plants-1200 MWe. [For low sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 V olume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  15. Capital cost: high and low sulfur coal plants-1200 MWe. [High sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 Volume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  16. Development of Glass Ceramics Made From Ferrous Tailings and Slag in China

    Institute of Scientific and Technical Information of China (English)

    LIU Cheng-jun; SHI Pei-yang; ZHANG Da-yong; JIANG Mao-fa

    2007-01-01

    A great amount of ferrous tailings and slag cause severe damage to the ecological environment, which must be reclaimed and utilized. The composition, type, and characteristics of ferrous tailings and slag in China were introduced. The research status and the application outlook of glass ceramics made from ferrous tailings and slag were discussed. Glass ceramics made from ferrous tailings and slag can be applied to various fields, and it will be environmentally conscious materials in the 21st century.

  17. Products of steel slags an opportunity to save natural resources.

    Science.gov (United States)

    Motz, H; Geiseler, J

    2001-01-01

    In Germany, and in the most industrial countries, the use of blast furnace and steel slags as an aggregate for civil engineering, for metallurgical use and as fertiliser has a very long tradition. Since the introduction of the basic oxygen steel making furnace (BOF) process and the electric arc furnace (EAF) process the German steel industry started extensive research on the development of fields of application for BOF and EAF slags. These investigations have been mainly performed by Forschungsgemeinschaft Eisenhüttenschlacken e. V. (FEhS), the Research Association for blast furnace and steel slags. Today steel slags are well characterised and long-term experienced materials mainly used as aggregates for road construction (e.g. asphaltic or unbound layers), as armour-stones for hydraulic engineering constructions (e.g. stabilisation of shores), and as fertiliser for agriculture purposes. These multifarious fields of application could only be achieved because the steelworks influence the quality of slags by a careful selection of raw materials and a suitable process route. Furthermore, subsequent procedures like a treatment of the liquid slag, an appropriate heat treatment and a suitable processing have been developed to ensure that the quality of steel slags is always adequate for the end use. Depending on the respective field of application, the suitability of steel slags has to be proven by determining the technical properties, as well as the environmental compatibility. For this reason test methods have been developed to evaluate the technical properties especially the volume stability and the environmental behaviour. To evaluate the volume stability a suitable test (steam test) has been developed and the results from laboratory tests were compared with the behaviour of steel slags under practical conditions, e.g. in a road. To determine the environmental behaviour leaching tests have been developed. In the meanwhile most of these test methods are drafted or

  18. First use of MOL {sup registered} CLEAN process in a cooling circuit of a coal-fired power plant; Erstmalige Anwendung des MOL {sup registered} CLEAN-Verfahrens im Kuehlkreislauf eines Steinkohlekraftwerkes

    Energy Technology Data Exchange (ETDEWEB)

    Becker, A.; Hockarth, W.I.; Schoenfelder, T. [KNG Kraftwerks- und Netzgesellschaft mbH, Kraftwerk Rostock (Germany); Koerner, J.; Koppe, J.; Lausch, H. [MOL Katalysatortechnik GmbH, Merseburg (Germany)

    2007-07-01

    Cooling circuits are nowadays primarily treated with chlorine, NaOCl, ClO{sub 2} and other chlorinated or chlorine/bromine-organic biocides, in order to counteract the heat transfer losses caused by microbial colonisation on surface areas. This effect can be prevented by the application of the Mol {sup registered} Clean method. The method was tested and installed at the cooling tower circuit of the Rostock power plant. (orig.)

  19. Stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron.

  20. Combustion and NOx Emission Behavior of Chinese Coals

    Institute of Scientific and Technical Information of China (English)

    CHENHonggang; XIEKechang

    2002-01-01

    Seven Chinese coals ranking from anthracite to sub-bituminous from the Shanxi province were selected for study to forecast the combustion and NOx emission behavior.Three UK,one Indonesia and one South Africa coal was included in the study for reference.A flat flame-turbulent jet apparatus was employed to assess flame stability,ignition performance and NOx emission behavior for the initial stage of devolatilization and combustion. This apparatus can simulate particle heating rates,maximum temperatures and the influence of the turbulent fluid interactionson the fate of volatiles.To simulate processes occurring over longer residence time, additional devolatilization experiments were performed in a drop tube furnace.Char reactivity was studied through thermogravimetric analysis.Finally,fouling propensity was studied with the aid of a purpose-built laboratory combustor that enabled the characteristics of the ash deposit to be assessed empirically.The results show that Chinese coals do not appear to possess unusual features in respect of NOx formation,flame stability and ignition,char burnout and ash slagging.The range of coals available in China appears sufficiently broad that suits all requirements.In particular,Shenfu coal,with its initial fast devolatilization and nitrogen release rates and its low initial nitrogen content and high char reactivity,will perform well when fired in industrial boilers as far as NOx emission,flame stability and combustion efficiency are concerned.Pingshuo coal exhibits high char reactivity and an attractive slagging performance suggesting that this fuel represents a good compromise between NOx emission and overall plant efficiency.

  1. Pyrometallurgical slags as a potential source of selected metals recovery

    Directory of Open Access Journals (Sweden)

    K. Nowińska

    2014-10-01

    Full Text Available Complex analysis of concentration and form of occurrence such metals as Zn, Pb, Fe and Cu in slags formed during a current zinc production in the Imperial Smelting Process (ISP is a possible basis for development of optimal recovery technology. For this purpose studies of slags from the current production of the Shaft Furnace Unit and of the Lead Refining of the “Miasteczko Śląskie” Zinc Smelting Plant were carried out. The studies results show that slags includes high concentrations of: Zn from 0,064 % to 1,680 %, Pb from 10,56 % to 50,71 %, Fe from 0,015 % to 2,576 %, Cu from 7,48 % to 64,95 %, and change in a broad range. This slags show significant heterogeneity, caused by intermetallic phases (Zn - Pb, Cu - Zn, Cu - Pb formed on the surface thereof. It is so possible that slag can be a potential source of this metals recovery.

  2. Preparation of calcium silicate absorbent from iron blast furnace slag.

    Science.gov (United States)

    Brodnax, L F; Rochelle, G T

    2000-09-01

    Calcium silicate hydrate (CSH) solids were prepared from hydrated lime and iron blast furnace slag in an aqueous agitated slurry at 92 degrees C. While it was hoped a minimal lime/slag ratio could be used to create near-amorphous CSH, the surface area of the product improved by increasing the lime/slag weight ratio to 2. The addition of gypsum to the lime/slag system dramatically improved the formation of surface area, creating solids with 139 m2/g after 30 hr of reaction when only a minimal amount of lime was present. The SO2 reactivity of solids prepared with gypsum greatly exceeded that of hydrated lime, achieving greater than 70-80% conversion of the alkalinity after 1 hr of reaction with SO2. The use of CaCl2 as an additive to the lime/slag system, in lieu of gypsum, also produced high-surface-area solids, 115 m2/g after 21 hr of reaction. However, the SO2 reactivity of these sorbents was relatively low given the high surface area. This emphasized that the correlation between surface area and SO2 reactivity was highly dependent on the solid phase, which was subsequently dependent on slurry composition.

  3. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  4. Investigation of High-Temperature Slag/Copper/Spinel Interactions

    Science.gov (United States)

    De Wilde, Evelien; Bellemans, Inge; Campforts, Mieke; Guo, Muxing; Blanpain, Bart; Moelans, Nele; Verbeken, Kim

    2016-12-01

    An important cause for the mechanical entrainment of copper droplets in slags during primary and secondary copper production is their interaction with solid spinel particles, hindering the sedimentation of the copper droplets. In the present study, the interactions between the three phases involved (slag-Cu droplets-spinel solids) were investigated using an adapted sessile drop experiment, combined with detailed microstructural investigation of the interaction zone. An industrially relevant synthetic PbO-CaO-SiO2-Cu2O-Al2O3-FeO-ZnO slag system, a MgAl2O4 spinel particle, and pure copper were examined with electron microscopy after their brief interaction at 1523 K (1250 °C). Based on the experimental results, a mechanism depending on the interlinked dissolved Cu and oxygen contents within the slag is proposed to describe the origin of the phenomenon of sticking Cu alloy droplets. In addition, the oxygen potential gradient across the phases ( i.e., liquid Cu, slag, and spinel) appears to affect the Cu entrainment, as deduced from a microstructural analysis.

  5. Investigation of High-Temperature Slag/Copper/Spinel Interactions

    Science.gov (United States)

    De Wilde, Evelien; Bellemans, Inge; Campforts, Mieke; Guo, Muxing; Blanpain, Bart; Moelans, Nele; Verbeken, Kim

    2016-09-01

    An important cause for the mechanical entrainment of copper droplets in slags during primary and secondary copper production is their interaction with solid spinel particles, hindering the sedimentation of the copper droplets. In the present study, the interactions between the three phases involved (slag-Cu droplets-spinel solids) were investigated using an adapted sessile drop experiment, combined with detailed microstructural investigation of the interaction zone. An industrially relevant synthetic PbO-CaO-SiO2-Cu2O-Al2O3-FeO-ZnO slag system, a MgAl2O4 spinel particle, and pure copper were examined with electron microscopy after their brief interaction at 1523 K (1250 °C). Based on the experimental results, a mechanism depending on the interlinked dissolved Cu and oxygen contents within the slag is proposed to describe the origin of the phenomenon of sticking Cu alloy droplets. In addition, the oxygen potential gradient across the phases (i.e., liquid Cu, slag, and spinel) appears to affect the Cu entrainment, as deduced from a microstructural analysis.

  6. BUILDING MATERIALS AND PRODUCTS BASED ON SILICON MANGANESE SLAGS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Raising of problem. Currently of particular relevance was given to the matter of introduction in manufacture of building materials and products, resource-saving techniques and technologies; integrated use of raw materials and materials that prevent or significantly reduce their harmful impact on the environment. This allows you to recycle hundreds of thousands of tons of the fiery liquid slags of silicon manganese and to develop effective structural materials that can replace metals, non-metallic building materials of natural origin, concretes, cast stone, plastics and refractories. Purpose. The study of the structure and properties of building materials and products from electric furnace slag of silicon manganese. Conclusion. Slags from the smelting of silicon manganese are classified as acidic. Their lime factor is in the range of 0.47–0.52. The composition of the slag located in the heterogeneous region SiO2 near the line of separation of cristobalite spread to the crystallization of wollastonite, according to the ternary system MnO-CaO-SiO2, which in consideration of their stability, allows the development of technology of building materials (gravel, sand, granulated slag, etc. and products (foundation blocks, road slabs, containers for transportation and storage of hazardous waste, and others.

  7. Size-dependent enrichment of waste slag aggregate fragments abraded from asphalt concrete.

    Science.gov (United States)

    Takahashi, Fumitake; Shimaoka, Takayuki; Gardner, Kevin; Kida, Akiko

    2011-10-30

    Authors consider the environmental prospects of using melted waste slag as the aggregate for asphalt pavement. In particular, the enrichment of slag-derived fragments in fine abrasion dust particles originated from slag asphalt concrete and its size dependency were concerned. A series of surface abrasion tests for asphalt concrete specimens, containing only natural aggregates as reference or 30 wt% of substituted slag aggregates, were performed. Although two of three slag-asphalt concretes generated 1.5-3.0 times larger amount of abrasion dust than the reference asphalt concrete did, it could not be explained only by abrasion resistance of slag. The enrichment of slag-derived fragments in abrasion dust, estimated on the basis of the peak intensity of quartz and heavy metal concentrations, had size dependency for all slag-asphalt concretes. Slag-derived fragments were enriched in abrasion dust particles with diameters of 150-1000 μm. Enrichment factors were 1.4-2.1. In contrast, there was no enrichment in abrasion dust particles with diameter less than 75 μm. This suggests that prior airborne-size fragmentation of substituted slag aggregates does not need to be considered for tested slag aggregates when environmental risks of abrasion dust of slag-asphalt pavement are assessed.

  8. Effects of slag and fly ash in concrete in chloride environment

    NARCIS (Netherlands)

    Polder, R.B.

    2012-01-01

    This paper addresses experience from The Netherlands with blast furnace slag and fly ash in concrete in chloride contaminated environments, both from the field and the laboratory. Use of slag produced in The Netherlands started in the 1930s and CEM III/B LH HS, with typically 70% slag, became the do

  9. Quantitative Chemical Analysis of Slag Ash of Novocherkassk State District Power Plant

    Directory of Open Access Journals (Sweden)

    Tatyana Germanovna Korotkova

    2017-02-01

    Full Text Available Quantitative chemical composition of ash and slag mix generated upon combustion of Donetsk culm is determined. It is established that ash and slag mix of Novocherkassk state district power plant (SDPP (Rostov region, Russia after coal combustion has the following composition: iron – 2.3%; mineral constituents – 75.8%; calcium oxide – 20.4%; aluminum oxide – 0.0118%; water – 1.3022%; manganese oxide – 0.18%; copper oxide – 0.0043%; plumbum – 0.0017%; it is qualified as hazard class IV for environment. Cadmium, mercury, arsenic, selenium, antimony, bismuth are contained in trace amounts < 0.1 mg/kg. In order to reduce dust emissions the cleaning stage I of gas scrubbing facility is equipped with group cyclone comprised of four cyclone units. Medium and coarse particles under the action of centrifugal force are deposited in the cyclone. This promoted decrease in dust load on bag filters, the cleaning stage II. Qualitative chemical composition of ash captured by group cyclone and that of ash captured by bag filter are determined. Cadmium, copper, plumbum, zinc, iron, manganese, and calcium are contained in coarse and fine particles captured by group cyclone and bag filter. Aluminum referred to light metals is completely captured by cyclone. The ash dust in its bulk is of dark gray color. The ash captured by cyclone contains coarse particles of black color and the ash captured bag filter contains fine particles of light colors (gray-yellow color producing silky gloss. This is characteristic for ash dust after combustion of Donetsk culm. The main component of the ash is silicon dioxide, its content in the ash captured by filter reaches 91%. These fine particles create light tone of this ash.

