WorldWideScience

Sample records for cooled proton-rich nuclei

  1. Proton radioactivity from proton-rich nuclei

    International Nuclear Information System (INIS)

    Guzman, F.; Goncalves, M.; Tavares, O.A.P.; Duarte, S.B.; Garcia, F.; Rodriguez, O.

    1999-03-01

    Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)

  2. Structure of proton-rich nuclei of astrophysical interest

    Energy Technology Data Exchange (ETDEWEB)

    Roeckl, E [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)

    1998-06-01

    Recent experimental data concerning proton-rich nuclei between A=20 and A=100 are presented and discussed with respect to their relevance to the astrophysical rp process and to the calibration of solar neutrino detectors. (orig.)

  3. Trends in the study of light proton rich nuclei

    International Nuclear Information System (INIS)

    Moltz, D.M.; Aysto, J.; Hotchkis, M.A.C.; Cerny, J.

    1985-09-01

    Recent work in light proton-rich nuclei is reviewed. Evidence for the first T/sub z/ = -5/2 nuclide, 35 Ca, is presented. The mechanisms of two-proton emission following beta-decay is investigated. Future directions in this field are discussed. 23 refs., 5 figs

  4. Very proton-rich nuclei with N asymptotically equals 82

    International Nuclear Information System (INIS)

    Nolte, E.

    1984-01-01

    The proton-rich nuclei with N asymptotically equals 82 show beautifully properties, which are perfectly described by the nuclear shell model. Some of these properties are the occurrence of seniority isomerism in the proton-rich N=82 isotones and the perfect description of the corresponding life times by the seniority scheme as well as the observation of favoured Gamow-Teller β transitions in this nuclear region and the dependence of the corresponding ft values on the number of the envolved nucleons. (author)

  5. Production of proton-rich nuclei around Z = 84-90 in fusion-evaporation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Peng-Hui [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Feng, Zhao-Qing; Li, Jun-Qing; Jin, Gen-Ming [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Niu, Fei [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Henan Normal University, Institute of Particle and Nuclear Physics, Xinxiang (China); Guo, Ya-Fei [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); Zhang, Hong-Fei [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China)

    2017-05-15

    Within the framework of the dinuclear system model, production cross sections of proton-rich nuclei with charged numbers of Z = 84-90 are investigated systematically. Possible combinations with the {sup 28}Si, {sup 32}S, {sup 40}Ar bombarding the target nuclides {sup 165}Ho, {sup 169}Tm, {sup 170-174}Yb, {sup 175,176}Lu, {sup 174,} {sup 176-180}Hf and {sup 181}Ta are analyzed thoroughly. The optimal excitation energies and evaporation channels are proposed to produce the proton-rich nuclei. The systems are feasible to be constructed in experiments. It is found that the neutron shell closure of N = 126 is of importance during the evaporation of neutrons. The experimental excitation functions in the {sup 40}Ar induced reactions can be nicely reproduced. The charged particle evaporation is comparable with neutrons in cooling the excited proton-rich nuclei, in particular for the channels with α and proton evaporation. The production cross section increases with the mass asymmetry of colliding systems because of the decrease of the inner fusion barrier. The channels with pure neutron evaporation depend on the isotopic targets. But it is different for the channels with charged particles and more sensitive to the odd-even effect. (orig.)

  6. Delayed protons and properties of proton-rich nuclei

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.

    1976-01-01

    The object of the investigation is to study the properties of proton-rich nuclei. The emphasis in the proposed survey is made on investigations in the range of Z > 50. Measurement of the total energy in emission of delayed protons (DP) enables one to determine the difference between the masses of initial and final isotopes. The statistical model of the DP emission is used for describing the proton spectrum. A comparison of the DP experimental and theoretical spectra shows that the presence of local resonances in the strength functions of the β dacay is rather a rule than an exception. Studies into the fine structure of the proton spectra supply information of the density of nuclei considerably removed from the β-stability line at the excitation energies of 3-7 MeV. The aproaches for retrieval of nuclear information with the aid of proton radiators developed so far can serve as a good basis for systematic investigation over a wide range of A and Z

  7. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mamta [Nuclear Science Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India)

    2006-07-15

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line.

  8. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2006-01-01

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line

  9. Mirror energy difference and the structure of loosely bound proton-rich nuclei around A =20

    Science.gov (United States)

    Yuan, Cenxi; Qi, Chong; Xu, Furong; Suzuki, Toshio; Otsuka, Takaharu

    2014-04-01

    The properties of loosely bound proton-rich nuclei around A =20 are investigated within the framework of the nuclear shell model. In these nuclei, the strength of the effective interactions involving the loosely bound proton s1/2 orbit is significantly reduced in comparison with that of those in their mirror nuclei. We evaluate the reduction of the effective interaction by calculating the monopole-based-universal interaction (VMU) in the Woods-Saxon basis. The shell-model Hamiltonian in the sd shell, such as USD, can thus be modified to reproduce the binding energies and energy levels of the weakly bound proton-rich nuclei around A =20. The effect of the reduction of the effective interaction on the structure and decay properties of these nuclei is also discussed.

  10. Neutron roton pairing effect on some even ven rare-earth proton-rich nuclei

    International Nuclear Information System (INIS)

    Mokhtari, D.

    2004-01-01

    The neutron roton pairing effect on some even ven rare-earth proton-rich nuclei is studied. It is taken into account, in the isovector case, within the framework of the generalized Bogoliubov-Valatin transformation, using Woods-Saxon single-particle energies. (author)

  11. Gamow-Teller beta decay of proton-rich nuclei

    International Nuclear Information System (INIS)

    Klepper, O.; Rykaczewski, K.

    1990-11-01

    The beta decays of 48 Mn and of even-even nuclei near the double shell-closures at 100 Sn and 146 Gd are currently investigated at the GSI on-line mass separator. Their Gamow-Teller strength are surveyed in their present experimental status, together with related results from the ISOLDE (CERN) and ISOCELE (Orsay) separators, and are compared with predictions from different nuclear models. The strength of the 0 + → 1 + Gamow-Teller transitions is compiled in tables and graphs. (orig.)

  12. Exotic octupole deformation in proton-rich Z=N nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Takami, Satoshi; Yabana, K [Niigata Univ. (Japan); Matsuo, M

    1998-03-01

    We study static non-axial octupole deformations in proton-rich Z=N nuclei, {sup 64}Ge, {sup 68}Se, {sup 72}Kr, {sup 76}Sr, {sup 80}Zr and {sup 84}Mo, by using the Skyrme Hartree-Fock plus BCS method with no restrictions on the nuclear shape. The calculation predicts that the oblate ground state in {sup 68}Se is extremely soft for the Y{sub 33} triangular deformation, and that in {sup 80}Zr the low-lying local minimum state coexisting with the prolate ground state has the Y{sub 32} tetrahedral deformation. (author)

  13. Nucleosynthesis of proton-rich nuclei. Experimental results on the rp-process

    International Nuclear Information System (INIS)

    Galaviz, D; Amthor, A M; Bazin, D; Becerril, A D; Brown, B A; Cole, A; Cook, J M; Elliot, T; Estrade, A; Gade, A; Glasmacher, T; Lorusso, G; Matos, M; Montes, F; Mueller, W; Chen, A A; Fueloep, Z S; Heger, A; Howard, M E; Kessler, R

    2010-01-01

    We report in this study the nuclear properties of proton-rich isotopes located along the rp-process path. The experiments have recently been performed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The level properties above the proton separation energy of the nuclei 30 S, 36 K and 37 Ca were measured with precision of < 10 keV. This will allow a reduction in the determination of the astrophysical (p,γ) reaction rate under rp-process conditions.

  14. Study of the Beta-Decay Properties of Extremely Proton-Rich Nuclei

    CERN Multimedia

    2002-01-01

    The most proton-rich nuclei known to date have isospin projections $ T _{Z} $ ~=~-3/2, -2 and -5/2. \\\\ \\\\ We propose to carry out a study of their superallowed beta decays, a phenomenon that can only be studied in this region of the nuclear chart. The main aim is to determine the ``effective charge'' in nuclei of the axial vector coupling, the quantity $ ( g'_{A} / g _{A} ) ^{2} $ , which in a recent first experiment on a ~~ $ T _{Z} $~~=~-2 nucleus was determined to be 0.49~$\\pm$~0.05. \\\\ \\\\ Because of the problems connected with the production and acceleration of radioactive ions, our proposal aims at selected elements: neon, argon and rubidium (production runs), magnesium (test and production runs) and calcium (test). Data have so far been taken for $^1

  15. Spectroscopy of proton-rich nuclei in the rare earth region

    International Nuclear Information System (INIS)

    Toth, K.S.; Nitschke, J.M.; Vierinen, K.S.; Wilmarth, P.A.; Firestone, R.B.; Kortelahti, M.O.

    1990-01-01

    The isotope separator facility OASIS, on-line at the Lawrence Berkeley Laboratory SuperHILAC, was used to investigate proton-rich rare earth nuclei. Single-particle states near the 82-neutron shell were delineated, numerous new isotopes, isomers, and β-delayed proton emitters were discovered and the α-decay properties of some nuclides with N > 84 were reexamined. In this contribution the experimental program is summarized briefly, the excitation energies of the s 1/2 and h 11/2 proton states in this mass region are discussed, and results on the β-delayed-proton spectra of 145 Dy and 147 Er are presented. 17 refs., 5 figs

  16. Structure of light proton-rich nuclei on the drip-line

    International Nuclear Information System (INIS)

    Guimaraes, V.; Toyokawa, H.; Yun, C.C.; Niizeki, T.; Ito, K.; Kishida, T.; Kubo, T.; Pu, Y.; Ohura, M.; Orihara, H.; Terakawa, T.; Hamada, S.; Hirai, M.; Miyatake, H.

    1995-01-01

    Among proton-rich unstable nuclei on the light proton drip-line, nuclear structure of 21 Mg, 17 Ne, 13 O, 11 N and 9 C have been investigated by the three-neutron pick-up reaction ( 3 He, 6 He). The angular distributions measured for this reaction have shown a characteristic feature of a transferred angular-momentum (L) dependence, which provides spin-parity assignments for the new levels in these nuclei. Here, the results on the nuclear structure of 17 Ne and 11 N are reported. The nucleus 17 Ne we almost unknown before, except that the mass excess had been determined and a few states had been suggested. Many T = 3/2 states were known in the other three members ( 17 N, 17 O and 17 F). Thus, the inclusion of the data on 17 Ne levels has enabled an extensive analysis in terms of the Isobaric Multiplet Mass Equation (IMME) for several excited state quartets. This is the first report on such an extensive analysis in the same mass ststem for a wide range in excitation energy. The 11 N nucleus was investigated to learn about the structure of A 11 system. This mass has been intensively studied, specially because of the halo structure observed in 11 Li and the spin parity-inversion of the 11 Be ground-state. The 11 N nucleus was totally unknown before except for the possible ground state

  17. Investigations of charge-changing processes for light proton-rich nuclei on carbon and solid-hydrogen targets

    Energy Technology Data Exchange (ETDEWEB)

    Sawahata, K. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Ozawa, A., E-mail: ozawa@tac.tsukuba.ac.jp [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Saito, Y.; Abe, Y.; Ichikawa, Y.; Inaba, N.; Ishibashi, Y. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Kitagawa, A. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Matsunaga, S. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Moriguchi, T.; Nagae, D.; Okada, S. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Sato, S. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Suzuki, S. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Suzuki, T.; Takeuchi, Y.; Yamaguchi, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Zenihiro, J. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)

    2017-05-15

    We investigated charge-changing processes (total charge-changing cross sections and partial charge-changing cross sections) for light proton-rich nuclei ({sup 34–36}Ar, {sup 33}Cl, {sup 25–28}Si) at around 300A MeV on carbon and solid-hydrogen targets. We estimated the nuclear proton point radii of {sup 33}Cl and {sup 25,26,27}Si from the observed total charge-changing cross sections by using Glauber-model calculations with a phenomenological correction factor. Furthermore, we estimated the proton skin thickness for {sup 33}Cl coupled with its previously observed matter radius. From investigations of the partial charge-changing cross sections, clear zigzag pattern was observed for all isotopes. The present studies suggest that the pattern may be common in the proton-rich side, and depends on the odd–even nature of the fragment charge.

  18. Projected shell model study of odd-odd f-p-g shell proton-rich nuclei

    International Nuclear Information System (INIS)

    Palit, R.; Sheikh, J.A.; Sun, Y.; Jain, H.C.

    2003-01-01

    A systematic study of two-quasiparticle bands of the proton-rich odd-odd nuclei in the mass A∼70-80 region is performed using the projected shell model approach. The study includes Br, Rb, and Y isotopes with N=Z+2 and Z+4. We describe the energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states. Signature splitting and signature inversion in the rotational bands are discussed and are shown to be well described. A preliminary study of the odd-odd N=Z nucleus 74 Rb, using the concept of spontaneous symmetry breaking is also presented

  19. Neutron-proton pairing effect on the proton-rich nuclei moment of inertia

    International Nuclear Information System (INIS)

    Mokhtari, D.; Ami, I.; Fellah, M.; Allal, N.H.; Fellah, M.; Allal, N.H.

    2008-01-01

    The neutron-proton (n-p) pairing effect on the nuclear moment of inertia is studied within the BCS approximation in the isovector case. An analytical expression of the moment of inertia is established by means of the cranking model. This expression generalizes the usual BCS one (i.e. when only the pairing between like-particles is considered). The moment of inertia of N = Z even-even nuclei, for which experimental values are known, i.e., such as 32 ≤ A ≤ 80, has been numerically evaluated, with and without inclusion of the n-p pairing effect. The used single-particle and Eigen-states are those of a deformed Woods-Saxon mean field. It turns out that the inclusion of the n-p pairing improves the obtained values when compared to the usual BCS approximation, since the average discrepancies with the experimental data are respectively 7% and 37%. (authors)

  20. Neutron-proton pairing effect on the proton-rich nuclei moment of inertia

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, D.; Ami, I.; Fellah, M.; Allal, N.H. [Laboratoire de Physique Theorique, Faculte de Physique, USTHB, Algiers (Algeria); Fellah, M.; Allal, N.H. [Centre de Recherche Nucleaire d' Alger, COMENA, Algiers (Algeria)

    2008-07-01

    The neutron-proton (n-p) pairing effect on the nuclear moment of inertia is studied within the BCS approximation in the isovector case. An analytical expression of the moment of inertia is established by means of the cranking model. This expression generalizes the usual BCS one (i.e. when only the pairing between like-particles is considered). The moment of inertia of N = Z even-even nuclei, for which experimental values are known, i.e., such as 32 {<=} A {<=} 80, has been numerically evaluated, with and without inclusion of the n-p pairing effect. The used single-particle and Eigen-states are those of a deformed Woods-Saxon mean field. It turns out that the inclusion of the n-p pairing improves the obtained values when compared to the usual BCS approximation, since the average discrepancies with the experimental data are respectively 7% and 37%. (authors)

  1. Particle-number conservation in odd mass proton-rich nuclei in the isovector pairing case

    International Nuclear Information System (INIS)

    Fellah, M.; Allal, N.H.; Oudih, M.R.

    2015-01-01

    An expression of a wave function which describes odd–even systems in the isovector pairing case is proposed within the BCS approach. It is shown that it correctly generalizes the one used in the pairing between like-particles case. It is then projected on the good proton and neutron numbers using the Sharp-BCS (SBCS) method. The expressions of the expectation values of the particle-number operator and its square, as well as the energy, are deduced in both approaches. The formalism is applied to study the isovector pairing effect and the number projection one on the ground state energy of odd mass N ≈ Z nuclei using the single-particle energies of a deformed Woods–Saxon mean-field. It is shown that both effects on energy do not exceed 2%, however, the absolute deviations may reach several MeV. Moreover, the np pairing effect rapidly diminishes as a function of (N - Z). The deformation effect is also studied. It is shown that the np pairing effect, either before or after the projection, as well as the projection effect, when including or not the isovector pairing, depends upon the deformation. However, it seems that the predicted ground state deformation will remain the same in the four approaches. (author)

  2. $\\beta$-delayed fission in proton-rich nuclei in the lead region

    CERN Document Server

    AUTHOR|(CDS)2085005; Huyse, Mark; Popescu, Lucia

    Nuclear fission is the breakup of an atomic nucleus into two (sometimes three) fragments, thereby releasing a large amount of energy. Soon after its discovery in the late 1930’s, the gross properties of the fission phenomenon were explained by macroscopic nuclear models. Certain features however, such as asymmetric fission-fragment mass distributions in the actinide region, require the inclusion of microscopic effects. This interplay of the microscopic motion of individual nucleons on this macroscopic process is, until today, not yet fully understood. The phenomenon of fission has therefore been of recurring interest for both theoretical and experimental studies. This thesis work focuses on the $\\beta$-delayed fission ($\\beta$DF) process, an excellent tool to study low-energy fission of exotic nuclei, which was discovered in 1966 in the actinide region. In this two-step process, a precursor nucleus first undergoes $\\beta$-decay to an excited level in the daughter nucleus, which may subsequently fission. Rec...

  3. Nuclear spectroscopy of very proton rich nuclei through HI induced reactions; the 14s high spin isomer in /sup 95/Pd

    CERN Document Server

    Nolte, E; Geier, R; Gui, S Z; Heim, U; Hick, H; Komninos, P; Korschinek, G; Kubik, P; Morinaga, H; Schollmeier, W

    1981-01-01

    /sup 40/Ca, /sup 58/Ni and /sup 60/Ni beams from the Munich tandem and the Munich heavy ion postaccelerator have been used to produce very proton rich nuclei in the N=50 N=82 regions. The residual nuclei have been studied with the help of gamma and particle spectroscopy. The level schemes of /sup 95/Rh, /sup 146/Dy and /sup 150/Er and the beta -decay schemes, /sup 95/Pd/sup m/ to /sup 95/Rh, /sup 144/Tb to /sup 144/Gd, /sup 146/Ho to /sup 146/Dy to /sup 146/Tb to /sup 146/Gd, /sup 148/Er to /sup 148/Ho to /sup 148/Dy and /sup 150/Tm to /sup 150/Er to /sup 150/Dy have been investigated. beta delayed proton emission from a J/sup pi / approximately=21/sup +/ isomeric state in /sup 95/Pd has been observed. (12 refs).

  4. β-delayed p-decay of proton-rich nuclei ^23Al and ^31Cl and explosive H-burning in novae

    Science.gov (United States)

    Trache, L.; Banu, A.; Hardy, J. C.; McCleskey, M.; Simmons, E.; Tabacaru, G.; Tribble, R. E.; Aysto, J.; Jokinen, A.; Saastamoinen, A.; Davinson, T.; Woods, P. J.; Achouri, L.; Roeder, B.

    2008-10-01

    We developed a technique to measure β-delayed proton-decay of proton-rich nuclei produced and separated with MARS at TAMU. In particular, we studied the decay of ^23Al and ^31Cl, both important for understanding explosive H-burning in novae. We have pulsed the beam, implanting the source nuclei moving at about 40 MeV/u in a thin Si strip detector, and then measured β-p and β-γ coincidences simultaneously. The states populated above the proton threshold in ^23Mg and ^31S, respectively, may proton decay. They are resonances in the reaction ^22Na(p,γ)^23Mg (crucial for the depletion of ^22Na in ONe novae) and in ^30P(p,γ)^31S (critical point in explosive H-burning in novae), but the protons emitted have very low energies, starting at about 200 keV, an experimental challenge. The setup and the results are described. The β-decay schemes were established for both nuclei, and IAS identified. The technique has shown a remarkable selectivity to β-delayed charged particle emission and shown to work even at radioactive beam rates of a few pps, for rare isotopes with lifetimes as low as 10s msec.

  5. Conversion electron spectroscopy at the FMA focal plane: Decay studies of proton-rich N {approximately} 82 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nisius, D.; Janssens, R.V.F.; Ahmad, I. [and others

    1995-08-01

    The FMA has proven to be an ideal instrument for the detailed study of the decay of microsecond isomers behind the focal plane following mass selection. In reactions leading to the population of nuclei with isomeric lifetimes longer than their flight time through the device, decay gamma rays and conversion electrons can be detected in an environment free from the backgrounds of prompt radiation and delta electrons. This was a very successful technique to study proton (h{sub 11/2}){sup n} seniority isomers in nuclei with Z > 64 and N {approximately} 82. Since isomeric decay gamma rays are emitted isotropically, conversion electrons are essential for the assignment of multipolarities in these nuclei. Furthermore, the low-energy transitions that depopulate isomeric states are typically highly converted and can escape gamma-ray detection, but they can be identified by their conversion electrons.

  6. Seniority isomerism in proton-rich N=82 nuclei and its indication to stiffness of the Z=64 subshell

    International Nuclear Information System (INIS)

    Matsuzawa, T.; Nakada, H.; Ogawa, K.; Momoki, G.

    2000-01-01

    The 10 + and 27/2 - isomers of the Z > 64, N=82 nuclei are investigated in the shell model framework. We derive an extended seniority reduction formula (ExSRF) for the relevant E2 transition strengths. We argue that the B(E2) data based on the ExSRF require the proton excitation from 146 Gd core. The energy levels and the B(E2) values are reproduced simultaneously by a multi-j shell model calculation, if the excitations from (0g 7/2 1d 5/2 ) to (2s 1/2 0h 11/2 1d 3/2 ) are taken into account. (author)

  7. Level structure of 68149Er81 and high-spin isomerism in proton-rich N=81, 82, 83 nuclei

    International Nuclear Information System (INIS)

    Broda, R.; Daly, P.J.; McNeill, J.; Janssens, R.V.F.; Radford, D.C.

    1987-01-01

    The level structure of the N=81 nucleus 149 Er has been studied by γ-ray spectroscopy following the reaction 92 Mo+255 MeV 60 Ni. Yrast levels in 149 Er are established up to ≅ 3.3 MeV, including 0.61 and 4.8 μs isometric states. Most of the observed levels are interpreted as seniority-three states arising from the coupling of s 1/2 , d 3/2 and h 11/2 neutron holes with πh n 11/2 . Isomers identified in the reaction 96 Ru+255 MeV 58 Ni are tentatively assigned to 151 Yb. The B(E2) values of high-spin isomers in Z=66-70, N=81-83 nuclei are surveyed. (orig.)

  8. Proton-rich nuclear statistical equilibrium

    International Nuclear Information System (INIS)

    Seitenzahl, I.R.; Timmes, F.X.; Marin-Lafleche, A.; Brown, E.; Magkotsios, G.; Truran, J.

    2008-01-01

    Proton-rich material in a state of nuclear statistical equilibrium (NSE) is one of the least studied regimes of nucleosynthesis. One reason for this is that after hydrogen burning, stellar evolution proceeds at conditions of an equal number of neutrons and protons or at a slight degree of neutron-richness. Proton-rich nucleosynthesis in stars tends to occur only when hydrogen-rich material that accretes onto a white dwarf or a neutron star explodes, or when neutrino interactions in the winds from a nascent proto-neutron star or collapsar disk drive the matter proton-rich prior to or during the nucleosynthesis. In this Letter we solve the NSE equations for a range of proton-rich thermodynamic conditions. We show that cold proton-rich NSE is qualitatively different from neutron-rich NSE. Instead of being dominated by the Fe-peak nuclei with the largest binding energy per nucleon that have a proton-to-nucleon ratio close to the prescribed electron fraction, NSE for proton-rich material near freezeout temperature is mainly composed of 56Ni and free protons. Previous results of nuclear reaction network calculations rely on this nonintuitive high-proton abundance, which this Letter explains. We show how the differences and especially the large fraction of free protons arises from the minimization of the free energy as a result of a delicate competition between the entropy and nuclear binding energy.

  9. Influence of isovector pairing and particle-number projection effects on spectroscopic factors for one-pair like-particle transfer reactions in proton-rich even-even nuclei

    Science.gov (United States)

    Benbouzid, Y.; Allal, N. H.; Fellah, M.; Oudih, M. R.

    2018-04-01

    Isovector neutron-proton (np) pairing and particle-number fluctuation effects on the spectroscopic factors (SF) corresponding to one-pair like-particle transfer reactions in proton-rich even-even nuclei are studied. With this aim, expressions of the SF corresponding to two-neutron stripping and two-proton pick-up reactions, which take into account the isovector np pairing effect, are established within the generalized BCS approach, using a schematic definition proposed by Chasman. Expressions of the same SF which strictly conserve the particle number are also established within the Sharp-BCS (SBCS) discrete projection method. In both cases, it is shown that these expressions generalize those obtained when only the pairing between like particles is considered. First, the formalism is tested within the Richardson schematic model. Second, it is applied to study even-even proton-rich nuclei using the single-particle energies of a Woods-Saxon mean-field. In both cases, it is shown that the np pairing effect and the particle-number projection effect on the SF values are important, particularly in N = Z nuclei, and must then be taken into account.

  10. β-Decay half-lives and nuclear structure of exotic proton-rich waiting point nuclei under rp-process conditions

    Science.gov (United States)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2016-03-01

    We investigate even-even nuclei in the A ∼ 70 mass region within the framework of the proton-neutron quasi-particle random phase approximation (pn-QRPA) and the interacting boson model-1 (IBM-1). Our work includes calculation of the energy spectra and the potential energy surfaces V (β , γ) of Zn, Ge, Se, Kr and Sr nuclei with the same proton and neutron number, N = Z. The parametrization of the IBM-1 Hamiltonian was performed for the calculation of the energy levels in the ground state bands. Geometric shape of the nuclei was predicted by plotting the potential energy surfaces V (β , γ) obtained from the IBM-1 Hamiltonian in the classical limit. The pn-QRPA model was later used to compute half-lives of the neutron-deficient nuclei which were found to be in very good agreement with the measured ones. The pn-QRPA model was also used to calculate the Gamow-Teller strength distributions and was found to be in decent agreement with the measured data. We further calculate the electron capture and positron decay rates for these N = Z waiting point (WP) nuclei in the stellar environment employing the pn-QRPA model. For the rp-process conditions, our total weak rates are within a factor two compared with the Skyrme HF +BCS +QRPA calculation. All calculated electron capture rates are comparable to the competing positron decay rates under rp-process conditions. Our study confirms the finding that electron capture rates form an integral part of the weak rates under rp-process conditions and should not be neglected in the nuclear network calculations.

  11. Identification of new proton-rich rare earth nuclei by means of the coupled system helium jet-isotope separator of SARA

    International Nuclear Information System (INIS)

    Ollivier, T.

    1986-01-01

    In order to study new exotic nuclei far from stability we built a fast separation system by coupling a helium jet with the medium-current source of the mass separator. First the tests were made in Lyon and then the system used on line with the heavy ion accelerator SARA, in Grenoble. We obtained efficiency greater than 1% for each element and a better chemical independence. This allowed us to perform experiments on rare-earth region near N=82, with fusion-evaporation reactions after an investigation of various ranges of beam energies. The first results allow to identify two new isotopes, 143 Tb (12s) and 138 Eu (12s). The decay schemes obtained are analysed in the frame of existing models [fr

  12. Improvements to the on-line mass separator, RAMA, and the beta-delayed charged-particle emission of proton-rich sd shell nuclei

    International Nuclear Information System (INIS)

    Ognibene, T.J.

    1996-03-01

    To overcome the extreme difficulties encountered in the experimental decay studies of proton drip line nuclei, several techniques have been utilized, including a helium-jet transport system, particle identification detectors and mass separation. Improvements to the ion source/extraction region of the He-jet coupled on-line Recoil Atom Mass Analyzer (RAMA) and its target/ion source coupling resulted in significant increases in RAMA efficiencies and its mass resolution, as well as reductions in the overall transit time. At the 88-Inch Cyclotron at LBNL, the decays of 31 Cl, 27 P and 28 P, with half-lives of 150 msec, 260 msec and 270.3 msec, respectively, were examined using a he-jet and low-energy gas ΔE-gas ΔE-silicon E detector telescopes. Total beta-delayed proton branches of 0.3% and 0.07% in 31 Cl and 27 P, respectively, were estimated. Several proton peaks that had been previously assigned to the decay of 31 Cl were shown to be from the decay of 25 Si. In 27 P, two proton groups at 459 ± 14 keV and 610 ± 11 keV, with intensities of 7 ± 3% and 92 ± 4% relative to the main (100%) group were discovered. The Gamow-Teller component of the preceding beta-decay of each observed proton transition was compared to results from shell model calculations. Finally, a new proton transition was identified, following the β-decay of 28 P, at 1,444 ± 12 keV with a 1.7 ± 0.5% relative intensity to the 100% group. Using similar low-energy detector telescopes and the mass separator TISOL at TRIUMF, the 109 msec and 173 msec activities, 17 Ne and 33 Ar, were studied. A new proton group with energy 729 ± 15 keV was observed following the beta-decay of 17 Ne. Several discrepancies between earlier works as to the energies, intensities and assignments of several proton transitions from 17 Ne and 33 Ar were resolved

  13. Identification of highly deformed even–even nuclei in the neutron- and proton-rich regions of the nuclear chart from the B(E2)↑ and E2 predictions in the generalized differential equation model

    International Nuclear Information System (INIS)

    Nayak, R.C.; Pattnaik, S.

    2015-01-01

    We identify here the possible occurrence of large deformations in the neutron- and proton-rich (n-rich and p-rich) regions of the nuclear chart from extensive predictions of the values of the reduced quadrupole transition probability B(E2)↑ for the transition from the ground state to the first 2 + state and the corresponding excitation energy E2 of even–even nuclei in the recently developed generalized differential equation (GDE) model exclusively meant for these physical quantities. This is made possible from our analysis of the predicted values of these two physical quantities and the corresponding deformation parameters derived from them such as the quadrupole deformation β 2 , the ratio of β- 2 to the Weisskopf single-particle β 2(sp) and the intrinsic electric quadrupole moment Q 0 , calculated for a large number of both known as well as hitherto unknown even–even isotopes of oxygen to fermium (0 to FM; Z = 8 – 100). Our critical analysis of the resulting data convincingly support possible existence of large collectivity for the nuclides 30,32 Ne, 34 Mg, 60 Ti, 42,62,64 Cr, 50,68 Fe, 52,72 Ni, 72,70,96 Kr, 74,76 Sr, 78,80,106,108 Zr, 82,84,110,112 Mo, 140 Te, 144 Xe, 148 Ba, 122 Ce, 128,156 Nd, 130,132,158,160 Sm and 138,162,164,166 Gd, whose values of β 2 are found to exceed 0.3 and even 0.4 in some cases. Our findings of large deformations in the exotic n-rich regions support the existence of another “island of inversion” in the heavy-mass region possibly caused by breaking of the N = 70 subshell closure. (author)

  14. Alpha radioactivity for proton-rich even Pb isotopes

    Indian Academy of Sciences (India)

    Alpha radioactivity; proton-rich nuclei; half-life. PACS Nos 23.60.+e; 23.90. ... Z/N ∼= 0.65 to the region close to proton drip line with Z/N ∼= 0.82. The existing ... In the present work we have studied the systematic for alpha emission ..... 80. 0.200. 0.402. 0.497. 8.0. 320.51. 0.333. 0.754. 0.441. 16.0. 1300.72. 0.414. 0.927.

  15. Half-life determination of T{sub z} = -1 and T{sub z} = -(1)/(2) proton-rich nuclei and the β decay of {sup 58}Zn

    Energy Technology Data Exchange (ETDEWEB)

    Kucuk, L.; Oktem, Y.; Cakirli, R.B.; Ganioglu, E.; Susoy, G. [Istanbul University, Department of Physics, Istanbul (Turkey); Orrigo, S.E.A.; Montaner-Piza, A.; Rubio, B. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Fujita, Y. [Osaka University, Department of Physics, Toyonaka, Osaka (Japan); Osaka University, Research Center for Nuclear Physics, Ibaraki, Osaka (Japan); Gelletly, W. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); University of Surrey, Department of Physics, Guildford, Surrey (United Kingdom); Blank, B.; Ascher, P.; Giovinazzo, J.; Grevy, S. [Centre d' Etudes Nucleaires de Bordeaux Gradignan, CNRS/IN2P3 - Universite de Bordeaux, Gradignan (France); Adachi, T.; Fujita, H.; Tamii, A. [Osaka University, Research Center for Nuclear Physics, Ibaraki, Osaka (Japan); Algora, A. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Inst. of Nuclear Research of the Hung. Acad. of Sciences, Debrecen (Hungary); France, G. de; Oliveira Santos, F. de; Thomas, J.C. [Grand Accelerateur National d' Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen (France); Marques, F.M. [Laboratoire de Physique Corpusculaire de Caen, ENSICAEN, UNICAEN, IN2P3/CNRS, Caen (France); Molina, F. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Comision Chilena de Energia Nuclear, Casilla 188-D, Santiago (Chile); Perrot, L. [IPN Orsay, Orsay (France); Raabe, R. [Grand Accelerateur National d' Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen (France); KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Srivastava, P.C. [Grand Accelerateur National d' Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen (France); Indian Institute of Technology, Department of Physics, Roorkee (India)

    2017-06-15

    We have measured the β-decay half-lives of 16 neutron-deficient nuclei with T{sub z} = -1/2 and -1, ranging from chromium to germanium. They were produced in an experiment carried out at GANIL and optimized for the production of {sup 58}Zn, for which in addition we present the decay scheme and absolute Fermi and Gamow-Teller transition strengths. Since all of these nuclei lie on the rp-process pathway, the T{sub 1/2} values are important ingredients for the rp-process reaction flow calculations and for models of X-ray bursters. (orig.)

  16. New type of asymmetric fission in proton-rich nuclei

    CERN Document Server

    Andreyev, A N; Huyse, M; Van Duppen, P; Antalic, S; Barzakh, A; Bree, N; Cocolios, T E; Comas, V F; Diriken, J; Fedorov, D; Fedosseev, V; Franchoo, S; Heredia, J A; Ivanov, O; Koster, U; Marsh, B A; Nishio, K; Page, R D; Patronis, N; Seliverstov, M; Tsekhanovich, I; Van den Bergh, P; Van De Walle, J; Venhart, M; Vermote, S; Veselsky, M; Wagemans, C; Ichikawa, T; Iwamoto, A; Moller, P; Sierk, A J

    2010-01-01

    A very exotic process of ${\\beta}$-delayed fission of $^{180}$Tl is studied in detail by using resonant laser ionization with subsequent mass separation at ISOLDE (CERN). In contrast to common expectations, the fission-fragment mass distribution of the post-${\\beta}$-decay daughter nucleus $^{180}$Hg (N/Z=1.25) is asymmetric. This asymmetry is more surprising since a mass-symmetric split of this extremely neutron-deficient nucleus would lead to two $^{90}$Zr fragments, with magic N=50 and semimagic Z=40. This is a new type of asymmetric fission, not caused by large shell effects related to fragment magic proton and neutron numbers, as observed in the actinide region. The newly measured branching ratio for $\\beta$-delayed fission of $^{180}$Tl is 3.6(7)×10$^{-3}$%, approximately 2 orders of magnitude larger than in an earlier study.

  17. Estimation of Nuclei Cooling Time by Electrons in Superdense Nonequilibrium Plasma

    CERN Document Server

    Kostenko, B F

    2004-01-01

    Estimations of nuclei cooling time by electrons in superdense nonequilibrium plasma formed at cavitation bubble collapse in deuterated acetone have been carried out. The necessity of these computations was stipulated by using in the latest theoretical calculations of nuclear reaction rate in these processes one poorly grounded assumption that electron temperatures remain essentially lower than nuclei ones during thermonuclear synthesis time t_s. The estimations have shown that the initial electron temperatures at the moment of superdense plasma formation with \\rho =100 g/cm^3 turn out to be appreciably lower than the nuclear temperatures, while the nuclei cooling time is of the same order as t_s.

  18. Cooling Timescale of Dust Tori in Dying Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Kohei [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Tazaki, Ryo, E-mail: k.ichikawa@astro.columbia.edu [Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578 (Japan)

    2017-07-20

    We estimate the dust torus cooling timescale once the active galactic nucleus (AGN) is quenched. In a clumpy torus system, once the incoming photons are suppressed, the cooling timescale of one clump from T {sub dust} = 1000 K to several 10 K is less than 10 years, indicating that the dust torus cooling time is mainly governed by the light crossing time of the torus from the central engine. After considering the light crossing time of the torus, the AGN torus emission at 12 μ m becomes over two orders of magnitude fainter within 100 years after the quenching. We also propose that those “dying” AGNs could be found using the AGN indicators with a different physical scale R such as 12 μ m band luminosity tracing AGN torus ( R ∼ 10 pc) and the optical [O iii] λ 5007 emission line tracing narrow line regions ( R = 10{sup 2–4} pc).

  19. Magnetic moment of extremely proton-rich nucleus 23Al

    International Nuclear Information System (INIS)

    Nagatomo, T; Matsuta, K; Ozawa, A; Nakashima, Y; Matsumiya, R; Mihara, M; Yasuno, T; Chiba, A; Yamada, K; Momota; Ohtsubo, T; Ohta, M; Shinojima, D; Izumikawa, T; Tanaka, H; Yamaguchi, T; Nakajima, S; Maemura, H; Muranaka, K; Kumashiro, S; Fujiwara, H; Yoshida, K; Sumikama, T; Tanaka, K; Ogura, M; Minamisono, K; Fukuda, M; Minamisono, T; Nojiri, Y; Suzuki, T; Tanihata, I; Alonso, J R; Krebs, G F; Symons, T J M

    2005-01-01

    The g-factor of the extremely proton-rich nucleus 23 Al (T 1/2 = 0.47 s) has been measured by means of the β-NMR method for the first time. The g-factor were determined as |g| = 1.557(88) from the obtained NMR spectra. From the comparison between the experimental value and the shell model calculation, the spin parity of the ground state of 23 Al was determined as I π = 5/2 + . Thus, the magnetic moment of 23 Al was determined as vertical bar μvertical bar = 3.89(22)μ N

  20. Preparation of proton rich radionuclides in support of radiochemical analysis

    International Nuclear Information System (INIS)

    Jerome, Simon; Larijani, Cyrus; Parker, David

    2012-01-01

    The production of proton rich radionuclides supports a wide range of radiochemical analyses via radioactive yield tracers ( 95m Tc and 236 Pu). In recent years, NPL and the University of Birmingham cyclotron have collaborated to produce these, and other, radionuclides. - Highlights: ► In this paper we options for the production of Tc and Pu tracers. ► The irradiation and measurement of targets producing Tc-95 m and Pu-236 are described. ► Options for production are discussed. ► The results of this study and future work needed are described.