  10. Fundamental studies of the mechanisms of slag deposit formation: Studies on initiation, growth and sintering in the formation of utility boiler deposits: Topical technical report

    Energy Technology Data Exchange (ETDEWEB)

    Tangsathitkulchai, M.; Austin, L.G.

    1986-03-01

    Three laboratory-scale devices were utilized to investigate the mechanisms of the initiation, growth and sintering process involved in the formation of boiler deposits. Sticking apparatus investigations were conducted to study deposit initiation by comparing the adhesion behavior of the ash drops on four types of steel-based heat exchanger materials under the conditions found in a utility boiler and an entrained slagging gasifier. In addition, the adhesion behavior of the ash drops on a reduced steel surface were investigated. All the ash drops studied in this investigation were produced from bituminous coals.

  11. Development of Horizontal Water-cooled Convertor and Its Application in Modern Coal Chemical Industry%卧式水冷反应器技术开发及其在现代煤化工领域应用分析

    Institute of Scientific and Technical Information of China (English)

    楼韧; 冯再南; 粟杨; 周小波; 王俊峰; 周传华

    2011-01-01

    The technical features of the new horizontal water-cooled convertors were expatiated on.Introduced alsowere the application prospect of this convertor in the large methanol synthesis, SNG, coal-to-ethylene glycol, single-process DME, single-process MTG via syngas, IGCC with chemicals co-production etc.%简要介绍了卧式水冷反应器技术开发过程,分析了新型卧式水冷反应器技术特点,详细介绍了该反应器在大型甲醇、人工天然气、煤制乙二醇、一步法合成气经甲醇制汽油和化工-IGCC联产等现代煤化工上的应用前景.

  12. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  13. Engineering development of coal-fired high performance power systems, Phase II and Phase III. Quarter progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    Work is presented on the development of a coal-fired high performance power generation system by the year 2000. This report describes the design of the air heater, duct heater, system controls, slag viscosity, and design of a quench zone.

  14. High-Temperatures Rheometric Analysis Of Selected Heterogeneous Slag Systems

    Directory of Open Access Journals (Sweden)

    Migas P.

    2015-06-01

    Full Text Available It is known that the dynamic viscosity coefficient of slag – with an increased titanium compounds content in the reducing conditions of the blast furnace - may rapidly change. The products of the reduction reaction, precipitation and separation of titanium compounds are responsible for the thickening effect of the slag and the problems of permeability of blast furnace, causing anomalies in the dipping zone. The presence of solid components (particles in the melts determines the rheological character of the entire system. Identifying the rheological character of semi-solid slag systems provides opportunities for the development of mathematical modeling of liquid phase flows in a dripping zone of the blast furnace, allowing e.g to indentify the unstable parts of a metallurgical aggregate.

  15. Structure and Vibrational Spectra of Slags Produced from Radioactive Waste

    Science.gov (United States)

    Malinina, G. A.; Stefanovsky, S. V.

    2014-05-01

    The structure of the anionic motif of aluminosilicate and aluminoborosilicate glasses containing simulated slags from a solid radioactive waste incinerator was studied by IR and Raman spectroscopy. Spectra of melted slag were consistent with Si-O tetrahedra with various numbers of bridging O ions and Al-O tetrahedra embedded in the Si-O network in the slag vitreous and crystalline phases (nepheline, nagelschmidtite). Vibrations of doubly and triply bound Si-O tetrahedra and Al-O tetrahedra embedded between them were mainly responsible for the spectra as the content of sodium disilicate fl ux and the glass fraction in the materials increased. Addition of sodium tetraborate fl ux caused the appearance of B-O vibrations of predominantly three-coordinate B and a tendency toward chemical differentiation preceding phase separation.

  16. Vanadium removal from LD converter slag using bacteria and fungi.

    Science.gov (United States)

    Mirazimi, S M J; Abbasalipour, Z; Rashchi, F

    2015-04-15

    Removal of vanadium from Linz-Donawits (LD) converter slag was investigated by means of three different species of microbial systems: Acidithiobacillus thiooxidans (autotrophic bacteria), Pseudomonas putida (heterotrophic bacteria) and Aspergillus niger (fungi). The bioleaching process was carried out in both one-step and two-step process and the leaching efficiencies in both cases were compared. Formation of inorganic and organic acids during the leaching process caused mobilization of vanadium. In order to reduce toxic effects of the metal species on the above mentioned microorganisms, a prolonged adaptation process was performed. Both bacteria, A. thiooxidans and P. putida were able to remove more than 90% of vanadium at slag concentrations of 1-5 g L(-1) after 15 days. Also, the maximum achievable vanadium removal in the fungal system was approximately 92% at a slag concentration of 1 g L(-1) after 22 days.

  17. Effects of slag fineness on durability of mortars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In recent years, the usages of by-products and wastes in industry have become more important. The importance of the sustainable development is also of increasing. The utilizations of wastes, as mineral admixture or fine aggregate, reduce the consumption of the natural resources and improve the durability of concrete. In this study, the effect of the fineness on the high temperature and sulphate resistances of concrete mortar specimens, produced with ground granulated blast-furnace slag (GBFS)replacing cement, is investigated. The compressive and flexural strength test results for all series related to durability effects,exposing temperature and solutions, exposure times for these durability effects, slag content and fineness are discussed. Consequently, the optimum slag contents are determined for producing the sulphate and high temperature resistant mortars.

  18. Cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Todd R; Vyas, Brijesh; Kota, Krishna; Simon, Elina

    2017-01-31

    An apparatus and a method are provided. Use is made of a wick structure configured to receive a liquid and generate vapor in when such wick structure is heated by heat transferred from heat sources to be cooled off. A vapor channel is provided configured to receive the vapor generated and direct said vapor away from the wick structure. In some embodiments, heat conductors are used to transfer the heat from the heat sources to the liquid in the wick structure.

  19. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091749 Cai Hou’an(College of Energy Geology,China University of Geosciences,Beijing 100083,China);Xu Debin SHRIMP U-Pb Isotope Age of Volcanic Rocks Distributed in the Badaohao Area,Liaoning Province and Its Significance(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,36(4),2008,p.17-20,2 illus.,1 table,16 refs.)Key words:coal measures,volcanic rocks,U-Pb dating,LiaoningA set of andesite volcanic rocks distributes in the Badaohao area in Heishan County,Liaoning Province.It’s geological age and stratigraphy sequence relationship between the Lower Cretaceous Badaohao Formation and the volcanic rocks can not make sure till now and is influencing the further prospect for coals.Zircon

  20. Analysis of Slag Morphology in Membrane Wall Entrained-Flow Gasifier%水冷壁气流床气化炉熔渣形态分析

    Institute of Scientific and Technical Information of China (English)

    侯国君; 梁钦锋; 孙立; 许建良; 刘海峰

    2013-01-01

    基于实验室水冷壁气流床气化炉,采用神府气化灰渣干法进料、柴油伴烧的方法研究了不同气化温度下自然冷却粗渣的形态、密度及孔隙率的变化规律。利用ImageJ软件测量了熔渣的平均长度和宽度;采用水浸渍法测定了熔渣的密度,计算出熔渣孔隙率。结果表明:气化温度较低时,粗渣以扁球状渣粒居多,气化温度较高时,粗渣以条状渣居多;随着气化温度升高,粗渣颗粒平均质量和平均长度均逐渐增加,平均宽度先增加后略有减小,长宽比值与气化温度符合指数关系;粗渣的孔隙率随气化温度升高逐渐减小。%The characteristics of nature-cooled slag at different gasification temperatures were studied in a lab-scale membrane wall entrained-flow gasifier using dry-feed and diesel combustion method. The average length and width of coarse slag were measured using ImageJ. The density and porosity of slag were investigated using immersion method. The result showed that the number of spheroid-type slag was reduced when the gasification temperature was low;the number of strip-type slag was increased when the gasification temperature was high. The average length and the aver-age mass of coarse slag gradually increased and the aspect ratio fitted the exponential relationship with the gasification temperature. When the gasification temperature was lower than the flow temperature,the average width increased first and then decreased. When the gasification temperature increased,the porosity of coarse slag decreased.

  1. A Technique for Decreasing Reactivity of Coal Material to Suppress the Oxygen Absorption Process

    Science.gov (United States)

    Timofeeva, S. S.; Lugovtsova, N. Yu; Gubanova, A. R.

    2016-08-01

    The paper describes the mechanisms of self-ignition formation in coal liable to spontaneous combustion, on the basis of experimental works performed to analyze heat and mass transfer in the coal-air system. A new approach was developed to the coal self-heating suppression and thermodynamic control of the oxidation process. The influence of coal moisture content and thermal behaviour of air in the cooling process was studied during moisture evaporation.

  2. Synthesis and Characteristics of Anorthite Ceramics from Steelmaking Slag

    Science.gov (United States)

    Li, Bowen; He, Mingsheng; Hwang, Jiann-Yang; Gan, Wangui

    Steelmaking slag is an alkaline solid waste consisting mainly oxides of calcium, iron, silicon, magnesium, and aluminum. Its large quantity and chemical property makes it challenging for recycling the material in various industrial applications. In this study, hot-poured steelmaking slag was used to prepare ceramics. After mixing with kaolin and quartz, ceramic products were synthesized via sintering. The appropriate sintering temperature is 1200°C. XRD analysis showed the major mineral phases were anorthite and pyroxene. SEM images showed that the new crystal particles were uniformly formed and distributed. Reaction mechanisms were discussed.

  3. Modeling the service life of slag concrete exposed to chlorides

    Directory of Open Access Journals (Sweden)

    O.A. Hodhod

    2014-03-01

    A partial replacement of OPC with 50% WCS in OPC paste mixes resulted in an increase in the amount of calcium silicate hydrate (CSH by 57%, a decrease in the amount of calcium hydroxide (CH by 66%, and a decrease in the amount of capillary pores by 57%, compared to those in the pure OPC matrix. In addition, the research results demonstrate that increasing Cs from 1% to 5% resulted in dramatically decreasing the service life of OPC/slag concrete, where the amount of decreasing reaches about 71%. Also, the service life of concrete increases with increasing slag content.

  4. 800-MW Supercritical Coal-Fired Boilers in Suizhong Power Plant

    Institute of Scientific and Technical Information of China (English)

    Zou Haifeng; Li Zhishan; Liu Zhongqi; Yan Hongyong; Zhang Yuanliang; Wang Lei

    2005-01-01

    This article reviews the problems of Russia-made 800-MW coal-fired supercritical boilers inSuizhong Power Plant, such as burner burnout, water-wall leakage, slag screen I explosion, crack happenedon the desuperheater outlet of reheater and welding defect of economizer; tells the process of renovating theseunits by modifying the original design and adjusting the operation parameters. After several years' effort, allthe problems have been well solved. The experience may be useful for other imported units in China.

  5. Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality

    Directory of Open Access Journals (Sweden)

    Bölükbaşı Ö.S.

    2014-01-01

    Full Text Available Basic oxygen furnaces (BOF slag is the main problem at all iron and steel factories. About more than 6 million tons/year of BOF slag has been accumulated from the waste stockyards in Turkey. Dumps slags can be revaluated by a processing technology which makes it possible to obtain products that meet the requirements of sintering and blast furnace production. The slags with particle size of -10 mm were enriched by the magnetic separator resulting and increase in Fe grade from 18% to 33%. The use of BOF slag in sinter blend provided additional Mn, CaO, MgO and introduced a good solution to environmental problems.

  6. Characterization of ancient Indian iron and entrapped slag inclusions using electron, photon and nuclear microprobes

    Indian Academy of Sciences (India)

    P Dillmann; R Balasubramaniam

    2001-06-01

    Compositional and structural information were obtained from an ancient 1600-year old Indian iron using microprobe techniques (EDS, XRD and PIXE). Several different local locations in the iron matrix and in the entrapped slag inclusions were analyzed. The P content of the metallic iron matrix was very heterogeneous. Lower P contents were observed in the regions near slag inclusions. This was correlated to the dephosphorization capacity of the slag. The crystallized phases identified in the slag inclusions were wüstite and fayalite. The compositions of the slag inclusions were relatively homogeneous.

  7. Future Resources for Eco-building Materials: I.Metallurgical Slag

    Institute of Scientific and Technical Information of China (English)

    XU Delong; LI Hui

    2009-01-01

    In order to make an effectivily recycle use of iron and steel slags that are main industrial wastes generated in Chinese metallurgical industry,the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed,such as preparing cement-steel slag blended cement with steel slag after metal recovery,using the fine powder of blast furnace slag (BFS)for manufacturing slag cement and high performance concrete.A further research on using these available resources more efficiently were discussed.

  8. Healy Clean Coal Project: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-09-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict

  9. Healy Clean Coal Project: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-09-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict

  10. Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-31

    The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

  11. Waste activated sludge hydrolysis and acidification: A comparison between sodium hydroxide and steel slag addition.

    Science.gov (United States)

    Zhang, Ying; Zhang, Chaojie; Zhang, Xuan; Feng, Leiyu; Li, Yongmei; Zhou, Qi

    2016-10-01

    Alkaline treatment with steel slag and NaOH addition were investigated under different pH conditions for the fermentation of waste activated sludge. Better performance was achieved in steel slag addition scenarios for both sludge hydrolysis and acidification. More solubilization of organic matters and much production of higher VFA (volatile fatty acid) in a shorter time can be achieved at pH10 when adjusted by steel slag. Higher enzyme activities were also observed in steel slag addition scenarios under the same pH conditions. Phosphorus concentration in the supernatant increased with fermentation time and pH in NaOH addition scenarios, while in contrast most phosphorus was released and captured by steel slag simultaneously in steel slag addition scenarios. These results suggest that steel slag can be used as a substitute for NaOH in sludge alkaline treatment.

  12. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  13. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  14. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  15. ATLAS - Liquid Cooling Systems

    CERN Multimedia

    Bonneau, P.

    1998-01-01

    Photo 1 - Cooling Unit - Side View Photo 2 - Cooling Unit - Detail Manifolds Photo 3 - Cooling Unit - Rear View Photo 4 - Cooling Unit - Detail Pump, Heater and Exchanger Photo 5 - Cooling Unit - Detail Pump and Fridge Photo 6 - Cooling Unit - Front View

  16. Commissioning an Engineering Scale Coal Gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Douglas J.; Bearden, Mark D.; Cabe, James E.

    2010-07-01

    This report explains the development, commissioning, and testing of an engineering scale slagging coal gasifier at PNNL. The initial objective of this project was to commission the gasifier with zero safety incidents. The commissioning work was primarily an empirical study that required an engineering design approach. After bringing the gasifier on-line, tests were conducted to assess the impact of various operating parameters on the synthesis gas (syngas) product composition. The long-term intent of this project is to produce syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in catalyst, materials, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for greater than 4 hours using coal feedstock. In addition, alternate designs that allow for increased flexibility regarding the fuel sources that can be used for syngas production is desired. Continued modifications to the fuel feed system will be pursued to address these goals. Alternative feed mechanisms such as a coal/methanol slurry are being considered.

  17. Low-rank coal research, Task 5.1. Topical report, April 1986--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    This document is a topical progress report for Low-Rank Coal Research performed April 1986 - December 1992. Control Technology and Coal Preparation Research is described for Flue Gas Cleanup, Waste Management, Regional Energy Policy Program for the Northern Great Plains, and Hot-Gas Cleanup. Advanced Research and Technology Development was conducted on Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Combustion Research is described for Atmospheric Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Fuels (completed 10/31/90), Diesel Utilization of Low-Rank Coals (completed 12/31/90), Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications (completed 10/31/90), Nitrous Oxide Emission, and Pressurized Fluidized-Bed Combustion. Liquefaction Research in Low-Rank Coal Direct Liquefaction is discussed. Gasification Research was conducted in Production of Hydrogen and By-Products from Coals and in Sulfur Forms in Coal.

  18. Coal gasification vessel

    Science.gov (United States)

    Loo, Billy W.

    1982-01-01

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  19. CuO对钢渣微晶玻璃机械性能及颜色的影响%Influence of CuO on mechanical properties and color of glass-ceramics based on steel slag

    Institute of Scientific and Technical Information of China (English)

    李荣昇; 宗燕兵; 代文彬; 李宇

    2014-01-01

    In order to improve the utilization rate of steel slag based on steel slag dominates , the sinte-ring method was adopted with steel slag and coal fly -ash as the major raw materials .Through the do-ping of CuO which serves as the additive to the slag glass ceramics , the changes in the mechanical properties and the surface color have were researched .And the experimental results show that the main crystalline phase of glass -ceramic remains diopside .With the amount of CuO increased , the flexural strength increases gradually synchronically .Besides, the color of glass-ceramic manifests an obvious change as the addition of CuO .%为了提高钢渣的利用率,以钢渣和粉煤灰为主要原料,采用烧结法制备钢渣微晶玻璃。通过向钢渣微晶玻璃中引入CuO添加剂,研究了其机械性能及外观颜色的变化。实验结果表明:加入CuO的钢渣微晶玻璃主晶相为透辉石;随着CuO加入量的增多,微晶玻璃抗弯强度逐渐增大; CuO的添加使钢渣微晶玻璃颜色有了明显改变。

  20. Studying the melting behavior of coal, biomass, and coal/biomass ash using viscosity and heated stage XRD data

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Folkedahl, B.; Dam-Johansen, Kim

    2006-01-01

    unscheduled shutdowns, decreasing the availability and increasing the cost of the produced power. In addition, the fouling of the heat exchange surfaces reduces the system efficiency. In this work the melting and rheological properties of various biomass and biomass/ coal ash samples were studied by using......The use of biomass for power generation can result in significant economical and environmental benefits. The greenhouse emissions can be reduced as well as the cost of the produced electricity. However, ash-related problems, including slagging, agglomeration, and corrosion, can cause frequent...

  1. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    Science.gov (United States)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2016-09-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  2. Aluminium salt slag characterization and utilization--a review.

    Science.gov (United States)

    Tsakiridis, P E

    2012-05-30

    Aluminium salt slag (also known as aluminium salt cake), which is produced by the secondary aluminium industry, is formed during aluminium scrap/dross melting and contains 15-30% aluminium oxide, 30-55% sodium chloride, 15-30% potassium chloride, 5-7% metallic aluminium and impurities (carbides, nitrides, sulphides and phosphides). Depending on the raw mix the amount of salt slag produced per tonne of secondary aluminium ranges from 200 to 500 kg. As salt slag has been classified as toxic and hazardous waste, it should be managed in compliance with the current legislation. Its landfill disposal is forbidden in most of the European countries and it should be recycled and processed in a proper way by taking the environmental impact into consideration. This paper presents a review of the aluminium salt slag chemical and mineralogical characteristics, as well as various processes for metal recovery, recycling of sodium and potassium chlorides content back to the smelting process and preparation of value added products from the final non metallic residue.

  3. The Interfacial Transition Zone in Alkali-Activated Slag Mortars

    Directory of Open Access Journals (Sweden)

    Rackel eSan Nicolas

    2015-12-01

    Full Text Available The interfacial transition zone (ITZ is known to strongly influence the mechanical and transport properties of mortars and concretes. This paper studies the ITZ between siliceous (quartz aggregates and alkali activated slag binders in the context of mortar specimens. Backscattered electron images (BSE generated in an environmental scanning electron microscope (ESEM are used to identify unreacted binder components, reaction products and porosity in the zone surrounding aggregate particles, by composition and density contrast. X-ray mapping is used to exclude the regions corresponding to the aggregates from the BSE image of the ITZ, thus enabling analysis of only the binder phases, which are segmented into binary images by grey level discrimination. A distinct yet dense ITZ region is present in the alkali-activated slag mortars, containing a reduced content of unreacted slag particles compared to the bulk binder. The elemental analysis of this region shows that it contains a (C,N-A-S-H gel which seems to have a higher content of Na (potentially deposited through desiccation of the pore solution and a lower content of Ca than the bulk inner and outer products forming in the main binding region. These differences are potentially important in terms of long-term concrete performance, as the absence of a highly porous interfacial transition zone region is expected to provide a positive influence on the mechanical and transport properties of alkali-activated slag concretes.

  4. Micronutrient availability from steel slag amendment in peatmoss substrates

    Science.gov (United States)

    The objective of this research was to determine the suitability of a steel slag product for supplying micronutrients to container-grown floriculture crops. Geranium (Pelargonium xhortorum 'Maverick Red') and tomato (Solanum lycopersicon 'Megabite') were grown in 11.4 cm containers with a substrate ...

  5. Coal gasification plant

    Science.gov (United States)

    Wood, Andrew

    1978-01-01

    A removable annular hearth member, shaped to fit over the slag outlet of a slagging gasifier, comprises a cast body of high thermal conductivity having integral coolant passageways, said passageways being formed by shaping a metal tube into a coil having an inlet and an outlet, and casting metal to the desired shape around the coil such that the inlet and outlet communicate exteriorly of the cast body.

  6. Development of a Coal Quality Expert

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-06-20

    ABB Power Plant Laboratories Combustion Engineering, Inc., (ABB CE) and CQ Inc. completed a broad, comprehensive program to demonstrate the economic and environmental benefits of using higher quality U.S. coals for electrical power generation and developed state-of-the-art user-friendly software--Coal Quality Expert (CQE)-to reliably predict/estimate these benefits in a consistent manner. The program was an essential extension and integration of R and D projects performed in the past under U.S. DOE and EPRI sponsorship and it expanded the available database of coal quality and power plant performance information. This software will permit utilities to purchase the lowest cost clean coals tailored to their specific requirements. Based on common interest and mutual benefit, the subject program was cosponsored by the U.S. DOE, EPRI, and eight U.S. coal-burning utilities. In addition to cosponsoring this program, EPN contributed its background research, data, and computer models, and managed some other supporting contracts under the terms of a project agreement established between CQ Inc. and EPRI. The essential work of the proposed project was performed under separate contracts to CQ Inc. by Electric Power Technologies (El?'T), Black and Veatch (B and V), ABB Combustion Engineering, Babcock and Wilcox (B and W), and Decision Focus, Inc. Although a significant quantity of the coals tied in the United States are now cleaned to some degree before firing, for many of these coals the residual sulfur content requires users to install expensive sulfur removal systems and the residual ash causes boilers to operate inefficiently and to require frequent maintenance. Disposal of the large quantities of slag and ash at utility plant sites can also be problematic and expensive. Improved and advanced coal cleaning processes can reduce the sulfur content of many coals to levels conforming to environmental standards without requiring post-combustion desulfurization systems. Also

  7. Conditions for testing the corrosion rates of ceramics in coal gasification systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.; Nowok, J.W. [Univ. of North Dakota, Grand Forks, ND (United States)

    1996-08-01

    Coal gasifier operating conditions and gas and ash compositions affect the corrosion rates of ceramics used for construction in three ways: (1) through direct corrosion of the materials, (2) by affecting the concentration and chemical form of the primary corrodents, and (3) by affecting the mass transport rate of the primary corrodents. To perform an accurate corrosion test on a system material, the researcher must include all relevant corrodents and simulate conditions in the gasifier as closely as possible. In this paper, the authors present suggestions for conditions to be used in such corrosion tests. Two main types of corrosion conditions are discussed: those existing in hot-gas cleanup systems where vapor and dry ash may contribute to corrosion and those experienced by high-temperature heat exchangers and refractories where the main corrodent will be coal ash slag. Only the fluidized-bed gasification systems such as the Sierra Pacific Power Company Pinon Pine Power Project system are proposing the use of ceramic filters for particulate cleanup. The gasifier is an air-blown 102-MWe unit employing a Westinghouse{trademark} ceramic particle filter system operating at as high as 1100{degrees}F at 300 psia. Expected gas compositions in the filter will be approximately 25% CO, 15% H{sub 2}, 5% CO{sub 2}, 5% H{sub 2}O, and 50% N{sub 2}. Vapor-phase sodium chloride concentrations are expected to be 10 to 100 times the levels in combustion systems at similar temperatures, but in general the concentrations of the minor primary and secondary corrodents are not well understood. Slag corrosiveness will depend on its composition as well as viscosity. For a laboratory test, the slag must be in a thermodynamically stable form before the beginning of the corrosion test to assure that no inappropriate reactions are allowed to occur. Ideally, the slag would be flowing, and the appropriate atmosphere must be used to assure realistic slag viscosity.

  8. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was

  9. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  10. Coal - proximate analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-14

    This Standard establishes a practice for the proximate analysis of coal, that is, the coal is analysed for the content of moisture, ash and volatile matter; fixed carbon is calculated. The standard provides a basis for the comparison of coals.