  1. Stochastic behavior of cooling processes in hot nuclei

    International Nuclear Information System (INIS)

    de Oliveira, P.M.; Sa Martins, J.S.; Szanto de Toledo, A.

    1997-01-01

    The collapse of structure effects observed in hot nuclei is interpreted in terms of a dynamic lattice model which describes the process of nucleon (clusters) evaporation from a hot nucleus, predicting the final mass distribution. Results are compared with experimental data for the 10 B+ 9 Be and 10 B+ 10 B reactions, and indicate that the structures observed in the low-energy mass distributions in both simulation and experiment are a consequence of the competition between the residual interactions and the thermalization dissipative process. As a characteristic feature of complex evolving systems, this competition leads to long term memory during the dissipative path, the observables becoming thus insensitive to the actual microscopic interactions. copyright 1997 The American Physical Society

  2. High-Temperature Nucleosynthesis Processes on the Proton-Rich Side of Stability: the Alpha-Rich Freezeout and the rp^2-Process

    Science.gov (United States)

    Meyer, Bradley S.

    2001-10-01

    Nucleosynthesis on the proton-rich side of stability has at least two intriguing aspects. First, the most abundant of the stable iron-group isotopes, such as ^48Ti, ^52Cr, and ^56,57Fe, are synthesized as proton-rich, radioactive parents in alpha-rich freezeouts from equilibrium. The production of these radioactive progenitors depends in large measure on reactions on the proton-rich side of stability. The second intriguing aspect is that explosive nucleosynthesis in a hydrogen-rich environment (namely, the rp-process) may be associated with exotic astrophysical settings, such as x-ray bursts, and may be responsible for production of some of the light p-process nuclei (for example, ^92,94Mo and ^96,98Ru). We have developed web-based tools to help nuclear physicists determine which nuclear reactions on the proton-rich side of stability govern the nucleosynthesis in these processes. For the alpha-rich freezeout, one may determine the effect of any one of 2,140 reactions on the yield of any isotope in the nuclear reaction network with the web calculator. As a relevant example, I will discuss the governing role of ^57Ni (n,p)^57Co in the synthesis of the important astronomical observable ^57Co. As for explosive, proton-rich burning, I will discuss the synthesis of p-process nuclei in the repetitive rp-process (the rp^2-process). movies/rp.html>Movies of the rp^2-process illustrate its important features and give some indications of the important nuclear reactions.

  3. Microscopic study of proton emission from heavy nuclei

    International Nuclear Information System (INIS)

    Sahu, B.B.; Patra, S.K.; Agarwalla, S.K.

    2011-01-01

    In recent years many theoretical calculations have been employed to explain the observed lifetimes of proton radioactivity and alpha decay processes in the region of proton rich nuclei. These data are very promising for the analysis of possible irregularities in the structure of these proton-rich nuclei. They are also of great interest in rapid proton capture processes. Some new results for proton radioactivity in this region of proton-rich nuclei have indicated that the proton emission mode is rather competitive with the alpha decay one. In the energy domain of radioactivity, proton can be considered as a point charge having highest probability of being present in the parent nucleus

  4. A versatile triple radiofrequency quadrupole system for cooling, mass separation and bunching of exotic nuclei

    Science.gov (United States)

    Haettner, Emma; Plaß, Wolfgang R.; Czok, Ulrich; Dickel, Timo; Geissel, Hans; Kinsel, Wadim; Petrick, Martin; Schäfer, Thorsten; Scheidenberger, Christoph

    2018-02-01

    The combination of in-flight separation with a gas-filled stopping cell has opened a new field for experiments with exotic nuclei. For instance, at the SHIP/SHIPTRAP facility at GSI in Darmstadt high-precision mass measurements of rare nuclei have been successfully performed. In order to extend the reach of SHIPTRAP to exotic nuclei that are produced together with high rates of unwanted reaction products, a novel compact radio frequency quadrupole (RFQ) system has been developed. It implements ion cooling, identification and separation according to mass numbers and bunching capabilities. The system has a total length of one meter only and consists of an RFQ cooler, an RFQ mass filter and an RFQ buncher. A mass resolving power (FWHM) of 240 at a transmission efficiency of 90% has been achieved. The suppression of contaminants from neighboring masses by more than four orders of magnitude has been demonstrated at rates exceeding 106 ions/s. A longitudinal emittance of 0.45 eV μs has been achieved with the RFQ buncher, which will enable improved time-of-flight mass spectrometry downstream of the device. With this triple RFQ system the measurement of e.g. N= Z nuclides in the region up to tin will become possible at SHIPTRAP. The technology is also well suited for other rare-isotope facilities with experimental setups behind a stopping cell, such as the fragment separator FRS with the FRS Ion Catcher at GSI.

  5. nuclei

    Directory of Open Access Journals (Sweden)

    Minkov N.

    2016-01-01

    Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  6. Experiments with stored relativistic exotic nuclei

    International Nuclear Information System (INIS)

    Klepper, O.; Attallah, F.; Beckert, K.; Bosch, F.; Dolinskiy, A.; Eickhoff, H.; Franczak, B.; Franzke, B.; Geissel, H.; Hausmann, M.; Hellstroem, M.; Herfurth, F.; Kluge, H.-J.; Kozhuharov, C.; Muenzenberg, G.; Nolden, F.; Quint, W.; Tradon, T.; Reich, H.; Scheidenberger, C.; Schlitt, B.; Steck, M.; Suemmerer, K.; Vermeeren, L.; Winkler, M.; Winkler, Th.; Falch, M.; Kerscher, Th.; Loebner, K.E.G.; Fujita, Y.; Novikov, Yu.; Patyk, Z.; Stadlmann, J.; Wollnik, H.

    1999-01-01

    Beams of relativistic exotic nuclei were produced, separated and investigated with the combination of the fragment separator FRS and the storage ring ESR. The following experiments are presented: 1) Direct mass measurements of relativistic nickel and bismuth projectile fragments were performed using Schottky spectrometry. Applying electron cooling, the relative velocity spread of the circulating secondary nuclear beams of low intensity was reduced to below 10 -6 . The achieved mass resolving power of m/Δm = 6.5·10 5 (FWHM) in recent measurements represents an improvement by a factor of two compared to authors' previous experiments. The previously unknown masses of more than 100 proton-rich isotopes have been measured in the range of 54≤Z≤84. The results are compared with mass models and estimated values based on extrapolations of experimental values. 2) Exotic nuclei with half-lives shorter than the time required for electron cooling can be investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique has been successfully applied in a first measurement with nickel fragments. A mass resolving power of m/Δm = 1.5·10 5 (FWHM) was achieved in this mode of operation. 3) Nuclear half-lives of stored and cooled bare projectile fragments have been measured to study the influence of the ionic charge state on the beta-decay probability

  7. Proton emission from high spin states of proton rich excited 94Ag

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2008-01-01

    Recent observation of direct 1P and 2P decay of 21 + isomer in proton rich 94 Ag has led to the present theoretical investigation of proton radioactivity from 94 Ag in ground state and excited state and it's dependence on the structural transitions

  8. Nuclei at the limits of particle stability

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1993-01-01

    The properties and synthesis of nuclei at the limits of particle stability are reviewed. Nuclear reactions were induced and studied by means of the 'exotic' nuclear beams, i.e. beams of radioactive drip-line nuclei. The beams are mostly generated in heavy-ion projectile fragmentation. The cases of both neutron-rich and proton-rich nuclei are discussed. (K.A.) 270 refs.; 13 figs.; 1 tab

  9. Studies of exotic nuclei

    International Nuclear Information System (INIS)

    Angelique, J.C.; Orr, N.A.

    1997-01-01

    The study of the nuclei far off stability valley is of much interest for testing the nuclear models established for the stable nuclei but also for astrophysics to understand the nucleosynthesis. Experiments aim to measure the mass and lifetime, to build the decay schemes and also to study the structure and the properties of these nuclei. The radioactive beam group focused its research on light neutron-rich nuclei having a halo neutron structure. Mass measurements in N ∼ Z nuclei namely in A ∼ 60-80 proton-rich nuclei, important for understanding the rp process, are mentioned, as well as in nuclei in the 100 Sn region. In the newly obtained 26 O and 28 O nuclei the lifetimes, the probabilities of emission of one for more neutrons were determined. The data analysis has permitted to determine also for the first time the lifetimes of 27,29 F and 30 Ne. Studies of nuclei in the 100 Sn region, near the proton drip line in the ground and isomeric states are now under way. The spectroscopy (energy levels, gamma emissions, etc.) of the neutron-rich nuclei produced by the 36 S fragmentation has been carried out in 31 Ne, 17 B and 29 F. Studies by Coulomb excitation of the 2 + excited states and associated probability B (E2) in O, Ne, Ni and Zn are now analysed

  10. Shape mixing dynamics in the low-lying states of proton-rich Kr isotopes

    International Nuclear Information System (INIS)

    Sato, Koichi; Hinohara, Nobuo

    2011-01-01

    We study the oblate-prolate shape mixing in the low-lying states of proton-rich Kr isotopes using the five-dimensional quadrupole collective Hamiltonian. The collective Hamiltonian is derived microscopically by means of the CHFB (constrained Hartree-Fock-Bogoliubov) + Local QRPA (quasiparticle random phase approximation) method, which we have developed recently on the basis of the adiabatic self-consistent collective coordinate method. The results of the numerical calculation show the importance of large-amplitude collective vibrations in the triaxial shape degree of freedom and rotational effects on the oblate-prolate shape mixing dynamics in the low-lying states of these isotopes.

  11. From Q-value measurements to mass and structure of proton-rich nuclei in the tin region

    International Nuclear Information System (INIS)

    Grant, I.S.; Kirchner, R.; Klepper, O.; Koslowsky, V.T.; Rathke, G.E.; Roeckl, E.; Rykaczewski, K.; Schardt, D.; Larsson, P.O.; Nyman, G.; Tidemand-Petersson, P.; Zganjar, E.F.; Spanier, L.; Nolte, E.; Plochocki, A.; Zylicz, J.

    1984-01-01

    The authors have measured the electron capture decay energies for the isotopes sup(108,) sup(106,) 104 Sn, 96 Pd, and 111 Te. From these values the mass defects were derived. For 105 Sn an improved half-live of 28 + 35 was obtained. (HSI)

  12. Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots

    Science.gov (United States)

    Chekhovich, E. A.; Ulhaq, A.; Zallo, E.; Ding, F.; Schmidt, O. G.; Skolnick, M. S.

    2017-10-01

    Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid-state quantum information technologies. While polarization of individual nuclear spins in diamond and SiC (ref. ) reaches 99% and beyond, it has been limited to 50-65% for the nuclei in quantum dots. Theoretical models have attributed this limit to formation of coherent `dark' nuclear spin states but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AlGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed--the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time.

  13. Electron-capture Rates for pf-shell Nuclei in Stellar Environments and Nucleosynthesis

    Science.gov (United States)

    Suzuki, Toshio; Honma, Michio; Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka; Hidakai, Jun; Otsuka, Takaharu

    Gamow-Teller strengths in pf-shell nuclei obtained by a new shell-model Hamltonian, GXPF1J, are used to evaluate electron-capture rates in pf-shell nuclei at stellar environments. The nuclear weak rates with GXPF1J, which are generally smaller than previous evaluations for proton-rich nuclei, are applied to nucleosynthesis in type Ia supernova explosions. The updated rates are found to lead to less production of neutron-rich nuclei such as 58Ni and 54Cr, thus toward a solution of the problem of over-production of neutron-rich isotopes of iron-group nuclei compared to the solar abundance.

  14. Gamma-ray spectroscopy of nuclei near {sup 100}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Seweryniak, D; Nyberg, J; Fahlander, C [Uppsala Univ. (Sweden). Dept. of Radiation Sciences; Cederwall, B; Norline, L; Johnson, A; Kerek, A [Manne Siegbahn Inst. of Physics, Stockholm (Sweden); [Royal Inst. of Tech., Stockholm (Sweden); Adamides, E [National Centre for Scientific Research, Ag. Paraskevi, Attiki (Greece); Atac, A; Piiparinen, M; Sletten, G [Niels Bohr Inst., Copenhagen (Denmark); Angelis, G de [Laboratori Nazionali di legnaro (Italy); Grawe, H; Schubart, R [Hahn-Meitner-Institut Berlin GmbH (Germany); Ideguchi, E; Mitarai, S [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Julin, R; Juutinen, S; Tormanen, S; Virtanen, A [Jyvaeskylae Univ. (Finland). Dept. of Physics; Karczmarczyk, W; Kownacki, J [Warsaw Univ. (Poland)

    1992-08-01

    Proton rich nuclei close to {sup 100}Sn have been investigated in an in-beam {gamma}-ray spectroscopic study using the NORDBALL detector array, including arrays of charged particle and neutron detectors. Excited states were identified for the first time in {sup 102}In, {sup 106,107,108}Sb and tentatively in {sup 108,109}Te. The nucleus {sup 110}Te was also populated and studied for the first time in an in-beam experiment. (author). 4 figs.

  15. Shell model calculations for exotic nuclei

    International Nuclear Information System (INIS)

    Brown, B.A.; Wildenthal, B.H.

    1991-01-01

    A review of the shell-model approach to understanding the properties of light exotic nuclei is given. Binding energies including p and p-sd model spaces and sd and sd-pf model spaces; cross-shell excitations around 32 Mg, including weak-coupling aspects and mechanisms for lowering the ntw excitations; beta decay properties of neutron-rich sd model, of p-sd and sd-pf model spaces, of proton-rich sd model space; coulomb break-up cross sections are discussed. (G.P.) 76 refs.; 12 figs

  16. Evidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest.

    Science.gov (United States)

    Müller, Astrid; Miyazaki, Yuzo; Tachibana, Eri; Kawamura, Kimitaka; Hiura, Tsutom

    2017-08-16

    Biogenic organic aerosols can affect cloud condensation nuclei (CCN) properties, and subsequently impact climate change. Large uncertainties exist in how the difference in the types of terrestrial biogenic sources and the abundance of organics relative to sulfate affect CCN properties. For the submicron water-soluble aerosols collected for two years in a cool-temperate forest in northern Japan, we show that the hygroscopicity parameter κ CCN (0.44 ± 0.07) exhibited a distinct seasonal trend with a minimum in autumn (κ CCN  = 0.32-0.37); these κ CCN values were generally larger than that of ambient particles, including water-insoluble fractions. The temporal variability of κ CCN was controlled by the water-soluble organic matter (WSOM)-to-sulfate ratio (R 2  > 0.60), where the significant reduction of κ CCN in autumn was linked to the increased WSOM/sulfate ratio. Positive matrix factorization analysis indicates that α-pinene-derived secondary organic aerosol (SOA) substantially contributed to the WSOM mass (~75%) in autumn, the majority of which was attributable to emissions from litter/soil microbial activity near the forest floor. These findings suggest that WSOM, most likely α-pinene SOA, originated from the forest floor can significantly suppress the aerosol CCN activity in cool-temperate forests, which have implications for predicting climate effects by changes in biogenic emissions in future.

  17. Beta-decay study of T{sub z}=-2 proton-rich nucleus {sup 24}Si

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Y.; Iwasaki, H.; Nakao, T.; Ong, H.J.; Onishi, T.K.; Suzuki, D.; Suzuki, H.; Suzuki, M.K. [University of Tokyo, Department of Physics, Tokyo (Japan); Kubo, T.; Aoi, N.; Fukuda, N.; Motobayashi, T.; Yamada, K.N.; Sakurai, H. [RIKEN, RIKEN Nishina Center, Saitama (Japan); Banerjee, V.; Chakrabarti, A. [Variable Energy Cyclotron Centre, Kolkata (India); Kubono, S.; Yamaguchi, H. [University of Tokyo, Center for Nuclear Study, Tokyo (Japan); Nakabayashi, T.; Nakamura, T.; Okumura, T. [Tokyo Institute of Technology, Department of Physics, Tokyo (Japan); Teranishi, T. [Kyushu University, Department of Physics, Fukuoka (Japan)

    2009-12-15

    {beta} -decay spectroscopy on a T{sub z}=-2 proton-rich nucleus {sup 24}Si was performed. The decay scheme of {sup 24}Si was reconstructed by the {beta} -delayed {gamma} -ray and proton measurements. Two {beta} branches to the bound 1{sub 1}{sup +} and 1{sub 2}{sup +} states in {sup 24}Al were observed for the first time. The observation of the allowed transition firmly established the spin-parity assignment for the 1{sub 2}{sup +} states. The branching ratios to the 1{sub 1}{sup +} and 1{sub 2}{sup +} states were determined to be 31(4)% and 23.9(15)%, respectively. The branching ratios to three unbound states in {sup 24}Al including a new level at 6.735MeV were also determined for the first time. The level structure of {sup 24}Al was compared with its mirror nucleus {sup 24}Na. The Thomas-Ehrman shift on the 1{sub 2}{sup +} state indicates s -wave dominance in the state as well as a characteristic behavior of the weakly bound s-wave proton in {sup 24}Al. (orig.)

  18. Studies of yrast and continuum states in A = 140 - 160 nuclei. Progress report for 1985

    International Nuclear Information System (INIS)

    Daly, P.J.

    1986-02-01

    The results of nuclear structure investigations by in-beam γ-ray spectroscopy following heavy ion reactions are summarized. Detailed information is given for the proton-rich nuclei 151 Tm, 152 Tm and 150 Ho, and for nuh/sub 11/2//sup n/ states in heavy tin isotopes. The first experiments performed with the new Compton-suppressed detector array at ATLAS are outlined

  19. Pseudomagic nuclei

    International Nuclear Information System (INIS)

    Scharff-Goldhaber, G.

    1979-01-01

    It was shown previously that, below a critical angular momentum, yrast bands of nonmagic nuclei are well described by the two-parameter variable moment of inertia model. Some striking exceptions to this rule are found in nuclei which have the same mass number as doubly magic nuclei but possess either one (or two) proton pairs beyond a magic number and one (or two) neutron hole pairs, or vice versa. Yrast bands in these pseudomagic nuclei resemble those in magic nuclei. 17 references

  20. Nucleon-nucleon momentum correlation function for light nuclei

    International Nuclear Information System (INIS)

    Ma, Y.G.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.; Wei, Y.B.; Yan, T.Z.

    2007-01-01

    Nucleon-nucleon momentum correlation function have been presented for nuclear reactions with neutron-rich or proton-rich projectiles using a nuclear transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy of projectiles and the strength of proton-neutron correlation function at small relative momentum has been explored, while proton-proton correlation function shows its sensitivity to the proton density distribution. Those results show that nucleon-nucleon correlation function is useful to reflect some features of the neutron- or proton-halo nuclei and therefore provide a potential tool for the studies of radioactive beam physics

  1. Primordial nuclei

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The recent detection of intergalactic helium by NASA's Astro-2 mission backs up two earlier measurements by ESA and the University of California, San Diego, using instruments aboard the Hubble Space Telescope. Taken together, these results give strong evidence that this helium is primordial, confirming a key prediction of the Big Bang theory. The amount of helium the results imply could also account for some of the Universe's invisible dark matter - material which affects galactic motion but is otherwise undetectable. According to theory, helium nuclei formed at around 100 seconds after the Big Bang, but the amount of helium depended on even earlier events. Initially, protons turned into neutrons with the same probability that neutrons turned into protons. But after about one second, the Universe had cooled down enough for the weak interaction to freeze out. Neutrons continued to decay into the slightly lighter protons, whilst the opposite reaction became much more scarce. At around 100 seconds, thermonuclear fusion reactions could begin, and all the neutrons that were left became absorbed into helium nuclei, leaving the remaining protons locked up in hydrogen. The ratio of helium to hydrogen was therefore determined by events occurring when the Universe was just one second old. Standard models of primordial nucleosynthesis fix this ratio at slightly less than 2 5% by mass. All heavier elements were cooked up much later in the stars, and amount to less than 1 % of the Universe's mass. These predictions have been borne out remarkably well by observation, although proof of the primordial origins of hydrogen and helium has remained elusive until now. Big Bang nucleosynthesis goes on to estimate that primordial baryonic matter in the form of light nuclei could account for around 10% of the Universe's dark matter. All three recent measurements used the same technique of looking at distant quasars, some of the most luminous objects in the Universe, to

  2. Nuclear spectroscopy of exotic nuclei with the SARA/IGISOL facility

    International Nuclear Information System (INIS)

    Beraud, R.; Emsallem, A.; Astier, A.; Duffait, R.; Aerje, J.; Aeystoe, J.; Jauho, P.; Barneoud, D.; Genevey, J.; Gizon, A.

    1995-01-01

    Some recent decay studies of neutron-rich and proton-rich nuclei are presented for nuclear structure investigations far off the valley of stability. The experiments, carried out at SARA, are based either on charged particle-induced fission of 238 U or on HI-induced fusion-evaporation reactions in combination with the IGISOL technique. The basic principle of this latter is recalled together with its advantages and limitations. The spectroscopic results obtained in three different regions of the chart of nuclei are sketched. (authors). 30 refs., 7 figs

  3. Exotic nuclei

    International Nuclear Information System (INIS)

    Villari, A.C.C.

    1990-01-01

    The actual tendencies to study exotic nuclei; applications of exotic nuclei beams in material study and medicine; recent results obtained by GANIL and Berkeley Laboratories of measurements of binding energy and radii of light nuclei; the future experiences to be carry out in several international laboratories and; proposal of studies in Brazil using Pelletron-USP accelerator and the LINAC superconductor accelerator, in construction in the same laboratory, are presented. (M.C.K.)

  4. Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach

    Energy Technology Data Exchange (ETDEWEB)

    Petrovici, A.; Andrei, O. [National Institute for Physics and Nuclear Engineering, R-077125 Bucharest (Romania)

    2015-02-24

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  5. New experimental method to study the collective modes in exotic nuclei; influence of the superfluidity on the cooling time of a neutron star

    International Nuclear Information System (INIS)

    Monrozeau, Ch.

    2007-07-01

    Giant monopole (GMR) and quadrupole (GQR) resonances have been measured in the 56 Ni using inelastic scattering of 50 A.MeV deuteron at the Grand Accelerateur National d'Ions Lourds facility. This is the first experimental observation of isoscalar collective modes in a short-lived nucleus. The secondary beam was impinged on the active target Maya filled with a pure deuterium gas. Recoiling deuterons were detected in Maya and in a wall of nine silicon detectors. The GMR and GQR are centered at 19.3(0.5) and 16.2(0.5) MeV, respectively. Corresponding angular distributions were extracted from 3 to 7 degrees in the centre of mass frame. DWBA analysis based on RPA transition densities yields the percentage of the energy weighted sum rule exhausted: 136(27) % for the GMR et 76(13) % for the GQR. A finite temperature Hartree-Fock-Bogoliubov model was implemented to describe the 10 Wigner-Seitz cells which compose the inner crust of neutron stars and to microscopically calculate their specific heat. Calculations are performed with two contact pairing forces chosen to simulate the pairing properties of uniform neutron matter corresponding to the BCS approximation and to polarisation effects. Under the assumption of a rapid cooling of the core and an initial temperature of 100 keV in the inner crust, the cooling time of the star was estimated at 9 and 34 years, respectively. (author)

  6. Superdeformed nuclei

    International Nuclear Information System (INIS)

    Janssens, R.V.F.; Khoo, T.L.

    1991-01-01

    Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152 Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132 Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states

  7. Heavy ions as probes of nuclei far from stability

    International Nuclear Information System (INIS)

    Moltz, D.M.; Nitschke, J.M.; Wilmarth, P.A.; Toth, K.S.

    1989-01-01

    Nuclei located far from stability provide us with an opportunity for studying nuclear matter existing under unusual conditions. In these regions of instability, radioactive decay becomes the predominant technique by which one can obtain structure information. We have been involved in the investigation of nuclear properties of nuclei close to the proton drip line. In our explorations we have utilized heavy-ion fusion, followed by particle evaporation, to produce the extremely neutron-deficient nuclei of interest. In our studies, single-particle states near the 82-neutron shell, populated in the β decay of short-lived nuclides, have been examined and their excitation energies determined. Numerous new isotopes, isomers, and β-delayed-proton and α-particle emitters have been discovered. This contribution will discuss our particle-decay investigations. These decay modes provide us with a convenient means of discovering new isotopes whose identification opens the way for further, more extensive explorations. Also, particle-decay energies in many instances can be used to determine mass differences between parent and daughter ground states. Such measurements are therefore used to test mass formulae and to obtain estimates of masses for proton rich nuclei. 19 refs., 13 figs

  8. Elastic scattering, fusion, and breakup of light exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kolata, J.J. [University of Notre Dame, Physics Department, Notre Dame, IN (United States); Guimaraes, V. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Aguilera, E.F. [Instituto Nacional de Investigaciones Nucleares, Departamento de Aceleradores, Mexico, Distrito Federal (Mexico)

    2016-05-15

    The present status of fusion reactions involving light (A< 20) radioactive projectiles at energies around the Coulomb barrier (E<10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed. (orig.)

  9. Colliding nuclei

    International Nuclear Information System (INIS)

    Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene

    1995-09-01

    This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)

  10. Microscopic theory of the total reaction cross section and application to stable and exotic nuclei

    International Nuclear Information System (INIS)

    Hussein, M.S.; Rego, R.A.; Bertulani, C.A.

    1990-09-01

    The multiple scattering theory is used to develop a theoretical framework for the calculation of the heavy-ion total reaction order double scattering contribution to the ion-ion t sub(ρ1 ρ2) interaction is calculated and found to contribute at most 10% effect on σ sub(R). It is found that whereas at intermediate energies the t sub(ρ1ρ2) accounts reasonably well for the total reaction cross section, indicating the predominance, at these energies, of single nucleon knockout, it underestimates σ sub(R) at lower energies by a large amount. This is mainly due to the absence in t sub(ρ1ρ2) of fusion and inelastic surface excitation. The case of exotic (neutron-and proton-rich) nuclei is also discussed. (author) the absence

  11. Cooling techniques

    International Nuclear Information System (INIS)

    Moeller, S.P.

    1994-01-01

    After an introduction to the general concepts of cooling of charged particle beams, some specific cooling methods are discussed, namely stochastic, electron and laser cooling. The treatment concentrates on the physical ideas of the cooling methods and only very crude derivations of cooling times are given. At the end three other proposed cooling schemes are briefly discussed. (orig.)

  12. Spectroscopical study of the yrast and yrare structure in far-from-stability nuclei; Etude spectroscopique de la structure yrast et yrare de noyaux loin de la stabilite

    Energy Technology Data Exchange (ETDEWEB)

    Hoellinger Fabien [Institut de Recherches Subatomiques, 23, Rue du Loess, BP 28, 67037 Strasbourg Cedex 2 (France)]|[Universite Louis Pasteur, 67 - Strasbourg (France)

    1999-01-13

    The nuclear structure study of neutron-rich nuclei was realized with the EUROGAM II array in two different experiments. The first study consisted in the analysis of the product of spontaneous fission of {sup 248}Cm. Three neutron-rich cerium isotopes {sup 147,149,151}Ce were analyzed. A level scheme for {sup 151}Ce is presented for the first time. The yrast structure of the three nuclei does not show alternative parity bands as expected in this region of octupole deformations. We studied the rotational structure of the bands and this leads to suggest Nilsson configurations to some of them. The aim of this second experiment was the study of the nuclei {sup 99}Mo, {sup 101}Tc, {sup 103}Ru. The three nuclei are situated on the neutron-rich side of the nuclear chart and are produced as fission fragments of a heavy-ion induced reaction. Some bands are extended to higher spins and some new bands are observed. The structure of the rotational bands is interpreted by means of the Hartree-Fock-Bogolyubov model. A last experiment intended to study the structure of the proton-rich nucleus {sup 223}Pa has been achieved with the JURO+RITU array located at Jyvaeskylae (Finland). In this proton-rich actinide region, the nuclei develop octupole features around Z{approx_equal}88, N{approx_equal}132. The analysis of this experiment leads to the first assignment of gamma transitions to the {sup 223}Pa. (author) 91 refs., 78 figs., 16 tabs.

  13. Nuclei and quantum worlds

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    2000-01-01

    This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information

  14. Pairing correlations in nuclei

    International Nuclear Information System (INIS)

    Baba, C.V.K.

    1988-01-01

    There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs

  15. Nuclei with exotic constituents

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1990-08-01

    We discuss various interesting features in the behavior of exotic constituents of nuclei such as hyperons and mesons, in particular, with emphases on the aspect of exotic halos which are formed in general by short-range repulsion and long-range attraction. Specifically, Λ and Σ hypernuclei and pionic nuclei are discussed. (author)

  16. Neutron rich nuclei

    International Nuclear Information System (INIS)

    Foucher, R.

    1979-01-01

    If some β - emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed

  17. Baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Arenhoevel, H.

    1977-01-01

    The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de

  18. Nuclei in high forms

    International Nuclear Information System (INIS)

    Szymanski, Z.; Berger, J.F.; Heenen, P.H.; Heyde, K.; Haas, B.; Janssens, R.; Paya, D.; Gogny, D.; Huber, G.; Bjoernholm, S.; Brack, M.

    1991-01-01

    The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters

  19. Pair correlations in nuclei

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi

    2009-01-01

    Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)

  20. Eta mesons in nuclei

    International Nuclear Information System (INIS)

    Liu, L.C.

    1987-01-01

    The possibility of producing eta-mesic nuclei by the use of pions is discussed. If these nuclei are observed experimentally, then the binding energies of the eta in this new nuclear matter can be used to extract accurately the eta-N-N* coupling constant in a nucleus. The framework for these calculations is the coupled channel isobar model

  1. Nucleons in nuclei, however

    International Nuclear Information System (INIS)

    Grange, P.; Mathiot, J.F.; Roy-Stephan, M.; Frascaria, R.; Gales, S.

    1990-01-01

    The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis [fr

  2. Dynamic polarisation of nuclei

    International Nuclear Information System (INIS)

    Borghini, M.; Abragam, A.

    1961-01-01

    In magnetic fields of about 13000 gauss, at a temperature of 1.5 deg. K, in samples of about 2 mm 3 , we have obtained by the 'solid effect' (application of a magnetic field at an appropriate frequency around 35000 MHz), nuclear polarizations /I of a few percent: 19 per cent for hydrogen nuclei in single crystals of La 2 Mg 3 (NO 3 ) 12 , 24H 2 O; 5 per cent for hydrogen nuclei in polystyrene; 6 per cent for fluorine nuclei in single crystals of LiF. (author) [fr

  3. Quarks in nuclei

    International Nuclear Information System (INIS)

    Roberts, R.G.

    1984-11-01

    The paper concerns the behaviour of quarks in nuclei. Confinement size changes and dynamical rescaling; A dependence; low-x region; gluons and confinement size; and nucleons in a nucleus; are all discussed. (U.K.)

  4. The shape of nuclei

    International Nuclear Information System (INIS)

    Mackintosh, R.S.

    1977-01-01

    For the class of nuclei which are 'strongly deformed' it is possible to introduce the idea of an empirically measurable static nuclear shape. The limitations of this concept as applied to nuclei (fundamentally quantum-mechanical objects) are discussed. These are basically the limitations of the rotational model which must be introduced in order to define and measure nuclear shape. A unified discussion of the ways in which the shape has been parametrized is given with emphasis on the fact that different parametrizations correspond to different nuclear structures. Accounts of the various theoretical procedures for calculating nuclear shapes and of the interaction between nuclear shapes and nuclear spectroscopy are given. A coherent account of a large subset of nuclei (strongly deformed nuclei) can be given by means of a model in which the concept of nuclear shape plays a central role. (author)

  5. Structure of Warm Nuclei

    International Nuclear Information System (INIS)

    Aaberg, S.; Uhrenholt, H.

    2009-01-01

    We study the structure of nuclei in the energy region between the ground state and the neutron separation energy, here called warm nuclei. The onset of chaos in the nucleus as excitation energy is increased is briefly reviewed. Chaos implies fluctuations of energies and wave functions qualitatively the same for all chaotic nuclei. On the other hand, large structure effects are seen, e.g. in the level-density function at same excitation energies. A microscopic model for the level density is reviewed and we discuss effects on structure of the total level-density function, parity enhancement, and the spin distribution function. Comparisons to data are performed at the neutron separation energy for all observed nuclei, and structure of the level-density function for a few measured cases. The role of structure effects in the level-density function for fission dynamics is exemplified.

  6. Hot nuclei and fragmentation

    International Nuclear Information System (INIS)

    Guerreau, D.

    1993-01-01

    A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs

  7. Cooling towers

    International Nuclear Information System (INIS)

    Boernke, F.

    1975-01-01

    The need for the use of cooling systems in power plant engineering is dealt with from the point of view of a non-polluting form of energy production. The various cooling system concepts up to the modern natural-draught cooling towers are illustrated by examples. (TK/AK) [de

  8. Deformed model Sp(4) model for studying pairing correlations in atomic nuclei

    CERN Document Server

    Georgieva, A I; Sviratcheva, K

    2002-01-01

    A fermion representation of the compact symplectic sp(4) algebra introduces a theoretical framework for describing pairing correlations in atomic nuclei. The important non-deformed and deformed subalgebras of sp sub ( sub q sub ) (4) and the corresponding reduction chains are explored for the multiple orbit problem. One realization of the u sub ( sub q sub ) (2) subalgebra is associated with the valence isospin, other reductions describe coupling between identical nucleons or proton-neutron pairs. Microscopic non-deformed and deformed Hamiltonians are expressed in terms of the generators of the sp(4) and sp sub q (4) algebras. In both cases eigenvalues of the isospin breaking Hamiltonian are fit to experimental ground state energies. The theory can be used to investigate the origin of the deformation and predict binding energies of nuclei in proton-rich regions. The q-deformation parameter changes the pairing strength and in so doing introduces a non-linear coupling into the collective degree of freedom

  9. Multifragmentation of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1990-10-01

    It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established

  10. Cosmology and unstable nuclei

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1995-01-01

    Primordial nucleosynthesis has established itself as one of the three pillars of Big Bang cosmology. Many of the Big Bang Nucleosynthesis reactions involve unstable nuclei. Hence there is a tight relationship hetween the subject of this conference and cosmology. The prime role of unstable nuclei in cosmology is related to lithium synthesis and the lack of cosmological synthesis of Be and B. These nuclei will thus be focused upon. Nucleosynthesis involves comparing calculated abundances with observed abundances. In general, abundance determinations are dominated by systematic rather than statistical errors, and work on bounding systematics is crucial. The quark-hadron inspired inhomogeneous calculations now unanimously agree that only relatively small variations in Ω b are possible vis-a-vis the homogeneous model; hence the robustness of Ω b ∼0.05 is now apparent. (These calculations depend critically on unstable nuclei.) The above argues that the bulk of the baryons in the universe are not producing visible light. A comparison with the ROSAT cluster data is also shown to be consistent with the standard BBN model. Ω b ∼1 seems to be definitely excluded, so if Ω TOTAL =1, as some recent observations may hint, then non-baryonic dark matter is required. The implications of the recently reported halo microlensing events are discussed. In summary, it is argued that the physics of unstable nuclei affects the fundamental dark matter argument. ((orig.))

  11. Critical-point nuclei

    International Nuclear Information System (INIS)

    Clark, R.M.

    2004-01-01

    It has been suggested that a change of nuclear shape may be described in terms of a phase transition and that specific nuclei may lie close to the critical point of the transition. Analytical descriptions of such critical-point nuclei have been introduced recently and they are described briefly. The results of extensive searches for possible examples of critical-point behavior are presented. Alternative pictures, such as describing bands in the candidate nuclei using simple ΔK = 0 and ΔK = 2 rotational-coupling models, are discussed, and the limitations of the different approaches highlighted. A possible critical-point description of the transition from a vibrational to rotational pairing phase is suggested

  12. Weak interactions with nuclei

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1983-01-01

    Nuclei provide systems where the strong, electomagnetic, and weak interactions are all present. The current picture of the strong interactions is based on quarks and quantum chromodynamics (QCD). The symmetry structure of this theory is SU(3)/sub C/ x SU(2)/sub W/ x U(1)/sub W/. The electroweak interactions in nuclei can be used to probe this structure. Semileptonic weak interactions are considered. The processes under consideration include beta decay, neutrino scattering and weak neutral-current interactions. The starting point in the analysis is the effective Lagrangian of the Standard Model

  13. Quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1983-01-01

    Some features of quark degrees of freedom in nuclei are discussed in the light of recent developments in QCD. The principal aim of this talk is to propose, and give a tentative support to, the motion that one can study through nuclear matter different facets of the vacuum structure implied by quantum chromodynamics (QCD). This will be done using the recent (exciting) results obtained in particle physics, in particular lattice gauge calculations. Relevance of this aspect of problem to quark degrees of freedom as well as meson degrees of freedom in nuclei will be discussed. (orig.)