  11. Vulcanizing machine suppress electrothermal device, cooling device and application development Jining III coal mine%电热式硫化机打压装置、冷却装置研制及应用

    Institute of Scientific and Technical Information of China (English)

    袁向科; 李双忠

    2012-01-01

    In that paper, by introducing the electric - type vulcanizing machine encountered in the vulcanizing joint suppression, cooling problems, de- velopment of a reliable and practical curing pressure from the cooling device to ensure the quality of vulcanized joints.%该文通过分绍电热式硫化机在接头硫化过程中遇到打压、冷却问题,研制一套可靠、实用的硫化打压、冷却装置来保证硫化接头质量。该装置在井下硫化接头中得到了应用,收到良好的效果。

  12. Investigation on Viscosity and Nonisothermal Crystallization Behavior of P-Bearing Steelmaking Slags with Varying TiO2 Content

    Science.gov (United States)

    Wang, Zhanjun; Sun, Yongqi; Sridrar, Seetharaman; Zhang, Mei; Zhang, Zuotai

    2017-02-01

    The viscous flow and crystallization behavior of CaO-SiO2-MgO-Al2O3-FetO-P2O5-TiO2 steelmaking slags have been investigated over a wide range of temperatures under Ar (High purity, >99.999 pct) atmosphere, and the relationship between viscosity and structure was determined. The results indicated that the viscosity of the slags slightly decreased with increasing TiO2 content. The constructed nonisothermal continuous cooling transformation (CCT) diagrams revealed that the addition of TiO2 lowered the crystallization temperature. This can mainly be ascribed to that addition of TiO2 promotes the formation of [TiO6]-octahedra units and, consequently, the formation of MgFe2O4-Mg2TiO4 solid solution. Moreover, the decreasing viscosity has a significant effect on enhancing the diffusion of ion units, such as Ca2+ and [TiO4]-tetrahedra, from bulk melts to the crystal-melt interface. The crystallization of CaTiO3 and CaSiTiO5 was consequently accelerated, which can improve the phosphorus content in P-enriched phase ( n2CaO·SiO2-3CaO·P2O5). Finally, the nonisothermal crystallization kinetics was characterized and the activation energy for the primary crystal growth was derived such that the activation energy increases from -265.93 to -185.41 KJ·mol-1 with the addition of TiO2 content, suggesting that TiO2 lowered the tendency for the slags to crystallize.

  13. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  14. Corrosion Behavior of Ceramic Cup of Blast Furnace Hearth by Liquid Iron and Slag

    Science.gov (United States)

    Li, Yanglong; Cheng, Shusen; Wang, Zhifeng

    2016-10-01

    Three kinds of sample bricks of ceramic cups for blast furnace hearth were studied by dynamic corrosion tests based on different corrosion systems, i.e., liquid iron system, liquid slag system and liquid iron-slag system. Considering the influence of temperature and sample rotational speed, the corrosion profiles and mass loss of the samples were analyzed. In addition, the microstructure of the corroded samples was observed by optical microscope (OM) and scanning electron microscope (SEM). It was found that the corrosion profiles could be divided into iron corrosion region, slag corrosion region and iron-slag corrosion region via corrosion degree after iron-slag corrosion experiment. The most serious corrosion occurred in iron-slag corrosion region. This is due to Marangoni effect, which promotes a slag film formed between liquid iron and ceramic cup and results in local corrosion. The corrosion of the samples deepened with increasing temperature of liquid iron and slag from 1,623 K to 1,823 K. The variation of slag composition had greater influence on the erosion degree than that of rotational speed in this experiment. Taking these results into account the ceramic cup composition should be close to slag composition to decrease the chemical reaction. A microporous and strong material should be applied for ceramic cup.

  15. Micronutrientes in the sugarcane irrigated: correction of the soil with siderurgical slag

    Directory of Open Access Journals (Sweden)

    Napoleão Esberard de Macêdo Beltrão

    2009-12-01

    Full Text Available The beneficial effects of manuring with siderurgical slag has been researched in several species, mainly among grassy such as sugarcane (Saccharum officinarum L.. The experiment was installed in the field, using one of the most representative sugarcane soils of Alagoas State, was cultivated in Dystrophic AGREY ARGISSOIL. The siderurgical slag source was containing 11% of soluble SiO2. The objective this research was quantify foliate micronutrients in the sugarcane and pH of soil due siderurgical slag application submitted the different irrigation water in São Sebastião city. For such the design was band of randomizered blocks, with five doses of siderurgical slags (band and five water (sub band and four repetitions. The analyzed variables were the micronutrients concentrations (Zn, Cu, Fe and Mn in the leaf. The slag application increased the concentrations significantly foliate of Zn while concentrations of Cu and Fe decreased. The foliate concentration of Mn, in the interaction of slag and irrigation water, it decreased in the cane plants and first it would beat, when the factor was slag inside of irrigation water however, when the factor was sheets inside of slag, there was increase of the concentration this element us of the cycles. The foliate concentration of Mn, due the interactive effect of slag and irrigation water, decreased in the first cut. However, when the factor was irrigation water inside of slag, there was increase of concentration of this in the two cycles.

  16. Diffusion of hexavalent chromium in chromium-containing slag as affected by microbial detoxification.

    Science.gov (United States)

    Wang, Yunyan; Yang, Zhihui; Chai, Liyuan; Zhao, Kun

    2009-09-30

    An electrochemical method was used to determine the diffusion coefficient of chromium(VI) in chromium-containing slag. A slag plate was prepared from the original slag or the detoxified slag by Achromobacter sp. CH-1. The results revealed that the apparent diffusion coefficient of Cr(VI) was 4.4 x 10(-9)m(2)s(-1) in original slag and 2.62 x 10(-8)m(2)s(-1) in detoxified slag. The results implied that detoxification of chromium-containing slag by Achromobacter sp. CH-1 could enhance Cr(VI) release. Meanwhile, the results of laboratory experiment showed that the residual total Cr(VI) in slag decreased from an initial value of 6.8 mg g(-1) to 0.338 mg g(-1) at the end of the detoxification process. The Cr(VI) released from slag was also reduced by Achromobacter sp. CH-1 strain since water soluble Cr(VI) in the leachate was not detected after 4 days. Therefore, Achromobacter sp. CH-1 has potential application for the bio-detoxification of chromium-containing slag.

  17. An alternative approach for reusing slags from a plasma vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Y.-M. [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, 89, Wenhwa 1st St., Rende Shiang, Tainan County 71703, Taiwan (China)], E-mail: yiming@mail.hwai.edu.tw; Tseng, H.-J. [Department of Foundry Engineering, National Tainan Industrial Vocational High School, Tainan 71075, Taiwan (China); Chang, J.-E. [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Wang, J.-W.; Wang, C.-T. [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, 89, Wenhwa 1st St., Rende Shiang, Tainan County 71703, Taiwan (China); Chen, H.-T. [Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2008-08-15

    Vitrification is widely applied to transform hazardous materials into inert slags. Raising the value of the recycled slag is an important issue from an economic point of view. In this study, an alternative approach for mixing a plasma slag with unsaturated polyester resin for making the dough-like molding composites is proposed. Physical properties, including ultimate tensile strength, Rockwell hardness, and the elongation at break, were measured to evaluate the characteristics of the composites. A scanning electron microscope and an X-ray diffractometer were used to examine the micro characteristics of the specimens. The chemical stability of the composites was estimated using the toxicity characteristic leaching procedure and a hot water bathing process. In an optimal slag loading (mass ratio of slag to unsaturated polyester resin) ranged from 0.1 to 0.2, the slag powder improved the physical properties of the composites. With an increased slag loading, excess slag powder weakened the structure of the resin, reducing the ultimate tensile strength and Rockwell hardness. The acid and water bathing tests indicated that the resin is decomposed in a hot environment. However, the slag was not destructed nor were the hazardous metals leached out. The results show that the molding method is an effective technology to recycle the slag.

  18. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  19. Local corrosion of magnesia-chrome refractory at slag-metal interface; Yoyu slag metal kaimen ni okeru magnesia / chrom shitsu taikabutsu no kyokubu sonsho

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Z.; Mukai, K.; Ogata, M. [Kyushu Inst. of Tech., Kitakyushu, Fukuoka (Japan)

    1998-09-01

    The corrosion mode of refractory depending on the chemical dissolution of molten slag-metal, a component of refractory is classified mainly into the corrosion of inner slag phase body and inner metal phase body, and local corrosion at slag surface and slag-metal interface, and local corrosion at the interface of different type of refractories. Among them, local corrosion occurring at the slag-metal interface is a serious problem that effects the life of refractory, and these recent years research regarding the prevention of this type of local corrosion has been closed up. So far, number of researches regarding the local corrosion of solid oxides at slag-metal interface has been carried out. However, these are all based on close single component and research regarding the practical oxides with multiple components and multiporous characteristic has not been carried out. In this research, practical magnesia-chrome refractory (CaO-SiO2-Al203-FetO) slag-metal system is described and revelation of local corrosion phenomena at slag-metal interface was studied. 17 refs., 14 figs., 2 tabs.

  20. Fluidized bed coal combustion reactor

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  1. Slag of Greek provenance uses in materials science and geophysics: implications for a highly potential material in the service of the development of Greek economy

    Science.gov (United States)

    Leontakianakos, G.; Baziotis, I.; Sotiriadis, K.; Goulas, G.; Liakopoulos, S.; Karastathis, V.

    2012-04-01

    Ground granulated blast-furnace slag (GGBS) is a secondary raw material that can be used as an alternative low energy binder. Hydraulic properties can be occurred through its alkali activation. GGBS is characterized by the glassy to crystalline ratio and by its chemical and mineralogical composition. Acidic slag cannot easily get crystallized in oppose to the basic one. Crystalline phases show very low reactivity with Ca(OH)2, while amorphous phases can easily react in the presence of basic substances. The aim of the present study was to study the evolution of new advanced silicate materials presenting high durability at high temperature environments. Specimens were produced using two types of slag of Greek origin. The first type was a ferrous slag, while the second one was calcareous. Their maximum particle size was 4 mm and 0.07 mm respectively. Specimens were prepared using the above slag types and siliceous sand as an aggregate. Sand was divided according to European Standard EN 196-1 in three fractions: PG1 (1cool, while the rest used as reference specimens. Heating temperatures ranged between 200degC and 1200degC. Basic mechanical, thermal and physical parameters of the above specimens were studied. Young's modulus of elasticity (E), Poisson ratio (σ), shear modulus (μ) and volume modulus (k) were calculated using pulse velocity method. In order to measure density, matrix density and open pores size, vacuum water saturation method was used. The determination of the water-vapor transportation parameters was done at steady state isothermal conditions using a set-up of dimensional water-vapor diffusion. Thermal conductivity and heat capacity were also specified. Specimens showed very good behavior under heating. Thermal properties were not significantly affected during the heating procedure leading to the conclusion that such materials can be used as protective layers against fire. Covering concrete structures is an effective way of protection against high

  2. Queensland coal inventory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-04-01

    Australia's black coal resources rank in the top five globally, around 50% of which are located in the sedimentary basins of Queensland. The Bowen Basin is the most prolific coal repository, hosting over 60% of the currently established resource inventory. Large volumes of thermal coal are present in the Surat and Galilee basins as well as small extensional and pull apart basins such as Blair Athol and Tarong. The article examines Queensland's coal industry from a government perspective. It first discusses the current coal market, then introduces the concept of inventory coal and explains the Australia Joint Ore Reserves Committee (JORC) code - a resource evaluation system. The stratigraphy of each of Queensland's coal basins is then discussed in sections headed Permian coals, Triassic coals, Jurassic and Cretaceous coals, and Tertiary coals. 3 figs.

  3. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward K. Levy; Nenad Sarunac; Harun Bilirgen; Hugo Caram

    2006-03-01

    U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissions and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.

  4. CLOSURE OF HLW TANKS FORMULATION FOR A COOLING COIL GROUT

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V; Erich Hansen, E

    2008-05-23

    The Tank Closure and Technology Development Groups are developing a strategy for closing the High Level Waste (HLW) tanks at the Savannah River Site (SRS). Two Type IV tanks, 17 and 20 in the F-Area Tank Farm, have been successfully filled with grout. Type IV tanks at SRS do not contain cooling coils; on the other hand, the majority of the tanks (Type I, II, III and IIIA) do contain cooling coils. The current concept for closing tanks equipped with cooling coils is to pump grout into the cooling coils to prevent pathways for infiltrating water after tank closure. This task addresses the use of grout to fill intact cooling coils present in most of the remaining HLW tanks on Site. The overall task was divided into two phases. Phase 1 focused on the development of a grout formulation (mix design) suitable for filling the HLW tank cooling coils. Phase 2 will be a large-scale demonstration of the filling of simulated cooling coils under field conditions using the cooling coil grout mix design recommended from Phase 1. This report summarizes the results of Phase 1, the development of the cooling coil grout formulation. A grout formulation is recommended for the full scale testing at Clemson Environmental Technology Laboratory (CETL) that is composed by mass of 90% Masterflow (MF) 816 (a commercially available cable grout) and 10% blast furnace slag, with a water to cementitious material (MF 816 + slag) ratio of 0.33. This formulation produces a grout that meets the fresh and cured grout requirements detailed in the Task Technical Plan (2). The grout showed excellent workability under continuous mixing with minimal change in rheology. An alternative formulation using 90% MF 1341 and 10% blast furnace slag with a water to cementitious material ratio of 0.29 is also acceptable and generates less heat per gram than the MF 816 plus slag mix. However this MF 1341 mix has a higher plastic viscosity than the MF 816 mix due to the presence of sand in the MF 1341 cable grout and a

  5. Recycling of industrial waste and performance of steel slag green concrete

    Institute of Scientific and Technical Information of China (English)

    LI Yun-feng; YAO Yan; WANG Ling

    2009-01-01

    Workability and mechanical properties of steel slag green concrete with different types of steel slag and different dosages of admixtures were investigated. The effectiveness of steel slag powder on suppressing alkali aggregate reaction (AAR) expansion was assessed using the method of ASTM C441 and accelerated test method. Experimental results show that mechanical properties can be improved further due to the synergistic effect and mutual activation when compound mineral admixtures with steel slag powder and blast-furnace slag powder are mixed into concrete, in addition, about 50% decrease in expansion rate of mortar bars with mineral admixtures can be achieved in AAR tests. Mineral admixtures with steel slag powder as partial replacement for Portland cement in concrete is an effective means for controlling expansion due to AAR.

  6. PRECIPITATION AND GROWTH OF PEROVSKITE PHASE IN TITANIUM BEARING BLAST FURNACE SLAG

    Institute of Scientific and Technical Information of China (English)

    Z.Z. Guo; T.P. Lou; L. Zhang; L.N. Zhang; Z.T. Sui

    2007-01-01

    The effects of transformation of slag composition and additive agents on the morphology, the crystal in the Ti-bearing blast furnace slags were investigated. As the morphology of perovskite is dispersed in molten slags, the crystal growth mechanism of the melting of fine dendrites and the coarsening of large grains exist throughout the solidification of molten slags. With the increase of CaO and Fe2O3 content, VF of perovskite obviously increases. However, high basicity leads to the viscosity of slag, which results in the reduction of the average equivalent diameter (AED). The experimental results showed that the presence of the additives CaF2 and MnO efficiently decreased the viscosity of the slags, and obviously improved the morphology of perovskite and promoted its growth.

  7. Corrosion behavior of steel in concrete made with slag-blended cement

    Energy Technology Data Exchange (ETDEWEB)

    Dehghanian, C. [Univ. of Technology, Isfahan (Iran, Islamic Republic of). Dept. of Chemical Engineering

    1999-03-01

    Concretes formulated with slag as a partial replacement for cement were used to evaluate the corrosion behavior of steel embedded in concrete, resistivity, and the compressive strength of the concrete. Corrosion rates and pitting corrosion of steel in concrete with up to 30% slag and exposed to sodium chloride (NaCl) solutions decreased. Slag-blended cement concrete increased concrete resistivity. A water-to-cement ratio <0.55 and submersion in water for a period of 18 days gave the best chloride (Cl{sup {minus}}) diffusion resistance from the external salt solutions. Compressive strength of the concrete decreased with addition of slag in the early ages of the concrete. After 5 months of age, compressive strength of the concrete increased with addition of slag. This trend continued with up to 30% slag addition.

  8. Modification of steelmaking slag by additions of salts from aluminum production

    Science.gov (United States)

    Walker, David C.

    The most common slag fluidizer in steelmaking is fluorspar, a mineral primarily composed of CaF2. Because of increasing consumption and decreasing availability of cheap fluorspar, steelmakers are seeking alternative means of achieving slag fluidity. One possible alternative to fluorspar is spent salt from secondary aluminum production. This salt is obtained from the used flux in remelting aluminum scrap and dross. This material is widely available and considered toxic (meaning that use in steelmaking helps to reduce environmental impacts from disposal). This project is an investigation of spent salt as a replacement for fluorspar in slag-fluidizing applications by viscosity measurements and weight loss measurements at high temperatures (to evaluate the amounts of gases are formed). In addition, characterization of raw materials and melted slags by XRD, chemical analysis, and EPMA have been undertaken. The spent salt addition has a positive effect on slag fluidity, and shows promise for use in slags.

  9. Capital cost: low and high sulfur coal plants; 800 MWe

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The Commercial Electric Power Cost Study for 800-MWe (Nominal) low- and high-sulfur coal plants consists of three volumes. (This the fourth subject in a series of eight performed in the Commercial Electric Power Cost Studies by the US NRC). The low-sulfur coal plant is described in Volumes I and II (this volume), while Volume III describes the high-sulfur coal plant. The design basis and cost estimate for the 801-MWe low-sulfur coal plant is presented in Volume I and the drawings, equipment list, and site description are contained in this document. The design basis, drawings, and summary cost estimate for a 794-MWe high-sulfur coal plant are presented in Volume III. This information was developed by redesigning the low-sulfur sub-bituminous coal plant for burning high-sulfur bituminous coal. The reference design includes a lime flue gas desulfurization system. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  10. Optimisation of the slag mode in the ladle during the steel processing of secondary metallurgy

    OpenAIRE

    Socha, Ladislav; Bažan, Jiří; Gryc, Karel; Morávka, Jan; Styrnal, Petr; Pilka, Václav; Piegza, Zbygněv

    2013-01-01

    Optimisation of the slag mode in the ladle with the help of briquetted fluxing agents, based on Al2O3 under various technological conditions is the object of this paper. The aim of the industrial experiments was to assess the possibility of achieving the optimum chemical composition of the slag that would improve the kinetic conditions of the refining ladle slag during the treatment in secondary metallurgy units. Industrial experiments were focused on comparing the influences of d...

  11. Effects of slag-based silicon fertilizer on rice growth and brown-spot resistance.

    Directory of Open Access Journals (Sweden)

    Dongfeng Ning

    Full Text Available It is well documented that slag-based silicon fertilizers have beneficial effects on the growth and disease resistance of rice. However, their effects vary greatly with sources of slag and are closely related to availability of silicon (Si in these materials. To date, few researches have been done to compare the differences in plant performance and disease resistance between different slag-based silicon fertilizers applied at the same rate of plant-available Si. In the present study both steel and iron slags were chosen to investigate their effects on rice growth and disease resistance under greenhouse conditions. Both scanning electron microscopy (SEM and transmission electron microscopy (TEM were used to examine the effects of slags on ultrastructural changes in leaves of rice naturally infected by Bipolaris oryaze, the causal agent of brown spot. The results showed that both slag-based Si fertilizers tested significantly increased rice growth and yield, but decreased brown spot incidence, with steel slag showing a stronger effect than iron slag. The results of SEM analysis showed that application of slags led to more pronounced cell silicification in rice leaves, more silica cells, and more pronounced and larger papilla as well. The results of TEM analysis showed that mesophyll cells of slag-untreated rice leaf were disorganized, with colonization of the fungus (Bipolaris oryzae, including chloroplast degradation and cell wall alterations. The application of slag maintained mesophyll cells relatively intact and increased the thickness of silicon layer. It can be concluded that applying slag-based fertilizer to Si-deficient paddy soil is necessary for improving both rice productivity and brown spot resistance. The immobile silicon deposited in host cell walls and papillae sites is the first physical barrier for fungal penetration, while the soluble Si in the cytoplasm enhances physiological or induced resistance to fungal colonization.

  12. Study of flame combustion of off-design binary coal blends in steam boilers

    Science.gov (United States)

    Kapustyanskii, A. A.

    2017-07-01

    Changes in the structure of the fuel consumption by the thermal power stations of Ukraine caused by failure in supplying anthracite from the Donets Basin are analyzed and the major tasks of maintaining the functioning of the coal industry are formulated. The possibility of using, in the near future, the flame combustion of off-design solid fuels in the power boilers of the thermal power plants and combined heat and power plants is studied. The article presents results of expert tests of the TPP-210A and TP-15 boilers under flame combustion of mixtures of anthracites, lean coal, and the coal from the RSA in various combinations. When combusting, such mixtures have higher values of the combustibles yield and the ash fusibility temperature. The existence of the synergetic effect in the flame combustion of binary coal blends with different degrees of metamorphism is discussed. A number of top-priority measures have been worked out that allow for switching over the boilers designed to be fired with anthracite to using blends of coals of different ranks. Zoned thermal analysis of the TP-15 boiler furnace was performed for numerical investigation of the temperature distribution between the furnace chamber zones and exploration of the possibility of the liquid slag disposal and the temperature conditions for realization of this process. A positive result was achieved by combusting anthracite culm (AC), the coal from the RSA, and their mixtures with lean coal within the entire range of the working loads of the boilers in question. The problems of normalization of the liquid slag flow were also successfully solved without closing the slag notch. The results obtained by balance experiments suggest that the characteristics of the flame combustion of a binary blend, i.e., the temperature conditions in the furnace, the support flame values, and the degree of the fuel burnout, are similar to the characteristics of the flame of the coal with a higher reactive capacity, which

  13. A novel process for comprehensive utilization of vanadium slag

    Science.gov (United States)

    Liu, Li-ying; Du, Tao; Tan, Wen-jun; Zhang, Xin-pu; Yang, Fan

    2016-02-01

    Traditional processes for treating vanadium slag generate a huge volume of solid residue and a large amount of harmful gas, which cause serious environmental problems. In this study, a new process for the comprehensive utilization of vanadium slag was proposed, wherein zeolite A and a V2O5/TiO2 system were synthesized. The structural properties of the as-synthesized zeolite A and the V2O5/TiO2 system were characterized using various experimental techniques, including X-ray diffraction, X-ray fluorescence, scanning electron microscopy, and infrared spectroscopy. The results reveal that zeolite A and the V2O5/TiO2 system are successfully obtained with high purity. The results of gas adsorption measurements indicate that the prepared zeolite A exhibits high selectivity for CO2 over N2 and is a candidate material for CO2 capture from flue-gas streams.

  14. Effect of Superfine Slag Powder on HPC Properties

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A superfine slag powder (SP) made from granulated blast furnace slag incorporating activators by using special millingtechnique, was used as supplementary cementitious material in high performance concrete (HPC), replacing part ofthe mass of normal Portland cement. The effects of the SP on the workability, mechanical and crack self-healingproperties of HPC were studied. The hydration process and microstructure characteristics were investigated by X-raydiffraction (XRD) and scanning electron microscopy (SEM) techniques, respectively. The crack self-healing capacitywas evaluated by Brazilian test. The test results indicate that the SP has especially supplementary effect on waterreducing and excellent property of better control of slump loss. The concrete flowability increases remarkably withthe increase of SP replacement level in the range of 20% to 50%. The compressive and splitting tensile strengthsof HPC containing SP are higher than the corresponding strength of the control concrete at all ages. The crackself-healing ability is highly dependent on SP content of HPC.

  15. Applied coal petrology: the role of petrology in coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Isabel Suarez-Ruiz; John Crelling [Instituto Nacional del Carbon (INCAR-CSIC), Oviedo (Spain)

    2008-08-15

    This book is an integrated approach towards the applications of coal (organic) petrology and discusses the role of this science in the field of coal and coal-related topics. Contents are: Introduction 2. Basic factors controlling coal quality and technological behaviour of coal 3. Mining and benefication 4. Coal combustion 5. Coal gasification 6. Coal liquefaction 7. Coal carbonisation 8. Coal-derived carbons 9. Coal as a Petroleum source rock and reservoir rock 10. Environmental and health aspects 11. Other applications of coal petrology.

  16. Use of ancient copper slags in Portland cement and alkali activated cement matrices.

    Science.gov (United States)

    Nazer, Amin; Payá, Jordi; Borrachero, María Victoria; Monzó, José

    2016-02-01

    Some Chilean copper slag dumps from the nineteenth century still remain, without a proposed use that encourages recycling and reduces environmental impact. In this paper, the copper slag abandoned in landfills is proposed as a new building material. The slags studied were taken from Playa Negra and Púquios dumps, both located in the region of Atacama in northern Chile. Pozzolanic activity in lime and Portland cement systems, as well as the alkali activation in pastes with copper slag cured at different temperatures, was studied. The reactivity of the slag was measured using thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), electrical conductivity and pH in aqueous suspension and Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, copper slag-Portland cement mortars with the substitution of 25% (by weight) of cement by copper slag and alkali-activated slag mortars cured at 20 and 65 °C were made, to determine the compressive strength. The results indicate that the ancient copper slags studied have interesting binding properties for the construction sector.

  17. Microscopic Study of Carbon Surfaces Interacting with High Carbon Ferromanganese Slag

    Science.gov (United States)

    Safarian, Jafar; Kolbeinsen, Leiv

    2015-02-01

    The interaction of carbon materials with molten slags occurs in many pyro-metallurgical processes. In the production of high carbon ferromanganese in submerged arc furnace, the carbothermic reduction of MnO-containing silicate slags yields the metal product. In order to study the interaction of carbon with MnO-containing slags, sessile drop wettability technique is employed in this study to reduce MnO from a molten slag drop by carbon substrates. The interfacial area on the carbon substrate before and after reaction with slag is studied by scanning electron microscope. It is indicated that no Mn metal particles are found at the interface through the reduction of the MnO slag. Moreover, the reduction of MnO occurs through the contribution of Boudouard reaction and it causes carbon consumption in particular active sites at the interface, which generate carbon degradation and open pore growth at the interface. It is shown that the slag is fragmented to many micro-droplets at the reaction interface, potentially due to the effect on the interfacial energies of a provisional liquid Mn thin film. The rapid reduction of these slag micro-droplets affects the carbon surface with making deep micro-pores. A mechanism for the formation of slag micro-droplets is proposed, which is based on the formation of provisional micro thin films of liquid Mn at the interface.