  14. Disintegration of comet nuclei

    Science.gov (United States)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  15. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2002-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on kinematic separation and mass analysis of heavy recoiling nuclei, dynamical effects prior to heavy ion fusion, VACTIV-DELPHI graphical dialog based program for the analysis of gamma-ray spectra, irradiation of nuclear emulsions in relativistic beams of 6 He and 3 H nuclei, optical and structural investigations of PLZT x/65/35 (x = 4, 8 %) ferroelectric ceramics irradiated by a high-current pulsed electron beam, the oscillating charge and first evidence for neutrinoless double beta decay

  16. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2001-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on physics from extra dimensions, new physics in the new millennium with GENIUS: double beta decay, dark matter, solar neutrinos, the (μ - , e + ) conversion in nuclei mediated by light Majorana neutrinos, exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model, solar neutrino problem accounting for self consistent magnetohydrodynamics solution for solar magnetic fields, first neutrino observations from the Sudbury neutrino observatory and status report on BOREXINO and results of the muon-background measurements at CERN

  17. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1976-01-01

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  18. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  19. Symmetries and nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1987-01-01

    Nuclei are very useful for testing symmetries, and for studies of symmetry breaking. This thesis is illustrated for two improper space-time transformations, parity and time-reversal and for one internal symmetry: charge symmetry and independence. Recent progress and present interest is reviewed. 23 refs., 8 figs., 2 tabs

  20. Electroweak interactions in nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1984-06-01

    Topics include: introduction to electroweak theory; the Weinberg-Salam theory for leptons; the Weinberg-Salam theory for hadrons-the GIM mechanism; electron scattering as a probe of the electroweak interaction (observation of PV, the weak interaction for nucleons, and parity violation in atoms); and time reversed invariance and electric dipole moments of nucleons, nuclei, and atoms. 52 references

  1. Transfer involving deformed nuclei

    International Nuclear Information System (INIS)

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs

  2. Collisions with nuclei

    International Nuclear Information System (INIS)

    Gulamov, K.G.

    1987-01-01

    It is well known that interactions of high energy particles with nuclei, owing to possible intranuclear rescatterings, may provide information about the space-time behaviour of the production process. Therefore the main goals of these investigations are related with the attempts to study the space-time process of hadronization of coloured quarks and gluons produced at the initial stage of an interaction to white final state particles and to clarify the influence of composite quark-gluon structure of both the projectile and target on features of the production mechanisms. Since in both the initial and final states of these reactions the authors have strongly interacting multiparticle systems, it is of importance to study the collective properties of these systems. The questions to the point are: what is the degree of collectivization of particles newly produced in collisions with nuclei and what is the influence of the collective nature of a nucleus itself on the production mechanisms, in particular, what are the manifestations of possible multinucleon (multiquark) configurations in nuclei? It is obvious that the reductability of, say, hadron-nucleus (hA) interaction to hadron-nucleon (hN) collisions is directly related to the above problems. Due to time limitations the author discusses here only a few aspects of low p/sub t/ hA interactions which in his opinion are of importance for better understanding of general regularities of collisions with nuclei and for further investigations of the above problems

  3. Nucleons in nuclei (II)

    International Nuclear Information System (INIS)

    Laget, J.M.

    1988-01-01

    This summary is a review of our understanding of nuclei in terms of hadrons exchanging mesons. The open problems are: the determination of the high momentum components of nuclear systems, the role of the three-body forces and the nature of the short range correlations. The ways of studying these problems are discussed

  4. Electromagnetic structure of nuclei

    International Nuclear Information System (INIS)

    Arnold, R.G.

    1986-07-01

    A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs

  5. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1977-01-01

    History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)

  6. Mesons and light nuclei

    International Nuclear Information System (INIS)

    Truhlik, E.; Mach, R.

    1992-01-01

    62 papers and one summary talk were presented at the conference, on subject matters in between nuclear physics (mainly light nuclei) and elementary particle physics, as indicated by the session headings (1) Electroweak nuclear interaction (2) Nuclear physics with pions and antiprotons (3) Nuclear physics with strange particles (4) Relativistic nuclear physics (5) Quark degrees of freedom. (Quittner)

  7. Radii of radioactive nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Plagnol, E.; Schutz, Y.

    1989-11-01

    A new simple direct method for the measurement of the total reaction cross section (σ R ) for several light radioactive nuclei (A≤40) is developed. From that, the reduced strong absorption radii (r o 2 ) are obtained. A comparison is made with data obtained by other techniques. A strong isospin dependence of the nuclear radii is observed. (L.C.) [pt

  8. Alpha clustering in nuclei

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1990-01-01

    The effects of nucleon clustering in nuclei are described, with reference to both nuclear structure and nuclear reactions, and the advantages of using the cluster formalism to describe a range of phenomena are discussed. It is shown that bound and scattering alpha-particle states can be described in a unified way using an energy-dependent alpha-nucleus potential. (author)

  9. Particles, imaging and nuclei

    International Nuclear Information System (INIS)

    Harris, J.

    1986-01-01

    The book on particles, imaging and nuclei is one of the Background Readers for the Revised Nuffield Advanced Physics course. The contents contain five educational articles, which extend concepts covered in the course and examine recent developments in physics. Four of the articles on:- particles and the forces of nature, radioisotopes, lasers probe the atomic nucleus, and nuclear history, are indexed separately. (UK)

  10. The decay of hot nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs

  11. Isotope shifts in unstable nuclei

    International Nuclear Information System (INIS)

    Rebel, H.

    1980-05-01

    Current experimental investigations of isotope shifts in atomic spectra of unstable nuclei and the resulting information about size and shape of nuclei far off stability are discussed with reference to some representative examples. (orig.)

  12. Investigation of nuclei near N = 82 and Z = 64 VIA radioactive decay of high-spin isomers

    International Nuclear Information System (INIS)

    Toth, K.S.

    1979-01-01

    An island of very high spin isomers was found recently in neutron-deficient Gd-Lu nuclei near the N = 82 closed shell in (H.I.,xn) measurements. This exciting discovery has led to a large number of experiments trying to identify the structures of these isomers and the nuclei in which they occur. These attempts have been helped in many instances by available spectroscopic information at low excitation energies. A systematic investigation of the low-lying structure of nuclei near N = 82 and Z greater than or equal to 64 was carried out. Heavy-ion beams were used to produce proton-rich isotopes which were then transported, with the use of gas-jet systems, to shielded areas where singles and coincidence γ-ray measurements could be made. Earlier investigations dealt with the decay of terbium ( 146-149 Tb) and dysprosium ( 147-152 Dy) nuclei. During the past two years the research program was extended to holmium nuclides (A less than or equal to 152) produced in 10 B bombardments of samarium. Two new isotopes, 149 Ho and 148 Ho, were identified. The decay data of 21-s 149 Ho supplement in-beam results and locate the hg/ 2 neutron state in 149 Dy to be at 1091 keV. The most intense γ-ray associated with 9-s 148 Ho has an energy of 1688 keV. It is possibly the first-excited to ground-state transition in 148 Dy. Recent in-beam measurements have shown that the first-excited state in 146 Gd is, unespectedly, 3 - in contrast to doubly evenN = 82 nuclei below gadolinium where it is 2 + . It would be interesting to determine whether the 1688-keV level in 148 Dy, the next nucleus in this isotonic series, is 2reverse arrow or 3 - in character. 12 references

  13. Energetic Nuclei, Superdensity and Biomedicine

    Science.gov (United States)

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  14. Direct mass measurements of 100Sn and magic nuclei near the N=Z line

    International Nuclear Information System (INIS)

    Chartier, M.

    1996-01-01

    The masses of nuclei far from stability are of particular interest in nuclear structure studies, and many methods of varying precision have been developed to undertake their measurement. A direct time of flight technique in conjunction with the SPEG spectrometer at GANIL has been extended to the mass measurement of proton-rich nuclei near N = Z line in the mass region A ≅ 60-80 known to provide input for astrophysical modelling of the rp-process and information relevant to the nuclear structure in a region of high deformation. The radioactive beams were produced via the fragmentation of a 78 Kr beam on a nat Ni target, using the new SISSI device. A purification method based on the stripping of the secondary ions was successfully used for the first time, and the masses of 70 Se and 71 Se were measured. In order to improve the mass resolution for heavier nuclei, another method using the second cyclotron of GANIL (CSS2) as a high resolution spectrometer has been developed. An experiment aimed at measuring the masses of A 100 isobars in the vicinity of the doubly magic nucleus 100 Sn was successfully performed, using this original technique. Secondary ions of 100 Ag, 100 Cd, 100 In and 100 Sn produced via fusion-evaporation reaction 50 Cr + 58 Ni and simultaneously accelerated in the CSS2 cyclotron. The mass of 100 Cd and, for the first time, the masses of 100 Sn were determined directly with respect to the reference mass of 100 Ag. These results have been compared to various theoretical predictions and open the discussion on considerations of spin-isospin symmetry. (author)

  15. Disintegration of comet nuclei

    International Nuclear Information System (INIS)

    Ksanfomality, Leonid V

    2012-01-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies. (physics of our days)

  16. Pions scatter by nuclei

    International Nuclear Information System (INIS)

    Huefner, J.

    1975-01-01

    Are pions a good tool to study nuclei. If the emphasis of this question rests on ''tool'', the answer must be ''not yet.'' The reason: one does not even understand how a pion interacts with a nucleus. This is part of the many-body problem for strongly interacting particles and its study is a basic problem in physics. One must investigate questions like: Can one understand pion-nucleus interactions from pion-nucleon physics. How does a Δ-resonance look in nuclei. Once one has solved those basic problems, there will be spinoffs in medical, technical and nuclear areas. Then pions can be used as a tool to study nuclear properties

  17. Chaos in collective nuclei

    International Nuclear Information System (INIS)

    Whelan, N.D.

    1993-01-01

    Random Matrix Theory successfully describes the statistics of the low-lying spectra of some nuclei but not of others. It is currently believed that this theory applies to systems in which the corresponding classical motion is chaotic. This conjecture is tested for collective nuclei by studying the Interacting Boson Model. Quantum and classical measures of chaos are proposed and found to be in agreement throughout the parameter space of the model. For some parameter values the measures indicate the presence of a previously unknown approximate symmetry. A phenomenon called partial dynamical symmetry is explored and shown to lead to a suppression of chaos. A time dependent function calculated from the quantum spectrum is discussed. This function is sensitive to the extent of chaos and provides a robust method of analyzing experimental spectra

  18. Present and Future Experiments with Stored Exotic Nuclei at GSI

    International Nuclear Information System (INIS)

    Geissel, H.

    2009-01-01

    Recent results and perspectives of experiments with stored exotic nuclei at GSI-FAIR will presented. An overview on the planned NUSTAR experiments will also presented. Relativistic exotic nuclei produced via projectile fragmentation and fission were separated in flight by the fragment separator FRS and injected into the storage-cooler ring ESR for accurate mass- and lifetime measurements. Direct mass measurements of electron-cooled exotic nuclei were performed using time-resolved Schottky spectrometry. Fragments with half-lives shorter than the time required for electron cooling have been investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique gives access to all nuclei with half-lives down to the microsecond range and has been successfully applied. Lifetimes of stored bare and few-electron ions have been measured with the goal to study the beta-decay under ionization conditions prevailing in stellar plasma. For the first time the direct observation of bound-state beta decay has been achieved with 2 07T l fragments. The future project FAIR includes a new large-acceptance in-flight separator (Super-FRS) in combination with a new storage ring system (CR, NESR) which will be ideal tools to study exotic nuclei far from stability.(author)

  19. Chaotic behavior in nuclei

    International Nuclear Information System (INIS)

    Mitchel, G.; Shriner, J.

    2005-01-01

    Although the predictions of Random Matrix Theory (RMT) were available by the early 1960s, data of sufficiently high quality to adequately test the theory were only obtained a decade later by Rainwater. It was another decade later that Bohigas, Haq and Pandey combined the best available nuclear resonance data - the Columbia neutron resonances in heavy nuclei and the TUNL proton resonances in lighter nuclei - to form the Nuclear Data Ensemble. They obtained excellent agreement for the level statistics with the RMT predictions. The expected Porter-Thomas (PT) distribution was considered very early. However, since the widths (amplitudes squared) are measured, the predicted Gaussian distribution for the amplitudes was only qualitatively confirmed. A much more sensitive test was performed by measuring two widths and the relative phase between the two amplitudes. By comparison of the width and amplitude correlations, the Gaussian distribution was confirmed at the 1% level. Following the Bohigas conjecture - that quantum analogs of classically chaotic systems obey RMT - there was an explosion of activity utilizing level statistics in many different quantum systems. In nuclei the focus was verifying the range of applicability of RMT. Of particular interest was the effect of collectivity and of excitation energy on statistical properties. The effect of symmetry breaking on level statistics was examined and early predictions by Dyson were confirmed. The effect of symmetry breaking on the width distribution was also measured for the first time. Although heuristic arguments predicted no change from the PT distribution, experimentally there was a large deviation from the PT prediction. Later theoretical efforts were consistent with this result. The stringent conditions placed on the experiments - for eigenvalue tests the data need to be essentially perfect (few or no missing levels or mis assigned quantum numbers) - has limited the amount of suitable experimental data. The

  20. Structures of exotic nuclei

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1987-01-01

    Discoveries of many different types of nuclear shape coexistence are being found at both low and high excitation energies throughout the periodic table, as documented in recent reviews. Many new types of shape coexistence have been observed at low excitation energies, for examples bands on more than four different overlapping and coexisting shapes are observed in 185 Au, and competing triaxial and prolate shapes in 71 Se and 176 Pt. Discrete states in super-deformed bands with deformations β 2 ∼ 0.4-0.6, coexisting with other shapes, have been seen to high spin up to 60ℎ in 152 Dy, 132 Ce and 135 Nd. Super-deformed nuclei with N and Z both around 38 and around Z = 38, N ≥ 60. These data led to the discovery of new shell gaps and magic numbers of 38 for N and Z and 60 for N but now for deformed shapes. Marked differences in structure are observed at spins of 6 to 20 in nuclei in this region, which differ by only two protons; for example, 68 Ge and 70 Se. The differences are thought to be related to the competing shell gaps in these nuclei

  1. Elusive active galactic nuclei

    Science.gov (United States)

    Maiolino, R.; Comastri, A.; Gilli, R.; Nagar, N. M.; Bianchi, S.; Böker, T.; Colbert, E.; Krabbe, A.; Marconi, A.; Matt, G.; Salvati, M.

    2003-10-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically `elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive active galactic nuclei (AGN) in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 1024 cm-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical narrow-line region. Elusive AGN may contribute significantly to the 30-keV bump of the X-ray background.

  2. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  3. Nuclei transmutation by collisions with fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.; Drzymala, A.

    1998-01-01

    Atomic nuclei change their mass- and charge-numbers if bombarded by fast hadrons and nuclei; the transmutation appears as a complicated process. It proceeds in a definite way - through a few stages or phases. Adequate identification of the nucleons and light nuclear fragments emitted and evaporated in a hadron-nucleus or nucleus-nucleus collisions and in the collision-induced intranuclear reactions allows one to estimate quantitatively the nuclei transmutations in the various stages (phases) of the process

  4. Cooling towers

    International Nuclear Information System (INIS)

    Korik, L.; Burger, R.

    1992-01-01

    What is the effect of 0.6C (1F) temperature rise across turbines, compressors, or evaporators? Enthalpy charts indicate for every 0.6C (1F) hotter water off the cooling tower will require an additional 2 1/2% more energy cost. Therefore, running 2.2C (4F) warmer due to substandard cooling towers could result in a 10% penalty for overcoming high heads and temperatures. If it costs $1,250,000.00 a year to operate the system, $125,000.00 is the energy penalty for hotter water. This paper investigates extra fuel costs involved in maintaining design electric production with cooling water 0.6C (1F) to 3C (5.5F) hotter than design. If design KWH cannot be maintained, paper will calculate dollar loss of saleable electricity. The presentation will conclude with examining the main causes of deficient cold water production. State-of-the-art upgrading and methodology available to retrofit existing cooling towers to optimize lower cooling water temperatures will be discussed

  5. Anomalous carbon nuclei

    International Nuclear Information System (INIS)

    Gasparian, A.P.

    1984-01-01

    Results are presented from a bubble chamber experiment to search for anomalous mean free path (MFP) phenomena for secondary multicharged fragments (Zsub(f)=5 and 6) of the beam carbon nucleus at 4.2 GeV/c per nucleon. A total of 50000 primary interactions of carbon with propane (C 3 H 8 ) were created. Approximately 6000 beam tragments with charges Zsub(f)=5 and 6 were analyzed in detail to find out an anomalous decrease of MFP. The anomaly is observed only for secondary 12 C nuclei

  6. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2001-01-01

    The present collection of letters from JINR, Dubna, contains eight separate records on the interaction of high energy Λ 6 He hypernuclear beams with atomic nuclei, the position-sensitive detector of a high spatial resolution on the basis of a multiwire gas electron multiplier, pseudorapidity hadron density at the LHC energy, high precision laser control of the ATLAS tile-calorimeter module mass production at JINR, a new approach to ECG's features recognition involving neural network, subcriticity of a uranium target enriched in 235 U, beam space charge effects in high-current cyclotron injector CI-5, a homogeneous static gravitational field and the principle of equivalence

  7. Active galactic nuclei

    CERN Document Server

    Beckmann, Volker

    2012-01-01

    This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d

  8. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  9. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2000-01-01

    The present collection of letters from JINR, Dubna, contains six separate records on the DELPHI experiment at LEP, the Fermi-surface dynamics of rotating nuclei, production of large samples of the silica dioxide aerogel in the 37-litre autoclave and test of its optical properties, preliminary radiation resource results on scintillating fibers, a new algorithm for the direct transformation method of time to digital with the high time resolution and development and design of analogue read-out electronics for HADES drift chamber system

  10. Cumulation of light nuclei

    International Nuclear Information System (INIS)

    Baldin, A.M.; Bondarev, V.K.; Golovanov, L.B.

    1977-01-01

    Limit fragmentation of light nuclei (deuterium, helium) bombarded with 8,6 GeV/c protons was investigated. Fragments (pions, protons and deuterons) were detected within the emission angle 50-150 deg with regard to primary protons and within the pulse range 150-180 MeV/c. By the kinematics of collision of a primary proton with a target at rest the fragments observed correspond to a target mass upto 3 GeV. Thus, the data obtained correspond to teh cumulation upto the third order

  11. Active galactic nuclei

    CERN Document Server

    Blandford, RD; Woltjer, L

    1990-01-01

    Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory

  12. NEW EQUATIONS OF STATE BASED ON THE LIQUID DROP MODEL OF HEAVY NUCLEI AND QUANTUM APPROACH TO LIGHT NUCLEI FOR CORE-COLLAPSE SUPERNOVA SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Shun; Yamada, Shoichi [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Sumiyoshi, Kohsuke [Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501 (Japan); Suzuki, Hideyuki, E-mail: furusawa@heap.phys.waseda.ac.jp [Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 (Japan)

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to {approx}1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  13. NEW EQUATIONS OF STATE BASED ON THE LIQUID DROP MODEL OF HEAVY NUCLEI AND QUANTUM APPROACH TO LIGHT NUCLEI FOR CORE-COLLAPSE SUPERNOVA SIMULATIONS

    International Nuclear Information System (INIS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2013-01-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ∼1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes

  14. New Equations of State Based on the Liquid Drop Model of Heavy Nuclei and Quantum Approach to Light Nuclei for Core-collapse Supernova Simulations

    Science.gov (United States)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ~1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  15. Nuclear structure around doubly-magic nuclei: lifetime measurements in the vicinity of 68Ni and search for isomers around 100Sn

    International Nuclear Information System (INIS)

    Celikovic, Igor

    2013-01-01

    In this thesis we investigated the structure of nuclei around 68 Ni as well as the production, separation and identification of proton-rich isotopes lying in the vicinity of the doubly-magic 100 Sn nucleus.In the first part, we discuss the evolution of collectivity and the interplay between collective and single-particle degrees of freedom in nuclei around 68 Ni. We measured lifetimes in Zn isotopes around N = 40 produced in 238 U + 70 Zn deep-inelastic collisions at GANIL. We used a plunger device and the recoil-distance Doppler-shift method. The nuclei of interest were identified by the VAMOS spectrometer and the γ-rays with the EXOGAM array. The reduced electromagnetic transitions probabilities were extracted from the lifetimes. Several transitions and lifetimes are reported for the first time. The experimental results are discussed in the framework of shell model calculations. In the second part, the partial conservation of seniority in the g 9/2 shell and its influence on one-particle transfer is discussed. The third part presents the analysis of an in-beam test performed at RIKEN (Japan) to evaluate two settings of the BigRIPS separator for optimizing the production and selection of 100 Sn. This study has been used to setup our subsequent experiment, dedicated to the measurement of the Gamow-Teller strength in the decay of 100 Sn, to the mapping of the proton drip-line and the study of short-lived isomers in this mass region. Nuclei around 100 Sn were produced by fragmentation of a 345 MeV/u 124 Xe beam on a Be target. The production cross-sections of nuclei around 100 Sn were measured. The search for new isotopes and new isomers in all identified nuclei is presented. (author) [fr

  16. Exotic nuclei and radioactive beams

    International Nuclear Information System (INIS)

    Chomaz, P.

    1996-01-01

    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs

  17. Isolation of Nuclei and Nucleoli.

    Science.gov (United States)

    Pendle, Alison F; Shaw, Peter J

    2017-01-01

    Here we describe methods for producing nuclei from Arabidopsis suspension cultures or root tips of Arabidopsis, wheat, or pea. These methods could be adapted for other species and cell types. The resulting nuclei can be further purified for use in biochemical or proteomic studies, or can be used for microscopy. We also describe how the nuclei can be used to obtain a preparation of nucleoli.

  18. Cooling tower

    Energy Technology Data Exchange (ETDEWEB)

    Norbaeck, P; Heneby, H

    1976-01-22

    Cooling towers to be transported on road vehicles as a unit are not allowed to exceed certain dimensions. In order to improve the efficiency of such a cooling tower (of cross-flow design and box-type body) with given dimensions, it is proposed to arrange at least one of the scrubbing bodies displaceable within a module or box. Then it can be moved out of the casing into working position, thereby increasing the front surface available for the inlet of air (and with it the efficiency) by nearly a factor of two.

  19. Theory of magic nuclei

    International Nuclear Information System (INIS)

    Nosov, V.G.; Kamchatnov, A.M.

    A consistent theory of the shell and magic oscillations of the masses of spherical nuclei is developed on the basis of the Fermi liquid concept of the energy spectrum of nuclear matter. A ''magic'' relationship between the system's dimensions and the limiting momentum of the quasi-particle distribution is derived; an integer number of the de Broglie half-waves falls on the nuclear diameter. An expression for the discontinuity in the nucleon binding energy in the vicinity of a magic nucleus is obtained. The role of the residual interaction is analyzed. It is shown that the width of the Fermi-surface diffuseness due to the residual interaction is proportional to the squared vector of the quasi-particle orbital angular momentum. The values of the corresponding proportionality factors (the coupling constant for quasi particles) are determined from the experimental data for 52 magic nuclei. The rapid drop of the residual interaction with increasing nuclear size is demonstrated. (7 figures, 3 tables) (U.S.)

  20. Stability of superheavy nuclei

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The potential-energy surfaces of an extended set of heavy and superheavy even-even nuclei with 92 ≤Z ≤126 and isospins 40 ≤N -Z ≤74 are evaluated within the recently developed Fourier shape parametrization. Ground-state and decay properties are studied for 324 different even-even isotopes in a four-dimensional deformation space, defined by nonaxiality, quadrupole, octupole, and hexadecapole degrees of freedom. Nuclear deformation energies are evaluated in the framework of the macroscopic-microscopic approach, with the Lublin-Strasbourg drop model and a Yukawa-folded mean-field potential. The evolution of the ground-state equilibrium shape (and possible isomeric, metastable states) is studied as a function of Z and N . α -decay Q values and half-lives, as well as fission-barrier heights, are deduced. In order to understand the transition from asymmetric to symmetric fission along the Fm isotopic chain, the properties of all identified fission paths are investigated. Good agreement is found with experimental data wherever available. New interesting features about the population of different fission modes for nuclei beyond Fm are predicted.

  1. Cluster structures in light nuclei

    International Nuclear Information System (INIS)

    Horiuchi, H.

    2000-01-01

    Complete text of publication follows. Clustering in neutron-rich nuclei is discussed. To understand the novel features (1,2,3) of the clustering in neutron-rich nuclei, the basic features of the clustering in stable nuclei (4) are briefly reviewed. In neutron-rich nuclei, the requirement of the stability of clusters is questioned and the threshold rule is no more obeyed. Examples of clustering in Be and B isotopes (4,5) are discussed in some detail. Possible existence of novel type of clustering near neutron dripline is suggested (1). (author)

  2. Level structures in Yb nuclei far from stable nuclei

    International Nuclear Information System (INIS)

    Hashizume, Akira

    1982-01-01

    Applying n-γ, γ-γ coincidence techniques, the excited levels in 158 Yb and in 157 Yb nuclei were studied. Stress is placed ona neutron detection technique to assign (HI,xn) reactions which produce the nuclei far from β stability line. (author)

  3. Stochastic cooling

    International Nuclear Information System (INIS)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron

  4. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2004-01-01

    The present collection of letters from JINR, Dubna, contains thirteen separate letters on start-to-end simulations of SASE FEL at the TESLA test facility, possible ways of improvement of the FEM oscillator with a Bragg resonator, the status and perspectives of the electron cooling method development, crystalline ion beams in storage rings, latest results of modeling of LHC beam injection, charge exchange injection in a synchrotron equipped with an electron cooling system, fringe and hysteresis effects in electron guns, nonstationary regimes of electron flow formation in secondary emission inverse coaxial diodes, a proposal of the experiment testing of the fine structure of the Vavilov-Cherenkov radiation, computer simulation of the electron beam dynamics at the accelerator structure and the injector of S-band linac with energies of 3 and 10 MeV, calculation of the electron beam dynamics of the accelerator LUE-200, the accelerator-accumulation facility ITEP-TWAC and accelerators-drivers of electronuclear facilities

  5. Electron scattering off nuclei

    International Nuclear Information System (INIS)

    Gattone, A.O.

    1989-01-01

    Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author) [es

  6. Antideuteron annihilation on nuclei

    International Nuclear Information System (INIS)

    Cugnon, J.

    1992-01-01

    An investigation of antideuteron annihilation on nuclei within an intranuclear cascade (INC) model is presented. Two models are set up to describe the annihilation itself, which either implies the antideuteron as a whole and occurs at a single point, or which may be considered as two independent nucleon-antinucleon annihilation occurring at different points and different times. Particular attention is paid to the energy transferred from the pions issued from the annihilation to the nuclear system and to the possibility of having a multifragmentation of the target. The latter feature is investigated within a percolation model. The pion distribution and the energy distribution are also discussed. Predictions of proton multiplicity distributions are compared with experiment. (orig.)

  7. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2002-01-01

    The present collection of letters from JINR, Dubna, contains ten separate records on Wien filter using in exploring on low-energy radioactive nuclei, memory effects in dissipative nucleus-nucleus collision, topological charge and topological susceptibility in connection with translation and gauge invariance, solutions of the multitime Dirac equation, the maximum entropy technique. System's statistical description, the charged conductor inside dielectric. Solution of boundary condition by means of auxiliary charges and the method of linear algebraic equations, optical constants of the TGS single crystal irradiated by power pulsed electron beam, interatomic pair potential and n-e amplitude from slow neutron scattering by noble gases, the two-coordinate multiwire proportional chamber of the high spatial resolution and neutron drip line in the region of O-Mg isotopes

  8. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2000-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on the integral representation for structure functions and target mass effects, multiscale properties of DNA primary structure including cross-scale correlations, dissipative evolution of the elementary act, the fine structure of the M T =1 Gamow-Teller resonance in 147g Tb→ 147 Gd β + /EC decay, the behaviour of the TVO temperature sensors in the magnetic fields, a fast method for searching for tracks in multilayer drift chambers of HADES spectrometer, a novel approach to particle track etching including surfactant enhanced control of pore morphology, azimuthal correlations of secondary particles in 32 S induced interactions with Ag(Br) nuclei at 4.5 GeV/ c/ nucleon

  9. Pulsars: gigantic nuclei

    International Nuclear Information System (INIS)

    Xu, Renxin

    2011-01-01

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the gigantic nucleus speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction. (author)

  10. Clusters in nuclei

    CERN Document Server

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  11. Pion production in nuclei

    International Nuclear Information System (INIS)

    Afnan, I.R.; Thomas, A.W.

    1976-01-01

    A method has been suggested for relating μ-capture in nuclei to pion absorption through partially conserved axial vector current hypothesis. The success of the method relies heavily on the knowledge of the pion absorption amplitude at a momentum transfer equal to the μ-meson mass. That is we need to know the pion absorption amplitude off the mass-shell. The simplest nucleus for which this suggestion can be examined is μ-capture in deuterium. The Koltum-Reitan model is used to determine the pion absorption amplitude off the mass shell. In particular the senstivity of this off-mass-shell extrapolution to details of the N-N interaction is studied. (author)

  12. Collective excitations in nuclei

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    1998-01-01

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors)

  13. IBA in deformed nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for 168 Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong β → γ transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the β → γ transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ΔK=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics

  14. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.

  15. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... Nuclei in the actinide chain and beyond are prone to fission owing to ... mass nuclei are typically more difficult, because the intensity is .... j15/2 neutron alignments in a region where shell stablization effects are crucial.

  16. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  17. Problem of ''deformed'' superheavy nuclei

    International Nuclear Information System (INIS)

    Sobiczewski, A.; Patyk, Z.; Muntian, I.

    2000-08-01

    Problem of experimental confirmation of deformed shapes of superheavy nuclei situated in the neighbourhood of 270 Hs is discussed. Measurement of the energy E 2+ of the lowest 2+ state in even-even species of these nuclei is considered as a method for this confirmation. The energy is calculated in the cranking approximation for heavy and superheavy nuclei. The branching ratio p 2+ /p 0+ between α decay of a nucleus to this lowest 2+ state and to the ground state 0+ of its daughter is also calculated for these nuclei. The results indicate that a measurement of the energy E 2+ for some superheavy nuclei by electron or α spectroscopy is a promising method for the confirmation of their deformed shapes. (orig.)

  18. Quarks in Few Body Nuclei

    Directory of Open Access Journals (Sweden)

    Holt Roy J.

    2016-01-01

    Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  19. Cooling pancakes

    International Nuclear Information System (INIS)

    Bond, J.R.; Wilson, J.R.

    1984-01-01

    In theories of galaxy formation with a damping cut-off in the density fluctuation spectrum, the first non-linear structures to form are Zeldovich pancakes in which dissipation separates gas from any collisionless dark matter then present. One-dimensional numerical simulations of the collapse, shock heating, and subsequent thermal evolution of pancakes are described. Neutrinos (or any other cool collisionless particles) are followed by direct N-body methods and the gas by Eulerian hydrodynamics with conduction as well as cooling included. It is found that the pressure is relatively uniform within the shocked region and approximately equals the instantaneous ram pressure acting at the shock front. An analytic theory based upon this result accurately describes the numerical calculations. (author)

  20. Cool Sportswear

    Science.gov (United States)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  1. Cooling systems

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1978-01-01

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  2. K-bar-mesic nuclei

    International Nuclear Information System (INIS)

    Dote, Akinobu; Akaishi, Yoshinori; Yamazaki, Toshimitsu

    2005-01-01

    New nuclei 'K-bar-Mesic Nuclei' having the strangeness are described. At first it is shown that the strongly attractive nature of K-bar N interaction is reasoned inductively from consideration of the relation between Kaonic hydrogen atom and Λ (1405) which is an excited state of hyperon Λ. The K-bar N interactions are reviewed and summarized into three categories: 1. Phenomenological approach with density dependent K-bar N interaction (DD), relativistic mean field (RMF) approach, and hybrid of them (RMF+DD). 2. Boson exchange model. 3. Chiral SU(3) theory. The investigation of some light K-bar-nuclei by Akaishi and Yamazaki using phenomenological K-bar N interaction is explained in detail. Studies by antisymmetrized molecular dynamics (AMD) approach are also presented. From these theoretical researches, the following feature of K-bar-mesic nuclei are revealed: 1) Ground state is discrete and bound by 100 MeV or more. 2) Density is very high in side the K-bar-mesic nuclei. 3) Strange structures develop which are not seen in ordinary nuclei. Finally some recent experiments to explore K-bar-mesic nuclei are reviewed. (S. Funahashi)

  3. Monopole transitions in hot nuclei

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1994-01-01

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs

  4. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  5. Electron scattering for exotic nuclei

    International Nuclear Information System (INIS)

    Suda, T.

    2013-01-01

    An electron scattering facility is under construction in RIKEN RI Beam Factory, Japan, which is dedicated to the structure studies of short-lived nuclei. This is the world's first and currently only facility of its type. The construction is nearly completed, and the first electron scattering experiment off short-lived nuclei will be carried out in the beginning of next year. The charge density distributions of short-lived nuclei will be precisely determined by elastic electron scattering for the first time. Physics pursued at this facility including future perspectives are explained

  6. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2015-01-01

    , and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...

  7. Gluon density in nuclei

    International Nuclear Information System (INIS)

    Ayala, A.L.

    1996-01-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab

  8. Supersymmetry in nuclei

    CERN Document Server

    Jolie, J

    2002-01-01

    All the elementary particles that make up matter (as do quarks, electrons, neutrinos....) are fermions, the particles that convey the fundamental interactions (as do photons, gluons, W, Z...) are bosons. Composite particles are either bosons, or fermions according to the number of fermions they contain: if this number is even the particle is a boson, otherwise it is a fermion. According to this rule a proton is a fermion and the He sup 4 atom is a boson. Symmetry plays an important role in the standard model, a symmetry is a transformation that connect bosons with other bosons or fermions with other fermions. Supersymmetry associates a boson with a fermion or a fermion with a boson, in fact supersymmetry connects nuclei that are not generally considered as akin. Supersymmetry has just been observed in low energy levels of Gold sup 1 sup 9 sup 5 sup - sup 1 sup 9 sup 6 and Platinum sup 1 sup 9 sup 4 - sup 1 sup 9 sup 5 , it means that the description of these energy levels is simplified and can be made by a co...

  9. Supersymmetry in nuclei

    International Nuclear Information System (INIS)

    Jolie, J.

    2002-01-01

    All the elementary particles that make up matter (as do quarks, electrons, neutrinos....) are fermions, the particles that convey the fundamental interactions (as do photons, gluons, W, Z...) are bosons. Composite particles are either bosons, or fermions according to the number of fermions they contain: if this number is even the particle is a boson, otherwise it is a fermion. According to this rule a proton is a fermion and the He 4 atom is a boson. Symmetry plays an important role in the standard model, a symmetry is a transformation that connect bosons with other bosons or fermions with other fermions. Supersymmetry associates a boson with a fermion or a fermion with a boson, in fact supersymmetry connects nuclei that are not generally considered as akin. Supersymmetry has just been observed in low energy levels of Gold 195-196 and Platinum 194 - 195 , it means that the description of these energy levels is simplified and can be made by a common set of quantum numbers. (A.C.)

  10. Photon interactions with nuclei

    International Nuclear Information System (INIS)

    Thornton, S.T.; Sealock, R.M.

    1989-01-01

    This document is a progress report for DOE Grant No. FG05-89ER40501, A000. The grant began March, 1989. Our primary research effort has been expended at the LEGS project at Brookhaven National Laboratory. This report will summarize our present research effort at LEGS as well as data analysis and publications from previous experiments performed at SLAC. In addition the principal investigators are heavily involved in the CLAS collaboration in Hall B at CEBAF. We have submitted several letters of intent and proposals and have made commitments to construct experimental equipment for CEBAF. We expect our primary experimental effort to continue at LEGS until CEBAF becomes operational. This report will be divided into separate sections describing our progress at LEGS, SLAC, and CEBAF. We will also discuss our significant efforts in the education and training of both undergraduate and graduate students. Photon detectors are described as well as experiments on delta deformation in nuclei of quasielastic scattering and excitation of the delta by 4 He(e,e')

  11. Parity violation in nuclei

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1980-01-01

    A summary of parity violating effects in nuclei is given. Thanks to vigorous experimental and theoretical effort, it now appears that a reasonably well-defined value for the weak isovector π-nucleon coupling constant can be obtained. There is one major uncertainty in the analysis, namely the M2/E1 mixing ratio for the 2.79 MeV transition in 21 Ne. This quantity is virtually impossible to calculate reliably and must be measured. If it turns out to be much larger than 1, then a null result in 21 Ne is expected no matter what the weak interaction, so an experimental determination is urgently needed. The most promising approach is perhaps a measurement of the pair internal conversion coefficient. Of course, a direct measurement of a pure isovector case is highly desirable, and it is to be hoped that the four ΔT = 1 experiments will be pushed still further, and that improved calculations will be made for the 6 Li case. Nuclear parity violation seems to be rapidly approaching an interesting and useful synthesis

  12. Fragmentation of relativistic nuclei

    International Nuclear Information System (INIS)

    Cork, B.