  18. Environmental impacts of asphalt mixes with electric arc furnace steel slag.

    Science.gov (United States)

    Milačič, Radmila; Zuliani, Tea; Oblak, Tina; Mladenovič, Ana; Ančar, Janez Šč

    2011-01-01

    Electric arc furnace (EAF) steel slag can be used as an alternative high-quality material in road construction. Although asphalts with slag aggregates have been recognized as environmentally acceptable, there is a lack of data concerning the potential leaching of toxic Cr(VI) due to the highly alkaline media of EAF slag. Leaching of selected water extractable metals from slag indicated elevated concentrations of total chromium and Cr(VI). To estimate the environmental impacts of asphalt mixes with slag, leachability tests based on diffusion were performed using pure water and salt water as leaching agents. Compact and ground asphalt composites with natural aggregates, and asphalt composites in which the natural aggregates were completely replaced by slag were prepared. The concentrations of total chromium and Cr(VI) were determined in leachates over a time period of 6 mo. After 1 and 6 mo, the concentrations of some other metals were also determined in the leachates. The results indicated that chromium in leachates from asphalt composites with the addition of slag was present almost solely in its hexavalent form. However, the concentrations were very low (below 25 μg L) and did not represent an environmental burden. The leaching of other metals from asphalt composites with the addition of slag was negligible. Therefore, the investigated EAF slag can be considered as environmentally safe substitute for natural aggregates in asphalt mixes.

  19. A Microstructure Based Strength Model for Slag Blended Concrete with Various Curing Temperatures

    Directory of Open Access Journals (Sweden)

    Li-Na Zhang

    2016-01-01

    Full Text Available Ground granulated blast furnace slag, which is a byproduct obtained during steel manufacture, has been widely used for concrete structures in order to reduce carbon dioxide emissions and improve durability. This paper presents a numerical model to evaluate compressive strength development of slag blended concrete at isothermal curing temperatures and time varying curing temperatures. First, the numerical model starts with a cement-slag blended hydration model which simulates both cement hydration and slag reaction. The accelerations of cement hydration and slag reaction at elevated temperatures are modeled by Arrhenius law. Second, the gel-space ratios of hardening concrete are calculated using reaction degrees of cement and slag. Using a modified Powers’ gel-space ratio strength theory, the strength of slag blended concrete is evaluated considering both strengthening factors and weakening factors involved in strength development process. The proposed model is verified using experimental results of strength development of slag blended concrete with different slag contents and different curing temperatures.

  20. Effects of Carbo-Nitridation Process of Ti-Bearing Blast Furnace Slag on Iron Content

    Science.gov (United States)

    Shi, Z.; Zhang, X. M.; Xu, Y.

    In order to prepare corrosion-resistant refractory material, experiment chooses Ti-bearing Blast Furnace Slag as raw materials which were treated by the method of carbo-nitridation. Finally, the corrosion resistance properties of the material can be improved by this method. The carbo-nitridation process affects the iron content of the slag in the study, which have a beneficial effect on the synthesis of Ti (C. N). The results indicated that the iron content of the slag significantly increased in process of Ti (C. N) synthesis: and the iron content of slag showed an upward trend with the increase of holding time.

  1. Gasification slag rheology and crystalline phase formation in titanium-calcium-alumina-silica-rich glass

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, D.D. [Texaco, Inc., Beacon, NY (United States); Oh, M.S. [Hongik Univ., Seoul (Korea, Republic of)

    1996-10-01

    The Texaco Gasification Process employs a high temperature and pressure slagging gasifier, in which the viscosity of the slag plays a key role in determining operating conditions. The empirical models available in the literature as well as laboratory testing have concentrated on low titanium feeds. During the gasification of waste material, titanium oxide will become an important element in controlling the ash and slag behavior. Slag viscosity was measured at temperatures in the range of 1150-1500{degrees}C under reducing atmosphere with 0-30% titanium in combination with calcium-alumina-silica rich feeds to gain a better understanding of the slag theology. The slag viscosities with most titanium-rich slags showed the behavior of a crystalline slag with T{sub cv} of 1250{degrees}C. Crystalline phase analyses of the slag samples revealed that titanium oxide crystal will nucleate, but the glass phase is dominated by calcium-titanium-silicate and calcium-alumina-silicate glasses which have low melting points.

  2. Smelting reduction and kinetics analysis of magnetic iron in copper slag using waste cooking oil.

    Science.gov (United States)

    Li, Bo; Wang, Xubin; Wang, Hua; Wei, Yonggang; Hu, Jianhang

    2017-05-25

    To improve the recovery of copper, the viscosity of copper molten slag is decreased by the reduction of magnetic iron, which, in turn, accelerates the settling and separation of copper droplets from the slag. A new technology is proposed in which waste cooking oil is used as a reductant to reduce magnetic iron in the copper smelting slag and consequently reduce carbon emissions in the copper smelting process. A kinetic model of the reduction of magnetic iron in copper slag by waste cooking oil was built using experimental data, and the accuracy of the model was verified. The results indicated that the magnetic iron content in the copper slag decreased with increasing reduction time and an increase in temperature more efficiently reduced magnetic iron in the copper slag. The magnetic iron in the copper slag gradually transformed to fayalite, and the viscosity of the copper molten slag decreased as the magnetic iron content decreased during the reduction process. The reduction of magnetic iron in the copper molten slag using waste cooking oil was a first-order reaction, and the rate-limiting step was the mass transfer of Fe3O4 through the liquid boundary layer.

  3. The influence of the silicate slag composition on copper losses during smelting of the sulfide concentrates

    Directory of Open Access Journals (Sweden)

    Živković Živan

    2009-01-01

    Full Text Available This paper presents the results of multi-linear regression analysis (MLRA of the slag composition (SiO2, FeO, Fe3O4, CaO, Al2O3 and the content of copper in the matte on resulting copper content in the slag during smelting of the sulfide concentrates in the reverberatory furnace. When comparing results obtained with MLRA model calculations with values measured at industrial level high degree of fitting is obtained (R2 = 0.974. This indicates that slag composition and content of copper in the matte influences the copper losses in the waste slag with the probability of 95 %.

  4. Stabilization effects of surplus soft clay with cement and GBF slag

    Institute of Scientific and Technical Information of China (English)

    LU Jiang; Chirdchanin MODMOLTIN; Katsutada ONITSUKA

    2004-01-01

    Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of cement and a kind of industrial wastes, i.e. granulated blast furnace slag, on stabilization of surplus soft clay. The results showed that the cement and slag can successfully stabilize Ariake clays even though this high organic clay fails to be stabilized by lime and cement. Addition of slag in cement for stabilization induces higher strength than cement alone for longer curing time. The application of the cement with slag is more suitable than cement alone for stabilization because of economical consideration.

  5. Use of copper slag in glass-epoxy composites for improved wear resistance.

    Science.gov (United States)

    Biswas, Sandhyarani; Satapathy, Alok

    2010-07-01

    Copper slag is a by-product obtained during matte smelting and refining of copper. The common management options for copper slag are recycling, recovery of metal and production of value-added products. In the present study using copper slag as a filler in glass-epoxy composites, the tensile modulus increased from 8.77 GPa to 9.64 GPa when using up to 10 wt% of copper slag but on further addition of copper slag (up to 20 wt%), the tensile modulus started to decrease down to 7.11 GPa. Similar trends were observed in the case of flexural strength and interlaminar shear strength. With the incorporation of copper slag particles, the impact strength increased about 10-15%. This work includes the processing, characterization and study of the erosion behaviour of a class of such copper slag filled glass-epoxy composites based on Taguchi's experimental approach to characterise erosion behaviour. The results show that peak erosion takes place at an impingement angle of 60 degrees for the unfilled composites whereas for the copper slag filled glass-epoxy composites it occurs at a 45 degrees impingement angle. This paper considers the possible utilisation of copper slag as filler material for the preparation of composite materials and preparation of added-value products such as abrasive tools, cutting tools and railroad ballast.

  6. Technological progress on detoxification and comprehensive utilization of chromium-containing slag

    Institute of Scientific and Technical Information of China (English)

    柴立元; 何德文; 于霞; 刘恢; 闵小波; 陈为亮

    2002-01-01

    Chromium salt is an important industrial material, but vast waste slag containing chrome(Ⅵ) is brought out in the process of its production. The slag is seriously harmful to environments and human health. The technologies on detoxification and comprehensive utilization of chromium-containing slag were summarized abroad and at home. And various methods were also described for the detoxification mechanism, technology process, and practical application effects in detail. A new concept for detoxification of chromium-containing slag, furthermore, was put forward by using microorganism.

  7. The Early Strength of Slag Cements with Addition of Hydrate Microcrystals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of hydrate microcrystals such as calcium silicate hydrates (CSH) and ettringite on the early strength of slag cements was studied.The authors explored the possibility of improving the early strength of the slag cement by applying crystal seed technology.It is shown that slag crystal seeds make the early strength of the cement increased due to the action of hydrate crystal seeds,which speed up the hydration of clinker minerals in the nucleation of ettringite.Therefore,the early strength of the slag cement is obviously improved.

  8. Use of steel slag as a granular material: volume expansion prediction and usability criteria.

    Science.gov (United States)

    Wang, George; Wang, Yuhong; Gao, Zhili

    2010-12-15

    The theoretical equation for predicting volume expansion of steel slag is deduced based on both chemical reaction and physical changes of free lime in steel slag during the hydration process. Laboratory volume expansion testing is conducted to compare the results with the theoretical volume expansion. It is proved that they correlated well. It is furthermore experimentally proved that certain volume expansion of steel slag can be absorbed internally by the void volume in bulk steel slag under external surcharge weight making the apparent volume expansion equal zero. The minimum (lowest) absorbable void volume is approximately 7.5%, which is unrelated to the free lime content. A usability criterion is then developed based on the volume expansion of steel slag (%) and the minimum percentage of the volume that can take the volume expansion of steel slag (%). Eventually the criterion (relationship) is established based on the free lime content, the specific gravity and bulk relative gravity of a specific steel slag sample. The criteria can be used as guidance and specification for the use of steel slag and other expansion-prone nonferrous slags, copper, nickel for instance as a granular material in highway construction.

  9. Comparison of possibilities the blast furnace and cupola slag utilization by concrete production

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2010-04-01

    Full Text Available In process of pig iron and cast iron production secondary raw materials and industrial wastes are formed The most abundant secondaryproduct originating in these processes are furnace slag. Blast furnace slag and cupola furnace slag originates from melting of gangue parts of metal bearing materials, slag forming additions and coke ash. In general, slag are compounds of oxides of metallic and non-metallic elements, which form chemical compounds and solutions with each other and also contain small volume of metals, sulfides of metals and gases. Chemical, mineralogical and physical properties of slag determinate their utilisation in different fields of industry.The paper presents results from the research of the blast furnace and cupola furnace slag utilization in the concrete production. Pilotexperiments of the concrete production were performed, by that the blast furnace and cupola furnace slag with a fractions of 0–4mm;4–8mm; 8–16mm were used as a natural substitute. A cupola furnace slag and combination of the blast furnace and cupola furnace slagwere used in the experiments. The analysis results show that such concretes are suitable for less demanding applications.

  10. Heating and melting mechanism of stainless steelmaking dust pellet in liquid slag

    Institute of Scientific and Technical Information of China (English)

    PENG ji; TANG Mo-tang; PENG Bing; YU Di; J.A.KOZINSKl; TANG Chao-bo

    2007-01-01

    The heating and melting mechanisms of the pellets immersed in liquid slag were investigated. and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in the pellet is melted from the surface and no metallic elements are melted before the dust component, the time for the pellet completely melted is reduced as the iron powder content increases since the metallic iron has high thermal conductivity. These are four stages of heating and melting of pellet in liquid slag, they are the growth and melt of solid slag shell, penetration of liquid slag, dissolving of dust component and melring of reduced metals.The lifetime of the solid slag shell is in the range of 7-16 s and increasing the pre-heating temperature of the pellet and the slag temperature can shorten the slag shell liretime. The time for the dust component in the pellet to be melted completely is in the range of 20-45 s and increasing the pre-heating temperature, especially in the range of 600-800 ℃.can obviously reduce the melting time. A higher slag temperature can also improvethe pellet melting and the melting time is reduced by l0-15 s when the slag temperature is increased from 1 450 to 1 550 ℃.The pellet with higher content of iron powder is beneficial to the melting by improving the heat conductivity.

  11. Performance of steel-making slag concrete reinforced with fibers

    OpenAIRE

    Ortega-López Vanesa; Fuente-Alonso José Antonio; Skaf Marta; Santamaría Amaia; Aragón Ángel; Manso Juan Manuel

    2017-01-01

    In this research, the possibility of making concrete reinforced with fibers and manufactured with recycled aggregates from carbon steel production was explored. Electric arc furnace slag (EAFS) was used as coarse and medium aggregate, and part of the sand sizes. Metallic and synthetic fibers were added in different amounts. Initially, the properties of EAFS and their suitability to be used in the manufacture fiber reinforced concrete were analysed. Then, a series of fiber reinforced concrete ...