    1975-06-01

    Nuclei with energies of several GeV/n interact with hadrons and produce fragments that encompass the fields of nuclear physics, meson physics, and particle physics. Experimental results are now available to explore problems in nuclear physics such as the validity of the shell model to explain the momentum distribution of fragments, the contribution of giant dipole resonances to fragment production cross sections, the effective Coulomb barrier, and nuclear temperatures. A new approach to meson physics is possible by exploring the nucleon charge-exchange process. Particle physics problems are explored by measuring the energy and target dependence of isotope production cross sections, thus determining if limiting fragmentation and target factorization are valid, and measuring total cross sections to determine if the factorization relation, sigma/sub AB/ 2 = sigma/sub AA/ . sigma/sub BB/, is violated. Also, new experiments have been done to measure the angular distribution of fragments that could be explained as nuclear shock waves, and to explore for ultradense matter produced by very heavy ions incident on heavy atoms. (12 figures, 2 tables)

  13. Symmetries in nuclei

    International Nuclear Information System (INIS)

    Arima, A.

    2003-01-01

    (1) There are symmetries in nature, and the concept of symmetry has been used in art and architecture. The symmetry is evaluated high in the European culture. In China, the symmetry is broken in the paintings but it is valued in the architecture. In Japan, however, the symmetry has been broken everywhere. The serious and interesting question is why these differences happens? (2) In this lecture, I reviewed from the very beginning the importance of the rotational symmetry in quantum mechanics. I am sorry to be too fundamental for specialists of nuclear physics. But for people who do not use these theories, I think that you could understand the mathematical aspects of quantum mechanics and the relation between the angular momentum and the rotational symmetry. (3) To the specialists of nuclear physics, I talked about my idea as follows: dynamical treatment of collective motions in nuclei by IBM, especially the meaning of the degeneracy observed in the rotation bands top of γ vibration and β vibration, and the origin of pseudo-spin symmetry. Namely, if there is a symmetry, a degeneracy occurs. Conversely, if there is a degeneracy, there must be a symmetry. I discussed some details of the observed evidence and this correspondence is my strong belief in physics. (author)

  14. Collective excitations in nuclei

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    1997-01-01

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author)

  15. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    1997-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.

  16. Dynamic polarization of radioactive nuclei

    International Nuclear Information System (INIS)

    Kiselev, Yu.F.; Lyuboshits, V.L.; )

    2001-01-01

    Radioactive nuclei, embedded into a frozen polarized proton target, atr proposed to polarize by means of some dynamic polarization methods. Angular distributions of γ-quanta emitted ny 22 Na(3 + ) in the cascade β-γ-radiation are calculated. It is shown that this distribution does not depend on the spin temperature sing at the Boltzmann distribution of populations among the Zeeman magnetic substates, whereas the tensor polarization of quadrupole nuclei, placed in the electric field of the crystal, causes the considerable sing dependence. The new method promises wide opportunities for the magnetic structure investigations as well as for the study of spin-spin interaction dynamics of rare nuclei in dielectrics. Physical-technical advantages and disadvantages of the given method are discussed for the polarization of heavy nuclei in the on-line implantation mode [ru

  17. The delta in nuclei. Experiments

    International Nuclear Information System (INIS)

    Roy-Stephan, M.

    1989-01-01

    Experimental aspects of the Δ excitation will be presented. The Δ excitation in nuclei will be compared to the free Δ excitation. Various probes will be reviewed and their specific features will be underlined [fr

  18. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Research Center for Electron-Photon Science, Tohoku University, 1-2-1 ... nuclei precisely determined by elastic scattering [1]. .... In order to fulfill these requirements, a window-frame shaped dipole magnet with a gap.

  19. Collisions between complex atomic nuclei

    International Nuclear Information System (INIS)

    Vaagen, J. S.

    1977-08-01

    The use of heavy ion accelerators in the study of nuclear structure and states is reviewed. The reactions discussed are the quasielastic reactions in which small amounts of energy and few particles are exchanged between the colliding nuclei. The development of heavy ion accelerators is also discussed, as well as detection equipment. Exotic phenomena, principally the possible existence of superheavy nuclei, are also treated. (JIW)

  20. Particles and nuclei in PANIC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-07-15

    PANIC is the triennal International Conference on Particles and Nuclei, and judging from the latest PANIC, held in Kyoto from 20-24 April there is no need for panic yet. Faced with two pictures – one of nuclei described in nucleon and meson terms, and another of nucleons containing quarks and gluons – physicists are intrigued to know what new insights from the quark level can tell us about nuclear physics, or vice versa.

  1. Particles and nuclei in PANIC

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    PANIC is the triennal International Conference on Particles and Nuclei, and judging from the latest PANIC, held in Kyoto from 20-24 April there is no need for panic yet. Faced with two pictures – one of nuclei described in nucleon and meson terms, and another of nucleons containing quarks and gluons – physicists are intrigued to know what new insights from the quark level can tell us about nuclear physics, or vice versa

  2. Investigation of copper nuclei

    International Nuclear Information System (INIS)

    Delfini, M.G.

    1983-01-01

    An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64 Cu and 66 Cu. They were obtained by bombarding the 63 Cu and 65 Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64 Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)

  3. Quest for superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Heenen, P.H. [Universite Libre de Bruxelles, Service de Physique Nucleaire Theorique (Belgium); Nazarewicz, W. [Tennessee Univ., Knoxville, TN (United States). Dept. of Physics; Warsaw Univ. (Poland). Inst. Fizyki Teoretycznej

    2002-02-01

    This article draws the long history of the discovery of new heavy nuclei since its beginning in 1940 when neptunium was found, and presents the current status of research in this field. The last 3 years have brought a number of experimental surprises which have truly rejuvenated the field. In January 1999, scientists from Dubna (Russia) reported the synthesis of 1 atom of element 114 ({sup 298}Uuq) in a hot fusion reaction between a {sup 48}Ca beam and a {sup 244}Pu target. This discovery was followed by 3 other reports from Dubna. First using the {sup 242}Pu({sup 48}Ca,3n) reaction, they produced {sup 287}Uuq. In 1999 the synthesis of another isotope of Z=114, the even-even {sup 288}Uuq was reported. The element Z=116 ({sup 292}Uuh) was discovered as a product of the {sup 248}Cm({sup 48}Ca,4n) reaction. The GSI (Germany) group found a new even isotope of the element 110: {sup 270}Uun and also {sup 272}Uuu (element 111) and {sup 277}Uub (element 112). 2 new isotopes of the element 107: {sup 266}Bh and {sup 267}Bh have been found at Berkeley (Usa). The synthesis of the new element Z=118 ({sup 293}Uuo) announced in 1999 by the Berkeley group was retracted 2 years later. The lifetimes reported for the elements {sup 284}Uub and {sup 280}Uun are by many orders of magnitude longer than those of the isotopes with Z{<=}112 previously discovered at GSI. (A.C.)

  4. Spectrin-like proteins in plant nuclei

    NARCIS (Netherlands)

    Ruijter, de N.C.A.; Ketelaar, T.; Blumenthal, S.S.D.; Emons, A.M.C.; Schel, J.H.N.

    2000-01-01

    We analysed the presence and localization of spectrin-like proteins in nuclei of various plant tissues, using several anti-erythrocyte spectrin antibodies on isolated pea nuclei and nuclei in cells. Western blots of extracted purified pea nuclei show a cross-reactive pair of bands at 220–240 kDa,

  5. Cool snacks

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Brock, Steen; Brunsø, Karen

    2016-01-01

    Young people snack and their snacking habits are not always healthy. We address the questions whether it is possible to develop a new snack product that adolescents will find attractive, even though it is based on ingredients as healthy as fruits and vegetables, and we argue that developing...... such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...... people's snacking behaviour and then to develop and test new, healthier snacking solutions. These new snacking solutions were tested and found to be favourably accepted by young people. The paper therefore provides a proof of principle that the development of snacks that are both healthy and attractive...

  6. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  7. From heavy nuclei to super-heavy nuclei

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  8. Complete destruction of heavy nuclei by hadrons and nuclei

    International Nuclear Information System (INIS)

    Tolstov, K.D.

    1980-01-01

    The total disintegration is considered of Ag and Pb nuclei and 4 He, 12 C nuclei With a momentum of 4.5 GeV/c per nucleon. It is shown that nucleons are mainly emitted, and there is no residual nUcleus the mass of which is comparable to that of the primary nucleus. The probability of total nucleus disintegration is considered as a function of projectile energy and the mass. The multiplicity, energy and emission angle of particles are considerred as well. It is shown that the density of nuclear matter in the overlap zone of colliding nuclei exceeds the usual one by a factor of approximately 4. A comparison is made with interaction models. A conclusion is drawn of the collective interaction mechanism (perhaps, of the shock wave type) of particle ejection from the target nucleus at the first stage of interaction and of explosive decay of the residual nucleus at the next one

  9. Divertor cooling device

    International Nuclear Information System (INIS)

    Nakayama, Tadakazu; Hayashi, Katsumi; Handa, Hiroyuki

    1993-01-01

    Cooling water for a divertor cooling system cools the divertor, thereafter, passes through pipelines connecting the exit pipelines of the divertor cooling system and the inlet pipelines of a blanket cooling system and is introduced to the blanket cooling system in a vacuum vessel. It undergoes emission of neutrons, and cooling water in the divertor cooling system containing a great amount of N-16 which is generated by radioactivation of O-16 is introduced to the blanket cooling system in the vacuum vessel by way of pipelines, and after cooling, passes through exit pipelines of the blanket cooling system and is introduced to the outside of the vacuum vessel. Radiation of N-16 in the cooling water is decayed sufficiently with passage of time during cooling of the blanket, thereby enabling to decrease the amount of shielding materials such as facilities and pipelines, and ensure spaces. (N.H.)

  10. Reflection asymmetric shapes in nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.; Carpenter, M.P.; Emling, H.

    1989-01-01

    Experimental data show that there is no even-even nucleus with a reflection asymmetric shape in its ground state. Maximum octupole- octupole correlations occur in nuclei in the mass 224 (N∼134, Z∼88) region. Parity doublets, which are the characteristic signature of octupole deformation, have been observed in several odd mass Ra, Ac and Pa nuclei. Intertwined negative and positive parity levels have been observed in several even-even Ra and Th nuclei above spin ∼8ℎ. In both cases, the opposite parity states are connected by fast El transitions. In some medium-mass nuclei intertwined negative and positive parity levels have also been observed above spin ∼7ℎ. The nuclei which exhibit octupole deformation in this mass region are 144 Ba, 146 Ba and 146 Ce; 142 Ba, 148 Ce, 150 Ce and 142 Xe do not show these characteristics. No case of parity doublet has been observed in the mass 144 region. 32 refs., 16 figs., 1 tab

  11. Proton scattering from unstable nuclei 20O, 30S, 34Ar: experimental study and models

    International Nuclear Information System (INIS)

    Khan, Elias

    2000-01-01

    Elastic and inelastic proton scattering from the unstable nuclei 20 O, 30 S and 34 Ar were measured in inverse kinematics at the Grand Accelerateur National d'Ions Lourds. Secondary beams of 20 O at 43 MeV/A, 30 S at 53 MeV/A and 34 Ar at 47 MeV/A impinged on a (CH 2 ) n target. Recoiling protons were detected in the silicon strip array MUST. Energies and angular distributions of the first 2 + and 3 - states were measured. A phenomenological analysis yields values of the deformation parameters β 2 and β 3 of 0.55 (6) and 0.35 (5) for 20 O, 0.32 (3) and 0.22 (4) for 30 S, 0.27 (2) and 0.39 (3) for 34 Ar, respectively, and allows the extraction of the ratio of neutron to proton transition matrix elements (M n /M p )/(N/Z) for 2 + states: 2.35 (37) for 20 O, 0.93 (20) for 30 S and 1.35 (28) for 34 Ar. Therefore the proton rich nuclei 30 S and 34 Ar show a 2 + excitation of isoscalar character whereas the excitation of 20 O is of isovector character. In order to perform a microscopic analysis of the data, we have developed a QRPA model, using three Skyrme interaction: SIII, SG2, SLy4. This model reproduces measured B(EL) values for the oxygen, sulfur and argon isotopic chains, whereas RPA calculations, which do not take pairing into account, underestimate these values. In the case of the QRPA model the energies of the first 2 + state are overestimated by about 1 MeV, but the evolution along the isotopic chains is well reproduced. (M n /M p )/(N/Z) ratios for the first 2 + state deduced from the microscopic analysis using QRPA are 1.98 for 20 O, 1.05 for 30 S and 1.00 for 34 Ar, in agreement with the conclusions of the phenomenological analysis. However important discrepancies are observed between the two types of analysis for other isotopes, in particular neutron rich argon and sulfur nuclei. (author)

  12. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  13. Oriented heavy ions and the choice of a cool compound nucleus reaction

    International Nuclear Information System (INIS)

    Aroumougame, R.; Gupta, R.K.

    1980-01-01

    Potential energy surfaces are calculated within the mechanism of fragmentation theory with a view to selecting the target-projectile combinations for producing new elements through cool compound nucleus formation. The orientation of the colliding nuclei is also included. It is shown that both the reaction partners of a cool compound nucleus, formed in either a central or a nearly central collision, should preferably be spherical and either nearly symmetric or extremely asymmetric. For reactions with deformed nuclei, it is suggested that polarised targets should be used. The calculations are illustrated for the compound nuclei 258 104 and 260 106. (author)

  14. Protonic decay of oriented nuclei

    International Nuclear Information System (INIS)

    Kadmensky, S.G.

    2002-01-01

    On the basis of the multiparticle theory of protonic decay, the angular distributions of protons emitted by oriented spherical and deformed nuclei in the laboratory frame and in the internal coordinate frame of deformed parent nuclei are constructed with allowance for symmetry with respect to time inversion. It is shown that, because of the deep-subbarrier character of protonic decay, the adiabatic approximation is not applicable to describing the angular distributions of protons emitted by oriented deformed nuclei and that the angular distribution of protons in the laboratory frame does not coincide with that in the internal coordinate frame. It is demonstrated that these angular distributions coincide only if the adiabatic and the semiclassical approximation are simultaneously valid

  15. Nuclei in a neutron star

    International Nuclear Information System (INIS)

    Oyamatsu, K.; Yamada, M.

    1994-01-01

    We report on the recent progress in understanding the matter in the crust of a neutron star. For nuclides in the outer crust, recently measured masses of neutron-rich nuclei enable us to determine more accurately the stable nuclide as a function of the matter density. In the inner crust, the compressible liquid-drop model predicts successive change of the nuclear shape, from sphere to cylinder, slab, cylindrical hole and spherical hole at densities just before the transition to uniform matter. In order to go beyond the liquiddrop model, we performed the Thomas-Fermi calculation paying special attention to the surface diffuseness, and have recently calculated the shell energies of the non-spherical nuclei. We have found from these studies that all these non-spherical nuclei exist stably in the above order even if we include the surface diffuseness and shell energies. (author)

  16. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  17. Neutron scattering on deformed nuclei

    International Nuclear Information System (INIS)

    Hansen, L.F.; Haight, R.C.; Pohl, B.A.; Wong, C.; Lagrange, C.

    1984-09-01

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9 Be, C, 181 Ta, 232 Th, 238 U and 239 Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP

  18. Nuclei, hadrons, and elementary particles

    International Nuclear Information System (INIS)

    Bopp, F.W.

    1989-01-01

    This book is a short introduction to the physics of the nuclei, hadrons, and elementary particles for students of physics. Important facts and model imaginations on the structure, the decay, and the scattering of nuclei, the 'zoology' of the hadrons and basic facts of hadronic scattering processes, a short introduction to quantum electrodynamics and quantum chromodynamics and the most important processes of lepton and parton physics, as well as the current-current approach of weak interactions and the Glashow-Weinberg-Salam theory are presented. (orig.) With 153 figs., 10 tabs [de

  19. Octupole shapes in heavy nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.

    1994-01-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets

  20. Exotic Nuclei Arena in JHP

    International Nuclear Information System (INIS)

    Nomura, T.

    1991-12-01

    The Exotic Nuclei Arena planned in Japanese Hadron Project aims to accelerate various unstable nuclei produced in 1-GeV proton-induced reactions up to 6.5 MeV/u by means of heavy-ion linacs. The present status of research and development for the Earena is briefly reported. The construction of the prototype facility to accelerate unstable beams up to 0.8 MeV/u is planned in 1992-94, in which the existing cyclotron in INS is used as the primary accelerator. (author)

  1. Spinodal decomposition of atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, P. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Colonna, M.; Guarnera, A. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)]|[LNS, Catania (Italy)

    1996-12-31

    Multifragmentation of atomic nuclei is discussed. It is shown that this description of the dynamics of first order phase transitions in infinite and finite system is now partially achieved. An important conclusion is that in some specific cases well-defined collective motions were initiating the self-organisation of the unstable matter in fragments. In the case of finite systems the possible signals kept from this early fragmentation stage can inform on the possible occurrence of a liquid-gas phase transition in nuclei. (K.A.). 21 refs.

  2. Spinodal decomposition of atomic nuclei

    International Nuclear Information System (INIS)

    Chomaz, P.; Colonna, M.; Guarnera, A.

    1996-01-01

    Multifragmentation of atomic nuclei is discussed. It is shown that this description of the dynamics of first order phase transitions in infinite and finite system is now partially achieved. An important conclusion is that in some specific cases well-defined collective motions were initiating the self-organisation of the unstable matter in fragments. In the case of finite systems the possible signals kept from this early fragmentation stage can inform on the possible occurrence of a liquid-gas phase transition in nuclei. (K.A.)

  3. Are there superheavy atomic nuclei

    International Nuclear Information System (INIS)

    Herrmann, G.

    1982-04-01

    The author presents a populary introduction to the formation of nuclei with special regards to superheavy nuclei. After a general description of the methods of physics the atomic hypothesis is considered. Thereafter the structure of the nucleus is discussed, and the different isotopes are considered. Then radioactivity is described as an element transmutation. Thereafter the thermonuclear reactions in the sun are considered. Then the synthesis of elements using heavy ion reactions is described. In this connection the transuranium elements and the superheavy elements are considered. (orig./HSI) [de

  4. The mechanism of total disintegration of heavy nuclei by fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    1997-01-01

    The mechanism of the total disintegration of atomic nuclei by fast hadrons and nuclei is considered. The passage of energetic hadrons through layers of intranuclear matter, accompanied by emission of fast nucleons with kinetic energies from about 20 up to about 500 MeV from definite local small regions in the nuclei around projectile courses in them, allows one to explain simply the occurrence of the total destruction of nuclei involved in the collisions. Light nuclei may be totally disintegrated by fast hadrons and nuclei; heavier nuclei may be totally disintegrated only in central collisions of nuclei with similar mass numbers

  5. Nuclear γ-ray spectroscopy of cool free atoms

    International Nuclear Information System (INIS)

    Rivlin, Lev A

    1999-01-01

    Consideration is given to the capabilities of gamma-ray spectroscopy of the nuclei of free neutral atoms cooled employing modern laser light-pressure techniques. This spectroscopy is comparable with the Mossbauer spectroscopy in respect of the expected resolving power. (laser applications and other topics in quantum electronics)

  6. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  7. Nuclear demagnetisation cooling of a nanoelectronic device

    Science.gov (United States)

    Jones, Alex; Bradley, Ian; Guénault, Tony; Gunnarsson, David; Haley, Richard; Holt, Stephen; Pashkin, Yuri; Penttilä, Jari; Prance, Jonathan; Prunnila, Mika; Roschier, Leif

    We present a new technique for on-chip cooling of electrons in a nanostructure: nuclear demagnetisation of on-chip, thin-film copper refrigerant. We are motivated by the potential improvement in the operation of nanoelectronic devices below 10 mK . At these temperatures, weak electron-phonon coupling hinders traditional cooling, yet here gives the advantage of thermal isolation between the environment and the on-chip electrons, enabling cooling significantly below the base temperature of the host lattice. To demonstrate this we electroplate copper onto the metallic islands of a Coulomb blockade thermometer (CBT), and hence provide a direct thermal link between the cooled copper nuclei and the device electrons. The CBT provides primary thermometry of its internal electron temperature, and we use this to monitor the cooling. Using an optimised demagnetisation profile we observe the electrons being cooled from 9 mK to 4 . 5 mK , and remaining below 5 mK for an experimentally useful time of 1200 seconds. We also suggest how this technique can be used to achieve sub- 1 mK electron temperatures without the use of elaborate bulk demagnetisation stages.

  8. Transitional nuclei near shell closures

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India and Present Address: Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  9. Cluster structure in Cf nuclei

    International Nuclear Information System (INIS)

    Singh, Shailesh K.; Biswal, S.K.; Bhuyan, M.; Patra, S.K.; Gupta, R.K.

    2014-01-01

    Due to the availability of advance experimental facilities, it is possible to probe the nuclei upto their nucleon level very precisely and analyzed the internal structure which will help us to resolve some mysterious problem of the decay of nuclei. Recently, the relativistic nuclear collision, confirmed the α cluster type structure in the 12 C which is the mile stone for the cluster structure in nuclei. The clustering phenomena in light and intermediate elements in nuclear chart is very interesting. There is a lot of work done by our group in the clustering behaviour of the nuclei. In this paper, the various prospectus of clustering in the isotopes of Cf nucleus including fission state is discussed. Here, 242 Cf isotope for the analysis, which is experimentally known is taken. The relativistic mean field model with well established NL3 parameter set is taken. For getting the exact ground state configuration of the isotopes, the calculation for minimizing the potential energy surface is performed by constraint method. The clustering structure of other Cf isotopes is discussed

  10. Nuclear astrophysics of light nuclei

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall

    2013-01-01

    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  11. Particle detection from oriented nuclei

    International Nuclear Information System (INIS)

    Wouters, J.; Moor, P. de; Schuurmans, P.; Severijns, N.; Vanderpoorten, W.; Vanneste, L.

    1992-01-01

    A survey is given of particle emission from nuclei that have been spin oriented by cryogenical means. Experiments and recent developments with detectors in the low temperature environment and their on-line application are reviewed. The most recent results are mentioned. Some phenomena to be unraveled in future studies are pointed out. (orig.)

  12. Rotational damping motion in nuclei

    International Nuclear Information System (INIS)

    Egido, J.L.; Faessler, A.

    1991-01-01

    The recently proposed model to explain the mechanism of the rotational motion damping in nuclei is exactly solved. When compared with the earlier approximative solution, we find significative differences in the low excitation energy limit (i.e. Γ μ 0 ). For the strength functions we find distributions going from the Wigner semicircle through gaussians to Breit-Wigner shapes. (orig.)

  13. Percolation and multifragmentation of nuclei

    International Nuclear Information System (INIS)

    Shmakov, S.Yu.; Uzhinskij, V.V.

    1989-01-01

    A method to build the 'cold' nuclei as percolation clusters is suggested. Within the framework of definite assumptions of the character of nucleon-nucleon couplings breaking resulting from the nuclear reactions as description of the multifragmentation process in the hadron-nucleus and nucleus-nucleus reactions at high energies is obtained. 19 refs.; 6 figs

  14. Octupole correlation effects in nuclei

    International Nuclear Information System (INIS)

    Chasman, R.R.

    1992-01-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions

  15. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world's first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density ...

  16. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  17. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  18. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  19. Cavitation nuclei measurements - A review

    International Nuclear Information System (INIS)

    Billet, M.L.

    1985-01-01

    The measurement of cavitation nuclei has been the goal of many cavitation research laboratories and has resulted in the development of many methods. Two significantly different approaches have been developed. One is to measure the particulate-microbubble distribution by utilizing acoustical, electrical or optical methods. The other approach measures a liquid tension and a rate of cavitation events for a liquid in order to establish a cavitation susceptibility. Comparisons between various methods indicate that most methods are capable of giving an indication of the nuclei distribution. Measurements obtained in the ocean environment indicate an average of three bubbles per cubic centimeter are present; whereas, water tunnel bubble distributions vary from much less than one to over a hundred per cubic centimeter

  20. Phonon operators in deformed nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1981-01-01

    For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator [ru

  1. Phonon operators for deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1982-01-01

    The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator

  2. Nuclear treasure island [superheavy nuclei

    CERN Document Server

    CERN. Geneva

    1999-01-01

    Summary form only given. Soon after the experiments at Dubna, which synthesized element 114 and made the first footprints on the beach of the "island of nuclear stability", two new superheavy elements have been discovered at the Lawrence Berkeley National Laboratory. Element 118 and its immediate decay product, element 116, were manufactured at Berkeley's 88 inch cyclotron by fusing targets of lead-208 with an intense beam of 449 MeV krypton-86 ions. Although both new nuclei almost instantly decay into lighter ones, the decay sequence is consistent with theories that have long predicted the island of stability for nuclei with approximately 114 protons and 184 neutrons. Theorist Robert Smolanczuk, visiting from the Soltan Institute for Nuclear Studies in Poland, had calculated that this reaction should have particularly favourable production rates. Now that this route has been signposted, similar reactions could be possible: new elements and isotopes, tests of nuclear stability and mass models, and a new under...

  3. Moessbauer effects on oriented nuclei

    International Nuclear Information System (INIS)

    Sayouti, E.H.

    1984-01-01

    Standard nuclear orientation methods (not sensitive to the polarization) do not give information on the sign of the magnetic moment. Mossbauer effect separates right-hand and left-hand circularly polarized components, thus its detection on oriented nuclei (T approximately 10 mK) gives the sign of the magnetic moment of oriented state. In this thesis we applied this method to study the 3/2 - ground states of 191 Pt and 193 Os, which are in the prolate-oblate transition region, where assignement of experimental levels to theoretical states is often umbiguous. We show that for those nuclei the sign of the magnetic moment is the signature of the configuration, and its determination establishes the correspondance between experimental and theoretical levels [fr

  4. Clusters in nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Beck, Christian

    2010-01-01

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is presently one of the domains of heavy-ion nuclear physics facing both the greatest challenges and opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physics decided to team up in producing a comprehensive collection of lectures and tutorial reviews covering the field. This first volume, gathering seven extensive lectures, covers the follow topics: - Cluster Radioactivity - Cluster States and Mean Field Theories - Alpha Clustering and Alpha Condensates - Clustering in Neutron-rich Nuclei - Di-neutron Clustering - Collective Clusterization in Nuclei - Giant Nuclear Molecules By promoting new ideas and developments while retaining a pedagogical nature of presentation throughout, these lectures will both serve as a reference and as advanced teaching material for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)

  5. Mesons and quarks in nuclei

    International Nuclear Information System (INIS)

    Oset, E.

    1980-01-01

    A short review of the topic of mesons in nuclei is exposed paying particular attention to the relationship between several mesonic processes. Special emphasis is put into the microscopic pictures that can ultimately relate all these processes with the elementary coupling of mesons to the nuclear hadronic components. The importance of the short range part of the nuclear interaction opens the doors to a more basic understanding in terms of the quark components of nucleons and isobars. (orig.)

  6. Exclusive photoreactions on light nuclei

    International Nuclear Information System (INIS)

    Maruyama, K.

    1989-08-01

    The mechanism of photon absorption on light nuclei in the Δ-resonance region is discussed. The present status of experimental results is briefly summarized. A recent data from 1.3-GeV Tokyo ES using a π sr spectrometer is introduced. Exclusive measurements of the photodisintegration of 3 He and 4 He may be a clear way to identify 2N, 3N and 4N absorptions. (author)

  7. Fission barriers of light nuclei

    International Nuclear Information System (INIS)

    Grotowski, K.; Planeta, R.; Blann, M.; Komoto, T.

    1989-01-01

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems

  8. The creation of new nuclei

    International Nuclear Information System (INIS)

    Armbruster, P.; Hessberger, F.P.

    1998-01-01

    In the last 60 years physicists have created 20 artificial elements beyond uranium. In 1934 Enrico Fermi predicted the creation of new elements by bombarding atoms with neutrons. This method led to the discovery of neptunium (Z=93), plutonium, americium, curium, berkelium, californium, einsteinium and fermium (Z=100). In fact the capture of a neutron is followed by a beta-decay which increases the atomic number (Z) by one unit. Beyond Z=100 beta-decay no more occurs so a new approach was necessary. Between the American Lawrence Berkeley Laboratory and the Russian Dubna Institute a fierce competition broke out to produce new elements by bombarding transuranium nuclei with light elements such as helium, carbon, nitrogen. This new method required heavy equipment: ion accelerator and detectors but led to the creation of all the elements from Z=101 to Z=106. A new idea was to provoke the fusion of heavy nuclei such as lead and bismuth with colliding argon, nickel or zinc ion beams. This method called 'cold fusion' opened the way to reach the nuclei beyond Z=107. In 1996 the element Z=112 was the last discovered. The next step could be the element Z=114 for which a particular stability is expected. (A.C.)

  9. Radii of nuclei off stability

    International Nuclear Information System (INIS)

    Sugimoto, Kenzo

    1982-01-01

    An experiment is proposed to determine systematically the radii of the nuclei produced through the projectile fragmentation process in high energy heavy-ion collision. The measurement of total reaction cross section using the projectile fragments of a single nuclide on a target give information about nuclear radii. The production cross section of the fragments is appreciable for many nuclides. Therefore, it is possible to map systematically the reaction radii of the nuclei which can be produced as the projectile fragments. In an experiment using the projectile fragments as the incident beam, the cross section can be expressed as a function of the radii of a projectile and a target. An experiment with He-8 produced by the fragmentation of C-12 is proposed. The He-8 has four neutrons in the p-3/2 orbit outside the He-4 core. Proton and neutron distributions for He isotopes were calculated on the basis of the Hartree-Fock method. The information related to this kind of distribution can be obtained by the proposed experiment. The nuclear structure effect is seen in the nuclear radii of other unstable nuclei. The experimental examples of the isotope shift measurement and the excitation energy are presented. (Kato, T.)

  10. Density functional theory of nuclei

    International Nuclear Information System (INIS)

    Terasaki, Jun

    2008-01-01

    The density functional theory of nuclei has come to draw attention of scientists in the field of nuclear structure because the theory is expected to provide reliable numerical data in wide range on the nuclear chart. This article is organized to present an overview of the theory to the people engaged in the theory of other fields as well as those people in the nuclear physics experiments. At first, the outline of the density functional theory widely used in the electronic systems (condensed matter, atoms, and molecules) was described starting from the Kohn-Sham equation derived on the variational principle. Then the theory used in the field of nuclear physics was presented. Hartree-Fock and Hartree-Fock-Bogolyubov approximation by using Skyrme interaction was explained. Comparison of the results of calculations and experiments of binding energies and ground state mean square charge radii of some magic number nuclei were shown. The similarity and dissimilarity between the two streams were summarized. Finally the activities of the international project of Universal Nuclear Energy Density Functional (UNEDF) which was started recently lead by US scientist was reported. This project is programmed for five years. One of the applications of the project is the calculation of the neutron capture cross section of nuclei on the r-process, which is absolutely necessary for the nucleosynthesis research. (S. Funahashi)

  11. Thermodynamical description of excited nuclei

    International Nuclear Information System (INIS)

    Bonche, P.

    1989-01-01

    In heavy ion collisions it has been possible to obtain composite systems at rather high excitation energies corresponding to temperatures of several MeV. The theoretical studies of these systems are based on concepts borrowed from thermodynamics or statistical physics, such as the temperature. In these lectures, we present the concepts of statistical physics which are involved in the physics of heavy ion as they are produced nowadays in the laboratory and also during the final stage of a supernova collapse. We do not attempt to describe the reaction mechanisms which yield such nuclear systems nor their decay by evaporation or fragmentation. We shall only study their static properties. The content of these lectures is organized in four main sections. The first one gives the basic features of statistical physics and thermodynamics necessary to understand quantum mechanics at finite temperature. In the second one, we present a study of the liquid-gas phase transition in nuclear physics. A phenomenological approach of the stability of hot nuclei follows. The microscopic point of view is proposed in the third part. Starting from the basic concepts derived in the first part, it provides a description of excited or hot nuclei which confirms the qualitative results of the second part. Furthermore it gives a full description of most properties of these nuclei as a function of temperature. Finally in the last part, a microscopic derivation of the equation of state of nuclear matter is proposed to study the collapse of a supernova core

  12. Exotic Nuclei and Yukawa's Forces

    International Nuclear Information System (INIS)

    Otsuka, Takaharu; Suzuki, Toshio; Utsuno, Yutaka

    2008-01-01

    In this plenary talk, we will overview the evolution of the shell structure in stable and exotic nuclei as a new paradigm of nuclear structure physics. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The nuclear magic numbers have been believed, since Mayer and Jensen, to be constants as 2, 8, 20, 28, 50, ... This turned out to be changed, once we entered the regime of exotic nuclei. This shell evolution develops at many places on the nuclear chart in various forms. For example, superheavy magic numbers may be altered. Thus, we are led to a new paradigm as to how and where the nuclear shell evolves, and what consequences arise. The evolution of the shell affects weak process transitions, and plays a crucial role in deformation. The π and ρ mesons generate tensor forces, and are the fundamental elements of such intriguing phenomena. Thus, physics of exotic nuclei arises as a manifestation of Yukawa's forces

  13. The colours of Hubble Sc galaxy nuclei

    International Nuclear Information System (INIS)

    Iskudaryan, S.G.

    1975-01-01

    The colorimetric data on the nuclei of the Sc galaxies are given. Comparison of the following parameters: color of a nucleus, integral color of a galaxy, Byurakan class, and spectral type of normal spirals gives the possibility to conclude: (1) The colors of the nuclei of the Sc galaxies have a high dispersion in its values. In all Byurakan classes the galaxies with intensely red and blue nuclei occur; (2) Some Sc galaxies exhibit a discrepancy between the spectral and morphological types. The results of colorimetry of nuclei indicate that almost all such Sc galaxies have intensely red nuclei which, naturally, provide for these late spectral types. It can be assumed that the intensely red color of the nuclei of such Sc galaxies is a result of a new type of activity of these nuclei; and (3) some Sc galaxies show the characteristics of the Markarian objects

  14. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  15. Nuclear charge radii of proton-rich strontium isotopes

    International Nuclear Information System (INIS)

    Eastham, D.A.; Walker, P.M.; Smith, J.R.H.; Warner, D.D.; Griffith, J.A.R.; Evans, D.E.; Wells, S.A.; Fawcett, M.J.; Grant, I.S.

    1987-01-01

    A new technique of atom-photon coincidence laser spectroscopy has been developed and used to study the isotope shifts of /sup 78-84/Sr. The results show that neither the droplet model nor existing interacting boson model calculations can adequately describe the rapid onset of nuclear deformation below N = 50. The odd-even staggering of the charge radius is found to be opposite to that normally encountered, indicating the possible existence of permanent octupole distortions

  16. Beta Decay Study of the T{sub z}=−2{sup 56}Zn Nucleus and the Determination of the Half-Lives of a Few fp-shell Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, B., E-mail: Berta.Rubio@ific.uv.es [IFIC, CSIC-Universidad de Valencia, E-46071 Valencia (Spain); Orrigo, S.E.A. [IFIC, CSIC-Universidad de Valencia, E-46071 Valencia (Spain); Kucuk, L. [Department of Physics, Istanbul University, Istanbul (Turkey); Montaner-Pizá, A. [IFIC, CSIC-Universidad de Valencia, E-46071 Valencia (Spain); Fujita, Y. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); RCNP, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Fujita, H. [RCNP, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Blank, B. [CENBG, Université Bordeaux 1, UMR 5797 CNRS/IN2P3, BP 120, F-33175 Gradignan (France); Gelletly, W. [Department of Physics, University of Surrey, Guildford GU2 7XH, Surrey (United Kingdom); Adachi, T. [RCNP, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Agramunt, J.; Algora, A. [IFIC, CSIC-Universidad de Valencia, E-46071 Valencia (Spain); Ascher, P. [CENBG, Université Bordeaux 1, UMR 5797 CNRS/IN2P3, BP 120, F-33175 Gradignan (France); Bilgier, B. [Department of Physics, Istanbul University, Istanbul (Turkey); Cáceres, L. [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Cakirli, R.B. [Department of Physics, Istanbul University, Istanbul (Turkey); France, G. de [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Ganioğlu, E. [Department of Physics, Istanbul University, Istanbul (Turkey); Gerbaux, M.; Giovinazzo, J.; Grevy, S. [CENBG, Université Bordeaux 1, UMR 5797 CNRS/IN2P3, BP 120, F-33175 Gradignan (France); and others

    2014-06-15

    This paper concerns the experimental study of the β decay properties of few proton-rich fp-shell nuclei. The nuclei were produced at GANIL in fragmentation reactions, separated with the LISE spectrometer and stopped in an implantation detector surrounded by Ge detectors. The β-delayed gammas, β-delayed protons and the exotic β-delayed gamma-proton emission have been studied. Preliminary results are presented. The decay of the T{sub z}=−2 nucleus {sup 56}Zn has been studied in detail. Information from the β-delayed protons and β-delayed gammas has been used to deduce the decay scheme. The exotic beta-delayed gamma-proton decay has been observed for the first time in the fp-shell. The interpretation of the data was made possible thanks to the detailed knowledge of the mirror Charge Exchange (CE) process and the gamma de-excitation of the states in {sup 56}Co, the mirror nucleus of {sup 56}Cu.

  17. Exotic light nuclei and nuclei in the lead region

    International Nuclear Information System (INIS)

    Poppelier, N.A.F.M.

    1989-01-01

    Three methods are discussed for modifying, or renormalizing, a truncated nuclear hamiltonian such that the wave functions obtained by diagonalizing this modified or effective hamiltoniandescribe the nucleus as well as possible: deriving the hamiltonian directly from a realistic nucleon-nucleon interaction between free nucleons; parametrizing the hamiltonian in terms of a number of parameters and determining these parameters from a least-squares fit of calculated properties to experimental data; approximating the nucleon-nucleon (NN) interaction between two nucleons in a nucleus by a simple analytic expression. An effective hamiltonian derived following the second method is applied in a theoretical study of exotic nuclei in the region of Z=2-9 and A=4-30 and the problem of the neutron halo in 11 Li is discussed. Results of shell-model calculations of 20i Pb and nuclei in its neighbourhood are presented in which an effective hamiltonian was employed derived with the last method. The quenching of M1 strength in 208 Pb, and the spectroscopic factors measured in proton knock-out reactions could be described quite satisfactory. Finally, a method is presented for deriving the effective hamiltonian directly from the realistic NN interaction with algebraic techniques. (H.W.). 114 refs.; 34 figs.; 12 tabs.; schemes

  18. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  19. Isospin mixing in light nuclei

    International Nuclear Information System (INIS)

    Ludwig, E.J.; Clegg, T.B.; Fauber, R.E.; Karwowski, H.J.; Mooney, T.M.; Thompson, W.J.

    1985-01-01

    This program has provided accurate measurements of isospin mixing (ΔT = 1,2) in proton elastic scattering on even-even target nuclei up to A = 40. In order to improve experimental results and to test the hypothesis that isospin mixing is dominated by mixing in the target ground state (as opposed to mixing in the compound system) the authors have undertaken to (1) extend the proton scattering results to additional T = 3/2 states in certain compound systems and (2) examine processes which can proceed by only isotensor mixing (ΔT = 2) in order to isolate the effects of that contribution

  20. Nucleon transfer between heavy nuclei

    International Nuclear Information System (INIS)

    Von Oertzen, W.

    1984-02-01

    Nucleon transfer reactions between heavy nuclei are characterized by the classical behaviour of the scattering orbits. Thus semiclassical concepts are well suited for the description of these reactions. In the present contribution the characteristics of single and multinucleon transfer reactions at energies below and above the Coulomb barrier are shown for systems like Sn+Sn, Xe+U and Ni+Pb. The role of the pairing interaction in the transfer of nucleon pairs is illustrated. For strong transitions the coupling of channels and the absorption into more complicated channels is taken into account in a coupled channels calculation

  1. Microscopic structure for light nuclei

    International Nuclear Information System (INIS)

    Sharma, V.K.

    1995-01-01

    The microscopic structure for light nuclei e.g. 4 He, 7 Li and 8 Be is considered in the frame work of the generator coordinate method (GCM). The physical interpretation of our GCM is also discussed. The GC amplitudes are used to calculate the various properties like charge and magnetic RMS radii, form factors, electromagnetic moments, astrophysical S-factor, Bremsstrahlung weighted cross sections, relative wavefunctions and vertex functions etc. All the calculated quantities agree well with the values determined experimentally. (author). 30 refs., 10 figs., 2 tabs

  2. Microscopic properties of superdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Lennart B

    1999-04-01

    Many high spin rotational bands in superdeformed nuclei have been found in the A 140 - 150 region, but so far no linking transitions to known normal-deformed states have been found in these nuclei. Therefore, configuration and spin assignments have to be based on indirect spectroscopic information. Identical bands were first discovered in this region of superdeformed states. At present, some identical bands have also been found at normal deformation, but such bands are more common at superdeformation. Recently lifetime measurements have given relative quadrupole moments with high accuracy. Spectroscopic quantities are calculated using the configuration constrained cranked Nilsson-Strutinsky model with the modified oscillator potential. In a statistical study the occurrence of identical bands is tested. Comparing superdeformed and normal deformed nuclei, the higher possibility for identical bands at superdeformation is understood from calculated reduced widths of the E{sub {gamma}} and J{sup (2)} distributions. The importance of high-N orbitals for identical bands is also discussed. Additivity of electric quadrupole moment contributions in the superdeformed A - 150 region is discussed with the nucleus {sup 152}Dy as a `core`. In analytic harmonic oscillator calculations, the effective electric quadrupole moment q{sub eff}, i.e. the change in the total quadrupole moment caused by the added particle, is expressed as a simple function of the single-particle mass, quadrupole moment q{sub {nu}}. Also in realistic calculations, simple relations between q{sub eff} and q{sub {nu}} can be used to estimate the total electric quadrupole moment, e.g. for the nucleus {sup 142}Sm, by adding the effect of 10 holes, to the total electric quadrupole moment of {sup 152}Dy. Furthermore, tools are given for estimating the quadrupole moment for possible configurations in the superdeformed A - 150 region. For the superdeformed region around {sup 143}Eu, configuration and spin assignments

  3. The Cool Colors Project

    Science.gov (United States)

    Gov. Arnold Schwarzenegger, second from left, a sample from the Cool Colors Project, a roof product ) (Jeff Chiu - AP) more Cool Colors make the front page of The Sacramento Bee (3rd highest circulation newspaper in California) on 14 August 2006! Read the article online or as a PDF. The Cool Colors Project

  4. Exotic nuclei: another aspect of nuclear structure

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Blumenfeld, Y.; Flocard, H.; Garcia Borge, M.J.; Nowacki, F.; Rombouts, S.; Theisen, Ch.; Marques, F.M.; Lacroix, D.; Dessagne, P.; Gaeggeler, H.

    2002-01-01

    This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements

  5. On the distribution of quarks in nuclei

    International Nuclear Information System (INIS)

    Baldin, A.M.; Panebrattsev, V.S.; Stavinskij, V.S.

    1984-01-01

    On the basis of the data on cumulative proton, deuteron and nuclear fragment production in hadr on-nucleon reactions and deep inelastic muon-nucleon scattering quark distributions in light, intemediate and heavy nuclei have been investigated. Conditions of limiting fragmentation of hadrons and nuclei in the studied processes have been investigated to obtain quark-parton structure functions (Gs 2 ) of the studied hadrons or nuclei. Invariant differential cross sections of π + , π - , K + meson production on aluminium, deuterium and lead nuclei and their dependence on scale variable at the transverse momentum value Psub(T) approximately 0 have been obtained. Properties of structure functions G 2 and behaviour of different nuclei differential cross sections of limiting fragmentation have been investigated. It is concluded that considered regularities testify to the presence of multiquark states in nuclei, different by its structure from nUcleons

  6. Barriers in the energy of deformed nuclei

    Directory of Open Access Journals (Sweden)

    V. Yu. Denisov

    2014-06-01

    Full Text Available Interaction energy between two nuclei considering to their deformations is studied. Coulomb and nuclear in-teraction energies, as well as the deformation energies of both nuclei, are taken into account at evaluation of the interaction energy. It is shown that the barrier related to the interaction energy of two nuclei depends on the de-formations and the height of the minimal barrier is evaluated. It is obtained that the heavier nucleus-nucleus sys-tems have large deformation values at the lowest barrier. The difference between the barrier between spherical nuclei and the lowest barrier between deformed nuclei increases with the mass and the charge of the interacting nuclei.

  7. Laser method of free atom nuclei orientation

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1987-01-01

    Orientation process of free atom (atoms in beams) nuclei, scattering quanta of circularly polarized laser radiation is considered. A method for the evaluation of nuclei orientation parameters is developed. It is shown that in the process of pumping between the ground and first excited atomic states with electron shell spins J 1 and J 2 , so that J 2 = J 1 + 1, a complete orientation of nuclei can be attained

  8. Are there multiquark bags in nuclei

    International Nuclear Information System (INIS)

    Kondratyuk, L.A.; Scmatkov, M.Zh.

    1983-01-01

    Arguments are presented favouring the idea that multiquark bags do eXist in nuclei. Such hypothesis makes possible to reveal the relationship among three different scopes of phenomena: deep inelastic scattering of leptons by nUclei, large q 2 (where q 2 is a square of momentum transfer) behaviour of the form factors of light nuclei and yield of cumulative proton.s

  9. Understanding Nuclei in the upper sd - shell

    OpenAIRE

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta; Kshetri, Ritesh; Sarkar, S.

    2013-01-01

    Nuclei in the upper-$sd$ shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A$\\simeq$ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array...

  10. Possible existence of backbending in actinide nuclei

    International Nuclear Information System (INIS)

    Dudek, J.; Nazarewicz, W.; Szymanski, Z.

    1982-01-01

    The possibilities for the backbending effect to occur in actinide nuclei are studied using the pairing-self-consistent independent quasiparticle method. The Hamiltonian used is that of the deformed Woods-Saxon potential plus monopole pairing term. The results of the calculations explain why there is no backbending in most actinide nuclei and simultaneously suggest that in some light neutron deficient nuclei around Th and 22 Ra a backbending effect may occur

  11. Nuclei quadrupole coupling constants in diatomic molecule

    International Nuclear Information System (INIS)

    Ivanov, A.I.; Rebane, T.K.

    1993-01-01

    An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab

  12. Selfconsistent calculations for hyperdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  13. Mass-23 nuclei in astrophysics

    International Nuclear Information System (INIS)

    Fraser, P R; Amos, K; Van der Kniff, D; Canton, L; Karataglidis, S; Svenne, J P

    2015-01-01

    The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22 Na puzzle of ONe white dwarf novae, where the abundance of 22 Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22 Ne, a necessary step in studying the mass-23 nuclei mentioned above. (paper)

  14. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  15. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  16. The asymptotic hadron spectrum, anti-nuclei, hyper-nuclei and quark phase

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1978-01-01

    The only hope of determining the hadronic spectrum in the high mass region is through a study of matter produced in very high energy nuclear collisions. Along the way, exotic nuclei, i.e., anti-nuclei and hyper-nuclei may be produced in appreciable numbers, and the detection of a quark phase may be possible. (orig.) [de

  17. Gamow-Teller decay of T = 1 nuclei to odd-odd N = Z nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lisetskiy, A F [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI 48824 (United States); Gelberg, A [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany); Institute of Physical and Chemical Reasearch (RIKEN), Wako, 351-0198 (Japan); Brentano, P von [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany)

    2005-01-01

    Transition strengths of Gamow-Teller decay of T{sub z} = {+-}1 nuclei to N = Z odd-odd nuclei have been calculated in a two-nucleon approximation for spherical and deformed nuclei. The results obtained for the latter are quite close to the values obtained by full-space shell-model calculations and to the experiment.

  18. New experimental method to study the collective modes in exotic nuclei; influence of the superfluidity on the cooling time of a neutron star; Nouvelle methode experimentale dediee a l'etude des modes collectifs dans les noyaux exotiques; influence de la superfluidite sur le temps de refroidissement d'une etoile a neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Monrozeau, Ch

    2007-07-15

    Giant monopole (GMR) and quadrupole (GQR) resonances have been measured in the {sup 56}Ni using inelastic scattering of 50 A.MeV deuteron at the Grand Accelerateur National d'Ions Lourds facility. This is the first experimental observation of isoscalar collective modes in a short-lived nucleus. The secondary beam was impinged on the active target Maya filled with a pure deuterium gas. Recoiling deuterons were detected in Maya and in a wall of nine silicon detectors. The GMR and GQR are centered at 19.3(0.5) and 16.2(0.5) MeV, respectively. Corresponding angular distributions were extracted from 3 to 7 degrees in the centre of mass frame. DWBA analysis based on RPA transition densities yields the percentage of the energy weighted sum rule exhausted: 136(27) % for the GMR et 76(13) % for the GQR. A finite temperature Hartree-Fock-Bogoliubov model was implemented to describe the 10 Wigner-Seitz cells which compose the inner crust of neutron stars and to microscopically calculate their specific heat. Calculations are performed with two contact pairing forces chosen to simulate the pairing properties of uniform neutron matter corresponding to the BCS approximation and to polarisation effects. Under the assumption of a rapid cooling of the core and an initial temperature of 100 keV in the inner crust, the cooling time of the star was estimated at 9 and 34 years, respectively. (author)

  19. First observation of the nuclei {sup 45}Fe and {sup 49}Ni (T{sub Z} = - 7/2) and {sup 42}Cr (T{sub Z} = - 3); Premiere observation des noyaux {sup 45}Fe et {sup 49}Ni (T{sub Z} = - 7/2) et {sup 42}Cr (T{sub Z} = - 3)

    Energy Technology Data Exchange (ETDEWEB)

    Blank, B.; Czajkowski, S.; Davi, F.; Del Moral, R.; Fleury, A.; Marchand, C.; Pravikoff, M.S. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); Dufour, J.P. [URA 451, Gradignan (France); Benlliure, J.; Boue, F.; Collatz, R.; Heinz, A.; Hellstroem, M.; Hu, Z.; Roeckl, E.; Shibata, M.; Suemmerer, K. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Janas, Z.; Karny, M.; Pfuetzner, M. [Institute of Experimental Physics, University of Warsaw, PL-00 681 Warszawa (Poland); Lewitowicz, M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)

    1997-06-01

    The two-proton radioactivity from the ground states was predicted by V.I. Goldanskii; it can take place either by {sup 2}He emission or by the simultaneous emission of two spatially non-correlated protons. For the nuclei liable to this type of radioactivity the single proton emission is energetically forbidden. The two-proton decay was observed for {sup 6}Be{sup 2} and {sup 12}O{sup 3} but the Q-value of the reaction is high above the Coulomb barrier and as such does not permit a decay process of a sufficient long lifetime. Theoretical calculations by B.A. Brawn predict {sup 39}Ti, {sup 45}Fe and {sup 48}Ni as the best candidates with the 2p emission lifetime within 1{mu}s to 150 ms. Only {sup 39}Ti decay has been observed so far. As candidate for 2p radioactivity nuclei we studied {sup 38}Ti, {sup 42}Cr, {sup 45}Fe and {sup 48`49}Ni. A primary beam of {sup 58}Ni at 600 MeV/nucleon from the SIS synchrotron at GSI was used to produce proton-rich isotopes in the titanium-to-nickel region by projectile fragmentation on a beryllium target. The fragment were separated by the projectile-fragment separator FRS and unambiguously identified by means of its standard detection set-up using a ToF-{Delta}E-B{rho} analysis. We report here the first observation of the T{sub Z} = - 7/2 nuclei {sup 45}Fe and {sup 49}Ni, the most proton-rich nuclei ever synthesized with an excess and seven protons. In addition, the new isotope {sup 42}Cr (T{sub Z} -3) was also identified. These isotopes are, according to commonly used mass predictions, all unbound with respect to two-proton emission from their ground states. However, we did not observe any count corresponding to {sup 38}Ti (T{sub Z} -3) although we expected about 5 counts in a setting optimized for this isotope 6 refs.

  20. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  1. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  2. Composite hadrons and relativistic nuclei

    International Nuclear Information System (INIS)

    Blankenbecler, R.

    1978-01-01

    Lectures are presented describing a model of hadronic scattering at large momentum transfer, either transverse or longitudinal. This model emphasizes in this regime the importance of forces involving the interchange of constituents of the hadrons, hence its name, the constituent interchange model CIM. The CIM is a rearrangement of standard perturbation theory to take into account the fact that the binding force is very strong in color singlet states (singlet dominance). The hard scattering expansion, incoherence problems, nuclear wave functions and counting rules, interaction between nuclei, pion and proton yields and form factors, structure functions and nonscaling, massive lepton pairs, hadrons at large transverse momentum, and quark-quark scattering are treated. 49 references

  3. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  4. Order against chaos in nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1995-01-01

    Order and chaos and order-to-chaos transition are treated in terms of nuclear wave functions. A quasiparticle-phonon interaction is responsible for the fragmentation of one- and many-quasiparticle and phonon states and for the mixing of closely spaced states. Complete damping of one-quasiparticle states cannot be considered as a transition to chaos due to large many-quasiparticle or quasiparticle-phonon terms in their wave functions. An experimental investigation of the strength distribution of many-quasiparticle and quasiparticle-phonon states should uncover a new region of a regularity in nuclei at intermediate excitation energy. A chaotic behaviour of nuclear states can be shifted to higher excitation energies. ((orig.))

  5. Relativistic description of atomic nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters

  6. Electric quadrupole strength in nuclei

    International Nuclear Information System (INIS)

    Kirson, M.W.

    1979-01-01

    Isoscalar electric quadrupole strength distributions in nuclei are surveyed, and it is concluded that the strength is shared, in most cases, roughly equally between low-lying transitions and the giant quadrupole state. The same is not true of the isovector case. A simple extension of the schematic model gives a remarkably successul description of the data, and emphasizes the vital importance of the coupling between high-lying and low-lying quadrupole modes. The standadrd simple representation of the giant quadrupole resonance as produced by operating on the nuclear ground state with the quadrupole transition operator is not applicable to the isoscalar case. It is suggested that giant resonances fall into broad classes of similar states, with considerable qualitative differences between the distinct classes. (author)

  7. Cavitation Nuclei: Experiments and Theory

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2009-01-01

    The Swedish astrophysicist and Nobel Prize winner Hannes Alfven said: Theories come and go - the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from the lack of knowledge of decisive parameters, and therefore at best the theory...... becomes insufficient. Contrary, the experiment always reveals nature itself, though at prevailing experimental conditions. With essential parameters being out of control and even maybe unidentified, apparently similar experiments may deviate way beyond our expectations. However, these discrepancies offer...... us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories - and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character....

  8. Femtometer toroidal structures in nuclei

    International Nuclear Information System (INIS)

    Forest, J.L.; Pandharipande, V.R.; Pieper, S.C.; Wiringa, R.B.; Schiavilla, R.; Arriaga, A.

    1996-01-01

    The two-nucleon density distributions in states with isospin T=0, spin S=1, and projection M S =0 and ±1 are studied in 2 H, 3,4 He, 6,7 Li, and 16 O. The equidensity surfaces for M S =0 distributions are found to be toroidal in shape, while those of M S =±1 have dumbbell shapes at large density. The dumbbell shapes are generated by rotating tori. The toroidal shapes indicate that the tensor correlations have near maximal strength at r 3 He, 4 He, and 6 Li. The toroidal distribution has a maximum-density diameter of ∼1 fm and a half-maximum density thickness of ∼0.9 fm. Many realistic models of nuclear forces predict these values, which are supported by the observed electromagnetic form factors of the deuteron, and also predicted by classical Skyrme effective Lagrangians, related to QCD in the limit of infinite colors. Due to the rather small size of this structure, it could have a revealing relation to certain aspects of QCD. Experiments to probe this structure and its effects in nuclei are suggested. Pair distribution functions in other T,S channels are also discussed; those in T,S=1,1 have anisotropies expected from one-pion-exchange interactions. The tensor correlations in T,S=0,1 states are found to deplete the number of T,S=1,0 pairs in nuclei and cause a reduction in nuclear binding energies via many-body effects. copyright 1996 The American Physical Society

  9. Quarks and mesons in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1981-01-01

    Quantum chromodynamics is believed to be candidate theory for the strong interactions and contains as its ingredients spinor quark fields and vector gluons, none of which can perhaps be ever liberated and detected in laboratories. A nucleus consists of nucleons bound by nuclear force which are however separately observable and which seem to preserve their identities even under extreme conditions. An intriguing question is: when compressed to high densities or heated to high temperature, at what point does a nuclear matter cease to be describable in terms of nucleon and meson degrees of freedom, but become a plasma of quarks and gluons; and how does this transition occur. This is not an idle question. If quarks and gluons are never to be observed isolated, then it may be that at low energies (or at low densities) they are not the right variables to do physics with. Instead hadrons must be. On the other hand, asymptotic freedom - the unique property of non-abelian gauge theories to which QCD belongs that quark-gluon and gluon-gluon interactions get weaker at short distances - tells us that at some large matter density the matter must necessarily be in the form of quark gas interacting only weakly. This means that a change in degrees of freedom must take place. We would like to know where this occurs and how. In this talk, I would like to address to this question by discussing first the large success we have had in understanding the role that mesons play in finite nuclei and nuclear matter and then attempting to correlate nucleon and meson degrees of freedom to quark-gluon degrees of freedom. In my opinion we are now at a stage where we feel fairly confident in our understanding of nucleon-meson structure of nuclei and nuclear matter and any further progress in deeper understanding of nuclear dynamics - and strong interactions - must come from QCD or its effective version, bags or strings. (orig.)

  10. Mean-field models and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M; Buervenich, T; Maruhn, J A; Greiner, W [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P G [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)

    1998-06-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  11. High-spin excitations of atomic nuclei

    International Nuclear Information System (INIS)

    Xu Furong; National Laboratory of Heavy Ion Physics, Lanzhou; Chinese Academy of Sciences, Beijing

    2004-01-01

    The authors used the cranking shell model to investigate the high-spin motions and structures of atomic nuclei. The authors focus the collective rotations of the A∼50, 80 and 110 nuclei. The A∼50 calculations show complicated g spectroscopy, which can have significant vibration effects. The A≅80 N≅Z nuclei show rich shape coexistence with prolate and oblate rotational bands. The A≅110 nuclei near the r-process path can have well-deformed oblate shapes that become yrast and more stable with increasing rotational frequency. As another important investigation, the authors used the configuration-constrained adiabatic method to calculate the multi-quasiparticle high-K states in the A∼130, 180 and superheavy regions. The calculations show significant shape polarizations due to quasi-particle excitations for soft nuclei, which should be considered in the investigations of high-K states. The authors predicted some important high-K isomers, e.g., the 8 - isomers in the unstable nuclei of 140 Dy and 188 Pb, which have been confirmed in experiments. In superheavy nuclei, our calculations show systematic existence of high-K states. The high-K excitations can increase the productions of synthesis and the survival probabilities of superheavy nuclei. (authors)

  12. Microscopic Cluster Theory for Exotic Nuclei

    International Nuclear Information System (INIS)

    Tomaselli, M; Kuehl, T; Ursescu, D; Fritzsche, S

    2006-01-01

    For a better understanding of the dynamics of complex exotic nuclei it is of crucial importance to develop a practical microscopic theory easy to be applied to a wide range of masses. In this paper we propose to calculate the structure of neutron-rich nuclei within a dynamic model based on the EoM theory

  13. Reentrainment of radioactive nuclei from filters

    International Nuclear Information System (INIS)

    Dincklage, R.-D. von

    1982-01-01

    The possible relevance of atomic phenomena for the reentrainment of radioactive nuclei is discussed. The considerations are based on the coulombic fragmentation mechanism. Nuclei of potential interest in reprocessing technology are identified. Future experiments have been shown to be of definite need in this field. (author)

  14. Thermodynamics of pairing phase transition in nuclei

    International Nuclear Information System (INIS)

    Karim, Afaque; Ahmad, Shakeb

    2014-01-01

    The pairing gaps, pairing energy, heat capacity and entropy are calculated within BCS (Bardeen- Cooper-Schrieffer) based quasi particle approach, including thermal fluctuations on pairing field within pairing model for all nuclei (light, medium, heavy and super heavy nuclei). Quasi particles approach in BCS theory was introduced and reformulated to study various properties. For thermodynamic behavior of nuclei at finite temperatures, the anomalous averages of creation and annihilation operators are introduced. It is solved self consistently at finite temperatures to obtain BCS Hamiltonian. After doing unitary transformation, we obtained the Hamiltonian in the diagonal form. Thus, one gets temperature dependence gap parameter and pairing energy for nuclei. Moreover, the energy at finite temperatures is the sum of the condensation energy and the thermal energy of fermionic quasi particles. With the help of BCS Hamiltonian, specific heat, entropy and free energy are calculated for different nuclei. In this paper the gap parameter occupation number and pairing energy as a function of temperature which is important for all the light, medium, heavy and super heavy nuclei is calculated. Moreover, the various thermo dynamical quantities like specific heat, entropy and free energy is also obtained for different nuclei. Thus, the thermodynamics of pairing phase transition in nuclei is studied

  15. Mean-field models and exotic nuclei

    International Nuclear Information System (INIS)

    Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W.; Rutz, K.; Reinhard, P.G.

    1998-01-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  16. Static and dynamical properties of hot nuclei

    International Nuclear Information System (INIS)

    Suraud, E.

    1990-01-01

    We briefly review our understanding of the formation of excited/hot nuclei in heavy-ion collisions at some tens of MeV/A. We recall the major theoretical frameworks used for describing as well the entrance channel of the reaction as the structure properties of hot nuclei. We finally focus on multifragmentation within insisting upon the theoretical challenge it does represent

  17. Masses of nuclei close to the dripline

    International Nuclear Information System (INIS)

    Herfurth, F.; Blaum, K.; Audi, G.; Lunney, D.; Beck, D.; Kluge, H.J.; Rodriguez, D.; Sikler, G.; Weber, C.; Bollen, G.; Schwarz, S.; Kellerbauer, A.

    2003-01-01

    Mass measurements of radioactive nuclides are one of the cornerstones of our understanding of the nucleus. The Penning trap spectrometer ISOLTRAP performs direct mass measurements far away from the valley of stability, as well as high-precision measurements of key nuclei to anchor long decay chains. Both schemes provide valuable information on the dripline itself and on nuclei in its close vicinity. (orig.)

  18. Quasars, Seyfert galaxies and active galactic nuclei

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1987-01-01

    This chapter is devoted to the spectroscopic methods for analyzing the observed plasma in the nuclei of quasars, Seyfert galazies, and active galactic nuclei. Both the narrow-line region and the broad-line region are discussed. Physical models are presented

  19. Single Particle Entropy in Heated Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Syed, N. U. H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2006-01-01

    The thermal motion of single particles represents the largest contribution to level density (or entropy) in atomic nuclei. The concept of single particle entropy is presented and shown to be an approximate extensive (additive) quantity for mid-shell nuclei. A few applications of single particle entropy are demonstrated

  20. Quantum phase transitions in atomic nuclei

    International Nuclear Information System (INIS)

    Zamfir, N.V.

    2005-01-01

    Studies of quantum phase transitions in mesoscopic systems and applications to atomic nuclei are presented. Analysis in terms of the Interacting Boson Model shows that the main features persist even for moderate number of particles. Experimental evidence in rare-earth nuclei is discussed. New order and control parameters for systems with the same number of particles are proposed. (author)

  1. Structure and clusters of light unstable nuclei

    International Nuclear Information System (INIS)

    En'yo, Yoshiko

    2010-01-01

    As it is known, cluster structures are often observed in light nuclei. In the recent evolution of unstable nuclear research (on nuclei having unbalanced number of neutron and proton) further new types of clusters are coming to be revealed. In this report, structures of light unstable nuclei and some of the theoretical models to describe them are reviewed. The following topics are picked up. 1. Cluster structure and theoretical models, 2. Cluster structure of unstable nuclei (low excited state). 3. Cluster structure of neutron excess beryllium isotopes. 4. Cluster gas like state in C isotope. 5. Dineutron structure of He isotopes. Numbers of strange nuclear structures of light nuclei are illustrated. Antisymmetrized molecular dynamics (AMD) is the recently developed theoretical framework which has been successfully used in heavy ion reactions and nuclear structure studies. Successful application of AMD to the isotopes of Be, B and C are illustrated. (S. Funahashi)

  2. Structure of Light Neutron-rich Nuclei

    International Nuclear Information System (INIS)

    Dlouhy, Zdenek

    2007-01-01

    In this contribution we searched for irregularities in various separation energies in the frame of mass measurement of neutron-rich nuclei at GANIL. On this basis we can summarize that the new doubly magic nuclei are 8 He, 22 O and 24 O. They are characterized by extra stability and, except 24 O, they cannot accept and bind additional neutrons. However, if we add to these nuclei a proton we obtain 9 Li and 25 F which are the core for two-neutron halo nucleus 11 Li and enables that fluorine can bound even 6 more neutrons, respectively. In that aspect the doubly magic nuclei in the neutron-rich region can form the basis either for neutron halo or very neutron-rich nuclei. (Author)

  3. Strength of Coriolis Coupling in actinide nuclei

    International Nuclear Information System (INIS)

    Peker, L.K.; Rasmussen, J.O.; Hamilton, J.H.

    1982-01-01

    Coriolis Coupling V/sub cor/ plays an important role in deformed nuclei. V/sub cor/ is proportional to h 2 /J[j (j + 1) -Ω (Ω + 1)]/sup 1/2/ and therefore is particularly significant in the nuclei with large j and low Ω Nilsson levels close to Fermi surface: n(i/sub 13/2/) in A = 150 to 170 rare-earth nuclei and p(i/sub 13/2/) and n(j/sub 15/2/) in A greater than or equal to 224 actinide nuclei. Because of larger j (n(j/sub 15/2/) versus n(i/sub 13/2/)) and smaller deformations (β approx. = 0.22 versus β 0.28) it was reasonable to expect that in actinide nuclei Coriolis effects are stronger than in the rare earth nuclei. Recently it was realized that the strength of observed Coriolis effects depends not only on the genuine Coriolis Coupling but also on the interplay between Coriolis ad pairing forces which leads to an interference between the wave functions of two mixing rotational bands. As a consequence the effective interaction V/sub eff/ of both bands is an oscillating function of the degree of shell filling (or chemical potential lambda F). It was shown that in the rare earth nuclei this interference strongly influenced conclusions about the trends in the Coriolis coupling strength and explained many of the observed band-mixing features (the sharpness of back banding curves, details of the blocking effect etc.). From theoretical analysis it was concluded that in the majority of actinide nuclei the effective interaction V/sub eff/ is strong, and therefore the Coriolis band-mixing have to be very strong. In this paper we would like to demonstrate that contrary to these predictions experimental data suggest that Coriolis band mixing in studied actinide nuclei is relatively weak and possibly significantly weaker than in rare earth nuclei

  4. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  5. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  6. New results with stored exotic nuclei at relativistic energies

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, F. (Fritz); Boutin, D. (Daniel); Fastermann, T. (Thomas); Falch, M. (Markus); Franzke, B. (Bernhard); Hausmann, M. (Marc); Hellstrom, M. (Margarete); Kaza, E. (Evangelia); Kerscher, T. (Thomas); Klepper, O. (Otto); Kluge, H.-Jürgen; Kozhuharov, C. (Christophor); Kratz, K. L.; Litinov, S. A. (Sergei A); Lobner, G. K. E. (Gunther K. E.); Maier, L. (Ludwig); Matos, M. (Milan); Munzenberg, G. (Gottfried); Nolden, F. (Fritz); Novikov, Y. N. (Yuri N.); Ohtsubo, T. (Takashi); Ostrowski, A. (Alexander); Patyk, Z. (Zygmund); Pfeiffer, B.; Portillo, M. (Mauricio); Radon, T. P. (Torsten P.); Scheidenberger, C. (Christoph); Shishkin, V. (Vladimir); Stadlman, J. (Jens); Steck, M. (Markus); Vieira, D. J. (David J.); Weick, H. (Helmut); Winkler, M. (Martin); Wollnik, Hermann; Yamaguchi, T. (Takayuki)

    2004-01-01

    Recently, much progress has been made with stored exotic nuclei at relativistic velocities v/c = 0.7. Fragments of {sup 208}Pb and {sup 209}Bi projectiles and fission fragments from {sup 238}U ions have been produced, separated in flight with the fragment separator FRS, and injected into the storage-cooler ring ESR for precision measurements. Precise masses of neutron-deficient isotopes in the lead region have been measured with time-resolved Schottky Mass Spectrometry (SMS). A new isospin dependence of the pairing energy was observed due to the improved mass accuracy of typical 1.5 x 10{sup -7} (30 keV). New masses of short-lived neutron-rich fission fragments have been obtained with Isochronous Mass Spectrometry (IMS). An innovative field of spectroscopy has been opened up with lifetime measurements of stored bare and few-electron fragments after applying both stochastic and electron cooling.

  7. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  8. Power electronics cooling apparatus

    Science.gov (United States)

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  9. Semioptimal practicable algorithmic cooling

    International Nuclear Information System (INIS)

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  10. RADIO VARIABILITY IN SEYFERT NUCLEI

    International Nuclear Information System (INIS)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2009-01-01

    Comparison of 8.4 GHz radio images of a sample of eleven, early-type Seyfert galaxies with previous observations reveals possible variation in the nuclear radio flux density in five of them over a seven year period. Four Seyferts (NGC 2110, NGC 3081, MCG -6-30-15, and NGC 5273) show a decline in their 8.4 GHz nuclear flux density between 1992 and 1999, while one (NGC 4117) shows an increase; the flux densities of the remaining six Seyferts (Mrk 607, NGC 1386, Mrk 620, NGC 3516, NGC 4968, and NGC 7465) have remained constant over this period. New images of MCG -5-23-16 are also presented. We find no correlation between radio variability and nuclear radio luminosity or Seyfert nuclear type, although the sample is small and dominated by type 2 Seyferts. Instead, a possible correlation between the presence of nuclear radio variability and the absence of hundred parsec-scale radio emission is seen, with four out of five marginally resolved or unresolved nuclei showing a change in nuclear flux density, while five out of six extended sources show no nuclear variability despite having unresolved nuclear sources. NGC 2110 is the only source in our sample with significant extended radio structure and strong nuclear variability (∼38% decline in nuclear flux density over seven years). The observed nuclear flux variability indicates significant changes are likely to have occurred in the structure of the nucleus on scales smaller than the VLA beam size (i.e., within the central ∼0.''1 (15 pc)), between the two epochs, possibly due to the appearance and fading of new components or shocks in the jet, consistent with previous detection of subparsec-scale nuclear structure in this Seyfert. Our results suggest that all Seyferts may exhibit variation in their nuclear radio flux density at 8.4 GHz, but that variability is more easily recognized in compact sources in which emission from the variable nucleus is not diluted by unresolved, constant flux density radio jet emission

  11. A new spin on nuclei

    International Nuclear Information System (INIS)

    Clark, R.; Wadsworth, B.

    1998-01-01

    Magnetic rotation is a new phenomenon that is forcing physicists to rethink their understanding of what goes on inside the nucleus The rotation of quantum objects has a long and distinguished history in physics. In 1912 the Danish scientist Niels Bjerrum was the first to recognize that the rotation of molecules is quantized. In 1938 Edward Teller and John Wheeler observed similar features in the spectra of excited nuclei, and suggested that this was caused by the nucleus rotating. But a more complete explanation had to wait until 1951, when Aage Bohr (the son of Niels) pointed out that rotation was a consequence of the nucleus deforming from its spherical shape. We owe much of our current understanding of nuclear rotation to the work of Bohr and Ben Mottelson, who shared the 1975 Nobel Prize for Physics with James Rainwater for developing a model of the nucleus that combined the individual and collective motions of the neutrons and protons inside the nucleus. What makes it possible for a nucleus to rotate? Quantum mechanically, a perfect sphere cannot rotate because it appears the same when viewed from any direction and there is no point of reference against which its change in position can be detected. To see the rotation the spherical symmetry must be broken to allow an orientation in space to be defined. For example, a diatomic molecule, which has a dumbbell shape, can rotate about the two axes perpendicular to its axis of symmetry. A quantum mechanical treatment of a diatomic molecule leads to a very simple relationship between rotational energy, E, and angular momentum. This energy is found to be proportional to J(J + 1), where J is the angular momentum quantum number. The molecule also has a magnetic moment that is proportional to J. These concepts can be applied to the atomic nucleus. If the distribution of mass and/or charge inside the nucleus becomes non-spherical then the nucleus will be able to rotate. The rotation is termed ''collective'' because many

  12. Symmetry and Phase Transitions in Nuclei

    International Nuclear Information System (INIS)

    Iachello, F.

    2009-01-01

    Phase transitions in nuclei have received considerable attention in recent years, especially after the discovery that, contrary to expectations, systems at the critical point of a phase transition display a simple structure. In this talk, quantum phase transitions (QPT), i.e. phase transitions that occur as a function of a coupling constant that appears in the quantum Hamiltonian, H, describing the system, will be reviewed and experimental evidence for their occurrence in nuclei will be presented. The phase transitions discussed in the talk will be shape phase transitions. Different shapes have different symmetries, classified by the dynamic symmetries of the Interacting Boson Model, U(5), SU(3) and SO(6). Very recently, the concept of Quantum Phase Transitions has been extended to Excited State Quantum Phase Transitions (ESQPT). This extension will be discussed and some evidence for incipient ESQPT in nuclei will be presented. Systems at the critical point of a phase transition are called 'critical systems'. Approximate analytic formulas for energy spectra and other properties of 'critical nuclei', in particular for nuclei at the critical point of the second order U(5)-SO(6) transition, called E(5), and along the line of first order U(5)-SU(3) transitions, called X(5), will be presented. Experimental evidence for 'critical nuclei' will be also shown. Finally, the microscopic derivation of shape phase transitions in nuclei within the framework of density functional methods will be briefly discussed.(author)

  13. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  14. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  15. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Vakilian, M.

    1977-05-01

    The present study is the second part of a general survey of Gas Cooled Reactors (GCRs). In this part, the course of development, overall performance and present development status of High Temperature Gas Cooled Reactors (HTCRs) and advances of HTGR systems are reviewed. (author)

  16. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  17. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  18. Direct mass measurements of {sup 100}Sn and magic nuclei near the N=Z line; Mesures directes des masses de {sup 100}Sn et de noyaux exotiques proches de la ligne N = Z

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, M

    1996-10-31

    The masses of nuclei far from stability are of particular interest in nuclear structure studies, and many methods of varying precision have been developed to undertake their measurement. A direct time of flight technique in conjunction with the SPEG spectrometer at GANIL has been extended to the mass measurement of proton-rich nuclei near N = Z line in the mass region A {approx_equal} 60-80 known to provide input for astrophysical modelling of the rp-process and information relevant to the nuclear structure in a region of high deformation. The radioactive beams were produced via the fragmentation of a {sup 78}Kr beam on a {sup nat}Ni target, using the new SISSI device. A purification method based on the stripping of the secondary ions was successfully used for the first time, and the masses of {sup 70}Se and {sup 71}Se were measured. In order to improve the mass resolution for heavier nuclei, another method using the second cyclotron of GANIL (CSS2) as a high resolution spectrometer has been developed. An experiment aimed at measuring the masses of A 100 isobars in the vicinity of the doubly magic nucleus {sup 100}Sn was successfully performed, using this original technique. Secondary ions of {sup 100}Ag, {sup 100}Cd, {sup 100}In and {sup 100}Sn produced via fusion-evaporation reaction {sup 50}Cr + {sup 58}Ni and simultaneously accelerated in the CSS2 cyclotron. The mass of {sup 100}Cd and, for the first time, the masses of {sup 100}Sn were determined directly with respect to the reference mass of {sup 100}Ag. These results have been compared to various theoretical predictions and open the discussion on considerations of spin-isospin symmetry. (author). 96 refs.