  12. Comprehensive study of rheological and surface properties of the selected slag system in the context of its internal structure

    Directory of Open Access Journals (Sweden)

    L. Řeháčková

    2016-10-01

    Full Text Available Rheological (dynamic viscosity, flow curves and surface properties (surface tension of real slag system were experimentally investigated. Measurements of dynamic viscosity were performed with use of the high-temperature viscometer Anton Paar FRS 1 600. The method of sessile drop was used for measurement of surface tension. Surface tension and dynamic viscosity were measured in the temperature interval from 1 200 to 1 600 °C. The structural characteristics of the selected samples were determined by X-ray diffraction (XRD. The samples for given analysis were prepared by quench cooling. Experimentally determined values of dynamic viscosity and surface tension were compared with the results of X-ray diffraction phase analysis.

  13. Sulfide Capacity in Ladle Slag at Steelmaking Temperatures

    Science.gov (United States)

    Allertz, Carl; Sichen, Du

    2015-12-01

    Sulfide capacity measurements were conducted at 1823 K and 1873 K (1550 °C and 1600 °C) for the quaternary Al2O3-CaO-MgO-SiO2 system, for typical compositions used in the ladle in steelmaking. A copper-slag equilibrium was used under controlled oxygen and sulfur potentials. The sulfide capacity is strongly dependent on the composition and it was found to increase with the basic oxides, while it decreases with increase of the acidic components. It was found that CaO is more effective in holding sulfur in the slag compared to MgO when replacing SiO2. For the present slag compositions, Al2O3 and SiO2 behaved similar with respect to sulfur, and no considerable effect could be recorded when replacing one for the other. The sulfide capacity was also found to be strongly dependent on the temperature, increasing with temperature. The present results were compared with industrial data from the ladle, after vacuum treatment, and they were in good agreement.

  14. Selective Sulfidation of Lead Smelter Slag with Sulfur

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  15. Alternative concrete based on alkali-activated slag

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2008-09-01

    Full Text Available This article reports the results of related to on the performance of concrete made with waterglass (Na2SiO3•nH2O + NaOH-activated Colombian granulated blast furnace slag. The mechanical strength and durability properties this alkali-activated slag concrete (AAS were compared to the properties of ordinary Portland cement concrete (OPC with the same proportion of binder, which ranged from 340 to 512 kg per m3 of concrete. The results indicated that increasing the proportion of slag led to improvements in the properties studied.El propósito de este artículo es dar a conocer los resultados de la evaluación del comportamiento de mezclas de hormigón producidas a partir de la activación con waterglass (Na2SiO3•nH2O + NaOH de una escoria siderúrgica granulada de alto horno colombiana. Las propiedades mecánicas y de durabilidad de los hormigones activados alcalinamente (AAS se comparan con las correspondientes mezclas de hormigón de cemento Portland (OPC producidas con igual proporción de ligante. Estas proporciones variaron entre 340 y 512 kg por m3 de hormigón. Los resultados obtenidos indican que incrementos en la proporción de la escoria contribuye a la mejora de las propiedades evaluadas.

  16. Blasted copper slag as fine aggregate in Portland cement concrete.

    Science.gov (United States)

    Dos Anjos, M A G; Sales, A T C; Andrade, N

    2017-07-01

    The present work focuses on assessing the viability of applying blasted copper slag, produced during abrasive blasting, as fine aggregate for Portland cement concrete manufacturing, resulting in an alternative and safe disposal method. Leaching assays showed no toxicity for this material. Concrete mixtures were produced, with high aggregate replacement ratios, varying from 0% to 100%. Axial compressive strength, diametrical compressive strength, elastic modulus, physical indexes and durability were evaluated. Assays showed a significant improvement in workability, with the increase in substitution of fine aggregate. With 80% of replacement, the concrete presented lower levels of water absorption capacity. Axial compressive strength and diametrical compressive strength decreased, with the increase of residue replacement content. The greatest reductions of compressive strength were found when the replacement was over 40%. For tensile strength by diametrical compression, the greatest reduction occurred for the concrete with 80% of replacement. After the accelerated aging, results of mechanic properties showed a small reduction of the concrete with blasted copper slag performance, when compared with the reference mixture. Results indicated that the blasted copper slag is a technically viable material for application as fine aggregate for concrete mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Application of Improved HMM Algorithm in Slag Detection System

    Institute of Scientific and Technical Information of China (English)

    TAN Da-peng; LI Pei-yu; PAN Xiao-hong

    2009-01-01

    To solve the problems of ladle slag detection system (SDS),such as high cost,short service life,and inconvenient maintenance,a new SDS realization method based on hidden Markov model (HMM) was put forward.The physical process of continuous casting was analyzed,and vibration signal was considered as the main detecting signal according to the difference in shock vibration generated by molten steel and slag because of their difference in density.Automatic control experiment platform oriented to SDS was established,and vibration sensor was installed far away from molten steel,which could solve the problem of easy power consumption by the sensor.The combination of vector quantization technology with learning process parameters of HMM was optimized,and its revaluation formula was revised to enhance its recognition effectiveness.Industrial field experiments proved that this system requires low cost and little rebuilding for current devices,and its slag detection rate can exceed 95 %.

  18. The Chloride Permeability of Persulphated Phosphogypsum-Slag Cement Concrete

    Institute of Scientific and Technical Information of China (English)

    HUANG Youqiang; LU Jianxin; CHEN Feixiang; SHUI Zhonghe

    2016-01-01

    The chloride permeability and microstructure of persulphated phosphogypsum-slag cement concrete (PPSCC), the Portland slag cement concrete (PSCC) and ordinary Portland cement concrete (OPCC) were investigated comparatively. Some test methods were used to evaluate the chloride permeability and explain the relationship between the permeability and microstructure of concrete. The results show that the resistance to chloride penetration in PPSCC is signiifcantly better than that in OPCC, the reasons are as follows: 1) the slag in PPSCC is activated by clinker (alkali activation) and phosphogypsum (sulfate activation), forming more low Ca/Si C-S-H gel and gel pores below 10 nm than OPCC, improving the resistance to chloride penetration; 2) the hydration products of PPSCC have a much stronger binding capacity for chloride ions; and 3) in the same mix proportion, PPSCC has a better workability without large crystals calcium hydroxide in the hydration products, the interfacial transition zone (ITZ) is smoother and denser, which can cut off the communicating pores between the pastes and aggregates.

  19. Alkali Aggregate Reaction in Alkali Slag Cement Mortars

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By means of "Mortar Bar Method",the ratio of cement to aggregate was kept as a constant 1∶2.25,the water-cement ratio of the mixture was 0.40,and six prism specimens were prepared for each batch of mixing proportions with dimensions of 10×10×60mm3 at 38±2℃ and RH≥95%, the influences of content and particle size of active aggregate, sort and content of alkali component and type of slag on the expansion ratios of alkali-activated slag cement(ASC) mortars due to alkali aggregate reaction(AAR) were studied. According to atomic absorption spectrometry,the amount of free alkali was measured in ASC mortars at 90d.The results show above factors affect AAR remarkably,but no dangerous AAR will occur in ASC system when the amount of active aggregate is below 15% and the mass fraction of alkali is not more than 5% (Na2O).Alkali participated in reaction as an independent component, and some hydrates containing alkali cations were produced, free alkalis in ASC system can be reduced enormously.Moreover,slag is an effective inhibitor, the possibility of generating dangerous AAR in ASC system is much lower at same conditions than that in ordinary Portland cement system.

  20. Simulation of past exposure in slag wool production.

    Science.gov (United States)

    Fallentin, B; Kamstrup, O

    1993-08-01

    A survey of the working conditions at a Danish slag wool production factory during the early technological phase in the 1940s is presented. No exposure data, however, are available for that period. So, a full-scale simulation of the past production of slag wool has been performed. Air monitoring was carried out in the working area around the cupola furnace. The aim was to measure exposure to air pollutants other than fibres. Such exposure might have confounded a possible association between lung cancer and exposure to fibres, in the early technological phase of slag wool production. The simulation experiment demonstrated exposure to PAH, a known lung carcinogen. The effect of other concurrent exposures is difficult to assess. Time-weighted average concentrations of particulate material ranged between 12.9 and 49.1 mg m-3 at the upper decks around the cupola. Corresponding concentrations of the dominant metals zinc and lead were 4.4-22.7 mg Zn m-3 and 0.9-4.7 mg Pb m-3. Significant concentrations of PAH up to 269 micrograms PAH m-3 (4 micrograms BaP m-3) occurred during ignition of the cupola furnace. The carbon monoxide level reached 270 ppm also during ignition.

  1. Speciation of copper in the thermally stabilized slag

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Y.-J. [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Paul Wang, H., E-mail: wanghp@mail.ncku.edu.t [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Chang, J.-E. [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Chao, C.-C. [Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Tsai, C.-K. [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2010-07-21

    The Taiwan universities laboratory hazardous wastes have been treated by incineration at the temperature range of 1173-1273 K. By X-ray absorption near edge structure (XANES) spectroscopy, mainly CuO and CuSO{sub 4} are found in the incineration bottom and fly ashes. The incineration fly ash can be stabilized thermally at 1773 K in the plasma melting reaction chamber (integrated with the incinerator), and converted to slag. The concentration of leachable copper in the slag is reduced significantly mainly due to the fact that copper is encapsulated in the SiO{sub 2} matrix. In addition, the refined extended X-ray adsorption fine structure (EXAFS) spectra of copper also indicate formation of the Cu-O-Si species in the slag as the bond distances of 1.95 A for Cu-O and 2.67 A for O-Si are observed. This work exemplifies utilization of the synchrotron X-ray absorption spectroscopy to facilitate the thermal stabilization treatments of the fly ash hazardous waste using the plasma melting method.

  2. Capital cost: low- and high-sulfur coal plants, 800 MWe

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 800-MWe (Nominal) high- and low-sulfur coal plants consists of three volumes. The low-sulfur coal plant is described in Volumes I and II, while Volume III describes the high-sulfur coal plant. The design basis and cost estimate for the 801-MWe low sulfur coal plant is presented in Volume I, and the drawings, equimpment list, and site description are contained in Volume II. The design basis, drawings, and summary cost estimate for a 794-MWe high-sulfur coal plant are presented in Volume III. This information was developed by redesigning the low-sulfur sub-bituminous coal plant for burning high-sulfur bituminous coal. The reference design includes a lime flue-gas desulfurization system. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal.

  3. Characteristics of Coal Ashes in Yanzhou Mining District and Distribution of Trace Elements in Them

    Institute of Scientific and Technical Information of China (English)

    刘桂建; 彭子成; 杨萍玥; 桂和荣; 王桂梁

    2001-01-01

    In the process of combustion of coal organic and inorganic materials in it will undergo a complex variation. Part of them will become volatiles and, together with coal smoke, enter into atmosphere, some will remain in micro-particulates such as ash and dust and find their way into atmosphere in the form of solid particles, and the rest will be retained in ash and slag. Coal ashes are the residues of organic and inorganic substances in coal left after coal combustion and the composition of coal ashes is dependent on that of minerals and organic matter in coal This paper deals with the chemical composition of coal ashes, the distribution of trace elements in them and their petrological characteristics, and also studies the relationship between the yield of coal ashes and the distribution of trace elements. In addition, a preliminary study is also under taken on the factors that affect the chemical composition of coal ashes. As viewed from the analyses of coal ash samples collected from the Yanzhou mining district, it can be seen clearly that coal ashes from the region studied are composed chiefly of crystalline materials, glassy ma terials and uncombusted organic matter and the major chemical compositions are SiO2, A12O3,Fe2O3, and CaO, as well as minor amounts of SO3, P2O5, Na2O, K2O and TiO2. During the combustion of coal, its trace elements will be redistributed and most of them are enriched in coal ashes. At the same time, the concentrations of the trace elements in flying ash are much higher than those of bottom ash, i.e. , with decreasing particle-size of coal ashes their concen trations will become higher and higher. So the contents of trace elements are negatively propor tional to the particle-size of coal ashes. There has been found a positive correlation between the trace elements Th, V, Zn, Cu and Pb and the yield of coal ashes while a negative correlation between C1 and the yield of coal ashes.

  4. Assessing coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, A. [Pacific Power, Sydney, NSW (Australia)

    1999-11-01

    Recent research has allowed a quantitative description of the basic process of burnout for pulverized coals to be made. The Cooperative Research Centre for Black Coal Utilization has built on this work to develop a coal combustion model which will allow plant engineers and coal company representatives to assess their coals for combustion performance. The paper describes the model and its validation and outlines how it is run. 2 figs.