  19. Neutron rich nuclei around 132Sn

    International Nuclear Information System (INIS)

    Bhattacharya, Sarmishtha

    2016-01-01

    The neutron rich nuclei with few particles or holes in 132 Sn have various experimental and theoretical interest to understand the evolution of nuclear structure around the doubly magic shell closure Z=50 and N=82. Some of the exotic neutron rich nuclei in this mass region are situated near waiting points in the r-process path and are of special astrophysical interest. Neutron rich nuclei near 132 Sn have been studied using fission fragment spectroscopy. The lifetime of low lying isomeric states have been precisely measured and the beta decay from the ground and isomeric states have been characterized using gamma-ray spectroscopy

  20. Collective models of transition nuclei Pt. 2

    International Nuclear Information System (INIS)

    Dombradi, Zs.

    1982-01-01

    The models describing the even-odd and odd-odd transition nuclei (nuclei of moderate ground state deformation) are reviewed. The nuclear core is described by models of even-even nuclei, and the interaction of a single particle and the core is added. Different models of particle-core coupling (phenomenological models, collective models, nuclear field theory, interacting boson-fermion model, vibration nucleon cluster model) and their results are discussed. New developments like dynamical supersymmetry and new research trends are summarized. (D.Gy.)

  1. Coulomb energy differences in mirror nuclei

    International Nuclear Information System (INIS)

    Lenzi, Silvia M

    2006-01-01

    By comparing the excitation energies of analogue states in mirror nuclei, several nuclear structure properties can be studied as a function of the angular momentum up to high spin states. They can be described in the shell model framework by including electromagnetic and nuclear isospin-non-conserving interactions. Calculations for the mirror energy differences in nuclei of the f 7/2 shell are described and compared with recent experimental data. These studies are extended to mirror nuclei in the upper sd and fp shells

  2. Bound states of Θ+ in nuclei

    International Nuclear Information System (INIS)

    Oset, E.; Cabrera, D.; Li, Q.B.; Magas, V.K.; Vicente Vacas, M.J.

    2005-01-01

    We study the binding energy and the width of the Θ + in nuclei, associated to the KN and KπN components. The first one leads to negligible contributions while the second one leads to a sizeable attraction, enough to bind the Θ + in nuclei. Pauli blocking and binding effects on the KN decay reduce considerably the Θ + decay width in nuclei and medium effects associated to the KπN component also lead to a very small width, as a consequence of which one finds separation between the bound levels considerably larger than the width of the states

  3. Is there chirality in atomic nuclei?

    International Nuclear Information System (INIS)

    Meng Jie

    2009-01-01

    Static chiral symmetries are common in nature, for example, the macroscopic spirals of snail shells, the microscopic handedness of certain molecules, and human hands. The concept of chirality in atomic nuclei was first proposed in 1997, and since then many efforts have been made to understand chiral symmetry and its spontaneous breaking in atomic nuclei. Recent theoretical and experimental progress in the verification of chirality in atomic nuclei will be reviewed, together with a discussion of the problems that await to be solved in the future. (authors)

  4. Bubble nuclei in relativistic mean field theory

    International Nuclear Information System (INIS)

    Shukla, A.; Aberg, S.; Patra, S.K.

    2011-01-01

    Bubble nuclei are characterized by a depletion of their central density, i.e. the formation of the proton or neutron void and subsequently forming proton or neutron bubble nuclei. Possibility of the formation of bubble nuclei has been explored through different nuclear models and in different mass regions. Advancements in experimental nuclear physics has led our experimental access to many new shapes and structures, which were inaccessible hitherto. In the present paper, the possibility of observing nuclear bubble in oxygen isotopes, particularly for 22 O has been studied

  5. Formation and decay of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1992-09-01

    The mechanisms involved in hot nuclei formation and decay and their eventual connexion with fundamental properties of nuclear matter are discussed, i.e. its equation of state is considered. After a brief review of the reactions in which hot nuclei can be formed, the variables which are used to describe them, the corresponding theoretical descriptions and their limits when extreme states are reached are discussed. Experimental evidences for hot nuclei formation are presented, with the corresponding decay properties used as signatures. (R.P.) 64 refs.; 25 figs.; 2 tabs

  6. Hot nuclei: high temperatures, high angular momenta

    International Nuclear Information System (INIS)

    Guerreau, D.

    1991-01-01

    A review is made of the present status concerning the production of hot nuclei above 5 MeV temperature, concentrating mainly on the possible experimental evidences for the attainment of a critical temperature, on the existence of dynamical limitations to the energy deposition and on the experimental signatures for the formation of hot spinning nuclei. The data strongly suggest a nuclear disassembly in collisions involving very heavy ions at moderate incident velocities. Furthermore, hot nuclei seem to be quite stable against rotation on a short time scale. (author) 26 refs.; 12 figs

  7. Evolution of planetary nebula nuclei

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1985-01-01

    The evolution of planetary nebula nuclei (PNNs) is examined with the aid of the most recent available stellar evolution calculations and new observations of these objects. Their expected distribution in the log L-log T plane is calculated based upon the stellar evolutionary models of Paczynski, Schoenberner and Iben, the initial mass function derived by Miller and Scalo, and various assumptions concerning mass loss during post-main sequence evolution. The distribution is found to be insensitive both to the assumed range of main-sequence progenitor mass and to reasonable variations in the age and the star forming history of the galactic disk. Rather, the distribution is determined by the strong dependence of the rate of stellar evolution upon core mass, the steepness of the initial mass function, and to a lesser extent the finite lifetime of an observable planetary nebula. The theoretical distributions are rather different than any of those inferred from earlier observations. Possible observational selection effects that may be responsible are examined, as well as the intrinsic uncertainties associated with the theoretical model predictions. An extensive photometric and smaller photographic survey of southern hemisphere planetary nebulae (PNs) is presented

  8. Shape nuclei and nuclear reactions

    International Nuclear Information System (INIS)

    Yushkov, A.V.

    1975-01-01

    Experimental methods for obtaining the nucleus shape parameters are reviewed throughout the period of 1955-1975. Spatial properties of a nucleus, which can be directly or indirectly measured, are determined. They include: parameters of nucleus localization in space; parameters characterizing the nucleus nonsphericity; parameters of the nucleus nonaxiality. Dimensional parameters of a nucleus, namely, radius R and surface ΔR are derived from electron scattering. The deformation sign is indirectly obtained in the experiments. Parameters of the nucleus shape, namely, the sign and magnitude of nuclear deformation are derived from the mean energy proton scattering by a coupled channels method. The only direct way of deriving the nucleus surface deformation signs is the method of the Blaire phase shift. Results on scattering of electrons, protons, and α-particles on light and medium nuclei are reported. Data on the nucleus shape can be also obtained from reactions with heavy ions. A difference between strong absorptions of incident particles of high and average energy by a nucleus is noted. Numerous diagrams illustrate experimental and theoretical results

  9. Clusters in Nuclei. Vol. 2

    International Nuclear Information System (INIS)

    Beck, Christian

    2012-01-01

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This second volume follows the successful Lect. Notes Phys. 818 (Vol.1), and comprises six extensive lectures covering the following topics: - Microscopic cluster models - Neutron halo and break-up reactions - Break-up reaction models for two- and three-cluster projectiles - Clustering effects within the di-nuclear model - Nuclear alpha-particle condensates - Clusters in nuclei: experimental perspectives By promoting new ideas and developments while retaining a pedagogical style of presentation throughout, these lectures will serve as both a reference and an advanced teaching manual for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)

  10. Clusters in Nuclei. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Christian (ed.) [Strasbourg Univ. (France). Inst. Pluridiciplinaire Hubert Curien

    2012-07-01

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This second volume follows the successful Lect. Notes Phys. 818 (Vol.1), and comprises six extensive lectures covering the following topics: - Microscopic cluster models - Neutron halo and break-up reactions - Break-up reaction models for two- and three-cluster projectiles - Clustering effects within the di-nuclear model - Nuclear alpha-particle condensates - Clusters in nuclei: experimental perspectives By promoting new ideas and developments while retaining a pedagogical style of presentation throughout, these lectures will serve as both a reference and an advanced teaching manual for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)

  11. Reactor core cooling device

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro.

    1986-01-01

    Purpose: To safely and effectively cool down the reactor core after it has been shut down but is still hot due to after-heat. Constitution: Since the coolant extraction nozzle is situated at a location higher than the coolant injection nozzle, the coolant sprayed from the nozzle, is free from sucking immediately from the extraction nozzle and is therefore used effectively to cool the reactor core. As all the portions from the top to the bottom of the reactor are cooled simultaneously, the efficiency of the reactor cooling process is increased. Since the coolant extraction nozzle can be installed at a point considerably higher than the coolant injection nozzle, the distance from the coolant surface to the point of the coolant extraction nozzle can be made large, preventing cavitation near the coolant extraction nozzle. Therefore, without increasing the capacity of the heat exchanger, the reactor can be cooled down after a shutdown safely and efficiently. (Kawakami, Y.)

  12. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  13. The morphology of cometary nuclei

    Science.gov (United States)

    Keller, H. U.; Jorda, L.

    comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of

  14. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  15. Understanding nuclei in the upper sd - shell

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, Ritesh [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India and Sidho-Kanho-Birsha University, Purulia - 723101 (India); Sarkar, S. [Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103 (India)

    2014-08-14

    Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ≃ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.

  16. Perspectives of production of superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Adamian, G. G.; Antonenko, N. V., E-mail: antonenk@theor.jinr.ru; Bezbakh, A. N.; Sargsyan, V. V. [Joint Institute for Nuclear Research, RU–141980 Dubna (Russian Federation); Scheid, W. [Institut für Theoretische Physik der Justus-Liebig-Universität, D–35392 Giessen (Germany)

    2016-07-07

    Possible ways of production of superheavies are discussed. Impact of nuclear structure on the production of superheavy nuclei in complete fusion reactions is discussed. The proton shell closure at Z = 120 is discussed.

  17. Nuclear Computational Low Energy Initiative (NUCLEI)

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Sanjay K. [University of Washington

    2017-08-14

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS and FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).

  18. Infrared Observations of Cometary Dust and Nuclei

    Science.gov (United States)

    Lisse, Carey

    2004-01-01

    This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.

  19. Superheavy nuclei: a relativistic mean field outlook

    International Nuclear Information System (INIS)

    Afanasjev, A.V.

    2006-01-01

    The analysis of quasi-particle spectra in the heaviest A∼250 nuclei with spectroscopic data provides an additional constraint for the choice of effective interaction for the description of superheavy nuclei. It strongly suggests that only the parametrizations which predict Z = 120 and N = 172 as shell closures are reliable for superheavy nuclei within the relativistic mean field theory. The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied. A large central depression produces large shell gaps at Z = 120 and N = 172. The shell gaps at Z = 126 and N = 184 are favoured by a flat density distribution in the central part of the nucleus. It is shown that approximate particle number projection (PNP) by means of the Lipkin-Nogami (LN) method removes pairing collapse seen at these gaps in the calculations without PNP

  20. Searching for dual active galactic nuclei

    Indian Academy of Sciences (India)

    K. Rubinur

    2018-02-09

    Feb 9, 2018 ... Abstract. Binary or dual active galactic nuclei (DAGN) are expected from galaxy formation theories. How- ... cuss results from the multi-frequency Expanded Very .... mid-IR color using WISE observations where they have.

  1. Lipkin-Nogami method for rotating nuclei

    International Nuclear Information System (INIS)

    Magierski, P.

    1993-01-01

    The extension of Lipkin-Nogami method to the case of rotating nuclei, where the short-range attraction acting between the nucleus (pairing free) plays a significant role for the coupling scheme is discussed. 7 refs, 6 figs

  2. Collisions on relativistic nuclei: shock waves

    International Nuclear Information System (INIS)

    Gudima, K.K.; Toneev, V.D.

    1976-01-01

    Experiments are analysed which indicate the possible generation of shock waves in collisions of two nuclei. Another interpretation of these data is proposed and the concerned new experiments are discussed

  3. Non-equilibrium entropy in excited nuclei

    International Nuclear Information System (INIS)

    Betak, E.

    1991-06-01

    The time-dependent behaviour of entropy in excited nuclei is investigated. In distinction to recent claims, it is shown that no self-organization is involved in pre-equilibrium nuclear reactions. (author). 9 refs.; 4 figs

  4. ULTRA-RELATIVISTIC NUCLEI: A NEW FRONTIER

    International Nuclear Information System (INIS)

    MCLERRAN, L.

    1999-01-01

    The collisions of ultra-relativistic nuclei provide a window on the behavior of strong interactions at asymptotically high energies. They also will allow the authors to study the bulk properties of hadronic matter at very high densities

  5. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  6. Dry well cooling device

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki.

    1997-01-01

    A plurality of blowing ports with introduction units are disposed to a plurality of ducts in a dry well, and a cooling unit comprising a cooler, a blower and an isolating valve is disposed outside of the dry well. Cooling air and the atmosphere in the dry well are mixed to form a cooling gas and blown into the dry well to control the temperature. Since the cooling unit is disposed outside of the dry well, the maintenance of the cooling unit can be performed even during the plant operation. In addition, since dampers opened/closed depending on the temperature of the atmosphere are disposed to the introduction units for controlling the temperature of the cooling gas, the temperature of the atmosphere in the dry well can be set to a predetermined level rapidly. Since an axial flow blower is used as the blower of the cooling unit, it can be contained in a ventilation cylinder. Then, the atmosphere in the dry well flowing in the ventilation cylinder can be prevented from leaking to the outside. (N.H.)

  7. High energy particle interactions with nuclei

    International Nuclear Information System (INIS)

    Czyz, W.

    1978-01-01

    The recent interest in multiparticle production processes on nuclei was triggered by re-discovering their 'enigmatic simplicity' which has been known to cosmic ray physicists for over 20 years: the mean multiplicity and angular distributions of relativistic secondaries produced on nuclei do not differ markedly from what emerges from p-p collisions. The author considers how such reactions may provide a way of obtaining details of hadron structure. (Auth.)

  8. Electro-magnetic properties of heavy nuclei

    International Nuclear Information System (INIS)

    Otsuka, Takaharu

    1989-01-01

    Two topics of electro-magnetic properties of heavy nuclei are discussed. The first topic is the M1 excitation from well-deformed heavy nuclei, and the other is the sudden increase of the isotope shift as a function of N in going away from the closed shell. These problems are considered in terms of the particle-number projected (Nilsson-) BCS calculation. (author)

  9. Hot nuclei, limiting temperatures and excitation energies

    International Nuclear Information System (INIS)

    Peter, J.

    1986-09-01

    Hot fusion nuclei are produced in heavy ion collisions at intermediate energies (20-100 MeV/U). Information on the maximum excitation energy per nucleon -and temperatures- indicated by the experimental data is compared to the predictions of static and dynamical calculations. Temperatures around 5-6 MeV are reached and seem to be the limit of formation of thermally equilibrated fusion nuclei

  10. Electron scattering and collective excitations in nuclei

    International Nuclear Information System (INIS)

    Goutte, D.

    1989-01-01

    Nuclear collective degrees of freedom are investigated through the study of the radial dependance of their wave function. Inelastic electron scattering is shown to be the appropriate tool to extract such a detailed information. Some recent results on spherical as well as deformed nuclei are discussed and the most recent extensions to the mean field approach are compared to these data in order to clarify the present status of our understanding of the dynamical properties of complex nuclei

  11. Determining properties of baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Johnson, M.B.; Chen, C.M.; Ernst, D.J.; Jiang, M.F.

    1996-01-01

    Meson-nucleus and photon-nucleus interactions are important sources of information about the medium modifications of baryon resonances in nuclei. Indications of how large the medium effects are for resonances above the Δ 33 (1232) are provided by it combined analysis of photonuclear and pion cross sections in the GeV range of energies. Tile existing data indicate a possible 10-20% renormalization of the pion coupling to higher-lying resonances in nuclei

  12. Nuclei far off the stability line

    International Nuclear Information System (INIS)

    Fenyes, T.

    1978-01-01

    Theoretical and experimental aspects of the formation of some ''exotic'' nuclei far off the stability line were reviewed in addition to the relevant results of research in this field. Results in beta- and gamma-ray spectroscopy, heavy-ion-spectroscopy, achievements in the fields of measuring the atomic mass, the moment, and the radius of the nuclei as well as some astronomical aspects were described. (Z.P.)

  13. Thomas Fermi model of finite nuclei

    International Nuclear Information System (INIS)

    Boguta, J.; Rafelski, J.

    1977-01-01

    A relativistic Thomas-Fermi model of finite-nuclei is considered. The effective nuclear interaction is mediated by exchanges of isoscalar scalar and vector mesons. The authors include also a self-interaction of the scalar meson field and the Coulomb repulsion of the protons. The parameters of the model are constrained by the average nuclear properties. The Thomas-Fermi equations are solved numerically for finite, stable nuclei. The particular case of 208 82 Pb is considered in more detail. (Auth.)

  14. Structure of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    2000-01-01

    Complete text of publication follows. The uncharted regions of the (N,Z) plane contain information that can answer many questions of fundamental importance for science: How many protons and neutrons can be clustered together by the strong interaction to form a bound nucleus? What are the proton and neutron magic numbers of the exotic nuclei? What are the properties of very short-lived exotic nuclei with extreme neutron-to-proton ratios? What is the effective nucleon-nucleon interaction in a nucleus that has a very large neutron excess? Nuclear life far from stability is different from that around the stability line; the promised access to completely new combinations of proton and neutron numbers offers prospects for new structural phenomena. The main objective of this talk is to discuss some of the challenges and opportunities of research with exotic nuclei. The covered topics will include: Theoretical challenges; Skins and halos in heavy nuclei; Shape coexistence in exotic nuclei; Beta-decays of neutron-rich nuclei. (author)

  15. Major new sources of biological ice nuclei

    Science.gov (United States)

    Moffett, B. F.; Hill, T.; Henderson-Begg, S. K.

    2009-12-01

    Almost all research on biological ice nucleation has focussed on a limited number of bacteria. Here we characterise several major new sources of biogenic ice nuclei. These include mosses, hornworts, liverworts and cyanobacteria. Ice nucleation in the eukaryotic bryophytes appears to be ubiquitous. The temperature at which these organisms nucleate is that at which the difference in vapour pressure over ice and water is at or close to its maximum. At these temperatures (-8 to -18 degrees C) ice will grow at the expense of supercooled water. These organisms are dependent for their water on occult precipitation - fog, dew and cloudwater which by its nature is not collected in conventional rain gauges. Therefore we suggest that these organism produce ice nuclei as a water harvesting mechanism. Since the same mechanism would also drive the Bergeron-Findeisen process, and as moss is known to become airborne, these nuclei may have a role in the initiation of precipitation. The properties of these ice nuclei are very different from the well characterised bacterial nuclei. We will also present DNA sequence data showing that, although related, the proteins responsible are only very distantly related to the classical bacterial ice nuclei.

  16. Cooling towers: a bibliography

    International Nuclear Information System (INIS)

    Whitson, M.O.

    1981-02-01

    This bibliography cites 300 selected references containing information on various aspects of large cooling tower technology, including design, construction, operation, performance, economics, and environmental effects. The towers considered include natural-draft and mechanical-draft types employing wet, dry, or combination wet-dry cooling. A few references deal with alternative cooling methods, principally ponds or spray canals. The citations were compiled for the DOE Energy Information Data Base (EDB) covering the period January to December 1980. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators

  17. History of nuclear cooling

    International Nuclear Information System (INIS)

    Kuerti, M.

    1998-01-01

    The historical development of producing extreme low temperatures by magnetic techniques is overviewed. With electron spin methods, temperatures down to 1 mK can be achieved. With nuclear spins theoretically 10 -9 K can be produced. The idea of cooling with nuclear demagnetization is not new, it is a logical extension of the concept of electron cooling. Using nuclear demagnetization experiment with 3 T water cooled solenoids 3 mK could be produced. The cold record is held by Olli Lounasmaa in Helsinki with temperatures below 10 -9 K. (R.P.)

  18. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    Science.gov (United States)

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  19. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2011-09-01

    Full Text Available Black carbon in carbonaceous combustion aerosol warms the climate by absorbing solar radiation, meaning reductions in black carbon emissions are often perceived as an attractive global warming mitigation option. However, carbonaceous combustion aerosol can also act as cloud condensation nuclei (CCN so they also cool the climate by increasing cloud albedo. The net radiative effect of carbonaceous combustion aerosol is uncertain because their contribution to CCN has not been evaluated on the global scale. By combining extensive observations of CCN concentrations with the GLOMAP global aerosol model, we find that the model is biased low (normalised mean bias = −77 % unless carbonaceous combustion aerosol act as CCN. We show that carbonaceous combustion aerosol accounts for more than half (52–64 % of global CCN with the range due to uncertainty in the emitted size distribution of carbonaceous combustion particles. The model predicts that wildfire and pollution (fossil fuel and biofuel carbonaceous combustion aerosol causes a global mean cloud albedo aerosol indirect effect of −0.34 W m−2, with stronger cooling if we assume smaller particle emission size. We calculate that carbonaceous combustion aerosol from pollution sources cause a global mean aerosol indirect effect of −0.23 W m−2. The small size of carbonaceous combustion particles from fossil fuel sources means that whilst pollution sources account for only one-third of the emitted mass they cause two-thirds of the cloud albedo aerosol indirect effect that is due to carbonaceous combustion aerosol. This cooling effect must be accounted for, along with other cloud effects not studied here, to ensure that black carbon emissions controls that reduce the high number concentrations of fossil fuel particles have the desired net effect on climate.

  20. Gas cooled reactors

    International Nuclear Information System (INIS)

    Kojima, Masayuki.

    1985-01-01

    Purpose: To enable direct cooling of reactor cores thereby improving the cooling efficiency upon accidents. Constitution: A plurality sets of heat exchange pipe groups are disposed around the reactor core, which are connected by way of communication pipes with a feedwater recycling device comprising gas/liquid separation device, recycling pump, feedwater pump and emergency water tank. Upon occurrence of loss of primary coolants accidents, the heat exchange pipe groups directly absorb the heat from the reactor core through radiation and convection. Although the water in the heat exchange pipe groups are boiled to evaporate if the forcive circulation is interrupted by the loss of electric power source, water in the emergency tank is supplied due to the head to the heat exchange pipe groups to continue the cooling. Furthermore, since the heat exchange pipe groups surround the entire circumference of the reactor core, cooling is carried out uniformly without resulting deformation or stresses due to the thermal imbalance. (Sekiya, K.)

  1. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  2. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  3. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  4. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  5. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  6. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  7. Diffraction scattering and disintegration of 3He nuclei by atomic nuclei

    International Nuclear Information System (INIS)

    Koval'chuk, V.I.

    2006-01-01

    Within diffraction model framework a method of cross sections calculation for scattering and disintegration of weakly-bounded two-clustered nuclei by nuclei when both of its clusters are changed has been proposed. The experimental elastic scattering cross sections of 3 He by 40 Ca, 90 Zr and coincidence spectra of disintegration products from 28 Si( 3 He,dp) have been described

  8. Stability and production of superheavy nuclei

    International Nuclear Information System (INIS)

    Moeller, P.; Los Alamos National Lab., NM; Nix, J.R.

    1997-01-01

    Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number Z increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z = 100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficient to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nuclei would exist near the next doubly magic proton-neutron combination beyond 208 Pb, that is, at proton number Z 114 and neutron number N = 184. Theory and experiment now show that there also exists a rock of stability in the vicinity of Z = 110 and N = 162 between the actinide region, which previously was the end of the peninsula of known elements, and the predicted island of spherical superheavy nuclei slightly southwest of the magic numbers Z = 114 and N = 184. The authors review here the stability properties of the heavy region of nuclei. Just as the decay properties of nuclei in the heavy region depend strongly on shell structure, this structure also dramatically affects the fusion entrance channel. The six most recently discovered new elements were all formed in cold-fusion reactions. They discuss here the effect of the doubly magic structure of the target in cold-fusion reactions on the fusion barrier and on dissipation

  9. Electron scattering and reactions from exotic nuclei

    International Nuclear Information System (INIS)

    Karataglidis, S.

    2017-01-01

    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  10. Relativistic mean field theory for unstable nuclei

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    2000-01-01

    We discuss the properties of unstable nuclei in the framework of the relativistic mean field (RMF) theory. We take the RMF theory as a phenomenological theory with several parameters, whose form is constrained by the successful microscopic theory (RBHF), and whose values are extracted from the experimental values of unstable nuclei. We find the outcome with the newly obtained parameter sets (TM1 and TMA) is promising in comparison with various experimental data. We calculate systematically the ground state properties of even-even nuclei up to the drip lines; about 2000 nuclei. We find that the neutron magic shells (N=82, 128) at the standard magic numbers stay at the same numbers even far from the stability line and hence provide the feature of the r-process nuclei. However, many proton magic numbers disappear at the neutron numbers far away from the magic numbers due to the deformations. We discuss how to describe giant resonances for the case of the non-linear coupling terms for the sigma and omega mesons in the relativistic RPA. We mention also the importance of the relativistic effect on the spin observables as the Gamow-Teller strength and the longitudinal and transverse spin responses. (author)

  11. Flavanol binding of nuclei from tree species.

    Science.gov (United States)

    Feucht, W; Treutter, D; Polster, J

    2004-01-01

    Light microscopy was used to examine the nuclei of five tree species with respect to the presence of flavanols. Flavanols develop a blue colouration in the presence of a special p-dimethylaminocinnamaldehyde (DMACA) reagent that enables those nuclei loaded with flavanols to be recognized. Staining of the nuclei was most pronounced in both Tsuga canadensis and Taxus baccata, variable in Metasequoia glyptostroboides, faint in Coffea arabica and minimal in Prunus avium. HPLC analysis showed that the five species contained substantial amounts of different flavanols such as catechin, epicatechin and proanthocyanidins. Quantitatively, total flavanols were quite different among the species. The nuclei themselves, as studied in Tsuga seed wings, were found to contain mainly catechin, much lower amounts of epicatechin and traces of proanthocyanidins. Blue-coloured nuclei located centrally in small cells were often found to maximally occupy up to 90% of a cell's radius, and the surrounding small rim of cytoplasm was visibly free of flavanols. A survey of 34 gymnosperm and angiosperm species indicated that the first group has much higher nuclear binding capacities for flavanols than the second group.

  12. Chaos in nuclei: Theory and experiment

    Science.gov (United States)

    Muñoz, L.; Molina, R. A.; Gómez, J. M. G.

    2018-05-01

    During the last three decades the quest for chaos in nuclei has been quite intensive, both with theoretical calculations using nuclear models and with detailed analyses of experimental data. In this paper we outline the concept and characteristics of quantum chaos in two different approaches, the random matrix theory fluctuations and the time series fluctuations. Then we discuss the theoretical and experimental evidence of chaos in nuclei. Theoretical calculations, especially shell-model calculations, have shown a strongly chaotic behavior of bound states in regions of high level density. The analysis of experimental data has shown a strongly chaotic behavior of nuclear resonances just above the one-nucleon emission threshold. For bound states, combining experimental data of a large number of nuclei, a tendency towards chaotic motion is observed in spherical nuclei, while deformed nuclei exhibit a more regular behavior associated to the collective motion. On the other hand, it had never been possible to observe chaos in the experimental bound energy levels of any single nucleus. However, the complete experimental spectrum of the first 151 states up to excitation energies of 6.20 MeV in the 208Pb nucleus have been recently identified and the analysis of its spectral fluctuations clearly shows the existence of chaotic motion.

  13. Training nuclei detection algorithms with simple annotations

    Directory of Open Access Journals (Sweden)

    Henning Kost

    2017-01-01

    Full Text Available Background: Generating good training datasets is essential for machine learning-based nuclei detection methods. However, creating exhaustive nuclei contour annotations, to derive optimal training data from, is often infeasible. Methods: We compared different approaches for training nuclei detection methods solely based on nucleus center markers. Such markers contain less accurate information, especially with regard to nuclear boundaries, but can be produced much easier and in greater quantities. The approaches use different automated sample extraction methods to derive image positions and class labels from nucleus center markers. In addition, the approaches use different automated sample selection methods to improve the detection quality of the classification algorithm and reduce the run time of the training process. We evaluated the approaches based on a previously published generic nuclei detection algorithm and a set of Ki-67-stained breast cancer images. Results: A Voronoi tessellation-based sample extraction method produced the best performing training sets. However, subsampling of the extracted training samples was crucial. Even simple class balancing improved the detection quality considerably. The incorporation of active learning led to a further increase in detection quality. Conclusions: With appropriate sample extraction and selection methods, nuclei detection algorithms trained on the basis of simple center marker annotations can produce comparable quality to algorithms trained on conventionally created training sets.

  14. Electron scattering and reactions from exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karataglidis, S. [University of Johannesburg, Department of Physics, Auckland Park (South Africa); University of Melbourne, School of Physics, Victoria (Australia)

    2017-04-15

    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  15. Fundamental Physics with Electroweak Probes of Nuclei

    Science.gov (United States)

    Pastore, Saori

    2018-02-01

    The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.

  16. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  17. Technology of power plant cooling

    International Nuclear Information System (INIS)

    Maulbetsch, J.S.; Zeren, R.W.

    1976-01-01

    The following topics are discussed: the thermodynamics of power generation and the need for cooling water; the technical, economic, and legislative constraints within which the cooling problem must be solved; alternate cooling methods currently available or under development; the water treatment requirements of cooling systems; and some alternatives for modifying the physical impact on aquatic systems

  18. Meltdown reactor core cooling facility

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1992-01-01

    The meltdown reactor core cooling facility comprises a meltdown reactor core cooling tank, a cooling water storage tank situates at a position higher than the meltdown reactor core cooling tank, an upper pipeline connecting the upper portions of the both of the tanks and a lower pipeline connecting the lower portions of them. Upon occurrence of reactor core meltdown, a high temperature meltdown reactor core is dropped on the cooling tank to partially melt the tank and form a hole, from which cooling water is flown out. Since the water source of the cooling water is the cooling water storage tank, a great amount of cooling water is further dropped and supplied and the reactor core is submerged and cooled by natural convection for a long period of time. Further, when the lump of the meltdown reactor core is small and the perforated hole of the meltdown reactor cooling tank is small, cooling water is boiled by the high temperature lump intruding into the meltdown reactor core cooling tank and blown out from the upper pipeline to the cooling water storage tank to supply cooling water from the lower pipeline to the meltdown reactor core cooling tank. Since it is constituted only with simple static facilities, the facility can be simplified to attain improvement of reliability. (N.H.)

  19. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Physical Sciences, Barry University, 11300 NE 2nd Avenue, Miami Shores, FL 33161 (United States); Irastorza, Igor; Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, España (Spain); Ringwald, Andreas, E-mail: mgiannotti@barry.edu, E-mail: igor.irastorza@cern.ch, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de [Theory group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  20. Cool WISPs for stellar cooling excesses

    International Nuclear Information System (INIS)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-01-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  1. Studies of the shapes of heavy pear-shaped nuclei at ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P. A., E-mail: peter.butler@liverpool.ac.uk [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2016-07-07

    For certain combinations of protons and neutrons there is a theoretical expectation that the shape of nuclei can assume octupole deformation, which would give rise to reflection asymmetry or a ”pear-shape” in the intrinsic frame, either dynamically (octupole vibrations) or statically (permanent octupole deformation). I will briefly review the historic evidence for reflection asymmetry in nuclei and describe how recent experiments carried out at REX-ISOLDE have constrained nuclear theory and how they contribute to tests of extensions of the Standard Model. I will also discuss future prospects for measuring nuclear shapes from Coulomb Excitation: experiments are being planned that will exploit beams from HIE-ISOLDE that are cooled in the TSR storage ring and injected into a solenoidal spectrometer similar to the HELIOS device developed at the Argonne National Laboratory.

  2. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Schulten, R.; Trauger, D.B.

    1976-01-01

    Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing

  3. Gas cooled leads

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.; Hornik, K.E.

    1993-01-01

    The intent of this paper is to cover as completely as possible and in sufficient detail the topics relevant to lead design. The first part identifies the problems associated with lead design, states the mathematical formulation, and shows the results of numerical and analytical solutions. The second part presents the results of a parametric study whose object is to determine the best choice for cooling method, material, and geometry. These findings axe applied in a third part to the design of high-current leads whose end temperatures are determined from the surrounding equipment. It is found that cooling method or improved heat transfer are not critical once good heat exchange is established. The range 5 5 but extends over a large of values. Mass flow needed to prevent thermal runaway varies linearly with current above a given threshold. Below that value, the mass flow is constant with current. Transient analysis shows no evidence of hysteresis. If cooling is interrupted, the mass flow needed to restore the lead to its initially cooled state grows exponentially with the time that the lead was left without cooling

  4. Emergency core cooling system

    International Nuclear Information System (INIS)

    Arai, Kenji; Oikawa, Hirohide.

    1990-01-01

    The device according to this invention can ensure cooling water required for emerency core cooling upon emergence such as abnormally, for example, loss of coolant accident, without using dynamic equipments such as a centrifugal pump or large-scaled tank. The device comprises a pressure accumulation tank containing a high pressure nitrogen gas and cooling water inside, a condensate storage tank, a pressure suppression pool and a jet stream pump. In this device there are disposed a pipeline for guiding cooling water in the pressure accumulation tank as a jetting water to a jetting stream pump, a pipeline for guiding cooling water stored in the condensate storage tank and the pressure suppression pool as pumped water to the jetting pump and, further, a pipeline for guiding the discharged water from the jet stream pump which is a mixed stream of pumped water and jetting water into the reactor pressure vessel. In this constitution, a sufficient amount of water ranging from relatively high pressure to low pressure can be supplied into the reactor pressure vessel, without increasing the size of the pressure accumulation tank. (I.S.)

  5. Emergency reactor cooling circuit

    International Nuclear Information System (INIS)

    Araki, Hidefumi; Matsumoto, Tomoyuki; Kataoka, Yoshiyuki.

    1994-01-01

    Cooling water in a gravitationally dropping water reservoir is injected into a reactor pressure vessel passing through a pipeline upon occurrence of emergency. The pipeline is inclined downwardly having one end thereof being in communication with the pressure vessel. During normal operation, the cooling water in the upper portion of the inclined pipeline is heated by convection heat transfer from the communication portion with the pressure vessel. On the other hand, cooling water present at a position lower than the communication portion forms cooling water lumps. Accordingly, temperature stratification layers are formed in the inclined pipeline. Therefore, temperature rise of water in a vertical pipeline connected to the inclined pipeline is small. With such a constitution, the amount of heat lost from the pressure vessel by way of the water injection pipeline is reduced. Further, there is no worry that cooling water to be injected upon occurrence of emergency is boiled under reduced pressure in the injection pipeline to delay the depressurization of the pressure vessel. (I.N.)

  6. Production and de excitation of hot nuclei

    International Nuclear Information System (INIS)

    Auger, F.; Faure, B.; Wirleczki, J.P.; Cunsolo, A.; Foti, A.; Plagnol, E.

    1988-01-01

    We studied Kr induced reactions on C, Al and Ti at 26.4, 34.4 and 45.4 MeV/nucleon. The aims of these experiments were to learn about the influence of the incident energy and asymmetry of the system on the incomplete fusion mechanism, that is on the characteristics (E,l) of the nuclei formed in the reactions and on the competition between massive transfer and preequilibrium emission. We also wanted to study the influence of excitation energy and angular momentum of the nuclei on their deexcitation modes, specially on the competition between light particles (n, p, α) and complex fragments (M>4). Considering the available energies (2.8 < ε < 10.5 MeV/nucleon), the grazing and the total masses (96 ≤ M ≤ 132), nuclei with masses around 100 are likely to be formed with very different excitation energies and angular momenta

  7. Critical and shape-unstable nuclei

    CERN Document Server

    Cailliau, M; Husson, J P; Letessier, J; Mang, H J

    1973-01-01

    The authors' experimental work on the decay of neutron deficient mercury osmium nuclei, some other studies at ISOLDE (CERN) and their first theoretical analysis show that the nuclei around /sup 186/Pt (Z=78, N=108) are at the limit of spherical, oblate, prolate nuclei, have (the even one) their first 0/sup +/ excited states at very low energy; quasi- rotational bands are associated to these states. The energy of this O/sup +/ state in /sup 186-/Pt deviate from the Kumar value: angular shape instability is not enough to explain this result. The authors look at radial shape and pairing fluctuations. The position of the 4p-4n state must also be known. (0 refs).

  8. Reflections on cavitation nuclei in water

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2007-01-01

    to explaining why the tensile strength of water varies so dramatically between the experiments reported. A model for calculation of the critical pressure of skin-covered free gas bubbles as well as that of interfacial gaseous nuclei covered by a skin is presented. This model is able to bridge the apparently......The origin of cavitation bubbles, cavitation nuclei, has been a subject of debate since the early years of cavitation research. This paper presents an analysis of a representative selection of experimental investigations of cavitation inception and the tensile strength of water. At atmospheric...... pressure, the possibility of stabilization of free gas bubbles by a skin has been documented, but only within a range of bubble sizes that makes them responsible for tensile strengths up to about 1.5 bar, and values reaching almost 300 bar have been measured. However, cavitation nuclei can also be harbored...

  9. Accretion disks in active galactic nuclei

    International Nuclear Information System (INIS)

    Shields, G.A.

    1989-01-01

    Active galactic nuclei (AGN) have taunted astrophysicists for a quarter century. How do these objects produce huge luminosities---in some cases, far outshining our galaxy---from a region perhaps no larger than the solar system? Accretion onto supermassive black holes has been widely considered the best buy in theories of AGN. Much work has gone into accretion disk theory, searches for black holes in galactic nuclei, and observational tests. These efforts have not proved the disk model, but there is progress. Evidence for black holes in the nuclei of nearby galaxies is provided by observations of stellar velocities, and radiation from the disk's hot surface may be observed in the ultraviolet (UV) and neighboring spectral bands. In the review, the author describe some of the recent work on accretion disks in AGN, with an emphasis on points of contact between theory and observation

  10. Search for supermassive nuclei in nature

    International Nuclear Information System (INIS)

    Polikanov, S.; Sastri, C.S.; Herrmann, G.; Luetzenkirchen, K.; Overbeck, M.; Trautmann, N.

    1990-11-01

    We report on a search for supermassive nuclei in nature with masses up to 10 7 amu. Such exotic nuclei might consist, for example, of stable strange matter, which comprises a mixture of up, down, and strange quarks, or of relic particles from the early Universe. The experiments are based on Rutherford backscattering of heavy ions, preferably 238 U, from various target samples. The measured parameters of a deteced particle are its time-of-flight, scattering angle, and specific ionization. From this information the mass of the target nucleus can be inferred. Upper limits for the abundance of strange supermassive nuclei with masses A ≅ 4x10 2 to 10 7 amu relative to the number of nucleons were found to be in the range 10 -11 to 10 -15 . For the narrower mass range A ≅ 10 3 to 10 4 amu the limit is 2x10 -17 . (orig.)

  11. Effects of tensor forces in nuclei

    International Nuclear Information System (INIS)

    Tanihata, Isao

    2013-01-01

    Recent studies of nuclei far from the stability line have revealed drastic changes in nuclear orbitals and reported the appearance of new magic numbers and the disappearance of magic numbers observed at the stability line. One of the important reasons for such changes is considered to be because of the effect of tensor forces on nuclear structure. Although the role of tensor forces in binding very light nuclei such as deuterons and 4 He has been known, direct experimental evidence for the effect on nuclear structure is scarce. In this paper, I review known effects of tensor forces in nuclei and then discuss the recently raised question of s–p wave mixing in a halo nucleus of 11 Li. Following these reviews, the development of a new experiment to see the high-momentum components due to the tensor forces is discussed and some of the new data are presented. (paper)

  12. Effective forces in near-magic nuclei

    International Nuclear Information System (INIS)

    Artamonov, S.A.; Isakov, V.I.; Ogloblin, S.G.

    1984-01-01

    Characteristics of 146 Gd, 206 Hg, sup(206, 208)Tl, sup(206, 208, 210)Pb, sup(208, 210)Bi, 210 Po nuclei are calculated on the base of representations on universal effective interaction of finite range. Discrepancy with the experiment for 210 Bi nucleus disappears if the method of ''penalty'' functions is used for search of optimum parameters. New parameters of effective interaction common for all the considered two-quasi-particle nuclei are determined. Parameters of tensor forces undergo most noticeable danges as compared with other calculations. Descriptions of lowest levels not only 210 Bi but also 206 Tl as well as collective states of 208 Pb and a new magic nucleus 146 Gd are improved. The calculated probabilities of electric transitions between ground and one-phonon states in core nuclei also agree with the experiment

  13. Particle-rotation coupling in atomic nuclei

    International Nuclear Information System (INIS)

    Almberger, J.

    1980-01-01

    Recently an increased interest in the rotational nuclei has been spurred by the new experimental high-spin activities and by the possibilities for lower spins to interpret an impressive amount of experimental data by some comparatively simple model calculations. The author discusses the particle modes of excitation for rotational nuclei in the pairing regime where some puzzles in the theoretical description remain to be resolved. A model comparison is made between the particle-rotor and cranking models which have different definitions of the collective rotation. The cranking model is found to imply a smaller value of the quasiparticle spin alignment than the particle-rotor model. Rotational spectra for both even and odd nuclei are investigated with the use of the many-BCS-quasiparticles plus rotor model. This model gives an accurate description of the ground and S-bands in many even-even rare-earth nuclei. However, the discrepancies for odd-A nuclei between theory and experiments point to the importance of additional physical components. Therefore the rotationally induced quadrupole pair field is considered. This field has an effect on the low spin states in odd-A nuclei, but is not sufficient to account for the experimental data. Another topic considered is the interaction matrix element in crossings for given spin between quasiparticle rotational bands. The matrix elements are found to oscillate as a function of the number of particles, thereby influencing the sharpness of the backbending. Finally the low-spin continuation of the S-band is studied and it is shown that such states can be populated selectively by means of one-particle pickup reactions involving high angular momentum transfer. (Auth.)

  14. Core cooling systems

    International Nuclear Information System (INIS)

    Hoeppner, G.

    1980-01-01

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  15. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  16. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.; AHRENS, L.; BRENNAN, M.; HARRISON, M.; KEWISCH, J.; MACKAY, W.; PEGGS, S.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; YAKIMENKO, V.

    2001-01-01

    We introduce plans for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This project has a number of new features as electron coolers go: It will cool 100 GeV/nucleon ions with 50 MeV electrons; it will be the first attempt to cool a collider at storage-energy; and it will be the first cooler to use a bunched beam and a linear accelerator as the electron source. The linac will be superconducting with energy recovery. The electron source will be based on a photocathode gun. The project is carried out by the Collider-Accelerator Department at BNL in collaboration with the Budker Institute of Nuclear Physics

  17. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  18. Emergency core cooling device

    International Nuclear Information System (INIS)

    Suzaki, Kiyoshi; Inoue, Akihiro.

    1979-01-01

    Purpose: To improve core cooling effect by making the operation region for a plurality of water injection pumps more broader. Constitution: An emergency reactor core cooling device actuated upon failure of recycling pipe ways is adapted to be fed with cooling water through a thermal sleeve by way of a plurality of water injection pump from pool water in a condensate storage tank and a pressure suppression chamber as water feed source. Exhaust pipes and suction pipes of each of the pumps are connected by way of switching valves and the valves are switched so that the pumps are set to a series operation if the pressure in the pressure vessel is high and the pumps are set to a parallel operation if the pressure in the pressure vessel is low. (Furukawa, Y.)

  19. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  20. Cooling nuclear reactor fuel

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1975-01-01

    Reference is made to water or water/steam cooled reactors of the fuel cluster type. In such reactors it is usual to mount the clusters in parallel spaced relationship so that coolant can pass freely between them, the coolant being passed axially from one end of the cluster in an upward direction through the cluster and being effective for cooling under normal circumstances. It has been suggested, however, that in addition to the main coolant flow an auxiliary coolant flow be provided so as to pass laterally into the cluster or be sprayed over the top of the cluster. This auxiliary supply may be continuously in use, or may be held in reserve for use in emergencies. Arrangements for providing this auxiliary cooling are described in detail. (U.K.)

  1. Symmetry structure in neutron deficient xenon nuclei

    International Nuclear Information System (INIS)

    Govil, I. M.

    1998-01-01

    The paper describes the measurements of the lifetimes of the excited states in the ground state band of the Neutron deficient Xe nuclei ( 122,124 Xe) by recoil Distance Method (RDM). The lifetimes of the 2 + state in 122 Xe agrees with the RDM measurements but for 124 Xe it does not agree the RDM measurements but agrees with the earlier Coulomb-excitation experiment. The experimental results are compared with the existing theories to understand the changes in the symmetry structure of the Xe-nuclei as the Neutron number decreases from N=76( 130 Xe) to N=64( 118 Xe)

  2. Symmetry structure in neutron deficient xenon nuclei

    Science.gov (United States)

    Govil, I. M.

    1998-12-01

    The paper describes the measurements of the lifetimes of the excited states in the ground state band of the Neutron deficient Xe nuclei (122,124Xe) by recoil Distance Method (RDM). The lifetimes of the 2+ state in 122Xe agrees with the RDM measurements but for 124Xe it does not agree the RDM measurements but agrees with the earlier Coulomb-excitation experiment. The experimental results are compared with the existing theories to understand the changes in the symmetry structure of the Xe-nuclei as the Neutron number decreases from N=76(130Xe) to N=64(118Xe).

  3. MAGIC NUCLEI: Tin-100 turns up

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the same way as the Periodic Table of chemical elements reflects the successive filling of orbital electron shells, in nuclear physics the socalled 'magic' numbers correspond to closed shells of 2, 8, 20, 28, 50, 82, 126,... neutrons and/or protons. More tightly bound than other nuclei, these are the nuclear analogues of the inert gases. 'Doubly magic' nuclei have closed shells of both neutrons and protons. Examples in nature are helium-4 (2 protons and 2 neutrons), oxygen-16 (8 and 8), calcium-40 (20 and 20) and calcium-48 (20 and 28). Radioactive tin-132 (50+82) has been widely studied

  4. Virtual photon spectra for finite nuclei

    International Nuclear Information System (INIS)

    Wolynec, E.; Martins, M.N.

    1988-01-01

    The experimental results of an isochromat of the virtual photon spectrum, obtained by measuring the number of ground-state protons emitted by the 16.28 MeV isobaric analogue state in 90 Zr as a function of electron incident energy in the range 17-105 MeV, are compared with the values predicted by a calculation of the E1 DWBA virtual photon spectra for finite nuclei. It is found that the calculations are in excellent agreement with the experimental results. The DWBA virtual photon spectra for finite nuclei for E2 and M1 multipoles are also assessed. (author) [pt

  5. Dynamical symmetries for odd-odd nuclei

    International Nuclear Information System (INIS)

    Balantekin, A.B.

    1986-01-01

    Recent work for developing dynamical symmetries and supersymmetries is reviewed. An accurate description of odd-odd nuclei requires inclusion of the fermion-fermion force (the residual interaction) and the distinguishing of fermion configurations which are particle like and those which are hole like. A parabolic dependence of the proton-neutron multiplet in odd-odd nuclei is demonstrated. It is shown that a group structure for Bose-Fermi symmetries can be embedded in a supergroup. These methods are used to predict level schemes for Au-196 and Au-198. 11 refs., 3 figs

  6. Medium energy hadron scattering from nuclei

    International Nuclear Information System (INIS)

    Ginocchio, J.N.; Wenes, G.

    1986-01-01

    The Glauber approximation for medium energy scattering of hadronic projectiles from nuclei is combined with the interacting boson model of nuclei to produce a transition matrix for elastic and inelastic scattering in algebraic form which includes coupling to all the intermediate states. We present closed form analytic expresions for the transition matrix elements for the three dynamical symmetries of the interacting boson model; that is for, a spherical quadrupole vibrator, a γ unstable rotor, and both prolate and oblate axially symmetric rotors. We give examples of application of this formalism to proton scattering from 154 Sm and 154 Gd. 27 refs., 5 figs., 1 tab

  7. Monte Carlo approaches to light nuclei

    International Nuclear Information System (INIS)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of 16 O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs

  8. Monte Carlo approaches to light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of {sup 16}O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs.

  9. Measurement of recoil nuclei of Ta photofission

    International Nuclear Information System (INIS)

    Amroyan, K.A.; Barsegyan, S.A.; Demekhina, N.A.

    1993-01-01

    The results of measuring the characteristics of nuclei leaving the Ta target bombarded by 4,5 GeV bremsstrahlung photons are presented. The thick-target-trap technique is used. The radioactive residual nuclei were detected by the induced activity with the help of the Ge(Li) detector. The forward-backward nucleus ratio is measured, and the kinematical characteristics are calculated in the framework of the two-step vector model of velocities. The data analysis and systematization is carried out in comparison with the results of hardon-nuclear interactions

  10. Static and dynamic deformations of actinide nuclei

    International Nuclear Information System (INIS)

    Rozmej, P.

    1985-09-01

    The zero-point quadrupole-hexadecapole vibrations have been taken into account to calculate dynamical deformations for even-even actinide nuclei. The collective and intrinsic motions are separated according to the Born-Oppenheimer approximation. The collective Hamiltonian is constructed using the macroscopic-microscopic method in the potential energy part and the cranking model in the kinetic energy part. The BCS theory with a modified oscillator potential is applied to describe the intrinsic motion of nucleons. A new set of Nilsson potential parameters, which produces a much better description of the properties of light actinide nuclei, has also been found. (orig.)

  11. Selfconsistent theory of Coulomb mixing in nuclei

    International Nuclear Information System (INIS)

    Pyatov, N.I.

    1978-01-01

    The theory of isobaric states is considered according to the Coulomb mixing in nuclei. For a given form of the isovestor potential the separable residual interactions are constructed by means of the isotopic invariance principle. The strength parameter of the force is found from a selfconsistency condition. The charge dependent force is represented by the Coulomb effective potential. The theory of the isobaric states is developed using the random phase approximation. The Coulomb mixing effects in the ground and isobaric 0 + states of even-mass nuclei are investigated

  12. On the semiclassical description of rotating nuclei

    International Nuclear Information System (INIS)

    Durand, M.; Kunz, J.; Schuck, P.

    1983-01-01

    The technique of partial h-resummation is used to obtain semiclassical, i.e. average current distributions in the body fixed system of heavy nuclei. It thereby turns out that this average intrinsic current only flows in the nuclear surface. A Strutinsky smoothing of the current is also performed and gives nice agreement with the semiclassical results. We also show how one can incorporate superfluidity into the semiclassical treatment. To lowest order in h we find that the moment of inertia of superfluid nuclei is zero. The same result is obtained by a quantum mechanical calculation if the gap goes to infinity. The importance of including n-corrections is pointed out

  13. Hadronic interaction and structure of exotic nuclei

    International Nuclear Information System (INIS)

    Otsuka, Takaharu

    2009-01-01

    I will overview recent studies on the evolution of the shell structure in stable and exotic nuclei, and will show its relevance to hadronic interaction, including nuclear forces. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The shell structure and existing limit of nuclei depend also on the three-body interaction in a specific way. I will sketch how the Δ-hole excitation induced three-body force (Fujita-Miyazawa force) modifies them. (author)

  14. Maris polarization in neutron-rich nuclei

    Science.gov (United States)

    Shubhchintak; Bertulani, C. A.; Aumann, T.

    2018-03-01

    We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  15. Structure of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Oak Ridge National Lab., TN; Warsaw Univ.

    1997-11-01

    One of the frontiers of today's nuclear science is the ''journey to the limits'': of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The new data on exotic nuclei are expected to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this talk, current developments in nuclear structure of neutron-rich nuclei are discussed from a theoretical perspective

  16. Structure functions and correlations in nuclei

    International Nuclear Information System (INIS)

    Fantoni, S.

    1988-01-01

    In this paper the results obtained for the static structure function S(k) and the longitudinal structure function S L (k) of 3 H, 3 He and 4 He nuclei and nuclear matter are presented and discussed. The calculations have been performed using realistic wave functions obtained from Faddeev and variational theories. The Monte Carlo method has been used to calculate the structure functions of finite systems, and the FHNC/SOC method for nuclear matter. The results for the 3 He nucleus are in agreement with the recent Saclay data. The results for nuclear matter are compared with the experimental data relative to heavier nuclei, like e.g. 40 Ca

  17. Stochastic cooling for beginners

    International Nuclear Information System (INIS)

    Moehl, D.

    1984-01-01

    These two lectures have been prepared to give a simple introduction to the principles. In Part I we try to explain stochastic cooling using the time-domain picture which starts from the pulse response of the system. In Part II the discussion is repeated, looking more closely at the frequency-domain response. An attempt is made to familiarize the beginners with some of the elementary cooling equations, from the 'single particle case' up to equations which describe the evolution of the particle distribution. (orig.)

  18. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  19. Cooling pond fog studies

    International Nuclear Information System (INIS)

    Hicks, B.B.

    1978-01-01

    The Fog Excess Water Index (FEWI) method of fog prediction has been verified by the use of data obtained at the Dresden cooling pond during 1976 and 1977 and by a reanalysis of observations made in conjunction with a study of cooling pond simulators during 1974. For applications in which the method is applied to measurements or estimates of bulk water temperature, a critical value of about 0.7 mb appears to be most appropriate. The present analyses confirm the earlier finding that wind speed plays little part in determining the susceptibility for fog generation

  20. DNA Measurement of Overlapping Cell Nuclei in Thick Tissue Sections

    Directory of Open Access Journals (Sweden)

    Liang Ji

    1997-01-01

    Full Text Available The paper describes an improved image analysis procedure for measuring the DNA content of cell nuclei in thick sections of liver tissue by absorption densitometry. Whereas previous methods only permitted the analysis of isolated nuclei, the new technique enables both isolated and overlapping nuclei to be measured. A 3D segmentation procedure determines whether each object is an isolated nucleus or a pair of overlapping nuclei; in the latter case the combined optical density is redistributed to the individual nuclei. A selection procedure ensures that only complete nuclei are measured.

  1. Elementary stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  2. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2001-01-01

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling

  3. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  4. Cooling tower and environment

    International Nuclear Information System (INIS)

    Becker, J.; Ederhof, A.; Gosdowski, J.; Harms, A.; Ide, G.; Klotz, B.; Kowalczyk, R.; Necker, P.; Tesche, W.

    The influence of a cooling tower on the environment, or rather the influence of the environment on the cooling tower stands presently -along with the cooling water supply - in the middle of much discussion. The literature on these questions can hardly be overlooked by the experts concerned, especially not by the power station designers and operators. The document 'Cooling Tower and Environment' is intented to give a general idea of the important publications in this field, and to inform of the present state of technology. In this, the explanations on every section make it easier to get to know the specific subject area. In addition to older standard literature, this publication contains the best-known literature of recent years up to spring 1975, including some articles written in English. Further English literature has been collected by the ZAED (KFK) and is available at the VGB-Geschaefsstelle. Furthermore, The Bundesumweltamt compiles the literature on the subject of 'Environmental protection'. On top of that, further documentation centres are listed at the end of this text. (orig.) [de

  5. Warm and Cool Cityscapes

    Science.gov (United States)

    Jubelirer, Shelly

    2012-01-01

    Painting cityscapes is a great way to teach first-grade students about warm and cool colors. Before the painting begins, the author and her class have an in-depth discussion about big cities and what types of buildings or structures that might be seen in them. They talk about large apartment and condo buildings, skyscrapers, art museums,…

  6. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  7. Passive cooling containment study

    International Nuclear Information System (INIS)

    Shin, J.J.; Iotti, R.C.; Wright, R.F.

    1993-01-01

    Pressure and temperature transients of nuclear reactor containment following postulated loss of coolant accident with a coincident station blackout due to total loss of all alternating current power are studied analytically and experimentally for the full scale NPR (New Production Reactor). All the reactor and containment cooling under this condition would rely on the passive cooling system which removes reactor decay heat and provides emergency core and containment cooling. Containment passive cooling for this study takes place in the annulus between containment steel shell and concrete shield building by natural convection air flow and thermal radiation. Various heat transfer coefficients inside annular air space were investigated by running the modified CONTEMPT code CONTEMPT-NPR. In order to verify proper heat transfer coefficient, temperature, heat flux, and velocity profiles were measured inside annular air space of the test facility which is a 24 foot (7.3m) high, steam heated inner cylinder of three foot (.91m) diameter and five and half foot (1.7m) diameter outer cylinder. Comparison of CONTEMPT-NPR and WGOTHIC was done for reduced scale NPR

  8. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  9. Emergency core cooling system

    International Nuclear Information System (INIS)

    Ando, Masaki.

    1987-01-01

    Purpose: To actuate an automatic pressure down system (ADS) and a low pressure emergency core cooling system (ECCS) upon water level reduction of a nuclear reactor other than loss of coolant accidents (LOCA). Constitution: ADS in a BWR type reactor is disposed for reducing the pressure in a reactor container thereby enabling coolant injection from a low pressure ECCS upon LOCA. That is, ADS has been actuated by AND signal for a reactor water level low signal and a dry well pressure high signal. In the present invention, ADS can be actuated further also by AND signal of the reactor water level low signal, the high pressure ECCS and not-operation signal of reactor isolation cooling system. In such an emergency core cooling system thus constituted, ADS operates in the same manner as usual upon LOCA and, further, ADS is operated also upon loss of feedwater accident in the reactor pressure vessel in the case where there is a necessity for actuating the low pressure ECCS, although other high pressure ECCS and reactor isolation cooling system are not operated. Accordingly, it is possible to improve the reliability upon reactor core accident and mitigate the operator burden. (Horiuchi, T.)

  10. Emergency core cooling system

    International Nuclear Information System (INIS)

    Kato, Ken.

    1989-01-01

    In PWR type reactors, a cooling water spray portion of emergency core cooling pipelines incorporated into pipelines on high temperature side is protruded to the inside of an upper plenum. Upon rupture of primary pipelines, pressure in a pressure vessel is abruptly reduced to generate a great amount of steams in the reactor core, which are discharged at a high flow rate into the primary pipelines on high temperature side. However, since the inside of the upper plenum has a larger area and the steam flow is slow, as compared with that of the pipelines on the high temperature side, ECCS water can surely be supplied into the reactor core to promote the re-flooding of the reactor core and effectively cool the reactor. Since the nuclear reactor can effectively be cooled to enable the promotion of pressure reduction and effective supply of coolants during the period of pressure reduction upon LOCA, the capacity of the pressure accumulation vessel can be decreased. Further, the re-flooding time for the reactor is shortened to provide an effect contributing to the improvement of the safety and the reduction of the cost. (N.H.)

  11. Stability of the spherical form of nuclei

    International Nuclear Information System (INIS)

    Sabry, A.A.

    1976-08-01

    An extension of the mass formula for a spherical nucleus in the drop model to include a largely deformed nucleus of different forms is investigated. It is found that although the spherical form is stable under small deformations from equilibrium, there exists for heavier nuclei another more favourable stable form, which can be approximated by two, or three touching prolate ellipsoids of revolution

  12. High energy spin isospin modes in nuclei

    International Nuclear Information System (INIS)

    Chanfray, G.; Ericson, M.

    1984-01-01

    The high energy response of nuclei to a spin-isospin excitation is investigated. We show the existence of a strong contrast between the spin transverse and spin longitudinal responses. The second one undergoes a shadow effect in the Δ region and displays the occurrence of the pionic branch

  13. Transitional nuclei in the A∼100 region

    International Nuclear Information System (INIS)

    Petry, R.F.

    1986-01-01

    This is a report on nuclear structure studies funded by the Department of Energy over a seven-year period from August 1, 1979 to August 31, 1986. In summary, the work was concerned with nuclear structure in the A∼100 region. In particular the focus of the work was on odd-A deformed nuclei in this region with N > 60

  14. Contact nuclei formation in aqueous dextrose solutions

    Science.gov (United States)

    Cerreta, Michael K.; Berglund, Kris A.

    1990-06-01

    A laser Raman microprobe was used in situ to observe the growth of alpha dextrose monohydrate on alpha anhydrous dextrose crystals. The Raman spectra indicate growth of the monohydrate below 28.1°C, but the presence of only the anhydrous form above 40.5°C. Contact nucleation experiments with parent anhydrous crystals yielded only monohydrate nuclei below 28.1°C, while contacts in solutions between 34.5 and 41.0°C produced both crystalline forms, and contacts in solutions above 43.5°C produced only anhydrous nuclei. The inability of the monohydrate to grow on anhydrous crystals in the same solution that forms the two crystalline phases with a single contact precludes a simple attrition mechanism of nuclei formation. For the same reason, the hypothetical mechanism involving parent crystal stabilization of pre-crystalline clusters, allowing the clusters to grow into nuclei, is also contradicted. A third, mechanism, which may be a combination of the two, is believed to apply.

  15. Properties of semi-infinite nuclei

    International Nuclear Information System (INIS)

    El-Jaick, L.J.; Kodama, T.

    1976-04-01

    Several relations among density distributions and energies of semi-infinite and infinite nuclei are iventigated in the framework of Wilets's statistical model. The model is shown to be consistent with the theorem of surface tension given by Myers and Swiatecki. Some numerical results are shown by using an appropriate nuclear matter equation of state

  16. Electronuclear sum rules for the lightest nuclei

    International Nuclear Information System (INIS)

    Efros, V.D.

    1992-01-01

    It is shown that the model-independent longitudinal electronuclear sum rules for nuclei with A = 3 and A = 4 have an accuracy on the order of a percent in the traditional single-nucleon approximation with free nucleons for the nuclear charge-density operator. This makes it possible to test this approximation by using these sum rules. The longitudinal sum rules for A = 3 and A = 4 are calculated using the wave functions of these nuclei corresponding to a large set of realistic NN interactions. The values of the model-independent sum rules lie in the range of values calculated by this method. Model-independent expressions are obtained for the transverse sum rules for nuclei with A = 3 and A = 4. These sum rules are calculated using a large set of realistic wave functions of these nuclei. The contribution of the convection current and the changes in the results for different versions of realistic NN forces are given. 29 refs., 4 tabs

  17. Physics of the continuum of borromean nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vaagen, J S; Rogde, T [Dept. of Physics, Univ. of Bergen (Norway); Danilin, B V [RRC The Kurchatov Inst., Kurchatov, Moscow (Russian Federation); Ershov, S N [JINR, Dubna, Moscow (Russian Federation); Thompson, I J [Dept. of Physics, Univ. of Surrey, Guildford (United Kingdom); Zhukov, M V [Chalmers Univ. of Technology and Goeteborg Univ., Goeteborg (Sweden); RNBT Collaboration

    1998-06-01

    The continuum states of two-neutron halo nuclei are calculated in the method of hyperspherical harmonics. Using DWIA theory appropriate for dilute halo matter we have probed the structure of the low-lying {sup 6}He continuum via calculations of charge-exchange and inelastic scattering. (orig.)

  18. Collective Quadrupole Excitations of Transactinide Nuclei

    CERN Document Server

    Zajac, K; Pomorski, K; Rohozinski, S G; Srebrny, J

    2003-01-01

    The quadrupole excitations of transuranic nuclei are described in the frame of the microscopic Bohr Hamiltonian modified by adding the coupling with the collective pairing vibrations. The energies of the states from the ground-state bands in U to No even-even isotopes as well as the B(E2) transition probabilities are reproduced within the model containing no adjustable parameters.

  19. Cloud condensation nuclei from biomass burning

    International Nuclear Information System (INIS)

    Rogers, C.F.; Hudson, J.G.; Zielinska, B.; Tanner, R.L.; Hallett, J.; Watson, J.G.

    1991-01-01

    In this work, the authors have analyzed biomass and crude oil smoke samples for ionic and organic species. The cloud condensation nuclei activities of the smoke particles are discussed in terms of the measured chemical compositions of the smoke samples. The implications of biomass burning to global climatic change are discussed

  20. Electron interactions with nuclei: Progress report

    International Nuclear Information System (INIS)

    1988-08-01

    This paper contains information on the following topics: inclusive electron scattering; electroexcitation of Δ in nuclei; longitudinal and transverse response in the quasi-elastic region; electron scattering at MIT-Bates; detector development at LEGS; electron scattering at Saclay; intermediate energy nuclear interactions; research and development at CEBAF; and computing facilities

  1. Structure functions of nucleons and nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, Wolfgang; Ito, Takuya [Department of Physics, Tokai University, Kanagawa (Japan); Cloet, Ian [Department of Physics, University of Washington, Seattle (United States); Thomas, Anthony [Jefferson Lab., Newport News, VA (United States); Yazaki, Koichi [RIKEN, Wako-shi, Saitama (Japan)

    2009-07-01

    We use an effective chiral quark theory to calculate the quark distributions and structure functions of nucleons and nuclei. The description of the single nucleon is based on the Faddeev framework, and nuclear systems are described in the mean field approximation. Particular amphasis is put on the prediction of the polarized EMC effect in nuclei, and on applications to deep inelastic neutrino-nucleus scattering. Concerning the polarized EMC effect, we discuss the quenching of the quark spin sum in nuclei and its implications for the spin dependent nuclear structure functions, and present results for several nuclei where an experimental observation is feasible. Concerning the case of deep inelastic neutrino-nucleus scattering, we estimate the effect of medium modifications of the quark distribution functions on the measured cross sections, and discuss an interesting resolution of the so called NuTeV anomaly. Finally, we discuss extensions of our model to describe fragmentation functions for semi-inclusive processes. The connection between our effective quark model description and the jet model of Field and Feynman is discussed.

  2. Quasars: Active nuclei of young galaxies

    Science.gov (United States)

    Komberg, B. V.

    1980-01-01

    The hypothetical properties of 'young' galaxies and possible methods of observing them are discussed. It is proposed that star formation first takes place in the central regions of protogalaxies which may appear as quasar-like objects. An evolutionary scheme is outlined in which the radio quasars are transformed in time into the nuclei of radio galaxies.

  3. Fisica degli atomi e dei nuclei

    CERN Document Server

    Bernardini, Carlo

    1965-01-01

    Evidenza della struttura atomica della materia ; le proprietà degli atomi e la meccanica atomica ; gli atomi e le radiazioni elettromagnetiche ; struttura microscopica dello stato gassoso ; struttura microscopica dello stato liquido ; struttura microscopica della stato solido ; proprietà elettriche e magnetiche delle sostanze ; proprietà dei nuclei degli atomi ; le particelle elementari.

  4. Meson degrees of freedom in nuclei

    International Nuclear Information System (INIS)

    Delorme, J.

    1982-01-01

    A review is presented of the successes and shortcomings of the theory of meson degrees of freedom in nuclei with special emphasis on recent progress and on the necessity to bridge the gap with the degrees of freedom of QCD theory. (orig.)

  5. Thomas-Fermi model of warm nuclei

    International Nuclear Information System (INIS)

    Buchler, J.R.; Epstein, R.I.

    1980-01-01

    The average nuclear level density of spherical nuclei is computed with a finite temperature Thomas-Fermi model. More than 80% of the low energy nuclear excitations can be accounted for in terms of this statistical model. The relevance for stellar collapse is discussed

  6. Decay of heavy and superheavy nuclei

    Indian Academy of Sciences (India)

    April 2014 physics pp. 705–715. Decay of heavy and superheavy nuclei ... study on the feasibility of observing α decay chains from the isotopes of the ... studies on 284−286115 and 288−292117 will be a guide to future experiments. .... ratio of the α decay from the ground state of the parent nucleus to the level i of the.

  7. Spectroscopic Studies of Exotic Nuclei at ISOLDE

    CERN Multimedia

    2002-01-01

    Experiment IS50 is designed to: a) Investigate the full range of the @b strength function of heavy (A~$>$~48)~K nuclei b)~Study the decay of isomeric states in n-deficient bromine nuclei (A~=~72 and 70). The heavy K isotopes appeared to have complex decay schemes, including feeding by the @b-decay of levels having open neutron channels (Beta decay energy Q(@b) exceeds neutron binding energy S^n); in addition, a large fraction of the delayed transitions populate excited levels in the daughter nuclei. The allowed @b-decay selects states in the daughter nucleus with wave functions having a large overlap with the initial state. Hence, the @b strength functions, deduced from these deca reveal simple structures correlated to the particle-hole excitation energies in the Ca nuclei. These results are valuable for the application of the shell-model calculations far from stability. The delayed neutron spectra are measured with a large area curved scintillator in coincidence either with high resolution Ge(Li) detectors, ...

  8. Polarization electric dipole moment in nonaxial nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.; Davidovskaya, O.I.

    1996-01-01

    An expression for the macroscopic polarization electric dipole moment is obtained for nonaxial nuclei whose radii of the proton and neutron surfaces are related by a linear equation. Dipole transitions associated with the polarization electric dipole moment are analyzed for static and dynamical multipole deformations

  9. Growth and Interaction of Colloid Nuclei

    Science.gov (United States)

    Lam, Michael-Angelo; Khusid, Boris; Meyer, William; Kondic, Lou

    2017-11-01

    We study evolution of colloid systems under zero-gravity conditions. In particular, we focus on the regime where there is a coexistence between a liquid and a solid state. Under zero gravity, the dominating process in the bulk of the fluid phase and the solid phase is diffusion. At the moving solid/liquid interface, osmotic pressure is balanced by surface tension, as well as balancing fluxes (conservation of mass) with the kinematics of nuclei growth (Wilson-Frenkel law). Due to the highly nonlinear boundary condition at the moving boundary, care has to be taken when performing numerical simulations. In this work, we present a nonlinear model for colloid nuclei growth. Numerical simulations using a finite volume method are compared with asymptotic analysis of the governing equation and experimental results for nuclei growth. Novel component in our numerical simulations is the inclusion of nonlinear (collective) diffusion terms that depend on the chemical potentials of the colloid in the solid and fluid phase. The results include growth and dissolution of a single colloidal nucleus, as well as evolution of multiple interacting nuclei. Supported by NASA Grant No. NNX16AQ79G.

  10. Radiative muon capture on nuclei and protons

    International Nuclear Information System (INIS)

    Azuelos, G.; Gorringe, T.P.; Henderson, R.; Macdonald, J.A.; Poutissou, J.M.; Azuelos, G.; Depommier, P.; Poutissou, R.; Ahmad, S.; Burnham, A.; Hasinoff, M.D.; Larabee, A.J.; Waltham, C.E.; Wright, D.H.; Armstrong, D.S.; Blecher, M.; Serna-Angel, A.; Bertl, W.; Chen, C.Q.; Zhang, N.S.; McDonald, S.C.; Taylor, G.N.; Robertson, B.C.

    1990-01-01

    A brief review is made of the study of gp, the induced pseudoscalar coupling constant, in radiative muon capture on light nuclei, and of motivations for a measurement on hydrogen, with particular emphasis on recent and ongoing experiments at TRIUMF [fr

  11. Electron form factors of deformable nuclei

    International Nuclear Information System (INIS)

    Tartakovskii, V.K.; Isupov, V.Yu.

    1988-01-01

    Using the smallness of the deformation parameter of the nucleus, we obtain simple explicit expressions for the form factors of electroexcitation of the low-lying rotation-vibration states of light, deformable, even-even nuclei. The expressions satisfactorily describe the experimental data on the excitation of collective nuclear states by the inelastic scattering of fast electrons

  12. Superheavy nuclei – cold synthesis and structure

    Indian Academy of Sciences (India)

    120 and Ж = 172 or 184, for superheavy nuclei. This result is discussed in ... 1980 [7] on the basis of the QMFT, once again prior to its observation in 1984. Thus, cold ... On the other hand, based on a rather complete deformed relativistic mean field (DRMF) calculation, using the NL1 parameter set, we [16] predicted. = 120.

  13. Efimov effect in 2-neutron halo nuclei

    Indian Academy of Sciences (India)

    This paper presents an overview of our theoretical investigations in search of Efimov states in light 2-neutron halo nuclei. The calculations have been carried out within a three-body formalism, assuming a compact core and two valence neutrons forming the halo. The calculations provide strong evidence for the occurrence ...

  14. Cooling Tower Losses in Industry

    OpenAIRE

    Barhm Mohamad

    2017-01-01

    Cooling towers are a very important part of many chemical plants. The primary task of a cooling tower is to reject heat into the atmosphere. They represent a relatively inexpensive and dependable means of removing low-grade heat from cooling water. The make-up water source is used to replenish water lost to evaporation. Hot water from heat exchangers is sent to the cooling tower. The water exits the cooling tower and is sent back to the exchangers or to other units for further cooling.

  15. Cooling concepts for HTS components

    International Nuclear Information System (INIS)

    Binneberg, A.; Buschmann, H.; Neubert, J.

    1993-01-01

    HTS components require that low-cost, reliable cooling systems be used. There are no general solutions to such systems. Any cooling concept has to be tailored to the specific requirements of a system. The following has to he taken into consideration when designing cooling concepts: - cooling temperature - constancy and controllability of the cooling temperature - cooling load and refrigerating capacity - continuous or discontinuous mode - degree of automation - full serviceability or availability before evacuation -malfunctions caused by microphonic, thermal or electromagnetic effects -stationary or mobile application - investment and operating costs (orig.)

  16. Cooling out of the blue

    International Nuclear Information System (INIS)

    Schmid, W.

    2006-01-01

    This article takes a look at solar cooling and air-conditioning, the use of which is becoming more and more popular. The article discusses how further research and development is necessary. The main challenge for professional experts is the optimal adaptation of building, building technology and solar-driven cooling systems to meet these new requirements. Various solar cooling technologies are looked at, including the use of surplus heat for the generation of cold for cooling systems. Small-scale solar cooling systems now being tested in trials are described. Various developments in Europe are discussed, as are the future chances for solar cooling in the market

  17. Preface [21. international school on nuclear physics and applications; ISEN-2015: International symposium on exotic nuclei, Varna (Bulgaria), 6-12 September 2015

    International Nuclear Information System (INIS)

    2016-01-01

    The present volume contains the lectures and short talks given at the XXI International School on Nuclear Physics and Applications and International Symposium on Exotic Nuclei (ISEN-2015). The School and the Symposium were held from 6-12 September 2015 in “Club Hotel Bolero” located in ‘Golden Sands’ (Zlatni Pyasaci) Resort on the Black Sea coast, near Varna, Bulgaria. The School and the Symposium were organized by the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences and the Flerov Laboratory of Nuclear Reaction if the Joint Institute for Nuclear Research (Dubna). The co-organizer of the School was the Bulgarian Nuclear Regulatory Agency. According to a long-standing tradition the School has been held biannually since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. In 2015, the International Symposium on Exotic Nuclei (ISEN-2015) was scheduled from 8-11 September under the auspices of the School. The Symposium was dedicated to the investigation of nuclei in extreme states and, in particular, at the limits of nuclear stability (from very light neutron- and proton-rich up to superheavy nuclei). This new format attracted many young scientists and students from around the world. We had the pleasure of welcoming more than 60 distinguished scientists as lecturers. Additionally, 20 young colleagues received the opportunity to present a short contribution. In all, 90 participants enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The program of the School and the Symposium ranged from the latest results in fundamental areas such as nuclear structure and reactions to frontier issues of the application of nuclear methods. The main topics were the following: Exotic Nuclei and their Properties

  18. Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology

    Science.gov (United States)

    2018-01-16

    Thermoelectric Cooling - A Synergistic Cooling Technology Sb. GRANT NUMBER N00173-14-1-G016 Sc. PROGRAM ELEMENT NUMBER 82-2020-17 6. AUTHOR(S) 5d...Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology NRL Grant N00173-14-l-G016 CODE 8200: Spacecraft Engineering Department...82-11-0 1: Space and Space Systems Technology General Engineering & Research, L.L.C. Technical & Administrative point of contact: Dr. Robin

  19. Probing the density tail of radioactive nuclei with antiprotons

    CERN Document Server

    Obertelli, Alexandre; Uesaka, Tomohiro; Corsi, Anna; Pollacco, Emmanuel; Flavigny, Freddy

    2017-01-01

    We propose an experiment to determine the proton and neutron content of the radial density tail in short-lived nuclei. The objectives are to (i) to evidence new proton and neutron halos, (ii) to understand the development of neutron skins in medium-mass nuclei, (iii) to provide a new observable that characterises the density tail of short-lived nuclei.