  5. Colombian coal focus

    Energy Technology Data Exchange (ETDEWEB)

    Warden-Fernandez, J.; Rodriguez, L.E. [University of Dundee, Dundee (United Kingdom)

    2003-03-01

    The paper reviews the development of Colombia's coal industry over recent years. Colombia has recently modernised its mining code, Law 685 of 2001 concerning mineral rights and including the concept of sustainable development. The article discusses the legislation, analyses trends in Columbia's income from the coal and mineral industries (nickel, gold, emerald), and briefly discusses coal reserves, mining projects, coal exports and markets for Colombian coal. 7 refs., 7 figs., 4 tabs.

  6. Coal markets in transition

    Energy Technology Data Exchange (ETDEWEB)

    Romer, R.

    1990-01-01

    Describes Colorado's coal industry, and the implementation of a nine point mining plan announced in 1988. This plan includes an environmental regulatory review, coal royalty reform, production and marketing incentives, clean coal and clean air issues, and promotion of the coal industry. Other issues to be addressed are abandoned mine reclamation, abandoned mine safety and land reclamation after surface mining. International markets for Colorado coal are also discussed.

  7. Coal combustion products

    Science.gov (United States)

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  8. Coal data: A reference

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  9. Distribution of Phosphorus between CaO-CaF2 Slag and Fe-C-P Melt

    Institute of Scientific and Technical Information of China (English)

    WANG Qing-xiang; ZHOU Jian-jian; DU Xiao-jian

    2005-01-01

    The equilibrium distribution ratio of phosphorus between CaO-CaF2 molten slag and Fe-C-P melt at 1450 ℃ was measured. The phosphate capacity of slag and the activity coefficient of phosphorus oxide were calculated.

  10. Geophysical Investigation of Buried Slag at the Parrot Tailings Site, Butte, Montana

    Science.gov (United States)

    Ha, C. D. M.; Shepherd, K.; Mack, A.; Rutherford, B. S.; Speece, M. A.

    2016-12-01

    Butte, Montana, has served as an important mining district for more than 120 years. This area contains historic mine waste from decades of unregulated mining practices. In July 1881, the Parrot smelter in Butte started operations and was soon processing ore and producing copper. The Parrot smelter also had a concentrating plant that treated the ore prior to smelting. The Parrot smelter wastes (slag and tailings) were later covered with Berkeley Pit crushed quartz monzonite overburden. The slag is bricked because it was deposited hot and, as a consequence forms a laterally extensive, cohesive, hard body that is difficult to remove without blasting. With the mine waste being covered by unknown quantities of overburden and soil throughout the area, and core data being limited and expensive to retrieve, the only economical method of discovery is geophysics. Several geophysical techniques were used to determine the lateral boundaries and depth of the buried slag body. The geophysical methods used were seismic, gravity, electromagnetic induction, and magnetics. Not all of these geophysical surveys produced useful results due to the nature of the slag. For instance, electromagnetic induction could not distinguish between the slag and adjacent tailings; and, the microgravity profiles showed only a small gravitational field variation caused by the density contrast between slag and the surrounding tailings, sediment and granitic cover. On the other hand, the seismic surveys resulted in unexpected first arrival times that distinctly showed velocity variations due to the slag. In addition, the slag body produced a large magnetic response. Unpublished, proprietary well data allowed us to model the slag body from our magnetic data. This model was confirmed by projecting velocity tomograms, that we created using seismic diving waves, onto our magnetic models. Model results were combined to form a three-dimensional image of the slag body. These results will be used to help

  11. Recycling of residual IGCC slags and their benefits as degreasers in ceramics.

    Science.gov (United States)

    Iglesias Martín, I; Acosta Echeverría, A; García-Romero, E

    2013-11-15

    This work studies the evolution of IGCC slag grains within a ceramic matrix fired at different temperatures to investigate the effect of using IGCC slag as a degreaser. Pressed ceramic specimens from two clay mixtures are used in this study. The M1 mixture is composed of standard clays, whereas the M2 mixture is composed of the same clay mixture as M1 mixture but contains 15% by weight IGCC slag. The amount of IGCC slag added coincides with the amount of slag typically used as a degreaser in the ceramic industry. Specimens are fired at 950 °C, 1000 °C, 1050 °C, 1100 °C and 1150 °C. The mineralogical composition and the IGCC slag grain shape within the ceramic matrix are determined by X-ray diffraction, polarized light microscopy and scanning electron microscopy. The results reveal that the surface of the slag grains is welded to the ceramic matrix while the quartz grains are separated, which causes increased water absorption and reduces the mechanical strength. IGCC slag, however, reduces water absorption. This behaviour is due to the softening temperature of the slag. This property is quite important from an industrial viewpoint because IGCC slag can serve as an alternative to traditional degreasing agents in the ceramic building industry. Additionally, using IGCC slag allows for the transformation of waste into a secondary raw material, thereby avoiding disposal at landfills; moreover, these industrial wastes are made inert and improve the properties of ceramics.

  12. Hydrothermal solidification of municipal solid waste incineration bottom ash with slag addition.

    Science.gov (United States)

    Jing, Zhenzi; Ran, Xianqiang; Jin, Fangming; Ishida, Emile H

    2010-01-01

    Hydrothermal solidification of municipal solid waste incineration (MSWI) bottom ash has been carried out under saturated steam pressure (1.56 MPa) at 200 degrees C for up to 24 h by mixing quartz, slaked lime and water-cooled blast furnace slag (WBFS). The strength enhancement for the WBFS addition was best. The strength development was shown to be due mainly to tobermorite formation, and the tobermorite formation densified matrix, thus promoting the strength development. WBFS seemed to have a higher reactivity than the quartz during the initial hydrothermal process, which provided more silica available to harden the solidified specimens. However, a longer curing time (24 h) was favorable to the quartz dissolution for tobermorite formation, which in turn, enhanced the strength for quartz addition. Curing time affected the crystal morphology evolution, and the stubby plate of tobermorite seemed to result in a high strength enhancement in this study. Laboratory leaching tests were conducted to determine the amount of heavy metals dissolved from the final solidified specimens, and the leaching results showed that after hydrothermal processing the heavy metals dissolved from the solidified specimens were reduced effectively. As such, the hydrothermal processing may have a high potential for recycling/reusing MSWI ash on a large scale.

  13. Valorisation of electric arc furnace steel slag as raw material for low energy belite cements.

    Science.gov (United States)

    Iacobescu, R I; Koumpouri, D; Pontikes, Y; Saban, R; Angelopoulos, G N

    2011-11-30

    In this paper, the valorisation of electric arc furnace steel slag (EAFS) in the production of low energy belite cements is studied. Three types of clinkers were prepared with 0 wt.% (BC), 5 wt.% (BC5) and 10 wt.% (BC10) EAFS, respectively. The design of the raw mixes was based on the compositional indices lime saturation factor (LSF), alumina ratio (AR) and silica ratio (SR). The clinkering temperature was studied for the range 1280-1400°C; firing was performed at 1380°C based on the results regarding free lime and the evolution of microstructure. In order to activate the belite, clinkers were cooled fast by blown air and concurrent crushing. The results demonstrate that the microstructure of the produced clinkers is dominated by belite and alite crystals, with tricalcium aluminate and tetracalcium-alumino-ferrite present as micro-crystalline interstitial phases. The prepared cements presented low early strength development as expected for belite-rich compositions; however the 28-day results were 47.5 MPa, 46.6 MPa and 42.8 MPa for BC, BC5 and BC10, respectively. These values are comparable with OPC CEMI 32.5 N (32.5-52.5 MPa) according to EN 197-1. A fast setting behaviour was also observed, particularly in the case of BC10, whereas soundness did not exceed 1mm.

  14. Study on emission and retention of fluorine during coal combustion in the chain-grate furnace

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Wu, X.; Yao, Q.; Cao, X.; Zhao, X.; Cen, K.

    1998-07-01

    The experimental results of emission and retention of fluorine during coal combustion in a pilot-scale test facility--0.5 tons steam/per hour chain-grate furnace are reported in this paper. The test coal is mixed coal of Yanzhou coal and Changguan coal. The fluorine content in the coal is 150 ppm. The fuel-bed temperature is 1,000--1,250 C. The results show about 80% fluorine in coal releases into the atmosphere. The gaseous state fluorine exists mainly as HF and SiF{sub 4}. In addition, the ratio of gas-fluorine and dust-fluorine in flue gas is obtained. The retention of fluorine by Calcium-based sorbent is the main work in this paper. An efficient sorbent for retention of fluorine is developed. The sorbent is mainly composed of industrial waste material with Calcium, such as carbide slag, white mud, steel residue, lime kiln residue and so on. The experimental results show that the retention of fluorine is related to the kind of sorbent, amount of sorbent, firing temperature. The efficiency of fluorine retention is about 70--80% for adding the sorbent of 7--12% by wt.

  15. Study on emission and retention of fluorine during coal combustion in the chain-grate furnace

    Energy Technology Data Exchange (ETDEWEB)

    Jianzhong Liu; Xiaorong Wu; Qiang Yao [Zhejiang Univ., Hangzhou (China)] [and others

    1998-04-01

    The experimental results of emission and retention of fluorine during coal combustion in a pilot-scale test facility--0.5 tons steam/per hour chain-grate furnace are reported in this paper. The test coal is mixed coal of Yanzhou coal and Changguan coal. The fluorine content in the coal is 150ppm. The fuel-bed temperature is 1000-1250{degrees}C. The results show about 80% fluorine in coal releases into the atmosphere. The gaseous state fluorine exists mainly as HF and SiF{sub 4}. In addition, the ratio of gas-fluorine and dust-fluorine in flue gas is obtained. The retention of fluorine by Calcium-based sorbent is main work in this paper. A efficient sorbent for retention of fluorine is developed. The sorbent is mainly composed of industrial waste material with Calcium, such as carbide slag, white mud, steel residue, limekiln residue and so on. The experimental results show that the retention of fluorine is related to the kind of sorbent, amount of sorbent, firing temperature. The efficiency of fluorine retention is about 70%-80% for adding the sorbent of 7-12% by wt.

  16. Coal fly ash-slag-based geopolymers: microstructure and metal leaching.

    Science.gov (United States)

    Izquierdo, Maria; Querol, Xavier; Davidovits, Joseph; Antenucci, Diano; Nugteren, Henk; Fernández-Pereira, Constantino

    2009-07-15

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilize a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  17. Gas core reactors for coal gasification

    Science.gov (United States)

    Weinstein, H.

    1976-01-01

    The concept of using a gas core reactor to produce hydrogen directly from coal and water is presented. It is shown that the chemical equilibrium of the process is strongly in favor of the production of H2 and CO in the reactor cavity, indicating a 98% conversion of water and coal at only 1500 K. At lower temperatures in the moderator-reflector cooling channels the equilibrium strongly favors the conversion of CO and additional H2O to CO2 and H2. Furthermore, it is shown the H2 obtained per pound of carbon has 23% greater heating value than the carbon so that some nuclear energy is also fixed. Finally, a gas core reactor plant floating in the ocean is conceptualized which produces H2, fresh water and sea salts from coal.

  18. Gas core reactors for coal gasification

    Science.gov (United States)

    Weinstein, H.

    1976-01-01

    The concept of using a gas core reactor to produce hydrogen directly from coal and water is presented. It is shown that the chemical equilibrium of the process is strongly in favor of the production of H2 and CO in the reactor cavity, indicating a 98% conversion of water and coal at only 1500 K. At lower temperatures in the moderator-reflector cooling channels the equilibrium strongly favors the conversion of CO and additional H2O to CO2 and H2. Furthermore, it is shown the H2 obtained per pound of carbon has 23% greater heating value than the carbon so that some nuclear energy is also fixed. Finally, a gas core reactor plant floating in the ocean is conceptualized which produces H2, fresh water and sea salts from coal.

  19. Technology Development on Waste Heat Recovery of Little Water Quenching Method for BF Slag%高炉炉渣微水淬法余热回收技术开发

    Institute of Scientific and Technical Information of China (English)

    邱润强; 许征鹏

    2014-01-01

    The waste heat recovery technology of BF slag was developed by Shandong Jiuyang Group. The technology is consisted of collecting middle pressure saturated steam changed by evaporated cooling water, getting circulating hot air used of wind cooling, again recovered waste heat by waste heat boiler. The recyclable heat quantity of ton of iron is 257.7 MJ, the comprehensive recovery ratio can reach 87%, and the process can save of water consumption 7-9 t every ton of slag compared with the traditional water quenching slag process.%山东九羊集团有限公司开发了高炉炉渣余热回收技术,将绝大部分冷却水蒸发为中压饱和蒸汽进行收集,然后采用风冷工艺获得热循环空气,通过余热锅炉再次回收余热,吨铁可回收热量257.7 MJ,综合回收率可达87%,与传统的水淬工艺相比吨渣可节约用水7~9t。

  20. Analysis Of Separation Mechanism Of The Metallic Phase Of Slag In The Direct-To-Blister Process

    Directory of Open Access Journals (Sweden)

    Bydałek A.W.

    2015-09-01

    Full Text Available The article discusses the structure of the slag in the liquid state, the properties and interactions within the slag. The analysis of structures occurring in slag suspension were presented with regard to differences in chemical composition in micro-areas. Two different mechanisms for formation of precipitates in Cu-Fe-Pb alloys during extraction were showed.