  20. Incidence of centrally positioned nuclei in mouse masticatory muscle fibers

    DEFF Research Database (Denmark)

    Vilmann, A; Vilmann, H; Kirkeby, S

    1989-01-01

    Cross-sections of normal digastric, temporalis and masseter muscles from 7- and 30-week-old mice were studied for centrally positioned nuclei. Such nuclei were inhomogeneously distributed throughout each muscle and varied markedly between specimens. The incidence of centrally positioned nuclei in...

  1. The Role of Broken Cooper Pairs in Warm Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Larsen, A.C.; Rekstad, J.; Siem, S.; Syed, N.U.H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2007-01-01

    In order to understand warm nuclei and describe the underlying microscopic structure, entropy is measured for several even-even and odd-mass nuclei. Mid-shell nuclei show significant odd-even entropy differences interpreted as the single-particle entropy introduced by the valence nucleon. A method to extract critical temperatures for the pair breaking process is demonstrated. (author)

  2. Magnetic entropy and cooling

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl; Kuhn, Luise Theil; Bahl, Christian Robert Haffenden

    2010-01-01

    Some manifestations of magnetism are well-known and utilized on an everyday basis, e.g. using a refrigerator magnet for hanging that important note on the refrigerator door. Others are, so far, more exotic, such as cooling by making use of the magnetocaloric eect. This eect can cause a change...... in the temperature of a magnetic material when a magnetic eld is applied or removed. For many years, experimentalists have made use of dilute paramagnetic materials to achieve milliKelvin temperatures by use of the magnetocaloric eect. Also, research is done on materials, which might be used for hydrogen, helium...... or nitrogen liquefaction or for room-temperature cooling. The magnetocaloric eect can further be used to determine phase transition boundaries, if a change in the magnetic state occurs at the boundary.In this talk, I will introduce the magnetocaloric eect (MCE) and the two equations, which characterize...

  3. Self pumping magnetic cooling

    International Nuclear Information System (INIS)

    Chaudhary, V; Wang, Z; Ray, A; Ramanujan, R V; Sridhar, I

    2017-01-01

    Efficient thermal management and heat recovery devices are of high technological significance for innovative energy conservation solutions. We describe a study of a self-pumping magnetic cooling device, which does not require external energy input, employing Mn–Zn ferrite nanoparticles suspended in water. The device performance depends strongly on magnetic field strength, nanoparticle content in the fluid and heat load temperature. Cooling (Δ T ) by ∼20 °C and ∼28 °C was achieved by the application of 0.3 T magnetic field when the initial temperature of the heat load was 64 °C and 87 °C, respectively. These experiments results were in good agreement with simulations performed with COMSOL Multiphysics. Our system is a self-regulating device; as the heat load increases, the magnetization of the ferrofluid decreases; leading to an increase in the fluid velocity and consequently, faster heat transfer from the heat source to the heat sink. (letter)

  4. Laser cooling at resonance

    Science.gov (United States)

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  5. ITER cooling systems

    International Nuclear Information System (INIS)

    Natalizio, A.; Hollies, R.E.; Sochaski, R.O.; Stubley, P.H.

    1992-06-01

    The ITER reference system uses low-temperature water for heat removal and high-temperature helium for bake-out. As these systems share common equipment, bake-out cannot be performed until the cooling system is drained and dried, and the reactor cannot be started until the helium has been purged from the cooling system. This study examines the feasibility of using a single high-temperature fluid to perform both heat removal and bake-out. The high temperature required for bake-out would also be in the range for power production. The study examines cost, operational benefits, and impact on reactor safety of two options: a high-pressure water system, and a low-pressure organic system. It was concluded that the cost savings and operational benefits are significant; there are no significant adverse safety impacts from operating either the water system or the organic system; and the capital costs of both systems are comparable

  6. Inelastic collisions of neon-22 nuclei with nuclei in photoemulsion at 90 GeV/c momentum

    International Nuclear Information System (INIS)

    Vokalova, A.; Krasnov, S.A.; Tolstov, K.D.

    1985-01-01

    The experimental data obtained according to the analysis of 4303 inelastic interactions of the relativistic neon-22 nuclei with the nuclei in photoemulsion are presented. The multiplicities and angular distributions are shown as the functions of the disintegration degree of the colliding nuclei. It is shown that the same number of interacting nucleons of the projectile neon and carbon nuclei are connected with the different impact parameters with the target nucleus

  7. Cooling your home naturally

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This fact sheet describes some alternatives to air conditioning which are common sense suggestions and low-cost retrofit options to cool a house. It first describes how to reflect heat away from roofs, walls, and windows. Blocking heat by using insulation or shading are described. The publication then discusses removing built-up heat, reducing heat-generating sources, and saving energy by selecting energy efficient retrofit appliances. A resource list is provided for further information.

  8. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  9. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A

    1976-01-01

    Solar energy is discussed as an energy resource that can be converted into useful energy forms to meet a variety of energy needs. The review briefly explains the nature of this energy resource, the kinds of applications that can be made useful, and the status of several systems to which it has been applied. More specifically, information on solar collectors, solar water heating, solar heating of buildings, solar cooling plus other applications, are included.

  10. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Arai, Kenji.

    1996-01-01

    Upon assembling a static container cooling system to an emergency reactor core cooling system using dynamic pumps in a power plant, the present invention provides a cooling device of lowered center of gravity and having a good cooling effect by lowering the position of a cooling water pool of the static container cooling system. Namely, the emergency reactor core cooling system injects water to the inside of a pressure vessel using emergency cooling water stored in a suppression pool as at least one water source upon loss of reactor coolant accident. In addition, a cooling water pool incorporating a heat exchanger is disposed at the circumference of the suppression pool at the outside of the container. A dry well and the heat exchanger are connected by way of steam supply pipes, and the heat exchanger is connected with the suppression pool by way of a gas exhaustion pipe and a condensate returning pipeline. With such a constitution, the position of the heat exchanger is made higher than an ordinary water level of the suppression pool. As a result, the emergency cooling water of the suppression pool water is injected to the pressure vessel by the operation of the reactor cooling pumps upon loss of coolant accident to cool the reactor core. (I.S.)

  11. Conduction cooling: multicrate fastbus hardware

    International Nuclear Information System (INIS)

    Makowiecki, D.; Sims, W.; Larsen, R.

    1980-11-01

    Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications

  12. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  13. Lamination cooling system

    Science.gov (United States)

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  14. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  15. Reactor container cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1995-11-10

    The device of the present invention efficiently lowers pressure and temperature in a reactor container upon occurrence of a severe accident in a BWR-type reactor and can cool the inside of the container for a long period of time. That is, (1) pipelines on the side of an exhaustion tower of a filter portion in a filter bent device of the reactor container are in communication with pipelines on the side of a steam inlet of a static container cooling device by way of horizontal pipelines, (2) a back flow check valve is disposed to horizontal pipelines, (3) a steam discharge valve for a pressure vessel is disposed closer to the reactor container than the joint portion between the pipelines on the side of the steam inlet and the horizontal pipelines. Upon occurrence of a severe accident, when the pressure vessel should be ruptured and steams containing aerosol in the reactor core should be filled in the reactor container, the inlet valve of the static container cooling device is closed. Steams are flown into the filter bent device of the reactor container, where the aerosols can be removed. (I.S.).

  16. Emergency core cooling system

    International Nuclear Information System (INIS)

    Abe, Nobuaki.

    1993-01-01

    A reactor comprises a static emergency reactor core cooling system having an automatic depressurization system and a gravitationally dropping type water injection system and a container cooling system by an isolation condenser. A depressurization pipeline of the automatic depressurization system connected to a reactor pressure vessel branches in the midway. The branched depressurizing pipelines are extended into an upper dry well and a lower dry well, in which depressurization valves are disposed at the top end portions of the pipelines respectively. If loss-of-coolant accidents should occur, the depressurization valve of the automatic depressurization system is actuated by lowering of water level in the pressure vessel. This causes nitrogen gases in the upper and the lower dry wells to transfer together with discharged steams effectively to a suppression pool passing through a bent tube. Accordingly, the gravitationally dropping type water injection system can be actuated faster. Further, subsequent cooling for the reactor vessel can be ensured sufficiently by the isolation condenser. (I.N.)

  17. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  18. Cooling lubricants; Kuehlschmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  19. Decay and fission of the oriented nuclei

    CERN Document Server

    Kadmenskij, S G

    2002-01-01

    The fragment angular distributions for binary decay of oriented spherical and deformed nuclei with taking into account the correct transformational properties of wave functions under time inversion have been investigated. It has been shown that for description of fragment angular distributions the adiabatic approximation for collective rotational nuclear degrees of freedom is not correct. It has been demonstrated that this approximation is valid for description of spontaneous and induced low-energy nuclear fission. The dependence of partial fission widths on the orientation of the internal axes spins, projections of spins, and relative angular moments of fission fragments has been analyzed. It has been shown that the adiabatic approximation results in coherent interference of wave functions of fragments relative movement. This interference forms fragments the universal angular distributions of fission fragments for oriented nuclei. For these distributions the deviations from A. Bohr's formula have been invest...

  20. Nuclear structure investigations on spherical nuclei

    International Nuclear Information System (INIS)

    Heisenberg, J.; Calarco, J.; Dawson, J.; Hersman, F.W.

    1989-09-01

    This report discusses the following topics: electron scattering studies on spherical nuclei; electron scattering from collective states in deformed nuclei; proton and pion scattering studies; 12 C(e,e'p) and 16 O(e,e'p); 12 C(e,e'α) and 16 O(e,e'α); studies at high q at Bates; measurements with rvec e at Bates; 12 C(γ,p); future directions in giant resonance studies; proton knockout from 16 O; quasielastic studies at Bates; triple coincidence studies of nuclear correlations; contributions to (e,e'2p) at KIKHEF; contributions to instrumentation at CEBAF; instrumentation development at UNH; the Bates large acceptance spectrometer toroid; shell model and core polarization calculations; and the relativistic nuclear model

  1. Nuclei at HERA and heavy ion physics

    International Nuclear Information System (INIS)

    Gavin, S.; Strikman, M.

    1995-01-01

    Copies of 16 viewgraph sets from a workshop held at Brookhaven National Laboratory, 17-18 November, 1995. Titles of talks: HERA: The Present; HERA: Potential with Nuclei; Review of Hadron-Lepton Nucleus Data; Fermilab E665: results in muon scattering; Interactions of Quarks and Gluons with Nuclear Matter; Rescattering in Nuclear Targets for Photoproduction and DIS; Structure Functions and Nuclear Effect at PHENIX; Probing Spin-Averaged and Spin-Dependent Parton Distributions Using the Solenoidal Tracker at RHIC (STAR); Jet Quenching in eA, pA, AA; Nuclear Gluon Shadowing via Continuum Lepton Pairs; What can we learn from HERA with a colliding heavy ion beam? The limiting curve of leading particles at infinite A; Coherent Production of Vector Mesons off Light Nuclei in DIS; A Model of High Parton Densities in PQCD; Gluon Production for Weizaecker-Williams Field in Nucleus-Nucleus Collisions; Summary Talk

  2. Transmission coefficents in strongly deformed nuclei

    International Nuclear Information System (INIS)

    Aleshin, V.P.

    1996-01-01

    By using our semiclassical approach to particle evaporation from deformed nuclei developed earlier, we analyze here the heuristic methods of taking into account the effects of shape deformations on particle emission. These methods are based on the 'local' transmission coefficients in which the effective barrier depends on the angle with respect to the symmetry axis. The calculations revealed that the heuristic models are reasonable for particle energy spectra but fail, at large deformations, to describe the angular distributions. In A∼160 nuclei with axis ratio in the vicinity of 2:1 at temperatures of 2-3 MeV, the W (90 )/W(0 ) anisotropies of α particles with respect to the nuclear spin are 1.5 to 3 times larger than our approach predicts. The influence of spin alignment on particle energy spectra is discussed shortly. (orig.)

  3. Intruder bands in Z = 51 nuclei

    International Nuclear Information System (INIS)

    LaFosse, D.R.

    1993-01-01

    Recent investigations of h 11/2 proton intruder bands in odd 51 Sb nuclei are reported. In addition to experiments performed at SUNY Stony Brook and Chalk River, data from Early Implementation of GAMMASPHERE (analysis in progress) are presented. In particular, the nuclei 109 Sb and 111 Sb are discussed. Rotational bands based on the πh 11/2 orbital coupled to a 2p2h deformed state of the 50 Sn core have been observed. These bands have been observed to high spin, and in the case of 109 Sb to a rotational frequency of 1.4 MeV, the highest frequency observed in a heavy nucleus. The dynamic moments of inertia in these bands decrease slowly with frequency, suggesting a gradual band termination. The systematics of such bands in 109-119 Sb will be discussed

  4. Shell model for warm rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Yoshida, K. [Kyoto Univ. (Japan); Dossing, T. [Univ. of Copenhagen (Denmark)] [and others

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  5. Collective properties of drip-line nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hamamoto, I. [Univ. of Lund (Sweden); Sagawa, H. [Univ. of Aizu, Fukushima (Japan)

    1996-12-31

    Performing the spherical Hartree-Fock (HF) calculations with Skyrme interactions and, then, using RPA solved in the coordinate space with the Green`s function method, the authors have studied the effect of the unique shell structure as well as the very low particle threshold on collective modes in drip line nuclei. In this method a proper strength function in the continuum is obtained, though the spreading width of collective modes is not included. They have examined also one-particle resonant states in the obtained HF potential. Unperturbed particle-hole (p-h) response functions are carefully studied, which contain all basic information on the exotic behaviour of the RPA strength function in drip line nuclei.

  6. Antiproton Induced Fission and Fragmentation of Nuclei

    CERN Multimedia

    2002-01-01

    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  7. EMC effect and multiquark bags in nuclei

    International Nuclear Information System (INIS)

    Kondratyuk, L.; Shmatikov, M.

    1984-01-01

    Assuming existence of 9q- and 12q bags in niclei the form factors of light nuclei at large momentum transfers and structure functions of deep inelastic scattering of leptons on nuclei are described. It is shown that the existing experimental data can be described in a unified way provided the momentum distribution of quarks in multiquark bags at k 0 has the exponential form PSIsub(q)sup(2)(k) approximately esup(-k/k 0 ) with the parameter k 0 approximately 50-60 MeV. Theoretical results agree well the EMC experimental data on the ratio of the iron and deuteron structure functions with the 20% admixture of 12q-bags in the Fe nucleus

  8. SP (4,R) symmetry in light nuclei

    International Nuclear Information System (INIS)

    Peterson, D.R.

    1979-01-01

    A classification of nuclear states according to the noncompact sympletic Lie algebras sp(2n,R), n = 1, 2, 3, is investigated. Such a classification has recently been shown to be physically meaningful. This classification scheme is the appropriate generalization fo Elliott's SU 3 model of rotational states in deformed light nuclei to include core excitations. A restricted classification according to the Lie algebra, sp(4,R), is motivated. Truncation of the model space to a single sp(4,R) irreducible representation allows the inclusion of states possessing very high excitation energy. An sp(4,R) model study is performed on S = T = 0 positive-parity rotational bands in the deformed light nuclei 16 O and 24 Mg. States are included in the model space that possess up to 10h ω in excitation energy. Results for the B(E2) transition rates compare favorable with experiment, without resort to effective charges

  9. Order in nuclei and transition to chaos

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1995-01-01

    Based on the statement that there is order in the large and chaos in the small components of nuclear wave functions, the order-to-chaos transition is treated as a transition from the large to small components of wave functions. Therefore, experimental investigation of fragmentation of the many-quasiparticle and quasiparticle-phonon states plays a decisive role. The mixing of closely-spaced states having the same K π in the doubly even well-deformed nuclei is investigated. The quasiparticle-phonon interaction is responsible for fragmentation of the quasiparticle and phonon states and therefore for their mixing. Experimental investigation of the strength distribution of the many-quasiparticle and quasiparticle-phonon states should discover a new region of regularity in nuclei at intermediate excitation energies. A chaotic behaviour of nuclear states can be shifted to higher excitation energies. (author). 21 refs., 1 fig., 1 tab

  10. Order in nuclei and transition to chaos

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1995-01-01

    Based on the statement that there is order in the large and chaos in the small components of nuclear wave functions, the order-to-chaos transition is treated as a transition from the large to small components of wave functions. Therefore, experimental investigation of fragmentation of the many-quasiparticle and quasiparticle-phonon states a decisive role. The mixing of closely-spaced states having the same K π in the doubly even well-deformed nuclei is investigated. The quasiparticle-phonon interaction is responsible for fragmentation of the quasiparticle and phonon states and therefore for their mixing. Experimental investigation of the strength distribution of the many-quasiparticle and quasiparticle-phonon states should discover a new region of regularity in nuclei at intermediate excitation energies. A chaotic behaviour of nuclear states can be shifted to higher excitation energies. (author). 21 refs., 1 fig., 1 tab

  11. Isospin Mixing In N $\\approx$ Z Nuclei

    CERN Multimedia

    Srnka, D; Versyck, S; Zakoucky, D

    2002-01-01

    Isospin mixing in N $\\approx$ Z nuclei region of the nuclear chart is an important phenomenon in nuclear physics which has recently gained theoretical and experimental interest. It also forms an important nuclear physics correction in the precise determination of the $ft$-values of superallowed 0$^+ \\rightarrow 0^+ \\beta$- transitions. The latter are used in precision tests of the weak interaction from nuclear $\\beta$- decay. We propose to experimentally measure isospin mixing into nuclear ground states in the N $\\approx$ Z region by determining the isospin forbidden Fermi-component in the Gamow-Teller dominated $J^{\\pi} \\rightarrow J^{\\pi} \\beta$- transitions through the observation of anisotropic positron emission from oriented nuclei. First measurements were carried out with $^{71}$As and are being analyzed now.

  12. Electron interactions with nuclei: Progress report

    International Nuclear Information System (INIS)

    McCarthy, J.S.

    1987-08-01

    High energy is being conducted at the Stanford Linear Accelerator Center. This includes inclusive electron scattering, electroexcitation of the delta in nuclei, longitudinal and transverse response in the quasi-elastic region, the q 2 dependence of 4 He(e,e'p), deep inelastic scattering from nuclei, transverse and longitudinal response in the resonance region, nuclear physics at PEP and 1.6 GeV spectrometer properties. Additional high energy research on electron scattering on 3 H and 3 He and the nuclear structure of 205 Tl and 206 Pb are being conducted at MIT-Bates. Other activities are being carried out at Saclay and research and development for Monte Carlo studies of Hall A spectrometers for CEBAF is being conducted

  13. Maris polarization in neutron-rich nuclei

    Directory of Open Access Journals (Sweden)

    Shubhchintak

    2018-03-01

    Full Text Available We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon–nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  14. Electron interactions with nuclei. Progress report

    International Nuclear Information System (INIS)

    1986-07-01

    Research includes work at SLAC, Bates, and Saclay research facilities. The high energy program at SLAC concerns inclusive electron scattering from nuclei, electroexcitation of the delta in nuclei, and the design of an electron detection system for the SLAC 1.6 GeV/c magnetic spectrometer. The high energy program at Bates includes quasielastic electron scattering from 1 H, 2 H, 3 He, and 4 He, and electron scattering from 3 H and 3 He. Nuclear structure studies are based on high resolution inelastic electron scattering and include electron scattering from 208 Pb and mercury isotopes, charge densities from low lying states in 86 Sr, and magnetization densities of 205 Tl and 207 Pb. (DWL) 72 refs., 29 figs., 1 tab

  15. Accretion disks in active galactic nuclei

    International Nuclear Information System (INIS)

    Begelman, M.C.

    1985-01-01

    The innermost regions of the central engines in active galactic nuclei are examined, and it is shown how different modes of accretion with angular momentum may account for the diverse manifestations of activity in the nuclei of galaxies. These modes are subsequently compared with the observed properties of quasars, Type I Seyferts, and radio galaxies. It was found that the qualitative features of an accretion flow orbiting a massive black hole depend principally on the ratio of the actual accretion rate to the Eddington accretion rate. For a value of this ratio much less than one, the flow may become an ion torus supported by gas pressure; for a value much greater than one, the flow traps its radiative output and becomes an inefficient radiation torus. At intermediate values, the flow may settle into a thin accretion disk. 62 references

  16. Realistic microscopic level densities for spherical nuclei

    International Nuclear Information System (INIS)

    Cerf, N.

    1994-01-01

    Nuclear level densities play an important role in nuclear reactions such as the formation of the compound nucleus. We develop a microscopic calculation of the level density based on a combinatorial evaluation from a realistic single-particle level scheme. This calculation makes use of a fast Monte Carlo algorithm allowing us to consider large shell model spaces which could not be treated previously in combinatorial approaches. Since our model relies on a microscopic basis, it can be applied to exotic nuclei with more confidence than the commonly used semiphenomenological formuals. An exhaustive comparison of our predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented

  17. The structure of nuclei far from stability

    International Nuclear Information System (INIS)

    Zganjar, E.F.

    1993-01-01

    Studies on nuclei near Z=82 contributed to the establishment of a new region of nuclear deformation and a new class of nuclear structure at closed shells. A important aspect of this work is the establishment of the connection between low-lying 0 + states in even endash even nuclei and the occurrence of shape coexistence in the odd-mass neighbors (E0 transitions in 185 Pt, shape coexistence in 184 Pt and 187 Au). A new type of picosecond lifetime measurement system capable of measuring the lifetime of states that decay only by internal conversion was developed and applied to the 186,188 Tl decay to determine the lifetime of the 0 2 + and 2 2 + deformed states in 186,188 Hg. A search for the population of superdeformed states in 192 Hg by the radioactive decay of 192 Tl was accomplished by using a prototype internal pair formation spectrometer

  18. Orientation of nuclei excited by polarized neutrons

    International Nuclear Information System (INIS)

    Lifshits, E.P.

    1986-01-01

    Polarization and radiation angular distribution of oriented nuclei in inelastic scattering of polarized neutrons were investigated. Nucleus orientation in the final state was described by polarization density matrix (PDM). If PDM is known, angular distributions, linear and circular polarization of γ-quanta emitted by a nucleus can be determined. Analytical expression for PDM, conditions of its diagonalization in the case of direct nucleus excitation and excitation by the stage of compound nucleus were obtained. Orientation of 12 C nuclei in the excited state 4.439 MeV, 2 + at energy of incident neutrons in the laboratory system from 4.8 MeV (excitation threshold) upt to 9 MeV was calculated as an example. Neutrons in initial state are completely polarized along Z axis. Calculations showed that excitation proceeds mainly by the stage of compound nucleus formation and 12 C nucleus is highly polarized in excited state

  19. Cumulative processes and quark distribution in nuclei

    International Nuclear Information System (INIS)

    Kondratyuk, L.; Shmatikov, M.

    1984-01-01

    Assuming existence of multiquark (mainly 12q) bags in nuclei the spectra of cumulative nucleons and mesons produced in high-energy particle-nucleus collisions are discussed. The exponential form of quark momentum distribution in 12q-bag (agreeing well with the experimental data on lepton-nucleus interactions at large q 2 ) is shown to result in quasi-exponential distribution of cumulative particles over the light-cone variable αsub(B). The dependence of f(αsub(B); psub(perpendicular)) (where psub(perpendicular) is the transverse momentum of the bag) upon psub(perpendicular) is considered. The yields of cumulative resonances as well as effects related to the u- and d-quark distributions in N > Z nuclei being different are dicscussed

  20. Vibrational-rotational model of odd-odd nuclei

    International Nuclear Information System (INIS)

    Afanas'ev, A.V.; Guseva, T.V.; Tamberg, Yu.Ya.

    1988-01-01

    The rotational vibrational (RV) model of odd nuclei is generalized to odd-odd nuclei. The hamiltonian, wave functions and matrix elements of the RV-model of odd-odd nuclei are obtained. The expressions obtained for matrix elements of the RV-model of odd-odd nuclei can be used to study the role of vibrational additions in low-lying two-particle states of odd-odd deformed nuclei. Such calculations permit to study more correctly the residual neutron-proton interaction of valent nucleons with respect to collectivization effects

  1. How do nuclei really vibrate or rotate

    International Nuclear Information System (INIS)

    Andresen, H.G.; Kunz, J.; Mosel, U.; Mueller, M.; Schuh, A.; Wust, U.

    1983-01-01

    By means of the adiabatic cranking model the properties of the current and velocity fields of nuclear quadrupole vibrations for even-even nuclei in the rare-earth region are investigated. BCS correlated wave functions based on the Nilsson single particle Hamiltonian have been used. The current fields are analyzed in terms of vector spherical harmonics. The realistic microscopic currents show a vortex structure not present in the classical irrotational flow. The microscopic origin of the vortex structure is investigated

  2. AMS with light nuclei at small accelerators

    Science.gov (United States)

    Stan-Sion, C.; Enachescu, M.

    2017-06-01

    AMS applications with lighter nuclei are presented. It will be shown how Carbon-14, Boron-10, Beryllium-10, and Tritium-3 can be used to provide valuable information in forensic science, environmental physics, nuclear pollution, in material science and for diagnose of the plasma confinement in fusion reactors. Small accelerators are reliable, efficient and possess the highest ion beam transmissions that confer high precision in measurements.

  3. Resonant Tidal Disruption in Galactic Nuclei

    OpenAIRE

    Rauch, Kevin P.; Ingalls, Brian

    1997-01-01

    It has recently been shown that the rate of angular momentum relaxation in nearly-Keplerian star clusters is greatly increased by a process termed resonant relaxation (Rauch & Tremaine 1996), who also argued that tidal disruption of stars in galactic nuclei containing massive black holes could be noticeably enhanced by this process. We describe here the results of numerical simulations of resonant tidal disruption which quantitatively test the predictions made by Rauch & Tremaine. The simulat...

  4. Nuclear astrophysics and nuclei far from stability

    International Nuclear Information System (INIS)

    Schatz, H.

    2003-01-01

    Unstable nuclei play a critical role in a number of astrophysical scenarios and are important for our understanding of the origin of the elements. Among the most important scenarios are the r-process (Supernovae), Novae, X-ray bursters, and Superbursters. For these astrophysical events I review the open questions, recent developments in astronomy, and how nuclear physics, in particular experiments with radioactive beams, needs to contribute to find the answers. (orig.)

  5. On the charge distribution of calcium nuclei

    International Nuclear Information System (INIS)

    Traeger, F.

    1981-01-01

    The mean square charge radii and the quadrupole moments of Ca nuclei are discussed in the light of theoretical predictions. The very peculiar dependence of the charge radii on the mass number between double magic 40 Ca and double magic 48 Ca can be ascribed to changes of the nuclear deformation, whereas the volume of the nuclear charge remains constant for all the Ca isotopes. Furthermore, correlations between nuclear charge radii and binding energies are discussed. (orig.)

  6. Complex fragment emission from hot compound nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1986-03-01

    The experimental evidence for compound nucleus emission of complex fragments at low energies is used to interpret the emission of the same fragments at higher energies. The resulting experimental picture is that of highly excited compound nuclei formed in incomplete fusion processes which decay statistically. In particular, complex fragments appear to be produced mostly through compound nucleus decay. In the appendix a geometric-kinematic theory for incomplete fusion and the associated momentum transfer is outlined. 10 refs., 19 figs

  7. Nuclear moments of radioactive nuclei. Final report

    International Nuclear Information System (INIS)

    Greenlees, G.W.

    1985-01-01

    An unsuccessful attempt was made to study nuclear moments of radioactive nuclear using laser spectroscopy. Although preliminary tests had indicated a sensitivity sufficient to observe signals of fluxes less than one atom/s no resonance fluorescence was detected. Activity measurements showed several hundred nuclei per second were in the beam; therefore it was postulated that, due to the the reactivity of the 126 Ba and sodium used, contaminants were the probable source of negative results. 3 refs., 2 figs

  8. Electromagnetic interactions with nuclei and nucleons

    International Nuclear Information System (INIS)

    Thornton, S.T.; Sealock, R.M.

    1990-01-01

    This report discusses the following topics: general LEGS work; photodisintegration of the deuteron; progress towards other experiments; LEGS instrumentation; major LEGS software projects; NaI detector system; nucleon detector system; waveshifting fibers; EGN prototype detector for CEBAF; photon beam facility at CEBAF; delta electroproduction in nuclei; quasielastic scattering and excitation of the Delta by 4 He(e,e'); and quasielastic scattering at high Q 2

  9. Fission of nuclei far from stability

    International Nuclear Information System (INIS)

    Schmidt, K.H.; Benlliure, J.; Junghans, A.R.

    2000-11-01

    The secondary-beam facility of GSI provided the technical equipment for a new kind of fission experiment. Fission properties of short-lived neutron-deficient nuclei have been investigated in inverse kinematics. The measured element distributions reveal new kinds of systematics on shell structure and even-odd effects and lead to an improved understanding of structure effects in nuclear fission. Prospects for further experimental studies are discussed. (orig.)

  10. Liquid drop parameters for hot nuclei

    International Nuclear Information System (INIS)

    Guet, C.; Strumberger, E.; Brack, M.

    1988-01-01

    Using the semiclassical extended Thomas-FERMI (ETF) density variational method, we derived selfconsistently the liquid drop model (LDM) coefficients for the free energy of hot nuclear systems from a realistic effective interaction (Skyrme SkM*). We expand the temperature (T) dependence of these coefficients up to the second order in T and test their application to the calculation of the fission barriers of the nuclei 208 Pb and 240 Pu

  11. Effective interactions and coupling schemes in nuclei

    International Nuclear Information System (INIS)

    Talmi, I.

    1994-01-01

    Eigenstates of the shell model are obtained by diagonalization of the Hamiltonian submatrix defined by a given shell model subspace. Matrix elements of the effective nuclear interaction can be determined from experiment in a consistent way. This approach was introduced in 1956 with the 38 Cl- 40 K spectra, has been applied in many cases and its latest success is in the s, d shell. This way, general features of the effective interaction have been determined. The T=1 interaction is diagonal in the seniority scheme as clearly demonstrated in proton 1g 9/2 n and 1h 11/2 n configurations and in the description of semimagic nuclei by generalized seniority. Apart from a strong and attractive pairing term, T=1 interactions are repulsive on the average. The T=0 interaction is attractive and is the origin of the central potential well in which nucleons are bound. It breaks seniority in a major way leading to deformed nuclei and rotational spectra. Such an interaction may be approximated by a quadrupole-quadrupole interaction which is the basis of the interacting boson model. Identical nucleons with pairing and quadrupole interactions cannot be models of actual nuclei. Symmetry properties of states with maximum T are very different from those of ground states of actual nuclei. The T=1 interaction between identical nucleons cannot be approximated by pairing and quadrupole interactions. The rich variety of nuclear spectra is due to the competition between seniority conserving T=1 interactions and the T=0 quadrupole interaction between protons and neutrons. (orig.)

  12. High energy collisions of nuclei: experiments

    International Nuclear Information System (INIS)

    Heckman, H.H.

    1977-09-01

    Heavy-ion nuclear reactions with projectile energies up to 2.1 GeV/A are reviewed. The concept of ''rapidity'' is elucidated, and the reactions discussed are divided into sections dealing with target fragmentation, projectile fragmentation, and the intermediate region, with emphasis on the production of light nuclei in high-energy heavy-ion collisions. Target fragmentation experiments using nuclear emulsion and AgCl visual track detectors are also summarized. 18 figures

  13. Chiral bags, skyrmions and quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1984-09-01

    Recent developments on an intriguing connection between the quark-bag description of the baryons (nucleons in particular) and the Skyrmion model are discussed in terms of the constraints coming from chiral anomalies. Topics treated are the leaking baryon charge, axial charge and energy density; the role of chiral anomalies; the role of Skyrme's quartic term and the connection to the meson degrees of freedom; and finally some qualitative implications in nuclei. The presentation is purposely descriptive and intuitive instead of mathematically precise

  14. The Skyrmions and quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1984-08-01

    It is proposed that the quark-bag description and the Skyrmion description of baryons are related to each other by quantized parameters. Topology (through a chiral anomaly) plays an important role in bridging the fundamental theory of the strong interactions (QCD) to effective theories. Some consequences on the efforts to see quark degrees of freedom in nuclear matter are discussed. It is suggested that at low energies there will be no ''smoking gun'' evidences for quark presence in nuclei

  15. Collective oblate bands in Pb nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Huebel, H; Baldsefen, G; Mehta, D [Bonn Univ. (Germany). Inst. fuer Strahlen- und Kernphysik; and others

    1992-08-01

    The coexistence of different nuclear shapes is a well established phenomenon in the Hg-Pb region, where spherical, oblate, prolate and superdeformed prolate shapes have been observed. In this work, the authors report on several new rotational bands in the normally spherical nuclei {sup 199-201}Pb. Similar structures were found previously in the lighter isotopes {sup 197,198}Pb. 11 refs., 1 tab., 3 figs.

  16. Production and identification of very exotic nuclei

    International Nuclear Information System (INIS)

    Pougheon, F.

    1986-01-01

    New very exotic nuclei have been produced by fragmentation of the projectile at intermediate energy at GANIL. They have been identified through time of flight and ΔE-E measurements after a magnetic separation with the 0 0 LISE spectrometer. New neutron rich isotopes have been identified up to Z = 26 and evidence for the stability of the new series Tz = -5/2 has been shown. These results improve the knowledge of the neutron and proton drip lines

  17. Continuum of active nuclei of galaxies

    International Nuclear Information System (INIS)

    Boisson, C.; Durret, F.

    1987-01-01

    Most of the luminosity of active galactic nuclei (NAG) is radiated in the form of a continuum extending from radio to X-ray energies. It is important to understand the origin of this continuum in order to explain the relative importance of thermal and non-thermal processes in the different classes of NAG. We present here the observational aspect. A detailed study of the mechanisms will be presented by J.L. Masnou [fr

  18. Soft radiative strength in warm nuclei

    International Nuclear Information System (INIS)

    Becker, J A; Bernstein, L A; Garrett, P E; Nelson, R O; Schiller, A; Voinov, A; Agvaanluvsan, U; Algin, E; Belgya, T; Chankova, R; Guttormsen, M; Mitchell, G E; Rekstad, J; Siem, S

    2004-01-01

    Unresolved transitions in the nuclear γ-ray cascade produced in the decay of excited nuclei are best described by statistical concepts: a continuous radiative strength function (RSF) and level density yield mean values of transition matrix elements. Data on the soft (E γ < 3-4 MeV) RSF for transitions between warm states (i.e. states several MeV above the yrast line) have, however, remained elusive

  19. ''Identical'' bands in normally-deformed nuclei

    International Nuclear Information System (INIS)

    Garrett, J.D.; Baktash, C.; Yu, C.H.

    1990-01-01

    Gamma-ray transitions energies in neighboring odd- and even-mass nuclei for normally-deformed nuclear configurations are analyzed in a manner similar to recent analyses for superdeformed states. The moment of inertia is shown to depend on pair correlations and the aligned angular momentum of the odd nucleon. The implications of this analysis for ''identical'' super-deformed bands are discussed. 26 refs., 9 figs

  20. An Antiproton Ion Collider (AIC) for Measuring Neutron and Proton Distributions in Stable and Radioactive Nuclei

    International Nuclear Information System (INIS)

    Kienle, Paul

    2005-01-01

    An antiproton-ion collider is proposed to independently determine mean square radii for protons and neutrons in stable and short lived nuclei by means of antiproton absorption at medium energies. The experiment makes use of the electron ion collider complex (ELISE) of the GSI FAIR project with appropriate modifications of the electron ring to store, cool and collide antiprotons of 30 MeV energy with 740A MeV energy ions.The total absorption cross-section of antiprotons by the stored ions will be measured by detecting their loss by means of the Schottky noise spectroscopy method. Cross sections for the absorption on protons and neutrons, respectively, will be studied by detection of residual nuclei with A-1 either by the Schottky method or by analysing them in recoil detectors after the first dipole stage of the NESR following the interaction zone. With a measurement of the A-1 fragment momentum distribution, one can test the momentum wave functions of the annihilated neutron and proton, respectively. Furthermore by changing the incident ion energy the tails of neutron and proton distribution can be measured.The absorption cross section is at asymptotic energies in leading order proportional to the mean square radius of the nucleus. Predicted cross sections and luminosities show that the method is applicable to nuclei with production rates of about 105 s-1 or lower, depending on the lifetime of the ions in the NESR, and for half-lives down to 1 second